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Abstract

Hearing is our second most important sense. The main focus of a surveillance cam-
era is obviously the video but the audio shouldn’t be neglected. It is possible to
hear what the camera can’t see and what is said in a conversation can’t be showed
in a video. Therefore there are good reasons to always try and achieve the best
audio possible. This is not an easy task since cameras are operating in a plethora
of different environments with different background noises and are mounted with
varying distances to the origin of the sound.

This thesis investigates which possibilities there are for improving the audio
quality using digital signal processing. The thesis consist of three main parts: the
choice of microphone, equalization and noise reduction. The microphone is the first
link in the audio system and influences the conditions for digital signal processing.
An equalizer was implemented to compensate for the acoustics in and around
the microphone to make the audio sound more natural and closer to the original
sound. The equalizer estimates the frequency response from the microphone in
the frequency domain and inverts it in order to get a flat frequency response.
Surveillance cameras are stationary and not seldom there is some kind of source of
stationary noise nearby, e.g. ventilation or power switching from the camera itself.
From the user’s point of view it can be tiresome and hard to distinguish different
sounds, why noise reduction is desired. Four different noise reduction algorithms
were investigated and implemented and finally one algorithm was chosen that
produced the best result, which was Multi-band Spectral Subtraction. Since all
non-stationary sounds should be left untouched and only stationary noises removed
the noise is estimated over a long time. Different ways of reducing the musical noise
which often occurs after noise reduction are tested and the listening experience was
in focus when tweaking the parameters. Everything is implemented in real-time
Matlab.
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Chapter 1
Introduction

This chapter consists of the background and goal of this thesis work. Some infor-
mation about Axis is also presented.

1.1 Background

Hearing is our second most important sense. The ability to capture good audio
and present it to the user is important in many areas and neither the less in
surveillance applications. Good quality audio can have many advantages compared
to video in surveillance applications. An obvious example is that audio can easily
capture information from all directions while video often has a limited field of
view. But more importantly audio can pick up information that is not possible
with only video, such as conversations, and offer a more complete representation
of the camera’s surroundings compared to when only using video. The main goal
of this thesis work is to investigate the possibilities to improve the quality of
the sound using digital signal processing. Digital signal processing can enhance,
modify and adjust the sound captured by the microphone before it’s presented
to the user. This thesis work has explored and implemented a calibration process
which adjusts the incoming audio’s frequency response to be flat for all frequencies
using equalization. Also a noise reduction algorithm which suppresses unwanted
noise while retaining the wanted sound has been implemented. The first part of
this thesis work was spent choosing a microphone for surveillance applications with
suitable characteristics that was used during the project.

1.2 About Axis

Axis is mainly a producer of network cameras with over 2000 employees and a
revenue of over 6 billion SEK 2015. Axis is based in Sweden, founded in 1984
by Mikael Karlsson, Martin Gren and Keith Bloodworth. Axis started making
print servers and in 1996 the first network camera was released. Today, cameras
have become the focus and the main source of income but in recent years Axis’s
new business department has begun to investigate other products connected to
the network in especially the security sector. Some examples of new products are
Axis doorstation and IP audio.
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2 Introduction

1.3 Thesis Outline

Chapter 2 presents the theory which this thesis is based on, such as sampling,
filter banks, signal processing theory and performance measurements. Also differ-
ent properties of microphones are explained.

Chapter 3 describes the work performed when choosing the microphone and
how the calibration process and noise reduction algorithms were implemented.

Chapter 4 presents the achieved results for this thesis work.

Chapter 5 discusses and summarizes the result from this thesis work and pro-
poses improvements and future work.

Digital Signal Processor (DSP) Graphical User Interface (GUI) Audio Pre-
cision (AP) MicroElectrical-Mechanical System (MEMS) Discrete Time Fourier
Transform (DTFT) Infinite Impulse Response (IIR) Finite Impulse Response (FIR)
Linear Time Invariant (LTI) Auto Regressive (AR) Voice Activity Detection (VAD)
Weighted Overlap and Add (WOLA) Discrete Fourier Transform (DFT) Inverse
Discrete Fourier Transform (IDFT) Fast Fourier Transform (FFT) Inverse Fast
Fourier Transform (IFFT) Power Supply Rejection Ratio (PSRR) Power Supply
Rejection (PSR) Equivalent Input Noise (EIN) Acoustic Overload Point (AOP)
Sound Pressure Level (SPL) Signal to Noise Ratio (SNR) Total Harmonic Distor-
tion (THD) Internet Protocol (IP)



Chapter 2
Theory

This chapter presents the theory on which this thesis is based on such as micro-
phone properties, digital signal processing and noise reduction methods.

2.1 Microphone

The first part of this master thesis consisted of selecting a microphone. The
different properties of a microphone that were considered in the selection process
are explained below.

2.1.1 Signal-to-Noise Ratio

The SNR of a microphone is measured with 1kHz sine wave at 94dB SPL [1]. The
value is calculated as the ratio between the output level of the microphone with the
1kHz reference signal and with silence. Often the SNR is specified in dBA which
is the A-weighted value over a 20kHz bandwidth. The weighting corresponds to
the human ear’s sensitivity to different frequencies [1].

2.1.2 Sensitivity

The sensitivity of a microphone gives information about the level of the output
from the microphone for a given signal which is typically a 1kHz sine wave at 94dB
SPL [1]. For an analog microphone the sensitivity is calculated with

SensitivitydBV = 20 · log10

(SensitivitymV/Pa
OutputREF

)
(2.1)

where OutputREF is the 1000mV/Pa level of the reference signal.

2.1.3 Dynamic Range

It is desired to have a linear response from the microphone at different sound
levels. The dynamic range is the difference between the highest and lowest SPL
where the microphone behaves linearly.

3



4 Theory

2.1.4 Frequency Response

The frequency response describes how the microphone responds to different fre-
quencies, it can be visualized as a plot where the output level of the microphone
is a function of the frequency over a frequency spectrum.

2.1.5 Total Harmonic Distortion

THD is measured using a pure tone signal and measuring the distortion on the
output. THD is measured in percent as the ratio between the sum of the powers of
the harmonic frequencies above the fundamental frequency and the power of the
tone at the fundamental frequency [1]. The standard level of the input signal is
105dB SPL, the high level is because THD usually increases with the input level.

2.1.6 Directionality

Depending on usage, microphones with different directionalities can be used. Om-
nidirectional microphones picks up sound equally independent of the location of
the sound, these are used in most Axis cameras. There are also unidirectional
microphones which attenuates all sounds coming from another direction than the
specified. These types of microphones can be used when the source of the sound
is known and other sounds are undesirable.

2.1.7 Acoustic Overload Point

The AOP is the point where the THD reaches 10% and the value is specified as
the SPL where 10% occurs [1]. This value equals the highest value in the dynamic
range.

2.1.8 Equivalent Input Noise

EIN describes how quiet sounds the microphone can pick up. Sounds lower than
EIN are below the noise floor of the microphone, EIN is the lower limit of the
dynamic range. EIN can be derived from the other specifications like this

EIN = AOP− dynamic range (2.2)

and

EIN = 94dB − SNR. (2.3)

2.1.9 Power Supply Rejection and Power Supply Rejection Ratio

PSR and PSRR give indications on how well the microphone rejects noise present
in the supply voltage. PSR is measured with a 217Hz, 100mVpp square wave added
to the supply voltage, the output is integrated and A-weighted over the audible
frequency range [1]. PSRR is measured similarly but with a sine wave and instead
of a single frequency it is measured over a frequency spectrum.



Theory 5

2.2 Sampling

Sampling reduces a continuous signal to a discrete signal consisting of a series of
values corresponding to the amplitude of the continuous signal at certain points
in time. The sampling frequency fs determines the period time between samples
to be

T =
1

fs
. (2.4)

To avoid aliasing, i.e. high frequencies in the continuous signal being seen as lower
frequencies when sampling to a discrete signal, the sampling frequency needs to be
at least twice of the higher limit of the bandwidth according to Nyquist’s criterion

fmax =
fs
2
. (2.5)

2.3 Discrete Fourier Transform

The sampled signal can, given that the samples are sampled equidistantly in time
and that the signal is finite, be converted into a set of coefficients of complex
sinusoids via the DFT. A coefficient represent the presence of a frequency with a
phase in the signal. The transform of a discrete signal in the time domain into the
frequency domain is done by

Xk =

N−1∑
n=0

xn · e−2πikn/N , 0 ≤ k ≤ N − 1 (2.6)

and the transformation back to time domain, the IDFT is

xn =
1

N

N−1∑
n=0

Xk · e2πikn/N , 0 ≤ k ≤ N − 1. (2.7)

The FFT and IFFT are common and efficient ways of implementing DFT
and IDFT respectively. FFT and IFFT reduces the complexity from O(n2) to
O(n log n) using the Divide-and-Conquer design approach. In this master thesis,
the Matlab functions FFT and IFFT are used.

2.4 Weighted-Overlap-and-Add Filter Bank

During real time signal processing the whole signal is not available and therefore
it must be divided into frames. Each frame is processed individually and all the
processing is done in the frequency domain. When the processing is done the
frame is transferred back to the time domain. These two transformation steps are
implemented by a filter bank. The transformation from time to frequency domain
is done by the analysis part of the filter bank and the transformation back to the
time domain is done by the synthesis part of the filter bank. In Figure 2.1 the
analysis and synthesis can be seen to the left respectively right part of the figure.
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Figure 2.1: Filter bank with analysis and synthesis filter.

Since the frames are processed individually they have have to be fitted together
again to form the enhanced time signal. To avoid audible clipping sounds during
the reconstruction of the signal a processed called WOLA, is used [6]. The WOLA
method uses overlap and windowing to smooth the ends of each frame and thus
removing the unwanted clipping sounds. The WOLA consists of two parts that can
be seen in Figure 2.2 and 2.3. In Figure 2.2 each frame is put into a buffer where
a window is added before the FFT function is used on the whole buffer. In Figure
2.3 the IFFT function is used on the whole buffer after the desired processing
is done and then added together with buffer from the previous iteration where
padded zeros has been added and replaced the oldest frame. The delay of the
system depends on the length of the frames, too small and the overhead will make
it inefficient, too large and the delay will be too long. The size of the FFT should
be a power of two for efficiency and be at least the length of the frame but can
also be larger to increase resolution but for the cost of more computation. The
size of the FFT determines the bandwidth of each sub-band to be fs/N where N
is the size if the FFT.

Depending on the window used in the WOLA method there is a limit of how
much overlap that can be used. For a hanning window the overlap needs to be
about 50%. In Figure 2.4 it is visible that 45% is not enough to get an even
summation of the windows. In Figure 2.5 it is clear that 75% is enough which
also is what is used for this master thesis. It can also be seen that the windows
adds up to a sum greater than one, this needs to be corrected with a constant
factor to preserve the level of the signal. With an overlap of 75%, four frames
are windowed together and in each iteration a new frame is brought in which is
windowed with the last three frames. Higher overlap results in more frames that
should be windowed together and the delay will increase. When there are no
clipping sounds there is no reason to increase the overlap further.
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Figure 2.2: WOLA with 75% overlap during transformation to fre-
quency domain.
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Figure 2.3: WOLA with 75% overlap during transformation back to
time domain.
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Figure 2.4: Hanning window of length 64 with 45% overlap.
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Figure 2.5: Hanning window of length 64 with 75% overlap.
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2.5 Signal-to-Noise Ratio

SNR is a measurement used when comparing the level of the desired signal to the
level of background noise. The SNR value is defined as

SNR =
Psignal
Pnoise

(2.8)

where Psignal and Pnoise is the averaged power for the signal and noise respectively.
Due to the wide dynamic range of audio signals the SNR value is often shown in
decibel which is defined as

SNRdB = 10 log10

(
Psignal
Pnoise

)
. (2.9)

2.6 Voice Activity Detection

The purpose of VAD is to determine when speech is present in a noisy signal. The
use of a VAD is important in many speech and audio processing applications. A
good VAD should have a high accuracy for different SNR levels and work inde-
pendently of the noisy environment [7]. Low complexity is also vital for real-time
applications. Many different features can be used when implementing a VAD;
short-time energy, zero-crossing rate, autocorrelation function based, spectrum
based and higher order statistics based. Short-time energy and zero-crossing rate
based are simple and therefore also commonly used. To get a more robust VAD,
other features can be used, and even a combination of features can be used with
maintained complexity to increase the robustness in different environments[7].

2.7 Spectrum Estimation

An AR model can be used to estimate the spectrum over a period of time. How
much the estimation should be affected by a change in the input can be chosen
depending on over how long time the spectrum should be estimated and how much
smoothing that is desired.

The AR model has the form of a stochastic difference equation, depending
linearly on the previous outputs and a stochastic term. The AR model is defined
as

X(t) = c+

p∑
i=1

ϕiX(t− i) + ε(t) (2.10)

where p is the order of the model, c is a constant, ϕi are the parameters which
determine how much the output depends of previous outputs, and ε(t) is the
stochastic term. For an AR model of order p to be stable it requires that the roots
of the polynomial

zp −
p∑
i=1

ϕiz
p−i (2.11)
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Figure 2.6: The figure shows the level of contribution of previous
output values which decreases with time until it is below the
chosen threshold.

lie within the unit circle. It can be seen from the definition that the previous out-
puts affect the current output for an infinite amount of time but the contribution
will go towards zero (if the model is stable).

In this thesis a first order AR model is used which looks like

X(t) = ϕX(t− 1) + (ϕ− 1)ε(t). (2.12)

The current output, X(t) is dependent on a previous output with a factor
ϕoffset in time, using this and selecting a threshold (−60dB for audio) where it is
seen as an old output value no longer contributes to the current output, ϕ can be
calculated to give a desired estimation time according to Figure 2.6. This can be
seen as a low-pass filter of the first order. The formula for the calculation is

ϕ = thresholdblocksize/t·fs (2.13)

where blocksize is the size of each input frame to the algorithm.

2.8 Performance Measurements

To be able to compare the different solutions other than just listening to the sound,
a few different units of measurement were used. Besides the methods below, SNR
improvement was also used to quantify performance of the solutions.
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2.8.1 Signal Distortion

The distortion D is calculated by estimating the spectral power of the clean signal,
P̂xs(ω) and the processed clean signal, P̂ys(ω) and integrate over the difference

D =
1

2π

∫ π

−π
|CdP̂ys(ω)− P̂xs

(ω)|dω (2.14)

where ω = 2πf , and f is the normalized frequency [9]. Ideally, the distortion is
zero. Cd is a normalizing constant to prevent amplification or attenuation to affect
the calculation and is defined as

Cd =

∫ π
−π P̂xs

(ω)dω∫ π
−π P̂ys(ω)dω

. (2.15)

2.8.2 Noise Suppression

The normalized noise suppression SN is calculated using the spectral power esti-
mate of the noise, P̂xN

(ω) and the processed noise, P̂yN (ω) [9]

SN = Cs

∫ π
−π P̂yN (ω)dω∫ π
−π P̂xN

(ω)dω
(2.16)

where

Cs =
1

Cd
. (2.17)

2.9 Noise Reduction

Noise reduction is a process which reduces the noise that is corrupting a clean
signal. There are several noise reduction methods and in this report spectral
subtraction and Wiener filter are implemented and tested.

2.9.1 Spectral Subtraction

Assume that the discrete noisy signal y(m) is composed by the clean signal s(m)
and the disturbing noise n(m) according to

y(m) = s(m) + n(m). (2.18)

The magnitude spectrum of the noisy signal using the FFT can then be represented
as

|Y (ω)| = |S(ω)|+ |N(ω)| (2.19)

where Y (ω) is the spectrum of the noisy signal, S(ω) the spectrum of the clean
signal and N(ω) the spectrum of the noise signal. Since N(ω) in most cases
cannot be directly obtained, a time-averaged estimation of the noise spectrum
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Figure 2.7: Block diagram of Spectral Subtraction.

N̂(ω) is calculated over time. The estimated clean signal spectrum Ŝ(ω) can be
defined as:

|Ŝ(ω)| = |Y (ω)| − |N̂(ω)| (2.20)

[8]. Equation 2.20 can also be written in the following form:

|Ŝ(ω)| = H(ω)|Y (ω)| (2.21)

where

H(ω) = 1− |N̂(ω)|
|Y (ω)|

. (2.22)

H(ω) is often referred to as the gain function. H(ω) is always positive and assum-
ing values between 0 ≤ H(ω) ≤ 1. It decides how much attenuation that should
be done for each frequency bin in the noisy spectrum |Y (ω)|.

A block diagram for spectral subtraction can be seen in Figure 2.7. As seen
from Equation 2.20 the estimated noise is subtracted from the noisy signal spec-
trum. Due to the fact that the noise is an estimate there might be some errors
after the subtraction which can lead to negative values in the spectrum of the en-
hanced signal. These negative values can be set to zero which is called half-wave
rectification. With half-wave rectification the enhanced signal spectrum can be
written as:

|Ŝ(ω)| =
{
|Ŝ(ω)| if |Ŝ(ω)| > 0
0 else

. (2.23)

To finally obtain the improved time signal the IFFT is used according to:

ŝ(m) = IFFT
(
|Ŝ(ω)|ejθ(ω)

)
(2.24)
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where θ(ω) is the phase of the noisy signal Y (ω) and |Ŝ(ω)| is the enhanced signal
spectrum from 2.23.

Although the spectral subtraction method can be easy and straightforward to
implement it comes with a few shortcomings. After the subtraction there might
be small isolated peaks in the spectrum occurring at certain frequencies. However
these frequencies will change over time which will create tones at different fre-
quencies that produces an audible warble sound when converted back to the time
domain. This sound is commonly referred to as musical noise. There are several
factors in the spectral subtraction process that can lead to musical noise. Some of
these factors are:

• Half-wave rectification 2.23. This nonlinear processing of the negative values
can lead to isolated peaks in the spectrum which will distort the signal.

• Incorrect estimate of the disturbing noise which will lead to a bad estimation
of the clean signal.

• Using the noisy signal’s phase together with the modified spectrum to create
the enhanced time signal. Since there is no enhancement of the phase of the
noisy signal this can lead to some added distortions of the clean signal.
However estimating the phase of the clean signal is a difficult process and
greatly increases the complexity of the algorithm. Therefore using the phase
of the noisy signal is considered an acceptable practice when creating the
clean time signal. Furthermore the distortion of the noisy phase is small
compared to other factors, especially at high SNR’s. This can be seen in
Figure 2.8 where the enhanced signal’s, S(ω), phase is almost the same as
the phase of the noisy signal Y (ω) at high SNR values, compared to low
SNR values where the difference is bigger.

• Large and fast variations in the system’s gain function in Equation 2.21.

There has been a lot of research throughout the years for different ways to reduce
the musical noise. However it is very difficult to reduce the musical noise without
affecting the clean signal and generally there is a trade-off between how much
noise to suppress and how much distortions introduced by the algorithm. One
approach introduced to reduce the musical noise was proposed by Berouti et al.
[10]. This approach included a combination of an over-subtraction factor and a
spectral flooring with the following form:

|Ŝ(ω)| =
{
|Y (ω)| − α|N̂(ω)| if |Y (ω)| > (α+ β)|N̂(ω)|
β|N̂(ω)| else

(2.25)

where α is the over-subtraction factor (α ≥ 1), and β(0 < β � 1) is the spectral
floor parameter. The reason behind using over-subtraction factor and spectral
flooring is that after subtracting the estimated noise there will still remain peaks
in the spectrum. These peaks will cause musical noise as mentioned above. With
over-subtraction, when α > 1, more than the actual estimated noise will be sub-
tracted and thus reduce the amplitude of the remaining peaks. However there
will still remain deep valleys between the peaks in the spectrum and therefore
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Figure 2.8: Geometric view of high and low SNR conditions.
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spectral flooring is used to fill in these gaps. By doing this the depth of the val-
leys will decrease and hence possibly mask the remaining peaks. With these two
parameters β and α it is possible to customize the spectral subtraction algorithm
to fit the wanted needs. With a smaller β there will be less residual noise but
the musical noise will be more audible. And vice versa a larger β will have more
residual noise but the musical noise won’t be audible. α affects the amount of
distortion introduced to the enhanced signal. If α is too big the resulting signal
will have severe distortion and with a smaller α there will be less distortion but
more musical noise. Berouti et al. [10] suggested that α should vary depending
on the SNR value. When the noisy signal y(m) in 2.18 has a high SNR, i.e. less
noise and more clean signal present, α should be smaller thus removing less noise.
And when y(m) has a low SNR value, i.e. lots of noise present, the α parameter
should be bigger.

2.9.2 Nonlinear Spectral Subtraction

The nonlinear spectral subtraction method proposed in [11] has a few differences
compared to the basic spectral subtraction algorithm described above. Instead of
calculating the SNR value and α parameter for the whole frame and thus use the
same α for all frequencies in that frame, the nonlinear spectral subtraction method
calculates the SNR value and α parameter for each frequency bin. The reason
behind this is that a lot of real world noises are colored, e.q. a fan noise or a car
interior noise, and therefore affecting some frequencies more than other. Because
of this there may be more noise at certain frequencies and therefore wanting to
subtract more noise at those frequencies.

2.9.3 Multiband Spectral Subtraction

The motivation behind multiband spectral subtraction is similar to the one for
nonlinear spectral subtraction that says that most real world noise does not have
a flat frequency response but instead affecting some frequencies more than others.
One disadvantage of using nonlinear spectral subtraction is that since it calculates
one subtraction factor for each frequency bin it can introduce both distortion and
musical noise if the SNR for some frequency bins changes radically from frame
to frame. To avoid this from happening multiband spectral subtraction groups
numerous frequency bins together to form one frequency band. This introduces
the possibility to choose the the number of frequency bands and the size of each
band. The method proposed in [12] evaluates the performance differences between
one to eight bands. So the estimate of the clean signal spectrum in the ith band
is obtained by:

|Ŝi(k)| = |Yi(k)| − αiδi|N̂i(k)| bi ≤ k ≤ ei (2.26)

where bi and ei are the beginning and ending frequency bins of the ith frequency
band, αi is the over-subtraction factor of the ith frequency band and δi is a tweak-
ing factor for the ith frequency band that can be individually set to customize the
noise removal process.
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Figure 2.9: Block diagram of Wiener Filter.

2.9.4 Wiener Filter

Unlike spectral subtraction, the Wiener filter is designed to mathematically opti-
mize the enhanced signal using the mean-square error. The estimation error e(n)

is the difference between the enhanced signal d̂(n) and the desired signal d(n)

e(n) = d(n)− d̂(n). (2.27)

The input signal goes through a LTI system which is designed in a way such that
the output d̂(n) is as close to d(n) as possible, minimizing the error. A block
diagram of this can be seen in Figure 2.9. The filter that minimizes the error is
the Wiener filter [8], named after the mathematician Norbert Wiener. A constraint
on the filter is that it should be linear. The filter can be either FIR or IIR but
FIR is the most common since it has some desired properties, such as that FIR
filters are inherently stable and the solutions are linear and computationally easy
to evaluate. Using a FIR filter the enhanced signal is derived by

d̂(n) =

M−1∑
k=0

hky(n− k) n = 0, 1, 2, ... (2.28)

where M is the length of the filter, hk the filter coefficients and y(n − k) the
noisy input signal. The filter coefficients hk are computed so that the estimation
error e(n) is minimized, they can be derived in either the time- or the frequency
domain. All processing in this master thesis is done in the frequency domain so
this report only covers derivation in the frequency domain.

Consider a two-sided, infinite duration filter

d̂(n) =

∞∑
k=−∞

hky(n− k) −∞ < n <∞ (2.29)

called the Wiener smoother filter. The output signal can be obtained by convolu-
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tion in the time domain

d̂(n) = h(n) ∗ y(n) (2.30)

which, transformed to the frequency domain becomes

D̂(ω) = H(ω)Y (ω) (2.31)

where H(ω) and Y (ω) are the DTFT of h(n) and y(n) respectively. The estimated
error for a specific frequency bin can be defined as

E(ωk) = D(ωk)− D̂(ωk) = D(ωk)−H(ωk)Y (ωk). (2.32)

The mean-square error is minimized in order to retrieve the optimal transfer func-
tion H(ω). The mean-square error is written as E

[
|E(ωk)|2

]
where E[·] is the

expectation operator, and given by

E
[
|E(ωk)|2

]
= E{[D(ωk)−H(ωk)Y (ωk)]∗[D(ωk)−H(ωk)Y (ωk)]}
= E

[
|D(ωk)|2

]
−H(ωk)E

[
D∗(ωk)Y (ωk)

]
−H∗(ωk)E

[
Y ∗(ωk)D(ωk)

]
+ |H(ωk)|2E

[
|Y (ωk)|2

] (2.33)

where [·]∗ is the conjugate operator. Replacing E
[
|Y (ωk)|2

]
with Pyy(ωk) i.e. the

power spectrum of the input y(n) and E
[
Y (ωk)D∗(ωk)

]
with Pyd(ωk) i.e. the

cross-power spectrum of y(n) and d(n), the mean-square error can be rewritten as

J2 = E
[
|E(ωk)|2

]
= E

[
|D(ωk)|2

]
−H(ωk)Pyd(ωk)−H∗(ωk)Pdy(ωk)

+|H(ωk)|2Pyy(ωk).
(2.34)

Taking the complex derivative of the mean-square error J2 with respect to H(ωk),
setting it to zero and solving the equation yields the optimal filter H(ωk).

∂J2
∂H(ωk)

= H∗Pyy(ωk)− Pyd(ωk)

=
[
H(ωk)Pyy(ωk)− Pdy(ωk)

]∗
= 0.

(2.35)

The general form of the Wiener filter in the frequency domain is obtained by
solving for H(ωk) as follows

H(ωk) =
Pdy(ωk)

Pyy(ωk)
(2.36)

where the cross-power spectrum Pdy(ωk) is generally complex which also makes
H(ωk) complex.

The derivation of the Wiener filter H(ωk) for a noise reduction application is
described below. The noisy input signal

y(n) = x(n) + n(n) (2.37)



Theory 19

consists of the noise signal n(n) and the clean signal x(n) which equals d(n) com-
pared with Equation 2.27. The signals in Equation 2.37 transformed to the fre-
quency domain becomes

Y (ωk) = X(ωk) +N(ωk). (2.38)

Looking back at the general form of the Wiener filter in Equation 2.36, Pdy(ωk) and
Pyy(ωk) needs to be computed. Using Equation 2.38 and the fact that D(ωk) =
X(ωk), the unknown power spectra can be written as

Pdy(ωk) = E
[
X(ωk)

(
X(ωk) +N(ωk)

)∗]
= E

[
X(ωk)X∗(ωk)

]
+ E

[
X(ωk)N∗(ωk)

]
= Pxx(ωk)

(2.39)

and

Pyy(ωk) = E
[(
X(ωk) +N(ωk)

)(
X(ωk) +N(ωk)

)∗]
= E

[
X(ωk)X∗(ωk)

]
+ E

[
N(ωk)N∗(ωk)

]
+ E

[
X(ωk)N∗(ωk)

]
+E
[
N(ωk)X∗(ωk)

]
= Pxx(ωk) + Pnn(ωk).

(2.40)
Using these results, Equation 2.36 can be written as

H(ωk) =
Pxx(ωk)

Pxx(ωk) + Pnn(ωk)
. (2.41)

Both power spectra above are positive and have even symmetry which means that
the Wiener filter H(ωk) is also positive, even and real. The impulse response hk
must also be even and therefore not causal why the Wiener filter is not realizable.
Instead the a priori SNR at frequency ωk is defined as

ξk ,
Pxx(ωk)

Pnn(ωk)
(2.42)

inserted in Equation 2.41, the Wiener filter can be expressed as

H(ωk) =
ξk

ξk + 1
(2.43)

where H(ωk) is in the interval [0 1], going towards zero for low SNR and towards
one for high SNR. This means that the Wiener filter will perform almost no at-
tenuation for the frequency ωk when SNR is high and the other way around, it
will attenuate heavily when SNR is low. The attenuation depending on the SNR
for the Wiener filter can be seen in Figure 2.10. Two parameters α and β can
be added to Equation 2.41 to create a parametric Wiener filter with possibility to
control the attenuation characteristics.

H(ωk) =

(
Pxx(ωk)

Pxx(ωk) + αPnn(ωk)

)β
. (2.44)
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Figure 2.10: Attenuation curve of the Wiener filter as a function of
the a priori SNR.

Substituting the power spectra with the a priori SNR gives

H(ωk) =

(
ξk

α+ ξk

)β
. (2.45)

How α and β affects the attenuation curve can be seen in Figure 2.11 and 2.12
respectively. α affects the attenuation for both low and high SNR levels whilst β
affects the attenuation heavily for low SNR levels and scarcely anything for high
SNR levels.

2.10 Musical Noise Reduction

Two black-box methods were implemented to reduce the musical noise which can be
used together with both the different variants of spectral subtraction and Wiener
filter. The first method is called Adaptive Averaging and is proposed by H. Gustafs-
son et al. in [13].

2.10.1 Adaptive Averaging

As mentioned above, variations in the gain function can result in musical noise.
The purpose of the adaptive averaging is to reduce the variations adaptively so that
the gain function is allowed to vary more when a signal is active and less during
noise-only periods. The adaptive smoothing of the gain function is described as

H̄(ω, i) = α1(i) · H̄(ω, i− 1) + (1− α1(i)) ·H(ω, i) (2.46)
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Figure 2.11: Attenuation curves of the parametric Wiener Filter
depending on different values of α with fixed β = 1.
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Figure 2.12: Attenuation curves of the parametric Wiener Filter
depending on different values of β with fixed α = 1.

where H̄(ω, i) is the smoothed gain function, i the current frame and α1(i) is the
adaptive smoothing factor changing from frame to frame. α1(i) is derived from

α1(i) = 1− β(i) (2.47)

where β(i) is a spectral discrepancy measure. β(i) depends on the spectrum of the
current noisy frame and the noise estimation.

β(i) = min

{∑
ω
|PY (ω, i)− P̄N (ω, i)|∑

ω
P̄N (ω, i)

, 1

}
(2.48)

where PY (ω, i) is the power spectrum for the current frame and P̄N (ω, i) is the
averaged estimation of the noise. When β(i) is small, i.e. when the noise signal
consists of mostly noise, α1(i) will go towards one and the gain function will be
averaged over a longer time. When a non-stationary signal is active, β(i) will be
big and α1(i) will come close to zero and almost no averaging is applied. At the
end of a non-stationary signal, the amount of averaging will increase fast which
means that the previous gain functions suited for the non-stationary signal will
linger and affect the background noise so that a shadow of the signal will be audible
even after the signal is present. To avoid this the increase of averaging is limited



Theory 23

according to

α2(i) =

{
γcα2(i− 1) + (1− γc)α1(i) if α2(i− 1) < α1(i)
α1(i) else (2.49)

where α2(i) becomes the new variable that determines the averaging of the gain
function. If α1(i) for the current frame is larger than α2(i − 1) used to smooth
the previous frame its increase is limited by the constant γc. Now, the increase
of averaging is limited but it can decrease at an unlimited rate. Equation 2.46 is
consequently replaced by

H̄(ω, i) = α2(i) · H̄(ω, i− 1) + (1− α2(i)) ·H(ω, i). (2.50)

2.10.2 Postfilter

The second method is a postfilter proposed by T. Esch and P. Vary in [14]. In
comparison with the previous method, Adaptive averaging which smoothes the
gain function over time, this method smoothes the gain function over the spec-
trum. The input to the algorithm is the noisy signal and the gain function from
the existing system. The power ratio of the enhanced and noisy signal, ζ(i) is
calculated with

ζ(i) =

∑
ω
|G(ω, i) · Y (ω, i)|2∑
ω
|Y (ω, i)|2

=

∑
ω
|Ŝ(ω, i)|2∑

ω
|Y (ω, i)|2

(2.51)

to serve as an indicator of the presence of a non-stationary signal. G(ω, i) is the
gain function calculated with the existing system, Ŝ(ω, i) is the enhanced signal
according to the existing system and Y (ω, i) is the spectrum of the noisy signal. If
there is a lot of non-stationary signals active, G(ω, i) will be close to one for most
frequency bins and not alter the signal very much. For this case ζ(i) will also be
close to one. For the other case when the noisy signal consists of mostly noise,
ζ(i) will be close to zero. A threshold is introduced to decide if a signal is present
or not:

ζT (i) =

{
1 if ζ(i) ≥ ζthr
ζ(i) else . (2.52)

When ζ(i) ≥ ζthr, ζT (i) is set to one to indicate that a non-stationary signal is
present. ζT (i) will later decide when and how much smoothing that is performed on
the spectrum, since ζT (i) is dependent on the threshold, the threshold affects the
trade-off between reduction of musical noise and the amount of signal distortion.

The gain function is smoothed by a moving average window, the odd length
of the window N(i) is calculated as

N(i) =

 1 if ζT (i) = 1

2 · round
((

1− ζT (i)
ζthr

)
·Ψ
)

+ 1 else (2.53)
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where Ψ is a scaling factor that sets the maximum amount of smoothing. The
quota in equation 2.53 provides a soft-decision for how much smoothing that is
applied. Smoothing with the moving average window is equivalent to linear filter-
ing with the impulse response

Hi(µ) =

{ 1
N(i) if µ < N(i)

0 else
, µ ∈ [0,M − 1] (2.54)

where µ is the index of the frequency bin and M is the size of the FFT. The new
postfiltered gain function is the original gain function convoluted with the impulse
response as

GPF(i, ω) = |G(i, ω)| ∗Hi(µ) (2.55)

and the new enhanced signal in the frequency domain ŜPF(i, ω) thus becomes

ŜPF(i, ω) = GPF(i, ω) · Y (i, ω). (2.56)

2.11 Filtering

In digital signal processing filtering can be used to remove unwanted frequencies
of a signal. There are two types of digital filters: IIR and FIR.

2.11.1 FIR Filters

The main characteristics of FIR filters are that they have a finite length impulse
response and settles to zero in finite time. This means that FIR filters are in-
herently stable. FIR filters can also be designed to have linear phase which is
often desired in audio applications. For a casual FIR filter the output y(m) can
be calculated with

y(m) =

M−1∑
k=0

h(k)x(m− k) (2.57)

where h(k) is the impulse response of the system and M is the length of the filter.
By entering the frequency domain the output can also be calculated according to

Y (ω) = X(ω)H(ω) (2.58)

where H(ω) is the transfer function and X(ω) and Y (ω) are the filter’s input
respectively output. The computational complexity for filtering in the time domain
is

(Nh +Nx − 1)(2Nh − 1) (2.59)

where Nh is the length of the filter and Nx the length of the input [15]. In the
frequency domain the computational complexity is

(Nx +Nh − 1) log(Nx +Nh − 1) + 6(Nx +Nh − 1) (2.60)

which is less than for time domain filtering except for small filter lengths.



Chapter 3
Method

This chapter describes the the microphone selection process and how the calibra-
tion of the equalizer and noise reduction algorithms were implemented.

3.1 Selection of the Microphone

When selecting the microphone there were a few properties that had to be fulfilled.
The microphone should have a frequency range from 20Hz to 20kHz, i.e. the
whole audible range. The microphone should also be omnidirectional to be able
to capture sound from all directions and analog to be able to be implemented in
the camera, see Figure 3.4. Furthermore, the microphone should not cost more
than a few dollars, but no exact cost limit was decided. After these properties
were fulfilled the most important property was the SNR value for the microphone.
Since surveillance cameras are often placed far from the origin of the sound the
SNR value must be high to be able to capture quiet sounds from far away. The
frequency response should be relatively flat but this was not the most crucial
property since part of the task was to implement an equalizer. Sensitivity, AOP,
PSR and PSRR are other factors to get good quality sound that also had to be
considered.

To be able to find a suitable microphone many microphones and their spec-
ifications were examined, only analog and omnidirectional microphones with a
frequency range from 20Hz to 20kHz were considered. When these requirements
were fulfilled, the two microphones with the highest SNR values were chosen. The
chosen microphones were PUI Audio POM-3535L-3-R electret microphone [4] and
InvenSense ICS-40720 MEMS microphone [5]. Their specifications can be seen
in table 3.1. Some of the specified values were measured for verification. The
results from the measurements can be seen in the Result section. The properties
that were measured were SNR, sensitivity and frequency response. These were
all important factors when deciding which microphone to use and the available
equipment limited the measurements to include these.

The equipment used for microphone measurements were: sound proofed cham-
ber with built in speaker, see Figure 3.1 and 3.2, reference microphone Earthworks
M30 with known flat frequency response, see Figure 3.3, computer with Spec-
traPlus installed [2], AP audio analyzer [3], dB-meter, external sound card and
amplifier.

25
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ICS-40720 POM-3535L-3-R
SNR 70dBA > 68dB
Sensitivity (dBV −32± 2 −34± 4

AOP (dB SPL) 124 N/A
THD (%) 0.6 N/A
EIN (dBA SPL) 24 N/A
PSR (dBV A-weighted) −77 0

PSRR (dB) −45 0

Table 3.1: Specifications for the InvenSense ICS-40720 MEMS and
PUI Audio POM-3535L-3-R electret microphone.

Figure 3.1: Sound proofed chamber with build in speaker.
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Figure 3.2: Speaker element in the sound chamber.

Figure 3.3: The reference microphone Earthworks M30 used for
compensating for acoustics.
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To measure the sensitivity the speaker was calibrated to 94dB when playing
1kHz sine tone with the dB-meter at the same placement as the microphone would
be [1]. The microphones were powered by batteries to get clean supply voltages.
The microphone was placed in the sound chamber and connected to the AP and
the output voltage was measured.

SNR was achieved by measuring the output voltage during silence and calcu-
lated as

SNR = 20 · log10

(
Vsignal
Vsilence

)
. (3.1)

To measure the frequency response of the microphone, the acoustics in the sound
chamber had to be compensated for. The frequency response of the sound chamber
was measured with the reference microphone and saved in SpectraPlus to be used
as a calibration for later when using the actual microphone. White noise was
played through the speaker and the response was averaged to get a better result.
This procedure was then repeated with the microphone using the calibration for
the sound chamber.

3.2 Equalizer

Equalizers are used in audio applications to amplify or attenuate certain frequen-
cies. There are two scenarios when equalization is helpful, to compensate for
acoustics and flatten the frequency response, or to modify the frequency response
to a desired result, e.g. amplifying low frequencies in order to hear speech better.

3.2.1 Problem Identification

Since the microphones in Axis cameras are inside a case, the sound that reaches
the microphone has been affected by both the acoustics of the case and the channel
that leads the sound to the microphone. The camera used in this master thesis
is Q1775 which can be seen in Figure 3.4. The microphone itself is also unlikely
to have a flat frequency response. This means that the sound from the source is
different compared to the sound that is presented to the costumer. To compensate
for this an equalizer is used to shape the signal to be as close to the original source
as possible.

A simple GUI has also been implemented in Matlab to let the user shape the
frequency response to his or hers preference.

3.2.2 Calibration

To calibrate for the acoustics and the microphone’s characteristics, the camera is
placed in a sound chamber where white noise is played through a speaker and the
frequency spectrum is recursively averaged according to equation 2.12. By doing
this it is possible to compare the source spectrum played through the speaker with
the spectrum received from the microphone, according to:

Y (ω) = X(ω) ·H(ω) (3.2)
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Figure 3.4: Axis camera Q1775.

where X(ω) is the source spectrum fed to the speaker, H(ω) the camera, speaker
and surroundings total transfer function and Y (ω) the spectrum of the sound
presented to the user. To compensate for the fact that the sound chamber and
speaker have their own acoustic properties which affects the measurement, a first
base calibration is measured using a reference microphone which has a flat fre-
quency response, according to:

Xcalibrated(ω) = X(ω) ·Hbase calibration(ω) (3.3)

where Hbase calibration(ω) is the inverse of the speaker and surroundings transfer
function. This base calibration will eliminate the external factors from the result.
After this the same white noise is played for the camera using the base calibration
and this time another calibration is measured that will represent the frequency
response for the camera alone, according to:

Ycamera(ω) = Xcalibrated(ω) ·Hcamera(ω) (3.4)

where Hcamera(ω) is the transfer function for the camera and Ycamera(ω) is the
output spectra from the camera. To compensate for the camera’s transfer function
its inverse is calculated according to:

Hequalizer(ω) = Hcamera(ω)−1 (3.5)

whereHequalizer(ω) is the final filter used to equalize the incoming signals according
to:

Yenhanced(ω) = Hequalizer(ω) · Y (ω) (3.6)

The setup for this can be seen in Figure 3.5, but for simplicity the base calibration
is not included.

3.3 Noise Reduction

A noise reduction algorithm is created to reduce the noise. What is considered
noise can differ from case to case. A noise reduction algorithm created for a phone



30 Method

Figure 3.5: The camera’s calibration process.

could for example mean that everything that is not speech should be reduced.
This section describes the purpose and implementation of the noise reduction.

3.3.1 Problem Identification

Axis cameras are placed in a variety of environments and many have poor sound
conditions. A camera could for example be placed near a road with traffic, high
up in the ceiling close to ventilation or at a train station. Background noise can
mask sounds of interest but also be tough to listen to for long periods of time, why
they are good reasons to try and remove the noise.

The implemented noise reduction algorithm should remove stationary noise
and still trying to preserve the wanted signal as close to the original as possible.
Short disturbing noises, such as a car passing by, should not be removed or atten-
uated. However disturbing noise that lasts for a longer period of time should be
attenuated.

3.3.2 Spectral Subtraction

Three different variants of spectral subtraction were implemented and compared.
These were basic-, nonlinear- and multi-band spectral subtraction, the basic con-
cept of these are described in the Theory section of this report. A block-diagram
over the algorithms can be seen in Figure 3.6

The amount of noise that is removed is based on the SNR which means that
less noise will be removed while non-stationary signals are active. If too much
noise is removed during silent periods with only stationary noise active it will give
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Figure 3.6: Block-diagram over the Spectral Subtraction algorithms.

the impression of signal distortion when a signal becomes active. The reason is
that the noise removed will then be less and therefore become audible again. For
this reason the attenuation is limited to 15dB according to

H(ω) = max(H(ω), 10−15/20) (3.7)

whereH(ω) is the gain function. This will also slightly flatten the gain function and
set a floor at the maximum attenuation level, see Figure 3.7 and 3.8. Both non-
linear- and multi-band spectral subtraction have better potential of reducing more
noise when a non-stationary signal is active since the amount of noise subtracted
is dependent on the frequency which means that if the spectra doesn’t overlap,
maximal reduction can still be performed on the frequencies where there is only
noise.

The subtraction factor which controls how much of the noise that should be
removed is calculated the same way for all three variants of spectral subtraction
but with the difference that it takes different frequency bands as input. The
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Figure 3.7: The gain function at a specific frame for a noisy signal
without any limitations on the attenuation.
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Figure 3.8: The gain function at a specific frame for a noisy signal
with attenuation limited to -15dB.
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Figure 3.9: The variation of the subtraction factor as a function of
SNR.

Frequency Band Frequencies (Hz)
1 1 - 256
2 256 - 1024
3 1024 - 3064
4 3064 - 6024
5 6024 - 12000
6 12000 - 24000

Table 3.2: The frequency bands placement for the multi-band spec-
tral subtraction.

subtraction factor α varies with SNR for the current band as follows

α =


1 if SNR < −5

SNR−(−5)
20 if − 5 ≤ SNR ≤ 15
0 if 15 < SNR

(3.8)

which also is visualized in Figure 3.9. α varies between zero and one. When
α is zero no noise is attenuated and when α is one the full value of the noise
estimated is subtracted. Since the attenuation is limited to 15dB it was found
that oversubtraction that is used in [10] i.e. subtracting more than the noise was
unsuitable. Both the number of bands and their placement for the multi-band
spectral subtraction method was evaluated and empirically set according to Table
3.2.

To reduce the amount the musical noise, adaptive smoothing is applied on the
gain function with the method from [13]. This method was originally created for
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speech enhancement and since it is, in this case used for stationary noise reduction,
small modifications were by experiment found to give a better result. Because the
focus only lies in reducing the stationary noise, more smoothing can be applied
during noise-only periods. Equation 2.48 were modified to

β(i) = min

{(∑
ω
|Y (ω, i)− N̂(ω, i)|∑

ω
N̂(ω, i)

)3

, 1

}
(3.9)

where Y (ω, i) is the spectrum of the noisy signal and N̂(ω, i) is the estimation of
the noise. The addition of the exponent boost the amount of averaging for low
SNR periods but doesn’t affect high SNR periods that much. This was found
to yield less musical noise during noise-only periods and still have little influence
where non-stationary signals were active. The use of magnitude spectrum instead
of power spectrum also increased the amount of smoothing which was desired.

The postfilter from [14] was also implemented to reduce the musical noise. The
reduction was noticeable but the signal distortion increased so much that it was
decided to not use the postfilter in the final implementations.

3.3.3 Wiener Filter

The Wiener filter method is quite similar to the spectral subtraction method.
Wiener filter uses the a priori SNR to calculate the filter, since this is not available
in a real-time system it is estimated. To estimate the a priori SNR, first the a
posteriori SNR is estimated. The a posteriori SNR is simply calculated using
Equation 2.8 where the powers are calculated as the sum of all squared samples.
The a posteriori SNR is subtracted with one and half-wave rectified. Then the a
priori SNR ξ is calculated as

ξ(i) = ϕH(ω, i− 1)2SNRposteriori(i− 1) + (1− ϕ)SNRposteriori(i) (3.10)

where ϕ is a smoothing factor and H(ω, i − 1) is the previous Wiener filter. The
current Wiener filter that is going to be used is finally calculated with Equa-
tion 2.45. The parameters α and β were chosen by experiment to achieve the
desired attenuation, the values were set to 1 and 0.47 respectively. The Wiener
filter is smoothed in two steps, first with recursive averaging where the amount of
smoothing is constant and independent. Then adaptive smoothing is also applied
to the Wiener filter in the same way with the same parameters as for the spectral
subtraction methods.

3.3.4 Performance Measurements

To be able to measure the performance for the various algorithms three identical
systems were implemented but with different input signals, which can be seen in
Figure 3.10. System 1 in Figure 3.10 was the normal noise reduction algorithm with
a noisy input signal and the enhanced signal as output. System 2 and 3 had only
the clean respective noise as input signals but with the exact same gain function
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Figure 3.10: Three identical systems with different input signals.

H(ω) as System 1. By using the equations described in Section 2.8 together with
the systems and their output signals in Figure 3.10 values were calculated that
described how well the algorithms performed. Before the signals were sent to the
systems the amplitude of the signals were adjusted to a predetermined SNR value.
To make this easier the power of the noise signals Pnoise were first normalized to
one by adjusting the noise signals n(m) according to

nnormalized(m) =
n(m)

σ
(3.11)

where σ is the standard deviation of n(m). After this the gain factor γ was
calculated using

γ =
Psignal

10
ρ

10

(3.12)

where Psignal is the power of the clean signal, ρ the predetermined SNR value in dB
and γ the gain factor. Then the amplitudes of the noise signals were adjusted with
γ for each clean signal to obtain the predetermined SNR value. When calculating
the SNR improvement for each noise reduction algorithm the silent parts of the
clean signal had to be removed. Otherwise Psignal in Equation 2.9 would be equal
to zero during the silent parts which would lower the SNR value. To decide where
the silent parts were the amplitude of the signal had to be under a threshold for
a given number of samples consecutively.



36 Method



Chapter 4
Results

In this chapter the measured results for the microphone, equalizer and noise re-
duction methods are presented.

4.1 Microphone

The two microphones that were selected, the PUI Audio POM-3535L-3-R electret
microphone [4] and InvenSense ICS-40720 MEMS microphone [5] were measured
to determine that their given specifications were consistent with their actual val-
ues. The measured values can be seen in table 4.1. The measured frequency
responses for the MEMS and electret microphone can bee seen in Figure 4.1 and
4.2 respectively.

4.2 Equalizer

The frequency response of the camera before and after equalization can be seen in
Figure 4.3 and 4.4 respectively. In both figures the frequency response is calibrated
using the frequency response recorded with the reference microphone so that it is
only the camera’s acoustics which affects the frequency response, see Figure 4.5.

ICS-40720 POM-3535L-3-R
Signal (mVRMS) 27.1 18.1

Noise (µVRMS) 9.7 6.30

SNR (dB) 68.92 69.17

Sensitivity (dBV) −31.34 −34.85

Table 4.1: Sensitivity and SNR for the InvenSense ICS-40720 MEMS
and PUI Audio POM-3535L-3-R electret microphone.

37
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Figure 4.1: Frequency response for the Invensense ICS-40720 MEMS
microphone.
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Figure 4.2: Frequency response for the PUI Audio POM-3535L-3-R
electret microphone.
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Figure 4.3: Frequency response for the camera calibrated with the
frequency response from the reference microphone, the block-
size is 1024.
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Figure 4.4: Frequency response for the camera equalized and cal-
ibrated with the frequency response from the reference micro-
phone, the blocksize is 1024.
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Figure 4.5: Frequency response for the reference microphone, the
blocksize is 1024.

4.3 Noise Reduction

To calculate the performance for each noise reduction algorithm different noises
and clean sounds were used. The performance and memory usage for the multi-
band spectral subtraction method is also presented.

4.3.1 Achieved result for the noise reduction methods

The selected noise sounds can be seen in Appendix, section A.1.2, and the selected
clean sounds can be seen in section A.1.1. In total 22 different clean sounds and 12
different noise sounds were used as test inputs. Both the clean and noise sounds
were sounds that are usually picked up by a camera, e.g. speech, car alarm, traffic
noise and fan noise. First a single clean signal with a single noise signal was tested.
The result from this can be seen in Figure 4.6 - 4.10. Then several clean sounds
were chosen where each clean sound was tested with all the different noise signals.
The mean and the confidence interval was plotted and the results were similar for
all clean signals. In Figure 4.11 - 4.14 the results be seen for Speech (Clean sound
2 from A.1.1) together with all noises and in Figure 4.15 - 4.18 the results can be
seen for car alarm together with all noises. Finally all clean signals were tested
together with all noise signals in one plot which can be seen in Figure 4.19 - 4.22
for all different noise reduction methods, and a summary of this can be seen in
Table 4.2.
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Figure 4.6: Gun shots with electric fan noise.
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Figure 4.7: Hammering sound with highway noise.
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Figure 4.8: Speech (Clean sound 2 from A.1.1) with PSU switching
noise.
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Figure 4.9: Explosion with vacuum noise.
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Figure 4.10: Window breaking with white noise.
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Figure 4.11: Mean and confidence interval for basic spectral sub-
traction with speech (Clean sound 3 from A.1.1) with all noises.
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Figure 4.12: Mean and confidence interval for multi-band spectral
subtraction with speech (Clean sound 3 from A.1.1) with all
noises.
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Figure 4.13: Mean and confidence interval for non-linear spectral
subtraction with speech (Clean sound 3 from A.1.1) with all
noises.
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Figure 4.14: Mean and confidence interval for Wiener filter with
speech (Clean sound 3 from A.1.1) with all noises.
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Figure 4.15: Mean and confidence interval for basic spectral sub-
traction with car alarm with all noises.
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Figure 4.16: Mean and confidence interval for multi-band spectral
subtraction with car alarm with all noises.
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Figure 4.17: Mean and confidence interval for non-linear spectral
subtraction with car alarm with all noises.
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Figure 4.18: Mean and confidence interval for Wiener filter with car
alarm with all noises.
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Figure 4.19: Mean and confidence interval for basic spectral sub-
traction with all noises and clean sounds.
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Figure 4.20: Mean and confidence interval for multi-band spectral
subtraction with all noises and clean sounds.
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Figure 4.21: Mean and confidence interval for non-linear spectral
subtraction with all noises and clean sounds.
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Figure 4.22: Mean and confidence interval for Wiener filter with all
noises and clean sounds.
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SNR value (dB) -5 0 5 10 15

Signal Distortion (dB)

Basic -13.52 -16.08 -19.58 -24.18 -29.52
MB -12.66 -14.7 -17.28 -20.41 -24.12
NL -13.49 -15.69 -18.38 -21.51 -25.07
Wiener -13.1 -15.13 -17.57 -20.36 -23.36

SNR improvement (dB)

Basic 4.54 4.49 3.84 2.93 2.15
MB 5.51 5.72 5.44 4.84 4.11
NL 4.80 5.05 4.92 4.56 4.08
Wiener 5.66 5.88 5.72 5.35 4.91

Noise suppression (dB)

Basic 8.35 6.97 5.71 4.64 3.95
MB 9.07 7.98 7.05 6.25 5.58
NL 7.63 6.78 6.14 5.65 5.25
Wiener 8.98 8.12 7.48 7.02 6.73

Table 4.2: Mean values of the performance for four noise reduction
algorithms tested with all noises and clean sounds.

4.3.2 Performance and memory usage

To be able to get an idea of the number of different operations and memory usage
that were used for the noise reduction algorithms, multi-band spectral subtraction
was used as an indication. Therefore the number of different operations and mem-
ory usage have been calculated for the multi-band spectral subtraction method.
All four methods evaluated have similar performance and memory usage. Each
iteration, one FFT and one IFFT is used, both with O(n log n) complexity. The
rest of the operations performed each iteration such as addition and multiplica-
tion are linearly dependent on the blocksize, but the number of blocks per second
is fs/blocksize so the number of these operations performed per second is only
dependent of the sample frequency. The number of operations per second with
48kHz sample frequency can be seen in Table 4.3. The memory usage in terms of
variables stored is linearly dependent on the blocksize and calculated to be a factor
34 times the blocksize. The memory usage for a few different blocksizes can be
seen in Table 4.4. As previously mentioned the delay for all methods is 3 ·blocksize
because of the WOLA. For a sample frequency of 48kHz and a blocksize of 256
which were the values that were used in the final implementations the delay is 768
samples or 16ms.
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Operations per second [×103]

Addition 960

Multiplication 2064

Division 384

Arctangens 192

Cosinus 192

Sinus 192

Absolute value 96

Memory move 1104

Table 4.3: Number of operations performed each second for the
multi-band spectral subtraction method using 48kHz sample
frequency.

Blocksize 64 128 256 512 1024
Variables stored 2176 4352 8704 17408 34816

Table 4.4: Required number of variables stored for the multi-band
spectral subtraction for different blocksizes.



60 Results



Chapter 5
Discussion and Conclusion

In this chapter the microphone, equalizer and noise reduction methods are dis-
cussed. A comparison of the noise reduction algorithms and which algorithm to
finally use is presented. Also a short discussion of possible future work is included.

5.1 Microphone

Even though the electret microphone lacked some specifications it was still chosen
as one of two microphones because of its high SNR value. It also had high sensitiv-
ity and a good frequency response. PSR and PSRR is 0 for the electret microphone
since the output is taken from the same pin as the supply voltage and therefore
there is no rejection of noise. There were lots of disturbances in the low frequen-
cies so the noise was measured with 200Hz to 20kHz bandwidth instead of the full
range. As seen in Table 3.1 and 4.1, the electret microphone performed better
than the specified value in terms of SNR and according to specification in terms of
sensitivity. The MEMS microphone’s measured SNR came close to the specified,
but the specfied value was A-weighted which affects the value. The sensitivity
of the MEMS microphone was also according to specification. The frequency re-
sponses for the MEMS microphone and electret microphone can be seen in Figure
4.1 and 4.2 respectively. Based on the results the Invensense MEMS microphone
was chosen as the better one for this project. The electret microphone had slightly
better SNR but the sensitivity was about 3.5dB higher for the MEMS. AOP, THD
and EIN couldn’t be compared since the electret lacked in specifications but the
values for the MEMS were good so it was safer to go with the one with specified
values. The electret microphone had a flatter frequency response overall but the
shape itself would be harder to flatten if analog filters would be used which was
the case for another master thesis done in parallel with this.

5.2 Equalizer

The implemented equalizer were able to create a more flat frequency response.
Where the frequency response for the camera without equalizer had a difference
of about 30dB from low to high frequencies as seen in Figure 4.3, the new imple-
mentation using the equalizer only differs about ±2dB, see Figure 4.4.
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5.2.1 Filtering in time vs frequency domain

Filtering can be done in both time domain and frequency domain. For this master
thesis all filtering was done in the frequency domain since the noise reduction
algorithm already needed the signal to be in the frequency domain. Furthermore
the computational complexity for filtering in the frequency domain is generally
less according to 2.59 and 2.60 unless the filter length is really small.

5.2.2 Blocksize

Depending on the choice of the blocksize the equalizer will have different char-
acteristics. In this thesis the blocksize was set to 256 but other values were also
explored. Bigger blocksizes will have less frequencies in each frequency bin and
therefore have a better resolution. This will especially be of good use at the lower
frequencies where distortions are more audible compared to higher frequencies.
But bigger blocksizes will also require more memory and create a longer delay.

5.2.3 Equalizer measurement

The measurements for the equalizer was done in a sound-proof chamber with a
built in speaker. Even though the sound-proof chamber attenuates disturbing
noise from the surroundings it was noticed that some sounds still leaked in from
the outside. The calibration using the reference microphone helped compensate
for this but the results would be even better if the measurements was done in a
more sound protected environment.

5.3 Noise Reduction

When implementing a noise reduction algorithm it is a big advantage if it is known
in which type of environment it should be used in and what sounds that are
especially interesting for the user. In this thesis the algorithms are general and
not customized for a specific purpose. The idea is to let the customer have some
control over the algorithm. A GUI has been implemented in Matlab to showcase
how the options could look like for an end customer. The GUI can be seen in the
Appendix, see Figure A.11. The performance of the implemented algorithms varies
with different environments and SNR levels and therefore the options have been
given to the user to vary the amount of noise reduction and also to completely turn
it off. In most conditions the noise reduction is considered beneficial but for some
conditions and settings there is audible musical noise present that could be more
disturbing than the actual noise. Using the GUI the amount of noise subtracted
can be lowered to a point where the musical noise is no longer audible and allowing
the user to always benefit from the implementation but to a varying degree. This
is something that ideally would be automatic and thus allowing the algorithm to
automatically reduce the amount of noise subtracted when the musical noise is
too audible. However it is very difficult to measure the amount of musical noise
currently present and therefore this option has instead been given to the user.
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The implemented noise reduction was also found to work quite well for dif-
ferent environments and simple to adjust. As seen in the Result section the SNR
improvement tends to increase from low to mid SNR and then decrease again for
higher SNR. It might seem odd that the improvement decreases with higher SNR
but the idea is that when the SNR is already high it is more important to preserve
the signal with less distortion than to increase SNR even further. The SNR im-
provement would decrease over the whole range if not for the limitation of 15dB
attenuation.

5.3.1 Choosing the noise subtraction algorithm

When comparing the different methods it’s important to not only look at the
measured performance, but also the listening experience. The musical noise that
can occur doesn’t correspond to large variations in the measured result but can still
completely ruin the listening experience. For most noise-clean sound combinations,
the basic spectral subtraction method suppresses the least noise and improves SNR
the least, however it also has the least signal distortion. The reason is that it does
not matter where the two signals are in relation to each other in the spectrum, the
algorithm will perform less attenuation over the whole noise spectrum whenever a
clean signal is active independent of the frequency content. The musical noise is
least audible for this method but when the clean signal is active the background
noise increases noticeable. When looking at the overall performance of the multi-
band and non-linear spectral subtraction methods they seem to be quite similar.
However the non-linear method has the advantage that it can remove a fair amount
of noise even if the noise and clean signal have similar frequency content but at the
risk of increasing the musical noise too much. Regarding the multi-band method
if the clean signal and noise have similar frequency content they will probably also
be in the same frequency band and therefore less noise will be removed. Since the
frequency bins are grouped together in bands, the gain function varies less over
time so the multi-band method generally results in less musical noise. Wiener
filter is generally the method with most noise suppression and SNR improvement
but also the one with most musical noise.

Figure 4.19 to 4.22 shows the mean and confidence interval of the algorithms’
performances with all noise sounds used together with all clean sounds, a summary
of their mean performance can be seen in Table 4.2. From the figures it is seen that
the confidence intervals are relatively small for all methods which means that if
new sounds would be tested the performance would be predictable. This is a good
result which suggests robustness and adaptability for the different noise reduction
methods.

After comparing the different methods it was time to choose which method to
use. It was decided that multi-band worked best in most cases and therefore it was
chosen as the final noise removal algorithm. However all the methods were pretty
similar and some methods also performed better compared to multi-band under
some conditions. But combining the measured results and the listening experience
multi-band had the best overall performance.
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5.3.2 Multi-band spectral subtraction parameters

The parameters that were tuned to optimize the multi-band algorithm were sub-
traction factor, max attenuation and the number of frequency bands and their
placement. The subtraction factor was set to vary between zero and one depend-
ing on the SNR. It was noticed that too high subtraction factor would cause a lot
of signal distortion and therefore it was limited to never go above one. During
high SNR values there was no need for any noise subtraction and thus it was set
to zero. Max attenuation was set to 15dB which allowed the algorithm to remove
a fair amount of noise. It was noticed that with higher values the signal distor-
tion and musical noise would be too noticeable. The number of frequency bands
and their placements were harder to decide. Too few bands and the results were
very similar to basic spectral subtraction, and too many and the results were very
similar to non-linear spectral subtraction. Finally six bands were decided to give
the best results and their placement can be seen in Table 3.2.

5.4 Future Work

In this section a short summary of possible future work is presented.

5.4.1 Equalizer

The calibration equalizer is created to calibrate the camera and its microphone in
a sound proof chamber. However when the product is mounted on e.g. a wall the
new surroundings affects the microphone. Therefore it may be desirable to do a
new calibration when the product is mounted.

5.4.2 Noise Reduction

There have been a lot of research in noise reduction methods for the last decades. A
noise reduction algorithm is never finished and can always be improved and tuned,
e.g. big cell phone companies have spent many years developing noise reduction
algorithms which are still today being improved. This master thesis presents a
working noise reduction algorithm but it can of course always be improved and
tuned for different products, their characteristics and for different environments.

Furthermore this work only explores the possibilities when using one micro-
phone. In products that uses several microphones beamforming can be imple-
mented which creates the possibility to listen in certain directions. This opens
up many new opportunities and can in combination with noise reduction get even
better results.

5.4.3 Implementation in camera

The next step, given more time would be to implement the algorithms on the
camera. Either on a DSP or directly on the camera as a GStreamer plug-in for
Linux [16]. The camera implementation would have to be translated from Matlab
to C code.
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Appendix A
Appendix

A.1 Test files

Here the clean sounds and noise sounds are presented.

A.1.1 Clean sounds

The clean sounds used were:

1. Speech 1 - Glue the sheet to the dark blue background

2. Speech 2 - It’s easy to tell the depth of a well

3. Speech 3 - Her purse was full of useless trash

4. Car alarm

5. Car Passing

6. Car door open and shut

7. Broken plates

8. Gun shots

9. Window breaking

10. Truck passing

11. Smashing a car window

12. Person running

13. Phone ringing

14. Male coughing

15. Knocks on wooden door

16. Jackhammer

17. Hammering

18. Explosion

67
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19. Drilling

20. Door being opened and closed

21. Cheering

22. Yelling

The following Figures, A.1 to A.5 show a selection of the clean sounds in the time-
and frequency domain. These clean sounds are used together with noise sounds in
the Result section, see Figures 4.6 to 4.10.
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Figure A.1: Clean sound Speech 2 visualized in time- and frequency
domain.

Figure A.2: Clean sound Explosion visualized in time- and frequency
domain.
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Figure A.3: Clean sound Gun shots visualized in time- and frequency
domain.

Figure A.4: Clean sound Hammering visualized in time- and fre-
quency domain.
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Figure A.5: Clean sound Windowbreak visualized in time- and fre-
quency domain.
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A.1.2 Noise sounds

The noise sounds used were:

1. PSU switching

2. Air conditioner

3. Cooling system

4. Car interior while driving

5. Electric fan

6. White noise

7. Highway

8. Industry fan

9. Airplane in flight

10. Sine tones

11. Vacuum

12. Vacuum 2

13. Water cooler

The following Figures, A.6 to A.10 show a selection of the noise sounds in the time-
and frequency domain. These noise sounds are used together with clean sounds in
the Result section, see Figures 4.6 to 4.10.
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Figure A.6: Noise sound Electric fan visualized in time- and fre-
quency domain.

Figure A.7: Noise sound Highway visualized in time- and frequency
domain.
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Figure A.8: Noise sound PSU switching visualized in time- and
frequency domain.

Figure A.9: Noise sound Vacuum visualized in time- and frequency
domain.
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Figure A.10: Noise sound White noise visualized in time- and fre-
quency domain.
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A.2 GUI

Figure A.11 shows the GUI implemented in Matlab.

Figure A.11: GUI implementation in Matlab that allows the user to
modify the amount of subtracted noise.
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