
A
u

th
o

rizatio
n

 A
sp

ects o
f th

e D
istrib

u
ted

 D
atafl

o
w

-o
rien

ted
 IoT Fram

ew
o

rk C
alvin

Department of Electrical and Information Technology, 
Faculty of Engineering, LTH, Lund University, 2016.

Authorization Aspects of the
Distributed Dataflow-oriented
IoT Framework Calvin

Tomas Nilsson

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2016-511

http://www.eit.lth.se

To
m

a
s N

ilsso
n

Master’s Thesis



Authorization Aspects of the Distributed
Dataflow-oriented IoT Framework Calvin

Tomas Nilsson
elt11tni@student.lu.se

Department of Electrical and Information Technology
Lund University

Advisors:
Martin Hell, Lund University

Håkan Englund, Ericsson Research

June 8, 2016



Printed in Sweden
E-huset, Lund, 2016



Abstract

The evolution into a networked society, where a wide variety of devices are con-
nected to the Internet, opens up many new opportunities for creating smart prod-
ucts and applications that dynamically adapt to the current environment. A com-
mon scenario will be that applications require or benefit from using several devices
at the same time for the execution. Such distributed applications may be com-
plex to write for an application developer. The goal of the open-source framework
Calvin, developed by Ericsson Research, is to make it possible for developers of
distributed applications to focus on their ideas instead of the complex implemen-
tation details.

A user may specify some details about where the application is allowed to
execute. Based on this information and other parameters, Calvin will automat-
ically decide where it is most beneficial for different parts of the application to
execute. Calvin can also handle migration to other devices without interrupting
the execution of the application.

This dynamic distributed execution model results in challenges when it comes
to deciding what resources specific applications, running on behalf of different
users, should be allowed to access on a specific device. In this thesis, an authoriza-
tion framework, based on fine-grained attribute-based access control, is proposed
as a solution for the access control in Calvin. Flexibility and compact message
formats are some of the most important aspects of the design in order to support
different devices with different constraints. The proposed authorization solution
has been implemented and is now available as a part of the Calvin framework.

Keywords: Authorization, Attribute-Based Access Control, Calvin, Distributed
Computing, Internet of Things

i



ii



Acknowledgements

This report is my master’s thesis for a degree in Electrical Engineering from the
Faculty of Engineering at Lund University. The project was carried out at Ericsson
Research in Lund. I would like to thank the people that helped and supported me
during my work on this thesis.

First of all, I would like to express my gratitute to the members of the Platform
Security group at Ericsson Research in Lund for always being nice and helpful. It
has been a pleasure to be a part of your group while working on this thesis. I would
especially like to thank Håkan Englund, my advisor at Ericsson, for interesting
discussions and guidance throughout my time at Ericsson.

Thanks also to Harald Gustafsson and the other Calvin developers in the Cloud
Technology group at Ericsson Research in Lund for being helpful when I have had
questions about Calvin.

I would also like to thank Martin Hell, my advisor at Lund University. The
enthusiasm Martin shows when teaching security courses and the knowledge you
get from his lectures have inspired me to do my master’s thesis within security,
and he has been helpful when I have asked for advice during the work on this
thesis.

iii



iv



Table of Contents

1 Introduction 1
1.1 Aims and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theory 5
2.1 Authentication, Authorization, and Access Control . . . . . . . . . . 5
2.2 Access Control Models . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Discretionary Access Control 6
2.2.2 Mandatory Access Control 6
2.2.3 Role-Based Access Control 6
2.2.4 Attribute-Based Access Control 6

2.3 XACML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.1 Reference Architecture 7
2.3.2 Request/Response Language 8
2.3.3 Policy Language 8
2.3.4 SAML Profile 9
2.3.5 JSON Profile 9
2.3.6 REST Profile 9

2.4 Asymmetric Cryptography . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.1 Digital Signatures 10
2.4.2 Public Key Infrastructure and Certificates 10

2.5 JSON Web Token . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5.1 Header 11
2.5.2 Payload 12
2.5.3 Signature 12

3 Calvin – Merging Cloud and IoT 15
3.1 Distributed Cloud for IoT . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Applications and Actors . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Migration, Capabilities, and Requirements . . . . . . . . . . . . . . . 17
3.5 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

v



4 Designing and Implementing Authorization in Calvin 21
4.1 Attribute-Based Access Control . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Subject Attributes 23
4.1.2 Resource Attributes 23
4.1.3 Action Attributes 24
4.1.4 Environment Attributes 24

4.2 Policy Enforcement Point (PEP) . . . . . . . . . . . . . . . . . . . . 24
4.2.1 Runtime Registration 26
4.2.2 Authorization Requests/Responses 26
4.2.3 JWT for External Authorization 26

4.3 Policy Decision Point (PDP) . . . . . . . . . . . . . . . . . . . . . . 27
4.3.1 Find Matching Policies 28
4.3.2 Evaluate Policies 28
4.3.3 Combine Policy Decisions 30

4.4 Policy Information Point (PIP) . . . . . . . . . . . . . . . . . . . . . 31
4.5 Policy Retrieval Point (PRP) . . . . . . . . . . . . . . . . . . . . . . 31
4.6 Policy Administration Point (PAP) . . . . . . . . . . . . . . . . . . . 31
4.7 Smart Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Authorization Tests in Calvin 35
5.1 Correctness Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Performance Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Discussion 39
6.1 Comments on Test Results . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Design Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2.1 JSON-based XACML 40
6.2.2 Adaptable to Constrained Devices 40

6.3 Security Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.4 Privacy Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 Conclusion 43

References 45

A Runtime Registration Example 47

B Authorization Request/Response Example 49
B.1 Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
B.2 Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

C Authorization Policy Example 51

vi



List of Figures

2.1 The structure of a JSON Web Token . . . . . . . . . . . . . . . . . 11

3.1 Actor model in Calvin . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Calvin migration at deployment time based on requirements/capabilities

matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 A Calvin script and dataflow graph example . . . . . . . . . . . . . . 20

4.1 New authorization flow implemented in Calvin . . . . . . . . . . . . 22
4.2 New deployment process in Calvin . . . . . . . . . . . . . . . . . . . 25
4.3 Smart migration when access is denied. . . . . . . . . . . . . . . . . 33

vii



viii



List of Tables

4.1 Functions that can be used in a condition in a policy . . . . . . . . 29
4.2 REST API for policy management . . . . . . . . . . . . . . . . . . . 32

5.1 Correctness tests and results for Calvin authorization . . . . . . . . . 35
5.2 Performance test results for Calvin authorization . . . . . . . . . . . 37

ix



x



Abbreviations

ABAC Attribute-Based Access Control

API Application Programming Interface

CA Certificate Authority

DAC Discretionary Access Control

DHT Distributed Hash Table

ECC Elliptic Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

IoT Internet of Things

JSON JavaScript Object Notation

JWT JSON Web Token

MAC Mandatory Access Control or Message Authentication Code

PAP Policy Administration Point

PDP Policy Decision Point

PEP Policy Enforcement Point

PIP Policy Information Point

PKI Public Key Infrastructure

PRP Policy Retrieval Point

RBAC Role-Based Access Control

REST Representational State Transfer

xi



SAML Security Assertion Markup Language

TLS Transport Layer Security

XACML eXtensible Access Control Markup Language

XML Extensible Markup Language

xii



Chapter 1
Introduction

The number of devices that are connected to the Internet is growing at a rapid
pace, creating what is commonly referred to as the Internet of Things (IoT) [1].
By putting sensors on a wide variety of things and letting them communicate with
other devices, it is possible to create smart products and services that adapt to
the current environment. This transformation into a networked society, where
everything that can benefit from a connection will be connected, is expected to
largely influence everyday life.

Many tiny devices are constrained in storage or processing power. Hence, there
is a need to offload certain tasks to external computing resources. Cloud computing
is a frequently used term that refers to shared computing resources that provide
services over the Internet [2]. Using the cloud for computation offloading or storage
is getting more and more popular.

The open-source framework Calvin [3] is developed by Ericsson Research to
simplify the development of distributed applications combining IoT and cloud
computing. An application developer should not need to worry about different
communication protocols and other details. Calvin uses a dataflow programming
methodology with actors that perform certain tasks. An application has a de-
scription of which actors to use, how data flows between the actors and some
requirements on the runtime environment.

When an application starts it is not always decided on which physical devices
the application will execute. Instead, different parts of the application may execute
where it is most beneficial. An actor may even be migrated to another runtime
without interrupting the execution. This thesis focuses on the security challenge
of handling access control/authorization for different runtimes in this dynamic
environment. It must be possible to decide if execution of an actor or application
deployed by a certain user should be allowed right now on a specific runtime.

1.1 Aims and Challenges

The following aims were set for this master’s thesis work:

• Research the best approach for authorization of applications/actors in the
Calvin framework.

• Implement the findings of the theoretical work into Calvin.

1



2 Introduction

A number of desired features and requirements on the authorization solution were
determined before starting the research:

• Fine-grained authorization decisions on access to resources offered by a run-
time are required. It must be possible to make decisions based on many
different parameters.

• A solution that is adaptable to different environments is desirable.

• The authorization must be designed in such a way that it can be used as
input for migration decisions in Calvin.

The main challenge is that Calvin has a distributed execution model, where parts
of the application are executed on different runtimes not known when the execution
of the application starts. Using a standard approach, where the user gets a token
that is forwarded to the runtime when access to a resource is required, is difficult
in this case since there must be a token for every possible runtime that may
execute the application. Since those runtimes are not known at deployment time,
an alternative approach is needed for Calvin.

Another challenge is that the solution must be suitable for different IoT situ-
ations in constrained environments. Network nodes may be limited in storage or
processing power, and devices may for example not be able to handle authorization
themselves.

1.2 Related Work

The ACE (Authentication and Authorization for Constrained Environments) work-
ing group within IETF (Internet Engineering Task Force) investigates how security
standards need to be adapted to work for IoT devices with for example limited
processing power [4]. Their documents include many useful authorization aspects,
but do not discuss a dynamic distributed execution model like the one used by
Calvin.

The working group has for example defined how to use the well-known OAuth
2.0 standard as an authorization framework for IoT [5]. OAuth is used to delegate
access by issuing access tokens that are later presented when access to a protected
resource is required. As mentioned earlier, such an authorization solution is not
suitable for Calvin since it is not known in advance where execution will take place.
However, inspiration has been taken from the usage of JSON Web Tokens to carry
information in the proposed OAuth 2.0 IoT authorization framework.

Another authorization framework for IoT, based on the access control stan-
dard XACML, has been proposed by Seitz et al [6]. For the same reasons as in the
OAuth case, this XACML-based framework is not a perfect match for the autho-
rization in Calvin, but the use of XACML to enable fine-grained access control has
been used as inspiration for this thesis. Different standards have to be combined
in a new way to be suitable for Calvin.



Introduction 3

1.3 Thesis Outline

Chapter 2 gives a brief introduction to theory that is needed to understand the
thesis.
Chapter 3 describes what Calvin is and how it works.
Chapter 4 presents the design and implementation details of the authorization
solution that is proposed in this thesis.
Chapter 5 contains test results for the authorization implementation.
Chapter 6 is dedicated to discussions about test results, design choices, security
considerations, and future work.
Chapter 7 summarizes the main points of this thesis work.
Appendix A-C include examples to show how the authorization implementation
can be used.



4 Introduction



Chapter 2
Theory

Many existing protocols and ideas for authorization and secure communication
have been used as a basis for this work, either as inspiration or as a part of the
implementation. This chapter gives a brief overview of theory that is needed to
understand the following chapters in this thesis.

2.1 Authentication, Authorization, and Access Control

Authentication, authorization, and access control are three commonly used terms
in computer security. The terms are often mixed up, and a common misunder-
standing is that they have more or less the same meaning. However, there is a
fundamental difference between authentication and authorization, whereas access
control is a more general term [7].

Authentication is the process of verifying who you are. Typically a user enters
a username and a password, and these user credentials are checked against the user
information stored by the authentication system. As an alternative to passwords,
authentication systems may for example use smart cards or fingerprints to verify
that the user is who he/she claims to be.

Authorization is the process of determining what you are allowed to do. When
an authenticated user tries to perform certain operations on privileged resources,
the system uses some kind of rules to check if that user has permission to perform
that operation. Different users typically have different permissions in a system.
Some of the users could for example be administrators that are able to create,
edit, and delete content, whereas other users only have read-access. Authorization
is usually needed after a successful authentication to secure a system.

Access control is a general term that refers to all possible ways of controlling
access to a resource. It typically involves the use of authentication and authoriza-
tion, but the access could also be controlled only based on for example the time
of the day.

2.2 Access Control Models

There are many different methodologies used to ensure that no unauthorized par-
ties get access to protected resources. This section briefly introduces the most
common access control models.

5



6 Theory

2.2.1 Discretionary Access Control

Discretionary Access Control (DAC) is a type of access control where the owner of
the resource controls the access [8]. The owner decides who is allowed to access the
resource and what type of operations (for example read, write, execute) different
users have permission to do. DAC models are for example used in operating
systems to allow the owner of a file to give access of different levels to other users.

2.2.2 Mandatory Access Control

Mandatory Access Control (MAC) refers to an access control model in which access
to different resources is centrally controlled instead of being controlled by the owner
of the resource [8]. It is usually used to protect highly sensitive information in for
example government organizations. Each resource can be given a sensitivity label
(e.g. "secret" or "top secret"), and similarly users have different labels specifying
the level of sensitive information they have permission to access. For example, if
a user tries to access a file classified as "top secret", access will be denied if the
user only has permission to access resources classified as "secret".

2.2.3 Role-Based Access Control

In the Role-Based Access Control (RBAC) model, permission to access a resource
is given to roles instead of individual users [8]. The concept of roles is common
for other purposes in organizations and companies, which makes RBAC a natural
choice in such scenarios. A user may have different roles in different contexts.
Access decisions are based on the roles a user has been assigned in the system.
Similar to MAC, the access is hence centrally controlled by the system instead of
being controlled by the owner of the resource.

By controlling access based on roles instead of individual users, administration
is simplified significantly when users for example join, leave, or change depart-
ments. RBAC is widely used in many large systems.

2.2.4 Attribute-Based Access Control

Attribute-Based Access Control (ABAC) is an access control model where access
is granted or denied by evaluating policy rules against attributes which describe
the entity requesting access, the resource for which access is being requested, and
the current environment relevant for the request [9]. Attributes consist of a name
and a value, which has some kind of information about the request.

The key difference between ABAC and RBAC is that ABAC decisions can be
based on many different attributes instead of just the role attribute. By also using
environment attributes, for example the time of the day or the current location,
ABAC also makes the access decisions dynamic instead of having static rules.

The use of arbitrary attributes in ABAC enables a much more flexible and fine-
grained access control than what is possible when RBAC is used [10]. There are
many real-life scenarios where access must be controlled based on several different
conditions. A common example is if a user needs access to some files owned by
another department. Granting access for the user to all files belonging to that



Theory 7

department is usually not a desirable alternative. If RBAC is used, a new role
that only has permission to access the desired files has to be created. In the same
way, additional roles have to be created if other persons need access to other sets of
files. The phenomenon where a large number of roles have to be created to enforce
rules of finer granularity is called role explosion. Using ABAC, the problem is
solved by adding another logical condition to a policy rule instead of adding more
roles. This way of focusing on rules instead of roles resembles the actual business
needs and is one of the reasons why ABAC increases in popularity.

2.3 XACML

XACML (eXtensible Access Control Markup Language) is an OASIS standard
based on the concept of attribute-based access control (ABAC) [11, 12]. The stan-
dard defines both a policy language and a request/response language for autho-
rization. In addition to these two parts, a reference architecture is also proposed in
the standard. The XACML Technical Committee has also written several profiles
that explain how to use XACML in different well-defined settings or extend the
standard with new functionality.

2.3.1 Reference Architecture

The XACML standard specifies the architecture and process for evaluating autho-
rization requests against policies and returning a response.

The standard uses the following names for the different entities involved in the
XACML architecture [12, 13]1:

• Policy Enforcement Point (PEP) – Intercepts users’ requests to access
resources by sending decision requests and enforcing the received authoriza-
tion decisions.

• Policy Decision Point (PDP) – Evaluates decision requests against poli-
cies to make authorization decisions.

• Policy Retrieval Point (PRP)2 – Stores the authorization policies (for
example a database or the file system).

• Policy Information Point (PIP) – Acts as a source of attribute values to
provide additional attributes that are not included in the decision request.

• Policy Administration Point (PAP) – Used to manage (create, update,
remove) authorization policies.

When a user wants to perform a certain action on a protected resource, the PEP
will intercept the request and send an authorization decision request to the PDP.

1The communication between the different entities is illustrated in Figure 4.1.
2Policy Retrieval Points (PRP) are not defined in the latest version of the XACML

standard, but they were mentioned in earlier versions and the term is still used in several
implementations of XACML [13].



8 Theory

By using the PRP to look up policies and evaluate the request against these
policies, the PDP is able to decide whether access should be permitted or not. If
there are attributes in the policies that are not present in the request, the PDP will
use a PIP to retrieve these attribute values. For example, if the request contains
the username but the policy uses the role of the user, a PIP which has information
about the roles associated with a user will be able to return the role attribute
value to the PDP.

The policy evaluation leads to an authorization decision which is returned by
the PDP to the PEP. Based on the decision in the response from the PDP, the
PEP will either grant access or deny the request.

2.3.2 Request/Response Language

XML (Extensible Markup Language), which has a widespread support from large
platforms and vendors, is used for the requests and responses in XACML [12].

A decision request is sent by a PEP to a PDP to get an authorization deci-
sion. The request contains attributes describing the subject, action, resource, and
environment for the requested access.

When the attributes of the request have been compared to attribute values
in the policies, the authorization decision (Permit, Deny, NotApplicable, or In-
determinate) is returned as a response from the PDP to the PEP. The response
may also contain directives (Obligations) from the PDP to the PEP on additional
operations that must be performed when enforcing the decision.

2.3.3 Policy Language

Just like the requests and responses, the XACML policies are also written in
XML [12]. Policies are used to describe access control requirements. The XACML
standard allows quite complex policies, but all details will not be explained here.

In order to get a basic understanding of XACML policies, some terminology used
in the standard has to be explained:

• Target – A set of simple conditions for different attributes to determine to
which requests a policy or a rule applies.

• Rule – Part of a policy which contains a Target, an Effect, a Condition,
and, optionally, an Obligation.

• Condition – An advanced form of a Target which uses functions that eval-
uate the truth of statements about attributes.

• Obligation – An operation, specified in a policy, that should be performed
by the PEP when enforcing an authorization decision.

When a request is received, the request attributes will be compared to the Target
of each policy to determine against which policies the request should be evaluated.
A policy contains one or many Rules that are used to render an authorization
decision. If the Condition in the rule evaluates to true, the rule effect (Permit



Theory 9

or Deny) will be returned, possibly together with Obligations. Otherwise, the
decision will be Indeterminate (if an error occurred) or NotApplicable.

The XACML standard specifies a number of combining algorithms that define
how to combine the decisions of different rules into a single decision, for example
Deny Overrides which means that the decision will be Deny if any of the rule
evaluations return Deny. Combining algorithms may also be used to combine
decisions from multiple policies into a final decision if multiple policies match the
request.

2.3.4 SAML Profile

The XACML SAML Profile defines how to combine XACML and the Security
Assertion Markup Language (SAML) 2.0 [14]. The XACML standard itself does
not specify how assertions, protocols, and transport mechanisms between different
entities are implemented. Instead, it has to be complemented by other standards
for a full implementation of the XACML usage model. SAML is an OASIS stan-
dard that can be used for this purpose since it defines XML schemas for different
types of requests and responses with security assertions.

By embedding XACML requests and responses in SAML assertions where the
information is signed, it is possible for the recipient to verify that the message
comes from the correct sender and that the information has not been changed.

2.3.5 JSON Profile

The JSON Profile of XACML defines a JSON (JavaScript Object Notation) format
for the XACML request and response [15]. JSON is getting more and more popular
as data exchange format thanks to its simplicity. An important aspect for the
authors has been to make sure that it is possible to translate XACML requests
and responses from the XML representation to the JSON representation, and the
other way around, without losing any information. The representations must be
equivalent.

Currently, the JSON profile only deals with the messages sent between the
PEP and the PDP. Compared to XML, JSON is much more compact and easier
to read. The idea of the profile is to remove the verbose aspects of XACML and
provide a more lightweight alternative for the XACML requests and responses.

2.3.6 REST Profile

The REST Profile of XACML explains how to use XACML in a REST (Repre-
sentational State Transfer) architecture, which means using a standardized ar-
chitecture, based on HTTP standard methods, for referencing and manipulating
resources in the interaction between a client and a server [16]. This is useful if an
external PDP is used by several PEPs to get authorization decisions. The profile
defines for example how the XACML request is sent from the PEP to the PDP as
part of a HTTP POST request.



10 Theory

2.4 Asymmetric Cryptography

Asymmetric Cryptography, also called Public-Key Cryptography, uses a key pair
consisting of a public key, which can be shared with others, and a private key,
which is only known by the owner [17]. The keys are linked together mathe-
matically and can be used to perform operations such as encryption, decryption,
signature generation, and signature verification. A brief overview of asymmetric
cryptography, with focus on digital signatures, will be provided here.

An important property of the keys is that it must be computationally infea-
sible to determine the private key given the public key and information about
the cryptographic algorithm [17]. RSA is a commonly used public-key algorithm
based on the mathematical difficulties of finding the prime factors of large num-
bers. Another way to realize asymmetric cryptography is to use Elliptic Curve
Cryptography (ECC), which is based on the structure of an elliptic curve defined
over a finite field and the difficulty of the so-called discrete logarithm problem for
such elliptic curves. Compared to RSA, ECC uses smaller key sizes to get the
same level of security.

2.4.1 Digital Signatures

A digital signature is used to guarantee the source and integrity of a message, i.e.
that the message has been sent by the claimed sender and that it has not been
altered [17]. RSA or ECC are commonly used for digital signatures.

A signature generation algorithm typically computes the hash value of the
message m and then uses the hash value and the private key of the sender to
obtain a digital signature. The signature is sent together with the message to the
recipient.

To verify that the signature is correct, the recipient uses the public key of the
sender and the received message and signature as inputs to a signature verification
algorithm. If the message has been modified, i.e. the received message m′ is
not equal to the message m for which the signature was created, the signature
verification will fail. A correctly verified signature proves that the sender is the
owner of the private key corresponding to the public key used for the verification.

2.4.2 Public Key Infrastructure and Certificates

A Public Key Infrastructure (PKI) refers to the infrastructure that is needed to
securely acquire public keys [17]. This typically involves the use of a Certificate
Authority (CA) that is used to bind a public key to a certain entity. The CA,
which is a trusted third party, verifies the identity of the entity and issues a digital
certificate which contains the public key and some information about the key
owner. The certificate is digitally signed by the CA.

2.5 JSON Web Token

JSON Web Token (JWT) is an open standard for secure information exchange
between two parties [18]. The tokens use a compact, JSON-based format to include



Theory 11

all the required information. A JWT is digitally signed to make the information
verifiable. Encryption is also possible.

A JSON Web Token is a string with three parts separated by dots. The first
part is a header, the second part is the payload, and the third part is the signature,
as shown in Figure 2.1. Each part is Base64Url-encoded.

xxxxx yyyyy zzzzz..

Payload SignatureHeader

Figure 2.1: The structure of a JSON Web Token

JSON Web Tokens are commonly used in an URL, as a HTTP POST param-
eter, or in the HTTP header to include information about a logged-in user [19].
It is also a good way of securely transmitting other information between different
entities.

JWT is a JSON-based alternative to the XML-based Security Assertion Markup
Language (SAML) 2.0. SAML has some extra features not supported by JWT, but
on the other hand SAML is much larger in size and more complex. JWT should be
used when compactness and simple implementation are important considerations,
but it is not considered to be a full replacement for SAML assertions [18].

2.5.1 Header

The header format is defined in the JSON Web Signature (JWS) standard [20].

Two header parameters are typically included for a JWT:

• "alg" (Algorithm) – identifies the digital signature algorithm or Message
Authentication Code (MAC) algorithm used to secure the JWT.

• "typ" (Type) – declares the type, which always is "jwt" for JSON Web
Tokens.

An example header, declaring that ES256 (Elliptic Curve Digital Signature Algo-
rithm, ECDSA, using the SHA-256 hash algorithm) is used for the digital signature
of the JWT:

{
"typ": "JWT",
"alg": "ES256"

}

The header is Base64Url-encoded, which results in the following string:

eyJ0eXAiOiJKV1QiLCJhbGciOiJFUzI1NiJ9



12 Theory

2.5.2 Payload

The payload part of a JWT contains claims, which are statements about an entity
(for example a user) and other metadata [18]. A claim has a name and a value.
The JWT standard has a list of registered claim names, but it is also possible to
use other claims if both parties agree on using them.

Some registered claim names that are useful:

• "iss" (Issuer) – identifies the entity that issued the JWT.

• "sub" (Subject) – identifies the subject of the JWT, i.e. the entity that the
claims are statements about.

• "aud" (Audience) – identifies the recipients that the JWT is intended for.

• "iat" (Issued At) – the time3 at which the JWT was issued.

• "exp" (Expiration time) – the expiration time3, after which the JWT should
not be accepted.

An example payload, issued by tomnil.se, stating that Tomas Nilsson is an ad-
ministrator:

{
"iss": "tomnil.se",
"exp": 1462689900,
"name": "Tomas Nilsson",
"admin": true

}

The payload is Base64Url-encoded, which results in the following string:

eyJpc3MiOiJ0b21uaWwuc2UiLCJleHAiOjE0NjI2ODk5MDAsIm5hbWUiOiJUb21hcyB
OaWxzc29uIiwiYWRtaW4iOnRydWV9

2.5.3 Signature

The concatenation of the encoded header and the encoded payload (separated
by ’.’) is used as input to the signature algorithm [20]. For example, if the
elliptic curve based signature algorithm4 ES256 is used, the result of the digital
signature is the elliptic curve point (R,S). The signature included in the JWT is
the concatenation R || S.

A Base64Url-encoded signature of the examples used for the header and the pay-
load:

dVwifqdTEkGJ_qI4Msumk-CrBCnbXwwKu5qRgwC1auZHOGXxcpi1VcYwrH3O7_MFYCf
zS827eM_5R9WJ1HlU8w

3Unix timestamp, i.e. the number of seconds since 1970-01-01 00:00:00 UTC, is used.
4See Section 2.4 for more information about elliptic curves and digital signatures.



Theory 13

Putting it all together, this results in the following JWT:

eyJ0eXAiOiJKV1QiLCJhbGciOiJFUzI1NiJ9.eyJpc3MiOiJ0b21uaWwuc2UiLCJleH
AiOjE0NjI2ODk5MDAsIm5hbWUiOiJUb21hcyBOaWxzc29uIiwiYWRtaW4iOnRydWV9.
dVwifqdTEkGJ_qI4Msumk-CrBCnbXwwKu5qRgwC1auZHOGXxcpi1VcYwrH3O7_MFYCf
zS827eM_5R9WJ1HlU8w



14 Theory



Chapter 3
Calvin – Merging Cloud and IoT

Calvin is an application environment developed by Ericsson Research to simplify
the development of distributed Internet of Things (IoT) applications [21]. The
current implementation is written in Python and is an open source project available
on Github1. The current version of Calvin is fully functional, but there is much
ongoing work to add more features and improve the existing functionality [3].

Since this thesis is about extending Calvin with authorization functionality,
an introduction to what Calvin is and how it works is required to fully understand
the following chapters.

3.1 Distributed Cloud for IoT

What makes Calvin really interesting is that it enables a distributed cloud for IoT,
i.e. it makes it possible to execute different parts of the application on different
devices to enable execution where it is most beneficial [21]. Some parts of the
application may require to be executed on certain devices, whereas other parts
may benefit from having for example low latency or much computing power. The
most preferable way to deploy such an app would be to distribute it over multiple
devices, which also would enable the possibility of parallel processing.

There are a large number of heterogeneous devices with different hardware
and different communication methods used in the Internet of Things. Calvin can
handle details about communication protocols, distribution, and hardware, hence
hiding the complexity for the application developer. Instead, the developer can
focus on writing an application where things talk to things, no matter on what
devices they are located. Sometimes the entire application may be executed on
the same device, but at a later time parts of it may have been moved to other
devices. Using Calvin, the application still looks the same for the developer no
matter if one or many devices are used for the execution.

3.2 Applications and Actors

A Calvin application has a lifecycle which can be divided into four distinct phases [22]:

1The Calvin repository can be downloaded from
https://github.com/EricssonResearch/calvin-base

15

https://github.com/EricssonResearch/calvin-base


16 Calvin – Merging Cloud and IoT

• Describe

• Connect

• Deploy

• Manage

To describe the functionality of an application, actors are used as building blocks.
An actor could be a computation, a service, a device, or something else that
performs a certain task that can be reused in many different applications. The
only way for an actor to communicate with other actors is through its inports and
outports, which basically are first in-first out queues of tokens (data elements).

To write an actor, the developer describes actions, input/output relations and
conditions for when to trigger an action. A typical scenario is that an event or
data received on the input ports trigger an action, which processes the data in
some way and produces new tokens that are sent to the output ports, as shown
in Figure 3.1. For this to work, an actor may store information in its internal
state and it may also have certain requirements on the device where it is executed.
An actor is unconcerned about where the input data comes from and where the
output data is sent.

State Requirements

Action outin

Actor

Figure 3.1: Actor model in Calvin

By connecting actors and hence forming a dataflow graph, an application is
created. Complex applications can be constructed by combining many actors. A
language called CalvinScript is used to describe which actors to use and how they
are connected to each other. For a simple example of a Calvin script and its
dataflow graph, see Section 3.6.

The deploy phase of the application lifecycle is when the application is instanti-
ated according to the dataflow graph. In the current version of Calvin, applications
can be deployed from the command line or by using a web interface. During this
phase it is determined where each actor will start running.



Calvin – Merging Cloud and IoT 17

The managed phase is entered by the application once it is running. Appli-
cations are monitored and different changes to the application may be handled
automatically. As described more in detail in Section 3.4, the initial deployment
decisions are not final. Instead, the actors can be moved to other devices later
during their lifetime.

3.3 Runtime

A Calvin runtime is where actors execute. A broad range of physical devices,
ranging from tiny sensor devices to large cloud servers, can be used for Calvin.
One or several Calvin runtimes may be started on each physical device. The goal
is to support as many platforms as possible, which means that alternative run-
time implementations, adhering to the Calvin communication protocol and control
commands, may be created in the future to support different microcontrollers [3].

Changing the code written by application developers is not required when mov-
ing execution to another runtime [21]. Instead, the complexity is hidden within the
runtime implementation. A Calvin runtime controls execution of actors by han-
dling for example data transport, message parsing, and scheduling, and provides
an interface for access to runtime functionality from higher layers. The same run-
time may (and usually will) concurrently handle several actor instances belonging
to different applications, potentially deployed by different users.

To create a distributed execution environment, multiple runtimes need to be
aware of each other and share information. For this, Calvin uses a global storage,
implemented by using a Distributed Hash Table (DHT) or by letting a specific
runtime handle storage for all runtimes [23]. The global storage contains informa-
tion about the different runtimes and also an actor store with details about all the
available actor implementations.

Different protocols can be used for the runtime-to-runtime communication
depending on what is supported by the devices they are running on. The runtimes
form a mesh network, in which actors can be migrated between runtimes [3]. How
data is transported depends on the current locations of the actors in an application.
From an application point of view, the network of runtimes creates an illusion of a
single runtime. This means that writing distributed Calvin applications is as easy
as writing non-distributed applications for an application developer.

3.4 Migration, Capabilities, and Requirements

Actors can be moved, or migrated, from one runtime to another after deployment
of an application without interrupting the execution of the application. In most
cases actor migration is almost instantaneous. A user can manually initiate migra-
tion by sending a command to the current runtime using the Calvin Control API
(Application Programming Interface). However, a more interesting feature is the
possibility of automatic actor migration, triggered by the runtime itself, to fulfill
requirements or move the execution to a runtime where it is more beneficial [22].

Each runtime has a set of capabilities, i.e. functionality that can be used by
actors executing on that runtime. An actor may require certain capabilities to



18 Calvin – Merging Cloud and IoT

perform its intended action, for example an actor for file reading requires access
to file handling functionality [24]. Runtimes try to automatically map the actor
requirement list against capabilities provided by available runtimes and migrate
actors accordingly.

An application is deployed to one of the runtimes, where it is instantiated and
all actors are connected locally. Based on actor requirements and runtime capabil-
ities, this might be followed by migration of some of the actors to other runtimes
in the distributed execution environment [3]. Additionally, further requirements
can be specified by the user when deploying an application, for example specify-
ing that some actors must run on runtimes belonging to a certain organization or
located in a certain country. Those requirements are matched against attributes
describing the available runtimes, and are also taken into account when migrating
actors after deployment of an application [25].

Before migration

A

B

Runtime 1

B

C

Runtime 2

After migration

A

B

Runtime 1

B

C

Runtime 2

B

C
Actor 1

C
Actor 3

A
Actor 2

A
Actor 2

B

C
Actor 1

C
Actor 3

Requirements

Capabilities &
Attributes

Figure 3.2: Calvin migration at deployment time based on require-
ments/capabilities matching



Calvin – Merging Cloud and IoT 19

Figure 3.2 shows how actors are migrated based on their requirements when an
application is deployed. The application, which consists of three actors, is deployed
to Runtime 1. Actor 1 requires the capabilities B and C, and since Runtime 1 does
not have capability C, Actor 1 is migrated to Runtime 2, which has the desired
capabilities. For the same reason, Actor 3 also needs to be migrated, whereas
Actor 2 remains on Runtime 1 since its requirements are fulfilled.

Migration of actors is possible since an actor can be considered in isolation.
The application does not have a state that is shared by all its actors. The only data
that has to be sent between the two runtimes during a migration is a serialized
version of the internal state of the actor instance, what actor type it is, and
information about its connections. The actor implementation itself is not sent
between the runtimes, only what type of actor it is. A new actor of that type is
instantiated on the target runtime and its ports are connected in the same way as
before the migration. The implementation of the actor could be different on the
target runtime, but the task it performs and the interpretation of the actor state
must be the same. By deserializing the received internal actor state and using it
as the state in the new actor, execution can continue where it left off before the
migration [21].

3.5 Security

This thesis work improves the security in Calvin, but already since before Calvin
had some security features that have been used as a part of the authorization
solution presented in this thesis.

Verification of application signatures and actor signatures using OpenSSL is
one feature that already was implemented. This includes the use of a truststore,
where trusted certificates that are allowed to sign code are stored.

Another supported feature is the possibility to enter user credentials when de-
ploying an application and authenticate the user using either a RADIUS server or
a local file containing allowed username/password combinations. Simple runtime
authorization for applications and actors based on user identities was also imple-
mented, but the authorization part has now been replaced with the more advanced
attribute-based authorization proposed in this thesis.

Parallel to the work on this thesis, there has been ongoing work on other
security features in Calvin, for example securing the Distributed Hash Table using
runtime certificates and signatures.

3.6 Example

An example is useful to get a better understanding of how Calvin works. The
Calvin script and the dataflow graph for a rather simple Calvin application are
shown in Figure 3.3.

The application, which is used to take a photo and show it on a screen, consists
of three actors:

• A button (actor type: io.GPIOReader) to decide when to take a photo



20 Calvin – Merging Cloud and IoT

• A camera (actor type: media.Camera) to take a photo

• A screen (actor type: media.ImageRenderer) to show the photo

button

io.GPIOReader

state

camera

media.Camera

trigger                  image

screen

media.ImageRenderer

image

Figure 3.3: A Calvin script and dataflow graph example

The state output of the button actor is connected to the trigger input of the
camera actor, which means that a button press will trigger the camera to take a
photo. Similarly, the image output from the camera actor is sent to the input port
of the screen actor, which displays the photo.

If the application is deployed to a runtime on a computer without a camera, the
camera actor will not work. However, the application can still be deployed, but the
camera actor will not be able to deliver the intended functionality and will instead
be instantiated as a shadow actor that later can be migrated to suitable runtimes
when they become available [22]. If the runtime is aware of another runtime on
another device which has the required camera functionality, the camera actor will
be migrated to that runtime, as explained in Section 3.4.

The capabilities needed by the actor that displays the photo might be present
on many available runtimes. If the requirements are satisfied on the runtime where
the application was deployed, the actor may stay there instead of being migrated.
However, as mentioned in Section 3.4, it is possible to specify additional application
deployment requirements, stating that for example the actor named screen should
be placed on a runtime with a certain name or location [25]. These requirements
will trigger a migration of the screen actor when the application is deployed.



Chapter 4
Designing and Implementing Authorization

in Calvin

The authorization design that is proposed in this chapter, and that also has been
implemented in Calvin as part of this thesis work, enables very flexible attribute-
based access control using a compact JSON-based language and also utilizing
JSON Web Tokens to secure the communication.

The entities and the dataflow used in the XACML standard have been used
as inspiration for the design of the authorization in Calvin, and hence much of the
XACML terminology will be used to describe the design.

Figure 4.1 shows the authorization flow that has been implemented in Calvin.
This chapter explains in detail how the different parts of the authorization flow
have been designed and implemented.

4.1 Attribute-Based Access Control

To be able to grant access not only based on user identities but also based on
other attributes such as information about actor requirements and the current
environment, an attribute-based access control (ABAC) model was selected. By
using policies that grant access depending on certain attributes, it is possible to
finely tune the access decisions.

The policies can be very detailed, controlling access to certain resources on
a specified runtime for a specific user, but it is also possible to write much more
general policies, responsible for multiple runtimes and controlling access for many
different users, applications and actors. Flexibility is a key word for the design of
the authorization. The authorization is designed in such a way that any attributes
can be used. If an attribute is specified in a policy and that attribute cannot be
found for the authorization request, access will always be denied.

The attributes have been divided into four groups to structure them in the same
way as in the XACML standard:

• Subject attributes

• Resource attributes

• Action attributes

• Environment attributes

21



22 Designing and Implementing Authorization in Calvin

Policy 
Administration 

Point (PAP)

Policy 
Enforcement 
Point (PEP)

Policy Decision 
Point (PDP)

Policy 
Information Point 

(PIP)

Policy Retrieval 
Point (PRP)

2. Authorization request

1. Access required

3. Retrieve
   policies

4a. Evaluate 
    policies

4b. Retrieve additional 
attributes

Manage policies

5. Authorization 
decision

User/Application/
Actor

6. Access 
permitted/

denied

Fetch data from 
different sources

Figure 4.1: New authorization flow implemented in Calvin



Designing and Implementing Authorization in Calvin 23

4.1.1 Subject Attributes

In the computer security world, the term subject usually refers to the entity that
requests access to a resource. The subject may be a person, service, or any other
kind of entity [9]. A natural mapping of this to Calvin would be to define the
subject as the user that deploys the application, as well as the application itself
and the actors that belong to the application.

In Calvin, attributes describing the subject are retrieved from the authentica-
tion service. A user supplies credentials (username and password) when deploying
an application. Depending on the runtime configuration, these credentials are ei-
ther checked against a local file or against an external RADIUS server. If the
authentication is successful, i.e. the username and password are correct, infor-
mation about the user is returned and is used as subject attributes for future
authorization requests.

As mentioned in Section 3.5, applications and actors may be signed by a trusted
party. The signature is verified before an application or actor is started, and
information about the signer may also be used as subject attribute.

Subject attribute examples for Calvin:

• User information
– First name
– Last name
– Age
– Nationality

– Company
– Department
– Roles/groups
– Email address

• Actor/application signer

4.1.2 Resource Attributes

The resource is the object that the subject wants to access in some way. In this
context, the resource is a Calvin runtime. When a Calvin runtime is started it is
possible to supply attributes describing the runtime.

Resource attribute examples for Calvin:

• Owner information
– Organization
– Role

– Name of responsible
person/group

• Address information
– Country
– City
– Street

– Building
– Floor
– Room

• Runtime information
– Organization
– Name of runtime/node

– ID of runtime/node
– Purpose (e.g. test, production)



24 Designing and Implementing Authorization in Calvin

4.1.3 Action Attributes

The action is what the subject wants to perform or access on the resource. Calvin
actors always need basic runtime execution access. An actor may also have a list
of functionality that is required on the runtime where it executes, for example file
handling or camera functionality.

Action attribute examples for Calvin:

• Actor requirements
– Basic runtime execution access
– File handling (read/write)
– Media functionality (e.g. camera, media player, image viewer)
– Timer
– Network functionality (client, server)
– Sensors (e.g. distance, temperature, pressure)

4.1.4 Environment Attributes

Environment attributes here refer to attributes dealing with the current state or
situation in which a request should be handled.

Environment attribute examples for Calvin:

• Current time

• Current date

Location from where access is requested and the communication channel type
(protocol, encryption strength, etc.) are other typical environment attributes that
may be used when such functionality is added in Calvin.

4.2 Policy Enforcement Point (PEP)

The Calvin runtime to which an application is deployed acts as Policy Enforcement
Point (PEP). As part of this thesis work, the deployment process of an application
has been changed to improve the way security is handled in Calvin. The new
deployment process when security is enabled is shown in Figure 4.2.

When the user has been authenticated and the application signature has been
verified, the PEP sends an authorization request to a Policy Decision Point (PDP)
to determine if the application should be allowed to run. Similarly, an authoriza-
tion request is sent for each actor in the application, when the actor signature has
been verified, to check if the actor should have permission to execute and use the
required runtime capabilities.

The procedure is similar when an actor is migrated. When the migration
data is received by the target runtime, i.e. the runtime to which the actor is
migrated, the implementation of the actor type is looked up and the actor signature
is verified. The target runtime is the one that now acts as PEP and sends an
authorization request to its PDP to check if access should be granted to the actor.



Designing and Implementing Authorization in Calvin 25

No

 

Actor 
found and 
signature 

OK?

Authentication 
successful?

Deployment  
not allowed Look up and 

verify each actor 
in the application

Deploy application, 
enter user credentials

Application 
signature OK?

 

Application 
authorization

OK?

Yes
No

Yes

Yes

No

No

All actors 
handled?

Yes

Yes

Handle as 
shadow actor

No

Instantiate 
actors

Yes

No

Actor 
authorization 

OK?

Figure 4.2: New deployment process in Calvin



26 Designing and Implementing Authorization in Calvin

New configuration options have been added to Calvin to allow a runtime to
have either a local or an external PDP. A local PDP means that the PEP and
the PDP are located on the same runtime, whereas an external PDP means that
a PDP on another runtime acts as authorization server and makes authorization
decisions on behalf of the PEP runtime.

4.2.1 Runtime Registration

When the PEP runtime is started, a JSON representation of the runtime attributes
(see Section 4.1.2) is sent to the PDP to enable future authorization. An example
of what is sent in this runtime registration is shown in Appendix A. The PDP
saves the runtime attributes together with the runtime ID1. As a result of the
registration process, it is enough to send the runtime ID in future authorization
requests instead of all the resource attributes.

4.2.2 Authorization Requests/Responses

JSON is used for authorization requests and responses sent between the PEP and
the PDP. A request contains subject attributes returned from the authentication
service (see Section 4.1.1), and the runtime ID of the PEP. For actor authorization
requests, a list of required runtime functionality is also included in the request.
An example request is shown in Appendix B.1. The format reminds of the re-
quest/response format used in the XACML JSON Profile (see Section 2.3.5), but
a more compact JSON representation is used here.

The response from the PDP includes an authorization decision (permit, deny,
indeterminate or not_applicable). A response with the decision permit indi-
cates that access should be granted by the PEP, whereas all other decisions should
result in denied access. Figure 4.2 shows how the authorization decision affects
the steps taken by the PEP runtime when an application is deployed.

If the decision is permit, the response may also include constraints under which
the authorization decision is valid. These constraints are included in a section of
the response called obligations2. An example response can be found in Ap-
pendix B.2. The PEP uses local authorization check plugins to continuously check
the constraints when an actor wants to perform an action after instantiation. New
authorization check plugins can easily be added to Calvin. The plugin time_range
has been implemented to make it possible for an authorization decision to be valid
only between a specified start and end time each day.

4.2.3 JWT for External Authorization

If the PDP is external, signed JSON Web Tokens (JWT) are used for runtime
registration, authorization requests, and authorization responses to secure the in-

1Calvin uses randomly generated UUIDs (universally unique identifier) as runtime
IDs, e.g. a77c0687-dce8-496f-8d81-571333be6116. If runtime certificates are used, the
ID is specified in the certificate, which is signed by a trusted Certificate Authority (CA).

2The term obligation is used in the XACML standard for an operation that should
be performed by the PEP when enforcing an authorization decision [12].



Designing and Implementing Authorization in Calvin 27

formation exchange between the two runtimes where the PEP and the PDP are
located3. The JWT is used in almost the same way as SAML is used in the
XACML SAML Profile (see Section 2.3.4).

The following claims (most of them are registered JWT claim names, see Sec-
tion 2.5.2) are used in the JWT payload:

• "iss" (Issuer) – the ID of the runtime that creates the JWT.

• "sub" (Subject) – the ID of the actor4 that the request/response applies to
(only used for actor authorization requests/responses).

• "aud" (Audience) – the ID of the runtime to which the JWT is intended.

• "iat" (Issued At) – the time at which the JWT was issued.

• "exp" (Expiration time) – the expiration time for the JWT (may be config-
urable in the runtime settings in future Calvin releases).

• "attributes"/"request"/"response" – the runtime attributes (see Ap-
pendix A) or the authorization request/response (see Appendix B), i.e. the
information that would have been sent if a local PDP would have been used.

The runtime that creates the JWT uses an elliptic curve private key to create
the digital signature. When the JWT is received by the other runtime, the signa-
ture is verified using the corresponding public key of the sending runtime. If the
signature is invalid, the information in the JWT will not be accepted.

Similarly, the JWT will also be rejected if the runtime ID specified in the
"aud" claim is not the same as the ID of the runtime that has received the JWT,
or if the expiration time has passed. When an authorization response is received,
it is important that the runtime ID in the "iss" claim corresponds to the runtime
ID of the specified authorization server, and that the "sub" claim contains the ID
of the correct actor when such an ID has been included in the request.

The public key of the sender is available to the recipient as part of a runtime
certificate. A public key infrastructure, where runtime certificates signed by a
trusted CA are issued and distributed to other Calvin runtimes, has been created
as part of other security-related work in Calvin and is therefore not explained in
detail in this thesis. The important part here is that the runtime that creates the
JWT must have a private key to sign the JWT, and that the receiving runtime
that wants to verify the JWT signature must have the corresponding public key,
as part of a runtime certificate signed by a trusted CA.

4.3 Policy Decision Point (PDP)

The Policy Decision Point (PDP) is a Calvin runtime that evaluates requests from
a PEP against authorization policies and returns an authorization decision. An
example policy can be found in Appendix C.

3The following JSON Web Token implementation in Python has been used:
https://github.com/jpadilla/pyjwt/.

4In the same way as for runtime IDs, Calvin uses randomly generated UUIDs (uni-
versally unique identifier) as actor IDs, e.g. fc36ce29-e72d-4b1c-9447-4cb9813708f6.

https://github.com/jpadilla/pyjwt/


28 Designing and Implementing Authorization in Calvin

4.3.1 Find Matching Policies

Policies are retrieved from a Policy Retrieval Point (PRP). The format of a policy
reminds of XACML policies, but JSON is used instead of XML.

Each policy has a target section, which is used to decide if the policy is
applicable to the incoming authorization request. If all the attribute values in
the target section of the policy match the attribute values in the authorization
request, the policy is further evaluated, whereas the policy is ignored if any of the
attribute values do not match. A policy without a target section is applicable to
any request.

To decrease the number of policies needed, it is possible to use a list of many
alternative values for a certain attribute in the policy. Regular expressions5 can
also be used to define a pattern that has to be found in the attribute value in the
request instead of defining the entire string. Some simple examples are given here
to explain the usefulness of these features.

The attribute "first_name" matches if the attribute value in the request is
"Tomas" or "Gustav":

{"first_name": ["Tomas", "Gustav"]}

The attribute "email" matches if the attribute value in the request ends with
"@ericsson.com":

{"email": ".*@ericsson.com"}

The attribute "requires" matches if the attribute value is exactly "runtime" or
exactly "calvinsys.events.timer" or begins with "calvinsys.io":

{"requires": ["runtime", "calvinsys.events.timer", "calvinsys.io.*"]}

4.3.2 Evaluate Policies

If a policy target matches the request, the complete policy will be evaluated.
The policy has a rules section with one or many rules that are evaluated to
get a policy decision. Each policy rule returns one out of four possible decisions
for an incoming request: permit, deny, indeterminate or not_applicable. A
rule combining algorithm (currently permit_overrides or deny_overrides) is
specified in the policy to determine how the rule decisions are combined into a
policy decision.

A policy rule can contain a target section, in the same way as the target for
the entire policy, to specify for which requests that rule is applicable. In addition
to a target, a rule can also have a condition section, which can be used for a
more advanced form of attribute comparison using different functions.

The functions in Table 4.1 can be used as function in the condition section
of a policy, and more functions can easily be implemented in the future. Each
function requires a number of attributes as function arguments. The output of
a function is true or false.

5Since Calvin is implemented using Python, the regular expression syntax described
in the Python documentation (https://docs.python.org/2/library/re.html) is used.

https://docs.python.org/2/library/re.html


Designing and Implementing Authorization in Calvin 29

Table 4.1: Functions that can be used in a condition in a policy

Function name Number of arguments
equal 2

less_than_or_equal 2
greater_than_or_equal 2

not_equal 2
and ≥ 2
or ≥ 2

Input arguments of a function can be either constant values (regular expressions
can be used), a list of such constant values, or a reference to an attribute in the au-
thorization request. A string that starts with "attr:" is a reference to an attribute
value in the request, e.g. "attr:resource:address.country" (where resource
is the argument type and address.country is the argument name). Missing at-
tributes, i.e. referenced attributes that are not found in the authorization request,
are fetched from a Policy Information Point (PIP) if possible (e.g. the current
date in the example below).

The following example of a condition in a policy shows how functions can be
nested in two levels, in this case an "and" function using the result of an "equal"
function and a "greater_than_or_equal" function as input arguments:

{
"condition": {

"function": "and",
"attributes": [

{
"function": "equal",
"attributes": ["attr:resource:address.country",

["SE", "DK"]]
},
{

"function": "greater_than_or_equal",
"attributes": ["attr:environment:current_date",

"2016-03-04"]
}

]
}

}

In the example condition above, the "equal" function looks at the runtime at-
tributes to determine if the runtime is located in Sweden (SE) or Denmark (DK),
and the "greater_than_or_equal" function checks if the current date is 2016-03-
04 or later. If both of these functions return true, the result of the "and" function
will be true.

If the rule is satisfied, i.e. the result when evaluating the condition is true,



30 Designing and Implementing Authorization in Calvin

the specified rule effect (permit or deny) will be returned as rule decision and
potentially be combined with decisions from other rules in the policy to get a
policy decision. Otherwise, if the rule is not satisfied, not_applicable will be
returned as the rule decision. If any errors occur while evaluating a policy, the
decision will be indeterminate.

A rule may contain an obligations section with constraints under which the
authorization decision is valid. Obligations can only be used if the rule deci-
sion is permit. If other policies also return permit but without obligations, the
obligations will not be taken into consideration since a permit decision without
constraints has been found. Otherwise, the obligations will be included in the
response and will be handled by the PEP (see Section 4.2.2).

The following example of an obligations section in a policy rule specifies that
the permit decision is only valid between 09:00 and 17:00 every day:

{
"obligations": [

{
"id": "time_range",
"attributes": {

"start_time": "09:00",
"end_time": "17:00"

}
}

]
}

4.3.3 Combine Policy Decisions

If multiple policies match the request, the policy decisions are combined into a com-
bined policy decision using one of the combining algorithms permit_overrides
or deny_overrides (which one is specified in the configuration for the PDP). The
combined policy decision is returned as authorization decision to the PEP.

If permit_overrides is used as combining algorithm, the combined policy decision
is determined in the following way:

1. If any of the policy decisions is permit, the result will be permit.

2. Otherwise, if any of the decisions is indeterminate, the result will be
indeterminate.

3. Otherwise, if any of the decisions is deny, the result will be deny.

4. Otherwise, the result will be not_applicable (this will also be the result if
the request does not match any policies).

The procedure for the deny_overrides algorithm is obtained by letting the
words permit and deny change places in the above list.



Designing and Implementing Authorization in Calvin 31

A useful example in many situations is to use permit_overrides as combining
algorithm and always have a fallback policy which denies all requests. If no match-
ing policies that return permit have been found, the fallback policy will make sure
that the decision will be deny.

4.4 Policy Information Point (PIP)

If an attribute used in a policy target or condition is not included in the au-
thorization request, the PDP will ask the Policy Information Point (PIP) for the
value of the attribute.

Environment attributes, such as the current date or current time, are usually
not included in the authorization request, but can easily be obtained from the
PIP. For some attributes the PIP may use another attribute that was provided
in the authorization request from the PEP to obtain the requested attribute. An
example of that is if the authorization request includes a reference to an actor
in the actor store, but the policy needs the name of the actor signer to make a
decision. Then the PIP can use the actor store reference to get information about
the actor signer from the actor store.

The PDP and the PIP are located on the same Calvin runtime, but the PIP
may use external requests to obtain the requested attribute value. An attribute
cache has been implemented in the PIP to prevent the same attribute value from
being computed or fetched more than once per authorization request. If an at-
tribute value received from the PIP is referenced more than once when a request is
evaluated against policies, the cache makes it faster to get the attribute value and
also ensures that the same value will be used for all evaluations when handling the
authorization request.

4.5 Policy Retrieval Point (PRP)

A Policy Retrieval Point (PRP) is where the authorization policies are stored.
A PRP must implement methods for creating, updating, deleting, and retrieving
policies. An abstract Policy Retrieval Point class has been written to define the
methods that need to be implemented by a PRP. In the current implementation,
the file system is used as PRP. Policies are stored in JSON files on the same
machine as the PDP runtime. The directory path and a name pattern for the
JSON files are specified in the runtime configuration.

4.6 Policy Administration Point (PAP)

A Policy Administration Point (PAP) is used to create, modify or delete poli-
cies. The Calvin Control API has been extended with a REST API for policy
management interactions between the PAP and the PRP, see Table 4.2.

To make policy creation and editing easy for the administrator, it is a good
idea to create a user-friendly policy tool instead of writing JSON directly. Parallel
to my work on the authorization in Calvin, my advisor at Ericsson has created a



32 Designing and Implementing Authorization in Calvin

web-based policy tool, which can act as a PAP. In the web tool, the user chooses
between available functions and attributes and enters desired attribute values in
different text fields. The policy tool translates the form input data to the correct
JSON format and uses the REST API to create or update the policies.

Table 4.2: REST API for policy management

URI HTTP
method Action

/authorization/policies POST Create new policy
(input: JSON policy)

/authorization/policies GET Get all policies
/authorization/policies/<id> GET Get policy <id>

/authorization/policies/<id> PUT Update policy <id>
(input: JSON policy)

/authorization/policies/<id> DELETE Delete policy <id>

4.7 Smart Migration

If an actor authorization response contains an obligations section with con-
straints under which the authorization decision is valid, those constraints will be
checked locally by the PEP, as explained in Section 4.2.2.

The constraints may for example be that the actor only is granted access
between 09:00 and 17:00 every day. If the actor is started at 15:00, it will run for
two hours before access is denied. At 17:00, when access is denied, the runtime will
automatically try to migrate the actor to another runtime. To prevent unsuccessful
migration attempts, the current runtime will try to make sure that the actor has
permission to run on the runtime to which it tries to migrate the actor. This
process is here called smart migration.

The following steps, also illustrated in Figure 4.3, are involved in a smart migration
of an actor instance in Calvin:

1. When access is denied, the Camera actor will stop running on Runtime 1.

2. Runtime 1 asks global storage for a list of possible migration destinations
that satisfy the requirements.

• The requirements consist of both user-specified requirements (e.g. that
the user accepts that the actor runs on Runtime 1-4), and actor re-
quirements (capabilities needed by the runtime to execute the actor).

• A list of runtimes that satisfy the requirements can be retrieved from
global storage, which also has information about each runtime’s au-
thorization server, i.e. where the PDP is located.

3. Runtime 1 sends an authorization search request to Runtime 2, which is
the PDP responsible for the first runtime on the list of possible migration
destinations.



Designing and Implementing Authorization in Calvin 33

Policy 
Decision 

Point

Camera
Policy 

Decision 
Point

1. Access Denied for 
Camera, Runtime 1 

at 17:00

4. No runtimes 
where access 
is permitted

6. Access Permitted 
for Camera, Runtime 4

Signed by 
Runtime 3

Signed by 
Runtime 3

Access Permitted 
for Camera, Runtime 4

7. Migrate Camera 
actor to Runtime 4
(include access decision)

Camera

Possible migration 
destinations:

RT2 (PDP on RT2)
RT4 (PDP on RT3)

Runtime 2 (RT2)

Runtime 3 (RT3)
Runtime 4 (RT4)
(uses PDP on RT3)

Camera

2. Get possible 
migration destinations 

from global storage

PDP PDP

PDP

3. Authorization 
search request

Signed by 
Runtime 1 Runtime 1 (RT1)

(uses PDP on RT2)

5. New authorization 
search request

Signed by 
Runtime 1

Figure 4.3: Smart migration when access is denied.



34 Designing and Implementing Authorization in Calvin

• The authorization search request is a signed JWT which reminds of
a normal authorization request (see Section 4.2.2) and which also in-
cludes the list of possible migration destinations. Subject attributes
are included in the request, but no resource attributes are included
since Runtime 1 does not know attributes of other runtimes. A refer-
ence to the actor in the actor store is the only information about the
actor in the request.

4. The PDP on Runtime 2 will add runtime attributes to the request and
evaluate the request against policies in the same way as when a normal
authorization request arrives. In this example, the response to Runtime 1
is that no runtime where access is permitted was found.

• All runtimes that use the PDP on Runtime 2 have registered their
attributes there. Hence, the PDP can add that information to the
authorization search request.

• The PDP will evaluate the request against policies for all runtimes
that have been registered there and which also are included on the list
of possible migration destinations in the authorization search request.

• Actor information, such as actor signer, is not included in the autho-
rization search request since the actor implementation and signature
may be different on different runtimes. Instead, the PIP will look up
information about the actor using the actor store reference.

5. If no runtime was found by the first authorization server, Runtime 1 will
send a new authorization search request to the next authorization server on
the list, which in this example is Runtime 3.

6. Runtime 3 finds one runtime (Runtime 4) where access is permitted and
creates a signed JWT with an authorization response that looks exactly like
a normal authorization response (see Section 4.2.2).

• The "aud" claim in the JWT is set to the ID of Runtime 4 to indicate
that the decision is intended for Runtime 4.

7. Runtime 1 will initiate a migration of the Camera actor to Runtime 4 and
include the signed access decision JWT from Runtime 3 in the migration
info sent to Runtime 4.

• When Runtime 4 receives the migration info, it can check that the
authorization decision is signed by Runtime 3 (its authorization server)
and that the decision is intended for Runtime 4 and has not expired.
Hence, there is no need for Runtime 4 to send a new authorization
request to its PDP. Instead, the actor can start executing directly.



Chapter 5
Authorization Tests in Calvin

This chapter presents test results for the authorization that has been implemented
in Calvin. Both the correctness and the performance of the implementation have
been tested. For details about the implementation and explanations of the terms
used to describe the tests, see Chapter 4.

5.1 Correctness Tests

A Python testing tool called pytest1 has been used to test the correctness of
the authorization implementation. The tests presented in Table 5.1 do not cover
all possible use cases since the implemented authorization is very flexible and
can be used in many different ways. However, since the tests deal with all the
functionality in some way, there is a high probability that the authorization works
in the intended way if all the tests pass. The tests have been performed with
several runtimes running on the same machine.

A test is considered to be successful if the effect of the authorization corre-
sponds to the expected application/actor behavior for the current authorization
policies. This is tested by using different combinations of applications, user cre-
dentials and runtimes in the deploy command, and checking for example if an
actor produces the expected output or if the entire application is prevented from
being deployed. All tests do not have to be performed for both external and lo-
cal authorization since they both use the same PDP implementation. The only
difference is that JWTs are used for external authorization.

Table 5.1: Correctness tests and results for Calvin authorization

Test
Test Description Expected Result Result
Attribute in request not accepted by
policies (application authorization) Deployment denied X
Attribute in request not accepted by
policies (actor authorization) No actor output X

Continued on next page

1For more information about pytest, see http://www.pytest.org.

35

http://www.pytest.org


36 Authorization Tests in Calvin

Continued from previous page
Test

Test Description Expected Result Result
Accepted attributes for both application
and actors Actor produces output X
Reference to attribute not present in
request but retrievable from PIP Actor produces output X
Reference to attribute not present in
request and not retrievable from PIP
(actor authorization)

No actor output X

Attribute included in list of accepted
attributes in policy target Actor produces output X
Attribute matches regular expression in
policy target Actor produces output X
No policies match the request (actor
authorization) No actor output X
Two policies without target (matching all
requests), one permitting, the other
denying (using permit_overrides)

Actor produces output X

Two policies without target (matching all
requests), one permitting, the other
denying (using deny_overrides)

Deployment denied X

Policy with "and" function using results
from functions "equal", "not_equal",
"less_than_or_equal", "greater_than_
or_equal" that should all evaluate to
true

Actor produces output X

Policy with "or" function using results
from functions "equal", "not_equal",
"less_than_or_equal", "greater_than_
or_equal" where none should evaluate to
true

No actor output X

External authorization with correct JWT Actor produces output X
External application authorization with
invalid JWT signature in response Deployment denied X
External application authorization with
invalid "aud" claim in JWT response Deployment denied X
External application authorization with
expired "exp" claim in JWT response Deployment denied X

Smart migration when access is denied
due to obligations with time range

Actor is migrated to
other runtime where it
starts producing
output

X



Authorization Tests in Calvin 37

5.2 Performance Tests

To analyze the performance of the authorization implementation, the execution
time to get an authorization decision from a local PDP has been measured for dif-
ferent scenarios using Python’s timeit module. One way to measure the scalabil-
ity is to increase the number of policies that authorization requests are evaluated
against. Another important factor for the performance is the usage of suitable
target sections in the policies. If the target does not match, the policy will not
be further evaluated, hence saving time.

The following tests have been performed to measure the performance:

• Test 1: The attributes of the authorization request do not match the target
of any policy. Only the target of each policy will be checked, and not the
complete policy.

• Test 2: The attributes of the authorization request match the attributes in
each policy target, but the condition (consisting of three function evalua-
tions) in each policy is not satisfied. All policies will be completely evaluated
since the target matches.

Table 5.2 shows the test results for different number of policies. The policies have
been written such that all available policies must be evaluated before returning a
decision.

Table 5.2: Performance test results for Calvin authorization

Number of Test 1: Test 2: Time Ratio
policies Execution time [s] Execution time [s] Test 2/Test 1

10 0.0013 0.0016 1.23
50 0.0026 0.0037 1.42
100 0.0041 0.0060 1.46
500 0.0177 0.0274 1.55
1000 0.0343 0.0540 1.57
5000 0.1683 0.2684 1.59
10000 0.3804 0.5905 1.55

Using an external PDP instead of a local PDP requires less computing power and
storage on the device running the PEP runtime. However, it adds a delay to the
time it takes to get an authorization decision compared to what is presented in
Table 5.2. Encoding and decoding JWTs take negligible time. Instead, the delay
largely depends on the quality of the connection between the PEP and the PDP,
i.e. the time it takes to send the JWTs between the two runtimes.



38 Authorization Tests in Calvin



Chapter 6
Discussion

Test results, design choices, and security considerations for the authorization so-
lution that has been implemented in Calvin are discussed in this chapter. Future
work to further improve the authorization and related functionality in Calvin is
also suggested.

6.1 Comments on Test Results

The test results presented in Chapter 5 show that the authorization implementa-
tion works as intended and performs well. Access is permitted correctly according
to the policies, and the authorization decision results in the expected behavior for
the actor or application. The implemented authorization satisfies the aim of en-
abling fine-grained decisions to decide exactly to whom access is granted, and the
runtime is also able to perform post-instantiation access control and successfully
migrate an actor to another runtime if access is denied. The implementation is
fault tolerant by always denying access and continuing operation of the runtime
properly when any errors occur, such as incorrect syntax for requests/responses or
invalid signatures.

The performance test results show that the execution time to get an autho-
rization decision is affected by the way policies are written and the configuration
of the Policy Decision Point (PDP). Optimal performance is achieved by using
suitable target attributes that result in few matching policies for a request, hence
only requiring a few policies to be fully evaluated. This is confirmed in Table 5.2,
which shows that the execution time is approximately 50% longer for the test if all
policies have to be fully evaluated compared to if only the target in each policy
has to be checked.

It is also important that the PDP is configured in a clever way so it uses a
policy combining algorithm that works well for the policies that have been written.
An example of a poorly configured PDP is to have deny_overrides as combining
algorithm if only one policy matches the request and that policy evaluates to
permit since deny_overrides means that all policies have to be checked in order
to assure that no other policy evaluates to deny. Instead, if permit_overrides is
used, the PDP will stop checking further policies and return the decision directly
when the policy evaluating to permit has been found, which potentially has a
great influence on the number of policies that have to be checked.

39



40 Discussion

6.2 Design Choices

The decision to use an attribute-based access control (ABAC) model for Calvin
was easy to make since it offers much more flexibility than other alternatives such
as role-based access control (RBAC). Being able to base the authorization decision
not only on who the user is, but also on attributes answering questions about what,
when, where, why, and how the access is requested, makes it possible to control
access in detail, which was one of the aims of the thesis. Gartner analysts have
predicted that 70% of the enterprises will use ABAC as the dominant mechanism
to protect critical assets by 2020 [26], which indicates that ABAC is the future.

6.2.1 JSON-based XACML

XACML is a dominant standard in the ABAC area, and the SAML profile of
XACML describes a secure way to send authorization requests and responses.
However, both theses standards are XML-based, which often is considered to be
too verbose for constrained Internet of Things devices. A better choice would be
to use JSON since it is a much more lightweight and compact format, resulting in
higher parsing efficiency and less data being sent. The trend to simplify standards
and adapt them to IoT and cloud technologies has also reached the XACML com-
mittee, which by releasing the REST and JSON profiles has taken a step in that
direction [27]. However, further simplification is desirable, such as JSON-based
policies and a JSON-based replacement for the XACML SAML Profile.

The idea of the proposed solution in this thesis was to design a standards-based
authorization that has been adapted to IoT and Calvin’s distributed execution
environment. As basis for the design, the XACML architecture has been used,
but XML has been replaced entirely by JSON. Using JSON for both the requests
and the policies also simplifies matching between requests and policies.

The JSON Profile of XACML only deals with JSON versions of XACML re-
quests and responses, but there has also been attempts to convert the XML-based
XACML policies to JSON [28]. However, these JSON versions of the requests,
responses, and policies all look much like XML in JSON format, containing un-
necessary elements to remind of the structure of their XML equivalents. The
language for policies, requests, and responses proposed in this thesis uses a simpli-
fied and more compact JSON notation, which still easily can be converted to an
equivalent XML-based version that is valid according to the XACML standard.

Since JWT in many aspects is the JSON version of what SAML does in the
XML world [29], the proposed solution uses JWT to secure the authorization
requests and responses. One of the main reasons why JWT signatures based on
elliptic curve cryptography were chosen is that a public key infrastructure with
elliptic curve public/private keys and runtime certificates already had been created
for other security features in Calvin and could be used for the JWT as well.

6.2.2 Adaptable to Constrained Devices

To make the authorization solution adaptable to different situations and devices
was an important design goal. If the aim is to minimize network traffic, the
runtime can use a local PDP. The PAP can still be centralized and use the REST



Discussion 41

API to push policy changes to many different local PDPs. If the device instead is
constrained in storage or processing power, it might be better to use an external
PDP that is less constrained.

6.3 Security Considerations

When a local PDP is used, there is no external network traffic involved in the
authorization, so as long as the policies are correct there are no security threats
to consider. However, if an external PDP is used as authorization server or an au-
thorization decision is received from another runtime as part of a smart migration,
there are several threats that must be considered and for which countermeasures
have been implemented.

The use of object security in the shape of signed JSON Web Tokens (JWT)
protects the authorization process from most of the threats. Since public/private
key pairs are used for the signature, the recipient can be sure that the sender is
the one it claims to be. The JWT signature is also used to verify the integrity of
the data, i.e. to make sure that the JWT payload has not been altered.

To prevent an attacker from redirecting an authorization response to another
runtime which uses the same authorization server, the JWT contains the ID of the
intended recipient in the "aud" claim. The actor ID in the "sub" claim is used to
indicate for which actor instance the response is valid.

Replay attacks are prevented by using the "exp" claim to include an expiration
time for the JWT. By having a short valid lifetime, the JWT from an authorization
server cannot be sent again to get access at a later time. The expiration time is
also useful for smart migrations to make sure that the authorization decision that
is included in the migration info has been issued recently. It is assumed that the
different runtimes have synchronized clocks. A possible alternative or complement
to the expiration time is to use the "jti" (JWT ID) claim to give each JWT a
unique identifier. If the recipient stores recently received JWT IDs and compare
these IDs with the ID of the incoming JWT, replay attacks will be prevented.

Denial of service, in this case making the authorization server unavailable
by sending a large number of requests at the same time, is a possible threat.
Specifying multiple alternative authorization servers for a PDP could be a suitable
countermeasure if the probability of such an attack is high.

Subject attributes are retrieved during the authentication process by the run-
time where the application is deployed. If an actor is migrated to another runtime
within the same domain, it is assumed that the runtime trusts the first runtime
when it comes to authentication of the subject attributes. There is currently on-
going work on how to handle subject attributes when crossing domain boundaries.

6.4 Privacy Considerations

Attributes sent to an external PDP may contain privacy-sensitive information. If
that is the case, encryption of the data would be desirable to prevent eavesdrop-
ping. Transport Layer Security (TLS) will soon be added to Calvin, which adds



42 Discussion

encryption on the transport layer. An alternative way to prevent the information
from being disclosed is to encrypt the signed JWT.

The user can specify in the application requirements to which runtimes migra-
tion is permitted. Hence, the subject attributes will never be sent to any runtimes
not accepted by the user.

A response from an authorization server does not include the reason why access
was granted or denied, which means that potentially secret details about what the
policies look like are not revealed.

6.5 Future Work

A fully functional authorization solution has been implemented in Calvin, but
there are a number of areas where future work is desirable.

The following tasks have been identified for future work to further improve the
authorization that has been presented in this thesis:

• Implement REST API authentication to protect policy management (this
is not only a desired feature for the authorization part since the API also is
used for controlling other parts of Calvin).

• Write alternative Policy Retrieval Point (PRP) implementations, for exam-
ple a database PRP where policies are indexed based on the attributes in
their target section to further speed up the authorization process.

• Implement more features from the XACML standard, for example other
functions and the possibility to use more than two levels of nested functions.

• Extend smart migration to work for authorization servers in other domains.
The main problem with domain boundary crossing is how to handle trans-
lation of subject attributes into meaningful attributes in the target domain.

• Handle revocation of access and other changes to policies. A possible ap-
proach could be to inform all runtimes when the authorization server policies
have been updated.

• Add possibility to encrypt the authorization requests/responses and/or use
TLS.

• Implement more plugins to allow other constraints under which an autho-
rization decision is valid, e.g. constraints based on the current runtime
location (if it is movable) or the current temperature.

• Port the Python implementation of the authorization to other languages
when for example versions of Calvin for more constrained devices are writ-
ten.



Chapter 7
Conclusion

This thesis proposes an authorization framework that enables fine-grained attribute-
based access control using compact message and policy formats based on JSON.
The combination of using a lightweight message and policy format while still being
able to make access decisions based on many different attributes is one of the main
differences between this solution and other existing solutions. This makes it highly
suitable for the dynamic distributed execution model in Calvin.

The proposed authorization solution has successfully been implemented in
Calvin and is now a part of the Calvin repository available on Ericsson Research’s
Github1.

Performance and correctness tests show that the authorization works well. The
flexibility of the solution makes it adaptable to different environments, for example
by allowing more powerful devices to evaluate authorization requests on behalf of
constrained devices. It has also been shown that the authorization framework can
be used to enable smart migration decisions in Calvin.

The authorization implementation meets all of the aims that were set before
starting the research. Future work on the authorization to further enhance its
performance is encouraged. The authorization framework has been designed in a
way that makes it easy to extend the solution with new functionality.

1The Calvin repository can be downloaded from
https://github.com/EricssonResearch/calvin-base.

43

https://github.com/EricssonResearch/calvin-base


44 Conclusion



References

[1] L. Atzori et al., The Internet of Things: A survey, Computer networks, Vol-
ume 54, Issue 15, pp. 2787-2805, 2010.

[2] M. Armbrust et al., Above the Clouds: A Berkeley View of Cloud Computing,
Tech. Rep No. UCB/EECS-2009-28, University of California at Berkeley, 2009

[3] P. Persson, O. Angelsmark, Calvin – Merging Cloud and IoT, Procedia Com-
puter Science, Volume 52, pp. 210-217, 2015.

[4] S. Gerdes et al., An architecture for authorization in constrained environ-
ments, Internet-Draft, ACE Working Group, IETF, 2015.
https://tools.ietf.org/pdf/draft-ietf-ace-actors-02.pdf.

[5] L. Seitz et al., Authorization for the Internet of Things using OAuth 2.0,
Internet-Draft, ACE Working Group, IETF, 2016.
https://tools.ietf.org/pdf/draft-ietf-ace-oauth-authz-01.pdf.

[6] L. Seitz et al., Authorization Framework for the Internet-of-Things, World
of Wireless, Mobile and Multimedia Networks (WoWMoM), IEEE, pp. 1-6,
2013.

[7] Authentication, Authorization, and Access Control, Apache, 2010.
http://httpd.apache.org/docs/1.3/howto/auth.html.

[8] J. Andress, The Basics of Information Security: Understanding the Funda-
mentals of InfoSec in Theory and Practice, Syngress, pp. 42-44, 2011.

[9] V.C. Hu et al., Guide to Attribute Based Access Control (ABAC) Definition
and Considerations, NIST Special Publication 800-162, 2014.

[10] S. Nair, Short introduction to Access Control - Part 1, Axiomatics, 2013.
http://www.axiomatics.com/blog/entry/short-introduction-to-
access-control-part-1.html.

[11] S. Nair, Short introduction to Access Control - Part 2, Axiomatics, 2013.
https://www.axiomatics.com/blog/entry/short-introduction-to-
access-control-part-2.html.

[12] eXtensible Access Control Markup Language (XACML) Version 3.0, OASIS
Standard, 2013.

45

https://tools.ietf.org/pdf/draft-ietf-ace-actors-02.pdf
https://tools.ietf.org/pdf/draft-ietf-ace-oauth-authz-01.pdf
http://httpd.apache.org/docs/1.3/howto/auth.html
http://www.axiomatics.com/blog/entry/short-introduction-to-access-control-part-1.html
http://www.axiomatics.com/blog/entry/short-introduction-to-access-control-part-1.html
https://www.axiomatics.com/blog/entry/short-introduction-to-access-control-part-2.html
https://www.axiomatics.com/blog/entry/short-introduction-to-access-control-part-2.html


46 References

[13] S. Nair, XACML Reference Architecture, Axiomatics, 2013.
http://www.axiomatics.com/blog/entry/xacml-reference-
architecture.html.

[14] XACML SAML Profile Version 2.0, OASIS Committee Specification, 2014.

[15] JSON Profile of XACML 3.0 Version 1.0, OASIS Committee Specification,
2014.

[16] REST Profile of XACML v3.0 Version 1.0, OASIS Committee Specification,
2014.

[17] W. Stallings, Cryptography and Network Security: Principles and Practice,
5th ed., Prentice Hall Press, 2010.

[18] M. Jones et al., JSON Web Token (JWT), RFC 7519, IETF, 2015.

[19] Introduction to JSON Web Tokens, Auth0, 2016.
https://jwt.io/introduction/

[20] M. Jones et al., JSON Web Signature (JWS), RFC 7519, IETF, 2015.

[21] J. Persson, Open Source release of IoT app environment Calvin, Ericsson
Research Blog, 2015.
http://www.ericsson.com/research-blog/cloud/open-source-calvin/

[22] O. Angelsmark, A closer look at Calvin, Ericsson Research Blog, 2015.
http://www.ericsson.com/research-blog/cloud/closer-look-calvin/

[23] Storage, Calvin Wiki, Ericsson Research, Github, 2016.
https://github.com/EricssonResearch/calvin-base/wiki/Storage

[24] Capabilities & Requirements, Calvin Wiki, Ericsson Research, Github, 2016.
https://github.com/EricssonResearch/calvin-base/wiki/
Capabilities-&-Requirements

[25] Application Deployment Requirement, Calvin Wiki, Ericsson Research,
Github, 2016.
https://github.com/EricssonResearch/calvin-base/wiki/
Application-Deployment-Requirement

[26] Attribute Based Access Control – Executive Summary, NIST Special Publica-
tion 1800-3a, 2015.

[27] G. Gebel, The Very Latest in Authorization Standards and Trends, Axiomat-
ics, Cloud Identity Summit, 2014.
http://www.slideshare.net/CloudIDSummit/authorization-v-next-
cis2014-gerry-gebel.

[28] L. Griffin et. al., On the performance of access control policy evaluation, IEEE
International Symposium on Policies for Distributed Systems and Networks,
2012.

[29] P. Siriwardena, Advanced API Security: Securing APIs with OAuth 2.0,
OpenID Connect, JWS, and JWE, Apress, 2014.

http://www.axiomatics.com/blog/entry/xacml-reference-architecture.html
http://www.axiomatics.com/blog/entry/xacml-reference-architecture.html
https://jwt.io/introduction/
http://www.ericsson.com/research-blog/cloud/open-source-calvin/
http://www.ericsson.com/research-blog/cloud/closer-look-calvin/
https://github.com/EricssonResearch/calvin-base/wiki/Storage
https://github.com/EricssonResearch/calvin-base/wiki/Capabilities-&-Requirements
https://github.com/EricssonResearch/calvin-base/wiki/Capabilities-&-Requirements
https://github.com/EricssonResearch/calvin-base/wiki/Application-Deployment-Requirement
https://github.com/EricssonResearch/calvin-base/wiki/Application-Deployment-Requirement
http://www.slideshare.net/CloudIDSummit/authorization-v-next-cis2014-gerry-gebel
http://www.slideshare.net/CloudIDSummit/authorization-v-next-cis2014-gerry-gebel


Appendix A
Runtime Registration Example

To enable future authorization requests, a runtime must send registration infor-
mation to its Policy Decision Point (PDP) when it is started. The registration
information consists of a compact JSON representation of the runtime attributes
that are entered when starting the runtime1.

The following example is a registration sent from a runtime named testNode,
located in Sweden and with an owner that works for Ericsson:

1 {
2 "node_name.name": "testNode",
3 "owner.organization": "com.ericsson",
4 "address.country": "SE"
5 }

If the PDP is external, the registration info is put in a signed JSON Web Token,
as explained in Section 4.2.3.

1All supported runtime attributes are listed in the indexed_public section on
https://github.com/EricssonResearch/calvin-base/wiki/Application-
Deployment-Requirement.

47

https://github.com/EricssonResearch/calvin-base/wiki/Application-Deployment-Requirement
https://github.com/EricssonResearch/calvin-base/wiki/Application-Deployment-Requirement


48 Runtime Registration Example



Appendix B
Authorization Request/Response Example

An authorization request is sent by the Policy Enforcement Point (PEP) runtime
to a Policy Decision Point (PDP) to check if access should be granted to an
application or an actor. The PDP responds with an authorization decision. JSON
is used for both the request and the response.

If the PDP is external, the request/response is put in a signed JSON Web
Token, as explained in Section 4.2.3.

B.1 Request

An authorization request contains subject attributes and the ID of the runtime as
a resource attribute. For actor authorization requests, a list of required runtime
functionality is also included as an action attribute.

1 {
2 "subject": {
3 "first_name": "Tomas",
4 "last_name": "Nilsson",
5 "actor_signer": "Ericsson"
6 },
7 "action": {
8 "requires": ["runtime", "calvinsys.events.timer"]
9 },

10 "resource": {
11 "node_id": "a77c0687-dce8-496f-8d81-571333be6116"
12 }
13 }

49



50 Authorization Request/Response Example

B.2 Response

An authorization response contains a decision and possibly an obligations section
with constraints under which the authorization decision is valid.

1 {
2 "decision": "permit",
3 "obligations": [
4 {
5 "id": "time_range",
6 "attributes": {
7 "start_time": "09:00",
8 "end_time": "17:00"
9 }

10 }
11 ]
12 }



Appendix C
Authorization Policy Example

The Policy Decision Point (PDP) uses authorization policies to evaluate requests
from a Policy Enforcement Point (PEP). JSON is used for the policies, as shown
in the following example:

1 {
2 "id": "policy1",
3 "description": "Security policy for user ’Tomas’ or ’Gustav’
4 ’Nilsson’ with actor signed by ’Ericsson’",
5 "rule_combining": "permit_overrides",
6 "target": {
7 "subject": {
8 "first_name": ["Tomas", "Gustav"],
9 "last_name": "Nilsson",

10 "actor_signer": "Ericsson"
11 }
12 },
13 "rules": [
14 {
15 "id": "policy1_rule1",
16 "description": "Permit access to ’calvinsys.events.timer’,
17 ’calvinsys.io.*’ and ’runtime’ between
18 09:00 and 17:00 if condition is true.",
19 "effect": "permit",
20 "target": {
21 "action": {
22 "requires": ["calvinsys.events.timer",
23 "calvinsys.io.*", "runtime"]
24 }
25 },
26 "condition": {
27 "function": "and",
28 "attributes": [
29 {
30 "function": "equal",
31 "attributes": ["attr:resource:address.country",
32 ["SE", "DK"]]
33 },
34 {

51



52 Authorization Policy Example

35 "function": "greater_than_or_equal",
36 "attributes": ["attr:environment:current_date",
37 "2016-03-04"]
38 }
39 ]
40 },
41 "obligations": [
42 {
43 "id": "time_range",
44 "attributes": {
45 "start_time": "09:00",
46 "end_time": "17:00"
47 }
48 }
49 ]
50 }
51 ]
52 }



A
u

th
o

rizatio
n

 A
sp

ects o
f th

e D
istrib

u
ted

 D
atafl

o
w

-o
rien

ted
 IoT Fram

ew
o

rk C
alvin

Department of Electrical and Information Technology, 
Faculty of Engineering, LTH, Lund University, 2016.

Authorization Aspects of the
Distributed Dataflow-oriented
IoT Framework Calvin

Tomas Nilsson

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2016-511

http://www.eit.lth.se

To
m

a
s N

ilsso
n

Master’s Thesis


	Thesis_TomasNilsson.pdf
	Introduction
	Aims and Challenges
	Related Work
	Thesis Outline

	Theory
	Authentication, Authorization, and Access Control
	Access Control Models
	Discretionary Access Control
	Mandatory Access Control
	Role-Based Access Control
	Attribute-Based Access Control

	XACML
	Reference Architecture
	Request/Response Language
	Policy Language
	SAML Profile
	JSON Profile
	REST Profile

	Asymmetric Cryptography
	Digital Signatures
	Public Key Infrastructure and Certificates

	JSON Web Token
	Header
	Payload
	Signature


	Calvin – Merging Cloud and IoT
	Distributed Cloud for IoT
	Applications and Actors
	Runtime
	Migration, Capabilities, and Requirements
	Security
	Example

	Designing and Implementing Authorization in Calvin
	Attribute-Based Access Control
	Subject Attributes
	Resource Attributes
	Action Attributes
	Environment Attributes

	Policy Enforcement Point (PEP)
	Runtime Registration
	Authorization Requests/Responses
	JWT for External Authorization

	Policy Decision Point (PDP)
	Find Matching Policies
	Evaluate Policies
	Combine Policy Decisions

	Policy Information Point (PIP)
	Policy Retrieval Point (PRP)
	Policy Administration Point (PAP)
	Smart Migration

	Authorization Tests in Calvin
	Correctness Tests
	Performance Tests

	Discussion
	Comments on Test Results
	Design Choices
	JSON-based XACML
	Adaptable to Constrained Devices

	Security Considerations
	Privacy Considerations
	Future Work

	Conclusion
	References
	Runtime Registration Example
	Authorization Request/Response Example
	Request
	Response

	Authorization Policy Example


