
C
o

m
p

ariso
n

 o
f IoT fram

ew
o

rk
s fo

r th
e sm

art h
o

m
e

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, 2016.

Comparison of IoT frameworks for
the smart home

Alexander Larsson
Erik Nimmermark

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2016-520
http://www.eit.lth.se

A
le

xa
n

d
e

r La
rsso

n
 &

 Erik N
im

m
e

rm
a

rk

Master’s Thesis

Comparison of IoT frameworks for the smart
home

Alexander Larsson dat11ala@student.lu.se
Erik Nimmermark fpr05eni@student.lu.se

Anima AB
Västra Varvsgatan 19, Malmö

Advisor: Maria Kihl, EIT

June 15, 2016

Printed in Sweden
E-huset, Lund, 2016

Abstract

The smart home landscape is rapidly evolving right now. There is yet to be an
industry-wide common standard and several organizations are introducing their
own proposed solutions. This has led to fragmentation and the field can appear
confusing to interested parties trying to enter the market. There is a need to
evaluate the different technologies to discern their distinguishing characteristics.

This thesis report provides a comparison between HomeKit and IoTivity based
on our proposed evaluation model. The model identifies a set of relevant charac-
teristics which are evaluated through operationalization of criteria into composite
measurables. Our comparison shows that at this time there is no definite answer
to what framework to choose. Developers will have to compromise and make a
decision based on the type of product they want to make. The proposed model
can readily be used as a tool to evaluate any Internet of Things framework and
provide guidance when choosing what technology to use.

i

ii

Populärvetenskaplig
sammanfattning

Framtidens smarta hem
Idag finns det uppskattningsvis strax under 5 miljarder Internet of Things en-
heter i världen. De kommande fem åren beräknas den siffran växa till 15 mil-
jarder ocn en stor del av dessa kommer finnas inom smarta hem. För att smarta
hem ska nå sin fulla potential krävs att man enas om en gemensam standard.

Smarta hem idag

Drömmen om det smarta automatiserade hemmet där kaffebryggaren sätts på
lagom till att alarmet ringer och garageporten öppnas av sig själv när man kör
upp på uppfarten har funnits länge.

Allt detta kan idag lösas med hjälp av Internet of Things, problemet inom
området är att man inte riktigt kan enas om hur det ska lösas. Det finns ett fler-
tal olika tekniska lösningar på marknaden men för att det smarta hemmet ska
fungera så måste alla uppkopplade prylar tala samma språk.

Alla de äldre etablerade lösningarna har olika brister. Vissa är specialiserade
på ett specifikt område medan andra saknar radiotekniker för att kommunicera
med vanliga uppkopplade enheter så som mobiltelefoner eller datorer. Dessa
standarder är också helt inkompatibla med varandra, vilket gör det svårt för kon-
sumenter och företag att veta vilken lösning de ska välja. På grund av de här
bristerna har det smarta hemmet inte slagit igenom lika stort som man tidigare
trodde i branschen.

Visionen

I visionen om det framtida smarta hemmet är allting uppkopplat. Termostaten
sänker automatiskt värmen i huset när familjen är borta för att spara ström. Tvättmask-
inen pratar med elnätet och tvättar då elpriset är som lägst. Kylskåpet beställer
automatiskt hem basvarar så som mjölk och ägg i takt med att de tar slut.

iii

I visionen ingår även att gemene mans hem är ett sådant smart hem. För att
detta ska bli verklighet krävs det en gemensam standard. En sådan gemensam
standard skulle göra det enkelt för konsumenter att köpa smarta hem produkter
som fungerar med varandra. På så sätt blir det möjligt för konsumenterna att
bygga ut sitt smarta hem med mer och mer prylar i en takt som passar dem.

Utvärdering
Under den senaste tiden har ett flertal förslag till sådana gemensamma stan-
darder presenterats. Det är stora teknikföretag så som Google, Apple och In-
tel som ligger bakom dessa. I det här arbetet har vi undersökt några av de här
teknologierna med avseende på de viktigaste egenskaperna för smarta hem pro-
dukter. Sådana egenskaper är till exempel vilka radioteknologier som går att
använda och hur snabbt de reagerar på kommandon. Vår utvärdering visar att
de olika lösningarna presterar ungefär lika bra rent tekniskt baserat på kriterier
så som vilken svarstid de har och hur de kommunicerar med andra liknande en-
heter. De punkter där de skiljer sig åt är dels tillgängligheten i form av hur man
kan styra sina enheter och vilken typ av produkter som utvecklarna av teknolo-
gin tillåter rent juridiskt. Det är i dagsläget svårt att säga vilken av lösningarna
som kommer att vinna kriget om konsumenterna i slutändan. Några av de mer
nischade ramverken kommer sannolikt att leva kvar en lång tid efter att en över-
gripande standard har etablerats.

iv

Acknowledgements

We would like to thank Anima for giving us the chance to write this thesis. More
specifically, we would like to thank all members of Anima Greenhouse for sup-
porting and providing us with all needed resources. A special thanks goes out
to Aleksandar Rodzevski, our supervisor at Anima, for his extensive support.
Finally, we would also like to thank our supervisor at LTH, Maria Kihl.

v

vi

Table of Contents

1 Introduction 7
1.1 Background . 7
1.2 Project scope . 7
1.3 Method . 8
1.4 Thesis outline . 8

2 Related Work 9
2.1 AllJoyn . 9
2.2 ZigBee . 10
2.3 Thread . 11
2.4 Brillo and Weave . 13

3 OCF and IoTivity 15
3.1 Technologies used . 15
3.2 OCF standardization . 18
3.3 Architectural overview . 19
3.4 OCF resource model . 19
3.5 On-boarding and discovery . 20
3.6 User experience . 21
3.7 Security . 22
3.8 The IoTivity open source implementation 22

4 HomeKit 25
4.1 Accessories . 25
4.2 Conceptual overview . 25
4.3 User experience . 26
4.4 HomeKit Accessory Protocol . 27
4.5 MFi program . 30

5 Prototype 31
5.1 Environment . 31
5.2 Scope . 33
5.3 Prototype design . 33

vii

5.4 Prototype implementation . 34

6 Experiments and Evaluation 39
6.1 Methodology . 39
6.2 Characteristics . 40
6.3 Interoperabilty . 42
6.4 Connectivity . 42
6.5 Scalability . 43
6.6 Security . 44
6.7 Network related metrics . 44

7 Discussion 53
7.1 Results . 53
7.2 Market perspective . 54
7.3 Other competitors . 55

8 Conclusion 57

References 59

viii

List of Figures

2.1 AllJoyn network . 10
2.2 Thread stack . 11
2.3 Thread mesh network . 12
2.4 Weave components . 13

3.1 CoAP packet . 16
3.2 IoTivity stack . 23

4.1 HomeKit stack . 28

5.1 HomeKit use-case . 35
5.2 IoTivity use-case . 36
5.3 IoTivity web interface . 38

6.1 Wireshark screenshot . 45
6.2 IoTivity histogram (all samples) . 47
6.3 IoTivity histogram (samples in range 0-50 ms) 47
6.4 IoTivity disitribution . 48
6.5 HomeKit histogram (all samples) . 48
6.6 HomeKit histogram (samples in range 0-50 ms) 49
6.7 HomeKit disitribution . 49
6.8 Network resource usage . 51

ix

x

List of Tables

6.1 HomeKit - hardware platforms . 43
6.2 IoTivity - hardware platforms . 44
6.3 Evaluation summary . 52

xi

xii

LIST OF TABLES 1

2 LIST OF TABLES

Acronyms

ACL Access Control List. 18

ADC Analog-to-digital converters. 30, 31

AEAD Authenticated Encryption with Associated Data. 26

AES Advanced Encryption Standard. 26

AJSCL AllJoyn Standard Core Library. 5

AJTCL AllJoyn Thin Core Library. 5

AOSP Android Open Source Project. 10

AP Access Point. 16

API Application Programming Interface. 9, 14, 19, 21–23, 28, 36, 38, 41, 49

ATT Attribute Protocol. 23

BDK Brillo Development Kit. 10

BLE Bluetooth Low Energy. 6, 9, 23, 25, 27–29, 31, 39

CBOR Concise Binary Object Representation. 4, 13, 18, 49, 50

CoAP Constrained Application Protocol. 4, 11–13, 15, 18, 30, 32, 41, 46, 49, 50

CRUDN create, read, update, delete and notify. 15

DTLS Datagram Transport Layer Security. 7, 13, 18, 40

GATT General Attribute Profile. 23, 25

GPIO General-purpose input/output. 27, 28, 30

GUI Graphical user interface. 29, 30, 33

HAP Homekit Accessory Protocol. 21, 23, 25, 26, 29, 45

HAT HomeKit Accessory Tester. 28, 41

3

4 Acronyms

HKDF HMAC-based Key Derivation Function. 26

HMAC Hashed Message Authentication Code. 26

HTTP Hypertext Transfer Protocol. 11–13, 18, 23, 45, 50

IoT Internet of Things. 3, 4, 10–13, 16, 18, 19, 29, 35–39, 45, 49–51, 53

IP Internet Protocol. 7, 23–25

JSON JavaScript Object Notation. 12–14, 23, 24, 50

KDF Key Derivation Function. 26

L2CAP Logical Link Control and Adaptation Protocol. 23

MAC Media Access Control. 7

MFi Made for iPhone/iPod/iPad. 26, 38

NFC Near Field Communications. 27

OCF Open Connectivity Foundation. 3, 4, 11, 14–19, 28, 32, 38–41, 49–51, 53

OIC Open Interconnect Consortium. 11

OS operating system. 10, 32, 38, 51

OTA Over-the-air programming. 37, 40, 50, 51

PLC Power-line communication. 5

RAML RESTful API Modeling Language. 14

REST Representational State Transfer. 9, 11, 12, 14, 15

SDK Software Development Kit. 28, 39

SHA Secure Hash Algorithm. 26

SiP System in package. 27

SoC System-on-a-Chip. 27, 40

SPA Single-page application. 30, 32

SRM Secure Resource Manager. 18

SRP Secure Remote Password. 26

SSID Service Set Identifier. 16, 31

TB Thin Block stack. 18, 19

TCP Transfer Control Protocol. 12, 13, 23, 25, 45, 50

Acronyms 5

TLS Transport Layer Security. 13

UB Unified Block stack. 18, 19

UDP User Datagram Protocol. 7, 12, 18, 45

URI Uniform Resource Identifier. 11, 12, 15

URL Uniform Resource Locator. 23

WLAN Wireless Local Area Network. 9, 27–30

WWDC Apple Worldwide Developers Conference. 21

XML Extensible Markup Language. 12

XMPP Extensible Messaging and Presence Protocol. 17, 39

6 Acronyms

Chapter1
Introduction

1.1 Background
The Internet of Things (IoT) market is growing rapidly right now and most of
that growth is focused on IoT solutions for the smart home. Many companies
and industry groups are announcing their own IoT solutions for the smart home
which has lead to major fragmentation and confusion regarding what solution to
use. Because of this, there is a need to evaluate the different solutions available
based on different performance characteristics.

This thesis was conducted at Anima Connected, a newly started company
based in Malmö. They are operating in the IoT space and are interested in inves-
tigating different IoT technologies for use in future smart home products.

1.2 Project scope
The goal of this thesis project is to evaluate the IoT frameworks provided by Ap-
ple and the Open Connectivity Foundation (OCF). Apple’s framework refers to
HomeKit and OCF’s framework refers to IoTivity. A comparison of the evalu-
ated frameworks is performed to help hardware manufacturers when choosing
between different frameworks for their smart home products.

A method for evaluating IoT frameworks is designed in order to be able to
perform this comparison. Prototypes based on the different frameworks are im-
plemented in order to get first-hand experience of the different frameworks. Per-
formance measurements are performed on the prototypes in order to help the
evaluation of the frameworks.

1.2.1 Limitations
The evaluation and comparison of the IoT frameworks are limited to a local con-
nectivity setting. The power usage of the prototypes is not evaluated since the
hardware platforms can not be considered equal in this respect. The power usage
would have been tied to the hardware platform used rather than the IoT frame-
works used.

7

8 Introduction

1.3 Method
A literature study was performed in order to gain some initial knowledge of the
smart home area. This study included both academic papers as well as online
resources related to the smart home. Smart home solutions such as Alljoyn, Zig-
bee, IoTivity and HomeKit was studied. As well as other relevant technologies
including Constrained Application Protocol (CoAP), Concise Binary Object Rep-
resentation (CBOR) and Thread. Lastly, reference implementations of IoTivity
and HomeKit was studied to gain an understanding on how to implement the
prototypes.

A use-case relevant to Anima’s current products was developed. Prototypes
that realized this use-case was implemented in each framework and an evalua-
tion model for comparing smart home IoT frameworks was designed. The eval-
uation model was used to perform a comparison of the two IoT frameworks.

1.4 Thesis outline
Chapter 2 presents relevant work done by the AllSeen Alliance, ZigBee Group,

Thread Group and Google.

Chapter 3 introduces the OCF and their work developing an open specification
for the IoT. Additionally, their open source implementation of this specifi-
cation, IoTivity, is described.

Chapter 4 describes Apples smart home solution HomeKit.

Chapter 5 presents the prototypes that where developed as part of this project.
The software tools and hardware platforms used are also described.

Chapter 6 describes the evaluation method used and presents the results of the
evaluation.

Chapter 7 presents an analysis of the results of the evaluation. Additionally, the
evaluated frameworks are discussed from a market perspective.

Chapter 8 provides a summary of this report and presents our conclusion.

Chapter2
Related Work

One of the most exciting emerging technologies right now is the Internet of Things
(IoT). The IoT consists of everyday objects that has been enhanced by connecting
them to the Internet. This is made possible by equipping these devices with an
embedded hardware platform. The IoT will enable companies to innovate and
create better versions of existing product as well as make way for completely
new product categories.

In 2021 there will be 28 billion connected devices out of which 15 billion will
be IoT devices [1]. Today, there are a little under 5 billion IoT devices which
means that the Internet of Things will grow with 10 billion devices in five years.
A big part of this growth will come from the smart home market.

As a response to this projected growth, big industry players are introducing
application frameworks, operating systems and low-powered network technolo-
gies for the smart home. These technologies are largely incompatible and none of
them has emerged as a clear choice for developing IoT applications and devices.

2.1 AllJoyn
The AllJoyn protocol was originally developed by Qualcomm but was later signed
over to the Linux Foundation. It is now a collaborative open source framework
managed by the AllSeen Alliance which comprises more than 200 companies and
the premier members include giants such as Microsoft and Electrolux.

An AllJoyn network consists of AllJoyn Apps and AllJoyn Routers, where ev-
ery App is connected to a single Router. A physical device can host one or mul-
tiple Apps as well as one or several Routers. It is also possible to have a device
host one or several Apps without having a Router, in this case a router on another
physical device is used by the App(s). An example network is depicted in Fig-
ure 2.1. There are two versions of the AllJoyn framework, the AllJoyn Standard
Core Library (AJSCL) and AllJoyn Thin Core Library (AJTCL), where AJTCL is
intended to be used in resource-constrained embedded devices. The main draw-
back of the AJTCL is that it does not include a router daemon, so devices running
the thin client has to utilize the router of an adjacent AJSCL device. The connec-
tion between the router hosting the bus segment and the device running AJTCL
is made through TCP. The apps do not communicate directly with each other,

9

10 Related Work

Figure 2.1: An example of an AllJoyn network.

instead, all communication is handled by the Routers which are used to form a
virtual bus. This abstraction of the communication makes it appear to each app
that it is communicating with a single entity when in fact it might be connected
to a large Router network [2, 3].

The framework currently supports ethernet, serial, Power-line communica-
tion (PLC) and Wi-Fi. In other words, the framework does not have support for
any of the low power wireless technologies such as Bluetooth Low Energy (BLE)
or IEEE 802.15.4 although this might come in the future [4].

2.2 ZigBee
Zigbee is a wireless network standard with a focus on low cost and energy con-
sumption. It is developed by the ZigBee Alliance and having been around since
1998 it is one of the most widespread IoT solutions with over 1,000 certified prod-
ucts [5].

The ZigBee protocol stack is built upon IEEE 802.15.4, which means that all
devices running ZigBee needs to include a 802.15.4 chip. As 802.15.4 chips are
usually not available in mobile phones or home networks a ZigBee gateway is
needed in order to connect the ZigBee network to the cloud or a mobile device.

ZigBee networks are composed of three different types of devices: ZigBee
Coordinators, ZigBee Routers and ZigBee End Devices which are connected in a
mesh topology. The Coordinators control the security and formation of the net-
work, the Routers extend the networks range and End Devices performs control
functions and/or collects sensor data. A device often has multiple functions, a
Router for example can be contained in a thermostat or switch, and a Coordina-
tor in a set-top box [6].

ZigBee provides three different network specifications, being ZigBee PRO,
ZigBee IP and ZigBee RF4CE. ZigBee PRO is what most ZigBee devices are based
upon and is considered "standard" ZigBee. ZigBee IP is as one might suspect

Related Work 11

IP-based and uses IPv6 addressing. This comes with the benefits of an almost
infinite number of addresses and easier integration with other IP-based networks.
ZigBee RF4CE is intended to be used in remote controls and similar devices. It
uses a star topology with two different kind of devices, controllers and targets.
While ZigBee PRO and ZigBee IP are not interoperable, RF4CE and PRO uses the
same communication foundation and RF4CE devices are easily bridged to work
with other ZigBee devices [7, 6].

2.3 Thread
Thread is a low-powered mesh network protocol developed by the Thread Group.
It is founded by Alphabet owned company Nest together with other big compa-
nies such as ARM, Qualcomm and Samsung. In total, they have over 200 member
companies to date [8].

From a technical point of view, Thread is mostly a combination of existing
standards combined into a network stack that can be seen in Figure 2.2. It uses
IEEE 802.15.4 at the physical and Media Access Control (MAC) layer. Thread
is IPv6 based and uses 6LowPAN to enable Internet Protocol (IP) routing over
802.15.4. It uses User Datagram Protocol (UDP) for messaging and security is
provided by Datagram Transport Layer Security (DTLS) together with 802.15.4
MAC security.

Figure 2.2: An overview of the Thread stack

Conceptually, a Thread network is made up of devices with different roles.

Routers Route messages and provide security services for devices that
try to join the network.

REEDs Router-eligible End Devices, a device that can act as a router.
The network collectively decides what REEDs should be act-
ing as routers at any given time.

12 Related Work

Border Router A special kind of router that has the capability to connect the
Thread 802.15.4 network with other kinds of networks such
as Wi-Fi and Ethernet.

Sleepy End
devices

Host devices that communicate with the rest of the network
through its host router.

The network is designed in such a way that there is no single point of failure.
If a host device’s router goes down the host will select a new router. If there are
any REEDs available in the network, one of them might be promoted to acting
as a router. In this way, the network can make its own decisions and self heal
without user action. There is however some scenarios when the network wont be
able to do this. One such scenario is when a network consists of a single router
and it goes down [9].

Figure 2.3: An example of a possible Thread mesh network.
The different roles of routers, border routers and hosts are
shown.

Related Work 13

2.4 Brillo and Weave
Weave and Brillo are two technologies that are currently being developed by
Google. Both of these technologies are currently under development, with an
early access program available for invited developers.

2.4.1 Weave
Weave is an application layer protocol that can be used to interact with devices.
It currently supports Wireless Local Area Network (WLAN) as its only transport
with support for BLE under development. The protocol is part of a larger frame-
work that can be divided into three main components. These are listed below and
can also be seen in Figure 2.4.

Cloud The Weave cloud service enables support for things like re-
mote access and Representational State Transfer (REST) Ap-
plication Programming Interfaces (APIs).

Device An open source C++ library called "libeweave" that aims to
make it easy for manufacturers to build devices.

Client Libraries are available for mobile devices (iOS and Android)
and the web. These enable the clients to do things such as
controlling devices and reading a device’s state either locally
or remotely.

Figure 2.4: The three main components of the Weave frame-
work. Communication between these components is done
using the Weave protocol.

14 Related Work

Weave is designed with the end users in mind and this shows in a number
of ways. First, it supports device discovery and provisioning that is designed to
make it simple for the end user to set up a new device in their homes. If the de-
vice is a WLAN device for example, the user can add it to their network without
typing any passwords. It also supports sharing of devices with family members
and friends and the ability to define different levels of access for different people.
Lastly, a user that has access to a device can define what apps and services will get
access to these devices. This will work similarly to how users grant applications
access to functionality in today’s smart phones e.g. the camera.

Interoperability is provided by using schemas. These schemas define com-
mon classes of devices in a consistent way. This makes it so that two different
devices based on the same schema can be interacted with in exactly the same
way. In order to enable innovation of new kinds of products, these schemas are
also extensible to enable new functionality to be defined [10].

2.4.2 Brillo
Brillo is an operating system (OS) for the IoT with built in support for Weave. It is
based on Android but has been stripped down to only contain the most essential
parts needed for connected embedded devices. Since it is part of the Android
Open Source Project (AOSP), it is available under an open-source license.

The OS is designed to make it very easy for manufacturers to make Weave en-
abled devices. To attain this goal, it provides a number of benefits for developers
[10].

Security The OS is secured by various methods such as a verified boot
architecture and software fault isolation. In addition to this,
Google will also provide security fixes for the OS.

BDK The Brillo Development Kit (BDK) provides an embedded de-
velopment environment using adb and fastboot.

Updates Built-in support for sending updates over the internet to de-
vices that are already in use by users.

Metrics Manufacturers can get information on how their devices are
performing in the field. They also get access to crash reporting
data that enables them to fix bugs quickly.

Chapter3
OCF and IoTivity

The Open Connectivity Foundation (OCF), formerly known as Open Intercon-
nect Consortium (OIC), is an industry group created in 2014 whose goal is to
create a specification for the IoT enabling communication between devices of dif-
ferent brands and regardless of what physical transport is used. The organiza-
tion has over 160 member companies including Microsoft, Intel and Samsung.
Qualcomm, the company that founded the AllSeen Alliance is also in the list of
Diamond members [11, 12].

IoTivity is an open source project building a framework implementing the
specification defined by the Open Connectivity Foundation (OCF). Therefore, the
term "OCF framework" refers to the specification and "IoTivity framework" refers
to the open source implementation.

3.1 Technologies used
There are a number of technologies used by OCF and IoTivity that are quite new
and therefore needs an introduction. Some background on these technologies are
presented below.

3.1.1 CoAP
The Constrained Application Protocol (CoAP) is a lightweight alternative to Hy-
pertext Transfer Protocol (HTTP) designed for use in embedded devices such as
those found in the Internet of Things (IoT). In order to understand CoAP, some
knowledge of HTTP and REST is required [13].

REST

The architecture of the web is frequently described as REST and is tradition-
ally supported by the use of HTTP. REST provides a loosely coupled applica-
tion layer architecture. A key concept in REST is resources, these are hosted on
a server and identified using a Uniform Resource Identifier (URI). A client can
then interact with these using the different request methods defined in HTTP
such as GET, PUT, POST and DELETE. An example use case might be that a

15

16 OCF and IoTivity

client can get a list of all items on a menu by sending a GET request to the URI
http://examplerestaurant.com/api/menu. The server would then send a re-
sponse message containing the menu in some format, for example JavaScript Ob-
ject Notation (JSON) or Extensible Markup Language (XML) [13, 14].

Problems with HTTP

When it comes to the IoT, HTTP is not an ideal application protocol. Firstly,
it uses a relatively large amount of network bandwidth which will increasingly
become a problem with the growth of the IoT. Secondly, the size of a software
implementation of HTTP takes up a lot of code space, which makes it hard to use
in embedded devices with limited memory. Both of these problems can partly
be attributed to the fact that HTTP is designed for the web and has evolved with
it. During the years, functionality has been added that is great for the web but
unnecessary for the IoT [13].

CoAP design

CoAP was designed to provide the basic functionality of REST using very limited
resources. It does this by utilizing a much simpler design than HTTP.

One of the things that contribute to the simplicity of CoAP is that it uses UDP
instead of the Transfer Control Protocol (TCP). Since UDP does not provide the
reliability of TCP, CoAP defines its own functionality for resending undelivered
packages.

Another thing that contributes to the reduced complexity is the simple packet
header design that can be seen in Figure 3.1. A CoAP packet is made up of a four
byte binary header followed by an optional token and a sequence of options as
can be seen in Figure 3.1. This compact design make it so that a typical CoAP
header is between 10 to 20 bytes [13, 15].

Figure 3.1: A CoAP packet.

CoAP HTTP compatibility

Even with this simple design, CoAP supports the four request methods of HTTP
(GET, PUT, POST and DELETE). In addition to this, it also supports response
codes that are very similar to those that can be found in HTTP. This enables CoAP
to work together with HTTP by using intermediaries that translate between the
two protocols.

OCF and IoTivity 17

In many cases there are equivalent methods, response codes and options
available in both protocols. When this is the case, it is possible for the intermedi-
ary to perform a straightforward and stateless translation. In an IoT setting, this
enables web clients to access resources on an embedded CoAP enabled device
using a general purpose intermediary [13].

CoAP observe

If an HTTP client wants to receive continuous updates from a resource, it has to
refer to polling the resource. This consumes an unnecessary amount of energy
and network resources and is not suitable in the context of the IoT. CoAP solves
this issue by making it possible to observe a resource. A client can observe a
resource by sending a GET request with a special "Observe" option. If accepted
by the server, the client will receive a notification message every time the resource
is changed [13].

3.1.2 DTLS

Transport Layer Security (TLS) is the most widely used security protocol but it
can not be used to secure datagram based protocols. There are two main reasons
for this:

1. It is not possible to decrypt individual packets using TLS since they have
to be decrypted in the right order.

2. The TLS handshake will fail if packets are delivered in the wrong order
since it relies on the reliability of TCP.

The most desirable way to secure datagram traffic would be to use TLS but, as
stated above, this is not possible. DTLS was created to solve this problem while
staying as similar to TLS as possible. It minimizes differences compared to TLS
and makes changes only where it is necessary. Most of these changes are done
because of the two problems with TLS that are listed above [16].

3.1.3 CBOR

Concise Binary Object Representation (CBOR) is a binary data format based on
an extended version of the JSON data model. It supports all JSON data types to
ensure compatibility with all JSON documents. Some of the major design goals of
Concise Binary Object Representation (CBOR) is to enable minimal implementa-
tion code size and schema-less decoding. Other design goals include reasonably
compact code size, conservative CPU-usage and format extensibility.

An example of how a simple JSON document looks like encoded into CBOR
can be seen in Listing 1 and 2 [17].

18 OCF and IoTivity

{
"string": "a string",
"number": 13,
"boolean": true
}

Listing 1: A JSON example.

a3 # map(3)
66 # text(6)
737472696e67 # "string"

68 # text(8)
6120737472696e67 # "a string"

66 # text(6)
6e756d626572 # "number"

0d # unsigned(13)
67 # text(7)
626f6f6c65616e # "boolean"

f5 # primitive(21)

Listing 2: The CBOR representation of the JSON example
above with describing comments.

3.2 OCF standardization

The vision of the OCF is a world where billions of connected devices communi-
cate with each other. These devices come from a broad range of products such as
appliances, phones, computers and industrial equipment. Furthermore, different
devices will be able to communicate using different operating systems, chipsets
and transports. Lastly, anyone from the global technology company to the lone
garage maker will be able to create such connected devices [18].

In order to enable this vision, OCF works as a standardizing organisation
by creating a specification that will enable interoperability between compatible
devices. They also sponsor the IoTivity open source project, to enable anyone to
make devices that are compatible with the specification [18].

There are two parts to the standardization work performed by the OCF. The
first consists of creating data models using JSON and the RESTful API Modeling
Language (RAML). The JSON model defines the devices and the RAML model
describes the REST API that should be used when communicating with the de-
vice. These models are available at http://oneiota.org/, a site that also enables
crowd-sourcing of data models for new types of devices [19]. The second is the
creation of the specification that is described in the upcoming sections.

OCF and IoTivity 19

3.3 Architectural overview

The OCF specification defines devices, resources and operations. A device is de-
fined as a logical entity that implements the OCF specification. There can be more
than one device on a single hardware platform and each device can assume more
than one OCF role (client and server). A resource is defined as a device com-
ponent that can be discovered and controlled by another OCF enabled device.
Operations are defined as actions that can be performed on a resource. These op-
erations are defined as generic create, read, update, delete and notify (CRUDN)
operations that uses the REST paradigm to model interactions on resources. Ex-
ample: A light device consists of a single resource at /a/light. A device can send
a CoAP GET request to this resource to get the current light state (if the light is
on or off) [20, 21].

3.4 OCF resource model

The OCF resource model describes how resources are represented in the OCF
framework. The specification lists several concepts and mechanisms used for
this purpose. To be able to comprehend how OCF works it is necessary to get an
understanding of how these mechanisms are built and why they are needed.

OCF Resource In the OCF framework, anything that needs to be interacted
with is represented as an OCF resource. For example, a con-
nected ceiling fan with a light would provide separate re-
sources for controlling the light and the fan. In most cases, a
resource can be assigned any URI and does not enforce or pro-
vide any information about the characteristics of the resource.
However, some core resources have a fixed URI whose char-
acteristics are defined by the specification.

OCF Interface An OCF interface is used to determine what kind of requests
are permitted on a specific OCF resource. The same requests
will produce different kinds of responses depending on the
interface of the OCF resource. A simple example of this would
be to make a POST request to a resource that only accepts GET
requests which would result in an error message.

OCF Resource
Property

The resource properties is what describes the features of an
OCF resource. In the ceiling fan example above the power
state and rotation speed, as well as the energy consumption
of the fan could be the properties of the ceiling fan resource.
Other meta data such as resource type or name is also defined
as resource properties.

20 OCF and IoTivity

3.5 On-boarding and discovery

The process of joining new devices to a network as well as finding other devices
on that network is fundamental for interoperability. Because this is such a cen-
tral part of the IoT, the OCF specification defines some mechanics that must be
implemented for a device to be considered an OCF device.

3.5.1 Detecting new devices

On-boarding is the process of exchanging information, such as Service Set Iden-
tifier (SSID) and log-in credentials for a Wi-Fi connection, to allow a new OCF
device to join an existing OCF network. This can be done in a multitude of dif-
ferent ways, for example, a device with a simple user interface from which to
take some kind of input may use a different method than a simple sensor device
with no way for the user to interact with it. It will also be different depending
on what physical transport the device is using for communication. For this rea-
son it is not specified how exactly this should be done and as a result it is up to
the developers to engineer their own solutions. One way to do on-boarding for
Wi-Fi devices is that the device sets up a temporary Access Point (AP). The user
then connects to that AP with another device, for example a mobile phone, and
enters the information that is needed to establish a connection to the local Wi-Fi
network.

3.5.2 Resource discovery

To be able to access and communicate with other devices an OCF client must find
information about other OCF peers. The process of finding this information is
referred to as resource discovery. The OCF specification defines two main dis-
covery mechanisms.

Direct discovery To enable direct discovery a device must publish the informa-
tion available for discovery, i.e. the resource properties and
interfaces, along with the local resource. To discover this re-
source a client must issue a retrieve request directly to the re-
source either as a unicast or a multicast. The server with the
discovered resource then responds with the resource informa-
tion directly to the client issuing the request. All OCF devices
must support direct discovery.

Indirect
discovery

In indirect discovery the resource and the information about
the resource to be discovered is not hosted on the same de-
vice. To enable indirect discovery the device hosting the re-
source must publish the resource information on a separate
device. The device holding the resource information then acts
on behalf of the device holding the resource when it comes to
discovery.

OCF and IoTivity 21

3.6 User experience

The interface the user will interact with when controlling an OCF device is largely
up to the developers of the product, and as such will vary from brand to brand.
However, there are some features defined in the specification to enable a devel-
oper to make life easier for the end users.

3.6.1 Remote Access

There are two models of accomplishing remote access to devices. In the first case
the device itself possess the resources to be able to connect to the Internet, but
this might not be possible on some constrained devices. In this case the external
connection is handled by a proxy which relays the information bidirectionally
to and from a remote host. The remote access feature is optional to implement
according to the OCF standard, so it is up to the product developers whether
it will be available on their product or not. Remote access is realized by letting
devices connect to a Extensible Messaging and Presence Protocol (XMPP) server.
All devices connected to the same XMPP account can then communicate with
each other.

3.6.2 Scenes, Rules and Scripts

To enable users to automate some operations the specification defines Scenes,
Rules and Scripts. A scene stores a set of resource values for a collection of re-
sources which enables a client to recall a specific setup. An example of this would
be if that the user could define a "goodnight" setting, which would turn off all the
lights and turn down the thermostat with a single button press. The specification
also defines rule members. Rule members are resources holding the values of a
resource property that are set when an associated rule condition evaluates true.

A rule works like an if-then statement. It has a condition that when fulfilled,
executes the Rule Member (script). A condition is evaluated every time one of the
observed resources change value. An example of a rule could be that when the
temperature in the room exceeds a certain point, the ceiling fan starts spinning.

Scripts in this context are the set of Rule Members that are executed when a
rule condition holds true. Scripts can be used to incorporate conditionals, delays,
loops or to read and set scenes.

Rules and scenes are represented as a resource on an OCF server. A client
wanting to create a scene or a rule must first verify that the server supports the
respective feature. This is done by sending a GET request to the server, requesting
the rule list or scene list respectively. The client can then create/update/delete
scenes and rules by communicating this to the server. Because scenes and rules
are stored as resources on a server it enables the end user to access them from any
OCF client after the initial setup.

22 OCF and IoTivity

3.7 Security

Any device connected to the Internet will always be exposed to different kinds of
attacks, and the IoT brings new challenges when it comes to defending against
these attacks. One such challenge is that IoT devices might have performance
restrictions which makes heavy encryption or other security measures impossible
to implement. Another factor that must be considered is the emergence of new
types of attacks aimed specifically at constrained IoT devices.

The OCF security specification addresses security at two layers, transport and
application. At the transport layer security is provided by the use of DTLS to
enable packet encryption. At the application layer the security is maintained by
an Access Control List (ACL) for each resource that controls which clients have
access to it [22].

3.7.1 Access policies and ACLs

OCF does enforce access policies, the server holds and controls the resources and
provides eligible clients with access. An example of a client-server interaction
with end-to-end encryption: The client first establishes a network connection to
the server and they set up a secure end-to-end channel. To be able to access any
resources the client has to be authenticated to the server. The server consults the
ACL pertaining that resource and looks for an entry matching the client request-
ing access to the resource. The server then applies the ACL permission to the
resource and the server’s Secure Resource Manager (SRM) enforces the decision
to allow or deny access.

3.8 The IoTivity open source implementation

IoTivity is an open source implementation of the OCF specification and as of this
writing the current version is 1.1.0. It supports several platforms and operating
systems such as Linux, Android, Tizen and Arduino. IoTivity also has special
support for the Yocto project, a customizable embedded Linux distribution [23].

3.8.1 Software Stack

The IoTivity framework provides two different software stacks presented in Fig-
ure 3.2. The Thin Block stack (TB) intended for devices with limited resources
and the Unified Block stack (UB) for devices without this restriction [23].

The Thin Block stack uses CoAP to communicate over UDP and security is
provided by the DTLS protocol. The Unified Block stack also supports CoAP and
UDP but extends it with support for additional protocols. There are no alterna-
tive protocols available yet but more will come in the future, starting with HTTP
over TCP/IP. Both of these stacks make use of CBOR for the serialization and
deserialization of resources [23, 20].

OCF and IoTivity 23

Figure 3.2: An overview of the two different stacks available for
IoTivity.

3.8.2 APIs
The TB provides a core C API while the UB extends this with a high level C++
API. In addition to this, there are also API bindings based on the C++ API avail-
able for Java (Android) and JavaScript (node.js). The API functionality is divided
into two different roles, server and client. It is, however, also possible to make
a device that functions as both a server and a client. Some of the functionality
provided for the server and client role respectively is described below [20].

Server role

Resource
registration

By registering a resource with a device, it is made available to
be controlled by other OCF compatible devices [24].

Defining
behaviour

The API makes it possible to write custom code that defines
the behaviour of the server when properties are modified. Ex-
ample: The state of a light resource is set to off, custom code
is defined that will actually turn off the light.

Resource tree Enables resources to have resources of its own in a tree struc-
ture [20].

Client role

Resource
discovery

The ability to discover resources on the local network. This is
done by sending a multicast message to all devices [25].

Device discovery The ability to discover devices, also done using multicast.

Querying
Resource State

The ability to fetch the current property values from a re-
source. Example use: Check if the garage door is open [26].

Setting a
resource state

The ability to modify the property values on a resource. This
is what enables remote control of IoT devices. Example use
case: A light can be turned on by changing the value of a re-
source property to on [27].

24 OCF and IoTivity

Observing
resource state

Registers the client as an observer of a resource. The client
will then receive notifications whenever any of the resource’s
properties changes. Example use case: A fan can observe a
temperature sensor to automatically turn on when it is too
hot [28].

Chapter4
HomeKit

HomeKit was introduced at the 2014 edition of the Apple Worldwide Developers
Conference (WWDC). Its main goal is to provide a consistent experience for users
when using home automation products with Apple iOS devices. By doing this,
Apple hopes to make home automation accessible for a wide audience of users
[29].

4.1 Accessories
In the world of HomeKit, a smart device such as a HomeKit enabled light bulb or
garage door is known as an "accessory". In other words, this is the name Apple
use to refer to a "thing" in the Internet of Things [29].

4.2 Conceptual overview
HomeKit is made up of two parts, the first of these is a set of iOS APIs that is
used to develop home automation apps. The second part is the Homekit Acces-
sory Protocol (HAP) which is the application protocol that iOS devices use when
communicating with HomeKit enabled accessories.

The HomeKit iOS APIs and HAP together, form a common interface between
accessories and apps. Developers can create apps that can make use of any Home-
Kit enabled accessories that are connected to the device. Hardware manufactur-
ers on the other hand, simply has to implement HAP on their accessory to make it
talk with HomeKit. In other words, HomeKit acts as a man in the middle between
the apps and the accessories [29].

4.2.1 Common database
In order to provide consistency between all these different apps and accessories,
HomeKit uses a common database, which is stored on the iOS device. This
database contains all the information about the user’s home or homes. This in-
cludes all configured accessories as well as other data, such as in which room each
accessory is located. This database is used by all HomeKit apps via the HomeKit
iOS APIs to set up and control HomeKit enabled accessories [29].

25

26 HomeKit

4.3 User experience
The common database enables the consistent user experience that Apple wants
to deliver. All HomeKit enabled apps, whether it is a manufacturer bundled app
or a third-party app, has access to the same database via the HomeKit API. This
means that whatever app the user uses to interact with their home, they see the
same accessories. The database also enables controlling all configured accessories
using iOS’s smart assistant Siri.

HomeKit supports home sharing and remote access. Home sharing makes it
possible for the owner of the home to give other users control over the accessories
in the home. These other users can then control the accessories in the home but
they cannot make any changes to the configuration of the home.

Remote access enables a user to control their home from anywhere. This is
automatically enabled for all accessories in the home if there is an Apple TV 3rd
generation in the home logged in on the same Apple ID as on the iOS device [30].

Scenes

A scene is a way for the user to control their home with a single command. To
enable this, the user creates a new scene and gives it a name. He or she then
adds a set of actions that are to be executed at the same time. This is done by
configuring a set of target states for the relevant accessories, for example:

• Door → Locked

• Lights → Off

These scenes can then be executed using an app or by speaking their name to
Siri [30].

Triggers

There are two kinds of triggers in HomeKit, timer triggers and event triggers. A
timer trigger activates one or more scenes at a specific time of the day. An event
trigger activates one or more scenes as a response to an event. There are currently
two types of events.

• Accessory state: The event is generated when the state of an accessory
changes to a specified state.

• Geofence: The event is generated when the user enters or leaves a geo-
graphical area.

Timer triggers always activate the configured scenes at the specified time but
event triggers can be configured to only do so if additional conditions are fulfilled
at the time when the event is generated. Currently, there are three types of condi-
tions. These are: time, accessory state and significant events. There are currently
two significant events: sunrise and sunset.

HomeKit 27

Example

Event triggers and conditions together with scenes enables the user to easily set
up advanced home automation scenarios. As an example the user can set up a
trigger on their smart door lock that is activated when the door is unlocked. The
user can then configure this trigger with a condition that says to only activate the
scene before midnight. Lastly the user configures the trigger to activate a scene
that turns on all lights in the home. Using these simple steps, the user has set up
the home to always turn on the lights when he or she arrives home but not in the
middle of the night when people might be sleeping.

4.4 HomeKit Accessory Protocol
The HomeKit Accessory Protocol is the application protocol that accessories use
to connect to HomeKit on an iOS device. It supports two transports, IP and BLE.
When using IP, a connection can be made between the iOS device and the acces-
sory when they are on the same subnetwork. This would typically mean that the
iOS device and the accessory is connected to the same home network using Wi-Fi.
In the case of BLE, a direct connection between the accessory and the iOS device
is used [31].

4.4.1 The HomeKit protocol stack
HomeKit and HAP are implemented on top of a protocol stack that can be seen
in Figure 4.1. There are currently two available transports for HAP; BLE and IP.

Starting from the top, General Attribute Profile (GATT) and JSON are used to
serialize the services and characteristics that are defined by HAP. This serialized
data is then packaged using Attribute Protocol (ATT) on the BLE side and HTTP
on the IP side. The Logical Link Control and Adaptation Protocol (L2CAP) and
TCP are used to transmit the packages [31].

On the IP side of the stack, there are some additional details that are of inter-
est. Firstly, Apples Bonjour is used for accessory discovery. Bonjour is Apple’s
implementation of zero-configuration networking [32]. Secondly, only IP acces-
sories can act as bridges. A bridge is a type accessory that can provide compat-
ibility with home automation products that are implemented using some other
application protocol than HAP. Lastly, HAP is implemented as a RESTful API on
the IP side. This means that the Uniform Resource Locator (URL) can be used to
specify what accessory, service and characteristic that a specific request refers to
[31].

4.4.2 Common functionality definitions
On top of the protocol stack, HAP defines a common language that is to be used
by all HomeKit compatible products. This language contains definitions of func-
tionality that are commonly provided by home automation accessories. In order
to model these definitions, a model using services and characteristics is used [31].

28 HomeKit

Figure 4.1: The protocol stacks that are used in HomeKit for IP
and BLE transports respectively.

Services and Characteristics

A characteristic is the smallest piece of functionality that a user can interact with.
These characteristics are then divided in groups of related functionality called
services. An example of an how an IP based accessory can be configured using
JSON is showed in Listing 3. In this example a light bulb is represented by "ser-
vice2". It then presents two related pieces of functionality for this light bulb, two
characteristics. These are the current state (on/off) and the brightness of the light
bulb [31].

accessory : {
service1 : "public.hap.accessory-information" {
characteristic : "serial-number",
characteristic : "identify"

},
service2 : "public.hap.lightbulb" {
characteristic : "on",
characteristic : "brightness"

}
}

Listing 3: An example of an IP connected light bulb defined using
HAT and serialized using JSON.

HomeKit 29

Protocol extensibility

Apple has predefined a lot of commonly used services and characteristics, like
the ones in Listing 3. In addition to these, manufacturers can define their own
services and characteristics for products that are completely new or not very com-
mon. It is also possible for manufacturers to use Apple’s predefined ones together
with their own in any way they see fit. An accessory can contain Apple defined
services together with custom services. Custom services can contain Apple de-
fined characteristics and custom characteristics. Apple defined services can also
contain both custom- and Apple defined characteristics.

When using Apple defined services and characteristics to define functionality,
that functionality will automatically be controllable using Siri on iOS devices [31].

4.4.3 Security
Apple has designed their own security solution for HAP by combining a number
of existing technologies. The resulting security solution provides the following
security features:

Bi-directional
authentication

The iOS device and the accessory both authenticate each other
to make sure that the other end is trusted.

Per-session
encryption

A new key is used every time a connection is established be-
tween an iOS device and an accessory.

Perfect forward
secrecy

The encryption key used in a particular session cannot be
used to decrypt messages from any previous- or future ses-
sion.

End-to-end
encryption

Only the iOS device and the accessory have access to the en-
cryption key so it is impossible for any third party to decrypt
the messages that are being sent [31].

Setup code

A setup code is used when setting up an accessory for the first time. This code
is provided by the accessory, either printed on the packaging or displayed on a
screen. An iOS device is paired with the accessory using this code, which is then
used as a basis for their future cryptographic relationship [31].

Cryptographic boundary

There is a a difference in where encryption takes place in the two different stacks.
In the case of IP, encryption is applied on the transport layer, meaning that it
is the TCP packets that are being encrypted. When it comes to BLE, Apple has
made the choice not to use BLE pairing. Instead they apply encryption on the
application layer. This means that it is the sent values that are encrypted before
being serialized using GATT [31].

30 HomeKit

Cryptographic algorithms

The security features above are achieved using standard cryptographic algorithms.
A description of each of them and an explanation of how they are being used in
HAP can be seen below.

Secure Remote
Password (SRP)

A secure password-based authentication and key-exchange
protocol. It makes it possible for a client to authenticate
with a server in the case that the client has access to a se-
cret and the server has a verifier for each client. This ver-
ifier allows the server to authenticate the client but at the
same time does not allow a potential attacker to imperson-
ate the client in the case that the attacker is able to obtain
the verifier. In HAP, SRP is used to encrypt and authenti-
cate the initial pairing key exchange [31, 33].

Ed25519 A public-key signature system that is designed to be very
fast while at the same time not compromise security. Ed25519
is based on elliptic curves, more specifically the twisted
Edwards curve. In HAP, Ed25519 is used for the long-term
pairing and authentication keys [31, 34].

Curve25519 An elliptic curve Diffie-Hellmann function that is optimised
for speed while maintaining high-security. HAP uses Curve25519
to encrypt the initial authentication for each session [31,
35].

HKDF-SHA-512 SHA-512 is a Secure Hash Algorithm (SHA) adopted by
the US government. HMAC-based Key Derivation Func-
tion (HKDF) is a Key Derivation Function (KDF) based on
Hashed Message Authentication Code (HMAC). These are
both used together in HAP to derive per-session ephemeral
encryption keys [31, 36].

ChaCha20-Poly1305 ChaCha20 is a stream cipher that runs significantly faster
than Advanced Encryption Standard (AES) in software im-
plementations. Poly1305 is a high speed message authen-
tication code. ChaCha20 and Poly1305 are combined using
an Authenticated Encryption with Associated Data (AEAD)
construction. HAP uses this combination to encrypt and
authenticate data [31, 37].

4.5 MFi program
Apple requires all manufacturers of HomeKit products to be certified through the
Made for iPhone/iPod/iPad (MFi) program. To become certified, manufacturers
must install an authentication chip in the accessory and pass extensive tests con-
ducted by Apple. To pass these tests, manufacturers must send prototypes to
Apple’s headquarters where the products can be tested by Apple personnel [38].

Chapter5
Prototype

5.1 Environment
The implementation of prototypes for IoTivity and HomeKit were performed on
different hardware platforms since there was no single platform that supported
both frameworks. The programming languages used to build the prototypes
were C, C++ and JavaScript. Git was used to provide version control of source
code.

5.1.1 HomeKit
Several prototypes implementing HomeKit were developed for development kits
from both Broadcom and Nordic Semiconductor. The details of the hardware
platforms as well as the software used to develop and test the prototypes are
presented in this section.

Hardware

The first hardware platform is the BCM943341WCD1_EVB which is a development
kit from Broadcom. The development kit consists of a BCM943341WCD1 System in
package (SiP) module, which is mounted on a development board that provides
USB connectivity. This USB connection is used to provide a serial connection and
for flashing device firmware during development. The BCM943341WCD1 is pow-
ered by the STM32F407 32-bit ARM microcontroller and provides connectivity in
the form of WLAN, Bluetooth, BLE, and Near Field Communications (NFC) [39].

The second platform used was the nRF51 DK, which is a development kit
from Nordic Semiconductor based on the nRF51 series System-on-a-Chip (SoC).
The nRF51 DK provides connectivity for BLE, ANT+ and 2.4GHz proprietary
applications. The nRF51 DK is based on an ARM Cortex M0 microprocessor and
features a General-purpose input/output (GPIO) pin layout that is compatible
with the Arduino Uno Revision 3 standard [40, 41].

The BCM943341WCD1_EVB was used for developing a HomeKit prototype util-
ising WLAN connectivity. In the case of BLE, the Nordic nRF51 DK was used
instead.

31

32 Prototype

Software

All development for the BCM943341WCD1_EVB was performed using the Broad-
com WICED MFI/HomeKit Software Development Kit (SDK). The nRF5 SDK for
HomeKit was used instead in the case of the Nordic nRF51 DK. All code for both
these platforms was written in the C programming language.

In addition to these SDKs, other software was used in the form of an iPhone
app called "MyHome" and HomeKit Accessory Tester (HAT). "MyHome" is a free
app that can be used to control HomeKit accessories. The app was downloaded
from the App Store. HAT is Apple’s testing tool that allows hardware developers
to test their accessories using a Mac.

5.1.2 IoTivity

All of the IoTivity prototypes were run on Linux platforms which made the devel-
opment process easier since it was not necessary to flash the hardware between
every test run.

Hardware

The hardware platforms used for the IoTivity prototype were Intel Edison kits
with support for Arduino shields. Intel Edison is a very powerful platform with
a dual-core Intel Atom CPU, 1 GB of RAM and 4 GB flash storage. The develop-
ment kit that was used provides flashing via USB, several GPIOs, analog I/Os, as
well as connectivity via WLAN, Bluetooth, and BLE.

Software

The devices used a custom built Yocto operating system with support for the Io-
Tivity framework as well as the GPIOs of the Intel Edison board. The OCF devices
were implemented in C and C++ using the respective IoTivity APIs available in
IoTivity version 1.0.1.

To be able to control the devices independently of each other a web interface
was implemented in JavaScript that could observe and change the current state
of the resources.

The Yocto project

The Yocto project is an open source collaboration to provide a custom built Linux
environment for embedded devices regardless of the hardware architecture [42].
A Yocto image is built from a recipe where it is specified what modules and
frameworks should be built into the image. In this project, a Yocto recipe for
Intel Edison was modified to build an image with support for the IoTivity C and
C++ API.

Prototype 33

5.2 Scope
Anima, the company at which this thesis was conducted, has an interest in con-
trolling IoT devices with their smartwatch product. This product is communi-
cating using BLE, which means that they also have an interest in communicating
with IoT devices using this technology. Additionally, they also have an interest
in the features and limitations of different IoT frameworks.

The scope of the prototypes are based on these interests. It is feasible to eval-
uate the limitations and features of a framework with almost any prototype to
varying degrees. However, facilitating the interest in controlling IoT devices re-
quires two prototypes that communicate with each other in some way. Therefore,
a use-case where two prototype devices have to communicate with each other
was designed. The use of a Graphical user interface (GUI) to control the IoT
devices were also added to the use-case since it is the most common way of con-
trolling IoT devices in the smart home. Lastly, it would be desirable to investigate
BLE in an IoT setting since Anima uses BLE in their product. A set of prototypes
was developed for each IoT framework that facilitates the requirements of this
use-case.

5.3 Prototype design
The use-case was developed to include three main components, two IoT devices
and a GUI. Additionally, a minimal BLE device prototype was developed in the
case of HomeKit. These components are described below:

Power strip
device

An IoT device that has the ability to toggle a power strip on
and off. The power strip is exposed as an abstract network
resource and can be controlled by other IoT devices.

Sensor device An IoT device with an attached piezo element. The piezo el-
ement is used as a vibration sensor. The vibration sensor is
exposed as an abstract network resource. This enables other
IoT devices to read the current sensor data.

GUI A GUI that has the ability to control the power strip device
and monitor the state of the sensor device.

Minimal BLE
device

A minimal implementation of a BLE device that was imple-
mented when the IoT framework provided support for BLE.
It was only implemented for HomeKit since IoTivity does not
support BLE yet.

5.3.1 HomeKit
The HomeKit use-case implementation consists of two accessories that are con-
nected to an iPhone. Both of these accessories are implemented on BCM943341WCD1_EVB
boards and communicate using HAP over WLAN. The first accessory is the power

34 Prototype

strip device and exposes a service that enables control of a power strip. It is real-
ized by connecting the power strip to the board using an electrical circuit. The
circuit enables the power strip to be toggled on and off using a GPIO on the
board. The other accessory is the sensor device. It exposes a vibration sensor ser-
vice that consists of a piezo element connected to an Analog-to-digital converters
(ADC) on the board. For the GUI component, an iPhone app called "MyHome"
was used.

An iPhone with a HomeKit enabled app such as "MyHome" can be used to
control and monitor the states of these accessories. However, due to restrictions in
the HomeKit framework, the accessories cannot directly communicate with each
other. In order to control the state of the first accessory with sensor readings of
the second, the iPhone has to be configured to do so. This configuration consists
of a trigger that fires when the iPhone receives an event from the sensor device.
When the trigger fires, a request is sent to change the state of the controllable
device.

5.3.2 IoTivity

The IoTivity implementation of the use-case consists of two devices and a cus-
tom made GUI in the form of a Single-page application (SPA). The two IoTivity
devices are hosted on a Intel Edison hardware platform and are communicating
using CoAP over WLAN.

The first IoTivity prototype is the power strip device. It is implemented as a
client-server, meaning it can act as both a client and a server. The prototype hosts
a resource that enables control of a power strip. It is realized by connecting the
board to the same circuit that is used for the HomeKit prototype. The second
device is the sensor device. It is implemented as a server and hosts a vibration
sensor resource. The vibration sensor consists of the same piezo element and
electrical circuit that was used for the HomeKit prototype, connected to an ADC
on the Edison board.

The device-to-device use case was implemented by letting the power strip de-
vice observe the resource state of the sensor resource on the sensor device. When-
ever the sensor changes state, the sensor device sends a response to the power strip
device. The power strip device will then turn on or off appropriately.

Since there are no standard user interfaces available for IoTivity, a web inter-
face was implemented. The web interface enables a user to control and observe
IoTivity devices using a GUI.

5.4 Prototype implementation

This section describes how the different prototypes are implemented and high-
lights some of the differences between the use-case implementations.

Prototype 35

5.4.1 HomeKit
Three HomeKit prototypes were implemented, in addition to the power strip de-
vice and the sensor device a minimal BLE device was developed to investigate BLE
connectivity with HomeKit. The main use-case with the power strip device and
sensor device is depicted in Figure 5.1.

Figure 5.1: The setup for the HomeKit use-case. Both devices
communicate only with the iPhone.

Power strip device

The HomeKit power strip device software is implemented in C and after initializing
the platform the program connects to the Wi-Fi network and waits for an iPhone
to request a pairing. In this implementation, the Wi-Fi SSID and credentials are
hard-coded. Apple supplies an on-boarding process to connect new devices to
the network, but that process requires specialized Apple hardware that was not
available for this project. In the pairing process the iPhone user is asked to sup-
ply a password generated by the accessory. The password can be presented in
different ways and in this implementation it is printed in a terminal via a serial
connection. After the pairing is complete the accessory listens for updates to its
characteristics that can be sent from the paired iPhone.

Sensor device

The HomeKit sensor device software implementation is very similar to that of the
power strip device. This prototype is also implemented in C and the connection
and pairing process is the same. Instead of waiting for updates from the iPhone
however, the prototype reads from the ADC connected to the piezo element. If

36 Prototype

the HomeKit sensor device detects a value above the pre-set threshold it sends an
update to the iPhone notifying it about the event.

Minimal BLE device

A minimal BLE device prototype was also implemented to investigate BLE con-
nectivity with HomeKit. The minimal BLE device prototype consists of a single
accessory that is paired and controlled with an iPhone over BLE. The hardware
platform used for this prototype was the nRF51 DK. The nRF51 DK is a platform
that Anima holds an interest in, which made it a natural choice for testing out the
BLE connectivity. This implementation is also done in C and the functionality is
similar to the lightbulb service implementation.

5.4.2 IoTivity
The setup of the IoTivity use-case is shown in Figure 5.2. The IoTivity prototype
implementations of the power strip- and sensor device are similar to their HomeKit
counterparts. The key differences between the HomeKit and IoTivity implemen-
tations are described in to following sections.

Figure 5.2: The setup for the IoTivity use-case. The devices can
communicate directly with each other. The web GUI can be
used to check and change the states of the devices.

Power strip device

The IoTivity power strip device prototype differs from the HomeKit counterpart
in that it has two operational modes, manual and auto. In manual mode, the
prototype acts as a server and waits for requests from a client. In auto mode

Prototype 37

the IoTivity power strip device also acts as a client in that the prototype observes
the sensor device and updates its state based on the notifications it gets. Since
the IoTivity use case prototypes run on a Yocto OS, on-boarding and network
configuration do not need to be handled in the prototype software.

Sensor device

The IoTivity sensor device prototype is an OCF server implementation. The proto-
type holds a vibration sensor resource that is marked as observable. This reveals
to all clients discovering the sensor device that it supports and handles observe
requests.

The IoTivity sensor device is implemented so that the device sleeps until the
device receives an observe request. After receiving an observe request the de-
vice starts reading the sensor values. If the device detects a reading above the
threshold, the device sends a notification to all observing clients that it detected a
vibration. An observer can at any time send an unregister request, in which case
the sensor device removes the client from the device’s list of observer. If the list of
observers is empty at any point, the sensor device goes back into sleep mode.

GUI

The web GUI was implemented in JavaScript, CSS and HTML and can be seen
in Figure 5.3. The GUI prototype uses the JavaScript bindings for IoTivity that
is provided by the iotivity-node node.js module to communicate with IoTiv-
ity devices. Since these bindings only work for the server side, communication
between a server and client was needed.

The client is a SPA implemented using Angular.js and Bootstrap. All com-
munication between the server and client is performed using WebSockets. The
server acts as an intermediary. It relays messages received from IoTivity devices
as CoAP packets to the SPA using the WebSocket connection.

38 Prototype

Figure 5.3: A screenshot of the web interface that was developed
to serve as a GUI for IoTivity devices.

Chapter6
Experiments and Evaluation

To be able to compare the frameworks an evaluation model was designed where
important characteristics were identified. The prototypes were used to provide
measurable data in the cases where data generation were necessary. All of the
results are summarized in Table 6.3 on page 52 for easy reference.

6.1 Methodology
The evaluation of the IoT frameworks was conducted using a method based on
the criteria based evaluation model. These kind of models are described in a
paper by Gediga et al. [43]. This paper describes the general steps involved in
criteria based evaluation. Our evaluation model is loosely based on these general
steps but has been adapted to fit our case of evaluating IoT frameworks for the
smart home.

The general steps used in our evaluation are as follows:

1. Determine what characteristics should be evaluated.

2. Define observable measurables based on the characteristics.

3. Perform measurements on the measurables.

4. Perform the evaluation and comparison based on the measurements.

The biggest adaption made is that we do not derive requirements on the char-
acteristics. The method described in the paper by Gediga et al. is designed to
evaluate a single software product. Since we are comparing different IoT frame-
works, we instead chose to compare the measurables of the different IoT frame-
works.

6.1.1 Measurement types
Many of the characteristics have binary measurables not suited for experimental
measuring, such as the presence of a specific feature. Because of this, the evalua-
tion model uses both experimental and non-experimental ways of evaluating the
frameworks. The different methods are defined as follows:

39

40 Experiments and Evaluation

Experimental The results have been produced by making measurements on
the prototypes.

Specification The results are derived from the framework specification and/or
APIs.

Prototype The results are supported by a prototype. (No results are
based solely on prototypes, but they are used as consolida-
tion of a result.)

Manufacturer
Data

The results have been obtained from the relevant hardware
manufacturers.

6.2 Characteristics
The process of identifying the important characteristics of a smart home product
were performed as a combination of three different factors. A study of relevant
literature, the experiences gained by implementing the use-case as well as dis-
cussions with Aleksandar Rodzevski, a senior software architect at Anima. The
literature studied was mainly academic papers but also various online resources
with articles relating to the IoT and smart homes. Based on these experiences,
a list of five characteristics that were judged to be of core importance to smart
home products were produced.

6.2.1 Interoperability
Interoperability in this context is defined as the ability for smart home devices to
communicate and work together with disparate devices and interfaces. This is
important because a product that is interoperable will allow users who already
owns products from a different vendor to incorporate the product into their smart
home. Other things to consider that also fall under interoperability are the feasi-
bility of bridging other frameworks and what platforms are supported for build-
ing a user interface. Is it feasible to control the devices using an Android smart
phone for example, or does the IoT framework only support iPhone or vice versa?

6.2.2 Connectivity
Connectivity in the scope of this report is concerning the connection capabilities
of the evaluated frameworks. Different kinds of smart home devices have dif-
ferent requirements when it comes to connectivity. Connectivity is considered a
relevant characteristic because it contributes to the versatility of the framework.
It is also closely related to network scalability and performance.

6.2.3 Scalability
The scalability of the framework refers to the memory and computation speed re-
quirements of running the framework. Low system requirements enable the use

Experiments and Evaluation 41

of more constrained hardware platforms. Having a smaller platform is advan-
tageous for three reasons, lower hardware cost and power consumption as well
as a smaller physical size. Having a lower production cost is obviously desirable
and lower power consumption opens up the option of having a battery powered
device. This in combination with a smaller physical size opens up more product
possibilities.

6.2.4 Security

Since many smart home devices will have a direct or indirect connection to the
Internet, it should be self-explanatory why security for smart home devices is re-
quired. In addition to already known threats, new types of attacks might emerge
that are aimed specifically at smart home devices. In order to combat these new
threats and fix any overlooked security flaws, Over-the-air programming (OTA)
updates are required. Another important security factor is device authentication
to make sure that no unauthorized actors can gain access. Since software secu-
rity is such an extensive subject this report will not investigate how secure the
frameworks are, but rather if they retain certain security features.

6.2.5 Network related properties

There are a number of network related properties that are of interest when eval-
uating and comparing IoT frameworks.

Response time

The response time of an IoT product is connected to the usability of the product.
As such, it is of importance when it is being controlled by a person. The general
advice regarding response times for usability has been the same since 1968 [44].

0.1 second When a user performs an action, it feels like it happens instan-
taneously. This gives the impression of directly manipulating
the system being controlled.

1 second Gives the impression of a delay, but the users train of thought
is uninterrupted.

10 seconds The users might get distracted by other things. Some kind of
visual feedback is needed to reassure the user that the com-
puter is working.

Judging from these guidelines, it is important to keep the response time under
one second. It would be suboptimal if the user lost their train of though waiting
for an action to complete. A response time under 0.1 second is desired since it
gives a feeling of directly controlling the smart home devices.

42 Experiments and Evaluation

Network traffic used

The number of IoT devices in a smart home should be able to scale to billions in
the world and hundreds in a home. Therefore, it is desirable to keep the amount
of data needed to perform an action (e.g. turn on a light) to a minimum. This also
gives the extra benefit of reduced power usage, which is important in battery
powered constrained devices.

6.3 Interoperabilty
The following questions were formulated to evaluate the interoperability:

Vendor interoperability How does the IoT framework ensure interoperability
between products from different vendors?

Bridging Does the IoT framework support bridging devices im-
plementing other frameworks?

User interfaces Is there support for Android/iOS/web as a user inter-
face?

6.3.1 HomeKit
To ensure interoperability, the MFi program requires all products to go through a
certification process that makes certain that the product is fully compatible with
HomeKit [45].

Bridging of HomeKit accessories is supported with some restrictions. The
restrictions include accessories supporting Wi-Fi as well as accessories enabling
access to the home. A connected door lock, for example, may not be bridged [46].
HomeKit is also restrictive when it comes to building interfaces, as iOS is the only
OS available for controlling HomeKit accessories [45].

6.3.2 IoTivity
The OCF certification program is still under development. Once it is finished, the
applicant vendor can send their product to a test laboratory where they will test
the device. If the device passes the device is OCF certified and guaranteed to be
fully compatible [47].

The OCF specification does not impose any restrictions for bridging devices
to other frameworks [21]. It is also possible to build user interfaces for any plat-
form though APIs are only available for Android and web interfaces at this time
[48].

6.4 Connectivity
The following points concerning connectivity are addressed:

Experiments and Evaluation 43

Physical transports What are the supported network stacks (Wi-Fi, BLE,
802.15.4)?

Device-to-device Does the IoT framework support device-to-device com-
munication?

Remote Is there support for remote accessibility?

6.4.1 HomeKit
HomeKit supports both Wi-Fi and BLE physical transports but all traffic over
these transports has to be sent between an iOS device and an accessory. This
means that direct communication between accessories is not supported by Home-
Kit. When it comes to remote access, it is possible through Apple’s cloud service
but requires an Apple TV (3rd generation or later) to function. The Apple TV is
used to relay packages between the iOS device and the accessory [49].

6.4.2 IoTivity
IoTivity is built so that it can run on top of any wireless transport, i.e. Blue-
tooth, BLE, Wi-Fi and 802.15.4. In contrast to HomeKit, there are no restrictions
concerning device-to-device communication [21]. Furthermore, remote access is
supported through the use of XMPP. Remote access requires that the devices con-
nect to an OCF server that supports XMPP and is accessible via the Internet [50].

6.5 Scalability
The scalability of the frameworks is evaluated based on the most constrained
platforms available for each IoT framework. This evaluation was performed this
way because of two main reasons: Firstly, the hardware requirements are not
specified within the respective framework specifications. Secondly, because Ap-
ple does not supply a reference implementation of the HomeKit specification.

6.5.1 HomeKit
The hardware platforms supported by the HomeKit SDKs of Broadcom, Marvell
Technology Group and Nordic Semiconductor were studied. The platforms are
all similar in performance, with the nRF52832 somewhat more constrained than
the others, as can be seen in Table 6.1.

Table 6.1: HomeKit - hardware platforms

Hardware platform CPU RAM Flash memory

nRF52832 Cortex-M4F 64 MHz 64 kB 512 kB
BCM943341WCD1 Cortex-M4 168 MHz 192 kB 512 kB
88MC200 Cortex-M3 200 MHz 512 kB 1 MB

44 Experiments and Evaluation

6.5.2 IoTivity
The IoTivity website lists several platforms that are confirmed to run the IoTivity
framework. In addition to the platforms listed in Table 6.2, IoTivity can run on
any SoC that supports Linux, Android or Tizen. However, all of these operating
systems have higher system requirements than the ones listed in Table 6.2 [51, 52,
53]. The table presents Arduino Mega2560 as the most constrained of the IoTivity
devices [48].

Table 6.2: IoTivity - hardware platforms

Hardware platform CPU RAM Flash memory

Arduino Mega2560 ATMega2560 16 MHz 8 kB 256 kB
Arduino Due Cortex-M3 84 MHz 96 kB 512 kB

6.6 Security
The availability of the following security features is evaluated:

Authentication Does the specification define bi-directional authentica-
tion?

Encryption Is there session encryption? If so, what protocols are
used?

OTA Is it possible to do OTA software updates?

6.6.1 HomeKit
HomeKit enforces Bi-directional authentication and provides encryption using
Apple’s proprietary encryption suite. Additionally, Over-the-air firmware up-
dates are supported by HomeKit accessories [31].

6.6.2 IoTivity
The OCF specification defines bi-directional authentication and it is required for
restricted resources. The specification also supports session encryption and en-
courages the use of DTLS [54]. OTA updates are not defined in the specification
but it is feasible for device developers to implement it themselves.

6.7 Network related metrics
The network measurements that were performed covers response time and net-
work traffic usage. This section describes how the measurements were conducted
and presents the possible error sources of the measured data.

Experiments and Evaluation 45

6.7.1 Response time
To not create additional error sources, the response time data was generated and
collected with the help of scripts and tools.

Methodology and Tools

The response times were measured using Wireshark, as shown in Figure 6.1, in
the case of both IoTivity and HomeKit. For HomeKit, the response time is defined
as the "RTT to ACK" as measured by Wireshark. In the case of IoTivity, Wireshark
does not provide response time measurements for CoAP so the response time
was calculated as the difference between the timestamps of the PUT request and
the response.

The measured HomeKit data was generated using HAT since Wireshark can
only measure on data that is sent or received by the computer it is running on.
The accessory used for these measurements was the HomeKit power strip device. A
command to toggle the power strip on or off was sent with one second intervals.

Figure 6.1: Thek network measurements was performed using
Wireshark. This figure shows an example of captured IoTiv-
ity traffic.

In the case of IoTivity, a script was written in JavaScript that generates traffic
using the API-bindings provided by the iotivity_node package. This script dis-
covers the OCF device on the network and proceeds to toggle the power strip on

46 Experiments and Evaluation

and off with one second intervals. The prototype used for these measurements
was the IoTivity power strip device

The raw data provided by Wireshark was exported as a .csv file. This data
was then parsed and analysed using Python in conjunction with scientific li-
braries such as NumPy, SciPy and matplotlib.

Error sources

There are some sources of error relevant to the measured data. Firstly, the hard-
ware platforms have different performance characteristics. The Intel Edison has
a dual-core 500 MHz Intel Atom processor and 1 GB of RAM. The Broadcom
BCM943341WCD1 board has a 168 MHz ARM M4 processor with 192 kB of RAM.
Secondly, there is software running the devices that can have an impact on the
results, such as the operating system. Another aspect of software differences is
the implementation of the protocols. IoTivity is the only implementation of the
OCF protocol but HomeKit has several implementations from different manufac-
turers. It is possible that some of these implementations perform differently than
the Broadcom implementation that we have used for our HomeKit prototypes.
Lastly, the router load at the time of testing could have had an impact on the
measured values.

IoTivity

A histogram showing all measured data can be seen in Figure 6.2 and the range
where most data is located can be seen in Figure 6.3. In these figures, each sample
represents the response time of a command.

As can be seen in these figures, most of the samples are located in the range 7
to 50 ms with a peak between 20 and 30 ms. However, there are also quite a few
samples with relatively high response time of more than 150 ms.

The mean response time was calculated to 29.6 ms with a standard derivation
of 13.8. The probability distribution of response times for IoTivity can be seen in
Figure 6.4. It can be seen in this figure that the probability of the response time
exceeding 75 ms is very low.

HomeKit

All measured HomeKit data can be seen in the histograms presented in Figure 6.5
and 6.6. Compared to IoTivity, the samples are much more compressed to a small
area around 20 ms but at the same time there are also outlier samples all the way
up to 200 ms.

The mean value was calculated to 22.2 ms with a standard derivation of 22.3.
The probability distribution of response times for HomeKit can be seen in Figure
6.7. Compared to IoTivity, the distribution is quite a bit wider but it is still very
unlikely that the response time exceeds 100 ms.

Experiments and Evaluation 47

Figure 6.2: A histogram showing all measured response times
for IoTivity.

Figure 6.3: A histogram showing the measured response times
for IoTivity in the range 0-50 ms.

48 Experiments and Evaluation

Figure 6.4: The distribution of response times measured on Io-
Tivity.

Figure 6.5: A histogram showing all measured response times
for HomeKit.

6.7.2 Network traffic used
To evaluate the network traffic usage, the same data was used as in the response
time evaluation.

Experiments and Evaluation 49

Figure 6.6: A histogram showing the measured response times
for HomeKit in the range 0-50 ms.

Figure 6.7: The distribution of response times measured on
HomeKit.

Methodology and Tools

The network traffic used is defined as the total amount of data that is needed to
fulfill a command such as turning on or off a light. To make this comparable the

50 Experiments and Evaluation

same type of command was used as an example, namely toggling a Power strip
device on or off. The same data was used as in the response time evaluation. As
such, there were 1000 samples for each framework collected using Wireshark.

In this data, each identical command uses the exact same amount of network
resources. An identical command results in exactly the same number of requests
and each request has the same size. This is true for both HomeKit and IoTivity,
with some exceptions. In the case of HomeKit, there might be some TCP hand-
shake data that has to be sent before the command depending on if there already
is an established TCP session. This handshake data is something one should be
aware of but it is not included in the comparison provided in this thesis. Addi-
tionally, a very small amount of packages (less than 1 %) have to be retransmitted
in the case of both IoT frameworks. This retransmission of data is also not con-
sidered here as we are only discussing the typical scenario of a command that
succeeds without any problems. We only consider this typical scenario since it
makes it easier to get a clear comparison.

Results

In the case of HomeKit, each command produces three TCP packets that are sent
over the network.

1. A 276 byte HTTP request sent from the HAP software to the device.

2. A 99 byte HTTP response sent from the device to the HAP software.

3. A 54 byte TCP ACK sent from the HAP software to the device.

This makes for a total of 429 bytes sent over the network to fulfill this one
command.

If we instead consider the equivalent command in IoTivity, only two UDP
packets are sent over the network.

1. An 89 byte CoAP request sent from the JavaScript testing script to the de-
vice.

2. An 87 byte CoAP response sent from the device to the JavaScript testing
script.

This makes for a considerably smaller amount of data needed to fulfill the
command. At a total of 176 bytes, IoTivity uses 41% of HomeKit’s network re-
source useage. A bar chart visualizing this difference can be seen in Figure 6.8.

Experiments and Evaluation 51

Figure 6.8: A comparison between the total number of bytes
needed to perform a command in HomeKit and IoTivity.

52 Experiments and Evaluation

Table 6.3: A table summarizing the evaluation that is presented in this chapter.

Measurable or Feature HomeKit IoTivity Evaluation method

Interoperability

Vendor Interoperability Yes No1 Specification
Bridging Yes2 Yes Specification

User interfaces iOS only

Android,
Web,
Tizen,
Other3

Specification,
Prototype

Connectivity

Physical Transports Wi-Fi, BLE Any4 Specification,
Prototype

Device-to-device No5 Yes
Specification,
Prototype

Remote Yes6 Yes Specification
Scalability

CPU 64 MHz 16 MHz Manufacturer Data
Flash Memory 512 kB 256 kB Manufacturer Data
RAM 64 kB 8 kB Manufacturer Data

Network related metrics

Response time 22ms 30ms Experimental
Network traffic generated
for one command

429 bytes 176 bytes Experimental

Security

Encryption Yes Yes Specification
OTA Yes No7 Specification
Authentication Yes Yes Specification
1 Certification program will guarantee vendor interoperability once com-

plete.
2 Restrictions apply to what types of devices can be bridged.
3 In theory, an OCF device can be controlled from any platform, the listed

platforms already have IoTivity APIs.
4 IoTivity is not dependant on a specific physical transport and can utilize

any transport capable of IP.
5 Any communication between devices must be routed through an Apple

iOS device.
6 Remote access requires an Apple TV 3rd generation or later.
7 No support from specification as of version 1.0.0, up to device developers

to implement.

Chapter7
Discussion

The IoT and smart home landscape is evolving rapidly right now. New tech-
nologies are emerging and the existing solutions are still being developed to pro-
vide more functionality. It will probably take some time before the dust settles
and a dominant standard is established. This thesis has evaluated some of the
more promising alternatives on the market today to help provide guidance when
choosing what smart home solution to implement in a product.

7.1 Results
Once the OCF certification process is complete, interoperability between devices
from different vendors implementing the same protocols will likely not be an
issue for any of the frameworks. The more interesting differences are found in
two main areas. The approach to bridging and what platforms that can be used
as "clients" controlling the devices. Apple’s restrictions to bridging is most likely
in place to minimize the risk of getting dragged into legal issues that might arise
with devices that have not gone through their certification process. The inability
to control HomeKit accessories from Android devices or through a web interface
is also a large drawback. While IoTivity does not provide an API for iOS, all
that is required to be able to control OCF devices is that someone makes an own
implementation for iOS.

Considering that HomeKit is so closely bound to iOS, it is no surprise that the
supported wireless technologies are the same as what is available on the iPhone.
This tie is what distinguishes HomeKit from other available technologies. It is
probably the most significant drawback of HomeKit, as the absence of device-
to-device communication severely limits the possible applications for HomeKit
devices. The OCF and IoTivity has a more open approach to connectivity which
makes it much more appealing option in many application areas.

Another factor affecting the application area of the frameworks is that IoTiv-
ity can be deployed on much smaller platforms than HomeKit. The underlying
reason for that being the difference in focus of the different frameworks. IoTiv-
ity is aimed at a broad spectrum of products, trying to be the ultimate solution
to all kinds of IoT products. They chose to utilize CoAP and CBOR which are
specifically tailored for the IoT to reduce the hardware load. HomeKit is more

53

54 Discussion

security focused and enforces heavier encryption which is a contributing factor
to the higher system requirements of HomeKit devices compared to IoTivity.

A comparison of the security features discussed in this report shows that the
two frameworks can be considered roughly equal. The biggest difference being
the support for OTA updates that HomeKit has. OTA updates are essential to
be able to continuously address new security threats that are discovered. At this
point it is unclear if OTA firmware updates are going to be a requirement for
certified OCF devices. It is feasible for a manufacturer to create an equally secure
device by implementing this functionality on their own. As have been mentioned
earlier this report evaluates security based on features provided and does not
investigate the quality of the security.

7.1.1 Response time
The distribution of response times was measured in section 6.7.1. In the case of
IoTivity, there is a very small probability that the response time exceeds 75 ms.
The same figure for HomeKit is a little higher at 100 ms but it still does not ex-
ceed 0.1 second. This is important to note since this means that a user will get
the impression of instantaneous execution of commands when interacting with
a device based on either framework. The frameworks can therefore be consid-
ered to perform equally based on a usability perspective on response time. It
should be noted however, that all network related measurements in this report
were performed on a local network. How these IoT frameworks compare in a
cloud connected setting is not measured or discussed.

7.1.2 Network traffic used
The network resource usage for IoTivity was measured to be considerably smaller
than that of HomeKit in section 6.7.2. This is an expected result since IoTivity
uses CoAP and CBOR while HomeKit is using the standard web protocols HTTP
and JSON. Both of the technologies used by IoTivity are designed with the IoT in
mind and are therefore optimized to use less network resources.

The two factors that make up this difference are packet size and number of
packets. CoAP have a smaller header than HTTP and using CBOR reduces the
size of a JSON document, which makes the individual packets smaller. When it
comes to the number of packets, HomeKit sends three packets instead of the two
that IoTivity sends. Both of the protocols send a request and receive a response in
return for each command issued and the extra packet sent by HomeKit is a TCP
ACK for the response message. This extra packet is unnecessary and sent because
HomeKit is utilizing technologies that never was intended for use in IoT devices.

7.2 Market perspective
There are a number of things to consider when choosing what technology to use
when building a smart home product. The most obvious being the technical limi-
tations of the frameworks covered in this evaluation, such as scalability and con-

Discussion 55

nectivity options. The other factors include things such as the existing product
base, legal aspects such as licenses, and brand reputation.

The Apple brand is probably the most prominent of these other factors. Apple
already has a loyal consumer base and the reputation of building solid products
that work well with other Apple products. They also have a large service back-
end with features such as already built-in voice control via Siri and an existing
cloud service. IoTivity lacks all of these but instead have the advantage of being
open-source under an Apache 2.0 license and being more lenient on how some
features can be implemented.

It is also worth noting that HomeKit is considered production ready with
several products already released on the market. It is easy to work with and the
documentation is well written. The OCF is still working on their certification
process and the method of discovering and setting up new devices in a network
is not yet fully specified.

7.3 Other competitors
There are other competitors already on the market such as ZigBee and AllJoyn.
Google’s Weave in combination with their IoT tailored OS Brillo also lurks on the
horizon. When comparing the approaches that the different organizations has
taken to the IoT area, IoTivity and Weave seem to be the closest in what they are
trying to achieve. Google has the advantage over the OCF that they have control
of a majority of the mobile market with their Android OS. Google also promise
a solid cloud back-end with tools for analysis of user-data and OTA updates.
However, the cloud-based solution also gives rise to privacy concerns because it
gives Google access to the data of all users utilizing Weave products.

Weave is not evaluated in this report because it is still not released to the
public. Google has not published any information of when it is expected to get to
market.

56 Discussion

Chapter8
Conclusion

HomeKit and IoTivity are not in direct competition with each other and both
the technologies can exist side by side. HomeKit is aimed mainly at Apple’s
already existing customer base with people who already own and use many of
Apple’s products. IoTivity’s goal is to create an open-source market standard
that can be used by everyone in any type of product. Both frameworks are close
in terms of performance, the key differences lies in design choices and the scope
of application areas.

A manufacturer wanting to make a HomeKit product will have to make trade-
offs. On the one hand they will get the Apple brand at their back. But on the other
hand they will have to accept that there is no device-to-device communication,
that they have to install Apple’s authentication chip on all their hardware and
HomeKit requires the user to have an iPhone. In addition HomeKit also has the
advantage that it works out of the box with Siri, which adds an extra dimension
of controlling the devices.

IoTivity and the OCF do not have the same brand recognition among con-
sumers, but instead do not limit the users or manufacturers by requiring special
hardware. The OCF and IoTivity is also much more scalable and does not present
any hindrances for device-to-device communication. This allows for a broader
range of products enabling a network setup consisting of several devices com-
municating with each other to create a better user experience.

The OCF still has a lot of work ahead if they want to set the standard for
building IoT devices. IoTivity shows great potential for the future and as long as
they can continue developing the standard and manage to engage device man-
ufacturers they have a good chance of becoming for IoT what HTML is for the
Internet.

HomeKit is likely to be the first choice for Apple enthusiasts, with their supe-
rior integration with other Apple products and services. The restriction to only
allow iOS devices for controlling HomeKit products effectively locks out the rest
of the consumer market from using HomeKit. Because of the iOS lock, it is un-
likely that HomeKit will become the market leading standard for smart home
products.

57

58 Conclusion

References

[1] “Ericsson mobility report.” http://www.ericsson.com/res/docs/2015/mobility-
report/ericsson-mobility-report-nov-2015.pdf, nov 2015. p 10.

[2] “Allseen alliance documentation.” https://allseenalliance.org/
framework/documentation/learn
Accessed 15/2 2016.

[3] Y. Wang, L. Wei, Q. Jin, and J. Ma, “Alljoyn based direct proximity service
development: Overview and prototype,” in Computational Science and Engi-
neering (CSE), 2014 IEEE 17th International Conference on, pp. 634–641, IEEE,
2014.

[4] “Allseen alliance faq.” https://allseenalliance.org/alliance/faq. Ac-
cessed 15/2 2016.

[5] “Zigbee press release: Zigbee certified prod-
ucts surpass 1,000.” http://www.zigbee.org/
zigbee-press-release-zigbee-certified-products-surpass-1000/
Accessed 16/2 2016.

[6] “Zigbee alliance.” http://http://www.zigbee.org/
Accessed 17/2 2016.

[7] D. Gislason, ZigBee Wireless Networking. Newnes, 2008.

[8] “Thread group.” http://threadgroup.org/
Accessed 16/2 2016.

[9] “Thread overview whitepaper.” http://threadgroup.org/Portals/0/
documents/whitepapers/Thread%20Stack%20Fundamentals_v2_public.
pdf, jul 2015. Accessed 16/2 2016.

[10] “Getting started with brillo & weave - device, mobile, cloud (ubiquity dev
summit 2016) (video).” https://www.youtube.com/watch?v=thUJARumXWE,
jan 2016. Accessed 22/5 2016.

[11] “Oic members.” http://openconnectivity.org/about/membership-list
Accessed 15/2 2016.

59

60 References

[12] “Open connectivity foundation faq.” http://openconnectivity.org/
about/faq
Accessed 15/2 2016.

[13] C. Bormann, A. P. Castellani, and Z. Shelby, “Coap: An application protocol
for billions of tiny internet nodes,” IEEE Internet Computing, vol. 16, no. 2,
p. 62, 2012.

[14] R. Fielding and J. Reschke, “Rfc 7230: Hypertext transfer protocol (http/1.1):
Message syntax and routing.” https://tools.ietf.org/html/rfc7230,
2014.

[15] Z. Shelby, K. Hartke, and C. Bormann, “Rfc 7252: The constrained applica-
tion protocol (coap).” https://tools.ietf.org/html/rfc7252, 2014.

[16] E. Rescorla and N. Modadugu, “Rfc 6347: Datagram transport layer security
version 1.2.” https://tools.ietf.org/html/rfc6347, 2012.

[17] C. Bormann and P. Hoffman, “Rfc 7049: Concise binary object representation
(cbor).” https://tools.ietf.org/html/rfc7049, 2013.

[18] “Oic - open connectivity foundation brings massive scale
to iot ecosystem.” http://openconnectivity.org/news/
open-connectivity-foundation-brings-massive-scale-to-iot-ecosystem,
feb 2016. Accessed 28/4 2016.

[19] “Oic - oneiota data model tool.” http://openconnectivity.org/
resources/oneiota-data-model-tool. Accessed 28/4 2016.

[20] “Iotivity programmers guide.” https://www.iotivity.org/
documentation/linux/programmers-guide
Accessed 29/4 2016.

[21] “Oic core specification v1.0.0.” http://openconnectivity.org/
resources/specifications, 2015. Accessed 19/4 2016.

[22] H. Virji, “The layered architecture of iotivity - samsung open source group
blog.” https://blogs.s-osg.org/layered-architecture-iotivity/,
nov 2015. Accessed 2/5 2016.

[23] “Iotivity features.” https://www.iotivity.org/documentation/features
Accessed 29/4 2016.

[24] “Registering a resource | iotivity.” https://www.iotivity.org/
documentation/linux/programmers-guide/registering-resource.
Accessed 29/4 2016.

[25] “Finding a resource | iotivity.” https://www.iotivity.org/
documentation/linux/programmers-guide/finding-resource. Accessed
29/4 2016.

[26] “Querying resource state [get] | iotivity.” https://www.
iotivity.org/documentation/linux/programmers-guide/
querying-resource-state-get. Accessed 29/4 2016.

References 61

[27] “Setting a resource state [put] | iotivity.” https://www.
iotivity.org/documentation/linux/programmers-guide/
setting-resource-state-put. Accessed 29/4 2016.

[28] “Observing resource state [observe] | iotivity.” https://
www.iotivity.org/documentation/linux/programmers-guide/
observing-resource-state-observe. Accessed 29/4 2016.

[29] “Introducing homekit.” https://developer.apple.com/videos/play/
wwdc2014-213/, 2014. Accessed 22/2 2016.

[30] “What’s new in homekit - wwdc 2015 - videos - apple developer.” https://
developer.apple.com/videos/play/wwdc2015/210/. Accessed 3/3 2016.

[31] “Designing accessories for ios and os x.” https://developer.apple.com/
videos/play/wwdc2014-701/, 2014. Accessed 22/2 2016.

[32] “Bonjour concepts.” https://developer.apple.com/library/mac/
documentation/Cocoa/Conceptual/NetServices/Articles/about.html.
Accessed 29/2 2016.

[33] “Srp: What is it?.” http://srp.stanford.edu/whatisit.html. Accessed
on 03/01/2016.

[34] B. et al., “High-speed high-security signatures.” http://ed25519.cr.yp.
to/ed25519-20110926.pdf, sep 2011. Accessed 1/3 2016.

[35] D. J. Bernstein, “Curve25519: new diffie-hellman speed records.” https:
//cr.yp.to/ecdh/curve25519-20060209.pdf, feb 2006. Accessed 1/3 2016.

[36] T. Hansen, “Rfc 6234 - us secure hash algorithms (sha and sha-based hmac
and hkdf).” https://tools.ietf.org/html/rfc6234, may 2011. Accessed
1/3 2016.

[37] Y. Nir and A. Langley, “Rfc 7539 - chacha20 and poly1305 for ietf protocols.”
https://tools.ietf.org/html/rfc7539, may 2015. Accessed 1/3 2016.

[38] “Apple’s homekit is proving to be too demanding for bluetooth smart home
devices - forbes.” http://www.forbes.com/sites/aarontilley/2015/07/
21/whats-the-hold-up-for-apples-homekit/#656731a2322b. Accessed
8/3 2016.

[39] “Wiced hot sheet.” http://www.mouser.com/ds/2/678/
MMPWICED-HS102-R-773833.pdf. Accessed 2/5 2016.

[40] “nrf51 dk / products / home - ultra low power wireless solu-
tions from nordic semiconductor.” https://www.nordicsemi.com/eng/
Products/nRF51-DK. Accessed 2/5 2016.

[41] “nrf51 series soc / products / home - ultra low power wireless so-
lutions from nordic semiconductor.” https://www.nordicsemi.com/eng/
Products/nRF51-Series-SoC. Accessed 2/5 2016.

[42] “The yocto project.” https://www.yoctoproject.org/about. Accessed 2/5
2016.

62 References

[43] G. Gediga, K.-C. Hamborg, and I. Düntsch, “Evaluation of software sys-
tems,” Encyclopedia of computer science and technology, vol. 45, no. supplement
30, pp. 127–53, 2002.

[44] J. Nielsen, Usability engineering. Elsevier, 1994.

[45] “Mfi program.” https://developer.apple.com/programs/mfi/. Accessed
18/5 2016.

[46] “Apple homekit release date rumours: First homekit enabled de-
vices on sale next month.” http://www.macworld.co.uk/feature/apple/
apple-homekit-release-date-rumours-3585269/. Accessed 18/5 2016.

[47] “Ocf certification.” http://openconnectivity.org/certification. Ac-
cessed 18/5 2016.

[48] “Iotivity documentation.” https://www.iotivity.org/documentation
Accessed 29/4 2016.

[49] “Use homekit-enabled accessories.” https://support.apple.com/en-us/
HT204893. Accessed 19/5 2016.

[50] “Oic remote access specification v1.0.0.” http://openconnectivity.org/
resources/specifications, 2015. Accessed 19/4 2016.

[51] “Tizen micro, small footprint tizen for headless iot devices.”
https://download.tizen.org/misc/media/tds2014/slides/
Tizen-Micro-Bingwei%20-%20Liu_en.pdf. Accessed 20/5 2016.

[52] “Google android system requirements.” http://www.mycomputeraid.com/
computers/google-android-system-requirements/. Accessed 20/5 2016.

[53] “Yocto faq.” https://www.yoctoproject.org/question/
what-smallest-footprint-yocto-project-can-support-effectively.
Accessed 20/5 2016.

[54] “Oic security specification v1.0.0.” http://openconnectivity.org/
resources/specifications, 2015. Accessed 19/4 2016.

C
o

m
p

ariso
n

 o
f IoT fram

ew
o

rk
s fo

r th
e sm

art h
o

m
e

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, 2016.

Comparison of IoT frameworks for
the smart home

Alexander Larsson
Erik Nimmermark

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2016-520
http://www.eit.lth.se

A
le

xa
n

d
e

r La
rsso

n
 &

 Erik N
im

m
e

rm
a

rk

Master’s Thesis

