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Abstract

Satellites are key components in today’s modern world, but they are ex-
pensive to launch and the orbits are crowded. With use of a dual band
circular polarization selective structure (CPSS) the satellites can be im-
proved and the number of reflectors needed to carry out a certain task can
be reduced. A dual band CPSS reflects one handedness of circular polar-
ization and transmits the other, over a certain frequency band, and over
the other frequency band the opposite occurs. This can be done with use of
a CPSS coated reflector or a diplexer type setup. This thesis investigates,
through full wave simulations of normal incidence, different candidates for
dual band reciprocal symmetrical CPSS. The frequency bands of interest
in this thesis are 17.7-20.2 GHz and 27.5-30.0 GHz and the goals are: in-
sertion loss and return loss of less than 0.50 dB and an axial ratio of less
than 0.78 dB (or 1.74 dB if diplexer setup is considered) for the targeted
circular polarization within the frequency band.

The dual band CPSS candidates consists of multiple layers of non-resonant
metal elements, meander lines and capacitively loaded strips, on substrates
inter-spaced by low-permittivity foam sheets. Two meander line designs
of 6 and 9 layers fulfill the goals specified for the diplexer setup with a
bandwidth of 14.73-20.55 GHz (33.0%) and 27.04-30.82 GHz (13.1%) for
the 6 layer design, 14.55-20.76 GHz (35.2%) and 27.20-30.31 GHz (10.8%)
for the 9 layer design. Moreover the 9 layer meander line design fulfill most
of the stricter axial ratio requirement with bandwidth of 16.16-20.38 GHz
(23.1%) and 28.31-29.53 GHz (4.2%).
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Sammanfattning

Satelliter är nyckelkomponenter i dagens moderna värld, dock är de dyra
att skjuta upp och omloppsbanorna är fullpackade. Genom att använda en
cirkulärpolariseringsselektiv struktur (CPSS) kan satelliter förbättras och
antalet reflektorer som behövs för att utföra en viss uppgift minskas. Detta
kan genomföras genom att belägga en reflektor med en CPSS struktur eller
genom att använda en diplexer-uppställning. En tv̊abandig CPSS reflek-
terar den ena polarisationen och transmitterar den andra över ett visst
frekvensband och över det andra frekvensbandet sker det omvända. Detta
examensarbete undersöker, genom fullv̊agssimuleringar vid normalt infall,
olika kandidater för tv̊abandig reciprok-symmetrisk-CPSS. Frekvensbanden
är 17.7-20.2 GHz och 27.5-30.0 GHz samt m̊alen är: Inkopplingsförlust samt
reflektionsförlust lägre än 0.50 dB och en axelkvot lägre än 0.78 dB (1.74
dB, om en diplexerupp- ställning tänks användas) för de berörda polarisa-
tionerna inom frekvensbanden.

De tv̊abandiga CPSS-kandidaterna best̊ar av flertalet lager av icke-resonanta
metallelement, meanderlinjer och kapacitivt lastade remsor, tryckta p̊a sub-
strat med l̊ag-permitivitetsmaterial som distanser. Tv̊a meanderlinedesigner
best̊aende av 6 och 9 lager uppfyller de specificerade kraven för en diplexerupp-
ställning. Deras bandbredd är 14.73-20.55 GHz (33.0%) och 27.04-30.82
GHz (13.1%) för designen med 6 lager, 14.55-20.76 GHz (35.2%) och 27.20-
30.31 GHz (10.8%) för designen med 9 lager. Utöver detta uppfyller de-
signen med 9 lager meanderlinjer merparten av de striktare axelkvotskravet
med en bandbredd p̊a 16.16-20.38 GHz (23.1%) och 28.31-29.53 GHz (4.2%).
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Chapter 1

Introduction

1.1 Background and Motivation

In this day and age communication with electromagnetic waves is widely
used and satellites in orbit are a key component in connecting areas around
the world. Today there are more than 2000 satellites for communication
purposes, and putting a satellite in these very crowded orbits is an expen-
sive endeavour, which means reducing the cost and improving functionality
is always welcome. When dealing with satellite links certain frequency
bands are used and naturally one wishes to send as much information as
possible within these bands. A way to be able to do this is to use orthogo-
nal polarization of the electromagnetic waves. Linear Polarization (LP) is
well understood and suitable in some applications. Changing polarization
of the transmitted wave for linear polarization from one orthogonal state to
the other is simply done by rotating the transmitting antenna 90◦. A draw-
back of using linearly polarized electromagnetic waves is that the receiving
antenna needs to be oriented in the same direction as the transmitting
antenna to maximize the signal received [1]. Naturally one understands
that it is problematic to maintain an alignment when working with satel-
lites and linear polarization is not preferred. Another unwanted effect is the
Faraday rotation which will rotate the linear polarized light as it propagates
through the ionosphere, creating further misalignment [1]. Instead Circular
Polarization (CP) is preferred since there is not an alignment requirement
between transmitting and receiving antennas and moreover there is less
path loss compared to linear polarization [2]. The requirement is simply
that the receiver/transmitter must be designed for one of the orthogonal
circular polarizations.

There is a demand for higher data rates in the near future and this pushes
the next generation communication satellites to operate in higher frequency
bands. These high throughput satellites will have two frequency bands for
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uplink and downlink communication. Their operational bands are likely to
be 18.2-20.2 GHz and 28-30 GHz but can be extended to the wider bands
17.7-20.2 GHz and 27.5-30 GHz [3]. The satellites are expected to use
multiple spot beam systems [2]. In combination with multiple beams the
satellites often reuse frequency and polarization in order to create coverage
of the intended landmass without ever having a mutual overlap and thus
reducing interference in communication. An example of coverage is seen in
Figure 1.1 where the spots are coded after frequency and polarization.

Figure 1.1: Example of multi-beam coverage (red= {f1,RHCP}, green=
{f1, LHCP}, blue= {f2,RHCP}, yellow= {f2, LHCP}) of an arbitrary land-
mass (gray)

This kind of satellite coverage can be realized using many reflectors as seen
in Figure 1.2, typically one reflector per beam color seen in Figure 1.1.
Not only is the satellite spatially large but it is very costly to have several
reflectors and this solution is thus not preferred. There are ways reflectors
can be improved. One way involves being able to separate the polarizations
with some kind of structure. In the case of linearly polarized electromag-
netic waves it is simple to carry out this separation of the polarizations.
A Linear Polarization Selective Structure (LPSS) can be as simple as a
metallic grid. Electromagnetic waves impinging with polarization parallel
to the metallic grid will be reflected and polarization perpendicular to the
grid will pass through unhindered. A Dual Gridded Reflector (DGR) using
these grid structures can be used to separate orthogonal linear polarizations
and realize different lobe forms for the two polarizations. DGR is a very
interesting concept useful for this problem. However a DGR is for linear
polarization and finding an equivalent structure for circular polarization
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is not as simple. If Circular Polarization Selective Structure (CPSS) (and
DGR equivalents) are considered to exist then there are two ways they can
be used to improve and reduce the number of reflectors.

Figure 1.2: A satellite with four gray reflectors.

Consider the case of Right Handed (RH) and Left Handed (LH) CP. For a
dual band scenario the structure will reflect Right Hand Circular Polariza-
tion/Polarized (RHCP) and transmit Left Hand Circular Polarization/Po-
larized (LHCP) in one of the frequency bands and in the other band the
opposite will occur (reflect LHCP, transmit RHCP). One proposed struc-
ture involves a DGR equivalent for circular polarization. The European
Space Agency (ESA) has suggested three different approaches involving
CPSS to create a DGR equivalent [4]. For the DGR’s suggested, certain
polarization and frequency combinations are reflected in the first layer of
the reflector and others in the second layer and so the different beams will
have different lobe forms.

The other option is to use the CPSS as a diplexer where the different
polarizations and frequencies are reflected or transmitted by a flat struc-
ture and on to a common reflector, this is seen in Figure 1.3 [5, 6]. In this
case recieving and transmitting is done by the same physical horn and thus
two horns are needed for the configuration in Figure 1.3. This setup will
enable the use of four color coverage, depicted in Figure 1.1, with only two
reflectors as opposed to the four reflectors currently needed.

The two types of structures for a dual band scenario that has been de-
scribed is what this thesis aims to investigate. Depending on the result
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CPSS
Dual Band

Common Reflector

Figure 1.3: Example of usage of dual band CPSS as a diplexer. Transmitters are
black, receivers are gray and RHCP is marked with red lines and the blue
lines corresponds to LHCP.

one of these options might be better than the other. The purpose of the
thesis is to present a functional dual band CPSS (simulated in a full wave
solver) working according to certain specifications that will be presented
in upcoming section. Developing a dual band CPSS enables the use of the
aperture of the satellite more efficiently and allows for more missions per
satellite, a quality highly sought for [7, 8].

1.2 Course of Action and Target goals

This thesis aims to present dual band CPSS candidates for use in space
application for the two bands 17.7-20.2 GHz and 27.5-30 GHz. The designs
will be simulated for normal incidence and optimized in CST Studio Suite
2015. The performance requirements of the structures will be discussed
more later but are also stated here for completeness (Table 1.1) . Their
definitions are found in the Chapter 3.
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Table 1.1: Summarizing the targets for the CPSS. Band 1 is 17.7-20.2 GHz,
Band 2 is 27.5-30 GHz. The higher values for axial ratio are the relaxed
requirements.

Pol. Pol. Target
Band 1 Band 2 Value

Insertion Loss RH LH ≤ 0.5 dB

Return Loss LH RH ≤ 0.5 dB

AR Transmission RH LH ≤ 0.78 dB (≤ 1.74 dB)

AR Reflection LH RH ≤ 0.78 dB (≤ 1.74 dB)

1.3 Outline of the Thesis

The thesis is composed of 8 chapters. The current chapter introduced the
subject and defined the purpose of the thesis. The second chapter will
introduce the concept of CPSS, provide necessary information regarding
previous work and define the materials used. In order to understand how
a dual band CPSS can function the third chapter is devoted to theory. In
the first part of the chapter basic theory is covered and then more spe-
cific theory pertaining to the thesis is presented and two different design
structures are presented. Chapter 4 briefly deals with the analytical code
used for the thesis and chapter 5 focuses on important considerations when
implementing the designs in full wave solvers. The result and discussion
of the optimized structures are kept in chapter 6. The last two chapters,
7 and 8, contain the summary, conclusions that are made and future work
regarding the presented dual band CPSS.
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Chapter 2

Circular Polarization Selective Structures

Selectivity in linear polarization has been used for many years with several
more or less simple designs such as grids of straight wires [9]. There has not
been an equivalent, simple structure, for selection in circular polarization
and the feasibility of it ever existing has been a topic of articles in the past
[9]. Nowadays, it is known that these structures indeed can be created. In
this chapter the basic properties of a circular polarization selective structure
will be discussed, followed by previous work in the area.

2.1 Concept of Circular Polarization Selective Structures

CPSSs are constructed in such a way that they have a capability of filtering
circularly polarized electromagnetic waves. An ideal CPSS will give lossless
transmission for one circular polarization and total reflection for the orthog-
onal polarization, within the designed frequency range. The two circular
polarizations are left-handed- and right-handed- polarization and provide
a natural way to categorize the CPSS depending on which type of CP is
reflected. These categories are called Left Hand Circular Polarization Selec-
tive Structure (LHCPSS) and Right Hand Circular Polarization Selective
Structure (RHCPSS), where an ideal LHCPSS reflects an impinging left
handed circular polarized wave and vice versa for RHCPSS. Conceptually
RHCPSS and LHCPSS are similar and all CPSS in this chapter will now
be considered to be LHCPSS unless stated otherwise. The CPSS can be
divided in further categories as the reflected and transmitted wave do not
need to be of the same polarization as the original impinging waves. Four
different CPSSs can theoretically be constructed and these are illustrated
in Figure 2.1.

7
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Reflection Reflection

Reflection Reflection

Transmission Transmission

TransmissionTransmission

Type I: Reciprocal - Symmetrical Type II: Reciprocal - Asymmetrical

Type III: Nonreciprocal - Symmetrical Type IV: Nonreciprocal - Asymmetrical

Figure 2.1: Reflection and transmission for different types of circular polarization
selective structures. Red is RHCP and blue is for LHCP.

Two types are non reciprocal which implies that they can not be con-
structed by reciprocal materials but need more exotic materials such as
magnetized ferrite crystals and are not interesting for this application [5].
The second type (Reciprocal - Asymmetrical) has not been constructed as
far as the author is aware. In this thesis, Reciprocal-Symmetrical selective
surfaces are the type to be investigated and henceforth when using the word
CPSS it is implied that it is Reciprocal-Symmetrical. It can be shown from
theory that a reciprocal-symmetrical CPSS must have the three following
properties [10]:

1. “The CP wave reflected by a CPSS will be of the same polarization
as the incoming wave”

2. “The wave transmitted by a CPSS will be of the same polarization
as the incoming wave”

3. “An infinite CPSS cannot be made of an infinitely thin surface”

2.2 Previous Work

During the last half century there has been interest in creating CPSS and
several different concept designs have been presented. Many of these are



Circular Polarization Selective Structures 9

reliant upon the resonant behavior of the structure. In more recent years
non-resonant structures have become more common. There are advantages
and disadvantages with both resonant and non-resonant structures. The
major designs will now be presented in a chronological order. In order to
provide some insight to the performance of these structures some graphs
will be shown. These graphs will show the Return/Insertion Loss which can
be viewed as a measurement of losses in reflection and transmission, where
0 dB is perfect reflection/transmission. Moreover the purity of the circular
polarization will be shown as Axial Ratio (AR), where 0 dB is a perfectly
circular polarized wave. All of these concepts will be defined properly in
the theory section (Section 3.2).

The oldest design known was invented in 1966 and consists of Pierrot ele-
ments, named after the inventor Robert Pierrot [11]. An individual element
can be seen in Figure 2.2 a) and it is in essence a bent metal wire with
lengths based on the target wavelength.

The general idea behind this element is that any circularly polarized wave
can also be described with a linear basis. The linear components of the elec-
tromagnetic wave will only interact with the wires if they are parallel to
them. If the propagation direction is in the z -direction and the middle sec-
tion of the Pierrot element is equal to a quarter wavelength then an electric
field currently in the x -direction will be in the y-direction after propagating
a quarter wavelength in the z -direction. Currents will be induced on the
wire by a wave impinging on it and depending on if the incident electro-
magnetic wave is polarized left or right handed the induced currents will
either add in phase or out of phase and so be either resonant or not. If
the structure is resonant the wave will be reflected and transmitted if not.
An example of performance for a RHCPSS designed around 10 GHz and
with normal incidence can be seen in Figure 2.3. This structure is quite
narrowband (1.05 GHz) and although not seen in the figure it has poor
performance for other angles of incidence, mainly the AR is affected [12].
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Figure 2.2: Resonant CPSS elements. a) Pierrot, b) Tilston, c) Morin.
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Figure 2.3: Performance of a Pierrot RHCPSS. Taken from [12].

The second design introduced was by Tilston in 1986 [13,14]. The Tilston
cell, like the Pierrot, consists of bent metal wires. The element can be
seen in Figure 2.2 b). There are two dipoles and they are connected by a
transmission line having λ/4 physical length and λ/2 electrical length, the
gray area in 2.2 b). Similar to the Pierrot element the linear components
of a LHCP electromagnetic wave impinging on this structure will cause
the dipoles to create a voltage over the central gap. If these voltages are
in phase there will be symmetry around the transmission line. The two
dipoles in the Tilston cell will be in resonance for this LHCP wave and
thus reflect it. If the input wave is a RHCP wave then the voltages would
be out of phase and consequently get reflected. For this design to function
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it is of importance that the transmission line has an electrical length of
λ/2 to properly transform to open/short circuit but moreover a physical
length of a quarter wavelength in order for the dipoles to pick up the or-
thogonal components of the electromagnetic wave in phase. In Figure 2.4
the performance of a Tilston RHCPSS can be seen. As with the Pierrot
structure, normal incidence with the target frequency 10 GHz is used. The
Tilston structure has a bandwidth of 0.83 GHz and has poor performance
for oblique incidence [12].
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Figure 2.4: Performance of a Tilston RHCPSS. Taken from [12].
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In 1994 Morin [15] introduced another design which consists of intercon-
nected metal wires forming a helix structure. The unit cell and the helix
structure are visible in Figure 2.2 c). Similarly to the two previous elements
the lengths of the wires for the Morin cell are such that the induced cur-
rents will add either in phase or out of phase depending on the polarization
of the incoming wave. The performance can be seen in Figure 2.5 and is
comparable to the other two resonant structures. Bandwidth for the design
presented is 1.04 GHz. For oblique incident the performance is not kept
and all graphs differ significantly [12].
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Figure 2.5: Performance of a Morin RHCPSS. Taken from [12].



14 Circular Polarization Selective Structures

These three structures presented are the basic CPSS based on resonant be-
havior. Naturally due to the ingenuity of the human race some variations
of these basic elements exists and have been produced over the years but
alas not all can be presented here. A common problem with the resonant
structures is that the bandwidth is relatively narrow as seen by the three
structures and that they are very sensitive to change in the incidence plane.
In order to improve the CPSS there has been an effort to investigate other
structures that do not depend on a resonant behavior.

One approach is to make a circular to linear polarizer and consequently
carry out the separation in linear polarization with a simple strip grid and
then convert back to circular polarization [16]. The circular to linear po-
larizer consists of a number of layers of meander lines not rotated after one
another. The number of layers helps improving the axial ratio and this
structure has a much better bandwidth than the resonant case [16]. The
results are seen in Figure 2.6 and consist of data taken from their simula-
tions [16]. Even though the requirements may not be met completely this
structure has flat curves and a possibility of much greater bandwidth than
previous resonant structures.
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Figure 2.6: Simulated preformance of cascade CPSS, made with data from Joyal
and Laurin [16].

This was for the single band scenario but polarizers have also been used
to investigate possibility of dual bands. In this case a dual band linear to
circular polarization conversion in reflection has been made without use of
meander lines [8]. This structure provides conversion from one linear po-
larization to one handedness of circularly polarized electromagnetic waves
in the first frequency band and the orthogonal circular polarization in the
second frequency band.

The second approach is different to the others and is what will be used
for this thesis. The approach draws inspiration from a way to design circu-
lar polarizers with optical metamaterials [17]. One layer will have a certain
response in a linear basis and by stacking several layers and tweaking their
relative rotation the selectivity in polarization will become clear. More on
how this occurs will be described in Section 3.2. Based on this concept
and using meander line layers a wide band CPSS has been theorized [6]
and physical construction of a similar design is ongoing. The simulation
results are significantly better than other designs previously mentioned as
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seen in Figure 2.7. The full drawn black line show the target frequencies
and target bandwidth of 6 GHz.
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Figure 2.7: Performance of wideband meander design [6].

This kind of design approach can also be used in order to create a dual
band CPSS. A very limited introduction can be given by the following brief
argument. Consider the elements with a certain response in the x-y basis
and a circularly polarized wave moving in the z -direction. In Figure 2.8 a
LHCP wave (red) is traveling through the structure with the field aligned
the same way for all layers and thus experiencing the structure in some way.
The same effect will be had for a higher frequency and when the incoming
wave is RHCP. This can be seen by the higher frequency blue line (RHCP)
since the vector aligns parallel to the lower frequency red line (LHCP) for
all layers.
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Figure 2.8: Illustration of alignment of different rotations through a structure.

Creating such a dual band structure has not previously been done and what
has been presented above is how far the previous work has reached. This
thesis will now continue the work on CP selectivity and show the feasibility
of a dual band CPSS based on full wave simulations.

2.3 Structure Requirements and Constraints

The requirements that will be set for the dual band CPSS in this thesis is
based on previous project description from ESA and used in similar appli-
cations [18]. A return loss and insertion loss of less than 0.50 dB is wanted.
For AR the requirement is set in Cross Polar Discrimination (XPD) as
higher than 27 dB and this is equivalent to an AR of 0.78 dB or less (see
(3.45)) This strict requirement of AR is valid for when the proposed design
will be used as a curved reflector described earlier (DGR equivalent). When
using the CPSS as a diplexer the AR requirement can be relaxed since for
this case there are antenna feed designs with good performance [3] to make
up for the less strict AR. The relaxed AR requirements used are similar to
previous work using an XPD of higher than 20 dB which equates to an AR
of 1.74 or less [5].

There are also certain parameters that are fixed and not used in the op-
timization and those are important to mention. For completeness these
are stated here but the labeling of these items are not guaranteed to make
sense until Section 5.8 where they are initiated properly. These parameters
and their fixed thickness can be seen in Table 2.1.
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Table 2.1: Fixed thicknesses for certain parameters used in the thesis.

Parameter Name Abbreviation Thickness (mm)

Substrate tsubs 0.1

Metal Printed on Substrate tmetal 0.018

Bonding Layers tbond 0.05

The proposed structure must be made of feasible and suitable materials for
space applications. The materials used have been used in previous projects
and are chosen based on their low loss tangent and permittivity as well as
low thermal expansion coefficient. The properties can be seen in Table 2.2.
The metal parts will all consist of copper.

Table 2.2: Properties of materials used in the thesis.

Parameter Name Material εr tan(δ)

Substrate Dupont AP8515R kapton 3.4 0.003

Distances Rohacell 31 HF foam 1.04 0.0017

Bonding Layers Arlon CuClad6250 bonding film 2.32 0.0013



Chapter 3
Theory

This section serves as a brief theory section for the master thesis. It acts as
an introduction to the general concepts involved and will not be explained
in great detail. Definitions will be introduced as appropriate and expanded
upon further when the need arises. The starting point will be Maxwell’s
equations and from this waves, polarization and how a structure can be
treated with S and T matrices shall be described. The confident reader can
skip to Section 3.2 where the specific theory for the thesis begins. Much of
the information presented here can be found in standard books [19–21].

3.1 General Theory

3.1.1 Maxwell’s Equations

The interesting subject of classical electromagnetic theory can be described
beautifully by Maxwell’s equations. Based on previous empirical and theo-
retical work (done by Ampere, Faraday and Gauss) Maxwell published the
equations in 1873 [22]. In differential form the equations read:

∇×E = −∂B
∂t

, (3.1a)

∇×H = J +
∂D

∂t
, (3.1b)

∇ ·D = ρ, (3.1c)

∇ ·B = 0. (3.1d)

In order, the equations are: Faraday’s law of induction, Ampère’s law
including Maxwell’s displacement current and the last two equations are
Gauss’ laws for electric and magnetic fields. Since no magnetic monopole
has been found yet the right hand side of Gauss’ law for magnetic fields
is zero. Sometimes the two last equations are omitted in favor of conser-
vation of charge (∇ · J + ∂ρ

∂t = 0). The reason for this is simple. Gauss’

19
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equations can be derived from the divergence of Ampère and Faraday’s
laws in combination with charge conservation and observing that for any
vector F the relation ∇ · (∇× F ) = 0 holds. Throughout this thesis work
the SI system of units will be used and the units of the above quantities are:

E is the electric field, in volts per meter (V/m)
H is the magnetic field, in amperes per meter (A/m)
D is the electric flux density, in coulombs per meter squared (C/m2)
B is the magnetic flux density, in Webers per meter squared (i.e. Tesla)
(Wb/m2)
J is the electric current density, in Amperes per meter squared (A/m2)
ρ is the volume electric charge density, in Coulombs per meter cubed
(C/m3)

Note that ρ and J are the result of external charges and not any induced
polarization, charge or current. They are source terms and when consid-
ering problems of electromagnetic wave propagation these are limited to
the radiating structure. Far away from the source the simpler source free
Maxwell’s equations are obtained:

∇×E = −∂B
∂t

, (3.2a)

∇×H =
∂D

∂t
, (3.2b)

∇ ·D = 0, (3.2c)

∇ ·B = 0. (3.2d)

These equations are not sufficient to solve the system since there are 6
independent equations but 12 unknowns (4 vectors of three components).
The equations needed are the constitutive relations. In vacuum these are,

D = ε0E, (3.3a)

B = µ0H, (3.3b)

where ε0, µ0 are the permittivity and permeability of vacuum. The units
and values are:

ε0 = 8.854 · 10−12 F/m,

µ0 = 4π · 10−7 H/m.
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From these quantities we can define other important physical constants.
The speed of light and characteristic impedance (in vacuum) as:

c0 =
1

√
µ0ε0

= 299792458 m/s, η0 =

√
µ0

ε0
= 376.730... Ω.

For a linear isotropic, material (3.3) becomes

D = εE, (3.4a)

B = µH, (3.4b)

where ε = ε0εr = ε′ − jε′′ (similar for µ). The losses in materials are often
of importance and they can be described by the loss tangent defined as:

tan(δ) =
ωε′′ + σ

ωε′
. (3.5)

Moreover the speed of light and impedance in the material is given by

v = 1√
µε and η =

√
µ
ε .

3.1.2 Plane Waves and Polarization

The fundamental electromagnetic equations and definitions have been pre-
sented. How electromagnetic waves propagate and other, for this thesis,
vital definitions will be presented. Consider a source free space described
by (3.2). Now taking the curl of (3.2a) and further using the constitutive
relations (3.4). The following is obtained,

∇× (∇×E(r, t)) = −µε∂
2E(r, t)

∂t2
. (3.6)

Since ∇× (∇×A) = ∇(∇ ·A)−∇2A for any vector, and ∇(∇ ·E) = 0 in
a source free region,

∇2E(r, t)− 1

c2

∂2E(r, t)

∂t2
= 0. (3.7)

This is the well-known wave equation which elegantly describes how elec-
tromagnetic waves behave. Now consider a wave traveling in the z -direction
and no spatial dependence in the x - or y-direction. Waves with these prop-
erties are called plane waves. These waves are unphysical (carry infinite
energy) but serve as an approximation far away from the source. For this
type of waves (3.7) becomes,(

∂2

∂z2
− 1

c2

∂2

∂t2

)
E(z, t) = 0. (3.8)
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The magnetic field associated with the wave is given by,

H =
1

η
ẑ ×E. (3.9)

The most general solution to the wave equation can be written as forward
and backwards traveling fields:

E+(z, t) = F (z − ct), (3.10a)

E−(z, t) = G(z + ct), (3.10b)

where the +/- subscript indicate forward/backward movement in the z-
direction, F and G are arbitrary functions such that ẑ · F = ẑ ·G = 0.
This solution is quite general, but further restrictions can be imposed to
obtain a more familiar set of solutions. We concentrate on only the E-field
(H-field is then easily obtained). If the additional assumption of harmonic
time dependence is made then the electric field can be written as [19],

E(r, t) = E(z)ejωt. (3.11)

The wave equation can then be separated into space and time dependence.
The space dependence is given by the Helmholtz equation,

∇2E(r) + k2E(r) = 0, (3.12)

where k = ω
c . With the previous assumption of plane waves the above

equation reduces to,
∂2E(z)

∂z2
+ k2E(z) = 0. (3.13)

The solution to this equation are the forward and backwards fields,

E+(z) = E0+e
−jkz, (3.14a)

E−(z) = E0−e
+jkz. (3.14b)

As before there can be no component in the z -direction. Besides this re-
quirement E0± are arbitrary constant vectors.

For now consider only forward going waves. Any such plane wave can be
described as obtained,

E+(z, t) = E0+e
jωt−jkz = (x̂A+ ŷB)ejωt−jkz. (3.15)

The wave has components in x- and y- direction and from this the polariza-
tion state can be discussed. The polarization is determined by the direction
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of the real value of the time-varying field, Re(E(r, t)). Using trigonometric
relations the polarization ellipse can be obtained,

Re(E2
x)

|A2|
+

Re(E2
y)

|B2|
− 2cosφ

Re(Ex)Re(Ey)

|A||B|
= sin2φ, (3.16)

where φ = arg(A) − arg(B). It is clear that if φ = {0, π} then the polar-

ization state is a line as equation 3.16 reduces to Re(Ey) = ± |A||B|Re(Ex) .

This corresponds to a linear polarized wave. If φ is ±π/2 and |A| = |B|
then the polarization ellipse reduces to a circle and so describes circular
polarization. As seen circular polarization and linear polarization are spe-
cial cases of (3.16) and the general polarization state is elliptical. From
equation 3.16 the general state can be drawn (Figure 3.1).

Ex

Ey

-A A

B

−B

θ

CC

A′

E′x

D

B′

E′y

Figure 3.1: General polarization ellipse.

The tilt angle θ in Figure 3.1 is related to φ by,

tan 2θ =
2AB

A2 −B2
cosφ. (3.17)

An ellipse has a major and a minor axis. The ellipse is a circle if the ratio
between the axes are one. The semi-axes of the ellipse in Figure 3.1 are
given by the following expressions:

A′ =

√
1

2
(A2 +B2) +

s

2

√
(A2 −B2)2 + 4A2B2cos(φ), (3.18a)

B′ =

√
1

2
(A2 +B2)− s

2

√
(A2 −B2)2 + 4A2B2cos(φ), (3.18b)
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where s = sign(A−B).

In this thesis circular polarization will be used extensively and the defi-
nition from Institute of Electrical and Electronics Engineers (IEEE) [23]
will be used. The definition can be presented as follows, consider an or-
thonormal right-handed basis, fixed in space, â, b̂, ĉ. If the wave is traveling
in the ĉ-direction and one observes the ab-plane from the tip of the ĉ unit
vector and the electric field vector rotates in a mathematical positive direc-
tion then the wave is right circular polarized. Conversely the wave is left
circular polarized if the rotation direction is negative. This is illustrated in
Figure 3.2 where the circles obtained from plotting the tip of the electric
field vector for all times. The direction of movement of the tip is indicated
by the arrows on the circles.

b̂

â

ĉ

Figure 3.2: Circles traced by the electric field vector, red circle is right handed
and blue circle is left handed.

In short this gives the following,

E(z) = (x̂− jŷ)e−jkz Right-polarized, forward moving,

E(z) = (x̂ + jŷ)e−jkz Left-polarized, forward moving,

E(z) = (x̂− jŷ)ejkz Left-polarized, backward moving,

E(z) = (x̂ + jŷ)ejkz Right-polarized, backward moving.

Keep in mind that this also means that a right circular wave traces a left
handed helix in space and similarly a left circular wave traces a right handed
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helix. Throughout this work circular polarization is of great importance,
and a measure of the purity of the circular polarization is needed. A good
quantity of this is the axial ratio.

The axial ratio is defined by the IEEE as “The ratio of the major to minor
axes of a polarization ellipse” and can be computed as [24],

AR = max
(A′
B′
,
B′

A′

)
. (3.19)

Both linear and circular polarization can serve as a basis and conversion
between linear and circular polarization for a wave propagating in positive
z-direction can be summarized by the following matrices(

ER

EL

)
=

1√
2

(
1 j
1 −j

)(
EX

EY

)
, (3.20)(

EX

EY

)
=

1√
2

(
1 1
−j j

)(
ER

EL

)
, (3.21)

where R stands for right polarized and L for left polarized.

3.1.3 Reflection and Transmission

In the previous sections the polarization of electromagnetic waves has been
described and now propagation of these waves will be discussed. For the
sake of simplicity the electromagnetic wave is propagating in the z -direction
and is linearly polarized with the E-field in the x -direction. The wave is
propagating in a lossless and isotropic dielectric (ε and µ constant). After
some rearranging of equations 3.9 and 3.14 the fields can be related to the
forwards and backwards electric fields through(

E
H

)
=

(
1 1

1/η −1/η

)(
E+

E−

)
. (3.22)

The impedance and the reflection coefficient at position z are as follows,

Z(z) =
E(z)

H(z)
= η

Z(0)− jη tan(kz)

η − jZ(0) tan(kz)
, (3.23)

Γ(z) =
E−(z)

E+(z)
= Γ(0)e2jkz. (3.24)

The relation between the reflection coefficient and impedance, at the posi-
tion z, is given by

Z(z) = η
1 + Γ(z)

1− Γ(z)
, (3.25a)

Γ(z) =
Z(z)− η
Z(z) + η

. (3.25b)
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3.1.4 Transfer and Scattering matrices

The quantities E+, E−,Γ are easily propagated (equation 3.14, 3.24) whereas
E,H,Z are not. They do however have another advantage and that is in-
terface crossings, where E,H,Z are all continuous at normal incidence with
respect to an interface. Consider an interface, the total fields on either side
can then be written as, (

E2

H2

)
=

(
1 0
0 1

)(
E1

H1

)
. (3.26)

For this application the more interesting forward and backwards electric
fields are(

1 1
1/η2 −1/η2

)(
E2+

E2−

)
=

(
1 1

1/η1 −1/η1

)(
E1+

E1−

)
, (3.27)

(
E2+

E2−

)
=

1

2

(
1 η2

1 −η2

)(
1 1

1/η1 −1/η1

)(
E1+

E1−

)
. (3.28)

Which simplifies to, (
E2+

E2−

)
=

1

τ

(
1 ρ
ρ 1

)(
E1+

E1−

)
, (3.29)

where,

ρ =
η1 − η2

η1 + η2
, (3.30a)

τ =
2η1

η1 + η2
, (3.30b)

are the reflection and transmission coefficients respectively. The matrix in
(3.29) is called matching matrix. Now the forward and backward fields of
a slab of length l can easily be written as,(

E1+

E1−

)
=

1

τ1

(
1 ρ1

ρ1 1

)(
ejk1l1 0

0 e−jk1l1

)
1

τ2

(
1 ρ2

ρ2 1

)(
E2+

E2−

)
. (3.31)

This can easily be extended for several slabs. Writing the expression above
as, (

E1+

E1−

)
=

(
T11 T12

T21 T22

)(
E2+

E2−

)
, (3.32)

the transfer matrix is apparent. The transfer matrix (T-matrix) is very
convenient in computations since propagating the related fields are easy.
However, it is often desired to relate the incoming field to the outgoing.
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By converting the transfer matrix, to relate the incident and the scattered
fields to each other, the scattering matrix is obtained,(

E1−
E2+

)
=

(
Γaa Tab
Tba Γbb

)(
E1+

E2−

)
. (3.33)

This is a very brief introduction to the scattering and transfer matrices in
the simplest case. This can be expanded to more complex structures, di-
electrics and angles of incident. Treating isotropic dielectric/magnetic ma-
terials only require a small modification to the equations, the wave number
k. However, the purpose of this section is not to dwell too deeply in this
theory. The general result for a bianisotropic slab will be stated. Similar
to the above matrices the slab can be described by the so called ABCD-
matrix [20]. (

E(z1)
H(z1)× ẑ

)
=

(
A B
C D

)(
E(z2)

H(z2)× ẑ

)
. (3.34)

In the surrounding free space using the relation E± = ±Z0 · (H± × ẑ)
implies that(

(I + r) ·E1+

Z−1
0 · (I − r) ·E1+

)
=

(
A B
C D

)
·
(

t ·E1+

Z−1
0 · t ·E1+,

)
, (3.35)

where Z0 is the wave impedance dyadic. The reflection and transmission
dyadics can be solved for [25],

r = (A+B ·Z−1
0 −Z0 ·C−Z0 ·D ·Z−1

0 )·(A+B ·Z−1
0 +Z0 ·C+Z0 ·D ·Z−1

0 )−1,
(3.36a)

t = 2(A + B · Z−1
0 + Z0 ·C + Z0 ·D · Z−1

0 )−1. (3.36b)

How materials actually scatter light is a very interesting subject but require
much more theoretical background. The interested reader can read more
about this subject in Basic Theory of Electromagnetic Scattering [26]. For
this thesis it is sufficient to accept that the above scattering and transfer
matrices can be constructed for the structures of interest. With the scat-
tering matrix introduced the plausibility of a dual band CPSS can soon be
introduced.

3.2 Specific Theory

The theoretical framework has now been presented and we are ready to
discuss how to describe circular polarization selective structures by using
the scattering and transfer matrices.
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3.2.1 Ideal Scattering Matrices

Consider a structure interacting with electromagnetic waves. The structure
is infinite in the xy-plane with infinitesimal thickness in the z -direction.
Electromagnetic waves are incident from both sides of this structure (z > 0
and z < 0). These two excitation planes are labeled port 1 and port 2.
The incident waves are right hand circular polarized and left hand circular
polarized. With previous notion of the scattering matrix the outgoing waves
from this surface can be described through the scattering matrix (subscript
indicates port number, superscript indicates polarization),

SCP =


SRR11 SRL11 SRR12 SRL12

SLR11 SLL11 SLR12 SLL12

SRR21 SRL21 SRR22 SRL22

SLR21 SLL21 SLR22 SLL22

 , where Sklij =
Eki
Elj

. (3.37)

A CPSS is a structure which has selectivity in which polarization it reflects.
As previously stated this structure will reflect left handed circular polar-
ization. Thus the ideal LHCPSS can be represented with the following S
matrix,

SLHCPSS
Ideal =


0 0 e−jφt 0
0 e−jφr 0 0

e−jφt 0 0 0
0 0 0 e−jφr

 , (3.38)

where φt and φr are the phases of the transmission and reflection coeffi-
cients, respectively. Similarly for an RHCPSS,

SRHCPSS
Ideal =


e−jφr 0 0 0

0 0 0 e−jφt

0 0 e−jφr 0
0 e−jφt 0 0

 . (3.39)

The goal of this thesis is to create a structure that is LHCPSS for a certain
frequency, f1, and a RHCPSS for another frequency, f2. From the scatter-
ing matrix (3.37) certain valuable quantities can be computed. From IEEE
definitions [24],

Return Loss

Definition: “The ratio of incident to reflected power at a reference plane of
a network.”

RL = −20 log10(|Skl
mm|). (3.40)

For this thesis only k = l is of interest.
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Insertion Loss

Definition: “Resulting from the insertion of a transducer in a transmission
path or system: the ratio of (1) the power delivered to that part of the
system following the transducer, before insertion of the transducer, to (2)
the power delivered to that same part of the system after insertion of the
transducer. It is generally expressed as a ratio in decibels (dB).”

IL = −20 log10(|Skk
mn|), m 6= n. (3.41)

Axial Ratio

The definition of AR has already been covered. For the sake of completeness
it is stated once more.
Definition:“The ratio of the major to minor axes of a polarization ellipse”
The axial ratio can be expressed with the scattering parameters as,

AR = 20 log10

(√√
1 + α+ 1√√
1 + α− 1

)
, (3.42)

where,

α =
1

4

(∣∣∣∣∣Skl
mn

Sll
mn

∣∣∣∣∣−
∣∣∣∣∣Sll

mn

Skl
mn

∣∣∣∣∣
)2

. (3.43)

These expressions are obtained by expressing the polarization ellipse semi-
axes, A′ and B′, with Stokes parameters and simplifying [21]. There is
another widely used term to measure polarization purity, XPD. The XPD is
defined as the ratio of the average received power of the desired polarization
(co-polarized) relative to the average received power of the undesired one
(cross-polarized) and can be computed as [27]:

XPD = 20 log10

(∣∣∣∣SkkmnSklmn

∣∣∣∣) , k 6= l. (3.44)

Only AR will be used in this thesis but for comparison with other work the
relation between AR and XPD is given by the following conversion, where
the AR and XPD are given in dB,

XPD = 20 log10

(
AR + 1

AR− 1

)
, (3.45a)

AR = 20 log10

(
10

XPD
20 + 1

10
XPD
20 − 1

)
. (3.45b)

These are the definitions needed to easily characterize the proposed struc-
tures.
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3.2.2 Linear to Circular Polarization Representation

Before further direct calculations of the S-matrices the two port conversion
between linear and circular polarization must be described. The reason
for this is that the structure will consist of multiple layers of a structure
which has a certain response in linear polarization. When multiple layers
are stacked together it will soon be clear that a selectivity in circular po-
larization appears.

The conversion between linear to circular polarization is given by (3.20).
However, this is for propagation in the z -direction. The outgoing waves
from the ports are incident on the structure and thus travel in both posi-
tive and negative z -direction depending on the port. Since the direction of
propagation is different the following conversion matrices are needed:(

ER
1

EL
1

)
=

1√
2

(
1 −j
1 j

)(
EX

1

EY
1

)
, (3.46)

(
ER

2

EL
2

)
=

1√
2

(
1 j
1 −j

)(
EX

2

EY
2

)
. (3.47)

The scattered fields in linear and circular representation are then given by,
ER

1

EL
1

ER
2

EL
2

 =
1√
2


1 −j 0 0
1 j 0 0
0 0 1 j
0 0 1 −j



EX

1

EY
1

EX
2

EY
2

 = P ·


EX

1

EY
1

EX
2

EY
2

 . (3.48)

With (3.48) a conversion between linear and circular polarization for the
scattering matrix can be done. Due to the convenient block matrix form
the inverse is simply,

P−1 =
1√
2


1 1 0 0
j −j 0 0
0 0 1 1
0 0 −j j

 . (3.49)

3.2.3 Single Layer

The complete structure will consist of multiple linearly polarized elements
stacked after one another. One reason for this will become clear after this
subsection. Continue to consider the single layers to be infinitesimally thin
and separated by a distance, d. Each layer can be rotated in the xy−plane
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by an angle φ. If aligned with the coordinate system (φ = 0) the scattering
matrix for these elements in linear polarization are,

S(φ = 0)LP
Linear =


rx 0 tx 0
0 ry 0 ty
tx 0 rx 0
0 ty 0 ry

 . (3.50)

Only co-polarized transmission and reflection are present. For clarification,
the subscript linear indicates that it is a linearly polarized element and the
superscript indicates in which basis the matrix is presented. Each layer will
be rotated an angle φ, in the xy-plane, compared to the previous layer and
the scattering matrix for such an arbitrary rotated element will then be the
result of a simple rotation described by the following transformation,

S(φ)LP
Linear =


cosφ sinφ 0 0
− sinφ cosφ 0 0

0 0 cosφ sinφ
0 0 − sinφ cosφ

 ·

rx 0 tx 0
0 ry 0 ty
tx 0 rx 0
0 ty 0 ry




cosφ − sinφ 0 0
sinφ cosφ 0 0

0 0 cosφ − sinφ
0 0 sinφ cosφ

 . (3.51)

After observing that tx,y = 1 + rx,y (equation 3.30) and carrying out the
multiplication the result is,

SLP
Linear = rx


cos2 φ − cosφ sinφ cos2 φ − cosφ sinφ

− cosφ sinφ sin2 φ − cosφ sinφ sin2 φ
cos2 φ − cosφ sinφ cos2 φ − cosφ sinφ

− cosφ sinφ sin2 φ − cosφ sinφ sin2 φ



+ry


sin2 φ cosφ sinφ cos2 φ cosφ sinφ

cosφ sinφ cos2 φ cosφ sinφ cos2 φ
sin2 φ cosφ sinφ sin2 φ cosφ sinφ

cosφ sinφ cos2 φ cosφ sinφ cos2 φ

+


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .

(3.52)
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Now with use of equation 3.48 and 3.49 conversion to circular polarization
is simple,

SCP
Linear = PSLP

LinearP
−1 =

1

2


1 −j 0 0
1 j 0 0
0 0 1 j
0 0 1 −j

·



cos2 φ − cosφ sinφ cos2 φ − cosφ sinφ
− cosφ sinφ sin2 φ − cosφ sinφ sin2 φ

cos2 φ − cosφ sinφ cos2 φ − cosφ sinφ
− cosφ sinφ sin2 φ − cosφ sinφ sin2 φ



+ ry


sin2 φ cosφ sinφ cos2 φ cosφ sinφ

cosφ sinφ cos2 φ cosφ sinφ cos2 φ
sin2 φ cosφ sinφ sin2 φ cosφ sinφ

cosφ sinφ cos2 φ cosφ sinφ cos2 φ

+


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




·


1 1 0 0
j −j 0 0
0 0 1 1
0 0 −j j

 . (3.53)

After some rearranging the more manageable expression is obtained.

SCP
Linear =

rx + ry

2


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0



+
rx − ry

2


e2jφ 0 0 e2jφ

0 e−2jφ e−2jφ 0
0 e−2jφ e−2jφ 0
e2jφ 0 0 e2jφ

+


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 . (3.54)

Comparing this expression to the ideal RHCPSS and LHCPSS (equation
3.39 and 3.38) it is clear that circular polarization selectivity cannot be
achieved with only one layer. The choice of word ’selective structure’ over
the commonly used ’selective surface’ becomes apparent, as an infinitely
thin surface is not sufficient to achieve a CPSS with linearly polarized
elements.

3.2.4 Multiple Layers

The scattering matrix for one layer is now known. However, the scattering
matrix for a multilayer structure needs to be constructed. Since the trans-
fer matrix is easier to propagate, the single layer scattering matrix (3.54)
must be converted to a transfer matrix. The total transfer matrix can
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be computed and then converted back to a scattering matrix. Assuming
equidistant layers, the total transfer matrix is,

T(k, φ) = TCP
Linear(k, φ0 = 0)

N∏
n=1

Td · TCP
Linear(k, φn), (3.55)

where,

Td =


e−jkd 0 0 0

0 e−jkd 0 0
0 0 ejkd 0
0 0 0 ejkd

 . (3.56)

The transfer matrix TCP
Linear(k, φ) is computed from the following expressions

using the 2x2 block matrices for the S and T matrices (follows from (3.32)
and (3.33), and some algebra),

T11 = S12 − S11S
−1
21 S22, (3.57a)

T12 = S11S
−1
21 , (3.57b)

T21 = −S−1
21 S22, (3.57c)

T22 = S−1
21 . (3.57d)

With the above equations the transfer matrix related to the single layer
scattering matrix (3.54) becomes,

TCP
Linear =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+
1

2

rx + ry + 2rxry

1 + rx + ry + rxry


1 0 0 1
0 1 1 0
0 −1 −1 0
−1 0 0 −1



+
1

2

rx − ry

1 + rx + ry + rxry


0 e2jφ e2jφ 0

e−2jφ 0 0 e−2jφ

−e−2jφ 0 0 −e−2jφ

0 −e2jφ −e2jφ 0

 . (3.58)

Henceforth, the case where ry = 0 and rx = r will be used. This simplifies
the transfer matrix somewhat,

TCP
Linear =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 +
r/2

1 + r


1 e2jφ e2jφ 1

e−2jφ 1 1 e−2jφ

−e−2jφ −1 −1 −e−2jφ

−1 −e2jφ −e2jφ −1

 .

(3.59)
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All matrices involved in equation 3.55 are now known and similar to equa-
tion 3.57, conversion back to a scattering matrix is done by.

S11 = T12T
−1
22 , (3.60a)

S12 = T11 − T12T
−1
22 T21, (3.60b)

S21 = T−1
22 , (3.60c)

S22 = −T−1
22 T21. (3.60d)

As the reader might observe this matrix is very tedious to compute but if
certain approximations from scattering theory is applied (the Born approx-
imation [28]) it can be shown that the resulting scattering matrix can be
written as,

SCP
Linear = e−jkd


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



+
N∑
n=1

r

2


e−2jkzne2jφn e−2jkzn e−jkd e2jφne−jkd

e−2jkzn e−2jkzne−2jφn e−2jφne−jkd e−jkd

e−jkd e−2jφne−jkd e−2jkzne2jφn e−2jkzn

e2jφne−jkd e−jkd e−2jkzn e−2jkzne−2jφn

 .

(3.61)

This is the total scattering matrix for the entire structure and for frequency
f1 the structure should be a LHCPSS. For which number of layers the
structure becomes a LHCPSS for f1 will now be computed. In order to
show this certain elements in above matrix should be minimized and others
maximized so that the matrix becomes of the form seen in (3.38). If φn =
−k1zn the rotation between each layer is in negative direction and thus
introduce θ as φn = −nθ, where 0 < θ < π/2, in order to keep the rotation
a positive number. With this rotation |SLL11/22| is maximized since,

SLL11 =
r

2

N∑
n=1

e2jφne−2jφn =
r

2
N. (3.62)

Moreover |SRR
11/22| should be minimized. This occurs when,

N∑
n=1

e2jφne2jφn =

N∑
n=1

e−4jθn = 0. (3.63)
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The above equation is a geometric series and thus the sum can be written
as ,

e−4jθ

(
1− e−4jθN

1− e−4jθ

)
= 0, (3.64)

This in turn shows the condition:

e−4jθN = 1. (3.65)

Now we wish to find for which number of layers (N), with a given rotation
(θ), this holds. Rewriting equation 3.65,

4θN = 2πk, k ∈ Z+. (3.66)

N =
π

2θ
k. (3.67)

Since both N and k are positive integers the smallest value of N is given by,

Nmin = a, (3.68)

where
π

2θ
=
a

b
, a and b relative prime,

and consequently kmin = b. The minimal number of layers can be directly
related to the (smallest) denominator of θ/π. Label the denominator θd.
Then the simple expression,

Nmin =

{
θd, θd odd
θd/2, θd even

, (3.69)

gives the number of layers for when the RHCP wave is minimized. How-
ever, the cross-polarization should also be minimized for both reflection
and transmission. These are all minimized when,

N∑
n=1

e±2jθn = 0. (3.70)

This gives, through similar argument as previous, a condition much like
equation 3.67,

N =
π

θ
k (3.71)

Following similar arguments the result in order to minimize cross-polarization
the minimal number of layers are,

Nmin = θd. (3.72)
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Combining this with previous it is clear that (3.72) is also a solution to
(3.69) and thus the minimal number of layers is described by (3.72).

The structure is now a LHCPSS at frequency f1. This is not the only
frequency where this kind of behavior occurs. The structure will become
a RHCPSS at a frequency f2 when the rotation between each layer is pre-
cisely π − θ since for an electromagnetic wave a rotation of θ clockwise is
the same as a counterclockwise rotation of π−θ. This is illustrated in figure
3.3.

θ

π − θ

Figure 3.3: Rotation of θ in positive direction and π − θ in negative direction.

The structure will be an RHCPSS since then k2zn = nπ − k1zn and thus
|SRR

11/22| will be maximized and |SLL
11/22| as well as the cross-polarization will

be minimized for the previously chosen number of layers Nmin. This can
be seen by the following,

SRR
11/22 =

r

2

N∑
n=1

e−2j(nπ−k1zn)e2jφn =
r

2

N∑
n=1

e2j(−nπ+nθ−nθ) =
r

2
N, (3.73)

SLL
11/22 =

r

2

N∑
n=1

e−2j(nπ−k1zn)e−2jφn =
r

2

N∑
n=1

e4jnθ, (3.74)

SLR
11/22 = SRL

11/22 =
r

2

N∑
n=1

e−2j(nπ−k1zn) =
r

2

N∑
n=1

e2jnθ. (3.75)

Equation (3.74) is minimized since (3.63) is fulfilled. Similarly (3.75) is
satisfied due to (3.70). The frequency when this occurs is given by,

k1zn = nθ, (3.76a)
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k2zn = n(π − θ). (3.76b)

Combined and simplified to,

k2 =
π − θ
θ

k1. (3.77)

Because k = 2πf the same relation holds for frequency.

f2 =
π − θ
θ

f1. (3.78)

In satellite communication the separation between the frequencies for the
bands is of importance and from above equation this separation can be
written as,

|f2 − f1| = f∆(θ) =
π − 2θ

θ
, 0 < θ < π/2. (3.79)

This function is strictly convex and a small rotation corresponds to a large
separation.

From this theory a dual band CPSS seems plausible. In Figure 3.4 the
discussed S-parameters are plotted as a function of frequency relative to
f1. In this case the rotation between each layer is 2π/5 rad (72◦) and the
structure consists of 5 layers. The minimization and maximization of the
scattering parameters are apparent and the dual band behavior is shown
in Figure 3.4.
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Figure 3.4: Magnitude of S-parameters for a 5 layered structure, each layer
rotated φ = 2π/5.

In Table 3.1, different rotation angles between layers, the lowest optimal
number of layers for that rotation and for which frequencies the dual band
CPSS is operating can be seen.

A remark about this theory of weak interaction is that selectivity in re-
flection is clear but there is no selectivity in transmission. This is a higher
order effect and cannot be seen from this simple model. The selectivity
can be motivated from a power conservation point of view. If the struc-
ture is reflective for a certain incoming polarization (|SNN11 |2 ≈ 1) then the
transmission is bounded by |SNN21 |2 ≤ 1− |SNN11 |2 − |SNM11 |2 − |SNM21 |2.
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Table 3.1: The number of layers and for what frequencies the dual band CPSS
is operating for a certain rotation between layers.

Rotation (degree/radian) Nmin f2

18◦ / (π/10) 10 9f1

20◦ / (π/9) 9 8f1

22.5◦ / (π/8) 8 7f1

24◦ / (2π/15) 15 6.5f1

30◦ / (π/6) 6 5f1

36◦ / (π/5) 5 4f1

40◦ / (2π/9) 9 3.5f1

45◦ / (π/4) 4 3f1

60◦/ (π/3) 3 2f1

72◦ / (2π/5) 5 1.5f1

90◦ / (π/2) 2 1f1

In this thesis the frequency regions of interest are between 17.7-20.2 GHz
and 27.5-30 GHz and f2/f1 ≈ 1.36→ θ = 76.3◦. Based on presented theory
a 5 layered structure with a rotation of 72◦ between each layer seems to be a
promising candidate. However, in order to investigate proposed structures
full wave simulations needs to be done. Typically these are done with
periodic boundary conditions (planar infinite structure) in a simulation
environment such as CST Studio Suite. If the structures have important
regions on the boundary of the unit cell (i.e not confined within the unit
cell) only certain angles of rotations can be simulated. This is an important
limitation. More on this in later chapter regarding CST models (Section
5.2).

3.3 Proposed Designs

The feasibility of a dualband CPSS has been shown but how to obtain such
matrices described has not been touched upon yet. This is the purpose of
the following section where theory regarding some designs will be presented.
Not all designs have existing theory and the designs that do are based on
empirical formulas. The designs lacking in theory will be motivated based
on physical concepts. The existing theory will be useful as scripts in differ-
ent computational programs can be written. These scripts can do a rough
optimization and get decent initial parameters of the structure before an
optimization in a full wave simulations is started.

It is often quite hard to intuitively have an idea of the solution to Maxwell’s
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equations (3.2). A very useful concept of microwave network analysis can
be used if the circuit dimensions are small in relation to the electromagnetic
wavelength. The structure can then be treated as lumped passive or active
components. The circuit is small enough so that the phase difference is neg-
ligible from one point in the circuit to another and voltages and currents
are uniquely defined. Instead of Maxwell’s equations (3.2) concepts such
as impedance from circuit theory and Kirchhoff’s voltage and current laws
can be used [29]. The transverse fields can be identified as vector currents
and vector voltages [20,25].

Et = V , (3.80a)

− ẑ ×Ht = I. (3.80b)

The ABCD-matrix for voltages and currents can now be written (3.35).
These matrices are well known and straight forward to compute for simple
circuits. Thus if a layer of the proposed structure has a circuit model
equivalent and the parameters of model can be computed then the reflection
can be computed and the CPSS simulated in simple scripts.

3.3.1 Linearly Polarized Elements

The theory presented earlier in the chapter was based on linearly polarized
elements. For certain such elements there is existing theory of equivalent
circuit parameters derived from variational expressions.

Strip

The, perhaps, most simple linearly polarized element is a simple strip.
This element will not be used in any presented structure. However, it is
very simple and has similarities to other elements and thus it is presented
to increase understanding of the subject. The strip is infinitesimally thin
in the z -direction, infinite in the x -direction and a certain width in the y-
direction. Consider a grid of these strips with periodicity a. For an electric-
field impinging perpendicular to the direction of the strip, the effect will
be predominately capacitive. For an electric-field impinging parallel to the
strip grid the effect will be predominately inductive. The circuit models
are then very simple, illustrated in Figure 3.5.
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Figure 3.5: Equivalent circuit models for scattering against infinitesimally thin
metal strip for normal incidence. (a) Capacitive strips. (b) Inductive strips.

How the capacitance and inductance in Figure 3.5 depend on the geometry
have been investigated and can be estimated as follows [30],

C ≈ 4aε0
2π

ln
2a

πd
, (3.81a)

L ≈ aµ0

2π
ln

2a

πw
. (3.81b)

With these expressions the ABCD-matrix can now be computed (naturally
also the scatteringmatrix) and an analytical code can be written to in-
vestigate the structure. The ABCD matrix for the circuits in Figure 3.5
is [31], (

1 0
−YL,C 1

)
, (3.82)
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where YL = Z0
jωL and YC = Z0jωC. Using (3.36a) the reflection coefficients

are given by,

rx = −1/(1 + 2jωL/Z0), (3.83a)

ry = −Z0jωC/2/(1 + Z0jωC/2). (3.83b)

From these expressions it is clear that an increase in inductance reduces
the reflection in x -direction and an increase in the capacitance increases
reflection in y-direction. In order to have a large capacitance the ratio
d/a should be small and similarly for a large inductance w/a should be
small. The strip grid should therefore consist of closely spaced strips of
small width.

Meander Lines

A design that has been gaining popularity when investigating circular po-
larization selective structures are the meander lines [6, 16]. The meander
lines are similar to a strip grid in respect to the circuit model. The geom-
etry of a meander line can be seen in Figure 3.6. From an optimization
perspective these grids have more parameters to vary and thus the capaci-
tance and inductance can be tuned in a better way. Moreover in order to
obtain good results for oblique incidence there is a requirement that the
structure itself has a two fold rotational symmetry but lacking longitudinal-
reflection symmetry [9]. The simple strip grid does not have this lack of
longitudinal-reflection symmetry and thus neither does a multilayered strip
structure. However, the meander lines have a lack of longitudinal symme-
try and thus the multilayer structure consisting of meander lines can be
constructed to also have this lack of longitudinal symmetry. Only normal
incidence is considered in this thesis and the rotational symmetry does not
matter in this case. It can be considered as a bonus perk of the meander
lines.
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Figure 3.6: Meander line geometry used in analytical model.

The circuit model for the meander line is the same as that of the strip grid.
However, the inductance and capacitance is naturally different from that
of the strip grid. The admittance for perpendicular polarization E⊥ in the
equivalent circuit is given by [32],

Y⊥ = jB⊥ = j(Bc +BL +B�). (3.84)

The first term, Bc, is the contribution due to line segments which are
parallel to the meander-line axis and BL from the segments perpendicular
to the meander-line axis [33]. The B� term is the contribution of a periodic
grid structure of approximate rectangular apertures which forms from the
combination of parallel and perpendicular line segments [34]. They can be
computed as follows [32],

Bc = K2
4b

λ

[
− ln sin

(π(b− w2)

2b

)]/
η0, (3.85)

B� =
1

β − 1
β

K1

 − ln
(

sin
[
π
4 (a−2w1

8a + b−h
2b

)])
1
2

(
b
h + a

a
2

+w1
+ 1

4

[
( bλ)2 + ( aλ)2

]
 , (3.86)

β =

[
1− 0.205

(
a− 2w1

8a
+
b− h

2b

)]/[1

2
(a+ b)/λ

]
. (3.87)

Here, λ is the free space wavelength, a is the meander-line pitch, b is the
periodicity of the meander line array, h is the height of the meander line,
w1 is the line width of the meander line perpendicular to axis and w2 is the
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line width of the meander line parallel to axis. The assumed unit is inches.
Kn are empirical constants with values:

K1 = 7.1772 · 10−3,

K2 = 3.2661,

K3 = 9.2989 · 10−3.

If the impinging electric field is in parallel polarization with respect to the
structure then the impedance is given by,

Z‖ = jX‖ = j(X1 +X2). (3.88)

Z‖ =
jη0a

2λ

[
1−

(
fh

5.62

)2
] ·

{
K4

[
− b
a

ln
(πw2

2b

)]
−K5

[
2h

a
ln

(
4a

πw1

)
− 0.492

]}
. (3.89)

f is the frequency in GHz and the empirical constants are [34],

K4 = 5.3242,

K5 = 1.7424.

This model has been validated by Blackney et al. [33]. There is another
model which uses a simpler equivalent circuit [35]. This model assumes
equal width of the parallel and perpendicular line segments but an attempt
of extending this to more general meander lines have been made [34]. With
these models of capacitance and inductance the meander line structure can
now be described analytically and simulated quickly after implemented in
a coding language of choice.

Capacitively Loaded Strip

Due to the restrictions of unit cell feasibility described in upcoming Section
5.2, other structures which are contained completely within a parallelogram
are of interest. The rotations between the layers in the structure can then
be set to any angle and moreover the number of parameters to use in
optimization will increase. As seen in this theory section a layer for which
the impinging electromagnetic wave has a strong response in one direction
but not in the orthogonal direction are of interest when constructing a
dual band CPSS. One way to construct such a structure is to have large
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polarizability of the structure in one direction. A proposed structure and
the circuit model is seen in Figure 3.7.

R

C

L

Z0 Z0

y

x

Figure 3.7: Circuit equivalent for capacitively loaded strip structure

An electric field oriented in the y-direction will feel a larger capacitance
compared to an electric field oriented in the x -direction. The circuit model
is the same for both orthogonal directions but the circuit parameters change
and likely the capacitance is affected the most. To the author’s knowledge
no analytical study of this structure has been done and thus there are
no explicit formulas to relate the geometry of the object to the circuit
parameters. There will not be an explicit code to do rough optimization
and a good initial point for full wave solvers might not be found.
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Chapter 4
Analytical Model

Based on previously presented theory, the implementation in any program-
ming language of choice is straight forward. Initially the code was written
in Python but it has also been implemented in MATLAB and both codes
are in agreement. Optimization routines from both programs were used.
In pseudocode the script can be summarized by:

Define constants;
Define frequency regions;
if use materials

define materials;
else

set materials to vacuum;
end

parameters=start parameters;
optimal parameters=minimize(PenaltyFunction,parameters);
ScatteringMatrix=ComputeSmatrix(optimal parameters);
PlotCharacteristics(ScatteringMatrix);

function PenaltyFunction(parameters)
Define Penalty;
ComputeSmatrix(parameters);
evaluate Penalty;

return Penalty;

function ComputeSmatrix(parameters)
Compute reflection %Based on Goldstone [35]
for Number of layers

Compute Transfermatrix;
Compute Propagationmatrix;
Convert to circular polarization;
Multiply with total Transfermatrix;

end
Convert Transfermatrix to Scatteringmatrix;

return Scatteringmatrix;

47
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The code is very fast and one run will take approximately two minutes.
There is no need for a good computational computer to run this code. After
one iteration the script can be run again with the previous obtained best
parameter setting to continue optimization and hopefully further improve
the results. The end result from this code will then be used as a starting
point for optimization using full wave solvers.
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Implementation in Full Wave Solver

There are many full wave solvers on the commercial market. The program
that is used in this thesis is the CST Studio Suite from 2015 with an edu-
cational license provided by the Department of Electrical and Information
Technology, Faculty of Engineering, Lund University. CST uses a Finite
Integration Technique (FIT), in the frequency domain the implementation
is very similar to the Finite Element Method (FEM). Unlike many other nu-
merical methods which solve Maxwell’s equations (3.2) in their differential
form CST solves the equations in their integral form. To be able to solve
the equations numerically a finite domain needs to be defined. CST creates
a mesh of the domain and then formulates Maxwell’s equations on each
cell separately. In essence this then becomes a large matrix problem. CST
has different solvers which compute the S-parameters. The main solver of
interest is the Frequency Domain Solver. The frequency domain solver is
recommended when periodic structures are considered and hence this is the
only solver used in the thesis. Per default the Frequency Domain Solver
solves the problem at one frequency at a time and then interpolates the
S-parameters in between the computed points. Based on this information
CST decides which new frequency points to compute and carries on until
a certain accuracy is obtained.

5.1 Conventions in CST

An important thing to note is that CST seems to use the basis,

ê+ =
x̂− jŷ√

2
, (5.1a)

ê− =
x̂ + jŷ√

2
, (5.1b)

instead of the RHCP and LHCP for each port. When converting the CST
data for use in other programs one has to be careful and keep this in mind.

49
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A complete transformation to the standard form (3.37) is given by the
following transformation [12]:

S =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



SCST

11 −SCST
12 SCST

13 −SCST
14

−SCST
21 SCST

22 −SCST
23 SCST

24

SCST
31 −SCST

32 SCST
33 −SCST

34

−SCST
41 SCST

42 −SCST
43 SCST

44




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 .

(5.2)

5.2 Restrictions of Unit Cell

Previously in this thesis it has been stated that a unit cell for meander lines
cannot be constructed for arbitrary rotations between each layer. Here fol-
lows a proof of this and for which angles that a unit cell construction for a
structure with material on the boundary of the unit cell is possible.

Consider a two dimensional object of certain width (y-direction) and
infinite length (x -direction). If this object is repeated in the y-direction
with a period, P, a grid will be constructed. Now consider n layers of this
material each layer rotated with an angle α in regards to the previous layer.
When observing the obtained material in the xy-plane a pattern of rotated
grids emerge. A limitation to simulations is the computational power and
finding a unit cell of this rotated grid is important as then the scattering
of infinite structures can be computed with use of periodic boundary con-
ditions. However, it is not for every angle of rotation that it is possible to
create a unit cell consisting of a parallelogram. Unless explicitly noted the
unit cell will moreover be considered to be a parallelogram. The possible
angles and the number of layers for a unit cell will now be motivated.

Consider a unit cell emerging from a n-layered, α-rotated grids . In figure
5.1 such a structure is shown with a unit cell highlighted.
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Figure 5.1: Unit cell for a stacked rotated grid. Each layer have a separate color.

This is, according to the author, the most beautiful unit cell but it is
not uniquely determined. From the figure some important observations
regarding a unit cell can be done. If the unit cell consists of four corners then
it can be constructed such that the nodal points of the unit cell contains
the intersection of all non-parallel lines (as in Figure 5.1). This is not
necessarily the smallest unit cell possible but the smallest unit cell will
be a subsection of this larger cell. Moreover, for this type of unit cell,
either the grid lines are at the boundary of the unit cell or they have to
go diagonally through the center of the unit cell (simple task to prove that
the intersection of the diagonals are bisecting each other). The maximum
number of non-parallel lines in order for a unit cell to exist is thus 4. Every
new layer adds a maximum of one non-parallel line. Thus for a n-layered
structure, n < 4, a unit cell can be constructed regardless of rotational
angle. However, when the number of layers are greater than four the angles
for which a maximum of four non-parallel lines exist become restricted. For
a five layered structure the following can be formulated:

nα = mα+ πk, m < n n ≤ 5 m,n,∈ Z+, k ∈ Z. (5.3)

The equations describe the angles, α for which a new layer of grids (n)
becomes parallel with a previous layer (m) The above can be rewritten as:

α = π
k

n−m
. (5.4)

Hence the only angles of rotation that are possible in order to create a unit
cell in a 5 layered structure are:

αunit = {0◦, 45◦, 60◦, 90◦, 120◦, 135◦, 180◦, 240◦, 270◦}.
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Additional number of layers will only be a smaller subsection of above.
The initial rotation is less than 90◦ thus the interesting rotations are α =
{45◦, 60◦} (no relative rotation is uninteresting). Both of these rotations
have a maximum number of non-parallel lines less than 5 for any number of
layers (as the periodicity is 4 and 3 for 45◦ and 60◦ respectively). The above
argument does not provide any insight of the feasibility of constructing a
unit cell for these angles. This must be investigated. Consider the unit
cells provided in the Figures 5.2 and 5.3. All the angles marked in these
pictures have an angle of α. Figure 5.2 is the unit cell for 0◦ ≤ α < 60◦

and figure 5.3 when 60◦ ≤ α < 90◦.

A

B

a

b

D

C

a

E

b

Figure 5.2: Unit cell for arbitrary rotation 0◦ < α ≤ 60◦. All marked angles are
α.
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b

D
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b

Figure 5.3: Unit cell for arbitrary rotation 90◦ ≥ α > 60◦. All marked angles
are α.

For the unit cell in Figure 5.2 it is apparent that in order for the point
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E to be in the center the only possibility is α = 45◦. This can be seen
since ∠ABE = ∠EAB it follows from the law of sines that |AE| = |ED| =
|BE| = |EC| and α = 45◦ is the only possible solution. For the other unit
cell depicted in figure 5.3 it is clear that ∆ABC ∼ ∆CED. Moreover,
|AC| = |BC| = b and if E is the midpoint |EC| = b

2 . By similarity it is
obtained that,

|AC|
|CD|

=
|AB|
|EC|

,

b

a
=

a

b/2
,

b2 = 2a2.

Combining this with the cosine rule,

a2 + b2 − 2ab cos(α) = b2,

the below equation is obtained,

cos2(α) =
1

8
.

This equation has only one solution in the region of interest,

α = cos−1

(
1

2
√

2

)
≈ 69.3◦.

Now the cases where E is the midpoint of the parallelogram has been
dealt with. There are however two more cases to consider and that is
when E coincides with the corners of the unit cell (by symmetry D and
C are sufficient). This occurs when α = {60◦, 90◦}. The possible angles
for creation of a four non-parallel lines parallelogram unit cell is therefore
α = {45◦, 60◦, cos−1

(
1/(2
√

2)
)
, 90◦}. Comparing this with the result re-

garding the number of non-parallel lines it is clear that the only angles for
an n-layered α-rotated structure where n ≥ 4 are α = {45◦, 60◦}.

This gives a valuable insight that if the proposed periodic structure has
components on the edge of the unit cell only two angles of rotations are
possible for a computer simulation with periodic boundary conditions. This
is restricting the parameters for optimization. Constructing other struc-
tures where there are no components on the boundary (completely enclosed
within the unit cell) will give more freedom as then any angle of rotation is
possible. Based on theory presented Subsection 3.2.4 the rotational angle
for a structure with meander lines will thus be 60◦.
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5.3 Periodicity of Meander Lines Within a Unit Cell

One layer of the meander line structure should be as depicted in Figure
3.6, where the up-bends align with up-bends and similar for the down-
bends. If they do then it is likely that the analytical code will coincide
better with the full wave solvers. Naturally one first considers having a
meander line of period one within the unit cell. The full structure will
then be as depicted on the left in Figure 5.4. There is no alignment of
the up/down-bends. Since cos(60◦) = 1/2 each new line in the layer gets
shifted by half a period with respect to the previous line. This is not bad
per se but, depending on the height of the meander lines, the layers will
no longer resemble the classic meander lines and coupling and other effects
will become more prominent. This alternative layout might give a valuable
solution but little is known about the parameter space and much time and
computational power is needed to evaluate this properly. A posteriori, the
height of certain meander lines were large in certain cases and the layers
no longer resembles meander lines and so one period in the unit cell is not
used all that frequently.

1 Period, Misaligned 2 Periods, Aligned

Figure 5.4: Meander line structure for 1 period and 2 periods. Each show a four
unit cell structure.

Instead a two period meander line within the unit cell will be used. This
is seen on the right of Figure 5.4. This will give stronger meandering of
the lines compared to the case of a single period. This change can be im-
plemented in the analytical code. The reason for two periods is simple to
understand as the alignment is now correct. A mathematical motivation
showing this will now follow.

Consider a period of two distinct features, a and b, which should align after
a shift. One period can be described by the 2-tuple P = (a, b). Consider
the n-tuple M = [P ]n/2 where n is an even number. Then after m = n/2
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cyclic shifts the n-tuples should be equal.

σmM = M. (5.5)

If m is odd,

σmM = (b, P, ..., P, a) 6= (P, P, ..., P, P ) = M. (5.6)

If m is even,

σmM = (P, P, ..., P, P ) = M. (5.7)

Thus the number of periods within the unit cell must be even in order for
alignment to be as depicted in Figure 3.6.

5.4 Optimizing

During the optimization the penalty function is the key in order to obtain
results of value. In this case there are eight functions of value, four for each
frequency region. In short the penalty function used can be written as:

P =
N∑
n=1

4∑
m=1

cn,m

∫ fupn

f lown

[hn,m(f)− ln,m] · θ(hn,m(f)− ln,m)df, (5.8)

where N is the number of frequency regions (in this case two), cn,m is the
weight of each function, hn,m is the function of interest (Insertion Loss (IL),
Return Loss (RL) or AR), ln,m is the threshold under which the penalty for
the particular function is 0 and θ(x) is the Heaviside step function. For the
most simple case where the weight is equal and every function of interest
should be zero (ln,m = 0). The penalty function becomes the more simple
and understandable:∫

band1
(RL1 + IL1 + ARrefl,1 + ARtrans,1)df+∫

band2
(RL2 + IL2 + ARrefl,2 + ARtrans,2)df. (5.9)

Regardless of algorithm used the penalty function has the same form.

5.5 CST Optimization Routines

A valuable perk of CST is that all important parameters for this thesis can
be computed with post processing tools in CST. There is no need to export
data in order to compute IR, RL and AR. This also makes it simple to use
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the built in optimizers. The CST program has several different optimization
routines, and they each have their own advantage and disadvantage. Here
follows a brief introduction to the routines used to optimize the proposed
structures.

5.5.1 Nelder-Mead Simplex Method

A method that is available in CST uses is the Nelder-Mead Simplex method.
This method starts by creating a shape of N+1 points (where N is the di-
mension of the parameter space). Consider the simple case of N=2. The
shape is then a triangle. The routine then moves the corners of the triangle
and this triangle moves in the parameter space and hopefully converges on
the global minima. The method can converge on non stationary points.
The convergence is quite fast if the dimension is small (less than five) [36].

This method is used when a better initial guess has been obtained to avoid
getting stuck in an undesirable minimum.

5.5.2 Trust Region Framework

Another routine used in this thesis work is the Trust Region Framework. An
initial point is chosen and around this point a linear model is constructed
and the user then defines a trust region radius where it is believed that this
linear model is good. Then the next point is the predicted minimum from
the linear model. If the value here indeed is better and the linear model
predicting the value was good then a new trust region radius around this
point is made and and the method is repeated. If the value is lower but the
linear model was not, then the trust region radius is kept and a new linear
model is computed. Lastly if the value did not decrease then the size of
the trust region is changed. This algorithm excels at finding the best value
when the parameter ranges are small and if the initial guess is relatively
close to the minima.

5.5.3 Genetic Algorithm

The third optimization routine used was invented by John Holland in 1975
and is described in his book “Adaptation in natural and artificial systems”
[37]. The routine draws inspiration from evolution and uses a survival of
the fittest approach to find an optimal value. As in genetic randomness of
mutation has an essential role. Roughly speaking, the algorithm starts with
an initial population and the fitness of this set is evaluated. The parent
population will then produce offspring population and mutate it. The cycle
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is then complete and is iterated until completion. This is illustrated in the
flowchart of Figure 5.5.

initialize
model

Create
initial

population

Evaluate
fitness
of each

individual

Store best
solution

mating

mutating

Satisfy
Stopping
criterion

stop

no

yes

Figure 5.5: Flowchart of the genetic algorithm routine.

Important to keep in mind is that this optimization routine saves and uses
information from previous runs. The algorithm is very robust and can be
applied to any problem, provided it can be formulated as a function opti-
mizing problem [38]. The genetic algorithm is generally a very good routine
when the problem consists of a large and complex parameter space where
the initial guesses are bad and the minima might be many and sharp. One
drawback is that the algorithm often requires a lot of iterations (i.e time)
to run. However, with use of parallelization the computational time can be
reduced, note that parallelization was not used in the thesis. Another draw-
back of the genetic algorithm is that the solution found is not guaranteed
to be a global minimum. Due to this the genetic algorithm is often used as
a first routine to establish a better starting point for other algorithms when
there are no other ways of obtaining a otherwise suitable starting point.

This is generally true but there is no clear cut answer which algorithm
to use in this thesis. Certain times when the Trust Region Framework
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method was unable to find a better solution, as it was stuck in a minimum,
the genetic algorithm could keep improving the solution. The choice of
algorithm is dependent on the problem. The convergence of a case when
the Trust Region Framework was unable to improve, within the specified
parameter space and settings, the genetic algorithm kept improving is seen
in Figure 5.6. As seen from this figure an improvement of ∼ 25% was
obtained but, as mentioned previously, several function evaluations were
required.
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Figure 5.6: Convergence of a typical genetic alogrithm for the problem in the
thesis.

5.6 Meshing

When simulating structures in numerical software a discrete mesh of the
structure must be introduced. Meshing will introduce numerical inaccu-
racies. The size of the errors depend on the complexity of the mesh and
how fine the mesh is. In a perfect world with infinite computational power
this would not be a problem but reality is different and the mesh must be
considered when running simulations. There is a trade off between avail-
able memory, time and accuracy. CST has a built in feature to adaptively
refine the mesh in areas which it consider it needed. Since the structures
consist of many interfaces it is also of interest to increase the smoothing
so that the mesh size does not rapidly change over interface crossings. For
most simulations the adaptive mesh of tetrahedral (Legacy) was used with
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a suitable step-size. Assuming that using a finer mesh (more steps per
wavelength) gives a more accurate result, the relative average deviation of
the S-parameters from the finer mesh can be an indication of mesh quality.
The relative average deviation of the S-parameters is computed as,

||Sn| − |Sm||
|Sm|

, (5.10)

for all S-parameters. n indicates the steps per wavelength the simulation
used to obtain the S-parameters and m indicates the finest mesh which the
S-parameters are compared to. The value is averaged over all S-parameters
and frequency points.. A typical result is seen in Figure 5.7. Here the
maximum steps per wavelength were 18 and the minimum 3. Basic mesh
settings were used for these simulations but it is possible to improve mesh
in particular regions of interest when needed but it is not of interest in this
comparison. It is seen that the parameters converge rather quickly to the
finest mesh.
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Figure 5.7: Relative average deviation of S-parameters for different mesh-sizes.
Based on a 6 layer meander line design.

In order to have reasonable accuracy and speed when optimizing the steps
per wavelength is typically 8-10 and the quality of the mesh is raised when
finetuning the solution. A single run typically occupied 3-4 GB of RAM and
finished within 1.5-2.5 hours. It is possible to maintain decent accuracy in
the regions of interest with clever use of computational points and meshing
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to reduce the time per run to approximately one forth. This was utilized
for certain runs.

5.7 Meander Line

Constructing the meander lines in a full wave solver is straight forward.
The important thing to clarify is the labeling of parameters for the opti-
mization and how the structure is sandwiched together. This is the purpose
of the current section.

Naturally the meander lines are not suspended in and separated in vacuum
but are printed on substrates and glued together on distance materials.
This has been taken into account in both the analytical model and for the
full wave solvers. The properties of the material can be seen in Section 2.3.
The meander line designs and the different parameters used for optimiza-
tion is seen in Figure 5.8. The subscript indicates which layer is considered.
The structure is symmetric in the regard that the parameters for layer -n
and n are the same. The scattering matrix will be then be symmetric. As
discussed earlier, in Section 5.3, Pmeander is either equal to Pcell or Pcell/2
and all layers have the same periodicity. The periodicity parameter which
is optimized is Pcell. Other parameters optimized on are the height, h, and
the width, w.

Pcell

Pmeander

hn

wn

Figure 5.8: Parameters used for optimization of meander structures.
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How the structure is put together and how the layers are numbered are
seen in Figure 5.9. This is naturally for a general case of layers but the
parameters for all layers will now be understood. For an even number of
layers the central layer (with substrates etc.) is simply omitted. Note that
the bonding layers are in reality surrounding the meander lines and not
resting on top of them as the figure might suggest. Thus, the maximal
thickness of both bonding layers are the same. The parameters optimized
for are the thickness of the distance layers, d±n, the other thicknesses are
preset.

In total this gives a (N+1)/2 height parameters, (N+1)/2 width param-
eters, (N-1)/2 distance parameters and one periodicity parameter to opti-
mize on if the number of layers (N) is odd, totaling 3

2(N+1) parameters. If
the number of layers is even, N/2 height parameters, N/2 width parameters,
N/2 distance parameters and one periodicity parameter. In total 3

2N + 1
parameters. The problem quickly becomes of high dimension. More pa-
rameters can be introduced to increase the freedom (but also complexity)
such as different width along different axes. However, this is not done for
this thesis but should be kept in mind for future work.
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Figure 5.9: Composition of layers and their labeling.



Implementation in Full Wave Solver 63

5.8 Capacitively Loaded Strip

As with the meander design it is important to clarify the parameters used
in the capacitively loaded strip design. The sandwiching of the structure
is identical to that seen in Figure 5.9, but the meander lines are now ca-
pacitively loaded strips. For an individual layer a unit cell is as depicted in
Figure 5.10.

wcn

ρn

rn

Pcell

wln

Figure 5.10: Geometry of capacitively loaded strip as implemented in CST.

rn is the radius of the circle sector, wcn is the width of the circle sector, wln
is the width of the center line and ρn is the cut angle of the circle sector
and as previous Pcell is the period of the unit cell. A parameter not seen
in this figure is the rotation φn which is defined as the rotation between
layers ±m and ±m∓1. The unit cell can also be tilted when needed, which
allows for a tighter packing of the structure.
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Chapter 6
Results and Discussion

In this chapter the results will be presented. The parameter values will
be given for the best structure of its kind and/or all designs fulfilling the
requirements in Table 1.1.

For all the figures presented in this chapter the colors do not represent
a certain polarization state but which band is of importance. For the lower
band the red curves should satisfy the requirements and similarly for the
higher band the color is blue. As previously mentioned all presented de-
signs are LHCPSS in the lower frequency band and RHCPSS in the higher
band. The black lines in the graph represent the target requirements and
the dashed black lines the relaxed requirements, Table 1.1.

6.1 Meander Line Design

Preliminary studies indicated that the number of layers is a key component
when designing a CPSS from multiple anisotropic sheets. Because of this
the meander line design will be presented with several different number of
layers. This section is thus divided into subsections defined by the number
of layers the design utilized. In general an improvement of the results will
be seen as the number of layers increases. To this end this subsection will
present the results from meander line designs with number of layers ranging
from 3 to 9 layers.

For each subsection, the results from the Python code (Section 4) will
be presented first followed by the best optimization results in CST. For the
designs where a full wave simulation has been carried out, the result will
be compared and discussed. The structures which have been optimized the
most is the 5 layer and the 9 layer structure. For the 4 layer and 8 layer
structures no optimization in CST was done due to limited time and better
performance of the designs with other number of layers.

65
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6.1.1 3 Layers

The 3 layer design do not seem to be a suitable structure when studying the
result from the Python code in Figure 6.1. For IL and RL the performance
of the higher frequency band is better compared to the lower frequency band
and for the AR the opposite is true. The design is not close to fulfilling the
goals in either band. Nevertheless, this structure was optimized further in
CST to establish how well a design of very few layers could perform. The
result of the optimization can be seen in Figure 6.2. From this few amount
of layers it appears that the IL and RL are far from the target. The minima
are mostly within the frequency band of interest, but the magnitude is far
off. The AR is noteworthy as the structure surprisingly seems decent in this
regard, the design gives very sharp minima in AR for both polarizations and
at the same frequencies. The magnitude is low but increases rapidly outside
the minima. The performance obtained in CST is much better compared
to the analytical code. Some similarities, such as that the higher frequency
band has better performance than the lower frequency band for IL and
RL, can be seen but in general they differ significantly. Even though the
structure does not fulfill the requirements it might prove a useful structure.
When developing a method of in-house construction for CPSS this 3 layer
structure is relatively simple to construct and has decent performance to be
measured. It is possible to use this or similar designs to develop methods
for obtaining reliable and consistent CPSS.
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Figure 6.1: Properties of the 3 layer meander line design optimized in Python.
Aimed at overall performance.
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Figure 6.2: Properties of the 3 layer meander line design optimized in CST.
Aimed at overall performance.

6.1.2 4 Layers

The 4 layer meander design was only optimized in Python and the result
can be seen in Figure 6.3. The design gives very good AR, almost fulfilling
the strict requirement. The same can not be said for IL and RL. The IL
is manageable but the RL does not fulfill much of the goals in the first
frequency band and is ∼1 dB off the target goal in the higher frequency
band. However, comparing the result from the 3 layer meander line design,
Figure 6.1, with the 4 layer meander line design, Figure 6.3, there is sig-
nificant improvement in IL and RL. The sharp minima of the AR are no
longer present but the overall magnitude is lower for the 4 layer meander
line design. Since the performance of few layer has been investigated and
the optimization in Python did not give stellar performance, the compu-
tational power was better spent on other designs and this design was not
developed further.
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Figure 6.3: Properties of the 4 layer meander line design optimized in CST.
Aimed at overall performance.

6.1.3 5 Layers

The result after optimization with the analytical code can be seen in Figure
6.4. The design gives an IL which almost fulfills the requirement. The RL
for the lower frequency band is good but for the higher frequency band
the requirement is not fulfilled at all, albeit close. The AR is very good
fulfilling the strict requirement with ease. In total it is seen that based
on this model the structure will not be able to satisfy all requirements set
and the most problematic parameter is the RL for the higher frequency
band. Comparing Figure 6.3 to Figure 6.4 the trends are similar but differ
in magnitude. Figure 6.4 is a superior design with better performance for
both bands.

The result after optimizations in CST can be seen in Figure 6.5. The
IL for this design fulfills the requirement but the RL does not reach the
target for the higher frequency band, ∼0.5 dB off. The minima for the AR
are not as distinct as for previous designs. However, for reflection the strict
requirement poses no problem. For transmission the strict requirement is
more difficult but the relaxed requirement are easily fulfilled. Comparing
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the result from the full wave solver with that of the analytical scripts the
agreement is interesting. Even though the parameter settings are much
different the general trend of the IL and RL are similar. The AR do not
seem to agree well. The analytical results are very good but unfortunately
the same can not be said for the full wave results. The obtained result from
the full wave solver is still better than the previously presented designs of
3 and 4 layers.

If not for the return loss in the higher frequency band this design is a
valid option but since the IL and RL are very important this design will
not be used for further investigations.
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Figure 6.4: Properties of the 5 layer meander line design optimized in Python.
Aimed at overall performance.
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Figure 6.5: Properties of the 5 layer meander line design optimized in CST.
Aimed at overall performance.

6.1.4 6 Layers

The 6 layer meander line design seem to perform on par with the 5 layer
design based on the result from Python seen in Figure 6.6. It does not fulfill
every requirement, but it is not far off as it is only lacking in RL and IL in
the higher frequency band. The AR is the best of all previously presented
designs.
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Figure 6.6: Properties of the 6 meander line design optimized in Python. Aimed
at overall performance.

When optimizing in CST two different approaches were considered, one
where the goal was to pass the strict AR goal and one where the relaxed
AR goal was considered. The results of the two optimizations are seen in
Figures 6.7 and 6.8 respectively. The AR seen in Figure 6.7 is very good
and the strict requirements easily fulfilled. The higher frequency band in
both RL and IL proves difficult. Neither is fulfilled and moreover there is
an interesting feature around the frequency 29 GHz which disrupts perfor-
mance. In Figure 6.8, the frequency range starts at 14 in order to see the
entire bandwidth. For this design the performance of RL and IL is much
better than the set goal, apart from RL in the higher frequency band. The
AR does not fulfill the strict requirement but manages the relaxed require-
ment with ease.

Comparing these results to the Python model (Figure 6.6) it is interest-
ing to see that the AR in Figure 6.7 follows the general trend well. Apart
from this there are not many similarities between the analytical results and
the full wave results.

Comparing Figures 6.7 and 6.8 it is apparent that there, in this case, exists
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a trade-off, increase AR to gain better performance in RL and IL. The strict
AR case is not a competitive solution. However, as stated, the relaxed AR
case (Figure 6.8) fulfill all requirements optimized for (Compare with Table
1.1). This structure is very valuable and of great interest when considering
diplex type setups. The bandwidth for the relaxed case is summarized in
Table 6.1. The parameters are given by Table 6.2 and the meander lines as
seen in CST are illustrated in Figure 6.9.
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Figure 6.7: Properties of the 6 layer meander line design optimized in CST.
Aimed at overall performance.
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Figure 6.8: Properties of the 6 layer meander line design optimized in CST.
Aimed at the relaxed requirements.

Table 6.1: Summarizing the obtained bandwidth for the 6 layer meander CPSS
design.

Frequency range (GHz) ∆f (GHz) ∆f %

Band 1 (relaxed) 14.73-20.55 5.83 33.0

Band 2 (relaxed) 27.04-30.82 3.78 13.1

Table 6.2: Summarizing the parameter values obtained in optimization. All
values in mm.

name\number 0 ±1 ±2 ±3

h - 1.209 1.449 1.315

w - 0.986 0.630 0.126

d 3.348 2.748 3.066 -

P 5.642 5.642 5.642 5.642
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Figure 6.9: A unit cell in CST showing only the meander lines for the optimal
solution.

6.1.5 7 Layers

The 7 layered structure struggles in both RL and IL as evident by Figure
6.10 where the result from the Python code is shown. For the presented 4,
5 and 6 layer meander line design the most problematic requirement was
the IL and RL in the higher frequency band but for this 7 layer meander
line design the IL and RL in the lower frequency band has also become
a problem as seen in Figure 6.10. The local AR minima are not within
the frequency bands and the magnitude is quite large. Compared to the
previous presented 6 layer design (Figure 6.6) the AR is much worse in this
7 layer meander line design. In general it has been seen that an increase
in layers seem to give better results but this does not hold true for the 7
layer design. Following the python code a full wave optimization was run
which aimed to complete the strict AR requirement. The result is seen in
Figure 6.11. The AR is satisfactory and better compared to the Python
result (Figure 6.10) but the RL and IL in the first frequency band are not
on an acceptable level. Moreover, there is an unwanted feature close to the
center of the first frequency band which is seen in all characteristics. This
design is outperformed by the previous presented 6 layer design, Figure 6.7.
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Figure 6.10: Properties of the 7 layer meander line design optimized with Python.
Aimed at overall performance.
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Figure 6.11: Properties of the 7 layer meander line design optimized with CST.
Aimed at overall performance.

6.1.6 8 Layers

The 8 layer meander line design was only optimized with the analytical
model. The result is seen in Figure 6.12. The strict AR requirement is
fulfilled with the exception of transmission for frequencies in the lower
frequency band. The big drawback of this design is the poor performance
of IL and RL. The performance for frequencies in the lower frequency band
is good with respect to RL but very poor in regards to IL. For the higher
frequency band the RL is not good enough and the IL barely fulfills the
requirement. From this result it seems that the 8 layer will perform on par
with previous designs (7 layers) but with very poor IL in the lower frequency
band. The 8 layer meander line design also perform much worse than the
upcoming 9 layer structure, Figure 6.13. With the lacking performance
and the added complexity of more layers as well as the computational time
needed this structure was neglected from further modeling.
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Figure 6.12: Properties of the 8 layer meander line design. Aimed at overall
performance.

6.1.7 9 Layers

The result from the analytical model, seen in Figure 6.13, gives the best
performance out of all analytical simulations. The RL is very good and
the IL almost entirely fulfill the requirement for the two frequency bands.
Only for the upper and lower frequencies of the lower frequency band is
the goal not met for IL. The AR is also very good and apart from the
lower frequencies of the lower frequency band this design fulfills the strict
requirement with ease. This is the reason for why 9 layer meander line
designs were of great interest when optimizing in full wave solvers.
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Figure 6.13: Properties of the 9 layer meander line design. Aimed at overall
performance.

The result following optimization in the full wave solver is seen in Figure
6.14. Note here that the starting frequency is 14 GHz as opposed to 16
GHz, thus the full bandwidth can be seen. The IL, RL and AR are all very
good with local minima of low magnitude in the frequency bands of interest.
This design fulfills all relaxed requirements without much trouble and most
of the stricter requirements (Compare with Table 1.1). This design has the
best performance of all presented designs. The bandwidth obtained in the
full wave simulations is summarized in Table 6.3. When comparing with
the analytical result it is clear that the return loss and insertion loss has
similar trends but the axial ratios do not follow well.
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Figure 6.14: Properties of the 9 layer meander line design optimized with CST.
Aimed at overall performance.

Table 6.3: Summarizing the obtained bandwidth for the CPSS. Relaxed indicates
the higher AR requirement

Frequency range (GHz) ∆f (GHz) ∆f %

Band 1 16.16-20.38 4.21 23.1

Band 1 (relaxed) 14.55-20.76 6.22 35.2

Band 2 28.31-29.53 1.22 4.2

Band 2 (relaxed) 27.20-30.31 3.11 10.8

The best parameter setup found and a glance of how the meander lines in
one unit cell are can be seen in Tabular 6.4 and Figure 6.15 respectively.
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Table 6.4: Summarizing the parameter values obtained in CST optimization. All
values in mm.

name\number 0 ±1 ±2 ±3 ±4

h 3.318 2.383 1.787 0.978 1.295

w 0.126 0.078 0.801 0.156 0.090

d - 2.839 2.208 3.011 2.729

P 5.032 5.032 5.032 5.032 5.032

Figure 6.15: A unit cell in CST showing only the meander lines for the optimal
9 layer solution.

At frequency 17.55 GHz there is a small feature most prominent in the IL
but it appears in all graphs, see Figure 6.14. To understand this small fea-
ture the surface current density on the metal meander lines are illustrated
in Figure 6.16. Around the frequency 17.55 GHz there is noticeable current
density, compared to the other frequencies, on the layers ±1 as evident from
Figure 6.16. This is exactly when the feature becomes prominent in Figure
6.14.
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Figure 6.16: Surface current for different frequencies due to RHCP wave incident
on structure. Meander 1 and 2 is shown from a 9 layer meander structure.

The meander line ±2 are very wide and there is a relatively high current
density at 17.55 GHz on meander line ±1. The effect is very small but
it seems to be a coupling between these meander lines. Meander line ±1
serves as a transmitter of a wave due to the current and meander line ±2
couples and seem to serve as a reflecting surface. Much effort was put into
removing this feature, but without completely changing performance of the
structure it did not seem possible. After an investigation of the parameters
of the structure it was found that the parameters which exert the greatest
influence over the feature is w1, d2 and the Period, P . Other parameters
did affect the feature, however it completely changed the response of the
structure and are not considered as parameters to control the feature. w1

controls the position of the feature, increase the value and the feature is
shifted upwards in frequency and a decrease will shift it downwards. If the
period is changed the position of the feature is also moved. An increase
will shift upwards in frequency and increase relative height, a decrease will
result in a downwards shift. d2 has a slight effect on the relative height
of the feature. Increase the value and the relative height will get reduced.
The price to pay is that for higher frequencies the graphs shift upwards in
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magnitude. The described behavior seems consistent with the assumption
of coupling. The relative height of the feature is only 0.2 dB and peaks at
0.4 dB. The height is thus never close to the limit and the center of the
feature is outside the region of interest and should pose no problems. This
feature has been investigated numerically using a a very fine mesh and a
tight frequency sampling.

6.1.8 Parametric Study

With the two structures (6 and 9 layers) fulfilling the requirements it is
of interest to see the stability of the solution. This can be done in several
ways and here follows a parametric study letting each parameter in Table
6.2 and 6.4 vary ±5%. The resulting pictures can be found in Appendix A
and Appendix B respectively. This information is very useful if a CPSS is
to be constructed so extra care can be taken when manufacturing certain
parts of the structure. It should be noted that no parameters were varied
at the same time and effects of this are interesting but were not studied.

6 Layer Meander Design

For the 6 layer meander line design the RL and IL are seen to be stable
regardless of parameter. Only for d1, d2 and w1 is there a noticeable dif-
ference in the higher frequency band. However, the requirements are still
met for the entire band. The AR experience more change than the RL
and IL but since only the relaxed requirements are considered for this de-
sign the variations are insignificant. The parameters which control AR the
most seem to be the distance and height parameters, particularly d1 and
h2. From this parametric study it can be concluded that the structure is
relatively stable.

9 Layer Meander Design

The IL and RL are seen to be stable throughout and the AR is also stable
but experience more fluctuations which only seem to have an impact on
the strict AR requirement and not the relaxed. From this set it is clear
which individual parameters has the greatest impact on the structure as
a whole. In the 9 layer case, this seems to be the height of the 6 inmost
layers followed by the distances between these inmost layers. From this
parametric study it can be concluded that the structure is relatively stable.
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6.1.9 Usability of Theoretical Model

Glancing at all the presented meander designs one can see that the perfor-
mance predicted by the Python code does not give good agreement with
the simulations for the AR. This is not strange since the parameter settings
differ significantly and the AR is seen to be very sensitive. However, it is
interesting that the IL and RL are in such good agreement for most cases.
This shows us that the Python code can not be used to get the optimal
solution but it gives a hint of the general trends of the IL/RL and an es-
timate of how well the structure might perform after further optimization
in a full wave simulation software.

It is interesting to note that the two best solutions found are the 6 and
9 layers designs as the simple theory might predict (Table 3.1). However,
the assumptions are not entirely valid as the preferred designs often tended
to be relatively extreme in their dimensions. The simple theory implies that
the 3, 6 and 9 layered design should be preferred, within certain structural
bounds, but the success of the 6 and 9 layer design does not necessarily
imply that the model is valid. Based on the result in this thesis, it ap-
pears the simple theory is useful to get an idea of what amount of layers
should be considered, and what performance should be expected from a
given structure.

6.1.10 Meander Designs Overall

From the results presented in this section it, seems that more number of
layers are generally better but certain amount of layers, 6 and 9, seem
especially good. When increasing the amount of layers control over axial
ratio increases at the cost of increased IL. A detail to note is that the
optimized designs all had a wide meander line approximately one quarter
of the total structure length into the structure and close to this meander
line was another meander line which had a relatively large height.

6.2 Capacitively Loaded Strip Design

Another structure that was considered in this thesis is based on capaci-
tively loaded strips. Here the best result following CST optimization of
the capacitively loaded strip design will be presented and discussed. These
structures had no underlying mathematical model and many degrees of
freedom thus the optimization is nontrivial and these structures cannot
be considered the best the design has to offer due to the restricted use
of computational power and time. It will, however, give an indication as
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to what one can expect from this design. Many different simulations were
carried out with tweaking of the constants in the penalty function, see (5.8).

The optimization routine initially used was in most cases a genetic algo-
rithm of 497 iterations. After finishing the current optimization the algo-
rithm was changed to Nelder Mead Simplex Method to continue to search
the surrounding parameter space, and finally the Trust Region algorithm
was used. The structure proved to be very mesh dependent, hard to opti-
mize and not all number of layers gave presentable result.

In Figure 6.17 the result of an 8 layer structure is seen. The AR is very poor
with this design as not even the relaxed requirements are fulfilled for the
lower frequency band. For the higher frequency band the AR is better but
not sufficiently good. Both RL and IL have a lacklusting performance, par-
ticularly for the lower frequencies where the IL have several local minima
and maxima. The performance is improved with an increase in number of
layers and the performance of a 10 layered structure can be seen in Figure
6.18. For this design the RL and IL are both improved compared to the 8
layer design (Figure 6.17). The fluctuations in IL for the lower frequencies
can still be seen albeit smaller. The AR for the design fulfills the relaxed
requirement without problems but is far from the strict AR requirement.
This is a significant improvement over the 8 layer design (Figure 6.17).
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Figure 6.17: Performance of the 8 layer capacitively loaded strip design.
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Figure 6.18: Performance of the 10 layer capacitively loaded strip design.

For practical reasons larger numbers of layers were not investigated. Sum-
marizing the results for the capacitively loaded strip design it was seen that
these do not quite hit the mark. However, the results given are interesting
and indicate that the structure has potential for further optimization. The
parameter setting for the 10 layer capacitively loaded strip can be seen in
Table 6.5. When running these simulations it was found that the radius
of the capacitively loaded strip had great influence over which band the
structure performed the best. A very brief attempt to combine two differ-
ent radii was made. This was made for a 5 Layer structure and the design
implemented in CST is illustrated in Figure 6.19. Note the central layer
has four small elements with smaller radii.
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Table 6.5: Summarizing the parameter values obtained in optimization for the
capacitively loaded strip 10 Layered structure. Values in mm, except ρ and
φ which are in degrees.

name\number 0 ±1 ±2 ±3 ±4 ±5

wl - 0.114 0.129 0.125 0.116 0.111

wc - 0.619 0.573 0.628 0.542 0.442

r - 2.556 2.556 2.556 2.556 2.556

d 2.333 2.374 2.404 2.817 2.196 -

ρ - 40.361 44.832 58.861 66.254 61.232

φ - 51.469 57.771 74.451 63.352 73.882

P - 7.809 7.809 7.809 7.809 7.809

Figure 6.19: A unit cell in CST showing the mix of radii for the capacitively
loaded strip design.

The result of this design can be seen in Figure 6.20 and the parameters
settings in Table 6.6. The RL is good for the lower frequency band but for
the higher frequency band the RL is not low enough. The fluctuations in
IL seen in the previous designs (Figure 6.17 and 6.18) is present for this
design as well. In the lower frequency band the IL is slightly off target
and in the higher frequency band the performance is poor with a local
maxima in the center of the band ∼0.5 dB over the target goal. The AR
for the lower frequency band is decent though the magnitude sharply rises
outside the target band. For the higher frequency band the AR is worse,
the relaxed requirements is not fulfilled for the entire band and the strict
requirement is far from fulfilled. Even though the structure has obvious
flaws in performance the result is better than a 5 layer capacitively loaded
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strip design and slightly worse than the 10 layer structure presented in
Figure 6.18. Another design was also tested where the center layer was
replaced with a strip grid. This did not outperform the mix of big and
small radii. The result is valuable for future work when combinations of
different structures and sizes might be of importance and indicates that
this kind of design freedom can be investigated further.
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Figure 6.20: Performance of the 5 layer capacitively loaded strip design with
center layer of smaller radius.

Table 6.6: Summarizing the parameter values obtained in optimization for the
mixed radii consisting of 5 layers. Values in mm, except ρ and φ which are
in degrees.

name\number 0 ±1 ±2

wl 0.114 0.129 0.125

wc 0.756 0.541 0.237

r 1.113 2.226 2.226

d - 3.950 3.182

ρ 74.572 65.525 51.224

φ - 111.378 43.780

P 5.311 5.311 5.311
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Chapter 7

Summary and Conclusions

In this work dual band CPSS for space applications, with requirements
based on previous projects in related areas, have been investigated. The
theory regarding the operation of CPSS has been presented and shown to
be simple if certain assumptions were made. With these assumptions and
empirical formulas an analytical model for a meander line design was set
up in Python. After identifying problems with creating arbitrary unit cells
the previous results were used as an initial point for full wave solvers for
meander line design. Other designs were also optimized without a good
initial point. Two different meander designs, 9 layers and 6 layers, were
found to fulfill the requirement in the relaxed AR case and the 9 layer de-
sign fulfilled most of the strict requirement.

Going into this project it was not known if a dual band CPSS was feasible
with respect to the requirements. A myriad of simulations were carried
out for several different design and number of layers. Once a solution was
found much computational power was spent improving the design further.
It is interesting that even with such a large amount of initial designs and
limited power/time that two very capable solutions were found.

In conclusion, the goal of the thesis has been met and feasible dual band
CPSS have been simulated with good performance. The two solutions found
are both of the meander type design and are unique in the sense that they
are the first dual band reciprocal symmetrical CPSS to have a performance
on a level where they can be applied. The 9 layer meander line design have a
working bandwidth of 14.55-20.76 GHz (35.2%) and 27.20-30.31 GHz (10.8
%) in the relaxed AR and a bandwidth of 16.16-20.38 GHz (23.1%) and
28.31-29.53 GHz (4.2%) in the strict AR case. The 6 layer meander design
fulfills the requirement for the relaxed AR for 14.73-20.55 GHz (33.0%)
and 27.04-30.82 GHz (13.1%) Based on the parametric study the solutions
found are both stable with respect to small design variations.

91



92 Summary and Conclusions

Even though drawbacks are important to note, the theory presented and
the analytical optimization proved a useful tool to have a foundation to
stand upon before starting full wave simulations. Throughout this work it
has become apparent that implementation in full wave solvers is nontrivial
and that there are many things to consider when creating a unit cell for
a multilayered structure. These results are very interesting on their own.
Moreover, the choice of algorithm used for optimizing the structure is not
clear cut. For the problems in this thesis, it seems that the best to use was
the genetic algorithm. But due to the nature of those kind of algorithms
one has to be clever when setting up the problem if a solution is to be found
within a reasonable time. Knowing when to use which algorithm and how
to manipulate the penalty function to obtain desirable results is nothing
short of an artform.



Chapter 8

Future Work

Structures have been found which completely fulfill the relaxed require-
ments and most of the strict requirements yet much work remains to be
done. Moving on with the 9 layer and 5 layer meander structure they would
need to be constructed and measured to further validate the results. Much
thought must be spent on how to best manufacture these structures, espe-
cially if they will be constructed within the university as tools and facilities
are limited. Not only manufacturing but the measurement setup is also of
great importance and need to be further expanded upon. It will be impor-
tant to have low noise and high XPD in the setup to be able to measure
the characteristics correctly.

All the optimizations were carried out considering normal incidence. For
the intended application oblique incidence also needs to be considered. For
a diplexer type setup the angle of incidence is higher than that of dou-
bly curved reflector surface setup. Further work must thus investigate the
performance at other angles of incidence and possibly optimize for ∼ 30◦

angle of incidence in the case of the 9 and 6 layer meander line design, as
a diplexer setup is preferred in this case.

Due to the limited time and computational power during this project once
one solution was found much time was spent to optimize this structure in
the best way. Further work should also investigate if similar performance
to the 9 layer meander line design is possible with less number of layers
as the manufacturing might be problematic for this large number of layers.
Naturally as few number of layers as possible is preferred.

There is a possibility to keep studying meander line CPSS designs and
carry out changes to the periodicity keeping in mind what was described
in Chapter 5. Moreover, the complexity of the designs can increase, for
instance by having different parameters for x- and y-directions. This seems
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more favorable for designs with lesser amount of layers as the designs of
high amount of layers already seem sufficiently complex.

Increasing complexity to find better solutions is a double edged sword.
Depending on how the complexity is introduced it is likely that the compu-
tational demands will increase. For future work, when it comes to simula-
tion, it is important to understand that the problems are complex and will
take much computational power to solve. Investing in more computational
power is therefore a highly relevant thing to keep in mind.

The meander line CPSS is now a somewhat understood structure but
the other design are still relatively unknown. The other design presented
showed potential and further exploration of these structures would be in-
teresting. Other designs were also made and tested but not to an extent
that they were added to this work. The different designs all have different
perks that make them useful in some areas. Further working with them,
and possibly new structures, will lead to a deeper understanding of them.
It would be interesting to investigate combining different structures.

Lastly, the theory presented had certain limiting assumptions and for fur-
ther work it would be of interest to expand this theory and possibly obtain
better agreement. A more complete theory is always wanted since it might
lead to other designs or possibility of using arbitrary rotational angles.
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[6] D. Sjöberg and A. Ericsson, “A multi layer meander line circular
polarization selective structure (mlml-cpss).” IEEE, 2014, pp. 464–
468. [Online]. Available: http://dx.doi.org/10.1109/EuCAP.2014.
6901792

[7] J. Sanz-Fernandez, E. Saenz, P. de Maagt, and C. Mangenot, “Cir-
cular polarization selective surface for dual-optics CP offset reflector
antennas in Ku-band,” in 2012 6th European Conference on Antennas
and Propagation (EUCAP), March 2012, pp. 2683–2687.

[8] N. J. G. Fonseca and C. Mangenot, “High-performance electrically
thin dual-band polarizing reflective surface for broadband satellite ap-

95

http://dx.doi.org/10.1002/2014RS005641
http://dx.doi.org/10.1109/EuCAP.2014.6901792
http://dx.doi.org/10.1109/EuCAP.2014.6901792


96 Bibliography

plications,” IEEE Transactions on Antennas and Propagation, vol. 64,
no. 2, pp. 640–649, Feb 2016.

[9] J. E. Roy and L. Shafai, “Reciprocal circular-polarization-selective sur-
face,” IEEE Antennas and Propagation Magazine, vol. 38, no. 2, pp.
18–32, 12 1996.

[10] G. Morin, “A circular polarization selective surface made of resonant
helices,” Defense Research Establishment Ottawa, Tech. Rep. 1269,
1995.

[11] R. Pierrot, “Reflector for circularly polarized waves,” Mar. 10 1970,
US Patent 3,500,420. [Online]. Available: http://www.google.com/
patents/US3500420

[12] V. Liljegren, “Evaluation of circular polarization selective surfaces for
space applications,” Master’s thesis, Lund University, 4 2013.

[13] W. V. Tilston, C. Cannon, Y. Sabourin, and A. Hurd, “A polarization
selective surface for circular polarization,” Dreo Contract #2SV84-
00198, Til-tek, Final Report, March 30, Tech. Rep., 1986.

[14] W. V. Tilston, T. Tralman, and S. M. Khanna, “A polarization se-
lective surface for circular polarization,” in Antennas and Propagation
Society International Symposium, 1988. AP-S. Digest, June 1988, pp.
762–765 vol.2.

[15] G. Morin, “Circular polarization selective surface made of resonant
spirals,” 1994, US Patent 5,280,298.

[16] M. A. Joyal and J. J. Laurin, “Design and analysis of a cascade cir-
cular polarization selective surface at K band,” IEEE Transactions on
Antennas and Propagation, vol. 62, no. 6, pp. 3043–3053, June 2014.
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AppendixA

Parametric Study of the 6 Layer Meander
Line Design

Parameter study of the design corresponding to Figure 6.8. The parameters
are seen in Table 6.2 and are varied ±5%. The gray area in the Figures
in this chapter indicates the ±5% range obtained throuh simulations. The
labeling of the parameter names are as indicated by Figure 5.9. Disclaimer,
the Figures were obtained using 5 simulations per parameter and thus cer-
tain regions of the graph where the curves are rapidly changing might not
be portrayed truthfully.
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Figure A.1: Properties of the 9 layer meander line design. Gray area show effect
of ±5% of d1 parameter
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Figure A.2: Properties of the 9 layer meander line design. Gray area show effect
of ±5% of d2 parameter
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Figure A.3: Properties of the 9 layer meander line design. Gray area show effect
of ±5% of d3 parameter
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Figure A.4: Properties of the 9 layer meander line design. Gray area show effect
of ±5% of w1 parameter
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Figure A.5: Properties of the 9 layer meander line design. Gray area show effect
of ±5% of w2 parameter
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Figure A.6: Properties of the 9 layer meander line design. Gray area show effect
of ±5% of w3 parameter
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Figure A.7: Properties of the 9 layer meander line design. Gray area show effect
of ±5% of h1 parameter
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Figure A.8: Properties of the 9 layer meander line design. Gray area show effect
of ±5% of h2 parameter
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Figure A.9: Properties of the 9 layer meander line design. Gray area show effect
of ±5% of h3 parameter
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Figure A.10: PLACE HOLDER. NOT DONE SIMULATING. Properties of the
9 layer meander line design. Gray area show effect of ±5% of P parameter



AppendixB

Parametric Study of the 9 Layer Meander
Line Design

Parameter study of the design corresponding to Figure 6.14. The parame-
ters are seen in Table 6.4 and are varied ±5%. The gray area in the Figures
in this chapter indicates the ±5% range obtained throuh simulations. The
labeling of the parameter names are as indicated by Figure 5.9. Disclaimer,
the Figures were obtained using 5 simulations per parameter and thus cer-
tain regions of the graph where the curves are rapidly changing might not
be portrayed truthfully.
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Figure B.1: Properties of the 9 layer meander line design. Gray area show effect
of ±5% of d1 parameter
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Figure B.2: Properties of the 9 layer meander line design. Gray area show effect
of ±5% of d2 parameter
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Figure B.3: Properties of the 9 layer meander line design. Gray area show effect
of ±5% of d3 parameter
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Figure B.4: Properties of the 9 layer meander line design. Gray area show effect
of ±5% of d4 parameter
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Figure B.5: Properties of the 9 layer meander line design. Gray area show effect
of ±5% of w0 parameter
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Figure B.6: Properties of the 9 layer meander line design. Gray area show effect
of ±5% of w1 parameter
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Figure B.7: Properties of the 9 layer meander line design. Gray area show effect
of ±5% of w2 parameter
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Figure B.8: Properties of the 9 layer meander line design. Gray area show effect
of ±5% of w3 parameter
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Figure B.9: Properties of the 9 layer meander line design. Gray area show effect
of ±5% of w4 parameter
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Figure B.10: Properties of the 9 layer meander line design. Gray area show
effect of ±5% of h0 parameter
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Figure B.11: Properties of the 9 layer meander line design. Gray area show
effect of ±5% of h1 parameter



Parametric Study of the 9 Layer Meander Line Design 113

B.0.12 h2

16 18 20 22 24 26 28 30 32
0

0.5

1

1.5

2

2.5

3

Frequency (GHz)

M
a
gn

it
u
d
e
(d
B
)

Return Loss

16 18 20 22 24 26 28 30 32
0

0.5

1

1.5

2

2.5

3

Frequency (GHz)

M
ag

n
it
u
d
e
(d
B
)

Axial Ratio Reflection

16 18 20 22 24 26 28 30 32
0

0.5

1

1.5

2

2.5

3

Frequency (GHz)
M
a
g
n
it
u
d
e
(d
B
)

Insertion Loss

16 18 20 22 24 26 28 30 32
0

0.5

1

1.5

2

2.5

3

Frequency (GHz)

M
ag
n
it
u
d
e
(d
B
)

Axial Ratio Transmission

Figure B.12: Properties of the 9 layer meander line design. Gray area show
effect of ±5% of h2 parameter
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Figure B.13: Properties of the 9 layer meander line design. Gray area show
effect of ±5% of h3 parameter
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Figure B.14: Properties of the 9 layer meander line design. Gray area show
effect of ±5% of h4 parameter
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Figure B.15: Properties of the 9 layer meander line design. Gray area show
effect of ±5% of P parameter
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