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Abstract

The purpose of this Master Thesis is to evaluate different solutions that enable
Internet access to Bluetooth Low Energy sensor networks as well as provide an
example implementation using one of the solutions evaluated. Three distinct so-
lutions are observed from a set of attributes and applied to three different use
cases of Bluetooth Low Energy sensor networks. The solutions evaluated are the
HTTP Proxy Service, the GATT REST API, and 6LoWPAN applied to Bluetooth
Low Energy devices. The new Bluetooth Mesh technology is also introduced and
assessed for how it may affect the future of the three evaluated solutions and the
Bluetooth enabled Internet of Things paradigm as a whole. A simplified version
of the HTTP Proxy Service is implemented in a u-blox ODIN-W2 gateway de-
vice allowing HTTP messages to be sent via Bluetooth Low Energy. All three
solutions are shown to have discrete means of controlling the flow of information
in the networks, as well as varying in both complexity and security, proving each
solution to excel for one of the three use cases assessed.
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Chapter1
Introduction

This thesis explores and evaluates current and under development Bluetooth Low
Energy (BLE) solutions within the Internet of Things (IoT) domain. Taking into
account earlier developments and the present state of Bluetooth enabled IoT, three
current IoT solutions are introduced, as well as the latest emerging BLE technology
currently under development by the Bluetooth Special Interest Group (Bluetooth
SIG). How and for which criteria they are evaluated is explained along with an
account of the scope for this thesis.

1.1 Background

With today’s increasing desire to stay connected combined with the rapid devel-
opment of the IoT paradigm there is an ever growing interest in finding new ways
to connect objects and circulate information in low energy devices. There has
recently been a surge in the number of technologies one can use to make these
connections. By researching these new technologies and their possibles areas of
use this thesis intends to make a contribution to the present wave of technologi-
cal development within connectivity and information transmission. The Internet
of Things is growing rapidly and is expected to compromise 26 billion connected
devices by 2020[1]. These devices are expected to be present in a wide range of
areas such as home, health and vehicular automation[2].

Bluetooth Low Energy is one of the recent technologies that has had a key role in
the research and development of the Internet of Things. Its low cost and low energy
consumption as well as the widespread adoption of Bluetooth in today’s computers
and handheld devices makes it a very promising solution. There have been a num-
ber of studies evaluating performance aspects of BLE such as latency[3] and energy
consumption[4], which are unquestionably relevant but do not offer much support
in terms of how data is sent and received. An integral part of the IoT domain
is the functionality of directing Internet traffic to and from low energy devices.
There is however not much research performed in the different types of Internet
access solutions that the BLE standard entails. Studies have been conducted that
explore possible solutions for the IoT domain using BLE such as the GATT REST
API[5], but the evaluation as well as comparison aspects of the solutions are omit-
ted. There have also been studies that evaluate single solutions such as 6LoWPAN,
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2 Introduction

but do so in a broader sense and do not specifically target BLE-based networks[6].
Studies have also been conducted that compare IoT networking solutions such as
NFC and WiFi with BLE[7], however the scope again is very broad and does not
offer much support in terms of actual implementation. This thesis intends to give
a comprehensive view of the different possible IoT solutions available for the BLE
standard.

1.2 Problem Description

With the emergence of the Bluetooth Low Energy standard and the rapid increase
in demand for information transmission in low energy devices, a number of new
tools and technologies have materialized. These technologies vary in complexity
and operation but share the ability to grant Internet access to BLE enabled devices.
Due to the relative youth of many of these technologies, evaluations of them are
limited. This thesis investigates what feasible solutions for enabling Internet access
in BLE devices these new technologies present, and how effective the different
solutions are. The thesis also expands on for which circumstances one solution
is more beneficial than another and what the security implications involved are.
Characteristics such as range and strength pertaining to the different solutions
are also discussed. It also addresses these topics with the intention of giving a
coherent account of what different solutions are available for facilitating Internet
connectivity in the IoT domain over Bluetooth Low Energy.

1.3 Methodology

The thesis focuses on three current solutions for granting Internet acccess in BLE
sensors. The solutions are: IPv6 over Low power Wireless Personal Area Networks
(6LoWPAN), Generic Attribute Profile Representational State Transfer (GATT
REST API), and the HTTP Proxy Service (HPS). The architecture behind every
solution is studied to gain an understanding of each of their respective properties.
The main properties taken into consideration are security, ease of implementation,
scalability and usability. The solutions are then evaluated for a number of differ-
ent use cases to give a more practical interpretation of the solution domain. The
evaluation is performed by theoretically applying the solutions to the use cases
defined in section 1.3.2, and analyzing how well they are able to fulfill the use case
requirements.

The future of the different solutions is also taken into consideration with regard
to the new emerging Bluetooth IoT solution currently under development by the
Bluetooth SIG; Bluetooth Mesh. Finally an implementation of one of the solutions
is developed and applied to one of the use cases.

1.3.1 Attributes

The solutions evaluated are researched with emphasis on the following attributes.
The purpose of focusing on these attributes is to provide a structured and relevant
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base for comparing the solutions with each other and do derive strengths and
weaknesses of each solution.

Security
The security attribute is evaluated by analyzing what possible security mea-
sures are available for the solution. The relative strength of the security
measures are examined, looking at aspects such as whether or not end-
to-end encryption is possible and what different encryption techniques are
available.

Implementation
The implementation attribute refers to how much effort is required to im-
plement the solution. Aspects that are evaluated are how much effort is
required to set up the solution, how much knowledge is required to perform
the set up and what the requirements for the solution are.

Scalability
The scalability attribute expresses how open the solution is to scaling. As-
pects that are evaluated are how devices are added to the system, how much
effort is required to add new functionality to the gateway and/or connected
devices, what different network topologies are supported and whether or not
the solution supports meshing.

Usability
The usability attribute concerns how easily operated, adaptable and man-
ageable a solution is. Aspects that are evaluated are what possible areas of
use the solution has, how well does the solution adapt to different situations,
and what restrictions the solution has.

1.3.2 Use Cases

The thesis defines three use cases that each solution is applied to. The use cases
all consist of a gateway implementing the solution, and one or more BLE enabled
devices connected to the gateway. The gateway is assumed to be connected to an
external power supply, as well as being BLE enabled and having a stable Internet
connection.

Single Sensor Push
The Single Sensor Push use case consists of a single BLE enabled sensor
connected to the gateway. In this use case the BLE sensor sends information
to the gateway, which then posts the information to an Internet service such
as a Website. The BLE sensor is assumed to send information to the gateway
at regular intervals, with external events also triggering the sensor to send
information to the gateway. A practical example is a temperature sensor
sending the measured temperature at a set interval, and where a warning
message is sent when the temperature reaches a certain value.

Single Sensor Pull
The Single Sensor Push use case consists of a single BLE enabled sensor
connected to the gateway. In this use case an external service such as a
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Fig. 1.1: Single Sensor Push Use Case

Website or mobile application is used to request information from the sensor
via an Internet connection to the gateway. The external service should be
able to request data from the sensor at any time. The external service should
also be able to post information to the sensor. A practical example is a
BLE enabled lightbulb connected to a gateway accessible through a mobile
application. Through the mobile application, a user is able to request the
status of the lightbulb (on/off) and change the status of the lightbulb.

Fig. 1.2: Single Sensor Pull Use Case

Multiple Sensor Network
The Multiple Sensor Network use case consists of multiple BLE enabled
sensors connected to the gateway. In this use case a network of multiple
sensors is controlled through an external service. The external service should
be able to send and request data to and from the sensors. The sensors
should also be able to push data to the service as well as be able to send
data triggered through external events. A practical example is a home
automation setting where a number of sensors are connected simultaneously
and can interact with each other through the gateway and can be controlled
through a mobile application.

Fig. 1.3: Multiple Sensor Network Use Case
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1.4 Limitations

There are a number of different methods and IoT solutions available that are able
to grant Internet access to BLE sensors. Due to the scope of this study three
different solutions have been chosen. These solutions were chosen in part because
they are deemed most relevant and also because they all conform to established
standards; 6LoWPAN is developed by the Internet Engineering Task Force, while
the GATT REST API and HPS are maintained by the Bluetooth SIG.

1.4.1 Solution Criteria

The study focuses specifically on solutions utilizing the Bluetooth Low Energy
standard and therefore does not choose to take into consideration Internet of
Things solutions such as Zigbee, Z-wave and Thread which all operate accord-
ing to different wireless technology standards such as IEEE 802.15.4 in the case
of Zigbee and Thread. Also, solutions that are tied to a certain ecosystems such
as Apple Homekit are not evaluated. The desired solutions are intended to be as
general as possible, allowing the use of different ecosystems within the implemen-
tation. Due to these criteria, ecosystem-locked solutions such as Apple Homekit
are not desiderate.

1.4.2 Attribute Criteria

The study focuses on evaluating the following attributes: security, ease of im-
plementation, scalability and usability (defined in section 1.3.1). The study is
oriented to evaluate the different solutions from a practical perspective and there-
fore focuses primarily on these four attributes. Power consumption is not taken
into consideration as all communication is done over Bluetooth Low Energy and
the gateway where the solutions is implemented is assumed to be connected to a
power source. These attributes are chosen because they highlight the differences
between the respective solutions. The different solutions use different modes of
operations which affect aspects such as what security features are available, how
devices connect and communicate within the sensor network, and how the sen-
sor networks can be accessed over the Internet, whereas aspects such as power
consumption and range generally are more influenced by the device hardware.

1.4.3 Use Case Criteria

The use cases are intended to be as broad as possible, offering application examples
in multiple areas. The use cases do not define specific usage areas, but instead
focus on differences in how data is transmitted within the sensor network. The
reason for this is to have the use cases applicable for a vast number of relevant
real life scenarios and therefore no specific information about the type of sensors
or gateways is given.
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Chapter2
Theory

The study focuses on a predetermined set of solutions which utilize the Bluetooth
Low Energy standard for granting Internet access to BLE sensors which form the
theoretical base of the study. The Bluetooth Low Energy standard and the chosen
set of solutions are described in this chapter.

2.1 Bluetooth Low Energy

Bluetooth Low Energy is developed by the Bluetooth SIG and emerged in 2010
with the release of the Bluetooth Core Specification Version 4.0. It is an expan-
sion of classic Bluetooth but designed for minimal power consumption. BLE has
many similiarities with classic Bluetooth but is generally considered a seperate
technology with a slightly different method of operating. While most information
transmission technologies tend to gravitate towards increasing speeds, BLE takes
a different approach by focusing on minimal power consuption and minimal cost,
where high-rate data transfers become a trade-off. BLE is intended to be able to
connect devices that historically have not featured any wireless technology. Be-
cause of the low data transfer rates in BLE, many use cases associated with classic
Bluetooth cannot be applied to BLE. Some examples of these use cases are audio
streaming to Bluetooth enabled headsets and speakers, and file transfers.

2.1.1 Device Types

There two different types of BLE devices, single-mode and dual-mode. Single-
mode devices are only able to support BLE communication, while dual-mode de-
vices are able to communicate both over classic Bluetooth and BLE. Most modern
computers, tablets and phones are examples of dual-mode devices. Single-mode
devices generally comprise of devices with low energy consumption and computing
power such as BLE enabled sensors and fitness bands.

2.1.2 Architecture

The BLE architecture is split into three parts: Application, Host and Controller.
The Controller is the lowest level of the architecture and is responsible for sending,
receiving and interpreting radio signals. On top of the Controller is the Host, which

7
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is a software stack that defines the intercommunication between BLE devices. It
is in this layer that the BLE services and attributes are defined, as well as how
and with who devices are able to connect. The uppermost layer is the Application,
which uses the Host layer to enable different use cases. This study focuses on the
upper layers of the architecture, namely the Application layer and the upper parts
of the Host; the Generic Access Profile (GAP) and the Generic Attribute Profile
(GATT). Fig. 2.1 shows the different layers and their respective parts.

Fig. 2.1: The Bluetooth Low Energy Architecture

2.1.3 Generic Access Profile

The Generic Access Profile (GAP) controls the connections and advertising in
BLE. It is through GAP that devices are made discoverable to other devices.
GAP is also responsible for establishing connections between two devices, and
determines how two devices interact with each other. Within GAP, devices are
divided into two different device types: Peripheral and Central.

Peripheral
Peripheral devices are small low power devices that connect to a more com-
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plex and powerful central device. Peripheral devices are generally single-
mode devices due to their low power consumption.

Central
Central devices act as a gateway for the peripheral devices and often main-
tain connections to multiple peripheral devices simultaneously. Central de-
vices are generally dual-mode devices, but can be single-mode as well.

The Peripheral devices communicate to the Central devices by sending advertising
packets at set intervals known as Advertising Data payloads. This process is
known as Broadcasting. The Central devices within range receive the advertising
packets and can in return request more data from the Peripheral device returning
a Scan Response Request. The peripheral device then responds by sending the
requested additional data in a Scan Response Data payload. Through this process,
a connection between the devices can be established, enabling GATT services.

Fig. 2.2: Generic Access Profile Advertising

Fig. 2.3: Generic Access Profile Broadcasting

2.1.4 Generic Attribute Profile

The Generic Attribute Profile is responsible for managing data transfers between
connected devices. It is built upon the Attribute Protocol (ATT), which stores the
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attribute data used by GATT identified through unique handles. The attributes
also contain a type identifying the data stored in the attribute and the data value of
the attribute. GATT describes these attributes and how they are used. The main
attributes described by GATT are Characteristics, Services and their relationships.

Within GATT the Peripheral device is known as the GATT server and holds all
the ATT data as well as the attribute definitions. The Central device is known as
the GATT client. The GATT client acts as the Master device and initiates data
transactions between the client and the server by sending data requests to the
server containing the data. The server acting as Slave then responds by sending
the requested data.

Fig. 2.4: Generic Attribute Profile Transaction

2.1.5 Application layer

The Application layer is the uppermost layer of the BLE architecture. It is in
this layer that the actual use cases for the BLE devices are defined. Within the
Application layer the main attribute specifications defined in the GATT profile
are used; Services and Characteristics. The attribute specifications are labeled by
Universally Unique Identifiers (UUIDs). Another important part of the application
layer is a concept known as Profiles.

Characteristic
Characteristics are unique specific portions of data containing the values and
permissions for the different features of the peripheral device. The Bluetooth
SIG has defined a set of standard characteristics which are free to use, but
it is also possible to define new characteristics designed specifically for a
certain device or software. Characteristics are the main point of interaction
between the peripheral and central device. It is through Characteristics that
values can be read from and written to the peripheral device. Characteristics
can also contain descriptors, which provide metadata to the client.

Service
Services are the container for Characteristics and are used to divide data
into logical entitites. Services come in two types: Primary and Secondary.
Primary Services provide the main functionality of the device as seen by
the user. Secondary Services are used by Primary Services to add increased
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functionality to the Primary Service. A Secondary Service must be accessed
through a Primary Service.

Profile
Profiles describe the actual use cases incorporating two or more BLE devices.
Within the Profile the used Services are described as well as how the devices
within the Profile discover and connect with each other. In other words, the
Profile describes how the devices interact with each other within the use
case.

The Application layer architecture and an example of a BLE use case is shown in
Fig. 2.5 and 2.6 respectively.

Fig. 2.5: Application layer architecture

Fig. 2.6: Example of a Heart rate monitor BLE device
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2.2 GATT REST API

The GATT REST API is an Application Programming Interface (API) used to
facilitate the handling of data transmitted between BLE devices. The API im-
plements the Representational State Transfer (REST) architecture, which is used
to read and write to and from BLE devices using the GATT profile (see section
2.1.4). The GATT REST API is developed and maintained by the Bluetooth SIG.

2.2.1 Representational State Transfer

Representational State Transfer (REST) is a software architecture, which is used
for designing network applications. REST relies on the Hypertext Transfer Proto-
col (HTTP) to read and write data between workstations using a stateless clien-
t/server architecture. Data is accessed using HTTP requests to simple Uniform
Resource Identifiers (URIs) known as Resources, which reference to the data on a
server implementing REST architecture. These requests operate using the same
HTTP requests used when retrieving Websites, namely GET, POST, PUT and
DELETE.

2.2.2 Accessing GATT through REST

To access the GATT services from a BLE device over REST, a gateway is needed
that acts as the server and implements the GATT REST API. The gateway man-
ages connections to peripheral devices using the GAP REST API (see section
2.2.3). The GATT REST API enables users to read and write data to and from pe-
ripheral BLE devices connected to the gateway. To access the data on a connected
peripheral device, the appropriate URI Resource for the peripheral is required.
The desired action for the data is defined by the type of HTTP request. The
HTTP request is sent to the URI of the data the user wishes to access. The struc-
ture of the Resource URIs in the GATT REST API follow the GATT architecture
(see section 2.1.5) and are described below:

Nodes
The Nodes Resource contains the data for all the available connected devices.
The nodes can either be requested to see which nodes are available, or a
specific node can be accessed using its id.

Services
The Services Resource lists all the available GATT Services pertaining to a
specific device. To access the Services Resource a Node Resource must first
be specified.

Characteristics
The Characteristics Resource represents the GATT Characteristics within a
GATT Service. To access the Characteristics Resource, a Service Resource
must first be specified.

The HTTP example below demonstrates how to access the value of a characteristic
from a connected peripheral device:
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GET http://<gateway>/gatt/nodes/<node>/services/<service>/
characteristics/<characteristic>/value

In the example the HTTP command GET is sent to retrieve information from
a device, where <gateway> is the address of the gateway, <node> is the identi-
fier of the peripheral device connected to the gateway, <service> is the name
of a service on the peripheral device, and <characteristic> is the name of the
characteristic containing the value the user wishes to access.

GAP REST API

The GAP REST API is an Application Programming Interface (API) used in
conjunction with the GATT REST API and is responsible for administering con-
nections between a gateway and BLE devices using BLE’s GAP profile. The GAP
REST API also follows the REST architecture and allows for discovering, con-
necting and disconnecting to and from BLE enabled devices within range of the
gateway. The API only uses the Nodes Resource for managing connections. The
GAP REST API is simpler than its GATT counterpart and only supports the
HTTP commands GET and PUT.

Enabled Nodes
BLE devices that have established a connection with the gateway are known
as Enabled Nodes. The gateway automatically reconnects to Enabled Nodes
and will try to establish a connection to all Enabled Nodes when possible.

The HTTP example below demonstrates how to add a BLE device to the list of
Enabled Nodes:

PUT http://<gateway>/gap/nodes/<node>?connect=1

In the example the HTTP command PUT is sent in order to initiate a connection
with a BLE device, where <gateway> is the address of the gateway, <node> is
the identifier of a peripheral device in range, and setting the connect option to 1
requests the gateway to connect to the peripheral device.

2.3 6LoWPAN

IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) is a protocol
definition maintained by the Internet Engineering Task Force (IETF). The goal of
the 6LoWPAN standard is to facilitate transmission of Internet Protocol version
6 (IPv6) packets over Low Power Wireless Networks (LoWPAN). 6LoWPAN is
originally intended for IEEE 802.15.4 based networks, but its techniques can also
be applied to Bluetooth Low Energy[16].

2.3.1 Internet Protocol version 6

Internet Protocol version 6 is an Internet Protocol (IP) developed by the IETF re-
sponsible for identification of computers and networks on the Internet. It expands
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upon the earlier Internet Protocol version 4 (IPv4) and emerged as a response
to the rapid growth of the Internet. The main improvements IPv6 brings are:
extended address space, autoconfiguration of IP addresses, simplification of the
header format, and improved support for options and extensions. While all four of
these improvements are welcome, the most crucial is the extended address space,
allowing an address format consisting of 128 bits instead of the IPv4’s 32 bits.
This solves the main issue with IPv4, namely running out of available IP ad-
dresses, which in turn plays an important part in the Internet of Things paradigm
due to the influx of Internet connected devices.

2.3.2 Low Power Wireless Personal Area Networks

Low Power Wireless Personal Area Networks (LoWPAN) refers to networks con-
sisting of devices that are distinguished by their short range, low data transfer rate,
low power and low cost. The devices generally include sensors, which allows for
physical real-world applications. LoWPANs have the following key characteristics:

Low Power
The majority of devices within the networks are generally battery operated,
which gives the need for low power consumption within the devices in order
to maintain extended operability.

Low Cost
Devices are commonly low powered sensors with very limited computing
power and as such tend to be associated with a low cost.

Small packet size
As a consequence of the limited computing power and power consumption
within the networks, the size of the data packets that are transmitted are
also limited. 6LoWPAN supports compressing IPv6 headers into smaller
frames which aids in maintaining smaller packet sizes.

Low bandwidth
LoWPANs are designed for transmitting small amounts of data at minimal
cost and therefore widely operate on low bandwidth.

Energy Conservation
In order to conserve energy and maintain their low power consumption,
devices often sleep for long periods of time where they are unable to com-
municate.

Topologies
LoWPAN supports star and mesh networking topologies.

2.3.3 Constrained Application Protocol

The Constrained Application Protocol (CoAP) is a Web transfer protocol designed
for constrained low power networks such as 6LoWPAN. The intended use of the
protocol is for Machine-2-Machine (M2M) communication in application areas such
as healthcare, energy conservation and automation. 6LoWPAN supports fragmen-
tation of IPv6 packets into smaller frames in order to keep packet sizes small but
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this also entails reduction in package delivery probability. By keeping the message
overhead small CoAP reduces the need for fragmentation. CoAP is built on the
REST model (see section 2.2.1) and operates on a request/response interaction
like that of HTTP. CoAP is by default transfered over the User Datagram Proto-
col (UDP) but has support for transfers over other protocols as well such as the
Transmission Control Protocol (TCP).

2.3.4 6LoWPAN with Bluetooth Low Energy

Due to the similiarities between BLE and 6LoWPAN, many of the 6LoWPAN stan-
dards can be applied to BLE as well in order to allow for transportation of IPv6
packets over BLE. This is possible in part due to the release of the Internet Proto-
col Support Profile (IPSP) by the Bluetooth SIG, which allows for establishment
of a link layer connection for transporting IPv6 packets. In order to transport
IPv6 packets, BLE version 4.1 and ISPS version 1.0 are required. Originally a
major difference between 6LoWPAN for IEEE 802.15.4 and 6LoWPAN applied
to BLE was within network topology, more specifically BLE only supporting star
topology, but recent developments have been made allowing for transmitting IPv6
packets over BLE to also support mesh topology[17].

In order to incorporate support for IPv6 in BLE some additions need to be made
in the BLE stack, namely having an IPv6 stack working in parallel to the GATT
stack in the host layer (see Fig. 2.7).

Fig. 2.7: 6LoWPAN on BLE stack

The GATT stack is necessary for discovering nodes that support ISPS. UDP and
TCP are viable upper layer protocols but other transport protocols are also possi-
ble. The 6LoWPAN layer is adapted specifically for transmission of IPv6 packets
over BLE. The IPSP is responsible for setting up a BLE connection adhering to
6LoWPAN standards.
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2.4 HTTP Proxy Service

The HTTP Proxy Service (HPS) is a specification defined by the Bluetooth SIG
that allows for peripheral BLE devices to communicate with Web services through
a gateway device. The HPS uses the GATT profile to create and dispatch HTTP
requests and read responses. Because peripheral BLE devices often work in con-
strained environments, peripheral devices implementing HPS need to restrict the
header and body sizes of the HTTP requests in order to be able to process them.
The header and body need to fit within the maximum size for GATT characteris-
tics.

Fig. 2.8: HTTP Proxy Service Architecture

2.4.1 Service Definition

The HPS is a primary service with no other service dependencies. The HPS
consists of the following characteristics:

URI
The URI characteristic defines a Uniform Resource Identifier (URI) used
for identifying HTTP requests. This characteristic must be written before
a HTTP is request executed.

HTTP Headers
The HTTP Headers characteristic defines the headers to be sent with the
HTTP requests and responses. The value in the characteristic should cor-
respond to the general-header, request-header and entity-header fields for
HTTP requests/responses.

HTTP Entity Body
The HTTP Entity Body characteristic contains the payload of the HTTP
message. The value in the characteristic corresponds to the HTTP message-
body field of a HTTP message. When a HTTP request is sent, the payload
of the message must first be written to the characteristic. When a HTTP
message is recieved, the message-body of the recieved HTTP message is
written to the HTTP Entity Body characteristic.
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HTTP Control Point
The HTTP Control Point characteristic is responsible for initiating the
transmission of a HTTP request from the gateway implementing HPS, and
also acting as HTTP client. The characteristic is a one octet long value
that indicates which type of HTTP request to be sent. Supported HTTP
requests are: GET, HEAD, POST, PUT, DELETE. It is also used to cancel
a current HTTP request. Only one HTTP request can be active at a time.

HTTP Status Code
The HTTP Status Code characteristic holds the Status-Code from the last
received HTTP response message. It also contains a Data Status bit field
in the form of one octet, which indicates the status of the data received.

HTTPS Security
The HTTPS Security characteristic allows for using HTTPS when sending
requests. The characteristic contains the known authenticity of the HTTP
Server certificate for the URI.

Values are read from the peripheral devices and transfered to the HPS character-
istics. This allows for the gateway to be completely generic, where any peripheral
device can connect to the gateway and send data over HTTP without needing
to configure the gateway. However, the peripheral devices must be configured to
send the necessary data and in the correct format. In other words, the periph-
eral devices are responsible for formatting the HTTP body and managing HTTP
headers, HTTP request type and destination URI.

2.4.2 Client/Server interaction

The necessary HTTP message characteristic values are sent from the peripheral
device to the HPS implementing gateway, then the control point characteristic
is sent to initate the HTTP request. The gateway compiles the characteristics
into a complete HTTP request, which it then sends to the intended recipient.
The gateway notifies the peripheral device of the status of the HTTP request and
finally, if required, the response message is read and processed by the peripheral.

2.5 Bluetooth Mesh

Bluetooth Mesh is new Bluetooth technology currently under development by the
Bluetooth SIG. The main idea behind Bluetooth Mesh is to enable interoperable
mesh networking for BLE enabled networks. The solution enables messages to
be sent from one device to one or more other devices by relaying the messages
between nodes in the network.

2.5.1 Mesh Networking

Mesh networking is a network topology consisting of several nodes where each
node can relay data for the entire network and the nodes thereby work together to
distribute data across the network. Mesh networking have two methods of relaying
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data, either through Flooding or through Routing. Initially Bluetooth Mesh only
supports flooding based mesh networks with routing based networks arriving with
a later release[18].

Flooding

Flooding based networks use broadcast channels to transmit messages to other
nodes which in turn relay messages by retransmitting them, thereby extending
the range of the original message. Flood based networks "flood" the network with
messages by dispatching a message to each node within range which in turn con-
tinue to dispatch the message to all respective nodes within range. Each node acts
as a transmitter and also as a receiver, where the nodes try to relay every mes-
sage to every node on the network except the node which dispatched the original
message.

Routing

Routing based networks transmit messages along a directed path rather of nodes,
where each node receiving the message decides the which node to direct the mes-
sage to next in order for the message to reach its destination. How to direct
messages is based on routing tables. The complexity of managing routing tables
results in routing based mesh networks to be less dynamic and harder to implement
than flooding based networks while offering better scalability.

2.5.2 Addressing

Smart Mesh is designed to support device numbers in the thousands. In order
to accomodate this, Bluetooth Mesh addresses use an address space of 15 bits.
Multiple devices can also be joined under a single address known as a group address
which uses an address space of 14 bits. Bluetooth Mesh also supports two special
addresses, a broadcast address that reaches all devices and an unassigned address
used to signify no address is configured for a given device.

2.5.3 Security Model

Bluetooth Mesh uses two seperate keys to secure the integrity of messages. The
first key is an application key which is used to provide confidentiality and authen-
tication of application data sent between devices. The second key is a network key
which is used to protect messages sent within the network. The keys are shared
between devices. Any device that has access to a key can send and receive mes-
sages using that key. The reason for splitting the keys between application and
network is to allow application data to be transmitted via intermediary devices
and allowing them to authenticate the messages when they are relayed without
the relaying devices being able to read or alter the application data sent.
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2.5.4 Device Provisioning

Device provisioning in Bluetooth Mesh works differently to the standard point-
to-point bonding in BLE. Three bearers are used in Bluetooth Mesh in order to
provision devices. They are: Provision over Advertising, Provision over GATT
and Provision over Network. Provision over Advertising is the mandatory form of
provisioning used to connect to new devices, with Provision over GATT offering
legacy support for BLE devices and Provision over Networking enabling remote
provisioning to distant preinstalled devices in the mesh network. Existing GATT
services do not function over Bluetooth Mesh.

2.5.5 Protocol Stack

Fig. 2.9: Bluetooth Mesh Protocol Stack

Application Layer

The application is responsible for defining how higher level applications use the
transport layer. It is also in this layer that application operation codes, parameters,
states and behaviors are defined.

Transport Layer

The transport layer defines encryption and authentication procedures of dispatched
and received messages, ensuring security and confidentiality.



20 Theory

Network Layer

The network layer specifies how addressing of transport messages is performed for
nodes within the network. The format of messages is also defined in this layer as
well as whether or not to relay messages as well as encrypting node addresses to
provide confidentiality.

Bearer Layer

The bearer layer defines how messages are transported between nodes within the
network.

2.5.6 Architecture

Models

The basic functionality of a node is described as a collection of models. A model
determines the states and operations possible for a node, as well as messages and
data used by the node and any associated behavior.

Addressing

In order to be able to identify nodes within the network each node is assigned a
unique address when it is provisioned on the network. Nodes may also be allo-
cated the broadcast address, the unassigned address and subscription and group
addresses.

Fig. 2.10: Bluetooth Mesh Node Architecture



Theory 21

Components

A component is a set of non-overlapping models exposed in a node. A non-
overlapping model is defined as a model that requires a set of operation codes
no other models within the same component require. A node needs to consist of
at least one component. Components are needed since some nodes may require
a model to be implemented multiple times as the node may need to expose mul-
tiple instances of a model. By seperating the models into components multiple
instances of the same model can avoid conflicting.

Publish/Subscribe

The messages transmitted over Bluetooth Mesh networks follow a publish-subscribe
paradigm. This means that nodes that generate messages will publish data and
nodes wanting to use the data subscribe to the publishing nodes. The address a
node sends a message to is a publish address. Each model within a node has a
single publish address and each model within a node can subscribe to one or more
addresses. A node can have any number of subscriptions. This allows for nodes
to respond to messages published to different addresses.

Messages

All messages dispatched in the network are done so from a single unique either
node or component address and directed to a destination address that can be
either a node, component, group or broadcast address (i.e. all nodes). Messages
are encrypted using two separate keys to ensure privacy (see section 2.5.3).

2.5.7 Topology

Nodes within the Bluetooth Mesh network operate either as Edge or Relay nodes.

Edge Node

Edge nodes are able to transmit and receive messages but cannot forward them to
other nodes. In other words, edge nodes are only capable of creating or consuming
messages and can only use existing relay infrastructure to transmit and receive
messages. They do not actively contribute to the mesh network with the benefit
of functioning under greater resource constraints.

Relay Node

Relay nodes are capabe of transmitting, receiving as well as forwarding messages
in the network. By being able to forward messages, relay nodes help to extend
the overall range of the network. The relayed messages are authenticated using
network keys. Stationary devices with a secure power supply are optimal for this
role.
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Chapter3
Discussion

The different solutions are researched in regard to their history and characteristics
as well as their possible methods of operation, areas of use and viability in terms
of future developments within the realm of IoT. All solutions are observed from
the same set of attributes, facilitating a juxtapositioned comparison to determine
their respective strengths and weaknesses. Finally the solutions are assessed in
relation to the new Bluetooth Mesh standard.

3.1 GATT REST API

The GATT REST API provides a solution based on the well established REST
architecture used by many Web applications today. It allows for peripheral devices
connected to a gateway device with the GATT REST API implemented to be
accessed through simple URI’s much like a Website is accessed through a Web
browser. This provides a simple way to remotely access and pass information to
and from peripheral devices in a BLE network. Basing the flow of information
on accessing the devices through URIs does however limit the solution in terms of
how responsive the solution can be to events and changes within the BLE network.

3.1.1 Implementation Considerations

The GATT REST API allows for communication with the gateway either over
HTTP or HTTP Secure (HTTPS). When HTTPS is used BLE’s link encryption
is implemented on the connection between the gateway and peripheral. If HTTP
is used no encryption is required on the link between the gateway and peripheral.
While HTTPS is a widely used and accepted standard it is not without issues[9].
It is therefore important to be aware of the weaknesses of HTTPS if security is
a vital component of the use case. BLE’s link encryption is also widely used but
has been shown to be suspectible to compromisation of both confidentiality and
integrity[10]. Consequently security can be compromised in both the communi-
cation between the user and the gateway and between the peripheral device and
the gateway. If the data to be transmitted is of sensitive nature it is therefore ad-
visably to look to alternative solutions, preferably that offer end-to-end encryption.

The GATT REST API is defined by the Bluetooth SIG and follows the REST-
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ful architecture. Using the GATT REST API puts a number of demands on the
gateway, namely it needs to be able to function as a HTTP server. While there
exist available GATT REST APIs for some gateway devices such as the Raspberry
Pi[19], for many gateway devices the API has yet to be developed. This results in
either needing to develop the GATT REST API for the current gateway device,
or using a gateway device where the GATT REST API is already implemented.

On the client side some form of application must be implemented to consume the
RESTful services in the gateway. An example of a common client-side implemen-
tation would be a mobile application or a Website which sends HTTP requests to
the gateway resources. Most modern programming languages and major platforms
support consuming RESTful Web services such as Python, Javascript, Android,
iOS, and C#[11][12][13] [14][15].

3.1.2 Application Considerations

The number of simultaneous connections a gateway can have is set to 7 active
peripheral devices and 255 inactive peripheral devices, known as a piconet. In
order to scale a solution using the GATT REST API it is therefore necessary to
add more gateways to the network. Adding gateways to the solution increases the
number connections possible in the network and can also increase the range of
the overall network, which in turn results in the need to manage multiple gateway
endpoints. This does not in itself pose a problem on the client side. The client
simply needs to be aware which endpoint grants access to which peripheral device.

The GATT REST API implements the GATT architecture in its endpoint defini-
tions which makes for straightforward endpoints coherent with the BLE attribute
architecture. Due to the limited number of resource endpoints (see section 2.2.2)
accessing data follows a comparatively simple hierarchy. A clear limitation with
the GATT REST API however is the unidirectional form of communication. The
GATT REST API supports requesting data from the peripheral device via the
gateway and through the use of server-initiated updates. The peripheral device
can send data to the gateway to be cached, but the GATT REST API does not
define a method for sending the data from the peripheral all the way to the client.
This limits the number of applicable use cases for the GATT REST API.

3.1.3 Summary

The GATT REST API is a straightforward solution for granting access to BLE
devices over the Internet based on established architecture in the form of REST.
The solution unfortunately only sees a limited number of applications due to its fo-
cus on client initiated communication. The solution also poses some security risks
allowing for possible security issues in both the connection between the gateway
and client, and between the peripheral devices and the gateway. Use cases involv-
ing a large number of gateways may also constitute a problem as it requires clients
to manage a large number of endpoints. Scaling up or down the solution however
is a relatively simple process merely involving adding or removing gateways and
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informing the client of the new endpoint changes.

3.2 6LoWPAN

6LoWPAN is a set of characteristics defined by the IETF for how low power wire-
less networks can effectively transmit IPv6 packets in constrained environments.
6LoWPAN is not specific to BLE but can be applied to other wireless technologies
as well such as WiFi and the IEEE 802.15.4 wireless standard. 6LoWPAN for BLE
describes how the BLE stack can work together with an IP stack to transmit IPv6
packets between BLE enabled devices and the cloud. This is achieved by supplying
each device in the BLE network with its own IP address, just as a computer or
smartphone connected to the Internet would have.

3.2.1 Implementation Considerations

6LoWPAN can be applied to various types of networking solutions and therefore
the security characteristics of 6LoWPAN depend on what the underlying network-
ing technology consists of. In this thesis 6LoWPAN is evaluated for use with
BLE and therefore much of the security properties are defined by BLE rather
than 6LoWPAN in itself. 6LoWPAN does however offer one security benefit not
present in the other solutions evaluted in the thesis. Due to 6LoWPAN focusing
on sending and receving IPv6 packets adjusted for the constrained environments of
the IoT domain, 6LoWPAN enables inter-device communication to support end-
to-end encryption when sending and receving data. This increases the overall level
of security of the solution by among other things greatly reducing the possibilites
of man-in-the-middle attacks[21]. IETF recommends using BLE link layer encryp-
tion when transmitting IPv6 packets over BLE.

Implementing a 6LoWPAN solution for BLE sensor networks is not as straight-
forward as with the other solutions evaluted partly because unlike the other solu-
tions which are specific to BLE, 6LoWPAN was originally designed for 802.15.4
networks. When applying 6LoWPAN to BLE networks there are several aspects
that need to be considered such as which transport protocol to be used running
on top of Ipv6 (TCP/UDP/other), configuring the link layer of BLE to the correct
characteristics for transmitting IPv6 packets, configuring stateless address auto-
configuration, setting up appropriate neighbor discovery, and compressing headers
according to correct formats[16]. This requires working in several layers of the
BLE architecture making 6LoWPAN for BLE more comprehensive than for exam-
ple setting up a HTTP Proxy Service or a GATT REST API which mainly work
on the two uppermost layers of the BLE architecture.

3.2.2 Application Considerations

6LoWPAN was designed with the expectation of a large number of devices to be
deployed and is therefore well adapted for scaling. Since 6LoWPAN is built on
giving each device in the network its own IPv6 address this allows for easy con-
nectivity to existing IP-based networks without the need for intermediate steps
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to translate communication. The large address space of IPv6 makes it possible to
support a very large number of devices and the maximum number of devices in a
network rather relies on the underlying network architecture, in this case BLE[22].
Scaling a 6LoWPAN is simply a matter of connecting 6LoWPAN configured pe-
ripheral devices to 6LoWPAN configured gateways known as edge routers. Edge
routers handle the data exchange between 6LoWPAN peripheral devices and the
Internet, local data exchange within the 6LoWPAN network, and the generation
and maintenance of the 6LoWPAN network.

6LoWPAN allows for peripheral devices to both push and pull data to and from
the cloud and therefore is applicable to most use cases. 6LoWPAN is by far the
solution that sees the most broad areas of application. Due to the fact that it is
based the IP networking protocol providing all devices with their own IPv6 ad-
dress, 6LoWPAN networks can easily be connected to current networking systems
and architectures, whether it be through ethernet, Wifi, or 3G/4G[23].

3.2.3 Summary

While 6LoWPAN was originally designed for 802.15.4 networks its specifications
can also be applied to BLE. 6LoWPAN is a very versatile solution offering capabili-
ties for both peripheral devices and cloud services to control the flow of information
within the sensor network. It also has beneficial security aspects as a result of the
solutions focus on transfers of IPv6 packets. This allows for end-to-end encryption
in the communication between devices as well as offering greater interoperability
with existing systems also using IP architecture. The broad usuability of 6LoW-
PAN however comes at the cost of a quite extensive implementation configuration
for both gateways and peripheral devices.

3.3 HTTP Proxy Service

The HTTP Proxy Service is based around the simple idea of having a BLE de-
vice act as a HTTP proxy client, as the name implies. A BLE service is simply
configured to construct syntactically correct HTTP messages from information it
recieves from other BLE devices, and send them through a HTTP client imple-
mented in the same BLE device that contains the HTTP Proxy Service, in other
words the gateway device. In this solution the peripheral devices who wish to
send information are responsible for whether or not the correct information is sent
and can be read by the intended receiver. The HTTP Proxy Service in itself sim-
ply converts the information received to a HTTP message with the appropriate
structure and sends the message to the recipient specified by the peripheral device.

3.3.1 Implementation Considerations

The HTTP Proxy Service uses the GATT profile to send HTTP messages from a
peripheral device via a gateway to a HTTP server. Through the HTTPS Security
characteristic it has support for sending and receiving encrypted HTTPS messages
allowing for greater confidentiality and integrity protection in the link between the
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gateway and the HTTP server. The HPS extends the GATT profile and allows for
the standard encryption options offered by BLE. As such it is suspectible to the
same security concerns as the GATT REST API (see section 3.1.1) which also uses
the same methods of transportation both between the peripheral and gateway, and
between the gateway and end user.

The implementation of the HPS simply consists of creating a GATT service ad-
hering to a set of specifications defined by the Bluetooth SIG. A clear advantage
of this is the fact that the solution is built on the same platform as other BLE
applications, namely GATT. Hence there is no need for the implementation of ex-
tended core functionality in the device as in 6LoWPAN, or development of an API
like the GATT REST API in order to implement the solution. The gateway must
however translate the data in the characteristics from the HPS to a syntactically
correct HTTP message.

In order for the HTTP messages sent by the gateway to be read correctly the
peripheral devices must be configured so that the data sent from the peripheral to
the body characteristic of the HPS is readable by the HTTP server. This means
the peripheral device must be configured to send its data as a valid HTTP body.
How this is done varies depending on the peripheral device. This functionality
can for example be hardcoded or by uploading some form of configuration to the
peripheral device.

3.3.2 Application Considerations

A gateway implementing the HPS is intended to be completely generic and func-
tion with any peripheral device without any need for configuration in the gateway.
Scaling the solution up from a gateway perspective is therefore simply a matter of
adding HPS implementing gateways. As stated earlier, configuration for the HPS
solution is almost entirely performed in the peripheral devices, which implicates
that all peripheral devices must be configured to work with the HPS. Because the
gateway solution is generic, any peripheral device can connect to any gateway with
the same functionality. This allows for the solution to support peripheral devices
being able to send data to an arbitrary gateway within range with the same end
result.

The main function of the HPS solution is to allow peripheral devices to push data
to the cloud, but considering that the HPS also has support for GET requests the
HPS also supports polling data from a Web service. This allows for the HPS to
be applicable to use cases requiring both pushing and polling of data to and from
the peripheral devices. In the HPS solution all communication is initiated by the
peripheral device, therefore when a user reads the data from the HTTP server
the data is not retrieved directly from the peripheral device, but rather just the
value of the latest data sent by the peripheral device. In other words, the values
retrieved from the HTTP server may not always reflect the current values in the
peripheral devices.
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3.3.3 Summary

The HPS solution is built upon the same platform as other BLE device implemen-
tations, namely GATT Services and Characteristics. This allows for a comparably
simple implementation using the same tools and techniques as when developing
functionality for any BLE enabled device. While the solutions offers simple imple-
mentation, it comes at the cost of functionality. Since the solution only supports
control of data flow from the peripheral device for many application areas the
solution is not an alternative. A clear benefit of the solution however is its inter-
operability with different devices. A gateway implementing the HPS solution is
generic, meaning the gateway itself does not require any configuration for connect-
ing peripheral devices to transmit data to the cloud. All necessary implementation
configuration is instead passed on to the peripheral devices, allowing for sensor net-
works based on the HPS solution to function in completely distinct ways while still
having identical gateway implementations.

3.4 Comparison

Below shows an overall comparison of the attributes between the different solu-
tions. The key aspects for each attribute is represented. The key aspects for each
attribute are as follows:

Security What security protocols are available.

Implementation In which devices solutions need to be implemented.

Scalability What configuration is necessary when extending sensor network.

Usability How communication is initiated between actors in the network.

Solution Security Implementation Scalability Usability
GATT
REST
API

BLE Encryp-
tion, HTTPS

Gateway device
only

Endpoints
need to be
managed
for each
gateway.

Client ini-
tiated com-
munication
only

6LoWPAN BLE Encryp-
tion, HTTPS,
End-to-End
Encryption
with IPv6

Peripheral
and Gateway
devices

Peripheral
devices need
to use same
transport
protocol as
gateways

Client and Pe-
ripheral initi-
ated commu-
nication

HTTP
Proxy
Service

BLE Encryp-
tion, HTTPS

Peripheral and
gateway devices

Peripheral
and gate-
way devices
interchange-
able

Peripheral ini-
tiated commu-
nication only

Table 3.1: Attribute Comparison of Solutions
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3.5 Bluetooth Mesh

Bluetooth Mesh is a new Bluetooth standard under development by the Bluetooth
SIG. The standard is designed with the idea of allowing a decentralized system of
devices in contrast to solutions available today. However, Bluetooth Mesh is more
than just a new network topology. It involves an entire new Bluetooth architecture
specifically designed for the IoT domain.

Bluetooth Mesh Release

Bluetooth Mesh is to be released in several phases with each release phase adding to
its functionality. The first phase focuses on the flooding-based mesh network and
offers all the necessary functionality for Bluetooth Mesh such as message relaying,
network security, and compatability with existing devices. The second phase will
add support for routing-based mesh networking while also optimizing for power
and reducing congestion of the advertising channel. The third phase will allow
for larger packet sizes resulting in support for protocols such as IPv6. The fourth
phase is expected to further reduce power consumption and advertising channel
congestion[18].

Bluetooth Mesh Specification

Bluetooth Mesh, as the name implies, enables BLE devices to use mesh network-
ing topology. The most obvious benefit of using mesh networking is the greatly
extended possible range for a BLE network. Since the devices in the network can
relay messages they don’t require a Bluetooth connection with the intended receiv-
ing device. In effect this results in the fringe devices in the network determining
the range of the entire network. Accomodating for both Flooding- and Routing-
based mesh topologies further increases the flexibility as how the messages are
relayed can be adapted to best suit the requirements of the network.

Bluetooth Mesh vs. Evaluated Solutions

By offering aspects such as a new form of security, multiple forms of device pro-
visioning and support for an increased number of devices it could prove to be a
worthy alternative to the currently available solutions. Further boosting the com-
petitiveness of the Bluetooth Mesh standard is the fact that it will be supported by
existing devices today, meaning current BLE sensor networks can implement the
Bluetooth Mesh solution without the need for replacing their devices. Bluetooth
Mesh will however not work with current GATT services, so there is still a certain
effort of implementation that needs to be considered.

Both the GATT REST API and HTTP Proxy Service have the benefit of being
maintained by the Bluetooth SIG which ensures support and compatability for
BLE devices. This in contrast to 6LoWPAN which is originally not designed for
BLE but rather supported through adaption of the 6LoWPAN model to fit BLE.
Bluetooth Mesh joins the GATT REST API and HTTP Proxy in being maintained
by the Bluetooth SIG and therefore also enjoy the benefits of guaranteed support
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for BLE devices. The main limitation for both the GATT REST API and HTTP
Proxy Service are their unilateral communication approach. They each empha-
size one direction of communication, GATT REST API through polling data from
peripheral devices while the HTTP Proxy Service focuses on pushing data from
peripheral devices. Bluetooth Mesh, just like 6LoWPAN equally supports both
methods of communication greatly broadening their applicable areas of use.

In regard to range, Bluetooth Mesh shows great promise to outshine the cur-
rent solutions. With mesh networking, the range of the entire network can stretch
far greater distances than with current BLE technology, which is constrained by
the range of each device on the network. Bluetooth Mesh allows for devices to
reach other devices far beyond their own BLE range of connectivity. Aspects such
as security and implementation effort remain to be seen but the two layer security
keys and expected support for IPv6 packets, which in effect results in end-to-end
encryption, should not be understated. Assuming flooding-based mesh networking
is used, scaling a Bluetooth Mesh solution is uncomplicated as nodes can easily
be added, replaced and interchanged. If routing-based mesh networking is used
however, scaling becomes a bit more complicated as routing tables need to be al-
tered and updated. In this regard Bluetooth Mesh varies in its ability to scale and
can in certain cases prove more complicated than existing solutions, and in other
cases scaling the solution is easier than with existing solutions. Ultimately it is
dependent on the type of mesh networking that is used.



Chapter4
Use Case Application

This chapter looks at how the different solutions fare when applied to the three
predefined use cases (see section 1.3.2). Each solution is theoretically applied to
each use case and their respective possibilites and outcomes are discussed.

4.1 GATT REST API

The GATT REST API is focused on external queries to communicate with BLE
devices in the BLE network. A REST interface is used to access data and trigger
events in the devices within the network. This REST interface can for example be
a mobile application controlled by a user.

4.1.1 Use Case 1: Single Sensor Push

The Single Sensor Push use case relies on the peripheral sensor to be responsible
for pushing data to the client via the gateway. This use case is difficult to achieve
using the GATT REST API due to the fact that the API does not support sending
HTTP messages from the gateway to the client if the client has not inititially sent
a request. The peripheral can only push data to the gateway via the Advertise
and Notify functions, where the data is then cached in the gateway. For the client
to recieve the data pushed to the gateway by the peripheral, it needs to send a
request to the gateway to recieve the cached value. This mode of operation is very
ineffective for this use case, the API simply does not support pushing the data all
the way from the peripheral device to the client without action from the client.

4.1.2 Use Case 2: Single Sensor Pull

The Single Sensor Push use case relies on the client to be responsible for requesting
data from the peripheral device via the gateway. The GATT REST API is designed
with the intention of accessing data in a peripheral device via a gateway which
is exactly what this use case describes. The API allows for requesting data from
a peripheral device connected to the gateway through requests initiated by the
client, with the client acting as master and the peripheral device acting as slave.
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4.1.3 Use Case 3: Multiple Sensor Network

The Multiple Sensor Network use case relies on multiple peripheral devices and
the client being able to send and recieve data to each other via the gateway. As
stated earlier the GATT REST API does not have support for the peripheral de-
vice sending data to the client without a request for the data from the client. This
allows for a limited application of the use case, where the client is not explicitly
informed of data changes from peripheral devices and has to query changes itself.
For many applications of the use case this is not optimal if for example the fun-
tionality of certain peripheral devices are dependent on values from other devices.
The client must regularly send queries for the necessary data from one device in
order to push changes to a peripheral device dependent on this data, resulting in
an inefficient and inaccurate solution.

4.1.4 Conclusion

The GATT REST API is optimized for applications where peripheral devices need
to be controlled externally, whether to query them for data, or to trigger certain
functionality. A system where non-critical data values are monitored such as
keeping track of warehouse inventory is a relevant application. Because the solution
focuses on client initiated communication, it does not serve as an ideal solution in
use cases dependent on change detection in peripheral devices.

4.2 6LoWPAN

6LoWPAN offers the capability of both peripheral devices in the BLE network,
and external actors outside the network (e.g. via the cloud) to initiate and control
the flow of data for devices in the network. This broad communication approach
offers a wide array of possible areas of use.

4.2.1 Use Case 1: Single Sensor Push

6LoWPAN is a viable solution for the Single Sensor Push use case since it allows
for peripheral device to push data via a gateway to the cloud. 6LoWPAN is
however designed for large networks with multiple devices and features a somewhat
extensive implementation process and from a cost-benefit perspective although
6LoWPAN is a possible solution it may not be the best solution for this use case.
6LoWPAN allows for many features which could be seen as superfluous for such a
simple use case. 6LoWPAN does however offer the security benefit of end-to-end
encryption through IPv6 and could therefore be seen as a good option if security
is of high priority.

4.2.2 Use Case 2: Single Sensor Pull

Applying 6LoWPAN to the Single Sensor Pull use case is in many was similiar to
the previous use case, Single Sensor Push. 6LoWPAN allows for external cloud
services to request data from a peripheral device via a gateway making it a feasible
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solution, but implementing a 6LoWPAN solution for a use case with such limited
features may not be the most effective way of action. The same security aspects
apply to this use case as to the previous one, namely end-to-end encryption for
data being sent in the network offering greater security than the other solutions
addressed in the thesis. Hence 6LoWPAN is a favourable solution when security
is of great concern, but for other situations the effort of implementing 6LoWPAN
may not be worthwhile.

4.2.3 Use Case 3: Multiple Sensor Network

The Multiple Sensor Network use case is the most demanding of the use cases
evaluated due to its need for both peripheral devices and cloud services ability
to initiate communication and data transfers. 6LoWPAN allows for this form of
communication, more specifically, 6LoWPAN was designed for this type of use
case with multiple peripheral devices intercommunicating with each other and the
cloud through a gateway. The IETF have released a set of examples of application
spaces for 6LoWPAN which all adhere to the Multiple Sensor Network use case[25].

4.2.4 Conclusion

Because of 6LoWPAN’s comprehensive functionality it serves as a valid solution to
all the use cases considered in the thesis. The flexibility of 6LoWPAN allows it to
thrive for most imaginable use cases as it allows system to be both client controlled
and controlled by peripheral devices simultaneously. This makes for very reflexive
application possibilites. 6LoWPAN is applicable to most imaginable use cases, as
it is responsive both to external client requests and peripheral devices. Because
of this flexibilty a 6LoWPAN solution is able to control complex systems where a
device can react to the changes of other devices in the network.

4.3 HTTP Proxy Service

In the HTTP Proxy Service, focus is on the peripheral devices in the BLE network.
It is the peripheral device that controls the flow of information, sending their data
through a HPS implementing gateway which translates the data to valid HTTP
messages and dispatches them to the specified recipient.

4.3.1 Use Case 1: Single Sensor Push

The Single Sensor Push use case is based on the peripheral device initiating data
transmission which is exactly what the HPS solution is intended for. The HPS
solution allows the peripheral device to send and request data to and from a
Web service, making it a viable solution for this use case. Having the peripheral
control all communication allows for the solution to accurately portray the values
presented by the peripheral device. Due to the fact that the HPS also supports
using the HTTP GET request, it is possible to read values from the HTTP server
through the gateway, allowing for the peripheral device to respond to changes in
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the HTTP server thereby enabling the peripheral to read values pushed by both
the peripheral itself and other sources.

4.3.2 Use Case 2: Single Sensor Pull

The Single Sensor Pull uses case relies on the user to request data from the pe-
ripheral device when it is desired. This goes against the functionality of the HPS
solution which only allows for the peripheral device to control the flow of infor-
mation. While it is possible to achieve a working solution using the HPS, where
the user simply retrieves the latest data pushed by the sensor, the solution will in
many cases not give accurate measurements. To achieve accurate measurements
the peripheral must push its data at frequent intervals which leads to greater power
consumption and in many cases superfluous HTTP requests. Considering that the
type of devices and networks involved greatly value energy efficiency and minimal
data transfers the HPS is a possible, but ineffective solution to this use case.

4.3.3 Use Case 3: Multiple Sensor Network

The Multiple Sensor Network incorporates elements of both the previous use cases
and as stated above the HPS solution is applicable to both of these use cases,
albeit with varying degrees of efficiency. For pushing data from the peripheral
device to an Internet service the HPS solution is ideal, however regarding polling
data from the peripheral device through an Internet service, the solution relies
on simply getting the latest pushed value from the peripheral device. This may
work for systems not requiring great precision in the values retrieved from the
peripheral device but for most applications this method of function leaves great
room for error.

A major flaw in the HPS solution is the fact that only one HTTP request can
be handled by the gateway at a time, which leaves great risk for traffic congestion
and delayed messages. A multi-sensor network implementing the HPS solution has
however one clear benefit, namely having the gateways be fully generic, allowing
for any HPS-adapted peripheral to connect to arbitrary HPS gateway. This al-
lows for peripheral devices to be paired to several gateways and transmit identical
HTTP requests irregardless of which gateway they connect to.

4.3.4 Conclusion

The HTTP Proxy Service is in some ways the opposite to the GATT REST API,
at least in terms of where in the network the control of communication lies. The
HPS allows for the peripheral devices to control the flow of information. This
limits its areas of use but still provides a solid set of possible applications. A
system which requires a client to be responsive to changes in peripheral devices is
a good example of a relevant application for the HTTP Proxy Service. Reversely,
if a client were to require being able to communicate with peripheral devices on
demand the HPS solution would be sub-par.
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4.3.5 Comparison

The three solutions are shown to each fulfill the requirements for at least one use
case, with 6LoWPAN proving to be applicable to all three use cases. Below shows
an overall comparison of the different solutions applied to the three use cases.

Solution Single Sensor
Push

Single Sensor
Pull

Multiple Sensor
Network

GATT
REST
API

Possible through
Advertise and No-
tify functions only

Fully Supported Not Supported

6LoWPAN Fully Supported Fully Supported Fully Supported

HTTP
Proxy
Service

Fully Supported Possible through
retrieving latest
pushed value

Not Supported

Table 4.1: Use Case Comparison of Solutions
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Chapter5
Implementation

This chapter states the goals of the implementation as well as the reasoning behind
electing a solution to implement. The hardware, as well as software, of the im-
plementation is presented and the implementation process is detailed. Challenges
and issues encountered during the implementation are also discussed.

5.1 Implementation Goals

When looking at the different implementation possibilites for the different solu-
tions a few main concerns were central. One of the central themes was that the
implementation should have some value to u-blox, preferably implementing the
solution in one or more of their devices. Being able to fully utilize the resources
and support available at u-blox was another motivator for using u-blox devices.
Another important factor was how the implemented solution would be deemed to
fare in the future, as implementing a technology or solution that was likely soon be
considered obsolete or undesirable is not optimal in a domain as new and rapidly
evolving as the IoT domain.

Optimally more than one solution would be implemented to give a better founda-
tion for a more hands-on comparison between the different solutions. The required
effort of implementing these solutions within the given timeframe did not make
this a viable option.

5.2 Choice of Solution

All three solutions were considered for implementation, with 6LoWPAN and the
HTTP Proxy Service deemed as generelly more favorable; 6LoWPAN for its wide
areas of application and use of the TCP/IP protocol, the HTTP Proxy Service
for its simplicity and being based on the same architecture as other BLE services.
The GATT REST API was not chosen as it was not considered a solution that
would see widespread adoption, in part due to the coming release of Bluetooth
Mesh, and also due to 6LoWPAN offering the same functionality but with a wider
set of features such as IPv6 addressing and improved security.

The HTTP Proxy Service was finally chosen as the solution to implement, one
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of the main reason being its almost ingenious simplicity in using existing BLE
functionality and a simple HTTP client to acheive an IoT BLE sensor network
solution.

5.3 Gateway Device

The gateway device that was used to implement the HPS solution is a u-blox
ODIN-W2 IoT gateway module. ODIN-W2 is a stand-alone multiradio module
which supports concurrent dual-band wifi and dual-mode Bluetooth connections.

Fig. 5.1: u-blox ODIN-W2 gateway module

5.4 Peripheral Device

Originally a u-blox NINA-B1 module was intended to be used as the peripheral
device used to send data to the gateway. The purpose of the periphal device was
to have a HPS adapted GATT service in the that would send the device data cor-
rectly formatted for transmitting as a HTTP request. This idea was however later
discarded in order to emphasize the development of the actual gateway module
and instead a ConnectBlue OBS421 module was used to emulate the functionality
of the NINA-B1 module. The OBS421 is a Bluetooth Serial Port Adapter allow-
ing for sending Bluetooth GATT commands programmatically from a terminal
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window.

Fig. 5.2: ConnectBlue OBS421 module

5.5 Software & Tools

The solution was written using the C programming language and achieved through
the use of the following implementation tools:

ARM mbed
ARM mbed is a platform aimed at the development of IoT system appli-
cations. The ARM mbed platform provides an operating system as well
as cloud services and developer tools facilitating the creation and deploy-
ment of IoT solutions. The HPS solution was developed using the tools and
operating system provided by the ARM mbed platform.

Yotta
Yotta is a build tool associated with the ARM mbed platform. Yotta allows
for building embedded software solutions from seperate software modules for
use on the ARM mbed platform. By using Yotta the solution was possible
to be built as a binary with the necessary software modules provided by
u-blox together with the code defining the HPS solution.

lwIP
lwIP is a lightweight TCP/IP implementation used mainly for embedded
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systems applications with a focus to minimize resource usage while allowing
for full TCP/IP functionality. lwIP was used to create and manage the
HTTP client needed to send and recieve HTTP messages to and from the
gateway device as well as manage IP configuration.

BLE stack
The BLE stack contained in the module was used to create the HPS service
which handles the dataflow over Bluetooth for the solution. The BLE stack
enabled the creation of a GATT service with the necessary characteristics
and functionality required for the HPS solution as defined by the Bluetooth
SIG.

Wifi driver
The Wifi driver controls the Wifi part of the gateway module and was used
to initiate and manage the wifi connection of the gateway device allowing
the device to connect to the Internet.

5.6 Implementation Process

The HPS solution was developed in three steps. Primarily a GATT service was
created in the gateway, adhering to the specifications for a HTTP Proxy Service as
defined by the Bluetooth SIG[20], then an Internet connection was set up for the
gateway to enable communication outside of the BLE sensor network. The final
step was implementing a HTTP client in the gateway and setting up reading and
writing of data between the HTTP client and the GATT service. This allowed for
the gateway device to receive GATT commands from peripheral devices, trans-
late data received through the GATT commands to a syntactically correct HTTP
message and send the HTTP message to the destined recipient.

5.6.1 The GATT Service

A skeleton of a GATT service was provided by u-blox for the ODIN-W2 module
which was used as the code base for the solution. This skeleton allowed for the
specification of necessary GATT commands and characteristics as well as their
properties. The GATT service was designed according to the white paper spec-
ifications from Bluetooth SIG, which describes the necessary characteristics and
their properties for the service(see section 2.4). The data fields required for sending
a correct HTTP message are: destination URI, Headers, Body, and Control Point
which initiates the HTTP request and specifies the type of request. These fields
are each represented by their own characteristic in the service to which peripheral
devices can write. The URI, Headers, and Body characteristics have a maximum
size of 512 byte in order to contain the longer string values they represent, while
the Control Point characteristic is simply a 8 bit integer to represent the different
HTTP request types.
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Writing to Characteristics

GATT commands can only send data packets of maximum 22 bytes, which means
that when writing to the URI, Headers, and Body characteristics regular write
commands will often not suffice. Therefore a Long Write command had to be
implemented which called upon the write command several times, while keeping
track of the offset for each write so that all data was transmitted. To achieve this
each write command was written to a temporary field until there was no data left
to write, and the written data was then transfered to the correct characteristic
field. A state attribute was used to control the writing of data to the correct
characteristic, with each Long Write command triggering a change in state.

Constructing HTTP requests

A control of the write order was also implemented in order to be able to correctly
construct HTTP messages and initate the sending of the HTTP message. Writing
to the Control Point characteristic triggers the formatting of the HTTP message
from the characteristic fields. After the message has been formatted the HTTP
client is called to initiate the sending of the HTTP request with the formatted
message sent as a parameter.

5.6.2 Wifi Connection and the HTTP Client

With the HPS implemented, the remaining stages were setting up a Wifi con-
nection on the gateway device, and implementing a HTTP client to dispatch the
HTTP messages constructed by the service.

Wifi Connection

A code skeleton for configuring and calling the wifi driver was also provided by
u-blox in order to facilitate the connection process for the gateway. The specifi-
cations for the wifi network to connect to are declared in a separate configuration
file. The wifi driver is automatically started when the gateway is booted and will
attempt to connect to the wifi network specified in the configuration file.

The HTTP Client

The final stage of the implementation was constructing a HTTP client respon-
sible for managing the actual communication with the cloud. The first step of
the HTTP client was to implement Domain Name System(DNS) lookup for for
the destination address. DNS is an integral part of the Internet infrastructure
and is used to locate the specific IP address from a given Uniform Resource Lo-
cator(URL). The IP address received through the DNS lookup is then connected
to using the Transmission Control Protocol(TCP) and the HTTP message is sent
and the response HTTP message is processed.
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5.6.3 Sending information from a peripheral device to the cloud

When the HPS, wifi connection and HTTP client are all implemented and config-
ured the gateway is open to send data from peripheral devices connected over BLE
to the gateway. In this implementation a peripheral device was emulated using
GATT commands. To send a HTTP message, the peripheral device writes to the
URI, Header and Body characteristics in the HPS gateway. Finally the peripheral
device writes to the Control Point characteristic denoting what type of request
the HTTP message should be. Writing to the Control Point characteristic also
triggers the formatting of the HTTP message, and passes the HTTP message on
to the HTTP client which in turn sets up a connection to the URI contained in the
URI characteristic in the HPS, and consequently dispatches the HTTP message.

5.7 Development Problems and Implementation Issues

The development of the HPS gateway was not without its challenges. Primarily
attaining the write funtionality for characteristiccs larger than 22 bytes(i.e. the
Headers, Body and URI characteristics) was quite arduous. As it turned out
there was some functionality missing in the Bluetooth stack for the Odin W2
module which needed to be added by u-blox in order to achieve the Long Write
functionality. There were also some issues regarding Wifi connectivity for the
Odin W2 module. The module seemed to have trouble maintaining a simultaneous
Bluetooth and Wifi connection, where the HPS gateway would reboot when an
attempt to connect to a peripheral BLE device was made after a Wifi connection
had been established. The issue seemed to vary in frequency depending on which
Wifi router the module connected to. Together with u-blox the issue was debugged
and found to be triggered in the drivers of the gateway. The issue was therefore
deemed outside the scope of the implementation for rectifying.

5.8 The HPS solution in practice

The HPS solution is built on the peripheral devices controlling the flow of infor-
mation, with the gateway device acting as a proxy. As stated in earlier (see section
3.3) the HPS solution is best suited for use cases oriented towards peripheral de-
vices pushing data to an external service. Applying the HPS solution to scenarios
where data needs to be distributed from an external service to peripheral devices
or where control of the flow of information needs to be outside the sensor network
is inexpedient. The HPS solution works best for systems requiring monitoring
of data within a sensor network, rather than actively controlling the sensors and
network data externally.



Chapter6
Discussion and Conclusions

The thesis takes a quite superficial approach to the different Bluetooth-oriented
IoT solutions encompassed within the thesis. The intention is not to give a fullbod-
ied implementation guide but rather to give an idea of what solutions are available
when implementing a Bluetooth-based IoT sensor network and in what different
situations which solutions are beneficial and in which they are not.

6.1 Solutions

The three solutions addressed in this thesis all serve to solve the problem of grant-
ing Internet access to low energy Bluetooth devices with the help of a gateway
device, but operate using different methods and specifications. Because of the
differences between them they prove to excel under different situations and cir-
cumstances.

6.1.1 GATT REST API

The GATT REST API solution operates through cloud services requesting data
from low energy devices via the gateway, limiting its applicable use areas. The
solution is optimal for situations where functionality is not dependent on changes
in the values of the sensor devices, but rather focus on retrieving data from the
sensor devices on demand through cloud services. Because of the solution’s spe-
cific functionality it should not be considered a standard solution for Bluetooth
IoT networks, but rather as a solution oriented to a specific set of use cases which
focus on retrieving data from the sensor network.

A benefit of using the GATT REST API is that it is built upon the RESTful
architectural style (see section 2.2.1) which is supported by many current frame-
works and systems. Integrating a GATT REST service with existing software as
well as new software does therefore not require significant effort as it uses a well
established Web service architecture. This can be useful for situations when for
example an IoT sensor network needs to be added to an already existing software
solution. An example of this would be a sensor network that is able to monitor
inventory stock in a warehouse that needs to be integrated into the Web page
for a vendor. The Web page would then simply have to call the RESTful service
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for the network to get a current update on inventory status. A situation where
the GATT REST API would be an inadequate solution is where events or actions
would need to be triggered when certain events occur or when a certain value is
reached. Because the GATT REST API revolves around actors outside the sensor
network to intiate communication, the response accuracy would be subpar.

When it comes to factors such as security and scaling these attributes are more
dependent on the BLE architecture than the GATT REST API. Therefore with
issues such as security in mind, if the standard BLE security is deemed unsatis-
factory one should consider either implementing a different network architecture
or implementing a different BLE IoT solution which offers added security features
such as 6LoWPAN.

6.1.2 6LoWPAN

6LoWPAN is both the most powerful and most advanced of the solutions studied.
It is built upon a set of standards maintained by the IETF and envelopes multi-
ple layers of the sensor network. Due to this multi-layer functionality it involves
more advanced configurations than the HPS or GATT REST API solutions, which
only operate on the uppermost layers of the BLE architecture. 6LoWPAN is able
to accomodate for both sensor devices and external services and actors to initi-
ate and control the flow of communication. This allows for the most expansive
and versatile set of applicable use cases. 6LoWPAN’s ability to distribute each
network node with its own IP address allows for end-to-end encryption of IPv6
packets, which increases the overall security of the network as well as making it
unproblematic to conjoin the sensor network with other IP implementing networks.

As a result of the more complex underlying configurations of 6LoWPAN, when
implementing a BLE IoT solution, it is worth examining whether the necessary
functionality can be achieved using simpler solutions such as the GATT REST
API or the HPS solution. As these solutions only require configuration of the
uppermost network layers, the requirements and implementation efforts are less
significant.

The complexity of 6LoWPAN and its expansive functionality allows for a wide
myriad of application areas. Advanced sensor networks requiring intercommuni-
cation between sensor nodes in the network are great examples of use cases where
6LoWPAN excels. Due to 6LoWPAN’s support for meshing as well as its flexible
communication inititation it is able to accomodate for such advanced networks
whose functionality is dependent on sensor devices intercommunicating with each
other. For example, a sensor network controls a set of pressure valves where one
type of sensor is responsible for opening and closing the valves while another type
of sensor reads the current pressure. A 6LoWPAN network would be able to allow
for the valve sensors to be aware of the pressure values from the pressure sensors,
and open and close the valves accordingly. Both types of sensors would be able to
send their current values to a cloud service that allows monitoring of the current
pressure and the state of the valves, as well as allowing for the ability to manually
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change the state of the valves.

While it can seem like 6LoWPAN is the most optimal solution as it enables by
far the most functionality as well as increased security features and added inter-
communication capabilites in the form of meshing, it is worth considering that
many aspects need to be configured on multiple layers of the network in order to
implement 6LoWPAN. 6LoWPANs are not necessarily interchangable either, for
example if a 6LoWPAN gateway is configured to use UDP in the transport layer,
how will it react if a 6LoWPAN node configured for using TCP is added to the
network?

6.1.3 HTTP Proxy Service

The HTTP Proxy Service, like the GATT REST API, is oriented towards a spe-
cific method of operation, which one could say is the opposite of the GATT REST
API. The HTTP Proxy Service is based on the sensor devices controlling the flow
of communication in the sensor network. Also, as with the GATT REST API, this
limits the application of the solution to a set of specific use cases. Here however,
the use cases are based on one or more sensors controlling the network, specifying
when to send data to the cloud and what to send. The HPS has support for the
HTTP command GET which allows it to retrieve data from external services and
actors, which it turn increases its areas of application. It does not however, change
the fact that it is still only the sensor devices that can initiate communication.

The HPS solution is implemented just as one would implement any other BLE
functionality, using GATT Services (see section 2.1.5). This allows for sensor
devices to not require any added attributes or extended functionality as all the
required implementation needs are contained within BLE. The gateway device
simply needs support for implementing a HTTP client apart from the standard
BLE functionality. These minimal requirements make the HPS a versatile and rel-
atively simple solution. Adding to its versatility is the fact that the HPS gateway
is generic, meaning sensor devices adapted for the HPS solution can connect to any
HPS implementing gateway device without any additional configuration required.
For simpler use cases fitting into the mode of operation of the HPS or situations
where a solution is needed to be implemented relatively prompt, the HPS is ideal.
Use cases where the sensor network is used exclusively for monitoring are a good
example of an ideal application area for the HPS solution. The sensors can push
data at set intervals or when certain events are triggered which can then be ob-
served by external services and actors. A temperature sensor could for example
push the temperature value when it passes a certain limit to a mobile application
which in turn triggers a notification informing users of the temperature breaking
the limit.

The simplicity of the HPS can in many cases be a draw back as it does not leave
much room for expanding the functionality of a sensor network. Because the HPS
solution is comparably simple to implement, it can serve as a first draft for a IoT
solution, when a solution needs to be set up and running quickly, giving a tem-
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porary solution while a more complex and powerful solution such as 6LoWPAN is
developed.

6.1.4 Bluetooth Mesh and the Future of BLE Enabled IoT

With the approaching release of Bluetooth Mesh, the future of the evaluated so-
lutions is uncertain. The solutions in their current form offer their respective
benefits and drawbacks. Many of the shortcomings of the GATT REST API and
HTTP Proxy Service, such as unilateral communication and lack of end-to-end
encryption, are adressed with Bluetooth Mesh. It remains to be seen how well the
Bluetooth Mesh standard performs and how much of an implementation effort will
be involved for adopting a Bluetooth Mesh solution. One can however assume that
if Bluetooth Mesh delivers on what is being promised, the GATT REST API, and
maybe even also the HTTP Proxy Service will see themselves replaced in favor
of Bluetooth Mesh. The HTTP Proxy Service may still be preferable in certain
situations considering its relative simplicity.

Bluetooth Mesh also challenges 6LoWPAN as it offers the same breadth of func-
tionality as 6LoWPAN but with improved networking capabilities. Bluetooth
Mesh also has the benefit of being maintained by the Bluetooth SIG and as such
does not require implementing separate technology in order to apply the solution,
which is the case with 6LoWPAN. Bluetooth Mesh is expected to work on current
BLE enabled devices which greatly facilitates its implementation.

Considering Bluetooth Mesh is designed with the intention of being an all round
BLE IoT solution it shows great promise for the BLE IoT domain as it attempts
to solve many of the issues with BLE IoT seen today. Time will tell if Bluetooth
Mesh manages to become the standard IoT solution for BLE enabled networks.

6.2 Implementation

The implementation, although successful, is far from complete. The functionality
of the implementation in its current state is very limited and could not be applied
to a production environment. While the implementation allows for sensor devices
to communicate over HTTP via the gateway many necessary aspects of the HPS
solution are yet to be implemented such as canceling ongoing HTTP requests,
processing of status-codes in the HPS server, and the HPS security characteristic
allowing for HTTPS messages to be sent.

Issues with the wifi connectivity also limit overall functionality making the im-
plementation in its current state unreliable. The issue was traced to the wifi
driver of the gateway module and resolving the issue most likely lies outside of the
HPS implementation.

The implementation however shows that it is relatively elementary to implement
the HPS solution in a gateway, as it is implemented as one would implement any
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other BLE service, for which there is a plethory of information at hand. Imple-
menting the HPS solution in peripheral devices however proved to be a bit more
complicated than originally thought. The fact that the peripheral device intended
to be used for the solution required a different set of tools than the gateway device
complicated the implementation as implementing the peripheral device required
learning a completely new set of tools and frameworks. Luckily the module used
for testing the HPS gateway could also be used to emulate a peripheral device.

6.3 Final Thoughts

The thesis study evaluates a set of possible IoT solutions for Bluetooth-based sen-
sor networks and shows that the different solutions are optimal for different use
cases and under different circumstances. This is in itself not a suprising result, it
is natural that solutions built on different architectures and standards are applied
with varying degrees of effectiveness to different use cases. An interesting conclu-
sion however is that each of the different solutions match one of the three use cases
applied in the thesis. One could argue that the use cases were chosen to match
one of the evaluated solutions, this is however not the case as the use cases were
chosen early in the process before the solutions had been thoroughly researched.

The thesis only touches the surface of the specifics for each of the solutions and
many aspects are not addressed. Focus was consciously put on how the solutions
solved the issue of granting Internet access to BLE sensors, and how data was
transmitted within the network. Important aspects not taken into consideration
but which nonetheless are of great significance are range, power consumption and
future developments. A more in depth evaluation of security would also be of great
benefit as the security aspects considered in the thesis are very superficial.

6.4 Future Work

IoT is a field of technology which is evolving at a very fast pace and therefore it is
important but also demanding to be up to date. Following the development of the
paradigm and its associated and available solutions is key to providing a relevant
account of available options for enabling IoT through the use of BLE devices.

6.4.1 Solutions

With the release of Bluetooth Mesh it would be interesting to perform a proper
comparison of Bluetooth Mesh with the currently evaluated solutions to see how
they fare against this new architecture. Could Bluetooth Mesh make the other
solutions obsolete?

Delving deeper into the different aspects of the solutions as well as aspects not yet
addressed such as range and power consumption would further improve the evalua-
tion of the solutions and give better indications for under which circumstances the
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different solutions are optimal such as in situations with very constrained power
consumption requirements, or where range and reliability are key.

6.4.2 Implementation

The obvious next step in the implementation would be adding a HPS enabled
peripheral device to the implementation, as was originally intended. To make
the implementation more interesting something more creative could be done with
the actual HTTP messages sent through the gateway, such as posting a Twitter
update. If the gateway is ever to be used in an environment outside of academics
the rest of the HPS attributes and functionality would need to be implemented
such as handling of error codes, canceling ongoing HTTP communication and
implementing support for HTTPS messages.



References

[1] Gartner Says the Internet of Things Installed Base Will Grow to 26 Billion
Units By 2020, http://www.gartner.com/newsroom/id/2636073, 2013 (vis-
ited on 10/12/16)

[2] Mike Kavis, Don’t Underestimate The Impact of the Internet of
Things, http://www.forbes.com/sites/mikekavis/2014/07/21/dont-
underestimate-the-impact-of-the-internet-of-
things/2/#5aa9b79a587d, 2014 (visited on 10/12/16)

[3] Cho, Keuchul and Park, Woojin and Hong, Moonki and Park, Gisu and Cho,
Wooseong and Seo, Jihoon and Han, Kijun, Analysis of Latency Performance
of Bluetooth Low Energy (BLE) Networks, Sensors, 15(1):59, 2015

[4] Gomez, Carles and Oller, Joaquim and Paradells, Josep, Overview and Eval-
uation of Bluetooth Low Energy: An Emerging Low-Power Wireless Technol-
ogy, Sensors, 15(9):11734, 2012

[5] Dr. Cuno Pfister, Bluetooth Low Energy for the last 30 Meters of the Internet
of Things, Wireless Congress, 2014

[6] Aiman J. Albarakati, Junaid Qayyum, Dr. Khalid A. Fakeeh, A Survey on
6LowPAN & its Future Research Challenges, International Journal of
Computer Science and Mobile Computing, Volume 3, 2015

[7] Ida Sabel, Internet of Things & Communication Protocol, Jönköping Uni-
versity, School of Engineering, 2015

[8] Robin Heydon, Bluetooth Low Energy Developer’s Handbook, Prentice
Hall, 2012

[9] Jeremy Clark, Paul C. van Oorschot, SoK: SSL and HTTPS:Revisiting past
challenges and evaluating certificate trust model enhancements, IEEE Sympo-
sium on Security and Privacy, 2013

[10] Mike Ryan, Bluetooth: With Low Energy comes Low Security, USENIX Work-
shop on Offensive Technologies, 2013

[11] Spring, Spring for Android, http://projects.spring.io/spring-
android/, 2014 (visited on 10/12/16)

49



50 References

[12] Spring, Consuming a RESTful Web Service from iOS,
https://spring.io/guides/gs/consuming-rest-ios/, 2014 (visited
on 10/12/16)

[13] Mike Wasson, Calling a Web API From a .NET Client in ASP.NET Web
API 2 (C#), http://www.asp.net/web-api/overview/advanced/calling-
a-web-api-from-a-net-client, 2014 (visited on 10/12/16)

[14] Dr .M .Elkstein, Using REST in Python,
http://rest.elkstein.org/2008/02/using-rest-in-python.html, 2008
(visited on 10/12/16)

[15] Dr. M. Elkstein, Using REST in Javascript,
http://rest.elkstein.org/2008/02/using-rest-in-javascript.html,
2008 (visited on 10/12/16)

[16] J. Nieminen T. Savolainen M. Isomaki B. Patil Z. Shelby & C. Gomez, IPv6
over Bluetooth Low Energy, Internet Engineering Task Force(IETF),
2015

[17] C. Gomez, S. Darroudi, T. Savolainen, IPv6 over Bluetooth Low Energy Mesh
Networks, Internet Engineering Task Force(IETF), 2015

[18] Bluetooth SIG, Bluetooth Mesh White Paper, Bluetooth SIG 2016

[19] Bluetooth Special Interest Group, Gateway Smart Starter Kit,
https://www.bluetooth.com/develop-with-bluetooth/developer-
resources-tools/gateway, 2015 (visited on 10/12/16)

[20] Bluetooth Special Interest Group, HTTP Proxy Service White Paper,
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?
doc_id=308344&_ga=1.19823679.661477216.1468331256, 2015 (visited on
10/12/16)

[21] LinkLabs, 3 Reasons Why IPv6 Is Important for the Internet of Things,
http://www.link-labs.com/why-ipv6-is-important-for-internet-of-
things/, 2015 (visited on 10/12/16)

[22] N. Kushalnagar, G. Montenegro, C. Schumacher, IPv6 over Low-Power Wire-
less Personal Area Networks, Internet Engineering Task Force(IETF),
2007

[23] Jonas Olsson, 6LoWPAN Demystified,
Texas Instruments, http://www.ti.com.cn/cn/lit/wp/swry013/swry01
3.pdf, 2014 (visited on 10/12/16)

[24] Bluetooth SIG, Bluetooth technology to gain longer range faster speed mesh
networking in 2016,
https://www.bluetooth.com/news/pressreleases/2015/11/11/bluetooth-
technology-to-gain-longer-range-faster-speed-mesh-networking-
in-2016, 2015 (visited on 10/12/16)

[25] E. Kim D. Kaspar N. Chevrollier JP. Vasseur, Design and Application Spaces
for 6LoWPANs, Internet Engineering Task Force(IETF), 2011



References 51

[26] Rick Walker, Smart Mesh for the Smart Home,
http://cwbackoffice.co.uk/docs/Rick%20Walker.pdf, 2015 (visited on
10/12/16)



References 51

[26] Rick Walker, Smart Mesh for the Smart Home,
http://cwbackoffice.co.uk/docs/Rick%20Walker.pdf, 2015 (visited on
10/12/16)



Internet Access Possibilities in 
Bluetooth Low Energy Sensors
JOAKIM KLASMAN
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY |
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2017

JO
A

K
IM

 K
LA

SM
A

N
Internet A

ccess Possibilities in B
luetooth L

ow
 E

nergy Sensors
LU

N
D

 2017

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2017-561

http://www.eit.lth.se


