
Effi
cien

t d
ata co

m
m

u
n

icatio
n

 b
etw

een
 a w

eb
clien

t an
d

 a clo
u

d
 en

viro
n

m
en

t

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, 2016.

Efficient data communication
between a webclient and a
cloud environment

Kit Gustavsson
Erik Stenlund

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2016-528
http://www.eit.lth.se

K
it G

u
stavsso

n
 &

 Erik Ste
n

lu
n

d

Master’s Thesis

Efficient data communication between a
webclient and a cloud environment

Kit Gustavsson
kitgustavsson@gmail.com

Erik Stenlund
erikstenlund0810@gmail.com

Axis Communications
Emdalavägen 14

Advisor: Maria Kihl

June 23, 2016

Printed in Sweden
E-huset, Lund, 2016

Abstract

Modern single page web applications that continuously transfer a lot of data be-
tween the clients and the server require new techniques for communicating this
data. The REST architecture has for a long time been the most common solu-
tion when developing web APIs but the technique GraphQL has in recent time
become an interesting alternative to REST.

This thesis had two major purposes, the first was to investigate and point out
the difference between using REST and a GraphQL solution when developing a
web API. The second was to, based on the results of the investigation, create a
decision model that may be used as support when deciding on what type of tech-
nique to use and the effect of the decision when developing a web application.
Prototypes of each API were implemented and used to conduct measurements
of each technique’s performance. Additional infrastructure such as web servers
and load generators were also developed for the measurements. The main work
behind constructing the decision model was to choose which architectural deci-
sions that are relevant when comparing the two different architectures. This was
done by literature studies, interviews with developers and experiences from de-
veloping the prototype-APIs. The results from the measurements resulted in a
relative performance comparison between the two different techniques. The de-
cision model was also designed and the discussion about it shows the differences
between the techniques learned from experience and the studies of them.

1

Popular scientific summary

If you have ever developed an API, or more specifically a web API you have
probably encountered the challenge of deciding which techniques, language and
architecture to use. In this thesis we have evaluated and compared REST and
GraphQL, two technologies that are commonly used, in terms of performance,
maintainability and usability.

The goal was to summarize the comparison both in a decision model covering
the topics about maintainability and usability and by producing measurements
of the performance. The decision model is also supposed to give aid when trying
to decide which technique that is most suitable for an API. It may also shine light
on what challenges might be faced later.

Much of the information on the subject today is either about older techniques
or based on personal opinions rather than information. The thesis tries to give a
research-based evaluation of the techniques for projects with varying demands,
this without being irrelevant for practical use.

Also, today’s market is challenging in a number of different ways and the
users requirements on applications are constantly increasing. The applications
needs to be robust, work on different devices, be easy to change and be fast.
Because of this it is very important to choose the right tool for the job already
during development. There is seldom a ”one solution fits all’ option available
and compromises must be done. Here we saw a need for the decision model, to
give insight into what compromises you are making. Even if performance is not
the most important factor in a system it is often one of the more important ones,
especially since the mobile market just keeps growing. This is why we not only
want to deliver the decision model but also provide the separate performance
measurements.

To be able to measure the relative performances of the two technologies we
implemented a prototype of each API as well as a test environment where the
APIs could run and be tested. The creation of the decision model was done si-
multaneous as the creation of the APIs and the test environment. That made it
possible for us not only to base the decision model on literature study but also
from the experience gained during the development. The test environment con-
sisted of a web server, an API prototype and performance-logging software run-
ning in a container for each of the technologies, load generating software and
additional software to log the network load. The load generating software we

3

implemented was based on Axis’ current web application. It fit well to use as a
use-case because of its structure, which reminds of many common web applica-
tions today, such as Facebook and Netflix. The logging software running in the
containers measured each API’s CPU- and memory utilization. The other log-
ging software measured the frequency and the size of the traffic communicated
between the load generating software and the APIs.

All the measurements showed that GraphQL outperforms REST for our ap-
plication. Especially how much GraphQL reduced the needed traffic between
the client and the server was interesting. GraphQL also showed to perform even
better compared than REST when the application grew bigger. But as mentioned
earlier performance is only one aspect to evaluate. The decision model shows
even more of the differences between the technologies. Put short, using REST
results in a much more flexible and adaptable solution while using GraphQL is
more restrictive for the developer. GraphQL also needs an implementation that
sets some restrictions on which languages that are possible to use. The need of
an implementation also affect licensing in ways that REST do not. In pure terms
of development using GraphQL requires more work for development and less
documentation exists than for REST.

These factors combined imply that GraphQL is a very interesting technology
to use for more complex applications that contains a lot of nested data and possi-
bly have the need for efficient mobile clients. A REST solution might be preferable
for simple web applications both due to the flexibility but also because of it being
more well-known and documented. Using REST also requires less effort to be put
into development, which might be important for smaller businesses.

Acknowledgments

We would like to thank our supervisor at LTH Maria Kihl. We would also thank
the whole AVHS team at Axis Communications in general and specifically Simon
Thörnqvist who were our supervisor at Axis. Simon and the AVHS team gave
great guidance and it was a great experience to work with them. Finally, thanks
to Axis for letting us do our master thesis project with them.

Table of Contents

1 Introduction 1
1.1 Background . 1
1.2 Research question . 2
1.3 Purpose, goal and scope . 2
1.4 Approach . 2

2 Theory 5
2.1 Software Architecture . 5
2.2 Performance . 13
2.3 Decision model . 16

3 Method 19
3.1 Defining REST . 19
3.2 Performance Measurements . 20
3.3 Decision Model . 24

4 Results 27
4.1 Measurements . 27
4.2 Decision Model . 32

5 Discussion 41
5.1 Measurements . 41
5.2 Decision Model . 43

6 Verdicts 51
6.1 Verdicts . 51

References 53

7

Chapter1
Introduction

1.1 Background
This master thesis was done at Axis Communications AB in Lund with the AVHS
team. AVHS, Axis Video Hosting System is a service that offers alarm monitoring
and video surveillance over the internet. Axis offers intelligent security solutions
and is a market leading company in the field of network video. They develop
cameras, software and applications for network surveillance.
The web and its applications look and work a lot different compared to how they
did ten to twenty years ago. Originally and for a long time the web was a place
to get web-pages, which can be seen as static documents. A web application used
to consist of static pages, which were served from a server. The pages were then
retrieved and displayed in the client’s web browser. Nowadays web applica-
tions are developed in a way where the web is used to ”do” things, like watching
videos or interacting with other people. This type of web applications often con-
sists of a single page, which continuously is served dynamic content from a web
server. The modern application may be seen more as a sophisticated state ma-
chine.

Axis wanted to look into the subject of comparing different technologies for im-
plementing web APIs. The reasons for this were mainly:

• Maintainability - Axis wanted a system that could keep up with today’s fast
changing and competitive market.

• Performance - The application should be fast and perform well on networks
with limited speed.

• Usability - It is in Axis’ interest that the APIs are easy to understand and
consume for third parties.

These three parameters are interesting not just for the AVHS application but for
most services communicating over the Internet. It does not matter whether it
is a third party who will consume the API or if it is another team within the
same company developing a module that will communicate with another module
using an API.

1

2 Introduction

1.2 Research question
What strengths and weaknesses are there when working with JSON/Graph APIs
and REST APIs and how do they compare to each other in terms of performance,
usability and maintainability?

1.3 Purpose, goal and scope
In this thesis we want to investigate two different techniques used for designing
web APIs. We want to present a quantitative comparison between them. The
Representational State Transfer architecture (REST) has for a long time (together
with WS*/SOAP) been the ”de facto” standard for implementing web APIs. In
recent time new alternatives have risen to fame and a quick search on the Internet
about the different alternatives will result in countless discussions about what
technique is the best or why one of them is completely useless. The discussions
are often subjective, not all, but it is hard to get a clear view of what is actually
the difference between the techniques. GraphQL is one of the most used of these
techniques and would commonly be the main alternative to a REST API. Because
of that we want to compare it to the REST architecture.

The objective of this thesis is not to say which one of the different techniques
is better in general, but to perform a quantitative comparison between them and
try to find out how the different techniques perform in a common type of appli-
cation. We want to:

• Conduct performance measurements on API implementations using each
of the techniques.

• Present a decision model based on the research made during the thesis and
experiences from the development of the implementations. The decision
model may be used as support when deciding on what technology to use
when designing a web API. It can also emphasize more hard-to-measure
differences between the techniques such as maintainability.

The task consisted of three parts:

1. Literature study

2. Develop prototypes and perform measurements

3. Evaluate the results and produce the decision model

The task was estimated to take 20 weeks to finish.

1.4 Approach
A thorough literature study was performed in the beginning of the project. In
the study papers about REST, GraphQL, web APIs, Decision models, web server
testing and website performance were the main subjects. Papers, blog posts and

Introduction 3

discussions around the subjects of web APIs and architectures were also stud-
ied. Apart from reading literature, reference implementations of different web
APIs on GitHub were also studied. To be able to compare the performance fac-
tors like, payload, CPU-usage etc. we developed a prototype application of each
the APIs on which we could conduct measurements on. The measurements were
performed on the applications when processing a generated load based on char-
acteristics of the AVHS web application.

4 Introduction

Chapter2
Theory

2.1 Software Architecture
Software architecture as a field, discusses the high-level structure of software. It
often involves exploring the decisions considering which modules to divide a
system into and how the modules will communicate and depend on each other.
Here follows some sentences used by Martin Fowler in his book Patterns of En-
terprise Application Architecture[1] to describe what software architecture is and its
characteristics:

• The highest-level breakdown of a system into its parts

• The decisions that are hard to change

• There are multiple architectures in a system

• What is architecturally significant can change over a system’s lifetime

• In the end, architecture boils down to whatever the important stuff is

As mentioned there are simultaneously multiple architectures in a system.
There are architectures describing the system as a whole and architectures in
sub-parts of a system. In the case of web applications the highest abstraction
of software architecture could be that it should be a client-server type of appli-
cation that communicates using the web. Looking deeper into the application,
one may look at the server architecture. Which parts should the back-end consist
of? Maybe some kind of separate web server as Apache[2] or Nginx[3] could be
used. Should there be load balancing? What database should be used? On an
even more fine-grained level there are decisions about the actual implementation
such as: if programming object oriented, what classes are there? Software archi-
tectures have over the years, as software development evolved, become more and
more important. The market for software today is extremely fast changing and
the demands are getting higher. To be successful in today’s market you need to be
adapting to its changes, fast! The software architecture is one of the key elements
in achieving success. It affect so many parts of the software development: perfor-
mance, time-to-market, adaptability, maintainability, scalability, robustness etc.
Software architecture is not something you ”do once” and then it is there. It is

5

6 Theory

something that requires work throughout the whole lifetime of a software prod-
uct.
The software architecture is high-level and might be seen as very abstract, but
most architectural changes and decisions greatly affects the characteristics of soft-
ware from a developers point of view. In development, an architectural decision
usually affects the maintainability and how easy code is to understand rather
than the performance or functionality. Of course there can be an architectural de-
cision affecting performance as well. When it comes to designing web APIs the
architecture will greatly affect both soft values like maintainability, understand-
ability and the hard values of performance. So when comparing different tech-
niques for implementing web APIs the softer values, like conceptual differences,
needs to be separated from the harder ones like memory usage on the server.

2.1.1 Web API-design
If you have consumed or developed a web API you have probably experienced
that often performance, ease-of-use and maintainability are hard to achieve all
together. It is often a ”you can only pick two” kind of choice, or maybe even
only ”pick one”. If a web API is to be optimized both in terms of performance
and ease-of-use, its design should be driven entirely from the needs of the client
consuming it.

For example, a client web application has a number of different views that its
users can navigate between. On each view there is data being displayed, some
explicit to each view and some that are shared. If the design of the API were
driven by the clients needs it would expose one endpoint for each view. Instead
of having an endpoint for each resource R1, R2...Rn there would be an endpoint
for each view V1, V2...Vn where each view consists of a subset of the resources.
This will result in an API that is hard to navigate in and it will not scale well as
the number of clients increases.

Spawning multiple endpoints is, even if it is not a good solution, a common
one. This solution will not scale well in a larger application where clients have
many needs. Apart from making the API hard to navigate and understand, it will
also be a challenge to maintain it if the API has to change as the clients change.
It is also hard to know what the clients will need when designing the API. These
are the main challenges when designing a web API, that it should be both main-
tainable and easy to use without lowering the performance.

2.1.2 REST
REST, Representational State Transfer, was defined by Roy Thomas Fielding in his
doctoral dissertation in 2000[4]. It is an architectural style for implementing web
APIs. The derivation of REST is the result of applying constraints on a system,
some of the constraints are:

• Client-Server - The architecture physically separates the processing capabil-
ities of a system into two different components. A server that offers a set of
services and listens for request to those services. The client connects to the

Theory 7

servers and sends requests to it. The server then handles the requests and
sends responses to the client[5].

• Stateless - The server should not need to keep track of any session state.
Each request sent from a client to the server must contain all the informa-
tion that the server needs in order to understand the request[4].

• Cacheable - A response from the server to the client must be able to be
labeled as cacheable. This gives the client a possibility to reuse such re-
sponses and thus reducing unnecessary requests[4].

• Uniform Interface - The different components of the system need to com-
municate in a uniform way. This constraint introduces a more general in-
terface between the components, which could be for example clients and
server. By standardizing communication, the flexibility of using the most
appropriate solution is lost. Or as Fielding puts it in his dissertation:

Implementations are decoupled from the services they provide,
which encourages independent evolvability. The trade-off, though,
is that a uniform interface degrades efficiency, since information
is transferred in a standardized form rather than one that is spe-
cific to an application’s needs.

• Layered System - The system is separated into different layers. One layer
only interacts with its closest layers[6]. Think of it as a Unix pipe. E.g.
when using ls | grep txt | awk ’ print $1’ , the ls and awk does not
need to know of each other. As long as ls and grep, and simultaneous grep
and awk (i.e. the closest layers) ” communicate ” in a correct way, it works.

By applying these constraints REST tries to emphasize scalability of interact-
ing components, a general interface and the possibility to independently deploy
components[4]. An API implementing the REST architecture describes the data
it wants to expose with resources. In REST a resource is an abstraction of infor-
mation. A resource contains any type of information e.g. a document, a person
or a service. It may be seen as a mapping to a set of information at a given pe-
riod of time. This may be contrasted to specifying a static document with an URI
where the mapping, in this case the URI, is a mapping to information at a single
instance. A resource is identified with a URI and the operation to perform on the
resource is described with HTTP verbs.

In mathematical terms one may imagine a set S that contains all available
data on the server. Figure 2.1 show how different resources contains subsets of S.

For each time instance t the resources maps to different subsets of the set
S. The resources may be addressed using URIs, see Figure 2.2 that shows an
example of how to request a resource. When a request for a resource is received
at the server a representation of the subset that is currently mapped to by the
resource will be returned in the response.

The REST architecture works very well combined with the HTTP protocol
that Fielding also helped specify. REST does, by definition, not depend on HTTP
but they are in practice used in pairs. When applied to HTTP the URI of the HTTP

8 Theory

Figure 2.1: Resources as a subset of domain S at a time in-
stance

Figure 2.2: Receiving information from a REST resource using
HTTP verb and URI

message, see section 2.1.5, is used to specify a resource and the HTTP verb is used
to specify the operation on the information mapped to by the resource.

Even though Roy T. Fielding did specify the constraints and more or less stan-
dardized REST in his dissertation, it is often used in a ”less” strict way. The term
RESTful is often used to describe an API that partially conforms to the REST ar-
chitectural style. Leonard Richardson breaks down the steps of RESTfulness from
no-REST to full REST into four levels in his Maturity Model[7].

Theory 9

Maturity Model

• Level 0 - The API uses HTTP as a transport protocol system for interactions
between a client and a server. The server exposes one single endpoint and
then the request payload contains the details about the specific resource
and operation. This is by all means not RESTful at all.

• Level 1 - This level introduces resources. By using different URI:s the server
may expose different endpoints to the user, each containing a different re-
source.

• Level 2 - In Level 0 and Level 1 the HTTP verb is irrelevant for the inter-
action. This level introduces the HTTP verb as the way to distinguish be-
tween different operations. There is some inconsistency among the com-
munity about which verbs to use. Lo-Rest uses only two verbs and Hi-Rest
uses four verbs.

• Level 3 - This level introduces a constraint called Hypertext As The Engine
of Application State often referred as HATEOAS.

It is not uncommon that an API today only reach level 2 in this model. That
is RESTful APIs using the features offered by HTTP on the application level.

Parts of developing a REST-API [8]

A example of the major tasks of designing a REST API:

• - Resource Identification - Decide which resources to use to describe the do-
main.

• - URI design - Name the URIs used to access your resources.

• - Resource Interaction Semantics - Decide which of the four verbs that should
be applicable to each resource.

• - Resource Relationships - How are the resources related to each other, refer-
ence, ownership containment etc.

• - Data Representations - What type of data should be returned. Could be for
example JSON or XML.

2.1.3 SOAP/WS*
SOAP, Simple Object Access Protocol, is an XML-based protocol created at Mi-
crosoft in 1998. Its purpose is to send and receive information using XML as
language to describe the information passed between client and server. SOAP is
an extensive protocol and it will not be explained with much detail in this thesis.
But knowledge about it is necessary because it is still one of the largest actors
among web APIs. The SOAP specification defines a protocol for messaging and
addressing different operations between a client and server and as mentioned
above it uses XML to define the message architecture. A XML schema is used

10 Theory

so that SOAP engines at both client and server know how to marshal and un-
marshal the message content. SOAP does not specify what transport protocol
to use like REST does, it is not bound to any specific transport protocol. SOAP
focuses on exposing application logic as services instead in comparison to REST
that exposes resources/data on which you can perform CRUD (Create, Read, Up-
date and Delete) operations. Due to SOAP’s exposing of methods and the use of
XML to address these in the messages, a lot of overhead is needed. XML-parsing
is an expensive operation in terms of latency and the message creation requires a
lot of work.

2.1.4 JSON/Graph-based architectures
The newest trend in the architectural styles of is driven by the likes of Facebook
with their GraphQL and Netflix with their Falcor. These technologies take a step
back from the REST architecture and would only reach Level 0 in the previously
mentioned Maturity Model 2.1.2. The technologies remind of older techniques
like the previously mentioned SOAP in the sense that they expose only a single
endpoint and then make use of a domain specific language to create the request.

The main focus in these architectures is to minimize over-fetching and re-
ducing unnecessary requests. This is done by giving much more power and re-
sponsibility to the clients. This thesis will focus on Facebook’s GraphQL as the
representative for the JSON/Graph-based architectures.

GraphQL was a good choice for the prototype implementation because it had
a well maintained implementation in JavaScript that was very accessible. It also
represents the features of a JSON/Graph API better than Falcor does. Falcor is
a solution that is more suitable for Netflix’s specific needs. GraphQL’s power
comes from a simple idea - instead of defining the structure of responses on the
server, the flexibility is given to the client. Each request specifies what fields and
relationships it wants to get back, and GraphQL will construct a response tailored
for this particular request. The results in that only one round-trip is needed to
fetch all the data needed that might otherwise span multiple endpoints, and at
the same time only the data that is actually needed is returned [9]. As previously
mentioned a resource is to be seen as a representation of data at a given time.

Theory 11

Figure 2.3: Receiving information from a GraphQL server using
HTTP and GraphQL query

In contrast to REST, GraphQL is not just an architectural style. GraphQL
consists of different parts, a type system, domain-specific language (the query
language), execution semantics, static validation and type introspection.

To run GraphQL on a server the GraphQL Core is needed. The implemen-
tation of the GraphQL core is language specific. This means that the language
used to implement the server must have an implementation of GraphQL to be
able to run. Currently there are a number of languages with implementations
of GraphQL, with varying maintenance. The main language for the GraphQL
core implementation is JavaScript, Facebook maintain this implementation them-
selves. Other languages currently offering implementations of GraphQL are Ruby,
PHP, Python, Java, Scala, C/C++ and Elixir.

The GraphQL Core consists of five components:

• Frontend (Lexer/Parser) - Takes a query string and produces an AST (abstract
syntax tree).

• Type System - The API provided to consumers to describe their own type
systems.

• Introspectrum - A standardized way of querying the Type System. Often
used to ask a GraphQL schema that queries it supports. In the data that is
retrievable by introspectrum one can get documentation and information
about deprecated fields.

• Validation - Validates if a query is valid in an application’s schema. For
example GraphQL will not allow to pass a string parameter where a enum
type is expected.

• Execution - Manages query execution. It also handles asynchronous orches-
tration between queries.

The main idea behind these techniques is that the whole data model is ex-
posed on a single server endpoint. It is then up to the client to ”ask”, using the

12 Theory

query language, for the parts of the data it wants. The server takes this request,
selects the data that is asked for and sends it back as a response. The client will
receive only the data it needs and thus lowering the network load compared to a
more complex request using REST. An example of a request sent to a GraphQL is
described in Figure 2.3.

These techniques were developed because fetching complicated object graphs
requires multiple round trips between the client and server. For mobile applica-
tions operating in variable network conditions these round-trips are highly un-
desirable due to their common limitations both in terms of speed and in data
usage.

Another thing the creators of the techniques wanted to avoid was over-fetching.
Over-fetching is when the client is making a request for some data on the server
and the response contains more data than the client needed. For example the user
might not want the whole representation of a resource but is forced to ask for it
and then parse out the parts that are relevant. This is a problem due to the wasted
traffic with unnecessary data sent.

2.1.5 HTTP

Hypertext Transfer Protocol(HTTP) is a stateless application-level protocol and
one of the main protocols of the World Wide Web. The current used version
is HTTP/1.1 but the new standard for HTTP/2 was released in May 2015 and
addresses some of the performance issues coupled with HTTP/1.1. HTTP is the
main protocol, due to it being the de facto standard protocol on the web, used
to communicate with an API. It is commonly being used to transfer messages
between a client and an API and is because of this sometimes referred to as a
transport protocol when discussing APIs. When this paper calls HTTP a transfer
protocol the meaning of transfer protocol comes from the API context i.e. it is
used to transfer the communication between an API and a client. This should not
be mixed-up with the more common use of the term that means a protocol that
lies in the transport-layer of the OSI-model.

HTTP caching

HTTP includes functionality intended to allow caching of responses. This makes
it possible to eliminate the need to send unnecessary requests e.g. requesting an
unchanged resource twice. A common way to solve client side caching is for the
server to create a tag based on a received HTTP request. The tag gets a lifetime-
stamp and is included with the response back to the client. Web browsers may
then store the tags with the responses in a cache. Before a HTTP request is sent to
a server the web browser calculates a tag in the same way as a server would do.
If the tag exists in the cache and if it still is valid the response is fetched from the
cache and the request is discarded.

Theory 13

HTTP/1.1

HTTP/1.1 got its first RPC at 1997. Its purpose was to improve the performance
of the earlier versions of HTTP. Some of the most important enhancements and
features are listed below[10]:

• Persistent connections to allow connection reuse.

• Chunked transfer encoding to allow response streaming.

• Request pipelining to allow parallel request processing. The responses ares
still synchronous.

• Improved and much better specified caching mechanisms than HTTP/1.0.

HTTP/2

Google tried to solve some of the problems with HTTP/1.1 with the SPDY protocol[11].
The work on SPDY was then used as a first draft for the HTTP/2 protocol. One of
the main purposes for revising HTTP was the problem with how browsers used
many TCP connections to send parallel requests to a server. HTTP/2 addresses
this problem using unique stream identifiers for each HTTP request stream[12].
By adding multiplexing to the protocol HTTP/2 allows a client to use only one
TCP connection to each origin and the server may reply a response as soon as it
is processed even if it still have not processed earlier sent requests. The client is
then able to distinguish the responses from each other using the stream identifier
in the response header.
The key differences between HTTP2 and HTTP/1.x[13]:

• HTTP/2 is binary instead of textual.

• HTTP/2 is multiplexed instead of blocking and in need of ordering.

• HTTP/2 headers are compressed.

• HTTP/2 allows servers to push responses before they are requested into
caches at the client.

The fact that HTTP/2 is binary entails less work needed to parse the packets.
It is also more compact, which combined with the compressed header gives less
overhead compared to a HTTP/1.x packet.

2.2 Performance
From a user perspective one of the most important things when using a web-
site is that it should feel responsive, especially during the initial load phase[14].
The gain from good performance may also be seen from a server perspective.
The memory- and CPU-consumption of an application both affect the business
in terms of initial cost for physical hardware needed to run the application and
also in future costs due to how well the application scale. Scalability is how
well/easy an application may be extended with new hardware to handle addi-
tional load[15]. An application with good scalability can easily be extended with

14 Theory

a new CPU or more memory etc. without decreasing performance in terms of
utilization and responsivity. An application that is not scaling well would use the
available hardware in a less efficient way if it is extended with additional hard-
ware.
Developers often try to solve the problem with responsivity by using JavaScript
running in the web browser. JavaScript is used to do asynchronous requests to a
server, which exposes the data needed by the application. This makes it feasible
to load data into the application as the responses containing it returns from the
server. Even though this solution to a great extent solves the problem with web-
sites being locked while waiting for the responses, it still limits the users’ ability
to use the website while waiting for the data from the server responses. The time
the client has to wait for the server response, called response time[16], may be
seen as the sum of two delays:

1. The time it takes to transfer the request and the response between the client
and the server.

2. The time for the server to process the request and return a response.

The server processing time is called latency[16] and it may in turn also be seen as
the sum of several latencies, e.g. processing of the request, database look-up and
logging. The scope of this report will only cover the first of these, even though
database look-ups obviously greatly affects the response time for an HTTP-request.
The first delay will from here be referenced to as transfer time.

An API implementation explicitly affects the latency time due to the actual
processing of the request. This is due to that a less efficient implementation may
take an unnecessary long time to execute certain calculations or processing. This
results in a longer latency time than a more efficient solution would give.

The implementation also implicitly affects the transfer time because the trans-
fer time depends on the design. This is due to the design’s affect on how many
requests the client needs to send to the server. An API is said to have a network
profile, that means how it influences the frequency, size and number of differ-
ent requests. For these reasons it is very important for an API designer to have
network traffic in mind when designing an API. By making it possible for the
client to get the data it needs with few requests much is won is terms of website
performance.

2.2.1 Performance Measurements

To be able to compare a GraphQL API with a REST API in terms of performance
the different applications have to be tested. The actual measurements have to be
done on implementations of the architectures. The REST architecture acts on a
higher abstraction level than an implementation of GraphQL. The performance
of the architecture will depend on the implementation, but by choosing the cor-
rect measurement points, the effect of the implementation may be reduced. By
focusing on relevant measure points the relevant differences of the architectures
may be highlighted and pinpointed. Network load in terms of traffic, delays and

Theory 15

connections is affected by architectural decisions. The parameters affected by ar-
chitectural decisions that will be measured are the amount of requests, size of the
data transferred, response time/latency, memory usage and CPU usage. These
measurements are relevant during web API design both due to the limitation of
possible outgoing connections for a web browser while sending HTTP request
and also in terms of cost for the extra server load.

Different hosting providers, e.g. Amazon[17], Digital Ocean[18] often build
their business model not only in terms of selling hardware but also by charging
the customer based on the use of the network. The use of the network is measured
in the total transfer data but also in the amount of requests sent to and from the
server.

By implementing the APIs in the same programming language and using the
same frameworks the API implementation may be compared in terms of memory
and CPU utilization. The memory and CPU utilization affect both the hardware
needed for running an instance of the API and also how much traffic each of the
instances can handle. This is important both due to pure economic reasons but it
also affects the scaling of the API on a given machine. An API that needs a lot of
memory and CPU for each connected client either have to be run on a machine
with more hardware or be extended with another running instance if the traffic
threshold is expected to be exceeded.

The required memory for each API instance can be measured in a determinis-
tic manner. Other running processes on the host machine do not affect the mem-
ory usage of the target process. The memory usage for the process can be ob-
tained in two different ways, either with loggers in the server implementation or
by using available utilities provided by the operating system. When construct-
ing an environment for measuring the CPU, more parameters have to be taken
into account. If many other processes are simultaneously running at the same
machine the measured process may get less CPU tics assigned by the scheduler,
thus lowering the CPU-usage while instead raising the time needed to process
the request.

To be able to control the CPU usage of the process one may run the process in
a container or on a virtual machine, as often would be the case today in the cloud
computing era[19].

Virtual machine

A virtual machine is an implementation of a computer (or another machine) writ-
ten in software and intended to run on another machine. The virtual machine
runs inside a VMM (Virtual machine monitor), also called hypervisor, which itself
in turn runs on a so called host computer. The VMM provides an environment for
the virtual machine that mirrors the actual machine and controls the host system
resources[20]. This makes it feasible to run both many but also different operating
systems on a single machine, each using its own memory and user-space.

16 Theory

Operating-system-level virtualization

Operation-system-level virtualization makes it possible to run multiple differ-
ent isolated user-spaces on one single computer using containers. Containers
are similar to regular virtual machines in many ways and may be seen as more
lightweight version of them. This is the solution used to get a deterministic envi-
ronment for the API implementations that the measurements are performed on.

2.3 Decision model

The term decision model is used in many different fields of work, like, economics,
software development, management etc. A decision model tries to take in the
relevant parameters in decision making, compare them with each other and help
making an informed decision.

When designing a system, there is seldom one perfect solution. There is often
a number of alternatives to consider where there are pros and cons with all of
them. The decision alternatives are often chosen between in an ad hoc manner.
A decision model is not meant to avoid the trade-offs but rather inform of what
trade-offs there are and how they may affect your project.
In this thesis, GraphQL and REST are compared to each other. The model used
as base for the decision model presented in this paper, is the model presented by
Cesare Pautasso, Olaf Zimmermann and Frank Leymann in their paper ’RESTful
Web Services vs. ”Big” Web Services: Making the Right Architectural Decision’[8].
They propose a quantitative approach to comparing architectural alternatives.
The decision model shows what decisions that have to be made when choosing
one alternative over another. Each decision is specified by a number of alterna-
tives. The decisions will be referred to as Architectural Decisions[21][8] and the
alternatives to each decision will be referred to as Architectural Alternatives or
AAs.

Architectural decisions can be a number of different things, something the
designer is bound to when choosing one technique, something that the different
techniques handle differently or something where there are a number of different
alternatives where the designer has to choose one or more. The alternatives rep-
resent the freedom or absence of choice depending on if there are many or few
alternatives to a decision. To have absence of choice might sound negative, but
it can also be something positive like an existing standard, which is usually not
deviated from. J. Tyree and A. Akerman motivate the use of Architectural Deci-
sions in a number of ways[21], one of which is that it conveys rationale and options.
It is important when reflecting over a decision or motivating it for a client or co-
worker, to be able to show what decisions were made and what alternatives were
considered.

To show what decisions and alternatives that were considered may give a
developer guidance on how to proceed with a design. It can also give an API
consumer an understanding of how changes in their applications requirements
will be affected by the API’s architecture. The decisions can also provide a client
with assurance that the API with its architecture fulfills their needs.

Theory 17

In Architecture Decisions: Demystifying Architecture[21] the question about whether
every little detail of a decision should be represented in the model is brought up.
The answer is that it should reflect the key elements of a decision making.

The method for eliciting the architectural decisions needed to be made when
choosing one of REST and GraphQL over the other is constructed to elicit the key
decisions of such a process.

Capturing architectural decisions that have been made in a project is a subject
where a lot of work has been done[22]. The work focuses on the retrospective
part of decision-taking, i.e. what was done in a project and why was it done.
The decision model in this paper, and as emphasized in ’RESTful Web Services
vs. ”Big” Web Services: Making the Right Architectural Decision’[8], is to bring
forward the decisions that are to come and how they will affect the project.

18 Theory

Chapter3
Method

3.1 Defining REST

REST is as mentioned earlier a very broad term and RESTful APIs are often called
REST APIs. The definition of REST is on an architectural level and can be applied
in many different scenarios. To be able to compare the two different architectures
a clarification on what the RESTful definition in this thesis actually means has to
be made. In Fielding’s doctoral dissertation you can find the official definition
of what REST is. This is the reason for the term RESTful, most people do not
read the whole dissertation. It is a lot of work and skill required to follow every
aspect of it. People often do their own interpretation of how to implement REST.
They choose to follow some parts REST to best suit their needs. There is nothing
wrong in this, but it does lead to some complications. Due to the fact that many
implementations that are not REST are still being called REST many confusing
and opinionated discussions arise.

This work does not try to validate REST as an architecture but to give decision
support when developing a new web API. This decision means that the definition
has to have actual relevance with reality.

Most ”REST” APIs developed today do not follow strict REST. That means
that both the prototypes and the decision model have to take that into account to
be relevant.

What will be distinguished on is whether or not REST is followed because
of lack of knowledge/skill/time or if it is deviated from because it is the best
solution for the problem. The definition tries to include the most important parts
of REST and the parts that are most common in implementations like using HTTP
as transfer protocol. During this thesis the following statements have been found
to be defining what REST is:

• REST uses HTTP as a protocol to transfer requests.

• REST utilizes HTTP verbs to specify operations.

• REST models the domain with resources.

• REST utilizes HTTP URIs to address resources.

19

20 Method

Even though the original REST definition does not require HTTP to be used,
most implementations use it. In the case that HTTP is not used REST requires
a lot more work to be implemented than it requires when using HTTP. Using
another protocol for carrying REST messages forces the actual implementation
of the communication to be done simultaneous. The developer would need to
implement an alternative for the HTTP verb to specify the operation and an al-
ternative to URIs to specify the resource to operate on. HATEOAS (Hypermedia
as the engine of state) is not followed in the REST definition from this thesis. This
is not because it is unnecessary to use HATEOAS. It is actually a useful concept
with many pros if followed. For example, it is possible to change the URI scheme
(at least with minor changes) without making the clients that uses the API break.
It also gives the clients a possibility to explore the protocol. The reason for HA-
TEOAS not being counted as a requirement for a REST API in this paper is that
there is no standard for how to implement HATEOAS and it is also relatively un-
commonly used. Even though HATEOAS is not required it will be discussed in
section 5.2 how using it might affect the developing process of a REST API.

3.2 Performance Measurements
To be able to measure the relative performance differences between a GraphQL
API and a REST API, a prototype for each one of the architectures was imple-
mented. The prototypes were built to mirror Axis’ existing API, which is of an
ad-hoc RPC (remote procedure call) nature. The term RPC describes a method
in distributed computing where the client invokes function calls on the server,
which in turn responds with the results of the functions[23]. The decision to mir-
ror Axis’ API made it possible to abstract away the database layer and let the APIs
only map to the corresponding, already existing, endpoints to fetch data from the
database. It has to be noted that the results of implementing this affects the mea-
surements of the response time. Depending on how well the mapping between
the existing API and the prototype implementation can be done, the number of
requests needed differ.

As an example of this: The prototype implementation models a resource A.
This resource conforms to parts of resource B, C and D in the existing API. Then
to get resource A, it would take three requests from the prototype to fetch all data
needed from Axis’ API. Figure 3.1 shows the design of the test system and where
the measurements are performed. In the figure it can be seen that the number of
requests needed between the Prototype and the Axis API will have an effect on
the measurements of response time. It will also effect the measurements of CPU
and memory consumption. The effects on CPU and memory will be insignificant
because in our tests all of the requests are of the I/O nature and require very little
processing.

The measurements of the number of requests, size of requests, CPU utiliza-
tion and memory consumption can be done in a deterministic way, since we con-
trol all parts of the client implementation and the prototype APIs. When mea-
suring the response time however it has to be mentioned that non deterministic
elements exist. These elements are the network connection between the prototype

Method 21

Figure 3.1: System model with the different measurements
pointed out

and the existing API, and how the resources are modeled.

3.2.1 Use-case

To get a relevant real world example the use-case was designed based on Axis’
web application AVHS. From the AVHS web application one can access the reg-
istered surveillance cameras, receive alarms, watch recordings and more. The
use-case mirrors what happens in the application when a user have just passed
the login page and is loading the index page. On the index page many different
resources are needed. The user is presented with a view containing live streams
from the cameras that belongs to the user. To be able to do this a lot of information
about the cameras and settings are needed. This use-case needs to know of which
cameras that are related to a specific site and then retrieve data about them. This
data can be available resolution, encoding etc. The use-case is an example of how
a real world application could work. In this thesis this scenario will be called ”the
use-case”. To be more specific, the use-case has one surveillance site, which has
four cameras connected to it. This set-up was based on how a smaller store, like
a clothes store, would use the surveillance application.
This use-case also acts as a requirement specification when developing the proto-
types. The prototypes will have to support all the functionality needed to carry
out the use-case.

22 Method

3.2.2 Test environment
The instances of the applications are run in virtual environments during the test.
Docker[24] containers are used to create and control the virtual environments.
This is to guarantee control over its relative access to the allocated CPU and mem-
ory in the container.

3.2.3 Client Implementation
The actual implementation of the use-case mentioned above is written in Python.
It consist of scripts that sequentially generates the requests specified by the use-
case. There is one script to generate the requests needed from the REST API and
one script to generate the requests needed for the GraphQL API. The requests are
sent to the API instances running in Docker containers.

3.2.4 Server Implementation
Two different API prototypes were developed to be able to measure how they
affect the network performance. The prototypes act as gateways and retrieves
the data asked for by the clients from Axis’ API proxy. The APIs were written
in JavaScript due to access to good frameworks for building APIs and because
of Node.js suitability for acting as a web server. In Figure 3.2 below the whole
system is illustrated. The GraphQL and the REST application looks almost the
same. Where the implementations do differ is inside the Express.js Application
in the figure where it says ”Query parser / Router”. In the REST application,
router software is used, which parse the URI from the HTTP request and derives
what controller logic to be performed for that URI. In the GraphQL application
instead of the Router there is the GraphQL core that parses the query instead
of URI and applies the correct controller logic depending on what resource and
operation is specified in the query. After the first controller logic layer a number
of requests is sent to Axis’ API to retrieve the needed data. When Axis’ API have
responded a response is tailored with the data requested from the client.
One of Axis’ computers were used to host the web server and it had the following
specification:

• Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz

• Memory 16GB (2x 8GB 1600MHz)

• Ubuntu 14.04 64bit

Node.js

Node.js[25] is as mentioned before a run-time for JavaScript. It is based on Google’s
JavaScript engine named V8, that used in Google Chrome. Node.js uses a non-
blocking event-driven I/O-model, making it suitable for I/O-heavy applications
with little CPU-heavy work. The application runs a single event thread that reg-
isters incoming I/O events to handler functions, which are run asynchronous by
a low level thread pool. This mean that a single thread may handle a big amount

Method 23

Figure 3.2: System model with a more detailed view of the pro-
totype API

of HTTP connections without blocking due to the short time it takes to register a
handle. Compared to other models that starts a new thread to handle each new
HTTP connection, which requires a load of overhead, this is very memory effi-
cient. The memory efficiency makes applications running in the Node.js run-time
good at handling large amounts of traffic.

REST

The server software consists of an HTTP server written in Node.js that listens
to incoming HTTP requests. Depending on the method and URI of the request it
routes it to the corresponding controller. The controller sends the request forward
to the correct REST end-point of the Axis proxy. Before the requests are routed
they are passed through the middle-ware for logging latency, see Figure 3.2. Fi-
nally the response from the Axis API is sent back to the requesting client. In the
cases where there is more than one request needed to be sent to the Axis API the
requests are sent sequentially and when all requests are completed the response
for the client is composed from the data retrieved.

24 Method

GraphQL

This implementation is built with Facebook’s implementation of GraphQL us-
ing Node.js. A difference compared to the REST implementation is that this web
server (also written in Node.js) sends all requests to the GraphQL core instead
of routing the incoming HTTP-requests to many resource specific controllers.
GraphQL parses the query and addresses the correct resolve functions in the
GraphQL Schema. The resolve functions are functions defined for all fields in the
GraphQL schema, each returns the data for the specific field. The functions are
executed when the corresponding fields are queried and the results are returned
in the response.

3.2.5 Technologies and Libraries
During the implementation of the APIs different external libraries and technolo-
gies were used. The following section will give a short overview of these tech-
niques and libraries to give a better understanding of how the APIs were devel-
oped.

Express

Express[26] is a web framework designed for Node.js. It provides an easy way to
implement routing and middle-wares for software serving web applications. It is
released under the MIT license.

GraphQL

The GraphQL implementation we used is a reference implementation of Face-
book’s query language in JavaScript. It provides the ground bricks to build a
GraphQL API. This is done by implementing the functionality to building a type
schema describing the back-end data and to serve queries to the schema[27].

Docker

Docker[24] is a project that were created to automate the process of packaging
applications into software containers. By providing an abstraction for resource
isolation features in the Linux kernel, Docker makes it possible to use operating-
system-level virtualization.

3.3 Decision Model
As mentioned in section 2.3 the decision model in this thesis is based on the one
proposed in ” RESTful Web Services vs. ”Big” Web Services ” by Cesare Pautasso,
Olaf Zimmermann and Frank Leymann[8]. The overall structure of the decision
model is the same and the same elicitation process was used. The comparison

Method 25

levels differs some from the ones proposed in their paper to emphasize relevant
differences in decisions that needs to be taken when designing a GraphQL API
and a REST API.

3.3.1 Elicitation of Architectural Decisions and Alternatives
The goal with the elicitation is to find the relevant parameters to compare the
different ways of implementing web APIs from. Relevant parameters refer to the
key decisions needed to be made when choosing one technology over the other,
not every detail that separates them.

The elicitation process is conducted in the following way:

1. Screen reference information and compare what problems the different tech-
niques address and how they are ”solved”.

2. Develop different sample scenarios of the decision making. Record the
number of architectural decisions made and development steps required
when using GraphQL and REST.

3. Conduct interviews with people who can relate to either developing a web
API or consuming one. Elicit from them what they think is important when
creating/consuming web APIs.

4. Create one decision model for each of the two integration types based on
the results from step 1 and 2.

5. Compare the two models from step 3 to see that they address the same
design issues. This should result in one decision model.

6. Measure and compare number of decisions and number of options per de-
cision.

3.3.2 Comparison Levels
To categorize the decisions so that the model will be easier to understand the
decisions elicited are divided into four comparison levels. The first three of the
levels are proposed in the ” RESTful Web Services vs. ”Big” Web Services ”[8]
and they were found relevant and appropriate to use also for this comparison.
The last one was based on the gained experience from the implementations of the
APIs for the measurements.

1. Comparison of architectural principles. What principles define each technol-
ogy and what requirements do they set on the implementation. When describing
architectural principles buzzwords like REST have a strong separation between client
and server are often used. A comparison on this level is often subjective and not
enough to emphasize the relevant differences between the technologies[8] there-
fore more comparisons are needed.

2. Comparison of conceptual models. What conceptual decisions are required
when following the different techniques. An example of this would be that in
REST one identifies resources while in some other architectural style one might

26 Method

identify operations instead. This shows the conceptual differences when design-
ing an API of each of the techniques.

3. Comparison of technology decisions. Compare how the two techniques can
be technically realized. This could be for example what transport protocols one
can use or in what format one may send the payload. This level show which
different technology decisions that have to be taken while designing APIs of the
techniques.

4. Comparison of implementation technology. Shows the decisions that have to
be taken about what technology to use during implementation of APIs of the
techniques. This could be which licenses third party libraries that have to be
used are released under.

Chapter4
Results

4.1 Measurements
The measurements were carried out on a running Docker image containing the
server implementation. Software developed for logging CPU, memory and re-
quest characteristics were running on the images. To simulate traffic to the server
the traffic generating python scripts were running in parallel. As may be seen in
the plots, the GraphQL APIs required less time to process the traffic. Since the
scale on the x-axis is in seconds and the GraphQL API required less time to pro-
cess the traffic, its line ends earlier than the REST APIs. This is because of that the
test is performed in the manner that there is a predefined amount of requests to
be served as fast as possible instead of constantly serving requests.

4.1.1 Memory
The following plots show the memory used by each of the API applications. The
number of instances generating traffic sent to the server was increased with time
during the measurements. At t=0 there was one instance generating traffic and
then the number was increased step wise up to ten instances generating traffic
in parallel. Figure 4.1 shows the used heap memory of the API processes while
handling the load where the upper graph is for the REST server and the bottom
one for the GraphQL server. As expected and presented below the GraphQL
server utilizes more memory than the REST server. This is due to the need of the
GraphQL core on top of the functionality needed by the REST API.

27

28 Results

Figure 4.1: Memory measurements. Top graph is for REST and
the bottom one is for GraphQL

4.1.2 CPU
The CPU measurements were performed in another simulation than the mem-
ory measurements. This was done to reduce the logging process’ effect on the
measurements of CPU utilization and vice versa. Figure 4.2 shows the CPU uti-
lization for each of the processes. For better visualization of the data a sixth de-
gree polynomial were fitted to each curve using non-linear least squares with no
weighting. The points on the new curve are calculated by the following formulas:

S =
m

∑
i=1

r2
i (4.1)

where S is the sum of squares of the residuals (ri), that is the sum of all errors
that in turn should be minimized, the residuals are given by:

ri = yi − f (xi, β̄) (4.2)

yi are the values from the original measurements and β are the coefficients of
the fitting function:

f (x, β̄) = β1x6 + β2x5 + β3x4 + β4x3 + β5x2 + β6x + β7 (4.3)

Results 29

Figure 4.2: CPU measurements

A number of different polynomials were tried out as fitting functions but the
sixth degree above gave the best result.

4.1.3 Request characteristics
Wireshark was used to log all the requests and responses together with their con-
tent. The amount of requests needed to be sent from the client to the server to
complete the use-case is shown in Figure 4.3 below. In the graph it can be seen
that the number of requests needed to fetch all data grows faster with the REST
server then with the GraphQL server when the number of resources is increased.

It is mainly in the data received that the two implementations differ a lot.
This is because in GraphQL you ask specifically for the data you want instead of
as in REST you ask for all the resources containing the data. This was expected
since one of GraphQLs main features is that you have client specific queries and
therefore no unnecessary data is sent. Also less request and response being sent
leads to less overhead data being transferred. The measurements of the size of
the received and sent data for 100 clients performing the use case once (with four
cameras) are presented in Figure 4.4.

30 Results

Figure 4.3: Number of requests for varying number of cameras
on the site.

Figure 4.4: Total number of bytes sent and received for 100
clients performing the use case one time each.

4.1.4 Response time

This is a result of adding up the response times for the use-cases. This mea-
surement were also used to calculate the average response times for REST and
GraphQL. It is worth mentioning that the requests are executed in sequence i.e.
the previous requests must all have been processed before the next iteration starts.
In Figure 4.5 one can see how the performance scale better with the GraphQL so-
lution when increasing the number of iteration, this due to less requests needs to
be sent.

The average response time was calculated by running the use-case 1000 iter-

Results 31

Figure 4.5: Response time for 10-1000 iterations of use-case

ations and calculating the arithmetic mean of the measurements:

x̄ =
x1 + x2 + · · ·+ x1000

1000

where [x1 · · · x1000] are the measurements of the response time for each iteration.
The mean response times for the two cases are approximately 789.1 ms for REST
and 658.2 ms for GraphQL. This results in a difference of 130.9 ms in response
time between the GraphQL and the REST API.

32 Results

4.2 Decision Model
The following results are the decisions needed to be taken when designing an
API for each of the technologies. The different alternatives and other relevant
notes for each of the technologies are also mentioned. The following sections
are derived from the literature study but also from experience of working with
APIs during the implementation of the prototype APIs and from interviews with
architects and developers at Axis. In each subsection one part of the decision
model is presented and then follows a more detailed description of each of the
fields in the model. Each table of the model consist of the decisions and below
them the different alternatives. The numbers of alternatives are summarized for
each decision and technology and included in the tables.

4.2.1 Comparison of architectural principles
The overall structure of an architectural style is defined through its defining prin-
ciples. The defining principle can be seen as the broad picture of the architectural
style and how the style solves its requirements and goals. During the investiga-
tion the two following principles of the design were found relevant and compara-
ble in an objective way. In the table below, Comparison of architectural principles4.1,
the findings are presented.

Table 4.1: Comparison of architectural principles

Archtectural Principle and Aspects REST GraphQL
Protocol Layering 1 1
Http as transport-level protocol x
Http as application-level protocol x
Loose Coupling (aspects covered) 2 3
Uniform interface x x
Stateless x x
Client Specific Querys x

Protocol Layering

Protocol Layering refers to whether the HTTP protocol is used as a transport
or application protocol. This terminology is not based on the OSI-model where
HTTP per definition is an application-layer protocol. Here the term application
protocol mean that the protocol not only is used to transfer data to a ”higher”
layer such as the GraphQL parser. The previously mentioned example uses the
protocol as a, here called, transfer protocol. HTTP being used as an application
protocol is a de facto standard for RESTful APIs so in this paper it is assumed
that HTTP always is used as an application protocol for REST APIs. When using
GraphQL one are not bound to use HTTP as transport protocol. Although most
people implement it with HTTP because most frameworks and tutorials does.

Results 33

Loose Coupling

Loose coupling can be defined in different ways and the meaning depends on
the context. In terms of web APIs when using a client server solution, which this
thesis is about, loose coupling focuses on the interaction between the provider
and consumer of a service. When communicating between client and server there
is almost always a protocol for how the communication is carried out. Since client
and server depend on each other in that manner the term is loose coupling, not
”No Coupling”. In this context loose coupling would mean that changes made
in the client or server not will affect the other party while changes to the actual
protocol will have to be communicated somehow.

To achieve loose coupling it is required that both consumer and producer un-
derstand and respect a common protocol and semantics. Both techniques empha-
size the importance of this point and a distributed system that is loosely coupled
can be achieved with both. REST is defined by a number of principles and a
stateless, uniform interface and client-server separation ensure a loose coupling
between client and server. A uniform interface is achieved by applying four in-
terface constraints[4]: identification of resources, manipulation of resources through
representations, self-descriptive messages, and hypermedia as the engine of application
state. Fielding lifts the fact that there is a trade-off being made to having a uni-
form interface instead of an interface that is specific to an applications needs. To
transfer information in a standardized form instead of in a form that is specific
to an applications is often not optimal but that is the price one have to pay for
the uniform interface. The trade-offs being made when designing web APIs boil
down to just this problem and that is one reason to why strict REST might be
deviated from. The designers of GraphQL do not name their design principles
in the same way but they support the same principles. A uniform interface is
achieved by having a uniform language, type system and client specific queries.
With client specific queries GraphQL avoids the trade off by not being able to
transfer information in a form specific to the application.

4.2.2 Comparison of conceptual models
This section of the decision model 4.2) show the conceptual decisions that must
be made when deciding to use one of the architectural styles. The model also
show which alternatives that may be chosen when making the decision.

34 Results

Table 4.2: Comparison of conceptual models

Architectural Decisions and AAs REST GraphQL
Integration Style 1 1
Shared Database
File Transfer
Remote procedure call x x
Messaging
Distributed object communication
Resource Identification (maturity level 1) 1 1
Do-it-Yourself x x
Design of resource addressing 2 1
Nice URI scheme x
No URI scheme x
Schema (JSONgraph) x
Resource Interaction Semantics 3 1
Maturity Level 0 (POST only) x
Maturity Level 2 (Lo-Rest GET/POST) x
Maturity Level 2 (Hi-Rest all four verbs) x
Query language x
Resource Discovery 1 1
HATOES (Maturity Level 3) x
Introspection x
Documentation 1 1
Generated Schema x
Tools (like swagger) x
Do-it-yourself x

Integration Style

Integration styles are different methods to make different parts of an application
work together. Both REST and GraphQL can be used for RPC style communica-
tion. Other integration styles like the ones presented in the article Introduction to
Integration Styles[28] by G. Hohpe and B. Woolf, and the examples listed in the de-
cision model, are not where they are meant to be used. The different integration
styles each have their strengths and it is important to point out that each should
be used where their strengths can be utilized.

Resource Identification

This decision involves how to describe the data at the server in terms of resources.
The resources could be products, customers, orders, baskets etc. depending on
your domain. The process to identify those is an ad-hoc process requiring domain
knowledge and experience of designing web APIs. Imagine implementing an
API for a bank application, it is quite easy to realize that customers and accounts
should be two of the resources, but whether a transaction between two accounts
should be represented as a resource is less intuitive. It requires both domain
and technical knowledge to make those decisions. GraphQL is facing the same
challenges as REST when designing resources, relations and operations.

Results 35

Design of Resource addressing

This describes the different possible ways to design how one should address dif-
ferent resources. One of the principles in REST is addressable resources just like
the different websites are addressed on the web. To achieve this REST uses URIs,
and if following good REST practice, they have a ”nice design”. Designing a nice
URI could be for example that the URI should be short, readable, predictable,
permanent and tied to a resource. The format of an URI is well defined, the de-
sign is not. REST practice defines guidelines for the so called ”nice” URI design
so that it is possible to ”guess” what a URI for a specific operation on a resource
will look like. In GraphQL instead of URIs there is a query language.

Resource Interaction Semantics

In object oriented programming, interfaces are often used to decouple classes
from their implementations. A client-server solution that conforms to the REST
architecture should work in the same way. One part of having a uniform interface
is to have a standard for how resource manipulation is carried out and REST
leverages the HTTP verbs as standard for that. It is similar to how an interface in
Java would work. As an example, imagine an interface called Shape, which has
a method called getArea(). The programmer would then know if the interface is
implemented, the method getArea() should be the method returning the area for
my implementation of Shape. So in our setting, REST architectural style is the
interface. In GraphQL the process is more ad-hoc. Mutations and operations are
designed by the developer so there is not a fixed set of names for them as in REST
where HTTP verbs are used. This makes the introspection feature of GraphQL
very important. The query-language is provided by a context-free grammar but
the fields themselves are defined by the type system.

Resource Discovery

Instead of having a documentation that tells what resources and operations there
are, resource discovery enables the feature of being able to ”ask around”. From
a given starting point to the API it is possible to ask for what relations between
resources and possible operations. In REST, resource discovery is solved with
HATEOS. In GraphQL there is something called Introspection, the consumer can
query the API itself and its types with the same query language used to get or
mutate data. Resource discovery might be of more importance in machine-to-
machine communications where there are no humans involved and a static inter-
face will make the API fragile.

Documentation

REST provides no support for documentation. All documentation need to be
created manually or by using external tools. With GraphQL there is the feature
for introspection. The client can access the information about the API by querying
the schema itself with the same query-language used for accessing and modifying
data.

36 Results

4.2.3 Comparison of technology decisions

Table 4.3 shows the comparison of how the two technologies can be technically
realized. It shows which decisions a developer needs to take from a technical
standpoint and which the alternatives are for the decisions.

Table 4.3: Comparison of technology decisions

Architectural Decisions and AAs REST GraphQL
Transport Protocol 1 4+
HTTP x x
Websockets x
TCP x
UDP x
Payload format 3+ 2
JSON x
GraphQL (extended JSON) x
XML x
Response-data determined by server x
Response-data determined by client x
Resource/Service Identification 1 1
URI x
Query x
Transactions 1 1
Do-it-yourself/Not available x x
Versioning 3 2 (if needed)
Explicit route x x
Accept Header x
Custom Header x x
Caching 2 1
Leverage HTTP cache x
Do-it-yourself x x

Transport Protocol

This is the protocols one may use to transfer messages between a client and a
server. The protocols does not need to be protocols in the transport-layer of the
OSI-model, it is as mentioned before most common to use HTTP. GraphQL serves
queries on one single endpoint independent from what transport protocol is used
to deliver the query. As declared earlier in this thesis it is assumed that REST uses
HTTP as transport protocol and therefore HTTP is the only option given here.

Results 37

Payload Format

This decision is about which format should be used for the payload of the mes-
sages. REST is flexible and may return data of any structure. GraphQL needs to
follow GraphQL’s JSON-like structure. In REST the API designers implement the
way the server response should be formatted. This could be solved by adding
the support to query fields with parameters but it violates the REST architectural
constraints. In GraphQL the client queries the data and ”designs” the structure
of the response.

Transactions

There is no support for transactions in neither REST nor GraphQL. When trans-
actions are needed the functionality has to be implemented by the developer.

Versioning

There are two common ways of solving the problem with versioning when using
REST. Either by explicitly stating the desired version of the API in the URI, i.e.
the API designer has to add the version to the URIs. The other way is by using
Content negotiation, it is performed by providing the desired version in the Ac-
cept field in the HTTP-header. The field is then controlled in the server and the
correct version of the service is executed. You can also imagine that there can be
a custom header to specify the API version but since the Accept header field is
supposed to be used for this kind of tasks that option is left out.

Due to the fact that clients ask explicitly for the resources and fields they want
to retrieve there is no need for versioning the API unless there are changes that
will break the existing resources.

Caching

By caching messages, both on the client-side and on the server-side, one may
save many unnecessary requests. Support for caching is therefore a good way
to save both network load and CPU power for the application provider. Both
REST and GraphQL APIs are stateless. Caching is therefore managed at the client.
REST provides server-side caching since it uses the HTTP protocol, which makes
it feasible to leverage its caching by using ETags. GraphQL does not offer any
support for caching.

4.2.4 Comparison of implementation technology
Table 4.4 shows the decisions about which implementations and tools to use
when implementing APIs built on the styles.

38 Results

Table 4.4: Comparison of implementation technology

Architectural Decisions and AAs REST GraphQL
Languages with maintained implementations n/a 5
Javascript x
Ruby x
PHP x
Python x
Java x
C++
Client-side frameworks 1 2
Relay x
Do-it-yourself x x
Licenses n/a 2
MIT x
BSD x

Languages with available maintained implementation

GraphQL is quite a new project but there are already maintained implementa-
tions of GraphQL for many programming languages. Maintained is a vague term,
but to be considered maintained in this thesis the project needs to be regularly
committed to and worked on by at least five developers. As mentioned earlier
REST is an architecture so there is no such thing as an implementation of REST
in the same sense as a GraphQL implementation. As long as the language has
support for handling HTTP messages, the language may be used.

Client-side frameworks

When developing applications one might use some kind of client-side framework
for handling data sharing between the client and the server. The framework is
used to give the illusion that the client side code interacts with a data structure
stored on the computer. All interaction with the server, as creating requests for
fetching data is then handled by the framework. For GraphQL APIs, Facebook’s
framework Relay is often used for handling the interaction. It is not as common
to use a client-side framework for handling of REST request, but larger ”full-stack
frameworks” often tries to capture the data sharing.

Licensing

REST is as mentioned before an architecture. Because of this the designer does
not need to take any licenses into consideration. The grammar of the GraphQL
languages is ”free” but the reference implementation of GraphQL is released un-
der the BSD license. Implementations in other languages are released under a

Results 39

varying set of licenses. Most of the implementations found are under BSD and
MIT licenses. The possibility to go with a community based implementation de-
pends on the case, but due to the actual grammar being free the possibility for
the developer to implement a ” do-it-yourself ” solution always exist. The pre-
viously mentioned Relay framework for data sharing is also released under the
BSD license.

40 Results

Chapter5
Discussion

5.1 Measurements

The measurements presented is discussed more thoroughly in this chapter. They
are also related to the real world to analyze how they relate to the perceived and
actual performance of a web application.

5.1.1 Memory

Implementing the server in Node.js means that the server is single-threaded due
to the nature of the language. This is very suitable for some applications but
not for others. Typically Node.js is very effective for applications with a lot of
I/O-processing, such as an API for a CRUD application, while more calculation
heavy applications might suffer in performance. We expected to see larger dif-
ferences in memory consumption between the implementations. The reason for
the difference being fairly small is first of all because of the need for more gen-
erated traffic. The second reason for the small difference were that in Node.js,
as explained above, only one thread handles all requests. If we would have im-
plemented a web server using one thread per request, which is not uncommon,
the difference between REST and GraphQL would probably have been larger. A
Node.js process by itself needs a lot of memory. Therefore the memory cost of
keeping up the amount of connections that we had did not emphasize that much
of a difference between the APIs in memory consumption. If a web server so-
lution where each new connection would be run in a new thread were used the
benefits of using GraphQL would be more in terms of memory consumption.
The sewing machine characteristic of the graphs is a result due to garbage collec-
tion in the V8 engine. The garbage collector does both small and big ”clean-ups”,
which gives many small memory releases between every big garbage collector
iteration. We tried running instances of the APIs using both different parameters
and available run-time functionality of Node.js but were not able to control the
garbage collector and get better plots. We also realized that using the garbage
collector in a non-conventional way would only give unusable data, after all no-
body would ever implement a web server without using garbage collection and
the data would thus be irrelevant.

41

42 Discussion

5.1.2 CPU

Our measurements of the CPU utilization were also a bit disappointing. We ex-
pected to see more of an overhead cost when using GraphQL compared to REST.
We also expected GraphQL to be faster during higher load due to it having to
process less requests. The pattern may be seen from the data in Figure 4.2. With
more traffic generated it would probably show more difference than we got in
our test. We did not have enough hardware to set up a test environment to be
able to generate that much load to the API instances and therefore the low CPU
consumption in our measurements. It has to be noted that applications with low
needs of processing power, which instead spends much time on I/O, often can
handle a lot of traffic without pressuring the CPU much. It was a bit optimistic
of us to expect that we would be able to generate enough traffic without access to
external load generating services, to pressure the CPU.

5.1.3 Page Speed

The measurements on response-time in our experiments resulted in a difference
of 130.9ms, where GraphQL was the faster implementation. In the use-case where
response times were measured, four cameras were used. This resulted in ten re-
quests needed to load the index page using the REST API and one needed when
using GraphQL. When Netflix explained why they created Falor, they said that
using RESTful approach for their API resulted in having almost 100 requests
needed to load the index page. This was a result from that the Netflix applica-
tion required so many nested resources when working with REST[29]. The more
nested data the application need to load, the greater the gain in performance will
be by going with a GraphQL API instead of a REST API. This behavior is seen
in Figure 4.3, it show that the number of requests needed when increasing the
number of cameras on the site. In the REST implementation the requests grows
linearly whereas the requests needed in the GraphQL implementation are con-
stant.

130.9ms might sound like a small difference but research shows that a neg-
ative effect on user experience can be seen by introducing delays of that magni-
tude. In a study conducted by Google it was stated that when exposing users
to a 100ms to 400ms delay when loading the search result page, their number of
searches went down by -0.2% to -0.6%[30]. This impact was from slowing down
the page for a very short period of time. If the users were kept being exposed to
slower loading times it could be seen that the users were doing fewer and fewer
searches the longer they were exposed.

Depending on the application there is more or less to be gained in terms of page
speed. In applications that need to communicate a lot of data rather than per-
forming processing, calculations etc. much can be gained from using a technique
such as GraphQL or Falcor instead of REST. This is because most of the perfor-
mance issues are inherited by I/O rather than processing time.

Discussion 43

5.2 Decision Model
In this section we summarize our own experiences from working with the tech-
niques and discuss the different parts of the decision model. Together with this
we discuss how the differences will express themselves in different applications.

5.2.1 Comparison of architectural principles

Protocol Layering

When implementing REST you are not bound to HTTP but almost every RESTful
application use it to transfer the requests. When developing the prototype APIs,
the approach of not using HTTP as transport protocol were tried. This resulted in
many lines of code for all the extra parsing and logic needed. This approach was
abandoned due to all the extra work needed while losing the caching provided
by HTTP. This experience led to this thesis’ definition of REST where using HTTP
for transferring the requests is a requirement. In some applications like a chat
server it might be more suitable to use web sockets instead of HTTP and therefore
the question of ”Can I use REST with web sockets?” arise. The verdict here is
that going with web sockets is probably a good idea but to try and force a REST
solution on top of that is not recommended.

Loose Coupling

Loose coupling is quite an abstract term. It affects how an API consumer will
be impacted by changes to the API. If a change to a resource is made in the API,
the question is how the client using it will be affected. If it is a REST API it de-
pends on what the changes are and if HATEOAS is being used. If HATEOAS is
being used, a change to a resource URI will not affect the consumer unless the
change affects the entry point to the API. Changing the resource itself by either
adding or removing data will affect the consumer and potentially break their ap-
plication. Using GraphQL it is safe to change data as long as data not is removed
without affecting the client. This is also the way Facebook recommend work-
ing with GraphQL APIs, ”never remove content from the schema only add”. All
techniques for implementing APIs struggle with this problem and because of the
consumer/producer character of web APIs it is impossible to avoid it. GraphQL
handles this problem in the most secure way according to our experience. The
schema might be a bit bloated in the long run though and require good practice
from developers to keep it structured.

5.2.2 Comparison of conceptual models

Integration Style

There are many different ways of building communicating applications, some
but not all of them are listed in the model. REST and GraphQL are both meant
to be used for web services and are therefore evaluated for that and no other

44 Discussion

integration styles. It should not be forgotten though, that there are many different
kinds of applications with different needs and constraints. The best integration
style depends on the domains requirements[31].

Resource Identification

Resource identification is one of the parts in designing a web API that is consid-
ered a handcraft and the technologies does not offer any help here. REST APIs
often require a lot more effort than designing a GraphQL schema, at least if ef-
ficiency is highly prioritized. The design and choice of resources greatly affects
both performance and the usability of the API. Due to GraphQL’s query based
solution for accessing information from the server, it will not affect performance
how the resources are defined. But the definition of the schema will still affect
the usability of the API. If the fields do not conform to what the user expects the
usability will be affected negatively.

Design of resource addressing

The REST maturity model is mentioned and often referred to when discussing
REST. Depending of what maturity level the API is at, the resource addressing
differs. REST maturity level 0 has no URI scheme and level 1-3 use what we have
referred to as a nice URI scheme to address resources. GraphQL uses a schema
and query language to address resources and it does not work the same way. No
decisions have to be made about which style to use when designing resources in
the GraphQL schema. The problems faced when designing a GraphQL schema
are instead mainly about naming resources. This has not as big impact on the
overall API as e.g. deciding which maturity level to use when designing a REST
API.

The challenge with REST is to construct nice URIs and it requires some work
to come up with a design that is good. When creating our prototypes we spent a
lot more time creating the GraphQL schema than the equivalent REST endpoints.
This was because the challenge in REST is more of finding a good practice for how
to construct the URIs. Once a standard way of designing the URIs is set the work
is very simple. In GraphQL actually implementing the schema requires a lot of
work and thought, especially for inexperienced (with GraphQL) developers. But
when addressing a resource in GraphQL the query language is convenient to
work with because it is a well-defined syntax.

Resource Interaction Semantics

Using REST one is limited to use the HTTP verbs. The number of existing HTTP
verbs might be limiting for some applications. As an example: A bank application
has a resource that is accounts. How would a transaction between two accounts
be carried out? It is not possible to post to one account at a time since that would
require a state in the server. In most REST practice, the recommendation is to
have a resource representing a transaction which one can post to. From our expe-
rience the verbs are usually not limiting and when they are, designing resources

Discussion 45

to represent the desired functionality will solve most problems. In GraphQL the
developer of the API decides which operations that are available and what they
are called. This results in more freedom when creating the API but there is no
standardized naming convention either.

Resource Discovery

A pure REST API utilizes HATEOAS, which introduces a light version of resource
discovery. The server responses not only include data or response status but also
links to all related resources. Because of this the client only needs to know of one
fixed entry URL to explore the API. What is missing here is that in HATEOAS
one are not told what methods the related resources are open for. The rest of
the possible interactions will be given by the server according to Fielding[4]. An
example of a server implementing HATEOAS responding to a request asking for
a person with a brother relation, the response would look as the following:

{
"name " : " Er ik "
" d a t e o f b i r t h " : 19890810
" l i n k s " : [{

" r e l " : " brother "
" href " : " ht tp :// l o c a l h o s t :8000/ person /2"

}]
}

GraphQL per design includes a way to introspect the data and operations
available on the API. This makes it possible to discover all resources on the server
and the operations available on them. The main difference is the availability.
The REST/HATEOAS way of solving resource discovery better fits a machine. If
third party developers should use the REST API, extra documentation would be
preferred. GraphQL in contrast provides an overview of the server schema to the
developer without the need to follow hyperlinks, as in the HATEOAS case.

Documentation

The subject of documentation is where REST and GraphQL are hard to compare
since REST is an architectural style and GraphQL more of a framework. What
REST does offer is HATEOAS, which can be seen as a light documentation. From
our experience and judging from discussions and tools like Swagger, many oth-
ers feel the same way. To get a documentation over REST API one has to create it
manually or use a tool such as Swagger to generate it. This can be tedious work
if done manually and if tools are not used it requires a lot of extra work. Where
the effort really increase is when maintaining a system, then every change will
have to be verified in the documentation and updated if needed. When using
GraphQL one has the possibility to get an overview of the schema using regu-
lar queries. This works well as documentation over the available resources and
available operations on the server.

46 Discussion

5.2.3 Comparison of technology decisions

Transport Protocol

GraphQL mostly uses HTTP as well but remains independent from what protocol
is used for transport. REST is not bound in theory to HTTP, but the de facto
standard way is to use it. Thus as a ground for decision making REST has to be
seen as bound to HTTP. To use another transport protocol the developers would
have to specify semantics both to communicate which operation to use and which
resource to address on their own. It introduces a lot of work, both for initial
implementation and for maintenance. It is not seen as a fair alternative to use
anything else than HTTP in REST. As GraphQL always use the payload of the
HTTP-request to transfer its query it is not as much work to do for the developers
when changing transport protocol.

Payload Format

In most of the subjects until this one, REST has been the more restrictive one. Re-
garding what format is used for the payload, REST is more liberal than GraphQL
where one is bound to their JSON-like format.

Transactions

Neither REST nor GraphQL offer any built in support for transactions. The REST
solution would be to create a resource that represents a transaction. This is not
possible in GraphQL in a natural way. When the GraphQL parser processes a
query it iterates through each field of the query and tries to match it to a func-
tion, which is defined in the GraphQL schema. The search for the function in the
GraphQL schema is done using breadth-first search. The result of this function
is then returned in the response. Due to the nature of GraphQL all of these func-
tions, also called resolve-functions, will be executed sequentially. If one of the lat-
ter fields fails, the previous resolve-function will already have been executed and
thus will result in non-ACID (Atomicity, Consistency, Isolation, Durability) be-
havior. There is no good solution that fits all scenarios here. It is possible though,
to define the schema such that all mutations of the data will be done in a trans-
action. This solution could possibly lead to unnecessary locking of the database
and thus lead to performance issues. Another solution would be to use another
software, which could handle the transaction part of the mutation. It would in-
crease both complexity and maintenance effort of the software to go with any of
the proposed solutions. Due to this fact we believe that GraphQL is not suited for
an application that requires guaranteed ACID transactions. GraphQL’s strength
lies more in the CRUD domain.

Versioning

To version an API means how changes to the API are handled and communicated
to the consumers. This is in many applications very challenging since domains
and requirements change rapidly. This is one of the more ”noisy” discussions

Discussion 47

about REST, kludged with opinionated conclusions. We think this is the result
due to the absence of a commonly adopted best practice for how to do this. When
working with REST there are three ways of versioning the API[32]:

• Encode the version into the URI

• Have a custom header for API version like: ”api-version: v2”

• Use HTTP Accept Header: Accept: application/vnd.api.v2+json

All of these options have their disadvantages but as Troy Hunt writes: It is about
having a stable contract. The first one, to encode the version into the URL is the
worst one from a REST perspective. When encoding the version into the URI, it
no longer represents the resource. Having the version in the URI is the easiest to
work with from our experience even though it is the least correct way in terms of
REST.

GraphQL tries to solve the problem of versioning by encouraging to have
an ”add only” approach to the schema. This is to preserve the behavior of the
API for existing clients. And this works because it is the clients who specify the
structure of the response data in the queries. This means that as long as you can
do with the ”add only” approach, GraphQL is very effective. If there is a need to
make changes that will break the old versions a custom solution, as when using
REST, has to be used for versioning. When experimenting with the need to break
old features of the API we landed in having to create a new GraphQL schema
at a new endpoint representing the new version of the API. It is also possible
to break existing clients and then in whatever way seems fit notify them about
the changes. With either of the solutions you would miss out on the fact that
GraphQL is pull based. Pull based means that the server maintainers do not
need to inform clients of the changes. Lee Byron, one of the creators of GraphQL,
compares this to how columns work in SQL tables. A column may be added to a
table without breaking old queries but make changes to an existing one and the
old queries will break.

Caching

Caching is one of the major selling-points of REST. A REST API is able to leverage
the HTTP caching, see section 2.1.5, without any extra work on the server or in the
client. GraphQL is a stateless server side technique and is therefore not meant to
provide caching. This is because server side caching would imply having a state.
But as said with REST one will be able to leverage the HTTP caching with no more
work than just setting a flag in the request header on the client side. But even if
HTTP caching is used for a GraphQL API, its query nature does not leverage
HTTP caching that well. When using GraphQL, the problem with over-fetching
and multiple round trips is solved because the client specify what data it wants.
This comes at the cost of giving up the possibility to leverage the HTTP caching
in a good way at least if different queries are being used. A REST APIs gain from
using HTTP’s caching depends on the implementation of the resources. If strict
REST (maturity level 3) is followed and if the resources are small caching could
possibly save a lot of unnecessary traffic.

48 Discussion

For GraphQL there are also client side frameworks such as Relay, also devel-
oped by Facebook, that offer client side caching possibilities. Client side frame-
works for handling caching are outside of the scope of this paper, but it should
be mentioned that there are more possibilities to have client side caching with
GraphQL. How well these frameworks perform, what constraints they put on
your application or how much extra work they need have not been looked into.

Type System

REST can use the Content-Type header in the HTTP responses to describe the
type of the data. This might be seen as a type system but in that case it is both
very limited and weak. In comparison, GraphQL is strongly-typed, each query
and the corresponding response may be evaluated to have correct data types. We
would argue that HTTP Content-Type headers not provide enough to be seen as a
type system. Content-Type Headers cannot help developers to validate their data
in a secure manner, using GraphQL the client can be certain that the returned data
is of the desired type. The difference between strong and weak typing is that a
strongly typed language is more likely to generate an error or refuse to compile
if the type is not matched.

5.2.4 Comparison of implementation technology

Implementation languages

As seen in the results a couple of implementations of GraphQL exist. Before one
chooses to use an external framework in a large scale production project there
are a lot of factors to be considered. The most important is probably the level of
maintenance of the external framework. It gets extra important if the software
used affects many parts of the project. It is important that the introduced depen-
dencies are both well made from the beginning but also that one may rely on that
eventual bugs will be solved and new features will be introduced when needed.
Otherwise the developers might not only need to develop the main application
but also frequently commit fixes to the sub-projects, which the main application
depends on. Of course this is almost impossible to guarantee but by using active
open-source projects with many contributors one may at least reduce the risk of
such a situation. Thus we decided to set some restrictions on what implementa-
tions should be counted as viable alternatives to use. The projects need to imple-
ment the full GraphQL functionality and additionally they need to have at least
five active contributors and have a relative continuous flow of commits to the
project. That left us with five languages with potential implementations. Com-
pare this to REST that may be implemented in a relatively simple way, without
any dependencies to external projects, in every language that can handle HTTP-
requests. This makes the choice of implementation language a less important
choice when using REST. Except for efficiency and availability of developers it
does not matter a lot, compared to GraphQL where the availability of a good
GraphQL implementation is of the highest importance. One may of course use
a do-it-yourself solution and implement GraphQL from scratch in whatever lan-

Discussion 49

guage fits the project best. That would not only take a lot of time but would also
result in the responsibility of maintaining the GraphQL-implementation in the
future.

Client-side frameworks

REST and GraphQL run server-side and is not dependent of any client-side frame-
works. Despite this one might want to use Relay when working towards a GraphQL
server due to the relatively complex queries. In our test scripts we ended up with
quite large GraphQL queries and found it easier to implement utility functions to
create the queries. In applications with the need of even more interaction with the
server creating the queries might be very tedious compared to interacting with a
REST API.

Licenses

The specific licenses that software is released under greatly affect how it may
or may-not be used in production software. The use of software released under
some licenses may set constraints on the licensing of the other software, i.e. using
GPL[33] licensed software in an application obliges the developers to release the
whole application under the GPL license. This might not be a problem, but in
some applications there are business secrets that require that the source code is
kept hidden. Thus more ”allowing” licenses as MIT or BSD might be preferable
as they do not restrict the choice of licensing of the whole application. Almost
all applications have to rely on external dependencies in some way or another, at
least by language run-times and standard libraries, but to reduce the dependen-
cies in terms of licensing leaves more flexibility for an optimal solution for the
business. REST does not introduce any extra licenses as the whole architecture is
only dependent on HTTP. This is a big difference compared to GraphQL that has
to be noticed when choosing between any of the other.

50 Discussion

Chapter6
Verdicts

6.1 Verdicts
It has been a challenging process to derive what REST actually is since it is an
architectural style proposed in a doctoral dissertation. This means that it is more
flexible and abstract compared to GraphQL.

Even though both techniques offer a solution to the same problem and as can
be seen in Table 4.1 they have a lot in common on a principal level. The actual
decisions that have to be made on a conceptual level can be seen in Table 4.2 and
they differ a lot. There are many more alternatives for each decision for a REST
API compared to a GraphQL API. The flexibility of REST is more preferable than
the single uniform solution offered by GraphQL in some cases but it would re-
quire less effort for developers to decide how to design a GraphQL API than a
REST API. In Table 4.3 one can see that both GraphQL and REST require simi-
lar technology decisions to be made but the possible alternatives vary between
the techniques. A designer of a GraphQL API would have the possibility to use
another protocol than HTTP to transfer the messages between the client and the
server. The REST designer would need to put more care into deciding which pay-
load format to use.

A big difference can be seen in Table 4.4 of the decision model. These are the
decisions of which implementation to use. When designing a GraphQL API the
developer is up for both more decision and alternatives. It introduces risk and
possible work to rely on external dependencies such as a GraphQL implementa-
tion. A developer of a REST API needs to make decision about which language to
use but does not need to rely on external projects for the core functionality of the
API. The developer could avoid all external dependencies if needed that makes
it a solution that can be used for more types of applications than a GraphQL API.
Additionally, performance has to be taken into consideration. For some applica-
tions such as the one that the use-case was based on, high performance gains can
be made if choosing to use GraphQL. As our measurements shows, the network
load may be reduced when using a GraphQL API that affects both performance
for the end-user and the cost for the application provider.

51

52 Verdicts

Even if both techniques solve the same problem, e.g. communication in dis-
tributed loose coupled systems, they result in a very different process of decision
making when actually realizing them. From our experience GraphQL would be
excellent to work with when you control both back-end and front-end. When
working with an API to be consumed by others we would choose REST because
of its wide adoption and simplicity. A scenario where GraphQL is always pre-
ferred, is when REST results in a large amount of requests/responses and per-
formance in terms of page-speed and network use is important. This might be
on for example mobile applications. GraphQL outperforms REST when measur-
ing latency and network traffic for the use-case specified in this paper, a use-case
representing many of today’s applications.

References

[1] M. Fowler, Patterns of Enterprise Application Architecture. Pearson, 2013.

[2] Apache. Date accessed: 16 May 2016. [Online]. Available: http:
//www.apache.org/

[3] Nginx. Date accessed: 16 May 2016. [Online]. Available: https:
//www.nginx.com/resources/wiki/

[4] R. T. Fielding, “Architectural styles and the design of network-based soft-
ware architectures,” Ph.D. dissertation, University of California, 2000.

[5] C. S. Guynes and J. Windsor, “Revising client/server computing,” Journal of
Buisness & Economics Research, vol. 9(1), pp. 17–22, 2011.

[6] An introducction to software architecture. Date accessed: Feb. 2016. [On-
line]. Available: https://www.cs.cmu.edu/afs/cs/project/vit/ftp/pdf/
intro_softarch.pdf

[7] (2010, 3) Richardson maturity model. Date accessed: 26 Jan 2016. [Online].
Available: http://martinfowler.com/articles/richardsonMaturityModel.
html

[8] RESTful web services vs. ”big” web services: Making the right
architectural decision. Date accessed: Jan. 2016. [Online]. Available:
http://www8.cs.umu.se/kurser/5DV095/HT09/literature/restvsbig.pdf

[9] (2015, 7) GraphQL in the age of REST APIs. Date accessed: 2
Feb 2016. [Online]. Available: https://medium.com/chute-engineering/
graphql-in-the-age-of-rest-apis-b10f2bf09bba#.378467c50

[10] I. Grigorik, High Performance Browser Networking. O’Reilly, 2013.

[11] Spdy protocol. Date accessed: Feb. 2016. [Online]. Available: http:
//tools.ietf.org/html/draft-mbelshe-httpbis-spdy-0

[12] Http2 protocol. Date accessed: Feb. 2016. [Online]. Available: https:
//tools.ietf.org/html/rfc7540#section-5.1.1

[13] Http2 FAQ. Date accessed: Feb. 2016. [Online]. Available: https:
//http2.github.io/faq/#what-are-the-key-differences-to-http1

53

54 References

[14] (2011, 3) Analyzing web application performance. Date accessed:
25 Feb 2016. [Online]. Available: https://www.elie.net/blog/web/
analyzing-web-application-performance

[15] P. Bansode. S. Barber. J.D. Meier, C. Farre and D. Rea. Performance
testing guidance for web applications. Date accessed: Feb. 2016. [Online].
Available: https://msdn.microsoft.com/en-us/library/bb924375.aspx

[16] (2009, 9) Performance testing: Response vs. latency vs. throughput
vs. load vs. scalability vs. stress vs. robustness. Date accessed: 26 Jan
2016. [Online]. Available: https://nirajrules.wordpress.com/2009/09/17/
measuring-performance-response-vs-latency-vs-throughput-vs-load-vs_
scalability-vs-stress-vs-robustness

[17] AWS cloud pricing principles. Date accessed: Apr. 2016. [Online]. Available:
http://aws.amazon.com/pricing/

[18] Digitalocean pricing. Date accessed: Apr. 2016. [Online]. Available:
https://www.digitalocean.com/pricing/

[19] (2015, 12) Virtual machine migration in cloud infrastructures: Problem
formalization and policies proposal. Date accessed: 3 Apr 2016. [Online].
Available: http://www.lunduniversity.lu.se/lup/publication/7852890

[20] G. J. Popek and R. P. Goldberg, “Formal requirement for virtualizable third
generation architectures,” Communications of the ACM, vol. 17(7), p. 413,
1974.

[21] J. Tyree and A. Akerman, “Architecture decisions: Demystifying architec-
ture,” IEEE Software, vol. 22(2), pp. 19–27, 2005.

[22] J. Klüster. F. Leymann. O. Zimmermann, T. Gschwind and N. Schus-
ter. Reusable architectural decision models for enterprise applica-
tion development. Date accessed: Feb. 2016. [Online]. Available:
http://soadecisions.org/download/QOSA2007_4880_0015_0032.pdf

[23] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau, Operating Systems: Three
Easy Pieces. Arpaci-Dusseau Books, 2015.

[24] (2016) www.docker.com. Date accessed: 12 June 2016. [Online]. Available:
http://www.docker.com/

[25] (2016) www.nodejs.org. Date accessed: 12 June 2016. [Online]. Available:
http://www.nodejs.org/

[26] (2016) www.expressjs.com. Date accessed: 12 June 2016. [Online]. Available:
http://www.expressjs.com/

[27] Graphql. Date accessed: Feb. 2016. [Online]. Available: https://github.
com/graphql/graphql-js

[28] Introduction to integration styles. Date accessed: Apr. 2016. [On-
line]. Available: http://www.enterpriseintegrationpatterns.com/patterns/
messaging/IntegrationStylesIntro.html

References 55

[29] (2015) Why falcor? Date accessed: 6 May 2016. [Online]. Available:
https://netflix.github.io/falcor/starter/why-falcor.html

[30] (2009, 6) Speed matters for google web search. Date accessed: 6 May 2016.
[Online]. Available: http://services.google.com/fh/files/blogs/google_
delayexp.pdf

[31] (2004, 8) Enterprise integration options. Date accessed: 29
Apr 2016. [Online]. Available: http://web.mit.edu/itag/eag-0.1/
EnterpriseIntegrationOpts.pdf

[32] (2014, 2) Your API versioning is wrong, which is why I decided to do it
3 different wrong ways. Date accessed: 25 Apr 2016. [Online]. Available:
https://www.troyhunt.com/your-api-versioning-is-wrong-which-is/

[33] (2007, 6) Gnu general public license. Date accessed: 21 May 2016. [Online].
Available: https://www.gnu.org/licenses/gpl-3.0.txt

Effi
cien

t d
ata co

m
m

u
n

icatio
n

 b
etw

een
 a w

eb
clien

t an
d

 a clo
u

d
 en

viro
n

m
en

t

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, 2016.

Efficient data communication
between a webclient and a
cloud environment

Kit Gustavsson
Erik Stenlund

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2016-528
http://www.eit.lth.se

K
it G

u
stavsso

n
 &

 Erik Ste
n

lu
n

d

Master’s Thesis

