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Abstract

Ensuring a predefined level of reliability for applications running in distributed en-
vironments is a complex task. Having multiple identical copies of a task increases
redundancy and thereby the reliability. Due to varying properties of the often
heterogeneous and vast number of components used in distributed environments,
using static analysis of the environment to determine how many copies are needed
to reach a certain level of reliability is insufficient. Instead, the system should dy-
namically adapt the number of copies as the properties of the system changes. In
this thesis, we present a dynamic fault tolerant model and task scheduling, which
ensures a predefined reliability by replicating tasks. Reliability is ensured over
time by detecting failures, and dynamically creating new copies. Furthermore, the
resources used are kept to a minimum by using the optimal number of task copies.
Finally, the model was implemented using Ericsson’s IoT-environment Calvin,
thus providing a platform which can be used for further research and experiments.
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Chapter1
Introduction

1.1 Background and Motivation

Ensuring a predefined level of reliability is of major concern for many cloud service
providers. Cloud computing, and distributed computing in general, is growing
rapidly, and users demand more services and higher availability and reliability.
Therefore, providing fault tolerant systems and improving reliability by more
sophisticated task scheduling algorithms have become very important and gained
plenty of research interest.

Distributed systems often consist of heterogeneous hardware and any of
the, often vast number of, components may fail at any time. Consequently, as
computational work is distributed across multiple resources, the overall reliability
of the application decreases. To cope with this issue, a fault tolerant design or error
handling mechanism needs to be in place. Ensuring reliability raises complexity
to the resource allocation decisions and fault tolerance mechanisms in highly
dynamic distributed systems. For cloud service providers, it is necessary that this
increased complexity is taken care of without putting extra burden on the user.
The system should therefore ensure these properties in a seamless way.

In some cases, vendors, such as carrier providers, are obliged by law to achieve
a specific level of availability or reliability. In such cases, quality aspects such as
latency and resource usage may need to be sacrificed to reach the required level.
By using static and dynamic analysis of the infrastructure and the mean-time-
between-failure for the available resources, a statistical model can be created to
verify that the required level is reached. However, due to the dynamic properties
of distributed environments, such a model must also be dynamic.

Furthermore, fault tolerance is of particular importance for long running
applications or services where a predefined level of reliability is required. Despite
fulfilling the required level at the time of deployment, as the state of the system
changes, the required reliability may no longer be fulfilled and actions must be
taken to still reach the required level.

One way of increasing the reliability is by replicating application tasks, i.e.
creating identical copies. Having identical copies, also called replicas, results
in increased redundancy and allows for continued execution of the application,
despite the event of failure of a task replica. Seamlessly being able to continue the
execution or computations performed, without losing any data, is of particular
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2 Introduction

interest for stream processing applications.
A drawback of replication is the extra resources needed. If replicating a

task n times with every replica performing the same computation on the same
input, n times as many resources are needed, hence a great deal of computational
resources are wasted. Dynamic analysis of the system and an adaptive scheduling
technique could help in determining on which resources replicas should be placed
for optimal resource usage and load balancing.

In this master thesis, a model with dynamic fault tolerance is presented, which
ensures the required reliability is met by replicating tasks. By dynamically adapt-
ing to changing properties of the system and available resources, it also ensures
that the optimal number of replicas are used.

1.2 Related work

The interest in reliability for distributed systems has gained increased attention
recently [57]. Due to that heterogeneous resources often compose distributed
environments such as cloud and grid systems, ensuring reliability is a complex
task [2, 17].

A large number of scheduling techniques have been designed, aiming at
maximizing reliability of computational jobs in distributed environments under
various constraints such as meeting task deadlines or minimizing execution time [1,
13, 14, 18, 27, 30, 32]. Maximizing reliability is for these algorithms a secondary
concern, while meeting the constraints is the primary. In contrast, [33–36] have
developed models which focus on increasing the reliability. Common for these
scheduling techniques are that while they try to maximize reliability, they do not
ensure that a certain level of reliability is met. Furthermore, the algorithms are
usually static in the way that they do not account for the dynamic behavior of
distributed systems. In addition, they make assumptions such as known execution
times of tasks, which make them unsuitable for long running applications or
services without a known execution time.

Plenty of work has been done in the area of designing fault tolerant systems
by using checkpoint/restart techniques [40, 64, 65]. These techniques rely on
the notion of a stable storage, such as a hard-drive, which is persistent even in
the case of a system failure. Checkpoint techniques are usually employed for
applications or jobs where the computations executed take a very long time. For
such computations, a substantial amount of computational resources are wasted if
the job has to redo all computations in case of a failure.

Some previous attempts at designing fault tolerant systems by the use of
replication have been made [11, 23, 37, 38, 44]. In [38], a static number of replicas is
used for every application being deployed. Furthermore, they do not guarantee
that all replicas are deployed, instead they use a best-effort approach, where
replicas are deployed only if resources are available. In contrast to [38], [11,
23, 37] dynamically determine the number of replicas based on the state of the
system. However, they are all static in that failed replicas are not restarted, and
do therefore not ensure the reliability is met over time. Furthermore, while [37]
dynamically determines the number of replicas to use, the scheduling decisions
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on which resources to put the replicas is done after the number of replicas has
been determined. As the reliability vary between resources in a heterogeneous
environment, the number of replicas needed depends on which resources that are
used. Therefore, determining the number of replicas needed and where to place
them should be a joint process.

A quite old but still relevant work is found in [12] in which a framework for
dynamically replicating tasks in a Multi-Agent Systems (MAS) is presented. The
authors introduce a software architecture which can act as support for building
reliable MAS. Since the available resources often are limited, they say that it is
not feasible to replicate all components. Therefore, they introduce the concept of
criticality for each agent, which is allowed to evolve during runtime. An agent’s
criticality is calculated using the CPU usage and communication activity of the
agent, and is used to determine the number of replicas, along with a predefined
minimum number of replicas. The proposed solution also allows for dynamically
adapting the number of replicas and the replication strategy itself (passive/active)
in order to maximize the reliability of the agents based on available resources.

Other approaches to improve reliability in MAS by the use of replication
are presented in [54–56]. While being adaptive to system state, the solution
presented in [55] still faces the problem of having a single-point-of-failure due to
a communication proxy. This problem is avoided in [54], where a decentralized
solution is proposed, and where the number of replicas and their placement
depends on the system state. However, instead of ensuring a given level of
reliability is met, they aim at maximizing the reliability and availability based on
available resources.

A dynamic and adaptive algorithm, which dynamically varies the number of
replicas depending on system load is presented in [40]. The proposed algorithm
does not ensure a certain reliability. Instead, it reduces the number of replicas
during peak hours, in order to reduce system load. Since the reliability of a system
decreases during higher load [20, 21], the number of replicas should be increased
instead of decreased in order to stay above the required level of reliability.

A fault tolerant scheduling technique incorporating a replication scheme is
presented in [39]. While being dynamic in that failed replicas are restarted, it
is static in that the user defines the number of replicas to use, hence it does not
ensure a specific level of reliability is met.

The techniques used in [12, 29, 45] are more dynamic and adaptive to the
dynamic behavior of distributed systems. However, reliability is defined as pro-
ducing the correct result, and is achieved by techniques like majority voting and
k-modular redundancy. An adaptive approach, which adapts to changes in the
execution environment is presented in [28]. They present an adaptive schedul-
ing model based on reinforcement learning, aiming at increasing the reliability.
However, they assume that a task’s profile, including execution time, is available.

1.3 Our contributions

To our knowledge, no previous attempt has been made which in a fully dynamic
manner ensures a predefined level of reliability for long running applications or
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services. Some previous work dynamically calculates the number of replicas, but
are static in that failed replicas are not restarted, while others use a static number
of replicas, and dynamically restart failed ones.

We propose a framework which ensures a user determined level of reliability
by the use of replication. Furthermore, the method ensures a minimized use of
resources by not using more replicas than needed, and by minimizing the number
of resources needed. This is achieved by placing replicas on the most reliable
resources first and foremost. Finally, the system is periodically monitored in order
to adapt to changing system properties.

The framework is not limited to a specific type of distributed environment, nor
the reliability model used. The reliability model and the task placement decisions
are easily replaced to consider more parameters, or to include load balancing.

Our model is implemented using the actor-based application environment
Calvin [31], developed by Ericsson. While Calvin is mainly an environment for
Internet of Things (IoT) applications, it suites our purpose well. The model is
evaluated by running a set of experiments in a small cluster. Furthermore, the
implementation provides a platform for further research and experiments.

1.4 Goal

The goal of this thesis was to devise a method for dynamically ensuring a prede-
fined level of reliability for distributed applications or services by dynamically
replicating tasks. The goal was further to implement the method and provide
a flexible and extensible platform, which can be used for further research and
experiments.

First, a reliability model was designed, describing the reliability of the available
resources, and for applications using these resources.

Secondly, a framework was designed which automatically detects node failures
and based on the reliability of the available resources creates enough replicas to
reach the required reliability level. Furthermore, the system and its running
applications are periodically monitored in order to adapt the resources’ reliability
and the number of replicas needed as the properties of the system vary over time.

Lastly, the model was implemented and tested using the IoT application
framework Calvin.

The report is structured as follows: in chapter 2 all necessary background
theory is provided, in chapter 3 we present our model and contribution in more
detail, chapter 4 presents an evaluation of our solution and in chapter 5 the solution
is discussed. Chapter 6 presents future work and chapter 7 concludes the report.



Chapter2
Background

In this chapter we provide all the necessary background theory to fully understand
the rest of the report.

2.1 Computational Environment

The computational environment used in this thesis is distributed computing, i.e.
several resources working together towards a common goal.

2.1.1 Types of distributed computing

Distributed Computing Systems (DCS) are composed of a number of components
or subsystems interconnected via an arbitrary communication network [15, 47].
There are a number of different types of distributed environments, e.g. grids,
clusters, clouds and heterogeneous distributed computing systems.

2.1.1.1 Grid computing

A grid is a collection of autonomous resources, that are distributed geographi-
cally and across several administrative domains, and work together to achieve a
common goal, i.e. to solve a single task [6, 7, 48].

Each domain in a grid usually has a centralized scheduling service called
Resource Management System (RMS) which accepts job execution requests and
sends the jobs’ tasks to the different resources for execution [48].

The reliability of the grid computing is very critical but hard to analyze due
to its characteristics of massive-scale service sharing, wide-area network, hetero-
geneous software/hardware components and complicated interactions among
them [17].

2.1.1.2 Cluster

A cluster system is usually a number of identical units managed by a central
manager. It is similar to a grid, but differ in that resources are geographically
located at the same place. The resources work in parallel under supervision of a

5



6 Background

single administrative domain. From the outside it looks like a single computing
resource [6].

2.1.1.3 Cloud

Cloud has been described as the next generation of grids and clusters. While it
is similar to clusters, the main difference is that cloud consists of multiple do-
mains [6]. The domains can be geographically distributed, and software and
hardware components are often heterogeneous. Therefore, analyzing and predict-
ing workload and reliability are usually very challenging [2].

2.1.1.4 Heterogeneous distributed computing systems

A Heterogeneous Distributed Computing System (HDCS), is a system of numerous
high-performance machines connected in a high-speed network. Therefore, high-
speed processing by computational heavy applications is possible [14].

The majority of distributed service systems can be viewed as a Centralized
Heterogeneous Distributed System (CHDS). A CHDS consists of heterogeneous
sub-systems which are managed by a centralized control center. The sub-systems
have various operating platforms and are connected in diverse topological net-
works [46].

2.1.2 Dynamic versus static environments

A distributed computing environment can be either static or dynamic. In a static
environment, only homogenous resources are usually installed [6]. For load-
balancing and scheduling algorithms, prior knowledge of node capacity, process-
ing power, memory, performance and statistics of user requirements are required.
Changes in load during runtime are not taken into account which makes the
environment easy to simulate but not well suited for heterogeneous resources.
Once the system has been put into place, resources are neither added nor removed
from the system.

In contrast to static environments, a dynamic environment usually consists of
heterogeneous resources [6]. Once the system has been put into place, resources
can be dynamically added or removed. In such environments, prior knowledge
is therefore not enough for load-balancing and scheduling algorithms, since the
requirements of the user and the available resources can change during runtime.
Runtime statistics are therefore usually collected and taken into account. Dynamic
environments are difficult to simulate, but algorithms exist which easily adopt to
runtime changes.

2.2 Faults in distributed environments

In distributed environments, a large number of faults can occur due to its com-
plexity. Therefore, when modeling faults and reliability in such environments, a



Background 7

fault model is usually employed, describing which kinds of failures that are being
considered.

2.2.1 Types of Faults

A fault is usually used to describe a defect at the lowest level of abstraction [9].
A fault may cause an error which in turn may lead to a failure, which is when a
system has not behaved according to its specification.

In distributed environments, especially with heterogeneous commodity hard-
ware, several types of failures can take place, which affect the running applications.
Such failures include, but are not limited to, overflow, timeout, resource miss-
ing, network, hardware, software, and database failure [17]. Failures are usually
considered to be either [48]:

• Job related

• System related

• Network related.

In [20], almost ten years of real-world failure data of 22 high performance
computing systems was studied and concluded hardware failures to be the single
most common type of failure, ranging from 30 to more than 70 percent depending
on hardware type, while 10 to 20 percent of the failures were software failures.

2.2.2 Fault models

When studying the reliability of distributed systems or applications running in
distributed computing environments, one usually starts with specifying which
fault model that is used. A reliability model is then designed, and validated with
respect to this fault model [9]. In the fault models described in this section, and in
the rest of the report, a computational resource is referred to as a node.

2.2.2.1 Byzantine fault model

The Byzantine fault model allows nodes to continue interaction after failure. Cor-
rectly functioning nodes cannot automatically detect if a failure has occurred. Even
if it was known that a failure occurred, nodes cannot detect which node that has
failed.

Furthermore, the system’s behavior can be inconsistent and arbitrary [8].
Nodes can fail (become Byzantine) at any point of time and stop being Byzantine
at any time. A Byzantine node can send no response at all, or it can send an
incorrect result. All Byzantine nodes might send the same incorrect result, thereby
making it hard to identify malicious nodes [29]. The Byzantine fault model is very
broad since it allows failed nodes to continue interacting, but it is therefore also
very difficult to simulate and to analyze.
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2.2.2.2 Fail-stop fault model

The fail-stop model, also called the crash-stop model, is in comparison to the
Byzantine fault model much simpler. When a node fails it stops producing any
output and stops interacting with the other nodes [9]. This allows for the rest of
the system to automatically detect when a node has failed. Due to its simplicity,
it does not handle subtle failures such as memory corruption but rather failures
such as system crashes [8].

2.2.2.3 Crash-failure fault model

The crash failure model is quite alike the fail-stop model with the difference that
nodes do not automatically detect the failure of a node [9, 56].

2.2.2.4 Fail-stutter fault model

Since the Byzantine model is very broad and complicated and the fail-stop model
doesn’t represent enough real-world failures, a third middle ground model has
been developed. It is an extension of the fail-stop model but differ in that it also
allows for performance fault, such as unexpectedly low performance of a node [8].

2.2.3 Failure distribution

Models describing the nature of failures in distributed computing environments
are usually based on certain assumptions and are usually only valid under those
assumptions. Commonly made assumptions about failures and the computational
environment are [15–17, 29, 42, 46]:

• Each component in the system has only two states: operational or failed

• Failures of components are statistically independent

• Components have a constant failure rate, i.e. the failure of a component
follows a Poisson process

• Fully reliable network

When modeling reliability for grid systems, it is common to also assume a fully
reliable Resource Management System (RMS) [7, 44], which is a non-negligible
assumption since the RMS is a single-point-of-failure.

Constant failure rates are not likely to model the actual failure scenario of a
dynamic heterogeneous distributed system [14]. The failure rate for a hardware
component often follows a bathtub shaped curve [2]. The failure rate is usually
higher in the beginning since the probability that a manufacture failure would
affect the system is higher in the beginning of the system’s lifetime. After stabiliz-
ing, the failure rate drops and later increases again due to that the component gets
worn out.

Statistically independent failures are also not very likely to reflect the real
dynamic behavior of distributed systems [2,17]. Faults may propagate throughout
the system, thereby affecting other components as well [5]. In grid environments,
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a sub-system may consist of resources using a common gateway to communicate
with the rest of the system. In such a scenario, the resources do not use independent
links [33]. As failures are likely to be correlated [19], the probability of failure
increases with the number of resources a task uses.

Other factors also affect the likelihood of resource failures. Several studies have
concluded a relationship between failure rate and the load of the system [20, 21].
Furthermore, [20, 21] also show that failures are more likely to occur during
daytime than at night, which may be a consequence of the system load being
higher during daytime. In addition, components which have failed in the past are
more likely to fail again [21].

While a Poisson process is commonly used to describe the probabilities of
failures, [20] shows that failures are better modelled by a Weibull distribution with
a shape parameter of 0.7 - 0.8. However, despite not always reflecting the true
dynamic failure behavior of a resource, a Poisson process has been experimentally
shown to be reasonably useful in mathematical models [58]. The Poisson distribu-
tion expresses the probability of k failures during a specific period of time, and is
defined as follows:

P(k failures) =
λk · e−λ

k!
(2.1)

where λ is the failure rate, i.e. the average number of failures occurring in
time t.

2.3 Reliability

2.3.1 Reliability definition

Reliability in the context of software applications can have several meanings,
especially for applications running in distributed systems. Often, reliability is
defined as the probability that the system can run an entire task successfully [1,
15, 41, 42, 46, 49, 50]. A similar definition, for applications running in distributed
environments, is that reliability is the probability of a software application to
perform its intended functions for a specified period of time [2–4], and is commonly
used for applications with time constraints. Finally, reliability can also be defined
as the probability that a task produces the correct result [3, 7, 29, 44, 45]. The latter
is usually used together with the Byzantine fault model.

2.3.2 Modeling reliability

The reliability of a system highly depends on how the system is used [3]. In order
to determine the reliability of a system, one needs to take all factors affecting the
reliability into account [2]. However, including all factors is not feasible. In [26],
32 factors affecting the reliability of software are listed, excluding environmental
factors such as hardware and link failure. Other environmental conditions affect-
ing reliability include the amount of data being transmitted, available bandwidth
and operation time [17, 42].



10 Background

For distributed applications, the probability of failure increases since it is
dependent on more resources [15]. Most reliability models are based on the
Mean-Time-To-Failure (MTTF), or the Mean-Time-Between-Failures (MTBF), of
resources [16]. Conventionally, MTTF refers to non-repairable resources, while
MTBF refers to repairable objects [23].

Definition 2.1. The Mean-Time-To-Failure for a component is the average time it takes
for a component to fail, given that it was operational at time zero.

Definition 2.2. The Mean-Time-Between-Failure for a component is the average time
between successive failures for that component.

The MTBF can be calculated as

MTBF =
total time

number of failures
(2.2)

From t and the MTBF, the failure rate λ used in eq. (2.1) can be calculated as
λ = t/MTBF. Equation (2.1) can therefore be re-written as

P(k failures during time t) =

(
t

MTBF

)k
· e
−
(

t
MTBF

)

k!
(2.3)

The probability of surviving corresponds to having zero failures, and can be
expressed as

P(0 failures during time t) =

(
t

MTBF

)0
· e
−
(

t
MTBF

)

0!
= e
−
(

t
MTBF

)
(2.4)

2.4 Fault tolerance techniques

Fault tolerance techniques are used to either predict failures and take appropriate
actions before they occur [52], or to prepare the system for failures, and take
appropriate actions first when they occur. Considering the whole life-span of a
software application, fault tolerant techniques can be divided into four different
categories [2]:

1. Fault prevention - elimination of errors before they happen, e.g. during the
development phase

2. Fault removal - elimination of bugs or faults after repeated testing phases

3. Fault tolerance - provide service complying with the specification in spite of
failure

4. Fault forecasting - predicting or estimating faults at architectural level dur-
ing design phase or before actual deployment
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Limited to already developed applications, fault tolerance techniques can
be divided into reactive and proactive techniques [52]. A reactive fault tolerant
technique prepares the system for failure, and reacts when a failure occurs and tries
to reduce the effect of the failure. They therefore consists of preparing for, detecting,
and recovering from failure in order to allow computations to continue [5]. The
proactive technique on the other hand, tries to predict failures and proactively
replace the erroneous components.

Common fault tolerance techniques include checkpointing, rollback recovery and
replication [5].

2.4.1 Checkpoint/Restart

Fault tolerance by the use of periodic checkpointing and rollback recovery are the
most basic form of reactive fault tolerance techniques [8].

Checkpointing is a fault tolerance technique which periodically saves the
state of a computation to a persistent storage [5, 8]. In the case of failure, a new
process can be restarted from the last saved state, thereby reducing the amount of
computations needed to be redone.

2.4.2 Rollback recovery

Rollback recovery is a technique in which all actions taken during execution are
written to a log. At the event of failure, the process is restarted, and the log is read
and all actions replayed, thereby re-constructing the previous state [8]. In contrast
to checkpointing, rollback recovery returns the process to the most recent state,
not only the last saved one. Rollback recovery can be used in combination with
checkpointing in order to reduce recovery time by not having to replay all actions,
but only those from the latest checkpoint.

2.4.3 Replication

Task replication is a commonly used fault tolerant technique, and is based on
the assumption that the probability of a single resource failing is greater than the
probability of multiple resources failing simultaneously [51]. Replication can be
used both as a reactive and proactive fault tolerance technique.

Using replication, several identical processes are scheduled on different re-
sources and simultaneously perform the same computations [5]. With the in-
creased redundancy, the probability of at least one replica finishing increases at the
cost of more resources being used. Furthermore, the use of replication effectively
protects against having a single-point-of-failure [51].

Replication also minimizes the risk of failures affecting the execution time of
jobs, since it avoids the re-computation typically necessary when using check-
point/restart techniques [37].

There are three different strategies for replicating a task: active, semi-active and
passive. A replica, whether active, semi-active or passive replication is used, is
defined as [23]:
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Definition 2.3. The term replica or task replica is used to denote an identical copy of the
original task

2.4.3.1 Active replication

In active replication, there are one or several replicas of a task running simultane-
ously. All replicas receive an exact copy of the task’s input and they all perform
the same computations.

Often, there is one primary task and several back-up replicas. The primary task
is monitored by the back-up replicas for incorrect behavior and if the primary task
fails or behaves in an unexpected way, one of the back-up replicas will promote
itself as the primary task [8]. Since the back-up replicas already are in an identical
state as the primary task, the transition will take negligible amount of time.

Depending on the set-up, the primary task could be the only one producing
output, or all replicas could produce output. In the latter case, the receiver will
receive multiple results. A consensus algorithm could then be deployed to deter-
mine which result is correct, and thereby protect against Byzantine faults. More
on this in section 2.4.3.4.

Active replication is feasible only if all replicas receive exactly the same input.
When replicating, the task replicas are likely not to be synchronized. Therefore, if
they perform computations or make external requests which are time-dependent,
they are likely to produce different results. To avoid this, this kind of replication
is usually done for tasks performing deterministic1 computations, which are not
time-dependent.

A drawback with active replication is that having n identical copies of a task,
all computations are performed n times, and thereby wasting computational
capacity. But while replication increases the system load, it may help to improve
performance by reducing task completion time [53].

2.4.3.2 Semi-active replication

Semi-active replication is very similar to active replication, but differs in that
decisions common for all replicas are taken by one site. This solves the issue with
time-dependent computations, since all such computations could be performed
by one site. However, this introduces a single-point-of-failure.

2.4.3.3 Passive replication

Passive replication is the case when a second machine, typically in idle or power
off state has a copy of all necessary system software as the primary machine. If
the primary machine fails the "spare" machine takes over, which might incur some
interrupt of service. This type of replication is only suitable for components that
have a minimal internal state, unless additional checkpointing is employed.

1A deterministic function always produces the same output given a certain input.
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2.4.3.4 Consensus

In active and semi-active replication, several results are being produced. If non-
deterministic computations are done, some form of consensus algorithm is usually
deployed to determine which result is correct. The consensus problem can be
viewed as a form of agreement. A consensus algorithm lets several replicas execute
in parallel, independent of each other and the receiver of their results determine
which result is considered correct. Such algorithms are usually used with the
Byzantine fault model section 2.2.2.1, where a resource can produce an incorrect
result.

Based on achieving consensus, two different redundancy strategies can be
identified, traditional and progressive redundancy [29]. In traditional redundancy
an odd number of replicas run simultaneously and afterwards a voting takes place
to determine which result is correct. The result with the highest number of votes
is considered correct and consensus is reached.

In progressive redundancy the number of replicas needed is minimized. If
with traditional redundancy, k ∈ {3, 5, 7...} replicas are executed, progressive
redundancy first executes (k + 1)/2 replicas and reaches consensus if all replicas
return the same result. If some replica return a deviant result, an additional
number of replicas are executed until enough replicas have returned the same
result, i.e. consensus is reached. In worst case k replicas are executed, the same as
for traditional redundancy. A disadvantage with progressive consensus is that it
might take longer time if consensus is not reached after the first iteration.

Finally, [29] present a third strategy, an iterative redundancy alternative which
focuses more on reaching a required level of reliability in comparison to reaching
a certain level of consensus.

2.4.4 Load balancing

The term load balancing is generally used for the process of transferring load
from overloaded nodes to under-loaded nodes in order to improve the overall
performance. Load balancing techniques for distributed environments consists of
two parts, resource allocation and task scheduling.

Load balancing algorithms can be divided into three categories based on the
initiation of the process:

• Sender initiated - an overloaded node sends requests until it finds a proper
node which can accept its load.

• Receiver initiated - an under-loaded node sends requests for more work
until it finds an overloaded node.

• Symmetric - a combination of sender initiated and receiver initiated.

Load balancing can also be divided into static and dynamic load balancing. In
contrast to static load balancing algorithms, dynamic algorithms takes the nodes’
previous states and performance into account. The static load balancing only
consider properties such as processing power and available memory which might
lead to the disadvantage that the selected node gets overloaded [10].
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2.5 Task scheduling

Task scheduling is the process of mapping tasks to available resources. A schedul-
ing algorithm can be divided into three simple steps [60]:

1. Collect the available resources

2. Based on task requirements and resource parameters, select resources to
schedule the tasks on

3. Send the tasks to the selected resources

Based on which requirements and parameters are considered in step 2 above,
a task scheduling algorithm can achieve different goals. They can for example aim
at maximizing the total reliability, minimizing the overall system load, or meeting
all the tasks’ deadlines [59].

Task scheduling algorithms can be divided into static and dynamic algorithms
depending on whether or not the scheduling mapping is based on pre-defined
parameters or if the parameters might change during runtime [30].

Many studies have been done aiming at improving reliability by improved task
allocation in distributed systems by various scheduling algorithms. However, they
only consider some system constraints such as processing load, memory capacity,
and communication rate [18]. Finding an optimal solution and maximizing the
overall system reliability at the same time is a NP-hard problem [18, 32, 59].

Furthermore, taking many factors into account when scheduling tasks results
in a big overhead, thus reducing performance.

2.6 Monitoring

Monitoring is common in distributed systems for detecting when resources fail. A
commonly used technique is the use of heartbeats, where light-weight messages
are sent, usually using UDP, between resources, informing each other that they are
still operational. The heartbeats are periodically sent with a certain frequency. If a
resource stops receiving heartbeats from another resource, it is assumed to have
died. Another similar technique is to send a message and wait for a reply, and if
no reply is received within a certain time, the resource is assumed to be dead [62].

Monitoring is also an important part of dynamic fault tolerant techniques
which adapts to changing system behavior. Depending on which parameters
are taken into account in the reliability model or scheduling algorithm used, the
system resources must be monitored and various information must be shared.
Resource information, such as current load of a resource, can be shared using either
a pull or push strategy. If using a centralized storage, a pull strategy involves the
storage requesting information from the resources, while a push strategy involves
the resources sending the information to the storage without it being requested.

Furthermore, the monitoring can take place in various forms. Using pull/push
strategy, the information is sent from the resources to some monitoring system. But
the monitoring system can also collect the information needed, e.g. by scanning
logs [62].
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2.7 Virtualization and containers

Virtualization is a broad term of creating a virtual version of something, e.g. a
server, a hard drive or a private network (VPN). The advantages of virtualization
are savings in space and hardware cost. Furthermore, the system becomes more
dynamic. For instance, it is possible to run several virtual servers on one physical
server. With virtualization the software and the hardware gets separated which
enables the possibility of moving a virtual machine, a VM, from one physical
location to another [66]. This also allows for starting several identical servers, by
starting several virtual machines using the same image.

A container is very similar to a virtual machine but more light-weight. Contain-
ers running on the same physical machine share the machines operating system
and binaries while virtual machines running on a single physical machine have
their own operating systems and dedicated resources, isolating them from each
other [61].
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Chapter3
Design of a dynamic fault tolerant system

In this chapter, the key components of our fault tolerant framework are described.
Of the various fault tolerant techniques described in section 2.4, our model focuses
on fault tolerance, using reactive techniques.

3.1 Methodology

Having a fault tolerant framework or model includes being able to express the
reliability of resources, and applications using those resources, as well as being able
to detect failures. The methodology for devising our model is mainly literature
study as well as meetings and discussions with our supervisor and colleagues at
MAPCI.

We implemented the model using Ericsson’s actor-based application environ-
ment Calvin [31], and conducted a set of experiments to show its usefulness. The
implementation provides a platform which can be used for further research and
experiments. The model is not dependent on the reliability model used, and it
could easily be replaced.

Since implementing our model using Calvin, some understanding of the
results may be lost. Calvin is designed for light-weight IoT applications, and
not for data stream processing applications where tasks are replicated. However,
the implementation provides a mean of testing other algorithms and reliability
models than the ones used in this thesis, and we believe that the results can still
give a good first interpretation of the possibilities, which are further discussed
in chapter 5.

3.2 Introduction

In the case of data stream processing, reliability is of particular interest in order
not to lose any valuable data. In this thesis, focus is on the case when a process of
some kind produces data which needs to be transformed or processed by a task T,
which sends the result to a consumer. The task T is running within a cluster, and
the user of this service demands a certain level of reliability, and active replication
is used to ensure this.

17
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Choosing streaming services with deterministic processing allows us to avoid
timing issues and cases when the consumer receives different results from the
replicas. We therefore adapt the fail-stop fault model described in section 2.2.2.2.
However, since active replication will be used where the receiver receive a result
from each replica, our model could be extended with consensus algorithms such
as those presented in section 2.4.3.4 to determine whether or not the correct result
was received. One could then adapt the broader Byzantine fault model.

Furthermore, using long running applications or services, such as stream pro-
cessing applications, allows us to focus on ensuring a required reliability despite
event of failures. Therefore, in contrast to the various scheduling algorithms
in [1, 13, 14, 18, 27, 30, 32] aiming at meeting task deadlines or minimizing execu-
tion time, a greedy scheduling algorithm will be presented which solely aims at
reaching a required level of reliability with the minimum number of replicas. The
scheduling algorithm presented only takes the reliability of the available nodes
into account, but as shown in experiment 4.5.8, it can easily be replaced by another
algorithm, which for example also takes the nodes’ loads into account.

Unlike [11, 23, 37, 38, 44], we propose a fully dynamic model which monitors
the system with its running applications and services, and dynamically creates
new replicas in order to ensure that the required reliability is met. Determining
the number of replicas needed only when deploying an application or service may
suffer if the system is in a reliable state at the time of deployment, but later becomes
less reliable. As mentioned in section 2.2.3, the reliability of the resources vary
over time, the system and its running applications must therefore be periodically
monitored and the number of replicas increased or decreased over time. In our
model this is achieved by monitoring both how many replicas are operational,
on which nodes they are executing, as well as detecting node failures, in order to
dynamically adapt the reliability model as the properties of the system changes.

The rest of this chapter is composed as follows, in section 3.3 we go through
the limitations we have done. Section 3.4 gives a description of the system model
used, e.g. in which computational environment we have tested our model, how
faults were modeled and their distribution and what kind of applications we used.
In section 3.6 - 3.9 we present our main contributions consisting of a reliability
model, a scheduling algorithm and how our model is self-adapting. Last in this
chapter, in section 3.10, we briefly describe how Calvin works and present the
main parts of our implementation of the model.

3.3 Limitations

As mentioned in section 2.2.3, a commonly used assumption is having fully reli-
able links between nodes. We also make this assumption, and thereby limit our
model to only consider node failures. However, the reliability model used in this
thesis could easily be replaced by a more sophisticated one, since the scheduling
algorithm presented in section 3.7 is independent of the reliability model used.
Also, we do not distinguish between different kinds of failures, hence the reason
for why a node failed is not important in our model. The reason of failures could
however be taken into account in a more sophisticated reliability model.
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Furthermore, we assume the replicated tasks are deterministic and always
produces the correct result for a given input. We can thereby define reliability as the
probability of producing a result and not lose any data, instead of the probability
of producing the correct result as done in [12, 29, 45]. However, as mentioned
before, this can be solved by extending our model with consensus algorithms such
as majority voting. Since we do not gain any extra useful information by doing so,
we have chosen to leave this to future work.

Moreover, the time to process each input is assumed to be less than the MTBF
of the used nodes. Otherwise all nodes could die before a result is produced,
despite always having at least one replica operational. By further extending the
model with checkpointing, described in section 2.4.1, one could allow longer
processing times.

We also assume the case where all nodes are within the same cluster, connected
with high-bandwidth and low-latency links, and all nodes are reachable from every
other node. We therefore assume that the time it takes to send a message between
two nodes is the same for all nodes. Therefore, it is assumed that the replication
time described in section 3.6.3.2 does not depend on between which nodes the
replication is done.

By the use of these limitations we avoid unnecessary complexity in form of
checkpointing and consensus. The impact of this will be discussed later in chap-
ter 5.

3.4 System model

In this section, we describe the system and application models employed in this
work.

3.4.1 Computational environment

In this report we assume that all resources are within the same cluster, with
low-latency connections between them. The resources consist of heterogeneous
hardware with high-bandwidth, low-latency redundant links between them. Due
to its heterogeneous properties, nodes cannot be assumed to have the same failure
rate.

An example of four interconnected nodes is shown in fig. 3.1. We refer to a
computational resource as a node. Due to the lack of access to a cluster consisting of
heterogeneous hardware components, the cluster used for experiments consisted
of homogeneous hardware components, and varying behavior in terms of failure
is simulated in the experiments. This if further described in chapter 4.

Since all nodes are interconnected, we have redundant paths which results
in that all nodes are directly reachable even if a node fails. In Appendix A.2 and
Appendix A.3, a system of one replicated actor is shown before and after a node
failure.
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Figure 3.1: Computational environment, interconnected nodes

3.4.2 Storage of data

Information such as how many replicas are currently executing, and on which
nodes they are running, must be globally available and accessible from every node
in the system.

If information is only stored locally on a node, that information is lost in case
that the node fails. In case the information is written to a persistent storage, it may
not be lost, but that information will be unavailable until node has been restarted.

Instead of storing information locally, a remote database can be used. In
this case, a single-point-of-failure is introduced, resulting in a system where the
reliability is no more than the reliability of the database. If a remote database is
used, this must be taken into account in the reliability model.

To achieve a fault tolerant redundant storage of information, a Distributed
Hash Table (DHT) can be used. Using DHT efficiently avoids having a single-
point-of-failure.

In Calvin, the framework in which the model was implemented and evaluated,
there are two storage alternatives. A DHT implementation called Kademlia,
see [63] for further information, and a proxy storage. Calvin and its storing
alternatives are further described in section 3.10.1.

When storing data using DHT, the data is first stored locally and later flushed,
i.e. sent to other nodes. When a task is replicated to another node, the replication
must only be considered successful if the storage is properly updated and the
information shared to other nodes. Otherwise, the replication may only be partially
reflected in the storage and use of this data will be useless.

3.4.3 Application model

The fault tolerant framework presented in this paper is general and may be used
in various contexts. However, it is particularly of value for long running applica-
tions and services running in dynamic environments where a predefined level of
reliability must be met. Long running applications are particularly vulnerable to
failure because they usually require many resources and usually must produce
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precise results [5].
In this paper, the application used consists of a producer, a task T and a

consumer, and can be modelled as shown in fig. 3.2. The task T shown in the
figure could for example be a service for which we require a certain reliability. In
contrast to [1, 13, 14, 18, 27, 30, 32], no assumptions are made about the execution
time of the application. However, the time to process each input is assumed to be
less than the MTBF of the nodes, as described in section 3.3. While our model is
general, it is particularly beneficial for long running applications and services, as
they in large-scale distributed environments are required to stay operational even
in the case of unpredictable failures [28].

A typical example of a long running application is data stream processing,
where a continuous stream of data is sent to a service which performs some
computations on the data, and sends a result to a receiving process. The execution
time is unknown, and in case of a failure, data may be lost. By sending the data to
several replicas, redundancy is achieved and reliability thereby increased as the
probability of at least one replica produces a result is increased.

Figure 3.2: An application model where a producer transmits data
to a task T, which transforms the data, and sends the result to
a consumer. T may be seen as a task or service running in a
cluster and requiring a certain level of reliability.

3.4.4 Replication scheme

As previously mentioned, reliability will be ensured by the use of replication. More
specifically, active replication is used, where each replica receives the same input,
performs the same computations, and produces the same output. Figure 3.3 shows
how the application in fig. 3.2 looks after replicating task T four times. It is also
possible to have several tasks replicated, this scenario is shown in Appendix A.1.

In contrast to the case with one primary task and several back-up replicas, as
described in section 2.4.3, we adapt a fan-in fan-out model, where all replicas both
receive the same input, but also all transmit its result to the consumer.

After replicating, the various replicas may not be synchronized. But, since
assuming only deterministic calculations are done by the tasks replicated, given
the same input they will all produce the same result, even if not synchronized.
However, since the receiver receive a result from each replica, our model allows
for easy extension to also include a majority decision at the consumer to determine
whether or not the correct result was received.

The process of replicating a task in Calvin, the framework in which our model
was implemented, is further described in section 3.10.1.4.
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Figure 3.3: An application model where a task T has been replicated
four times.

3.4.5 Fault model

In this paper, we adapt the fail-stop fault model, which is described in section 2.2.2.2
and commonly used when presenting fault tolerance techniques [8]. Nodes in the
system have one of two states: operational or failed. If a node fails, all running tasks
on that node are dead. Furthermore, after a node has died, it will be restarted.
However, the tasks that were being executed before it died will not be restarted
when the node is restarted. The reason for why a node died is irrelevant.

Like [29], only system related failures are considered, assuming failures de-
pends on the nodes, not the jobs running on them and the computations they
perform. Furthermore, unlike the reliability models presented in [11, 32,43], the
network is assumed fully reliable, and thus link failures are not accounted for.

3.4.5.1 Failure distribution

A commonly used assumption, also adapted in this paper, is that failures are
statistically independent. Furthermore, failures are assumed to follow a Poisson
process, as this seems to be widely accepted in the research community [58].

While most models using the Poisson process to model the probability of
failure assume constant failure rates, we assume they are constant only for a given
period of time. By monitoring the system resources and registering failure times,
the MTBF of a node can by dynamically adapted. This is accomplished by using
the time of the three latest failures to determine the MTBF as of definition 2.2. This
is further described in section 3.9.2.

Since we assume the MTBF for a node is constant during a period of time,
failures can be modeled using a Poisson process. Using a resource’s MTBF, the
reliability for that resource can using eq. (2.1) be expressed as

R(t) = e−t/MTBF (3.1)

Equation (3.1) expresses the probability that a given resource will work for
a time t. Correspondingly, the probability that a resource will fail during a time
interval of length t is
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F(t) = 1− e−t/MTBF (3.2)

In our case t represents the time it takes to detect a node failure and create a
new replica, and is further discussed in section 3.6.3.

In order to use eq. (2.4), the MTBF of a node must be available, and to calculate
a node’s MTBF at least two failures must have occurred. However, the system still
need to be able to calculate the reliability for a node, even if the node has not yet
failed. Therefore, a default value for the MTBF will be used in the experiments
when no failure data is available for a node, or if it has not yet failed twice. In a
real situation, the default value could be based on past failure data for resources
of similar type. The default value used in the experiments is further described
in section 4.1.

As time goes and nodes fail, and the time of each failure is stored, the system
will get more precise values for the MTBF for the nodes in the system. By using
the latest three failure times, one can adapt the MTBF as nodes start failing more
or less often.

3.5 Monitoring

Monitoring the system is crucial for achieving an entirely dynamic system, both in
which the required reliability is met over time, but also where no more resources
than necessary are being used.

3.5.1 Heartbeats

The ability to detect node failures is crucial for knowing when a new replica is
needed in order to keep the required reliability. Furthermore, since the reliability
model presented in section 3.6 is based on MTBF of the nodes in the system, it is
based on the assumption that node failures are detectable.

To achieve this, a heartbeat system is used, where nodes periodically send
UDP messages, called heartbeats, every th seconds. The heartbeats contain a node
identifier and are sent to all the other nodes in the system. Nodes are considered
operational as long as heartbeats are received from them, and if no heartbeat is
received from a node for ttimeout seconds, the node is assumed dead.

In the experiments conducted, see chapter 4, th was set to 0.2 seconds, and
ttimeout to 0.5 seconds. These values should be modified in a real setting. For the
experiments, a high-bandwidth low-latency cluster was used, why we could use a
high heartbeat frequency and a low timeout time.

As further described in section 3.6.3.1, these values affect the reliability model,
and thereby the number of replicas needed. A higher frequency and lower timeout
means a shorter time in which the system is in a vulnerable state, and therefore a
lower number of replicas may be needed to reach the required reliability. On the
other hand, higher frequency means increased network traffic in the system as
more heartbeats are being sent, although the size of a heartbeat message is low,
only 126 Bytes.
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3.5.2 Monitoring system reliability

In order to ensure that the optimal number of replicas is used over time, as the
properties of the system vary, the system and its running applications or services
must be periodically monitored.

In our model, the reliability of the running applications are monitored peri-
odically, and if the reliability is not met, appropriate actions are taken, which is
further described in section 3.7.

On the other hand, if the required reliability is met, more replicas than neces-
sary may be used to reach that reliability level. One must therefore minimize the
number of replicas by moving the replicas to more reliable nodes, and deleting
replicas on less reliable nodes as long as the required reliability is still met. The
algorithm for optimizing is further described in section 3.7.1.

In the experiments, all applications were monitored and the greedy scheduling
algorithm followed by the optimization algorithm, both presented in section 3.7,
were run every five seconds.

3.6 Reliability model

In this section the reliability model used in our experiments is presented. Note
that the scheduling algorithm presented in section 3.7 is not dependent on the
reliability model used.

3.6.1 Definitions

In this paper, we use the following definitions of reliability:

Definition 3.1. The reliability of a process is the probability that the resource on which
the process is running is functioning during the time of execution.

For long running applications or services, where a replication scheme is used
and new replicas dynamically being created as old ones fail, the reliability can be
defined as [23]:

Definition 3.2. The reliability of a process, with n task replicas, is the probability that at
least one replica is always operational. This can be expressed as the probability that not all
replicas fail during the time from that a task replica dies, until a new replica is operational.

3.6.2 Expressing reliability

Using replication and the reliability definition defined in definition 3.2, the re-
liability of a task T with n replicas, is the probability that at least one replica is
successful during a time t, where t is the time from that a replica fails, until a new
replica is operational. This corresponds to at least one replica surviving time t, i.e.
not all replicas fail, and can be expressed as

RT(t) = 1−
n

∏
k=1

fk(t) (3.3)
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where fk(t) is the probability that replica k fails during time t. Since assuming
tasks themselves do not fail unless the resources they use fail, the reliability of
a task is dependent on the reliability of the resources it uses, not the number of
replicas. Considering only node failures, the reliability of a task T with n replicas
placed on m different nodes, can using eq. (3.2) be expressed as

RT(t) = 1−
m

∏
k=1

Fk(t) = 1−
m

∏
k=1

(1− e−t/MTBFk ) (3.4)

where MTBFk is the mean-time-between-failure for node k. Using this model,
reliability is only increased through replication if the replicas are scheduled on
separate nodes. Furthermore, eq. (3.4) is based on the assumption that failures
of nodes are statistically independent, which is a commonly used assumption as
described in section 2.2.3.

Given a time t, a required reliability level Rreq, and assuming the replicas are
running on m separate nodes, we get

RT(t) = 1−
m

∏
k=1

Fk(t) ≥ Rreq (3.5)

which must be fulfilled by the system. Assuming that failure rates differ
among resources, fulfilling eq. (3.5) is a scheduling problem, since the number of
replicas needed is dependent on which resources the replicas are running on.

The scheduling problem to fulfill a reliability Rreq refers to selecting m nodes
on which to place m replicas such as the reliability level of the task, expressed in
eq. (3.4), exceeds Rreq.

3.6.3 Expressing time t

The time t used in eq. (3.4) is the time it takes from that a failure happened, until a
new replica is operational, and consists of the time it takes to detect the failure,
and the time it takes to create a new replica. The time t can therefore be expressed
as

t = td + tR (3.6)

where td is the time to detect that a node has failed, and tR is the time it takes
to create a new replica. A new replica is created by sending a replication request
to a node currently holding a replica, including a third node on which the new
replica is to be created. This process is further described in section 3.6.3.2.

3.6.3.1 Node failure detection time, td

As described in section 3.5.1, heartbeats are periodically sent to all nodes in the
system every th seconds, and if no heartbeat is received from a node for ttimeout
seconds, it is assumed dead. Note that th must be lower than ttimeout.

The timeout time, ttimeout is only an upper bound for how long it takes to
detect a node failure. A node can fail just before sending a heartbeat, or directly
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after, which will affect the actual time the node has been dead before it is detected.
This corresponds to the best and worst case scenario.

If a node A dies precisely before sending heartbeat Hk to node B, the last
received heartbeat from A was Hk - 1. ttimeout seconds after Hk - 1 was received,
node B will assume A has failed. Node A will then have been dead for ttimeout− th
seconds.

In the latter case, node A dies directly after sending a heartbeat Hk, and ttimeout
seconds later node B will assume node A has failed. Node A has in this case been
dead for ttimeout seconds when node B assumes it has failed.

Assuming that the probability of a node dying just before and directly after
sending a heartbeat is the same, we get a theoretical average detection time of
ttimeout − th

2 seconds.
An example of the best and worst case scenario is shown in Appendix A.7

and Appendix A.8.
In eq. (3.6) we will use

td = ttimeout (3.7)

which is the worst case scenario. This result in the calculated reliability always
being equal to or lower than the actual reliability, since the time to detect the
failure always is ttimeout or lower.

3.6.3.2 Replication request time, tR

The time tR in eq. (3.6) is the time from that a replication request is sent, until a
new replica is operational and a response is received. It consists of the time it
takes to send a replication request to a node, for that node to replicate its replica to
another node and send a response.

To know which node to send the replication request to, one must first find out
on which nodes current replicas are running. Thereafter, since the reliability is
dependent on which nodes the replicas are running on, not solely on the number
of replicas, one must also find a node which does not already have a replica and
include this node in the request. The time tR can be expressed as in eq. (3.8) where
tquery storage is the time it takes to find which nodes currently holding a replica
and which nodes do not, treplicate msg is the time to send a replication message
to another node, tr is the time to replicate the task to another node, and tresponse
is the time to send a response to the requesting node. The process of sending a
replication request is shown in fig. 3.4. The part of querying the storage is excluded
from this figure.

tR = tquery storage + treplicate msg + tr + tresponse (3.8)

As mentioned, the time tr is the time it takes to replicate a task. Depending
on the state of the task to replicate, it is likely to be a significant part of the total
time tR. The time to replicate a task consists of the time to get the state of the task,
serialize it, transmit it to the other node, de-serialize it, and create a new identical
replica using that state, and send the response.
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Figure 3.4: The process of node A asking node B to replicate its
replica T1 to node C, and receiving a response.

tr = tget state + tserialize state + ttransmit state + tde-serialize state + tcreate new + tsend reply
(3.9)

In our model, the time tR is measured and stored every time a replication takes
place. Since tr depends on the size of the state, the time to replicate different tasks
are likely to vary. Therefore, the time tR is stored per task type. Consequently,
different types of tasks may require different number of replicas to reach the same
reliability, as the reliability is dependent on the time tR. Figure 3.5 shows how the
number of replicas needed to reach a reliability above 0.99, using nodes with a
MTBF of 10 seconds, vary depending on the time t.

Other factors affect the time tR. The node to which the replication request is
sent may die before the replication is finished. The sender of the request assumes
the receiving node has failed if no response is received within a timeout time.
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Figure 3.5: The number of replicas needed to reach a reliabilty above
0.99, using nodes with a MTBF of 10 seconds, depending on
the time t.

In this case, a new node is selected and asked to replicate its replica. When this
happens, the time tR, will be relatively high, as time was wasted sending the
request to the first node.

This situation can theoretically continue until there are no more nodes holding
a replica. One could argue that this should be taken into account in the reliability
model, as the time tR affects the reliability. Also the node being selected to run al-
gorithm 1, described in section 3.8, may die, in case a new node is selected. These
situations are further described in section 3.8. The probability of these situations
happening depend on how often nodes fail, and how long time the replication
takes. If nodes fail very frequently, there is a higher risk of a node failing before
finishing the replication.

Instead of including the probability of these situations in the reliability model, a
log-logistic distribution is first fitted to the previously registered times tR. From the
fitted distribution, the 95th percentile value is used as the value for tR in eq. (3.6).
This means in 95 percent of the cases, the time tR will actually be lower than
the value used in eq. (3.6). The reason for choosing log-logistic distribution is
mentioned in experiment 4.5.1.

Finally, since assuming that all nodes are within the same cluster and that the
latency between all nodes are low, we assume the time tR is not dependent on
between which nodes the replication takes place.

3.7 Scheduling algorithm

To fulfill eq. (3.5) using the minimum number of replicas, one could simply place a
new replica on the most reliable node available, until the required level is reached.
A greedy scheduling algorithm doing this, similar to one presented in [23], and
which fulfills eq. (3.5) is shown below:
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Algorithm 1 Greedy scheduling algorithm to fulfill a given reliability

Precondition: Rreq is the reliability to fulfill.

1: procedure GREEDY SCHEDULING ALGORITHM

2: current nodes← current nodes
3: operational nodes← operational nodes
4: available nodes← operational nodes \ current nodes
5: SORT(available nodes, descending)
6: while RELIABILITY(current nodes) ≤ Rreq do
7: node← available nodes.pop . take the most reliable node
8: replica← new replica
9: PLACE REPLICA ON NODE(replica, node)

10: current nodes.add(node)
11: end while
12: end procedure

Function 1 Sorts the given nodes in order of preference
Returns the given nodes in sorted order, with the most or least (depending
on order) preferred nodes first. We only consider the nodes’ reliability when
sorting, but it can easily be changed to consider other parameters as well.
Input: nodes is the list to sort, and order is the order to sort in (ascending

or descending).

1: function SORT(nodes, order)
2: SORT AFTER RELIABILITY(nodes, order)
3: return nodes
4: end function

In our model, a new replica is placed on the most reliable node until the
required reliability level is reached. However, we do not account for whether or
not the selected node has enough available resources for the new replica, hence we
do not consider system load. The scheduling algorithm is however independent of
both the selection of nodes, function 1, and the calculation of the current reliability,
function 2, why these two are two separate function calls.

In our model, the reliability function uses eq. (3.4) for determining the re-
liability, and the sort function simply sorts available nodes after reliability, but
they could both easily be replaced by more sophisticated models, e.g. which also
consider nodes’ loads when sorting them.

The algorithm is run when deploying an application, when a failure is detected
as further described in section 3.8, and also periodically in combination with an
optimization algorithm, described next in section 3.7.1.
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Function 2 Calculates the reliability of the given nodes
Calculates the reliability of the nodes currently holding a replica. This
function could be changed to use a different reliability model.
Precondition: The time t used in this function depends on the task type

and is described in section 3.6.3.
Input: current nodes is a list of nodes currently holding a replica.

1: function RELIABILITY(current nodes)
2: n← current nodes.length

3: return 1−
n
∏

k=1
(1− Rcurrent nodes[k](t))

4: end function

3.7.1 Optimization

Algorithm 1 creates the minimal number of new replicas needed to reach the
required reliability. However, it does not ensure that the minimum number of
replicas is used over time. As more reliable nodes become available, fewer replicas
could be used while still meeting the required reliability. Therefore, algorithm 2 is
periodically run, as part of the application monitoring as described in section 3.5.2.
By first running the greedy scheduling algorithm, and then the optimization
algorithm, we ensure both that the required reliability is met, and that it is met
while using the minimum number of replicas possible.

The first part of algorithm 2 makes sure the most reliable nodes are used, by
moving the replicas from the least reliable nodes used, to the most reliable nodes
available, as long as more reliable nodes are available. To avoid putting the system
in a vulnerable state, moving a replica involves first creating a new replica, and
later deleting the old one. If deleting before creating the new replica, one risk
not having enough replicas until the new replica is operational. Replicating first
avoids this problem.

The second part make sure no unnecessary replica is used, by deleting the
replica on the least reliable node as long as the required reliability is still met.
However, moving replicas to more reliable nodes may be unnecessary overhead
if it does not affect the overall number of replicas needed. For example, moving
from a node with a reliability of 0.999 to a node with reliability 0.9991 will perhaps
not significantly increase the overall reliability, and if it does not result in another
replica can be deleted, it may be unnecessary. Algorithm 2 does not account for
this.

3.8 Handling node failure

In the case of a node failure, one must first determine whether or not any replicas
were running on the failed node, and if so, determine whether or not new replicas
are needed to still fulfill the required reliability level. This is accomplished by
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Algorithm 2 Optimization algorithm

1: procedure MOVE TO MOST RELIABLE NODES

2: current nodes← current nodes
3: operational nodes← operational nodes
4: available nodes← operational nodes \ current nodes
5:
6: SORT(available nodes, descending)
7: most reliable← available nodes.pop
8: SORT(current nodes, ascending)
9: least reliable← current nodes.pop

10:
11: while RELIABILITY(most_reliable) > RELIABILITY(least reliable) do
12: replica←REPLICA AT(least reliable)
13: REPLICATE TO(replica, most reliable)
14: DELETE REPLICA FROM NODE(replica, least reliable)
15:
16: current nodes.add(most reliable)
17: available nodes.add(least reliable)
18: least reliable← current nodes.pop
19: most reliable← available nodes.pop
20: end while
21: end procedure
22:
23: procedure DELETE UNNECESSARY REPLICAS

24: least reliable← current nodes.pop
25: while RELIABILITY(current nodes) ≥ Rreq do
26: replica←REPLICA AT(least reliable)
27: DELETE REPLICA FROM NODE(replica, least reliable)
28: least reliable← current nodes.pop
29: end while
30: end procedure
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running algorithm 1. However, when a node fails, all other nodes in the system
will detect its failure, since no node will receive heartbeats from it. If all other
nodes run algorithm 1, one could end up in a situation where every remaining
node creates a new replica. While this will increase the reliability, it may result
in an unnecessarily high number of new replicas being created, thus the optimal
number of replicas will no longer be used.

To cope with this, a selection process must take place in which a single node
is selected, which will be responsible for deciding what actions to take. Since
assuming a dynamic system where nodes fail and new nodes are introduced, this
selection must be done every time a node dies. Furthermore, the selected node
may also die before it manages to create any new replica. Therefore, all nodes will
send a lost node request to the selected node. When finished, the selected node
sends a reply back to all nodes it received a lost node message from. If the sending
nodes do not receive a reply within a specific time, they assume the selected node
died, and a new selection process will begin.

The algorithm is shown below:

Algorithm 3 Handling a failed node

1: operational nodes← operational nodes
2: lost node id← lost node id
3: SORT AFTER ID(operational nodes)
4: do
5: node← operational nodes.pop
6: LOST NODE REQUEST(node, lost node id)
7: wait for reply
8: reply← reply f rom node
9: while reply is not success f ul OR request timeout

An example is presented in fig. 3.6. In the situation shown in the figure, there
are four connected nodes, A, B, C and D, and the node C has just failed. When
the other nodes (A, B and D) detect the failure they will select the node with the
highest ID, in this case node A, and inform it that node C has failed. Node A will
then determine which actions to take.

3.8.1 Selecting node

As described, the node responsible for handling the detected failure is the node
with highest ID among the nodes still being operational.

If the selected node determines a new replica is needed, it will send a replica-
tion request to a node currently holding a replica. If the selected node is one of
the nodes holding a replica, there is no need for a replication request, since the
node could simply replicate its own replica. One could therefore avoid having
to send a replication request if one selected a node currently holding a replica in
the selection process. However, to find out which nodes currently hold a replica,
one must query the storage used, as described in section 3.6.3.2. Whether or not
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Figure 3.6: Four interconnected nodes after nodes A, B and D have
detected the failure of node C.

a centralized database is used, or DHT as used in Calvin where our model was
implemented, this would result in every node detecting the failure querying the
storage, and this approach is not scalable. Therefore, the selected node is any of
the nodes still operational, and solely the selected node will query the storage for
the information needed to handle the failure.

3.9 Self-adapting

Adaption refers to changing the behavior as the state of the system changes. For a
distributed system, resources must be continuously monitored in order to adapt
to changing behavior [28].

To ensure a certain level of reliability, the framework must ensure that the
current state of the system is taken into account when determining the number
of replicas needed. Furthermore, the system and the running jobs must be con-
tinuously monitored. If the reliability of a running application task decreases
below the required level, more replicas must be created. On the other hand, if the
reliability increases, the number of replicas should be decreased in order not to
waste resources, as long as doing so does not result in a reliability lower than the
required one.

When monitoring the system, all parameters used in the reliability model must
be monitored. In our case, we consider only the nodes’ MTBF, the time to detect
node failures, and the time it takes to create a new replica. Therefore, all nodes’
failure times, and the time to create new replicas are registered and stored. The
time to detect failure is as mentioned in section 3.6.3.1 static.
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3.9.1 Adapting time t

Since using all registered times tR to fit the log-logistic distribution, and select-
ing the 95th percentile value as described in section 3.6.3.2, the value of tR used
in eq. (3.6) will depend on all previous registered values. Therefore, if the replica-
tion time starts increasing, e.g. during higher system load, the value used in the
reliability model will also increase, thereby adapting to changing behavior.

3.9.2 Adapting nodes’ MTBF

As described in section 3.4.5.1, only the three latest failure times for a node are
used to determine its MTBF. This allows for adapting a node’s MTBF in case it
starts failing more or less often.

However, if a node starts dying more often, the model needs three new failure
times before the MTBF has been update to correctly reflect its new behavior. This
is a clear limitation to our model. Instead, the past failure times could be used
together with some machine-learning algorithm or regression analysis, to predict
when a node is about to fail more or less often, and adapt its MTBF before it
actually happens.

3.10 Implementation

For implementing our model, we used the actor based application environment
Calvin. Below follows a brief description of the main parts of the Calvin framework,
for further info we refer to [31].

3.10.1 Calvin

Calvin is an actor-based application environment for light-weight IoT applications,
and is written in Python. It was developed by Ericsson and made open source in the
summer of 2015. While Calvin is an application environment for IoT applications,
it suites well for implementation of our model.

The main features of Calvin are the use of runtimes (containers) in which
actors (application tasks) run. Since the runtimes separate the hardware from the
software, it is possible to use Calvin on different platforms. In the developing
phase of new applications the developer does not need to consider on which
operating systems the application should run.

3.10.1.1 Storage

In Calvin there are two ways of storing data, either by the Kademlia implementa-
tion of a DHT or by the use of a proxy storage.

Using Kademlia, data is stored both locally and remotely, by distributing the
data to other nodes in the system. The data is therefore available despite one of
the storing nodes fails. One of the configurable parameters used in Kademlia is k,
representing the maximum size of a bucket-list. The value of k should be chosen
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such that the probability of k nodes failing within an hour is very low [63]. DHT
will not be further explained in this thesis, instead we refer to [63] for further
information about DHT and Kademlia especially.

When using the proxy storage, one runtime acts as a storage node, and all data
is sent to that runtime. All requests for data are also sent to the runtime acting as
proxy storage. However, the proxy storage introduces a single-point-of-failure,
since all data is lost if that runtime fails.

3.10.1.2 Actor model

An application in Calvin consist of a set of connected actors. An actor usually
represents part of a device, service or computation. Actors communicate by
sending data, called tokens, on their out-ports to other actors in-ports.

Multiple actors may send data to another actor’s in-port, and each of an actor’s
out-ports may have several receivers. For each receiver of outgoing messages, or
sender of incoming messages, there is a separate queue of tokens to process or to
send.

The runtime, see section 3.10.1.3, in which an actor is executing is responsible
for the communication between runtimes and between actors.

The state of an actor is needed when replicating an actor. In Calvin, the state
of an actor consists mainly of actor type, in-port and out-port connections, and for
each port a queue with data to process or to send, and read and write positions for
the incoming and outgoing queues. The queues are the major part of the message
size.

The actor model corresponds well to the kind of applications and tasks de-
scribed in section 3.4.3, as they perform deterministic calculations.

3.10.1.3 Runtimes

The Calvin framework use a concept of runtimes. A mesh of connected runtimes
makes up the distributed execution environment on which one can deploy an
application. A runtime is a self-managed container for application actors and
provides data transport between actors both within the same runtime and between
different runtimes.

Each runtime has a storage. If DHT is used, all the information in the storage
is first stored locally and later flushed, i.e. distributed in a multicast approach.
If a proxy storage is used, the information is also stored locally at first, but later
flushed to the proxy storage only.

In our model a runtime corresponds to a node.

3.10.1.4 Replication

The process of replicating an actor in Calvin starts with getting the state of the
actor to replicate, serializing it and sending it to the runtime in which the new
replica is to be created. The receiving runtime then de-serializes the state and uses
it to create the replica and setup its port connections.
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Part of creating the new replica is decoding the in- and out-ports’ queues,
which are part of the state. The decoding is CPU bound and affects the total
replication time, as shown in experiment 4.5.3.

3.10.2 Our contributions to Calvin

Here follows a description of the most important parts of our changes and new
features in Calvin.

3.10.2.1 Fan-in connectivity

We extended the Calvin framework to allow a fan-out/fan-in connectivity model
where actors can have multiple producers (fan-in) and multiple consumers (fan-
out). Previously, only multiple receivers were allowed, but with our changes an
actor’s in-port can receive from multiple senders.

3.10.2.2 Actor replication

Previously, the framework allowed for dynamically migrating an actor from
one runtime to another. We extended this functionality by allowing dynamic
replication of actors.

3.10.2.3 Node Resource Reporter

To share various kinds of resources between runtimes, e.g. CPU usage as used
in experiment 4.5.8, we created a resource reporter actor. When a runtime is
created, it automatically creates a resource reporting actor. The actor periodically
reports the node’s CPU usage to all connected runtimes.

3.10.2.4 Heartbeat Actor

The heartbeat system described in section 3.5.1, was implemented using actors.
Each runtime creates a heartbeat actor when it is started. The heartbeat actor
listens for heartbeats as well as periodically sends heartbeats to other runtimes.

Unlike the resource manager, heartbeat messages are sent using UDP instead
of TCP. With TCP, an initial handshake it used to setup the communication channel.
For a heartbeat system, this is unnecessary overhead.

For every heartbeat received, a timeout of ttimeout seconds is set. At timeout,
the runtime from which the heartbeat was sent is assumed dead. On the other
hand, when a heartbeat is received, all timeouts related to that runtime are can-
celed. When a timeout happens, algorithm 3 is deployed and new replicas are
created if needed to reach the required reliability, see section 3.8.
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3.10.2.5 Application monitor

Each runtime also periodically monitors the applications deployed to it, to ensure
the required reliability is fulfilled by running algorithm 1 and creating new replicas
if needed. Also the optimization algorithm, is run as part of this monitoring.
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Chapter4
Evaluation

In order to validate our model and to show some of the possibilities, we carried
out a set of experiments. The goal of the experiments was to show the three main
properties of our model. Firstly, that it dynamically ensures the required level
of reliability is met, despite the event of node failures, by dynamically creating
new replicas when old ones are lost. Secondly, that it uses the optimal number of
replicas by choosing the most reliable nodes, and also removing unnecessary ones.
Thirdly, that it adapts to changing properties of the system.

We also measured the replication request time tR to find the best fitting dis-
tribution for these values, and also the replication time tr for varying state sizes.
Finally, we measured the actual time for detecting failures to demonstrate that the
values lie between the best and worst case described in section 3.5.1.

4.1 Values used in the experiments

As described previously, heartbeats were sent every 200 ms in the experiments, and
nodes were considered dead if no heartbeat was received for 500 ms. Furthermore,
the optimization algorithm was run every 5 seconds.

As described in section 3.6, the reliability model is based on nodes’ MTBF and
the time tR. In order to determine the MTBF for a node, at least two failure times
must have been registered. Before a node has failed twice, a default value is used.
The default MTBF used in the experiments was 10 seconds.

In addition to the MTBF, a default value for tR must be used before any such
times have been registered. The default value used in the experiments was 2
seconds.

The state size of the actor replicated in the experiments was 1901 bytes.

4.2 Computational environment

In the experiments, a cluster consisting of 6 inter-connected servers with homoge-
neous hardware components was used. A laptop was also used when measuring
the replication time tr. The specification of the servers and the laptop are described
in section 4.2.2.1 and section 4.2.2.2. The various servers will be referred to as Gru,
Dave, Kevin, Mark, Jerry and Tim.

39
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As mentioned in chapter 3, the model was implemented in the IoT application
environment Calvin. In the experiments, one or two, depending on experiment,
Calvin runtimes were started on five of the six servers. These runtimes were used
to represent actual nodes, and were periodically killed and restarted to simulate
node failure. These five servers are referred to as the unstable servers.

On the sixth server, Gru, two runtimes were started which were never killed.
One of these stable runtimes was used as a proxy storage, further described
in section 4.3, and the reason for having the other stable runtime is described
in section 4.4. The proxy storage was started in every experiment and the other
stable runtime was started in every experiment expect the one where we measured
the actual time for detecting failures.

In the experiments, the runtimes are referred to as nodes, and when referring
to creating nodes with a specific MTBF, we refer to the runtimes created on the 5
unstable servers.

4.2.1 Simulating node failure

As mentioned, the servers used in the experiments had homogeneous hardware
components, but varying failure rates were simulated by killing and restarting the
runtimes with varying rates.

The process of killing and restarting is shown in algorithm 4. If a node was
to have a MTBF of 15 seconds, the time between failures followed a normal
distribution with mean 15 and standard deviation of 1.

Since the experiments only ran for less than 30 minutes, the actual MTBF for
a given node may during the duration of a experiment be either lower or higher
than the given MTBF. The reason for using values from a normal distribution with
a mean equal to the given MTBF, instead of a fixed time, was to simulate a more
realistic situation. If all runtimes would have been started at the same time, with
the same fixed time to sleep before killing them, they would all have been killed at
the same time. Furthermore, if we would have waited some time before starting
each runtime, two runtimes would perhaps never have died at the same time. By
picking values from a normal distribution, two or more runtimes may fail at the
same time during the time of the experiments.

Algorithm 4 Simulating node failures

1: while true do
2: START RUNTIME

3: ts ← N (MTBF, 1)
4: SLEEP tS

5: KILL RUNTIME

6: end while
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4.2.2 Node specification

4.2.2.1 Server specification

The servers used in the experiments all had a Intel(R) Xeon(R) CPU E5-2420 v2
of 2.20 GHz and 24 GB RAM. Furthermore, they were all connected with a 1000
Mb/s link with a latency of less than 0.2 ms. The OS installed on the servers was
Ubuntu 14.04 LTS.

4.2.2.2 Laptop specification

The laptop used in the experiment where the replication time was measured, was
a Dell Vostro v131 with a Intel i5, 2.3 GHz processor, 4 GB 1333 MHz RAM. It
was equipped with a SSD with a read speed of 540 MB/s and a write speed of
520 MB/s. Furthermore, the installed OS was the same as for the servers, Ubuntu
14.04 LTS.

4.3 Storage used

As mentioned in section 3.10.1.1, Calvin supports use of both the Kademlia imple-
mentation of DHT, and a proxy storage. The Kademlia parameter k as described
in section 3.10.1.1 should be chosen such that the probability of n nodes failing
within an hour is very low. Since we wanted to be able run an experiment within
an hour, and simulate multiple node failures during that time, all nodes would ex-
perience failure within an hour. Furthermore, Kademlia periodically re-distributes
responsibility of storing keys, as nodes leave and join the network [63]. But due to
killing and restarting runtimes as frequently as we did in the experiments, keys
were found to not being re-distributed correctly.

Therefore, we experienced the DHT to be very unstable, and not suitable for
our experiments, where nodes were frequently killed and restarted. Therefore,
the proxy storage was used in the experiments. This introduced a single-point-
of-failure, but the runtime acting as a proxy storage was never killed during the
experiments. In a more realistic setting, nodes are unlikely to fail as often as they
do in our experiments, and the use of DHT could in such a case be more suitable.

4.4 Application used in experiments

The Calvin application used in the experiments was of the simplest form, con-
sisting only of a producing actor, a service actor and a consuming actor. The
producing actor produced integer numbers and sent those to the service actor
which simply forwarded them to the consuming actor, which printed the values
to standard out.

A predefined level of reliability was required only for the service actor, and
it was therefore the only one being replicated. As neither the producing nor
the consuming actor were replicated, the whole application would have died in
case the runtime on which they were deployed died. Therefore, the consumer
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and producer were both placed on the stable runtime, mentioned in section 4.2.
The service actor however, was only deployed to the unstable runtimes, which
were periodically killed and restarted. When measuring the reliability in the
experiments, we refer to the reliability of the service actor.

The computational environment, with an application consisting of a consumer,
two service replicas, and a consumer, is shown in fig. 4.1.

Figure 4.1: The computational environment used in the experiments.
In this example, there is a producer and consumer on Gru, and
two replicas of the service actor located on Dave and Mark.

4.5 Experiments

In experiment 4.5.1 and 4.5.4 to 4.5.8 the replication request time used by the
model, tR was logged. Recall that the model calculates and uses the 95th percentile
value, see section 3.6.3.2.

4.5.1 Measurement of time tR

As mentioned in section 3.6.3, t is the time it takes from that a node on which a
replica is running dies, until a new replica is operational. It depends on the time it
takes to detect that the node died, and the time it takes to create a new replica.

The time for detecting that a node has died, td, was as described in sec-
tion 3.6.3.1 static and set to the upper bound ttimeout, which in the experiments
were 0.5 seconds. While td is static, the time for the replication request, tR, varies.
In order to model the variation correctly, an experiment was conducted where
times were registered and later used to find the best fitting distribution.

The experiment was conducted in two settings. In both settings, two runtimes
were started on each of the non-stable servers. In the first experiment, each
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runtime was given a MTBF of 30 seconds, and in the other a MTBF of 10 seconds.
Furthermore, the required reliability was in the first experiment set to 0.999999,
and 0.99995 in the second. Each time tR was then registered for the duration of the
experiment.

The experiment was conducted in two settings with varying failure rates since
with higher failure rate, there is a higher risk of the node handling the lost node
dies before it finishes, or a node dies before the replication is finished, as described
in section 3.6.3.2. With more stable nodes, i.e. higher MTBF, there is a lower risk
of this happening. Therefore, the replication times are likely to have less variation
in this case. The goal was to find the distribution, among those tested, which best
fitted the two data-sets.

Results

The first experiment ran for 230 minutes, and 2000 times were registered, and the
second experiment ran for 80 minutes, and 2000 times were registered.

The distributions tested were beta, birnbaumsaunders, exponential, extreme value,
gamma generalized pareto, inversegaussian, logistic, logalogistic, lognormal, nakagami,
normal, rayleigh, rician, tlocationscale, weibull. Matlab was used to determine which
distribution best fitted the data, and the Bayesian information criterion was used
to determine how good of a fit a distribution was.

Figure 4.2 shows the four best fitted distributions for the first experiment, with
nodes’ MTBF set to 30 seconds, and fig. 4.3 shows the four best fitted distributions
for the second experiment. The figures only show registered values less than 500
ms, for aesthetic reasons. The average values, and number of values above 100
and 500 ms in both experiments are shown in table table 4.1.

When nodes fail more often, there is a higher probability of nodes failing
before it finishes to handle a lost node request, or to replicate one of its replicas.
As described in section 3.6.3.2, this results in a higher time tR. This is why the
average is higher, and there are more times above 100 ms and 500 ms, and the 95th
percentile value, in the experiment with MTBF of 10 seconds, than the experiment
with MTBF of 30 seconds.

The log-logistic distribution was found to best fit both data-sets, and is there-
fore the one used in our model, as described in section 3.6.3.1.

MTBF average tR number of values number of values 95th percentile
above 100 ms above 500 ms

30 s 86.6 311 15 145.1
10 s 107.3 597 34 194.5

Table 4.1: Average time tR, number of times above 100 ms and
500 ms, and the 95th percentile value for MTBF 30 and 10
in experiment 4.5.1
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Figure 4.2: Result for experiment 4.5.1. The four best fitted dis-
tributions for the failure time data in the first experiment with
MTBF of nodes set to 30 seconds.

Figure 4.3: Result for experiment 4.5.1. The four best fitted distri-
butions for the failure time data in the second experiment with
MTBF of nodes set to 10 seconds.

4.5.2 Measurement of node failure detection time

As described in section 3.5, heartbeats are used to determine whether or not
another node is operational. If no heartbeat is received from a node within ttimeout
seconds, it is assumed dead.

In order to measure the time it takes to detect a failed node, an experiment
was conducted in which two runtimes were started on the same server. One of
the runtimes was periodically killed and restarted. Before killing the runtime,
the current time was logged, and on the other node, the time was logged when
the node was assumed dead, which in the experiments was 500 ms after the last
received heartbeat. The failing node was killed and restarted 1800 times.
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Results

The average of the 1800 measured times was 333.5 ms, the minimum was 302.1 ms
and the maximum value was 499.8 ms.

All values lie between the theoretical minimum and maximum values of
300 and 500 ms, corresponding to the best and worse case scenarios described
in section 3.6.3.1. The average however it is clearly below the theoretical average
of 400 ms. The standard deviation of the times registered was 28.8.

4.5.3 Measurement of replication time tr

The time it takes to replicate a task, depends on the size of the task state, which
have to be sent to the node where the new replica should be created. In Calvin,
the state of a task corresponds to the state of the actor representing the task, and
consists mainly of the queues of incoming and outgoing data for the actor’s in- and
out-ports, and any local variables the actor has, as described in section 3.10.1.2.

In the following two experiments, two runtimes were used. The application
was first deployed to one of these runtimes, and the service actor was replicated
to the other runtime and the time measured. This was repeated for various sizes
of the actor’s state. The actor had only one out-port and no in-port, and in the first
experiment the state of the actor was incrementally increased by increasing the
size of a local variable, while in the second experiment the state was increased by
increasing the size of its output queue. The state of the actor is only one part of
the total replication message. The other part is however static, and its size during
the experiment was 349 bytes.

Both experiments was conducted in two settings. In one, two servers were
used with a runtime on each of them, while in the other, a laptop was used on
which both the two runtimes were started. The specification of the servers and the
laptop are found in section 4.2.2.1 and section 4.2.2.2. For each state size, the actor
was replicated 10 times and the times measured.

While measuring the total time, tr, several other times were measured along
the way, namely the times to serialize the state, send the state to the other runtime,
de-serialize it, create and start the new actor, and send the reply, corresponding to
the times described in eq. (3.9).

When the replication was done between runtimes on the same laptop, and
the queue size increased, the times were only measured for state sizes less than or
equal to 400 MB. This was due to the replication taking too long. For a state size of
400 MB, each replication took nearly two hours, as shown below, and during the
time of the experiment the laptop could not be used, to not affect the results.

For three state sizes, 1, 50 and 100 MB, we measured the replication time 100
times and calculated the standard deviation of these values.

The goal of the experiment was to see how the replication time vary depending
on the state size, in which part of the replication process most time is spent, and
finally how the replication times varied.
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Results - total replication time

Figure 4.4 and 4.5 show how the total replication time vary depending on the
state size when replicating between runtimes on different servers, and between
runtimes on the same laptop respectively. As shown, the replication time is
exponential, and the replication time was higher when increasing the queue size
than when increasing the variable size. This is due to the extra time needed when
creating the new actor, since all values in the queue have to be decoded.

As seen in fig. 4.5, when replicating using the laptop, there is a big increase
in time when increasing the state size from 200 MB to 400 MB, by increasing the
queue. This is due to running out of memory, and the process started using the
laptop’s SWAP memory, which significantly reduced the performance.

R
ep

lic
at

io
n 

tim
e 

(m
in

)

0

5

10

15

20

25

30

35

40

State size (MB)
0 100 200 300 400 500 600 700 800 900 1000

increasing variable size increasing queue size

Figure 4.4: Result for experiment 4.5.3. The average replication
time as a function of state size, where the state size was in-
creased by increasing the size of one of the actor’s variables,
and the replication was done between two runtimes on different
servers.

Results - replication time parts

Figure 4.6 and fig. 4.7 show how much of the total replication time was spent on
the various parts of the replication process when increasing the variable size and
queue size respectively, and when replicating between the two servers. As shown,
the time to create the new replica takes a significantly larger part of the total time
when increasing the queue size rather than the variable size. This is due to the
time spent on decoding the queue’s values as described previously.

Furthermore, significantly more time was spent on transmitting the state to
the other node as the state size was increased. Hence for large state sizes, the total
replication time depends mostly on the bandwidth of the links connecting the
various nodes. For smaller state sizes, the replication time is more CPU bound,
especially when increasing the queue size.
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Figure 4.5: Result for experiment 4.5.3. The average replication
time as a function of state size, where the state size was in-
creased by increasing the size of the actor’s port queue, and the
replication was done between two runtimes on the same laptop.

Figure 4.8 and fig. 4.9 show how much of the total replication time was spent
on the various parts of the replication process, when increasing the variable size
and queue size respectively, and when the replication was done between two
runtimes on the same laptop. Again, more time is spent on creating the new actor
when increasing the queue size than when increasing the variable size.

Furthermore, the time spent on transmitting the state increases when increas-
ing the state size. However, as shown in fig. 4.9, when replicating from laptop to
laptop an actor with state size above 100 MB (when increasing the queue size),
more time was spent on creating the actor. This, as described before, is due to
running out of memory. In the experiment, this happened when the size was 200
MB or more, and when this happens, the process needs to use the laptop’s swap
memory when creating the new actor. The laptop’s 1333 MHz ram memory has a
speed of approximately 21 GB/s, which compared to the SSD speed of 540 MB/s
explains the significantly drop in performance.

Results - replication time variance

For 1, 50 and 100 MB the replication time was measured 100 times. The variance
of the replication times was very small. Table 4.2 and table 4.3 show the average
replication time (µ), the standard deviation (σ), and the relative standard deviation
(RSD), calculated as σ

µ , for these three state sizes when increasing the variable’s
size, and the size of the queue respectively. The variance was as shown very low,
except for the smaller state size when replication was done between runtimes on
the same laptop.

However, in a real setting, the replication time will vary depending on the state
of the system. When increasing the queue size, the replication time is more CPU
bound than when increasing the size of a variable, and therefore the replication
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Figure 4.6: Result for experiment 4.5.3. Time, of the total replica-
tion time, spent on the different parts of the replication, when
replicating from server to server, and increasing the size of one
of the actor’s variables.
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Figure 4.7: Result for experiment 4.5.3. Time, of the total replica-
tion time, spent on the different parts of the replication, when
replicating from server to server, and increasing the size of the
actor’s port queue.

time is dependent on the current load of the two nodes. Furthermore, for larger
state sizes when the transmission time is the largest part of the replication time,
the total time will vary depending on the network load of the system.

4.5.4 Ensuring a certain reliability level

In this experiment, two runtimes were started on each of the unstable servers.
Each runtime was given a MTBF of 20 seconds.
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Figure 4.8: Result for experiment 4.5.3. Time, of the total replica-
tion time, spent on the different parts of the replication, when
replicating from laptop to laptop, and increasing the size of one
of the actor’s variables.
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Figure 4.9: Result for experiment 4.5.3. Time, of the total replica-
tion time, spent on the different parts of the replication, when
replicating from laptop to laptop, and increasing the size of the
actor’s port queue.

After the application was started, the reliability level of the nodes on which
replicas were running was periodically measured. The required reliability was set
to 0.98.

The experiment was considered successful if the momentary reliability, when
dropped below the required, was restored to a level above the required.
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replicating from/to state size (MB) µ (s) σ (s) RSD
server/server 1 0.041 0.001 0.024
server/server 50 5.523 0.056 0.010
server/server 100 20.177 0.385 0.019
laptop/laptop 1 0.087 0.020 0.229
laptop/laptop 50 10.617 1.210 0.114
laptop/laptop 100 34.019 1.412 0.041

Table 4.2: Result for experiment 4.5.3. Average replication time
(µ), standard deviation (σ), and the relative standard devia-
tion (RSD), for state sizes 1, 50 and 100 MB, where the state
size was increased by increasing the size of one of the actor’s
variables.

replicating from/to state size (MB) µ (s) σ (s) RSD
server/server 1 0.251 0,008 0,032
server/server 50 16,547 0.256 0,015
server/server 100 42.555 0.414 0,010
laptop/laptop 1 0.348 0.043 0.124
laptop/laptop 50 19.075 0.299 0.016
laptop/laptop 100 50.893 1.066 0.021

Table 4.3: Result for experiment 4.5.3. Average replication time
(µ), standard deviation (σ), and the relative standard deviation
(RSD), for state sizes 1, 50 and 100 MB, where the state size
was increased by increasing the size of the actor’s port queue.

Results

The experiment ran for 5 minutes, and fig. 4.10 shows how the reliability vary
during this period. The average reliability for the duration of the whole experi-
ment was 0.996, clearly above the required level of 0.98. The average of the 95th
percentile values for the replication time, tR was during the experiment 83.9 ms.

As shown in fig. 4.10, the reliability was lower in the beginning of the exper-
iment. This is due to the lack of failure data for nodes, therefore assuming the
default value for the MTBF of 10 seconds. As the nodes starts failing, the system
learns their actual MTBF, which in the experiment was 20 seconds. Every drop
in reliability corresponds to a failure of one of the nodes on which a replica is
executing. The experiment shows clearly that the momentary reliability level
is restored to a level above the required level and the experiment was therefore
considered successful.
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Figure 4.10: Result for experiment 4.5.4. Reliability over time in a
system with failing nodes.

4.5.5 Optimal number of replicas

4.5.5.1 Choosing the most reliable

In this experiment, the two runtimes were started on each of the unstable servers.
The MTBF for the various runtimes varied. The mean values given to the different
nodes are presented in table 4.4.

node MTBF (s)
dave1 7.5
dave2 7.5
tim1 7.5
tim2 7.5

kevin1 15
kevin2 15
mark1 15
mark2 40
jerry1 40
jerry2 40

Table 4.4: Mean-time-between-failures for the ten unstable runtimes
in experiment 4.5.5.1.

After the application was started, the reliability level of the nodes on which
replicas were running was periodically measured. The required level of reliability
was set to 0.999.

The experiment was considered successful if, as the system learned the actual
MTBF for the nodes, the system placed the replicas on the most reliable nodes.
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Furthermore, for the experiment to be considered successful, the momentary
reliability should lie above the required, and if below it should be restored to a
level above the required.

Results

The experiment ran for 5 minutes, and fig. 4.11 shows the number of replicas over
time, while figs. 4.12 to 4.14 show the number of replicas for each of the unstable
nodes over time.

The average of the 95th percentile values for the replication time, tR was
during the experiment 99.1 ms.

As shown in the figures, the number of replicas decreased over time, from
three replicas at the start of the experiment, to later only two. This is due to the
system learning the nodes’ MTBF and thereafter placing the replicas on the more
reliable ones. This is shown in figs. 4.12 to 4.14, where the number of replicas per
node is shown. It is clear that the more reliable nodes, mark2, jerry1, and jerry2,
were chosen more often than the less reliable ones. The experiment was therefore
considered successful.

N
um

be
r o

f r
ep

lic
as

0

1

2

3

Time (s)
0 50 100 150 200 250 300

Number of replicas

Figure 4.11: Result for experiment 4.5.5.1. Total number of replicas.

4.5.5.2 Optimal replicas

In order to show that the system automatically reduces the number of replicas in
case more reliable nodes are available, we conducted an experiment in which five
runtimes were started on the unstable servers. Two of these were given a MTBF of
25 seconds, while the other three were not killed. Since these three were not killed,
they were not actually unstable, but the system used the default MTBF of 10 seconds
for these nodes. Consequently, despite not failing, the system considered them
less reliable than the two failing nodes with a MTBF of 25 seconds. The reason
for not killing those three nodes were simply in order to show that the system
automatically minimizes the number of replicas when the optimization algorithm
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Figure 4.12: Result for experiment 4.5.5.1. Number of replicas per
node, for the three nodes with a MTBF of 40 seconds.
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Figure 4.13: Result for experiment 4.5.5.1. Number of replicas per
node, for the three nodes with a MTBF of 15 seconds.

runs, not only when a node fails. The required reliability in the experiment was
set to 0.999. Finally, for aesthetic reasons, a delay of 5 seconds were used between
killing and restarting nodes kevin and jerry.

Results

The experiment ran for 5 minutes. As mentioned, the default MTBF is 10 seconds
when no failure data is known for a node. Therefore, before the reliable nodes,
kevin and jerry, had failed twice, the system used the default MTBF of 10 seconds.
After having failed twice, the system could learn their actual MTBF of 25 seconds.
This is why there is a period during which none of the reliable nodes are given
any replicas. After their second failure however, it is known that they are actually
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Figure 4.14: Result for experiment 4.5.5.1. Number of replicas per
node, for the four nodes with a MTBF of 7.5 seconds.

more reliable than the other ones, why replicas are then moved to those nodes.

The average of the 95th percentile values for the replication time, tR was
during the experiment 67.7 ms. This resulted in that as long as the two reliable
nodes were available, only two replicas were needed, but if one, or both of them
died, three replicas were needed to reach the required reliability. This is shown
in fig. 4.15, where the total number of replicas are shown.

Figures 4.16 and 4.17 shows the number of replicas per node and it seen that
the system moves replicas from the less reliable nodes to the more reliable nodes
as soon there is a more reliable node available. The experiment was therefore
considered successful.
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Figure 4.15: Result for experiment 4.5.5.2. Total number of replicas.
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Figure 4.16: Result for experiment 4.5.5.2. Number of replicas per
node, for the two nodes with a MTBF of 25 seconds.
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Figure 4.17: Result for experiment 4.5.5.2. Number of replicas per
node, for the three nodes which were not killed, and therefore
were assumed to have a MTBF of 10 seconds.

4.5.6 Self-adaptive reliability model

In this experiment, one runtime was started on each of the unstable servers. Each
runtime was given a MTBF of 25 seconds. But, instead of picking times to sleep
from a normal distribution as described in section 4.2.1, the time to sleep between
failures were calculated by eq. (4.1). This means the time between failures varied
between 5 and 45 seconds.

The required reliability was in this experiment set to 0.99999.

tsleep = ti + 20 ∗ sin (2πtelapsed/300) (4.1)

Where ti is the numbers following a normal distribution with mean 25 and
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standard deviation of 1, and telapsed is the total elapsed time for the experiment.
Given ti = 25, Appendix A.6 shows how the actual time to sleep varies over time.

The process of killing nodes therefore differed from algorithm 4. How nodes
were killed and restarted in this experiment is shown in algorithm 5.

Algorithm 5 Simulating node failures

1: tstart ← current time
2: while true do
3: START RUNTIME

4: tnow ← current time
5: telapsed ← tstart − tnow
6: ts ← N (MTBF, 1) + 20 ∗ sin (2πtelapsed/300)
7: SLEEP tS

8: KILL RUNTIME

9: end while

The experiment was considered successful if the number of replicas used
increased as the time between failures decreased for the various nodes, and if the
number of replicas decreased as the time between failures increased.

Results

The experiment ran for 30 minutes. Figure 4.18 shows how the number of replicas
varied over time, and fig. 4.19 shows how the calculated reliability for the various
nodes varied over time. Since the number of replicas decreased as the MTBF for
the various nodes increased, and the number of replicas increased as the MTBF
for the nodes decreased the experiment was considered successful.

The average of the 95th percentile values for the replication time, tR was
during the experiment 209.2 ms. The reason for the higher value of tR, compared
to experiment 4.5.4, 4.5.5.1 and 4.5.5.2 is due to that when the MTBF for the
nodes were at it lowest, approximately 5 seconds, there was a high probability of
replication request failing, recall section 3.6.3.2.

4.5.7 Energy efficient for many applications

In this experiment, two runtimes were started on each of the unstable servers. The
MTBF for the runtimes were the same as for experiment experiment 4.5.5.1, and
shown in table 4.4.

Furthermore, in this experiment five applications were started instead of only
one. The applications were identical, described in section 4.4, with a required
reliability of 0.99999.

Since the replicas are placed on the most reliable nodes, each application
will have its replicas on the same nodes, i.e. the most reliable ones. Therefore,
theoretically, the total number of nodes having a replica will be no greater than
the number of replicas for the application with the most number of replicas. The
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Figure 4.18: Result for experiment 4.5.6. Number of replicas over
time.
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Figure 4.19: Result for experiment 4.5.6. The various nodes relia-
bilities over time.

experiment was therefore considered successful if the number of nodes used at
any time were kept to a minimum.

Results

The experiment ran for 5 minutes, and fig. 4.20 shows the total number of nodes
used over time. Figure 4.21, fig. 4.22, and fig. 4.23 show the number of replicas
running at the various nodes. Since the model does not place two replicas of
the same task on the same node, the nodes had at most 5 actors, one replica per
application, at any time.

The average of the 95th percentile values for the replication time, tR was during
the experiment 263.4 ms. This resulted in that when the system had learned the
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nodes’ MTBF, only two replicas per application were needed to reach the required
reliability, while three replicas were needed when the MTBF was unknown and
the default value of 10 seconds was used. As shown in the figure, the number of
nodes used varied between two to three most of the time, until after about two
minutes, after which only two nodes were needed. Despite having 10 nodes, at
most four were used to at any time. The experiment was therefore considered
successfully.
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Figure 4.20: Result for experiment 4.5.7. Number of nodes used.
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Figure 4.21: Result for experiment 4.5.7. Number of actors per
node, for the three nodes with a MTBF of 40 seconds.

4.5.8 Considering nodes’ load

Lastly, to show that the reliability model and selection of nodes to place replicas on
are replaceable with more sophisticated algorithms, we conducted an experiment
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Figure 4.22: Result for experiment 4.5.7. Number of actors per
node, for the three nodes with a MTBF of 15 seconds.
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Figure 4.23: Result for experiment 4.5.7. Number of actors per
node, for the three nodes with a MTBF of 7.5 seconds.

where the system avoids placing replicas on nodes with a CPU usage above 15
percent.

In this experiment, one runtime was started on each of the unstable servers.
Three of the runtimes, Tim, Mark, and Jerry, had a MTBF of 10 seconds, and two,
Dave and Kevin, had a MTBF of 40 seconds. Furthermore, the load on Kevin was
increased after a while by starting dummy jobs simply to consume CPU resources,
and was later decreased again. The required reliability in this experiment was set
to 0.999.

The experiment was considered successful if, despite being one of the more
reliable nodes, the system avoided to place replicas on Kevin, during the time its
load was above the threshold of 15 percent.
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Results

The experiment ran for 5 minutes. Figure 4.24 shows the CPU usage for the various
nodes. Figure 4.25 and fig. 4.26 show the number of replicas for Kevin and the
other nodes during the experiment.

The average of the 95th percentile values for the replication time, tR was
during the experiment 47.9 ms.

Figure 4.25 shows that no replica was placed on Kevin during the time its load
exceeded the threshold of 15 percent and the experiment was therefore considered
successful.

This experiment also shows that our model is general and key components
such as calculating the reliability of a node as well as sorting the available nodes
may be replaced.
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Figure 4.24: CPU usages in percent for the nodes used in experi-
ment 4.5.8.
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Figure 4.25: Result for experiment 4.5.8. The number of replicas
over time for node Kevin.

N
um

be
r o

f r
ep

lic
as

0

1

2

3

4

Time (s)
0 50 100 150 200 250 300

dave tim mark jerry

Figure 4.26: Result for experiment 4.5.8. The number of replicas
per node for Tim, Mark, Jerry, and Dave.
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Chapter5
Discussion

The reliability model used in this thesis has several limitations. Firstly, it requires
a node to have failed at least twice before knowing its MTBF, otherwise a default
value is used. In case the default value is higher than the actual, it results in the
calculated reliability of a node, using eq. (3.4), is higher than the actual, before
the node has failed twice. Secondly, even though dynamically adapting a node’s
MTBF by using only the three latest failure times, it takes two new failures before
the calculated MTBF correctly reflects the node’s new behavior. Until then, the
calculated MTBF will be higher, and thereby the calculated reliability will also be
higher than the actual.

Since periodically monitoring the reliability, some regression analysis would
be beneficial to try predict the reliability of nodes. This would also be beneficial
if the system load varies in a periodic way, for instance with higher load during
daytime and lower load during night. Since failures are more likely to occur when
the system load is high, predicting system load would allow for taking preventive
actions, e.g. creating new replicas.

Moreover, if a node fails frequently in the beginning of its lifetime, and then
stabilizes, its MTBF will still be based on the registered failure times, resulting in
it having a low calculated MTBF. Therefore, one could argue that the time since
the last registered failure should be considered in the reliability model for a node.

Despite our reliability model having these limitations, algorithm 1 is designed
to use the reliability model in a plugin fashion, namely by calling function 2. This
allows for easily replacing the reliability model without changing the algorithm
itself. Furthermore, determining on which node to place a new replica also in-
volves an external function call. In our case, the most reliable node is selected,
since the available nodes are sorted after reliability, see function 1. This function
could also be replaced without changing the scheduling algorithm. One could
for example exclude nodes where the load is above a given threshold, as shown
in experiment 4.5.8.

Our model ensures that the reliability is higher than the required as long as we
do not experience a node failure. After a node failure and before the system has
recovered, by creating new replicas, the reliability is lower than the required. Our
model does therefore not guarantee that the average reliability is higher than the
required, it depends mainly on the relationship between the MTBF and the time
it takes to replicate a task, but also on how much above and below the required
reliability the momentary reliability is.
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Furthermore, to recover from a failure, the failures must be detectable. This is
achieved using the heartbeat system described in section 3.5.1. If the application
consists of several tasks being replicated, as shown in Appendix A.1, the heartbeat
system will no longer be necessary. Assume we have two tasks A and B, with
replicas A1, A2 and B1, B2, where A1 and A2 both send their results to B1 and
B2. Such a situation would allow to use a fault model which in addition to node
failures also consider task and link failures. A task failure is detected if both
replicas of B stop receiving results from A1 or A2. Furthermore, link failures are
detected if for instance B1 receives result from both A1 and A2 while B2 only
receives results from A1. The link between A2 and B2 is then likely to have failed.
This is however based on the assumption that the task A periodically sends results
to B.

Moreover, the assumption of a fully reliable network with redundant paths
is unlikely to reflect the real characteristics of distributed systems. In case of a
link failure in a real setting, some nodes may not receive heartbeats from a node,
while others will. The nodes not receiving heartbeats will then falsely assume the
node has died. Such a situation may result in new replicas being created, perhaps
more than necessary, and thereby putting an unnecessarily high demand on the
system in terms of resource usage. Although, since the optimization algorithm in
run periodically, the unnecessary replicas will eventually be removed.

We further assume that tasks always will produce the correct result. Since the
receiving task will receive a result of each replica, some consensus algorithm such
as majority voting or k-modular redundancy could be implemented at the receiver
side. One could thereby adapt the broader Byzantine fault model instead of the
fail-stop model. By doing so, the reliability model could also be updated from the
probability of producing a result, to also consider the probability of producing the
correct result.

With the primary objective being to ensure a certain level of reliability, and
doing so using active replication, we require much more resources, which puts
an extra burden on the system. The extra load on the system may affect tasks’
execution times, thus decreasing tasks’ performances. However, using active
replication instead of checkpointing or rollback recovery, the extra time needed
in case of failure is avoided, and in such cases the execution time may instead
be improved by using replication. Furthermore, since we minimize the number
of replicas used for each application, by placing replicas on the most reliable
nodes, we consequently use the minimum number of nodes overall, as shown
in experiment 4.5.7. Our model is therefore energy efficient, although the nodes
not used are not shut down, nor put in idle mode.

In our experiments we replicated only one of the tasks in the used application.
When handling a lost node, algorithm 1 must be run for every task which had
a replica on the lost node. In a more realistic setting, there will likely be several
different task replicas on the lost node. One must therefore decide in which order
the tasks should be handled and new replicas created if needed. One possible
solution is to prioritize all tasks, and start replicating the task with highest priority.
However, the time t used in the reliability model is defined as the time it takes from
that a failure occur until a new replica is operational. Therefore, when handling
a lost node and start measuring the time, all tasks on the lost node will have the
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same start time. This will result in that the task with the lowest priority will have
the largest time t, since it will be handled last. Since this affects the reliability,
the task with the lowest priority will thereby require the most number of repli-
cas. Consequently, the task with lowest priority will require the most resources.
However, in experiment 4.5.7 we had five applications, and consequently five
tasks being replicated from the same node in case of node failures. This explains
why the average replication time, mentioned in experiment 4.5.7 is higher than in
most of the other experiments. In the experiment we simply replicated the tasks
in random order.

As mentioned, the reliability is dependent on the replication time, which
depends on the state of the task to replicate. The Calvin framework is only
designed for light-weight IoT applications, thus not for applications where the
actor state is several megabytes, and not optimized for replicating actors of such
sizes. Despite this, our experiments show that it takes less than 40 minutes to
replicate an actor with a state of 1 gigabyte between two servers in the same cluster.
Assuming a MTBF of one year (31536000 s), and a time t of 1 hour (3600 s) for
detecting and replicating, having only two replicas gives using eq. (3.4) a reliability
of

RT(3600) = 1−
2

∏
k=1

Fk(3600)

= 1−
2

∏
k=1

(1− R(3600))

= 1− (1− e3600/31536000)2

= 0.9999999863

This means despite having a large time t, a high reliability can be achieved by
only having two replicas.
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Chapter6
Future Work

To the best of our knowledge, our model is the first of its kind, due to its fully
dynamic behavior. Furthermore, the implementation provides a means to carry
out experiments. Thereby, there are many possibilities for future work.

Our model could be extended by considering more types of failures such as
link failures, task failures, but also tasks not producing the correct result. In the
latter case, some consensus algorithm could be implemented in order to hamper
the risk of using incorrect results. Link failures could for instance be detected if the
node responsible for handling the node failure awaits request from several nodes
before running algorithm 1. If a node receives only a single lost node message, it is
likely that the node is still alive but the link between the node and the sender of
the lost node message has failed.

The process of selecting where to place new replicas could be extended to
consider whether or not the selected node has capacity for the new replica. The
application author could, using some metric, define the resources needed for a task
replica, and the system administrator assign each node a metric of their capacities.
These metrics could then be used to determine whether or not the available nodes
have the required capacity for a replica.

Furthermore, as mentioned in chapter 5, our model is energy efficient as it will
use the minimum number of nodes. However, this is based on the assumption
that nodes always have enough capacity for the replicas placed on them. If the
available capacity of nodes and the required capacity needed by the tasks are taken
into account, the task placement decision is turned into a bin-packing problem for
optimizing the number of nodes needed. By further extending the system with
functionality for dynamically shutting down/starting nodes, unused nodes could
be shut down to save energy and money.

Besides from considering additional types of failures and the capacity of nodes,
our model would benefit greatly from applying statistical regression analysis on
both nodes’ failure behavior and system load, but also the times tR. By predicting
when the nodes are about to get overloaded, or the reliability of nodes are about to
decrease, one could take preventative measures, e.g. move replicas to other nodes.

Our model is yet to be evaluated on highly unreliable system during extreme
load. In such a case, due to the unreliability of the system, the number of replicas
needed to ensure the required reliability level will increase. This will further
increase the system load, thereby decreasing the reliability of the system even
further, which may turn into a vicious circle.
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Furthermore, since the replication time as mentioned depends on the number
of other tasks being handled before, the reliability is affected by the number of
other tasks running on the same node. This should either be considered in the
reliability model, or the handling of failures must be changed. Instead of selecting
a single node responsible for handling the failures, one node could be selected for
each replica lost. The time t would thereby no longer be dependent on how many
other tasks were running on the lost node.

If a single node is used to handle all lost replicas, one must consider in which
order they are handled. One way would be to replicate the actors with the biggest
states first in order to achieve a uniform distribution of the replication times, or
to handle the highest priority tasks first as described in chapter 5. We leave the
investigation of which algorithm that is optimal to future work.

Furthermore, our model does not guarantee that the average of the actual
reliability is above the required, it only aims at keeping the momentary reliability
higher than the required. This allows for the user specifying various reliability
requirements. One such requirement could be that the time the system is in a
vulnerable state should not exceed some threshold. Keeping the average reliability
above a required level could be achieved by calculating the current average based
on the quote between MTBF and tr, replication time. In the simplest case, when all
nodes have the same MTBF this could be achieved by using eq. (6.1).

(MTBF/n− tR)

(MTBF/n)
· Rn +

tR

(MTBF/n)
· Rn−1 (6.1)

Our model is also to be tested using geographically distributed clusters. If such
a case, one must take into account that the replication time will be higher when
replicating to a node in another cluster than within the same cluster. Furthermore,
whether or not the heartbeat system and handling of lost nodes should be done
globally or only locally within a cluster is yet to be investigated.

Finally, assuming statistically independent failures, the reliability of a node
depends only on the time t, and the node’s MTBF. However, since failures are
likely to not be statistically independent, they should be taken into account in the
reliability model. For example, if the switch of a rack fails, all nodes in that rack
are unavailable. Therefore, the reliability of when having two replicas placed on
two nodes in the same rack, is likely less than the reliability of two replicas placed
on nodes in different racks.



Chapter7
Conclusions

The goal of this thesis was first to devise a method for dynamically ensuring a
predefined required level of reliability for distributed applications or services.
This was accomplished by first designing reliability model based on nodes’ mean-
time-between-failures, and secondly a framework which automatically detects node
failures and ensures the predefined reliability is met.

Reliability is increased by replication of tasks, and the required reliability is
ensured by creating enough replicas. In order to optimize the number of replicas
over time, the system is periodically monitored in order to dynamically adapt to
resources’ changing behavior.

Finally, the goal was also to provide a platform to be used to further exper-
iments, and was accomplished by implementing our model using Calvin. Both
the reliability model used and the task placement function are replaceable, which
gives rise to various experimental opportunities.
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AppendixA
Figures

This Appendix consist of various figures.

• Appendix A.1 shows an extended application model with two replicated
services.

• Appendix A.2 and Appendix A.3 shows the computational environment
of four nodes and one service between a producer and a consumer before
and after a node failure. The required reliability is 0.995 and for a certain
replication time and failure rate, the reliability of the nodes are given under
their name.

• Appendix A.4 shows the communication flow after a node failure.

• Appendix A.5 the measure replication times for state sizes less than 100 MB.

• Appendix A.6 shows the function from which the sleep-times in experi-
ment 4.5.6 where picked from.

• Appendix A.7 and Appendix A.8 shows the worst and best case scenario
for detecting a node failure.
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Figure A.1: The data flow when two tasks, T1 and T2 with different
required reliability are replicated.

Figure A.2: Before a node failure. Here two replicas (placed on
Node A and C) are required to achieve required reliability.

Figure A.3: After Node C has failed. Now three replicas (placed on
Node A, B and D) are required to achieve required reliability.
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Figure A.4: The most important parts of the communication after
a node has failed.
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Figure A.5: The average replication time as a function of state size.
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Figure A.6: Time between failures as of eq. (4.1) used in experi-
ment 4.5.6.
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Figure A.7: Best case scenario for detecting a node failure. Node
A fails just before sending a heartbeat. The actual detection
time, td is therefore close to ttimeout − th.

Figure A.8: Worst case scenario for detecting a node failure. Node
A fails directly after sending a heartbeat. The actual detection
time, td is therefore close to ttimeout.
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