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Abstract

Antennas can be found everywhere in our everyday life. One of the applications
for them are space satellites, which can be used for communication, positioning
and weather supervision. A satellite carries several components on its body, such
as solar panels and cameras, therefore there is a volume restriction for the antenna
to fit. This requirement gives rise to restrictions in the far-field for the radiation
pattern.

The objective was to implement a calculation-tool by MATLAB, where theo-
retical surface currents on a structure could be calculated for a required far-field
for a specified antenna outline. A genetic algorithm optimization generated fea-
sible solutions and the MATLAB-tool evaluated the cost for it by comparing a
far-field mask with the far-field given by the feasible solution.

The analysis was performed for two structures, a cylinder and a circular disc.
Solutions were found when the dimensions of the structures were large, but the
cost increased when the structures diminished. The solutions that were found were
theoretical and not feasible in practice. A suggestion for excluding unphysical so-
lutions is presented with a contribution to the cost function.
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Antenna pattern synthesis, body of revolution, far-field restrictions, genetic algo-
rithm
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Chapter 1
Introduction

We have access to communication, position information and updated weather de-
tails wherever we go. We are connected all the time with our gadgets such as mo-
bile phones, game consoles and activity bracelets, almost all of them are wireless
one way or the other. Information is sent between the units with electromagnetic
waves that are radiated from, or received by, antennas.

Electromagnetic waves are formed when an electric field couples with a per-
pendicular magnetic field. The fields propagate with the speed of light and are
produced by the acceleration of electric charges. The science of electromagnetics
was founded in 1873 by James Clerk Maxwell [1] and is best known by Maxwell’s
equations, which describe how electric and magnetic fields are generated and al-
tered by each other and by charges and currents.

By varying the current in an aperture an electromagnetic wave arises. The
aperture that radiates, or receives, electromagnetic waves is called an antenna.
The first wireless communication was demonstrated by Heinrich Rudolph Hertz in
1886 and consisted of a λ/2 dipole with a wavelength λ of 4m [2,3].

The modern antenna technology was not developed until World War II when
new elements such as waveguides, horns and reflectors were developed [4]. In the
second half of the 1900s, computer technology made it possible to analyse complex
antenna systems in an accurate way. Today, commercial programs generate an
initial design that can be manufactured as a working prototype. The challenge
now is to design antennas within a certain volume and a specific radiation pattern.
These requirements give rise to restrictions in the far-field.

In theory, any far-field can be generated from any volume without a volume
restriction, a phenomenon known as “super directivity” [5]. In practice though,
this is not realistic since this gives rise to currents that are substantially different
for adjacent frequencies. Thus, there are limitations for the far-field for antennas
that have a bandwidth.

One example of antennas with such limitations are space satellites, which
can be used for communication, positioning, weather and geophysical supervision.
These antennas face harsh space conditions and cannot be retrieved for mainte-
nance or repair. Thus, the design needs to be reliable. Satellites must carry more
than antennas on their body (i.e. solar panels and cameras), therefore there is a
volume restriction for the antenna to fit. At the same time the footprint must be
correct in order to cover the appropriate area [6].
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2 Introduction

6mm

75mm
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Figure 1.1: The desired footprint from a satellite antenna, the θ-
angle in the polar plot is the angle from the cylinder axis. Is
it possible to generate a far-field within the white area from an
antenna within the cylindrical volume?

1.1 Background

Usually an antenna system is designed in order to yield specific radiation char-
acteristics. This could be null in certain directions or a wide bandwidth. In this
thesis the desired radiation pattern for an elongated cylinder shaped antenna is
illustrated in Fig. 1.1. The satellite antenna covers the whole earth and has higher
directivity in the outskirts on the covered area. The higher directivity will cover
up for the longer distance to the poles.

The radiation characteristics for simple antennas such as dipoles, loops and
helix antennas are known. More complex antenna systems that include several
elements need antenna pattern synthesis, which is a method to design an antenna
in order to obtain a certain radiation pattern [7]. There are different methods
which can be used depending on the desired characteristics of the radiation pat-
tern. Antenna pattern synthesis usually require two steps. First, a choice of an
analytical model that represents the pattern approximately is needed. Secondly,
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the analytical model needs to be matched to the physical antenna model [7, Ch.7].

Some common methods for three different categories of radiation character-
istics are listed below. Schelkunoff polynomial method [8] is used for radiation
patterns that prescribe nulls in specific directions. The required information for
this method is the number of nulls and the location of them, the derived data are
the number of elements for the array together with the coefficients. If the desired
radiation pattern exhibits a specific distribution in the entire region a beam shap-
ing method could be used, two of them are the Fourier transform method [9] and
the Woodward-Lawson method [10] [11]. A third category of radiation character-
istics are narrow beams with low side-lobes. Antennas with these characteristics
could be handled by binomial methods [12] or Dolph-Tschebyscheff method [13].

Several commercial programs exist for calculations of the far-field for a given
geometry and given sources. Why not just use one of these to solve the problem? In
commercial programs both the structure and the boundary conditions are defined.
In contrast, this case handles only the volume restriction, which makes the solution
to the problem non-unique since only the amplitude of the far-field is defined and
not the phase. By developing a code, the field solution does not need to be unique.
On the other hand, several solutions can exist and the challenge is to find a solution
that is physically feasible.

The antenna performance can be illustrated using the upper physical bounds
for the directivity Q-factor quotient, D/Q. The directivity is the power density in
the direction of the strongest emission compared with an ideal isotropic radiator
with the same total power. The Q-factor, or quality factor, characterizes the res-
onator bandwidth relative to the resonator frequency and describes the damping
of it. The upper bounds show the effect of changing the shape and size of the
antenna geometry. Gustafsson et al [14] showed that optimal current distributions
and upper bounds for D/Q can be determined for small antennas of arbitrary
shape. "Small antennas" have a ka < 1 for the wavenumber k and radius a. The
authors determined the analytical expression for D/Q by using the expressions for
the current density and the stored energy. For small antennas the optimization
problem was solved analytically and the closed form solution expressed the bounds
in the polarizability of the antenna structure. For arbitrary size antennas the prob-
lem was solved numerically using Lagrange parameters in a method of moments
formulation. A fairly large antenna with high directivity was used to generate
physical bounds for the directivity Q-factor quotient. Inspired by Gustafsson et
al [14], this thesis aims to find optimal currents on antennas for a predefined vol-
ume and far-field. However, the procedure will be different and proceeds from a
magnetic vector potential formulation.

In order to find the optimal currents on the antenna a optimization method
can be used. Gustafsson et al. [15] showed that the amplitude and the phase of
a far-field generated by an antenna can be found by convex optimization. In this
thesis a genetic optimization algorithm will be used since it is provided by the host
company.
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1.2 Aim

The aim is to create a calculation-tool which generates the surface currents on
a predefined antenna structure for a specified far-field. As mentioned above, the
problem is not unique which means that an infinite number of surface current
solutions exist, so one challenge is to find the solutions which are physically possible
to produce. From physically possible surface currents it is sometimes possible to
determine what kind of antenna is suitable. So, a calculation tool could indicate
if a theoretical solution exist for the specified volume and the required far-field or
not. This could simplify the preliminary stage in the antenna design by giving a
direction for the antenna type.

This aim is too broad for this thesis and the objective here is to create a
calculation tool in MATLAB where the outline of the antenna and the required
far-field can be specified. The program will calculate the far-field for given input
parameters, which will be generated by a genetic algorithm optimization [16].
After several iterations the algorithm will find an optimal solution for the given
far-field. Then, the theoretical surface currents on the volume will be calculated
according to the optimal input parameters.

1.3 Outline

In Ch. 2 the thesis explains the theory, definitions and parameters in order to
understand how the far-field is calculated for the specified volume. This chapter
is essential in order to understand strengths and weaknesses in the assumptions
for the developed MATLAB-tool. Ch. 3 continues with a brief theory for the
optimization algorithm that is used in this investigation. The implementation of
the code is explained in Ch. 4 followed by the verification of it in Ch 5. The results
are presented in Ch. 6 and show the effect of different geometries and restrictions
on the far-field. A discussion about the results and their physical feasibility is
done in Ch. 7, followed by improvements and suggestions for further work in Ch
8.



Chapter 2
Radiation from a body of revolution

It is common that antennas are rotational symmetric. In this thesis, the volume of
the antenna is assumed to be enclosed in a body of revolution (BOR) consisting of
cylinders of different dimensions. The BOR is separated into segments according
to Fig. 2.1 and the surface can be separated into different regions that represent
a lateral area or a base area. The BOR geometry is described in Sec. 2.1. The
radiation field from an antenna depends on the surface currents on the body which
encloses it, as stated in the equivalence principle in Sec. 2.2. Sec. 2.3 treats the
physical equivalent used for calculations of the radiated field for a source close to
an infinite ground plane. In Sec. 2.3 the magnetic vector potential is used as a tool
in order to find an expression for the electric field, and a far-field approximation
is done in Sec. 2.4. The surface currents from Sec. 2.2 are treated in Sec. 2.5.
Expressions for the radiated fields from the lateral and base area are stated in Sec.
2.6 and finally, the antenna performance is expressed as directivity in Sec. 2.7.

2.1 Bodies of revolution

The structures that are analysed in this thesis are rotationally symmetric and are
usually called bodies of revolution (BOR) [17, Ch.6]. The BOR can represent
spheres, ellipsoids and finite cylinders among others. Combinations of the latter
are of interest in this work, illustrated in Fig. 2.1. This section gives the basis

Figure 2.1: Illustration of the BOR that encapsulates the antenna.
It is separated into segments and the current densities, Jρ, Jφ,
Jz are expressed in cylindrical coordinates.

5



6 Radiation from a body of revolution

Figure 2.2: Schematically description of the nodes along the t-
vector. The segments are formed by a sweep around the z-axis.
The structure is the same as the one in Fig. 2.1.

to the construction of the volume structure and presents adequate coordinate
systems for representation of source and far-field. Further details about BORs are
described by Gibson [17, Ch.6] and vector transformations for coordinate systems
are for instance explained by Balanis [18, Ch.II].

The volume structure is defined by nodes that have a ρ- and z-value. A
piecewise linear curve with the unit length vector t̂ forms a connection between
the nodes and generates a closed surface. The nodes divide the body into N
segments where each segment forms a circle parallel to the azimuthal vector φ̂.
The node placement is shown in Fig. 2.2, where a segment is formed by the area of
a sweep between two nodes. The segments parallel to the z-axis are called lateral
segments while the ones parallel to the ρ-direction are called base segments. A
point on the surface may be represented by cylindrical coordinates (ρ, φ, z), by
its length variable along the curve and the azimuthal angle (t, φ) or in Cartesian
coordinates r = ρ cosφx̂+ ρ sinφŷ + zẑ, r = |r|.

Cylindrical coordinates are adequate for describing a BOR consisting of cylin-
drical segments. The differential displacement is related to the cylindrical coordi-
nates by (2.1).

dr = ρ̂dρ+ φ̂ρdφ+ ẑdz (2.1)

Even though cylindrical coordinates are adequate for the structure it is preferable
to represent the electric far-field in spherical coordinates since an antenna radi-
ate spherical waves. Fig. 2.3 shows a cylinder structure in different coordinate
systems. Throughout the report, source coordinates located on the cylinder are
designated as primed (ρ′, φ′, z′) and the observation coordinates located in the
far-field as unprimed (r, θ, φ).

2.2 Surface equivalence theorem

The surface equivalence theorem states that the field generated inside a volume
can be replaced by electric and magnetic surface currents on the boundary of
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Figure 2.3: Cartesian(x,y,z), cylindrical (ρ, φ, z) and spherical (r,
θ, φ) coordinates for a cylindrical structure.

the volume. This is for example described by Balanis [18, Ch. 7]. The surface
equivalence principle makes it possible to look at the surface currents on a structure
instead of the actual sources inside it. This will be used in order to define a
magnetic vector potential in Sec. 2.4.

Let the real sources J1 and M1 be replaced by equivalent sources within a
certain region V1. The actual fields H1 and E1 outside the imaginary surface
S are obtained by suitable electric and magnetic surface currents Js and M s,
respectively. The actual and equivalent cases are schematically shown in Fig. 2.4.

The equivalent source generates the same field outside V1 as the real source
but has a different one inside. The boundary conditions for time-harmonic elec-
tromagnetic fields must be fulfilled for the tangential electromagnetic components
on S. The surface currents for an equivalent aperture are given by (2.2) and (2.3)
for the normal vector n̂.

JS = n̂× (H1 −H) (2.2)
MS = −n̂× (E1 −E) (2.3)

The fields E and H are not in the region of interest and they may adapt any
values. For simplicity, they are assumed to be zero. This form of the surface
equivalence theorem is known as Love’s equivalence principle. The case may be
simplified if the surface coincides with the boundary of a conducting body. Then,
the electrical field component vanishes on the surface. In this thesis only electrical
sources are considered.
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Figure 2.4: The actual sources J1 and M1 generate the fields E1

and H1 everywhere. The currents Js and M s are said to be
equivalent only outside V1 since the will produce the same field
only outside this volume.

2.3 Electric field

The electric field is of interest in order to calculate the intensity of the far-field.
One way to express the electric field is presented in (2.4) for the electric potential
φe, magnetic vector potential A and angular frequency ω [18, Ch. 6].

E = −jωA−∇φe (2.4)

By adopting Lorenz gauge condition (2.5) for the divergence of the magnetic vector
potential, the Helmholtz wave equation (2.6) may be obtained. Here ε is the
permittivity, µ is the permeability and k is the the wave number, k = ω

√
µε.

∇ ·A = −jωεµφe (Lorenz gauge condition) (2.5)
∇2A+ k2A = −µJ (Helmholtz wave equation) (2.6)

The solution to Helmholtz’s wave equation (2.6) gives the magnetic vector poten-
tial, (2.7). For a more detailed description see [18, Ch. 6].

A(r) =
µ

4π

∫∫
S

JS(r′)
e−jk|r−r

′|

|r − r′|
dS(r′) (2.7)

The magnetic vector potential depends on the observation and the source point,
r and r′, respectively, which is illustrated in Fig. 2.5. The surface S encloses the
linear current densities which are nonzero and dS′ is an infinitesimal section on
the surface.

Since antennas of finite size radiate spherical waves, the scattered electrical
field is often represented in spherical coordinates. In this case, the radiation body is
of cylindrical shape and therefore it is advantageous to use cylindrical coordinates
for representing the surface, while the radiated field is in spherical coordinates.

The magnetic vector potential is separated into spherical directions. The r
variations are separable from those of θ and φ and the amplitude dependence is
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Figure 2.5: The current density J at the source point r′ gives a
magnetic vector potential A at the observation point r

the same for all directions in this coordinate system, 1/rn for n = 1, 2 . . . For the
far- field, higher order terms are neglected and the magnetic vector potential takes
the form of (2.8) [18, Ch. 6]. Note that A and Ar, Aθ, Aφ have different units
due to the trailing far field factor e−jkr/r in (2.8).

A =
[
r̂Ar(θ, φ) + θ̂Aθ(θ, φ) + φ̂Aφ(θ, φ)

]e−jkr
r

r →∞ (2.8)

The electric field in (2.4) is expressed with the magnetic vector potential and the
electric scalar potential. By utilising Lorenz gauge condition (2.5) an expression
for the electric field only dependent on the magnetic vector potential is obtained
as (2.9).

E = −jωA− j 1

ωµε
∇(∇ ·A) (2.9)

Substituting (2.8) into (2.9) reduces it to (2.10). It can be seen that the first
and second term of (2.10) in the radial direction cancel out. Once again higher
order terms of 1/rn are neglected for the far-field which results in (2.11). The
assumption that higher order terms of 1/rn are neglected means that the term for
the magnetic vector potential in r-direction is negligible compared to the ones in
θ- and φ-direction [18, Ch. 6].

E =
1

r

(
− jωe−jkr

[
r̂Ar(0) + θ̂Aθ(θ, φ) + φ̂Aφ(θ, φ)

])
+

1

r2

(
...
)
+ ... (2.10)

Er = 0

Eθ = −jωAθ e
−jkr

r

Eφ = −jωAφ e
−jkr

r

Eθ,φ = −jωAθ,φ
e−jkr

r
(2.11)
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Figure 2.6: Illustration of near- and far-field geometry

2.4 Far-field

The near- and far-field geometry is show in Fig 2.6. The far-field approximation
assumes that the field point r is very far from the current source r′. Hence, in the
far zone |r| � |r′| and |kr| � 1 |kr| � 1, see [7, Ch. 5]. It can be seen that the
distance between the observation and source point is approximated by r whereas
the phase between them is approximated by r − r̂ · r′, (2.12) - (2.14).

|r − r′| ' r − r̂ · r′ (2.12)
r̂ · r′ = (ρ′ cosφ′x̂+ ρ′ sinφ′ŷ + z′ẑ)

·(sin θ cosφx̂+ sin θ sinφŷ + cos θẑ)

= ρ′ sin θ cos(φ− φ′) + z′ cos θ (2.13)

e−jk|r−r
′|

|r − r′|
→ e−jkr

r
ejkr

′·r̂ (2.14)

Hence, a general expression for the electric far-field (2.15) is derived by inserting
the magnetic vector potential (2.7) into the electric field (2.11) and adapt the
approximation from (2.14). Only the current surface components perpendicular
to r̂ are considered, JSt .

E(r) = − jωµ

4π

e−jkr

r

∫∫
S

JSt (r
′)ejkr

′·r̂dS(r′) (2.15)

2.5 Surface current

The surface current is preferably expressed in cylindrical coordinates since the
structure is of cylindrical shape. The radiating waves in turn are of spherical
shape. Therefore the surface current is expressed in cylindrical coordinates while
the coordinate directions are spherical.
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The surface current is described by (2.16) for Cartesian coordinates. The
current components Jx, Jy, Jz can be written in spherical coordinates as (2.17) -
(2.19) and unit vectors x̂, ŷ, ẑ in spherical coordinates are given by (2.20) - (2.22).

JS = x̂Jx + ŷJy + ẑJz (2.16)

Jx = Jρ cosφ− Jφ sinφ (2.17)
Jy = Jρ sinφ+ Jφ cosφ (2.18)
Jz = Jz (2.19)

x̂ = r̂ sin θ cosφ+ θ̂ cos θ cosφ− φ̂ sinφ (2.20)

ŷ = r̂ sin θ sinφ+ θ̂ cos θ sinφ+ φ̂ cosφ (2.21)

ẑ = r̂ cos θ − θ̂ sin θ (2.22)

Rewriting of (2.16) with (2.17) - (2.22) gives the surface current in spherical co-
ordinates. For a better survey the surface current is separated it into ρ-, θ- and
φ-directions in (2.23) - (2.25). Inserting JSθ and JSφ into (2.15) gives the Eθ and
Eφ, respectively [18].

JSr = Jρ sin θ cos(φ− φ′) + Jφ sin θ sin(φ− φ′) + Jz cos θ (2.23)
JSθ = Jρ cos θ cos(φ− φ′) + Jφ cos θ sin(φ− φ′)− Jz sin θ (2.24)
JSφ = −Jρ sin(φ− φ′) + Jφ cos(φ− φ′) (2.25)

Jρ, Jφ and Jz are the currents in corresponding coordinate directions. The trigono-
metrical functions cos(mφ) and sin(mφ) will be able to generate any solution for
the these currents. Different angles are allowed in the source and observation
systems (φ′ and φ) and z′ is fixed. Hence, an ansatz for the surface currents is
assumed as (2.26) - (2.28) for complex constants Bm and Dm for mode number
m.

Jρ =

M∑
m=0

Bρm cos(mφ′) +Dρ
m sin(mφ′) 0 for lateral surface (2.26)

Jφ =

M∑
m=0

Bφm cos(mφ′) +Dφ
m sin(mφ′) (2.27)

Jz =

M∑
m=0

Bzm cos(mφ′) +Dz
m sin(mφ′) 0 for base surface (2.28)

2.6 Radiated field

As mentioned before, the BOR is separated into two different kinds of surfaces,
the lateral and the base area. The radiated electric fields are specified separately
for those parts.
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2.6.1 Lateral surface

For the lateral surface the current flows in φ- and z-direction, i.e. Jρ = 0, moreover
ρ′ adopts the value of the radius. In this way the electric field becomes (2.29) and
(2.30) for the constant K = − jωµ

π
e−jkr

r . The currents Jφ and Jz are specified in
(2.27) and (2.28), respectively.

Elatθ = K

∫∫
(Jφ cos θ sin(φ− φ′)− Jz sin θ)ejkr

′·r̂ρ′dφ′dz′ (2.29)

Elatφ = K

∫∫
Jφ cos(φ− φ′)ejkr

′·r̂ρ′dφ′dz′ (2.30)

2.6.2 Base surface

For the base area the current flows in ρ- and φ-direction, i.e. Jz = 0. In this way
the electric field become (2.31) and (2.32) for the constant K = − jωµ

π
e−jkr

r . The
currents Jρ and Jφ are specified in (2.26) and (2.27), respectively.

Ebaseθ = K

∫∫
(Jρ cos θ cos(φ− φ′) + Jφ cos θ sin(φ− φ′))

ejkr
′·r̂ρ′dρ′dφ′ (2.31)

Ebaseφ = K

∫∫
(−Jρ sin(φ− φ′) + Jφ cos(φ− φ′))

ejkr
′·r̂ρ′dρ′dφ′ (2.32)

2.7 Radiation intensity

When discussing antenna performance, one usually discusses gain in decibel (dB)
units. These antenna definitions are defined by the Antenna Standards Committee
[19] and are treated by Balanis [20, Ch.1]. A brief summary of the most important
parameters regarding intensity measurements is presented.

The radiation intensity is the angular distribution of the radiated power around
the antenna. In a given direction it is defined as the power radiating from the
antenna per steradian. A steradian is the measure of the solid angle. A solid angle
of one steradian, on its part, constitutes the angle which gives an area of r2 on the
surface for a sphere of radius r, see Fig 2.7. The radiation intensity for the far-field
is approximated as (2.33), where η is the intrinsic impedance of the medium. The
total radiated power is given by (2.34).

U(θ, φ) = lim
r→∞

r2

2η
|E(r, θ, φ)|2 (2.33)

Prad =

∫ 2π

0

∫ π

0

U(θ, φ) sin θdθdφ (2.34)

The directivity is the radiation intensity normalized by the average intensity. This
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Figure 2.7: Illustration of a steradian.

means that it is a measure of how“directional” the antenna is. The directivity is
given by (2.35).

D =
4πU

Prad
(2.35)

When the directivity is expressed in dB-scale it can be done relative to different
reference levels. (2.35) correspond to an isotropic radiation reference level, which
is expressed as dBi.

Polarization describes how the electric field is composed and propagates. If
the electric field oscillates in one single direction it is said to be linearly polarized.
If the electric field has two perpendicular components that are not in phase it is
said to be elliptically polarized. The special case when the magnitude of both the
perpendicular components are equal and out of phase with a phase shift of 90◦
is called circular polarized. Any other case would be called an elliptically polar-
ized wave, and could be either right hand polarized or left hand polarized. The
electric field in (2.33) could have different polarizations. The linearly(lin), right
hand circular (RHC) and left hand circular (LHC) polarized cases for spherical
coordinates are shown in (2.36)-(2.38) [21].

|Elin(θ, φ)|2 = |Eθ|2 + |Eφ|2 (2.36)

|ERHC(θ, φ)|2 =
1

2
|Eθ + jEφ|2 (2.37)

|ELHC(θ, φ)|2 =
1

2
|Eθ − jEφ|2 (2.38)

An antenna is never 100% polarized in one single mode. Therefore radiation
patterns for two different polarizations are of interest: the co-polarized radiation
pattern and the cross polarized radiation pattern. The co-polarized electric field
is the polarization of interest and the cross-polarization is orthogonal to that one.
For example, if an antenna will radiate a RHC electric field this is the co-polarized
component, while the LHC electric field is the cross polarized component.
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Chapter 3
Optimization

Optimization is a systematic decision making process where the goal is to find
the best solution among many feasible solutions that are available. The evolution
process in nature reveals that it follows optimization. For example, hares living in
the north get a white winter coat whereas hares in the south do not. Inspired by the
evolution process evolution optimization algorithms have been developed [22], [23].
Simple algorithms for solving optimization problems can start at an initial single
point in the search space. Through a sequence of computational steps, the optimal
solution can be found through the gradient. This kind of optimization has a risk
of finding a local minimum instead of the global one. In order to avoid this, a
population approach is used for the genetic algorithm [16].

3.1 Genetic algorithm

The genetic algorithm is one of the most widely known evolutionary algorithms
used today. The evolutionary algorithms imitate the reproduction of living beings,
which have a natural evolutionary process, and presents a stochastic optimization
technique. The interest in this optimization technique started in the 1960s and
has increased since then. The genetic algorithm is described by Gen et al [16].

The Genetic Algorithm starts with a population. A population consists of a
random set of solutions, also called chromosomes, which have genes, a string of
values. They satisfy the boundary and system constraints to the optimization
problem. The population experiences a simulated evolution where the chromo-
somes evolve through iterations, also called generations. New chromosomes, called
offsprings, are created by two chromosomes from the current version becoming a
hybrid, so called "crossover", or by changing the value of one or several genes, so
called "mutation". The new generation is created by selection from the present
version and the offsprings. The selection is performed according to a fitness value,
which is evaluated after each generation; fitter chromosomes have a higher proba-
bility of being selected. The ones that are not selected are rejected. In this way,
the algorithms converge to a better chromosome. A flow-chart for the genetic
algorithm is illustrated in Fig. 3.1.

The genetic algorithm combines directed and stochastic search in order to
explore the search space and exploit the best solution. At the beginning of each
optimization the population is diverged. In the first generations the offsprings

15
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Figure 3.1: Flow-chart for the genetic algorithm.

exploit all solution space, and when the solution converges the offsprings exploit
the neighborhood of each chromosome.

Usually three major advantages are highlighted in connection to the genetic
algorithm; the adaptability, the robustness and the flexibility. The algorithm is
adaptable to any kind of objective functions as well as any kind of constraints.
In general the optimization method is more efficient and more robust in locat-
ing optimal solutions and reducing computational effort than methods utilising
the gradient. Finally, the implementation is efficient due to the flexibility of the
hybridization of the domain-dependent heuristics.

3.2 RUAG implementation of genetic algorithms

RUAG has an in house implemented genetic algorithm which was used in this
thesis work. It is a MATLAB script that works generally and combines simplex
and randomly predicted search. In order to run the software a cost function needs
to be defined by the user and written in a specific subroutine which return a cost
value. This thesis intends to provide this cost function.

An input data file includes all information for the optimization conditions, such
as population size, number of unknowns and parameter range for them, conver-
gence criteria and percentage of old population which will be replaced by offspring.
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The optimization can be performed with two ways. The first one has one set of
optimizations and a population size of 30 times the number of unknowns. The
convergence criteria is set to a predefined number of iterations without improve-
ment or a certain parameter spread. The second one has automatic restarts of the
set of optimizations, where the allowed parameter range is refreshed according to
the until now best optimization. With automatic restarts the population size can
be smaller, five times the number of unknown. The convergence criteria is set to
a maximum number of iterations.



18 Optimization



Chapter 4
Implementation

The code was implemented with MATLAB which is a multi-paradigm numer-
ical computing environment [24]. Except for the optimization algorithm, the
MATLAB-tool was developed from scratch with the theory from Ch. 2. The
code was separated into two different parts. The first part defined parameters and
calculated basis functions, whereas the second part was connected to the optimiza-
tion algorithm for cost evaluation.

The first part was run before the main program in order to set constants,
structure, current basis functions and mask. With this information it calculated
the radiated field from the magnetic vector potential basis functions that were
used in the second part for the field calculations. Regarding the structure, the
nodes build up segments and were defined in cylindrical coordinates (ρ, z). The
mask, current basis functions and magnetic potential basis functions are explained
in greater detail in Sec. 4.1 - 4.3.

The second part of the developed code was connected to the optimization
algorithm explained in Sec. 3.1. The adaptation of the optimization algorithm is
described in Sec. 4.4. The MATLAB-tool calculated the electric field and thereby
the intensity distribution. The cost evaluation is explained in 4.5 and the values
were returned to the optimization algorithm. Finally, the surface currents were
calculated for a three dimensional structure in Sec. 4.6.

4.1 Mask definition

A mask defines the allowed directivity for different elevation angles for the radiated
far-field. A mask was constructed in order to be used for the optimization. Max-
imum and minimum directivity for the output intensity were defined for certain
elevation angles in θ-direction. These angles were used for the cost-calculations
(see Sec. 4.5), thus the cost accuracy was determined by the distance between the
defined angles. Fig. 4.1 and Tab 4.1 show an example of the minimum and maxi-
mum values for different angles. The masks for the co- and the cross- polarization
were defined separately and are displayed in the same graph.
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Figure 4.1: Example of a mask, allowed range for the co-polarized
field is within the white zone while the allowed one for the cross-
polarized field is below -15dBi. The values correspond to Tab.
4.1.

Table 4.1: Example of mask construction with minimum and max-
imum directivity for different angles, the values correspond to
Fig. 4.1.

Elevation angle [deg] 0 5 10 · · · 60 62 · · · 180
Min directivity [dBi] -5.6 -5.6 -5.5 · · · 5.8 5.8 · · · -inf
Max directivity [dBi] 7.0 7.0 7.0 · · · 10.0 10.0 · · · -15
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4.2 Current basis functions

The currents for the cylindrical directions are given by (2.26) - (2.28) and are
repeated here for convenience (4.1) - (4.3).

Jρ =

M∑
m=0

Bρm cos(mφ′) +Dρ
m sin(mφ′) 0 for lateral surface (4.1)

Jφ =

M∑
m=0

Bφm cos(mφ′) +Dφ
m sin(mφ′) (4.2)

Jz =

M∑
m=0

Bzm cos(mφ′) +Dz
m sin(mφ′) 0 for base surface (4.3)

The currents were assumed to be sums of several modes of the trigonometrical
cosine and sine functions. A higher mode gives more oscillations of the current
per wavelength and in practice it is not possible to have too many. Therefore, the
number of modes could change for the ρ- φ- and z-directions, dependent on the
dimension of the structure. The current basis functions were saved as strings in a
cell array; this is illustrated in Tab. 4.2.

Table 4.2: The current basis functions were saved as strings in one
cell array for each direction, Jρ, Jφ and Jz, respectively.

mode cos(mφ′) sin(mφ′)

0 ’1’ ’0’
1 ’cos(φ′)’ ’sin(φ′)’
2 ’cos(2 · φ′)’ ’sin(2 · φ′)’
. . . . . . . . .

4.3 Magnetic vector potential basis functions

Each unknown variable, Bm and Dm in (4.1) - (4.3) received two magnetic vec-
tor potential basis functions, one for the θ- and one for the φ-direction. This is
illustrated in Tab. 4.3. The current basis functions were repeated for all three di-
rections since they were different for each of them. This means that each segment
could have six unknown parameters and a magnetic vector potential in θ-direction
with six contributing terms and in φ-direction four contributing terms.

If the magnetic vector potential in (2.7) is written with the far-field approxi-
mation from (2.14), it takes the form of (4.4).

A(r) =
µ

4π

∫∫
S

JS(r′)
e−jkr

r
ejkr

′·r̂dS(r′) (4.4)
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Table 4.3: Surface current JS(r′).

unknown variable current basis function surface current, JSθ , J
S
φ

Bρ
θm cos(mφ′)

cos θ cos(φ− φ′)
Dρ
θm sin(mφ′)

Bρ
φm cos(mφ′)

(−1) sin(φ− φ′)
Dρ
φm sin(mφ′)

Bφ
θm cos(mφ′)

cos θ sin(φ− φ′)
Dφ
θm sin(mφ′)

Bφ
φm cos(mφ′)

cos(φ− φ′)
Dφ
φm sin(mφ′)

Bz
θm cos(mφ′)

(−1) sin θ
Dz
θm sin(mφ′)

Bz
φm cos(mφ′) 0

Dz
φm sin(mφ′)

The different terms of the magnetic vector potential (4.4) inside the integral were
written as strings and combined with an inline function. The three different parts
that compose the inline function were:

• The cosine or sine term for mode m from Tab. 4.3.

• The surface current JSθ or JSφ from Tab. 4.3.

• ejkr̂·r′

e−jkr

r from the expression in (4.4) was excluded since it is the same for all elements
and acts only as a magnification term.

Two magnetic vector potential matrices, one for the θ- and one for the φ-
direction, with one basis function for each unknown, were created by going through
the current basis functions described in Sec. 4.2. For each segment there was a
loop over all the modes for all current directions. If the current basis function
was set to zero, no magnetic vector potential basis function was received. This is
illustrated in the flow-chart in Fig. 4.2 and Fig. 4.3. A magnetic vector potential
basis function matrix Aθ is shown in (4.5) and one row vector with the basis
functions in (4.6). The first superscript stands for the direction of the assigned
current, i.e. ρ, φ or z. The second superscript indicates the segment number. The
first subscript indicates if it is the cosine (B) or sine (D) term. Finally, the second
subscript specifies the mode number.

Aθ =


Aθ1

Aθ2

Aθ3

· · ·

 (4.5)
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Figure 4.2: Flow-chart for the main part of the program for the
magnetic vector potential basis functions, which are generated
as two matricesAρ andAθ. The magnetic vector potential cal-
culation is shown in Fig. 4.3. The loaded files for this function
are the variables, constants, structure, current basis functions
and the mask.
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Figure 4.3: Flow-chart for the magnetic vector potential A, which is
given by the integral 4.4. The loaded data for this calculations
are the constants, structure and the mask.

Aθ1 = [ Aρ1B0 Aρ1D0 Aρ1B1 Aρ1D1 Aφ1B0 Aφ1D0 · · · Aρ2B0 Aρ2D0 · · · ]
(4.6)

Each row in the Aθ- matrix was calculated for a specific θ, decided by the mask in
Sec. 4.1. As can be seen in (4.4), the magnetic vector potential is an integral over
the surface, it is calculated by the inbuilt MATLAB function integral2. In order
to decide if it was the lateral area or the base area which should be integrated, the
program checked if the two node points in the ρ-direction for the structure were
equal or not. If they were, it was a lateral segment and otherwise it was a base
segment.

4.4 Adaptation of optimization algorithm

The optimization algorithm generated solution proposals which were sent to the
MATLAB tool which returned the cost for the given solutions. In turn the opti-
mization program generated new proposed solutions. This was repeated as several
iterations where the next generation depended on the previous one. The number
of iterations were decided by the convergence criteria, which were chosen in the
optimization program as:

• a maximum number of iterations

• a maximum parameter spread or a chosen number of iterations without
improvement

When the convergence criteria were reached, new limits were calculated for the
maximum and minimum values and the process started over again. The process
is illustrated as a flow-chart in Fig 4.4.
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Figure 4.4: Flow-chart for the adaption of the optimization algo-
rithm to the MATLAB-tool.

4.5 Cost evaluation

It is the cost that determines how good a population is and if it is better or worse
than the previous ones.

The cost was evaluated in the points for the defined evaluation angles in the
mask. If the directivity for one angle was within the mask, i.e. within the white
area, the cost was set to zero. For a directivity above or below the mask a cost
of the absolute value for the difference was achieved, see Fig. 4.5. The cost
was calculated as the sum of the differences between the mask and the generated
radiation pattern in dB scale, if it is outside the allowed range. The cost function
is presented in (4.7) where p is the number of angles in θ-direction. The first
sum represent the cost for the directivity for the right hand circular polarization
and the second sum represent the cost the directivity for the left hand circular
polarization.

cost =

Nθ∑
p=1


maskRHC

min (p) < RHC(p) < maskRHC
max (p), cost(p) = 0

RHC(p) < maskRHC
min (p), cost(p) = maskRHC

min (p)− RHC(p)

maskRHC
max (p) < RHC(p), cost(p) = RHC(p)−maskRHC

max (p)

+

Nθ∑
p=1


maskLHC

min (p) < LHC(p) < maskLHC
max (p), cost(p) = 0

LHC(p) < maskLHC
min (p), cost(p) = maskLHC

min (p)− LHC(p)

maskLHC
max (p) < LHC(p), cost(p) = LHC(p)−maskLHC

max (p)

(4.7)

The generated radiation pattern was calculated by multiplying the suggested so-
lution from the optimization program B, D in Tab. 4.3 with the electric field from
(2.15); this gave (4.8). K is a vector containing the proposed solutions for the
unknown variables B, D. The directivity was then calculated in accordance with
Sec. 2.7.

Eθ,φ = −jωKAθ,φ (4.8)
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cost = 5

cost = 10cost = 2

cost = 2

Figure 4.5: The cost is calculated as the sum of the differences
between the radiated pattern and the mask. The cost within
the mask, white area, is zero.

4.6 Surface currents

The optimization algorithm generated coefficients for the basis functions for the
magnetic vector potential. In order to find the surface currents the coefficient was
multiplied with its proper current Ansatz given in Tab. 4.2. This was performed
for all segments and a number of angles in the φ-direction in order to show a three
dimensional current distribution. The code for the looping through the segments
and currents is illustrated in Fig. 4.6, and has the same structure as the one for
the magnetic vector potential basis functions. Compare the flow-charts to see the
similarities.
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Figure 4.6: Flow-chart for surface current calculation, loaded data
are the variables, structure, current basis function and the sug-
gested solution coefficients K.
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Chapter 5
Verification

The MATLAB-tool needed to be verified with known data in order to check that it
delivered correct results. This was essential in order to assure that the generated
results were trustworthy. A verification determines if the program is correctly
implemented. The verification was performed by comparing the output data with
known results for a dipole and a circular loop. The validation data are taken from
Balanis [7] and Werner [25].

5.1 Dipole

A dipole is a thin cylinder where the currents in ρ- and φ-directions can be ap-
proximated as zero, since the wavelength of the radiated field is much larger than
the diameter and circumference. The verification data assumes zero radius and a
center-fed dipole where the current vanishes at the endpoints. This current dis-
tribution is expressed as (5.1) for the current I0, wavenumber k, and length l. A
graphical illustration can be seen in Fig 5.1.

I(ρ′, φ′, z′) =

ẑI0 sin
[
k
(
l
2 − z

′
)]
, 0 ≤ z′ ≤ l/2

ẑI0 sin
[
k
(
l
2 + z′

)]
, −l/2 ≤ z′ ≤ 0

(5.1)

The radiation pattern depends on the length of the dipole. For a small dipole
the radiation pattern is broad and donut shaped. When the length of the dipole
increases the beam becomes more narrow, and when the length of it is beyond one
wavelength the number of lobes increase. The radiation intensity for a thin dipole
is given by (5.2) for the intrinsic impedance η. The radiation pattern is shown in
Fig. 5.2 for a dipole with length λ/2, λ, and 3λ/2, respectively [7, Ch.4].

U = η
|I0|2

8π2

[
cos
(
kl
2 cos θ

)
− cos

(
kl
2

)
sin θ

]2
(5.2)

A cylinder with radius of 10−8λ is created in the program and is separated into 35
segments. A sinusoidal current in accordance with (5.1) is sampled in the middle
of each segment. The normalized radiation patterns for a dipole of length λ/2, λ,
and 3λ/2, respectively, are shown in Fig. 5.2. A visual comparison between the
generated one and the reference shows small deviations for low directivities.

29



30 Verification

Figure 5.1: Sinusoidal current distribution on a center-fed dipole
of three different lengths: l = λ/2, λ, and 3λ/2. The current
direction changes between positive and negative.

Figure 5.2: The radiated far-field pattern normalized to the maxi-
mum amplitude for the dipole constellations in Fig. 5.1.
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(a) Constant current distribution,
I(φ) = I0.

(b) Cosinusoidal current distribution,
I(φ) = I0 cos(1 · φ).

Figure 5.3: Examples of current distribution for the loop.

5.2 Circular loop

A loop antenna can take the form of many configurations, one of them is investi-
gated here and it is the circular loop. Small loops, with a circumference smaller
than 0.2λ is often assumed to have a constant current while loops with a cir-
cumference larger than that usually assume cosinusoidal current distributions. A
constant current through the loop gives a donut shaped far-field with a maximum
in the plane of the loop, θ = 90◦, and zero along the z-axis, θ = 0◦, when the radius
is small compared to the wavelength. When the radius increases the field intensity
in the plane of the loop diminishes and forms a null for the radius 0.61λ [7, Ch.5].
Beyond this radius the pattern attains a multilobe form. The radiation intensity
for a general loop is given by (5.3) for the Bessel function J , radius a, angular
frequency ω and permeability µ [7, Ch.5].

U =
(aωµ)2|I0|2

8η
J2
1 (ka sin θ) (5.3)

A loop with a thickness of 10−4λ is created with three different radii: a = 0.1λ,
0.5λ and 0.61λ. The current is assumed to be constant in φ-direction and zero
for the ρ- and z-directions and is illustrated in Fig. 5.3a. The generated far-
field patterns can be seen in Fig. 5.4. The far-field patterns agree very well with
the expected behaviour. A general far-field approximation for thin circular loop
antennas is given by Werner [25] and is presented in (5.4) - (5.6). The radiation
intensity for the far-field is given by (2.33).
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Figure 5.4: The radiated far-field pattern normalized to the max-
imum amplitude for a constant current in the φ-direction for
three different radii: a = 0.1λ, 0.5λ and 0.61λ.

Er ≈ 0 (5.4)

Eθ ≈ −η cot θ
2

e−jkr

r

∞∑
m=0

m(j)mIm sin(mφ)Jm(ka sin θ) (5.5)

Eφ ≈ −ηka
2

e−jkr

r

∞∑
m=0

(j)mIm cos(mφ) · 1
2

(
Jm−1(ka sin θ)− Jm+1(ka sin θ)

)
(5.6)

A loop of the same thickness as above, 10−4λ, is created with a radius of 0.5λ.
The current was assumed to have a cosinusoidal distribution defined by I(φ) =
Im cos(mφ), whereas it was assumed to be zero for the ρ- and z-directions. A
cosinusoidal current distribution is illustrated in Fig. 5.3b. The generated far-
field patterns can be seen in Fig. 5.4. The far-field patterns agree well with
the expected behaviour, but there are small deviations for the second mode low
values. This is probably due to the limited accuracy of the numerically computed
integrals.
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Figure 5.5: The radiated far-field pattern normalized to the max-
imum amplitude for a cosine distributed current in the φ-
direction for for a radius of 0.5λ.
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Chapter 6
Results

The radiation pattern and phase behaviour are analysed for a cylinder structure
and disc structure, respectively. The optimization conditions are the same for all
the simulations and are stated in Sec. 6.1. The cylinder structure was analysed for
three different heights and two different degrees of freedom, the result is presented
in Sec 6.2. Finally, a circular disc structure was analysed for three different radii
in Sec. 6.3.

6.1 Optimization condition

All simulations with the MATLAB-tool were performed for the same optimization
conditions for the Genetic Algorithm provided by RUAG. The convergence cri-
terium was chosen as a maximum of 25 iterations. The number of optimizations,
i.e. the number of how many times the convergence criterium was satisfied, were
set to nine and number of restarts with new parameter limits were three. 20%
of the old population was replaced with a new one for each generation and the
parameter interval for the offsprings were 200% larger than the one for the old pop-
ulation. Furthermore, the population size was set to five times the chromosome
size, i.e. the number of unknowns. The optimization conditions are summarized
in Tab. 6.1.

6.2 Cylinder

The cylinder geometry had a radius of 3mm and was simulated for three different
heights: 25m, 50mm and 100mm. The radiation frequency was set to 8.2GHz.
The mask had a range from 0◦ to 180◦ with a maximum for the co-polarization
between 40◦ and 70◦ and the cross-polarization mask allowed values below -15dBi.
The current basis functions were chosen according to (6.1) - (6.3) where complex
values for the coefficients B and D were found by optimization for each segment.

Jρ = 0 (6.1)

Jφ = Bφ0 · 1 +Bφ1 cos(φ′) +Dφ
1 sin(φ′) (6.2)

Jz = Bz0 · 1 +Bz1 cos(φ
′) (6.3)
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Table 6.1: Following optimization conditions were chosen for the
genetic algorithm.

Chromosome size Number of unknowns, (30-270)
Population size 5 · chromosome size
Convergence criterium Maximum number of iterations,

25
Percentage of old population replaced
by new 20
Percent larger parameter interval
for offsprings compared to old
population 200
Number of optimizations 9
Number of restarts 3

The structure of the cylinder that was used is shown in Fig. 6.1 for a height of
100mm. Two different values for the number of degrees of freedom were used for
each height of the cylinder and arose because of two different choices of the number
of segments.

The cost represents how far away the generated far-field is from the mask.
Tab. 6.2 shows the cost for the different heights and degrees of freedom for the
cylinder.

Table 6.2: Cost for cylinder structure. Note that the analysis for
the height 100mm and 5 segments/ λ is performed three times,
the others once.

Height [mm] 10 segments/λ 5 segments/λ Number of unknowns
100 0.00 0.00, 0.00, 0.00 270, 140
50 2.06 2.56 140, 70
25 6.40 8.64 70, 30

In order to investigate the repeatability the same structure, with a height of
100mm, was simulated three times for the same conditions. The received cost
was the same for the three simulations but the radiation patterns were slightly
different, this is illustrated in Fig. 6.2.

The difference in radiation patterns for the different heights are shown in Fig
6.3 and Fig 6.4 for 10 segments/λ and 5 segments/λ, respectively.

The difference between 10 and 5 segments per wavelength for each height is
illustrated in Fig. 6.5 - Fig. 6.7

Observation of the time-harmonic currents, J (ρ, φ, z; t) = Re[J(ρ, φ, z)ejωt],
showed that the current direction rotated with time for all of the structures and
constellations. This is illustrated for the structure of 100mm and 5 segments per
wavelength in Fig. 6.8.
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Figure 6.1: Cylinder structure separated into segments, displayed
from the side with an extension in z-direction. It has a height
of 100mm for 10 and 5 segments per radiating wavelength.

Figure 6.2: Same simulation repeated three times for the cylinder
structure with height 100mm. The simulations were performed
for 5 segments per radiated wavelength.
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Figure 6.3: Radiation pattern for a cylinder with 10 segments/λ.

Figure 6.4: Radiation pattern for a cylinder with 5 segments/λ.
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Figure 6.5: Radiation pattern for a cylinder with height 100mm.

Figure 6.6: Radiation pattern for a cylinder with height 50mm.
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Figure 6.7: Radiation pattern for a cylinder with height 25mm.
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Figure 6.8: Current distribution for a cylinder with height 100mm.
The phase goes between 0 and 180◦ with a phase step of 30◦.
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Figure 6.9: Disc structure with a radius of 200mm for 5 segments
per radiating wavelength, the disc is placed in the x-y-plane.

6.3 Circular disc

The circular disc geometry lay in the x-y-plane where z = 0. The disc was inves-
tigated for three different radii: 200mm, 100mm and 50mm. The radiation fre-
quency was set to 4GHz. The mask had a range from 0◦ to 90◦ with a maximum of
17dBi for the co-polarization between 0◦ and 8.9◦ and the cross-polarization mask
allowed values below -15dBi. The current basis functions were chosen according
to (6.4) - (6.6) where a complex value for the coefficients B and D were found by
optimization for each segment.

Jρ = Bρ0 · 1 +Bρ1 cos(φ
′) +Dρ

1 sin(φ
′) (6.4)

Jφ = Bφ0 · 1 +Bφ1 cos(φ′) +Dφ
1 sin(φ′) (6.5)

Jz = 0 (6.6)

The structure of the disc that was used is shown in Fig. 6.9 for a radius of 200mm.
As before the cost represents how far away the generated far-field is from the

mask. Tab. 6.3 shows the cost for the different radii and the radiation pattern is
shown in Fig. 6.10. The phase is illustrated in Fig. 6.11 for a phase between 0
and 180◦.

Table 6.3: Cost for disc structure.

Radius [mm] 5 segments/λ number of unknowns
200 0.00 156
100 1.82 84
50 6.00 36
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Figure 6.10: Radiation pattern for a disc with radii 50mm, 100mm
and 200mm for 5 segments per wavelength. θ only goes to 90◦

since a ground plane is assumed.
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Chapter 7
Discussion

This chapter discusses the conditions, the code implementation and the results
in order to explain results and shed light upon the strengths and weaknesses of
the project. The discussion follows the order of the thesis report and starts with
the optimisation method in Sec. 7.1, followed by implementation in Sec. 7.2 and
verification in Sec. 7.3. The discussion around the result chapter is separated into
three parts: method in Sec 7.4 including the optimization conditions and choice of
current basis functions, the radiation pattern in Sec. 7.5 and the phase behaviour
in Sec. 7.6.

7.1 Optimization method

The genetic algorithm was considered as a suitable optimization method for the
investigation of theoretical surface currents. The main reason to this, is the combi-
nation of directed and stochastic search that explores the search space and exploits
the best solution. This method minimizes the probability to find a local minimum
instead of a global one. The stochastich search could also be a drawback, the prac-
tical feasible currents are not rewarded. However, in this stage of the investigation
the goal has only been to find one solution of several possible.

The choice of optimization parameters depends on the optimization problem
and could therefore be different for different problems. A more complex problem
could require more iterations, a bigger population, more number of optimizations
and more restarts. All of these elements increase the calculation time. There were
two different ways of defining the convergence criterium:

• a maximum number of iterations

• a maximum parameter spread or a chosen number of iterations without
improvement

For the first criterium it is possible to predict how long time the optimization will
take. For the second one it is more difficult to know that, since it is not possible
to affect the parameter spread or improvement of an optimization. The strength
of the second criteria is that it is possible to iterate until the parameters are close
to a solution, which means that the parameter spread is low and the searched
value does not change that much. For the first criteria, the optimization could
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be interrupt even though it is possible that a solution could be found with more
iterations.

The optimization code that was used in this investigation used a predict-
function. This function tries to predict a solution in order to the problem to
converge faster. This failed all the time and showed warnings in MATLAB ex-
plaining that the program could not adapt a curve to the data. This could be
interpreted as a discontinuity in the parameter range that is investigated.

7.2 Implementation

The way to separate the code into two different parts are time efficient. In this way
no basis functions need to be calculated twice. Probably, there are more parts of
the code that could be calculated in the first part in order to save time. Some parts
of the program could have been written in a more time efficient way, especially
the parts including the double integrals and inline-function. The inline-function
is slow and combines strings and forms a function of them. For newer versions
of MATLAB this function is replaced by another one which could be more time
efficient. However, the time consuming inline-function and double integral does
not matter that much since they are calculated in the first part of the program,
that only needs to be evaluated once per structure.

7.3 Verification

The verification was performed by comparing the result with two examples. Even
though the far-fields generated by the developed MATLAB-tool agreed well with
the theoretical ones, a relevant question is if it is enough? A third verification was
performed for cosinusoidal currents in φ-direction. On the other hand the third
example had no radiation patterns to compare with, only formulas for the electric
field. It would have been of interest to compare with a cylinder with a non-zero
diameter, in order to complete the different cases for the study. Regarding the
verifications that were done, the results appear to be trustworthy.

7.4 Method

The first convergence criteria that were terminated by a maximum number of
iterations was chosen for the investigations in this thesis. The reason was that in
this way it was possible to have control over the time for the optimization, which
was not possible otherwise. However, probably the cost would have been better
for the smaller structures if the convergence had been decided by the parameter
spread. Sometimes it was still large when it finished.

The modes of interest for the analysis were assigned in the current basis func-
tions. The more modes that were used, the more time consuming the calculations
were. More over, more modes leads to more oscillations for the current. On the
other hand the probability to find a solution is larger. In this thesis only the
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zeroth and first mode are used on account of time and that more oscillations are
not practically feasible.

7.5 Radiation pattern

For the same conditions several different radiation patterns within the mask could
be obtained. This is illustrated in Fig. 6.2. This was expected since the problem
does not have a unique solution. The optimization algorithm acts randomly and
therefore different solutions are expected for restarts with the same conditions.

The tendency for a cylinder decreasing in length is the same for five and
ten segments per wavelength; it is more and more difficult for the optimization
algorithm to find a solution for the given criteria. This does not mean that no
solution exist. Another convergence criterion or more iterations could give a zero
cost for the smaller cylinders. One should keep in mind that there is a lower limit
of how small the structure could be in order to generate a certain footprint, this
is shown by Gustafsson et al [14] mentioned in Sec. 1.1.

Another tendency that could be noted is that the cost for the smaller cylin-
ders is slightly higher when fewer segments are used. This behaviour is expected
since there are more degrees of freedom when the structure is separated into more
segments. One thing one should keep in mind is to not have too many segments.
This could lead to super directivity, since the currents allows to change too fast
between the segments. This needs to be investigated in greater detail.

7.6 Phase behaviour

The current vectors rotate and change direction over time. If one thinks of a helix
antenna consisting of a metal wire, where the current can have only one direction,
this would mean that the metal wire change its structure over the time. The same
behaviour is noted for the disc. This behaviour is non-physical and not feasible
for the antennas we have today. Hence, this kind of solutions should be excluded.
One idea of how this could be performed is with an extra cost for rotating currents.
This is presented in Ch. 8.
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Chapter 8
Further Work

The surface current vectors that were found for the structures in Ch. 6 rotate
as functions of time. This is classified as an unphysical behaviour, and therefore
these solutions need to be rejected. This section presents an idea of how this could
be performed in the cost function. The results here need to be developed further.

8.1 Time-harmonic electromagnetic fields

In many real world applications the electromagnetic waves have a cosinusoidal
time variation. These electromagnetic fields are called time-harmonic and the
time variation can be represented by ejωt. The instantaneous current field vector
J is represented in (8.1) and is a function of both the complex spatial current
density J and the time [18, Ch.1].

J (ρ, φ, z; t) = Re[J(ρ, φ, z)ejωt] (8.1)

The equation for the instantaneous current field (8.1) can be rewritten in order to
find an expression for the time independent field (8.2) - (8.5).

J (ρ, φ, z; t) =
(
Re(Jρ)Re(ejωt)− Im(Jρ)Im(ejωt)

)
ρ̂

+
(
Re(Jφ)Re(ejωt)− Im(Jφ)Im(ejωt)

)
φ̂

+
(
Re(Jz)Re(ejωt)− Im(Jz)Im(ejωt)

)
ẑ (8.2)

=
(
Re(Jρ) cos(ωt)− Im(Jρ) sin(ωt)

)
ρ

+
(
Re(Jφ) cos(ωt)− Im(Jφ) sin(ωt)

)
φ̂

+
(
Re(Jz) cos(ωt)− Im(Jz) sin(ωt)

)
ẑ (8.3)
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= Im(Jρ)

(
Re(Jρ)
Im(Jρ)

cos(ωt)− sin(ωt)

)
ρ̂

+ Im(Jφ)

(
Re(Jφ)
Im(Jφ)

cos(ωt)− sin(ωt)

)
φ̂

+ Im(Jz)

(
Re(Jz)
Im(Jz)

cos(ωt)− sin(ωt)

)
ẑ (8.4)

= Im(Jρ)

(
Re(Jρ)
Im(Jρ)

− tan(ωt)

)
cos(ωt)ρ̂

+ Im(Jφ)

(
Re(Jφ)
Im(Jφ)

− tan(ωt)

)
cos(ωt)φ̂

+ Im(Jz)

(
Re(Jz)
Im(Jz)

− tan(ωt)

)
cos(ωt)ẑ (8.5)

In order to the achieve a current streamline along one direction the instantaneous
current field must be independent of ωt. This is obtained for constant ratio between
the current in φ̂- and ẑ-direction for the lateral area and ρ̂- and φ̂-direction for
the base area. The conditions are defined in (8.6) and (8.7).

Re(Jφ)
Im(Jφ)

=
Re(Jz)
Im(Jz)

lateral area (8.6)

Re(Jρ)
Im(Jρ)

=
Re(Jφ)
Im(Jφ)

base area (8.7)

8.2 Idea

The radiated electric field has a time-harmonic variation represented by ejωt, as
described in Sec. 8.1. This section stated that the instantaneous current field
must satisfy (8.6) and (8.7) in order to achieve a current streamline alone one
direction. For the lateral area, which is investigated in this chapter, the streamline
was obtained for a constant ratio between the current in φ̂- and ẑ-direction. The
condition for the lateral area from (8.6) can be rewritten as (8.8).

Re(Jφ)Im(Jz)

Im(Jφ)Re(Jz)
= 1 lateral area (8.8)

Thus, if (8.8) is satisfied the current vector moves along a linear direction as
function of the time. Due to numerical errors it is not possible to have a condition
where the ratio will be exactly equal to one, there must be a small range of allowed
values. As an initial test the range was chosen as (8.9).

−0.5 < sgn(g1) · sgn(g2)
max(|g1|, |g2|)
min(|g1|, |g2|)

− 1 < 0.5 (8.9)

where g1 = Re(Jφ)Im(Jz) and g2 = Im(Jφ)Re(Jz). The reason to why the nu-
merator always was chosen as the maximum of g1, g2 is that the cost then will be
independent of if the numerator or the denominator is largest. The cost is zero if
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Figure 8.1: Radiation pattern for a cylinder with height 100mm and
5 segments per radiation wavelength. A cost was added for
rotation current vectors.

(8.9) is satisfied, otherwise it obtained the absolute value of the ratio. The cost
was summarized for all segments and angles and was added to the cost for the
radiation pattern.

8.3 Results and discussion

The optimization was performed for the same conditions as before, see Ch. 6.
The structure was the cylinder structure from 6.2 with a height of 100mm and
five segments per radiating wavelength. The radiation pattern can be seen in Fig.
8.1. As before (Fig. 6.2) the radiation pattern satisfied the mask, on the other
hand it still had a cost. This cost arose from the rotation of the current vectors.
The current distribution is presented in Fig. 8.2. As before the current vectors
rotated. Probably the optimization needs other conditions such as more iterations
or restarts in order to the cost to reach zero (if a solution exists).

The ratio in (8.9) is graphically illustrated in Fig. 8.3. This could be seen
as a measurement of "how much" it rotates. When an extra cost was added, the
range for the ratio was much smaller compared to the one without. Fig 8.4 only
shows the area where the condition in (8.9) is satisfied. As can be seen even the
simulation without an extra cost for rotation currents had such areas. An idea
could be to decrease the allowed range for the ratio if one thinks that the current
vectors rotate in the shadowed areas.
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(a) Extra cost (b) No extra cost

Figure 8.3: Illustration of the the rotation of the current vectors.
No rotation is obtaind for a value of 0.

(a) Extra cost (b) No extra cost

Figure 8.4: The green areas represent where the condition in (8.9)
is satisfied.
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To conclude, it seems like an extra cost for rotation of currents could be a way
forward since the spread of the values around the condition for no rotation are
much smaller. The current vectors in the shadowed areas in 8.4 seem to rotate less
than the other ones, like they should. However, in order to find a solution other
optimization conditions are needed.

As a second step the gradient of the current vectors should be included. Lim-
itations of how fast the current values can change over the structure will give a
smoother, and possibly more practically feasible current distribution. In this way
it is also possible to avoid super directivity.



Chapter 9
Conclusions

A calculation-tool has been created in MATLAB, where theoretical surface cur-
rents on a structure were calculated for a required far-field for a specified antenna
outline. A genetic algorithm optimization generated feasible solutions and the
MATLAB-tool evaluated the cost for it by comparing a far-field mask with the
far-field given by the feasible solution.

For larger structures a solution was found for the given optimization param-
eters. When the structure dimensions decreased, with maintained radiation fre-
quency, the value of the cost function rose. This does not mean that no solution
exists for these structures. It should rather be seen like the analysis should be
continued further for other optimization parameters in order to determine if a
solution exists or not. However, it is shown that there is a lower limit for the
structure size in terms of wavelength [14] that can generate a certain footprint.

This thesis started with a development of theoretical solutions. The achieved
current vectors had a rotating time-behaviour, which is not physically feasible for
an antenna with a fixed streamline. An idea of how to get rid of this unwanted
behavior is presented as an extra contribution to the cost-function for rotating
currents.

To conclude, a MATLAB-tool was created and it found theoretical solutions
for a specified antenna structure and a required far-field. However, further work
needs to be performed regarding practical solutions.
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