
Tu
rb

o
 d

eco
d

er w
ith

 early sto
p

p
in

g
 criteria

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, 2016.

Turbo decoder with early stopping
criteria

Henrik Ljunger

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2016-551 http://www.eit.lth.se

H
e

n
rik Lju

n
g

e
r

Master’s Thesis

Turbo decoder with early stopping
criteria

Henrik Ljunger
ael10hlj@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor: Joachim Rodrigues

October 9, 2016

Printed in Sweden
E-huset, Lund, 2016

Abstract

The turbo code used in the 3GPP Long Term Evolution(LTE) standard have been
chosen specifically to simplify parallel turbo decoding and thus achieving higher
throughputs. The higher data rates however leads to an increased computational
complexity and thus a higher power and energy consumption of the decoder.
This report presents a turbo decoder for the LTE standard with a stopping crite-
ria aimed to reduce the power and energy consumption of the turbo decoder. The
decoder can be configured to use 1,2 ,4 ,8 or 16 MAP decoders in parallel achiev-
ing a throughput of 110 Mb/s for 7 iterations when running at a clock frequency
of 200 MHz. The decoder were synthesised with 65 nm low power libraries with
an area of 1.6 mm2. The post-synthesis simulations shows that the stopping cri-
teria can lead to a significant lower energy consumption with no performance
loss.

i

ii

Acknowledgements

First I would like to thank Michal Stala and Muris Sarajlic for all their support
guidance and encouragement during the whole duration of this thesis. I would
also like to thank Liang Liu for his support and help with practical things. Fur-
thermore I would like to thank Magnus Midholt and the rest of the team at Mist-
base for their encouragement and for making my time at the office fun and en-
joyable. Lastly I would also like to thank my family and friends for their support
throughout this work.

iii

iv

Table of Contents

1 Introduction 1
1.1 Background . 1
1.2 Objective . 2
1.3 Methodology . 2
1.4 Structure . 2

2 System Overview 5
2.1 Error Control Coding . 6
2.2 Hard and Soft Decision . 7
2.3 Encoder . 7
2.4 Maximum A-Posteriori Algorithm . 8
2.5 Turbo Decoder . 11
2.6 Interleaving . 12
2.7 Stopping Criteria . 14
2.8 High Level Synthesis . 14

3 Hardware implementation 17
3.1 Max-log-MAP Decoder . 17
3.2 Interleaver . 21
3.3 Turbo Decoder . 23
3.4 Parallel Structure . 24
3.5 Stopping Criteria . 28

4 Results 31
4.1 Decoding Performance . 31
4.2 Area Numbers . 35
4.3 Throughput . 36
4.4 Power Simulations . 37

5 Discussion Analysis 43
5.1 Stopping criteria . 45
5.2 Conclusions . 47
5.3 Further Work . 47

v

References 49

vi

List of Figures

2.1 A simplified overview of a communication system 5
2.2 Illustrative example of Hard and Soft Decisions 7
2.3 The turbo encoder for the LTE standard[1] 8
2.4 An example of a trellis state diagram from a four state RSC encoder . 9
2.5 Architecture of the typical turbo decoder 12
2.6 Example of a memory conflict. Decoder 0 and 1 both need to read

data from memory 0 . 13
2.7 Example of a contention free situation. All decoders reads data from

different memories . 13
2.8 Model of a HLS design flow . 15

3.1 Architecture of the implemented max-log-MAP decoder with extrinsic
scaling factor of 0.75 . 18

3.2 Architecture of the branch metric unit 20
3.3 Architecture of a ACS unit of the state metric unit 21
3.4 The compare-select network finding the maximum of the eight inputs 22
3.5 Address generator block for the forward direction 22
3.6 Address generator block for the backward direction 23
3.7 Block diagram of a turbo decoder with one MAP decoder 24
3.8 The turbo decoder using N MAP decoders. 25
3.9 Block finding the minimum address out of eight inputs 26
3.10 Block finding the smallest of the two inputs 26
3.11 The master-slave interconnect network for 4 MAP decoders 27
3.12 The two input sorter used in the master network. If the lower input

is smaller than the upper the inputs are switched and the sel signal is
set to ’1’ . 27

3.13 The select block in the slave network. When the input sel signal is
high the input are switched . 28

3.14 The turbo decoder with the stopping criteria. 29
3.15 The threshold comparison unit. It compares the extrinsic LLR to the

threshold and decides the next value of the status bit 30
3.16 Block detecting if the decoding can be stopped 30

vii

4.1 BLER for the turbo decoder without any stopping criteria for different
iteration numbers for the code rate of 1

3 32
4.2 BLER for the turbo decoder without any stopping criteria for different

iteration numbers for the code rate of 1
2 33

4.3 Average percentage of needed memory accesses for different thresholds
for the code rate of 1

3 . 34
4.4 Average number of performed half iterations for different thresholds

for the code rate of 1
3 . Maximum number of half iterations are 14 . . 35

4.5 BLER for the stopping criteria turbo decoder for different thresholds.
The code rate are 1

3 . 36
4.6 Average percentage of memory accesses for the different thresholds at

low SNR and a code rate of 1
3 . 37

4.7 Average percentage of needed memory accesses for different thresholds
for the code rate of 1

2 . 38
4.8 Average number of performed half iterations for different thresholds

for the code rate of 1
2 . Maximum number of half iterations are 14 . . 39

4.9 BLER for the stopping criteria for different thresholds for the code
rate of 1

2 . 40
4.10 Average percentage of memory accesses for the different thresholds at

low SNR with a code rate of 1
2 . 40

4.11 Energy consumption of one 3072 bit code word for both implementa-
tions with the stopping threshold set to 45. 41

viii

List of Tables

4.1 Area numbers of the no stopping criteria implementation for different
configurations synthesized at 200 MHz 38

4.2 Area numbers of the stopping criteria implementation for different
configurations synthesized at 200 MHz 39

4.3 Throughput numbers for the different configurations at 200 MHz for
7 iterations using low power libraries 39

4.4 Throughput numbers for the different configurations at 400 MHz for
7 iterations using general purpose libraries 41

5.1 Comparisons to implementations in previous work 44

ix

x

Chapter 1
Introduction

The mobile communication market is constantly growing and is expected to con-
tinue doing so with more connected devices each day. With a crowded frequency
spectrum, the available bandwidth is limited and has to be shared between the
different service providers. To accommodate the growing number of users yet
providing a high quality of service and data transfer rates, an efficient use of the
available bandwidth are essential. For this reason, error correction algorithms
have become a vital part of modern communication systems. These algorithms
are often key when approaching the theoretical Shannon limit which determines
the maximal throughput of the system. One efficient and popular error correc-
tion algorithm are the turbo code, consisting of an encoder and decoder, which
are used in many modern standards. One such standard is the long term evolu-
tion(LTE) standard, which is part of the 4th generation(4G) communication net-
works, where turbo codes are used in the shared data channel. The focus of this
master thesis will be on the implementation of a turbo decoder for the LTE stan-
dard.

1.1 Background

The popularity of turbo codes is much due to their impressive performance which
can reach within a few tenths of dB from the Shannon limit [2]. The error correct-
ing capabilities allows for an efficient communication since, among others, the
amount of data that has to be retransmitted due to the occurrence of errors can
be reduced. This however, increases the requirements on the receiver leading to a
more complex implementation. The turbo decoder can therefore be a major part
of the system’s total energy consumption. With the majority of the user equip-
ment being handheld devices such as mobile phones or tablets with a limited
energy budget, keeping the energy consumption low are of great importance.
Therefore various modifications exist that aims to reduce the energy consump-
tion of the decoder. One of them is to stop the updating of those codeword bits
whose reliability is above a certain threshold. This leads to potential savings in
the number of calculations as well as the total number of memory accesses, thus
leading to a higher energy efficiency of the decoder. In this thesis, the aim is
to investigate the potential savings of an actual hardware implementation of the
above described stopping criteria.

1

2 Introduction

1.2 Objective

The goal of this master thesis is to implement a turbo decoder in hardware for the
LTE standard with the previously described stopping criteria. The decoder shall
be compliant with the LTE standard and meet the requirements regarding timing
and latency and the design should be able to run on an FPGA. The development
of the thesis can be divided into three major milestones. First, the implementation
of the max-log-map module. Second, the integration of the two sub-modules and
the implementation of the interleaver. Third, the implementation of the early
stopping criteria.

1.3 Methodology

At first, a literature study was performed in which the underlying theory and
algorithm were investigated. There exist different algorithms that can be used
to implement a turbo decoder, this thesis however specified the use of the max-
log-MAP algorithm which therefore was the main focus. The max-log-MAP al-
gorithm and it’s components were studied to determine their impact on the per-
formance, throughput and hardware complexity etc. In this step, the parts that
were most crucial for the performance and throughput was identified as well as
which was the most costly in terms of hardware. With this information different
architecture with varying degrees of parallelism and time multiplexing could be
explored from which an efficient final architecture could be chosen.

A major part of this work has been the use of high-level synthesis(HLS). In
HLS the functionality of the hardware is described on a cycle accurate basis using
bit accurate types in a high-level programming language which in this thesis has
been C++. These models are then turned into RTL models by the HLS tool. The
main advantage is that the testing and simulations can be done using test benches
written in the programming language which speeds up the process considerably.

The implementation of the milestones thus began with the creation of behav-
ioral models in Matlab in which their functionality also was simulated. In the
next step, a behavioral model in C++ was created based on the Matlab version
to which it’s functionality was verified. These models were then modified to use
bit accurate types, and after verifying the functionality they were transformed
to RTL code using the Catapult HLS tool. The RTL was then implemented and
tested on an FPGA.

1.4 Structure

The remainder of this report is structured as follows. In chapter 2 an overview
of a system using turbo codes will be given and the encoder and decoder will be
introduced as well as the proposed stopping criteria. The concept of error control
coding and hard/soft decisions will be briefly introduced together with inter-
leaving and the MAP algorithm on which the decoder in this work is based on.
In chapter 3 the hardware implementation of the turbo decoder and it’s compo-
nents will be presented. In chapter 4 the results of the simulations will be given

Introduction 3

together with area and power consumption figures. The obtained results will
then be analyzed and discussed in chapter 5.

4 Introduction

Chapter 2
System Overview

Turbo codes were introduced by Berrou in 1993[2] and are a popular error correc-
tion algorithm widely used in modern communication. The popularity of turbo
codes is mainly as previously mentioned due to their capability of reaching per-
formances within a few tenths of dB from the Shannon limits that set the theoret-
ical throughput limit[13].

Figure 2.1: A simplified overview of a communication system

An overview of a system using turbo codes can be modeled as shown in fig-
ure 2.1 where the part specific for turbo codes are the turbo encoder at the trans-
mitter and the turbo decoder at the receiver. At the transmitter, the encoder re-
ceives the information message(u) from which it produces the coded message(x).
The coded message are then modulated to an analog signal and transmitted over
a channel. In this example, the channel is modeled as an additive white Gaussian

5

6 System Overview

noise (AWGN) channel which is the simplest possible case of a channel. In reality
however, the channel will be time- and frequency-selective i.e change over time
and frequency. As a consequence of passing through the channel, the signal is
subjected to noise and interference thus increasing the probability of errors oc-
curring in the received data. At the receiver the signal is demodulated before the
received message(y) are passed to the decoder. The decoder then produces an
estimation(û) of the information message trying to detect and correct any intro-
duced errors during the transmission.

2.1 Error Control Coding

When transmitting over a physical channel the signal is subjected to noise, inter-
ference and fading along it’s path from the transmitter to the receiver and it is
inevitable that errors are introduced at times. In a cellular system the data are
transmitted by radio waves where a number of devices share a limited amount
of bandwidth. In these cases, some of the major sources of errors, in combination
with thermal noise, consists of the interference from other nearby devices as well
as the interference due to multipathing in which multiple versions of the signal
are received, which can arise due to the signal being reflected by obstacles in the
path. There are mainly two methods that a system can employ to handle the oc-
currence of errors, these are either forward error correction(FEC) or some version
of automatic repeat request(ARQ).

In ARQ systems the receiver sends an acknowledgment (ACK) to the trans-
mitter if the message was correctly received and a negative acknowledgement
(NAK) if it contained any errors. Messages that contains errors have to be re-
transmitted until they are correctly received and ARQ is therefore sometimes also
called backward error correction(BEC). An FEC system is on the other hand also
required to be able to correct up to a certain amount of errors in the received
message. This is achieved by using channel coding in which the message are
encoded by appending redundancy bits to the information message before trans-
mitting it. The produced redundancy bits depends on the information sequence
and the relationship depends on the type of code that is used, for example, linear
block codes or convolutional codes. The redundancy bits are then used by the
decoder to detect and correct the introduced errors. ARQ only requires the use of
error detection which leads to simpler hardware implementations, however, the
retransmission of data reduces the spectral efficiency which can be un-tolerable if
the occurrence of errors is common. FEC requires a more complex implementa-
tion of the receiver and an increased data overhead due to the added redundancy
but in turn, reduces the amount of data that has to be retransmitted.

In cellular systems the wireless transmission of data over varying distances
with a lot of interference from different sources often leads to an unreliable chan-
nel and FEC are therefore often used in cellular communication systems. Usually,
the FEC are combined with ARQ to form an HARQ(Hybrid-ARQ) system that
combines the advantages of both methods.

System Overview 7

2.2 Hard and Soft Decision

Transmitting data over a physical channel are usually done using modulation
in which the digital data are transformed to a continuous waveform which is
then transmitted. This is done by mapping the bits of the binary information to
symbols which are represented by a waveform of a specific duration. How this
mapping is performed depends on the used modulation scheme which for LTE
consists of QPSK, 16QAM or 64QAM for the data channel.

At the receiver, the demodulator converts the received waveform back to dis-
crete values which are done by sampling the received signal creating samples of
real values. If hard decision is used these samples are quantized into binary data
by comparing the sample to a threshold to determine the bits values. In soft de-
cision the output consists of so-called soft bits which are real values whose sign
corresponds to the hard decision of the bit and the magnitude the confidence level
of this decision which depends on the distance to the threshold. Using soft deci-
sion, values close to the threshold, which is unreliable, are given less of a negative
impact on the decoding performance compared to hard decision and the use of
soft decision has been shown to increase the performance over hard decision[14].
In figure 2.2 an example of the decision methods are shown.

(a) Hard Decision (b) Soft Decision

Figure 2.2: Illustrative example of Hard and Soft Decisions

2.3 Encoder

The turbo encoder used in LTE is a parallel systematic concatenated convolu-
tional (PSCC) code that consists of two recursive systematic convolutional (RSC)
codes separated by an interleaver and are shown in figure 2.3. The two RSC en-
coders are identical and have eight states and each produces a two-bit codeword
consisting of a systematic and a parity bit. The turbo encoder thus produces one
two-bit codeword for the non-interleaved data sequence and one for the inter-
leaved sequence, however, the interleaved systematic stream are not transmitted.
The output thus consists of three output bits for every input bit resulting in a

8 System Overview

Figure 2.3: The turbo encoder for the LTE standard[1]

code rate of 1
3 . Higher or lower code rates can be achieved by puncturing respec-

tively repetition of the encoded data. The RSC encoders are systematic meaning
that the input bits appears unchanged in the output and the systematic bit is thus
identical to the information bit.

2.4 Maximum A-Posteriori Algorithm

The maximum a-posteriori(MAP) algorithm also known as the BCJR named af-
ter it’s inventors Bahl, Cocke, Jelinek and Raviv was presented in 1974[3]. The
increased computational complexity compared to the Viterbi algorithm lead to
that it was seldom used in practice. The algorithm has lately risen in popularity
together with turbo codes.

The BCJR calculates an a-posteriori log-likelihood ratio(LLR) for each trans-
mitted information bit based on the whole received input sequence. For the sys-
tem in consideration, the input to the BCJR consists of the codeword produced by
one of the RSC encoders in figure 2.3 as well as the apriori information. The en-
coded message bit (uk) can take the values of either +1 or -1, with -1 representing
a ’0’, with an apriori probability P(uk) from which the apriori LLR can be calcu-
lated as in 2.1. L(uk) represents the confidence level of the decision in which bit
that was encoded at time k prior to the start of the decoding and are zero if both
cases are equally likely. The a-posteriori are then the confidence in the decision
after the whole sequence has been received as defined in 2.2.

System Overview 9

L(uk) =
P(uk = +1)
P(uk = −1)

(2.1)

L(uk|y) =
P(uk = +1|y)
P(uk = −1|y) (2.2)

To help visualize the decoding process a trellis state diagram is often used.
In figure 2.4 an example of a trellis state diagram of a four state RSC encoder are
shown. The trellis consists of states that are connected through branches, each
branch is associated with the information bit being either ’1’ or ’0’ where a solid
line corresponds to a ’0’ and a dotted line to a ’1’. Each branch has a branch metric
(γ) associated with it and each state has a forward (α) and a backward (β) state
metric associated with it. These metrics will be defined later on in this section.

Figure 2.4: An example of a trellis state diagram from a four state
RSC encoder

Assuming that a N bit message is received and that the state at the time step
k are Sk = s and that the previous state was Sk−1 = s′. Up to this point, k-1 input
symbols have already been received and N - k are to be received. The received
symbol sequence can be divided into three parts as

10 System Overview

y = y1y2...yk−1ykyk+1...yN = y<kyky>k

where one part represents the past, one the present and one the future. The a-
posteriori LLR of the kth input bit are then calculated from 2.3 where P(s′, s, y) are
the joint probability of receiving the N-bit sequence y and that the state at time k
are s with the previous state being s’. Here R1 and R0 marks the summation over
the state transitions corresponding to uk = 1 respectively uk = -1. At the time step
k α, γ and β are probabilities associated with the past, present and future of y and
L(uk|y) can be expressed using these probabilities as in 2.4.

L(uk|y) = ln
∑R1

P(s′, s, y)
∑R0

P(s′, s, y)
(2.3)

L(uk|y) = ln∑ R1 αk−1(s′)γk(s′, s)βk(s)
∑ R0 αk−1(s′)γk(s′, s)βk(s)

(2.4)

The branch metric γk(s′, s) are thus the conditional probability of the received
symbol being yk when the current state is s and the previous state were s’. For an
AWGN channel this becomes

γk(s′, s) = Ckeuk
L(uk)

2 ∗ e(
Lc
2 ∑ n

l=1xkl∗ykl) (2.5)

where Lc is the channel reliability measure defined as

Lc = 4aEcN0 =
4aRcEb

N0

where Rc is the code rate, N0
2 is the noise bilateral power spectral density, a is the

fading amplitude, Ec and Eb are the transmitted energy per coded bit respectively
message bit. The Ck are a constant that will be canceled out in the LLR calcula-
tions. The forward and backward state metrics are calculated recursively from
2.9 and 2.10.

αk(s′) = ∑ s′αk−1(s′)γk(s′, s) α0(s) =
{

1 s = 0
0 s 6= 0 (2.6)

βk−1(s′) = ∑ s′βk(s)γk(s′, s) βN(s) =
{

1 s = 0
0 s 6= 0 (2.7)

The γ are required by both α and β and must be calculated first. The α’s
are calculated during the recursion of the trellis in the forward direction. The β
metrics are calculated during the backward recursion and can only be obtained
after the whole sequence has been received.

System Overview 11

2.4.1 MAP Simplifications

The MAP algorithm requires a lot of multiplications which makes it unattrac-
tive for a hardware implementation. Instead, some simplification is usually em-
ployed. Two popular simplifications are the max-log-MAP and the log-MAP.
Both operates in the logarithmic domain which turns the multiplications to addi-
tions thus reducing the computational complexity. The branch metrics and state
metrics are now defined as

Γk(s′, s) = lnCk +
ukL(uk)

2
+

Lc

2 ∑ n
l=1xklykl (2.8)

Ak(s) = max∗(Ak−1(s′) + Γk(s′, s)) A0(s) =
{

0 s = 0
−∞ s 6= 0 (2.9)

Bk−1(s′) = max∗(Bk(s) + Γk(s′, s)) BN(s) =
{

0 s = 0
−∞ s 6= 0 (2.10)

in which the max operation differs for the two and are defined as

max∗(a, b) =
{

max(a, b) + ln(1 + e−|a−b|) log−MAP
max(a, b) max− log−MAP

(2.11)

The a-posteriori LLR then becomes

L(uk|y) = max∗R1
(Ak−1(s′)+Γk(s′, s)+ Bk(s))−max∗R0

(Ak−1(s′)+Γk(s′, s)+ Bk(s))
(2.12)

The correction term of the log-MAP improves it’s performance compared to the
max-log-MAP but makes the implementation more complex. With the use of
extrinsic scaling the performance gap can be reduced and in this work the max-
log-MAP approach will be taken.

2.5 Turbo Decoder

The turbo decoding algorithm is an iterative SISO (Soft-Input Soft-Output) algo-
rithm that in each iteration updates the a-posteriori LLR based on the channel
information of the systematic and parity bits together with the apriori LLR. The
general structure of a turbo decoder is shown in figure 2.5 and consists of two
SISO decoders, an interleaver and a de-interleaver. Each pass of a decoder is
called a half-iteration whereas a pass of both decoders is called a full iteration.
Each decoder produces an a-posteriori LLR as well as an extrinsic LLR(Le) which
for a systematic encoder are obtained as

Le = L(uk|y)− L(uk)− Lcysk (2.13)

and are an updated and presumably better estimation of the apriori LLR. This
extrinsic information is passed as the apriori input to the subsequent decoder in
the next half-iteration. By repeating this procedure the confidence in the decision
of the output are increased after each half iteration and after a defined number of
iterations or if a stopping criterion is fulfilled the decoding is halted and the final
hard decision is made.

12 System Overview

Figure 2.5: Architecture of the typical turbo decoder

2.6 Interleaving

Interleaving mainly serves two different tasks in turbo codes. One is to increase
the distance of the code by breaking up so-called self-terminating input sequences[5].
The other is to improve the exchange of extrinsic information between the two de-
coders in figure 2.5 by decreasing the correlation between the extrinsic inputs[6].

2.6.1 QPP Interleaver

The use of interleaving is a major contributor to the performance of turbo codes.
The choice of interleaver is important when it comes to parallel decoding in
which multiple MAP decoders are employed. This potentially introduces mem-
ory conflicts during the second half of the iteration if two or more decoders tries
to access different addresses of the same memory as shown in figure 2.6. The LTE
standard specifies the use of a QPP interleaver that is based on algebraic construc-
tions via permutation polynomials over integer rings which have been shown to
be contention free for every factor of the interleaver length. An example of a con-
tention free situation are shown in figure 2.7 where each decoder needs data from
different memories. For a codeword of length K the interleaving address at index
i is calculated as

π(i) = (f1 ∗ i + f2 ∗ i2)modK (2.14)

where f1 and f2 are parameters that depends on K and are specified in the standard[1].

2.6.2 Contention Free Property

An interleaver is said to be contention free for a window of length L if the follow-
ing property holds, [

f (i + mL)
L

]
6=

[
f (i + nL

L

]
(2.15)

System Overview 13

Figure 2.6: Example of a memory conflict. Decoder 0 and 1 both
need to read data from memory 0

Figure 2.7: Example of a contention free situation. All decoders
reads data from different memories

where 0 ≤ i < L, m 6= n and 0 ≤ m, n < P where P is the factor of parallelization.
The LTE standard specifies 188 different codeword sizes which all are even divis-
ible by 2,4 and 8 which means that the contention free property holds for these
parallelism degrees. Furthermore all the codeword sizes larger than 512, 1024
and 2048 are also even divisible by 16, 32 respectively 64. The contention free
property basically means that the generated addresses are separated by a factor
of L.

2.6.3 Recursive Calculation

Calculating the address from 2.14 requires the use of multiplications and the
modulo operator that would lead to a complex hardware implementation. How-
ever, the QPP interleaver has a couple of algebraic properties that allows calcula-
tion of the addresses to be simplified[12].

These properties allows the addresses to be calculated recursively from the
equations in 2.16 - 2.21 where i0 is the starting address, d is the step size and
π0, g0 and z are pre-calculated values. This method also includes the modulo
operator but π and g will always be smaller than K[7] thus the modulo operator

14 System Overview

can be implemented using adders.

π0 = (f2i20 + f1i0)modK (2.16)

π(i + d) = (f2(i + d)2 + f1(i + d))modK = (π(i) + g(i))modK (2.17)

g(i) = (2d f2i + d2 f2 + d f1)modK (2.18)

g(i + d) = (g(i) + 2d2 f2)modK = (g(i) + z)modK (2.19)

g0 = (2d f2i0 + d2 f2 + d f1)modK (2.20)

z = (2d2 f2)modK (2.21)

By slightly modifying 2.17 and 2.19 the addresses can be calculated in the back-
ward direction as in 2.22 and 2.23.

π(i− d) = (π(i)− g(i− d))modK (2.22)

g(i− d) = (g(i)− z)modK (2.23)

2.7 Stopping Criteria

The stopping criteria investigated are based on the iterative manner of the turbo
decoding algorithm in which the confidence of the output decision is increased
after each half iteration. After each pass of a decoder, the produced extrinsic LLR
are compared to a threshold. If above the threshold the updating of the LLR is
stopped for the remainder of the decoding. This threshold thus represents the
point in which the confidence in the output decision is said to be strong enough.

If Le have reached the threshold, throughout the rest of the decoding process
no further calculations of the a-posteriori or extrinsic LLR are needed, thus for the
remaining iteration the MAP decoder only needs to calculate the state metrics.
No further updating of the value in the memory are required as well leading to a
reduced number of required memory accesses. The savings in memory accesses
and calculations will potentially lead to a more energy efficient implementation.

2.8 High Level Synthesis

In this work high-level synthesis(HLS) have been used in the design of the hard-
ware implementation. In HLS the functionality of the hardware is described us-
ing a high-level programming language such as C or C++ instead of using VHDL
or Verilog as in the traditional RTL design flow. The design flow of HLS is shown
in figure 2.8.

To start with, a behavioral model in C++ is created, which can be compiled
and executed like any other C++ program, to test the functionality of the al-
gorithm and architecture. This model is then transformed into a synthesizable
model using bit-accurate data types. The functionality of the newly formed model
can then be simulated using the same test bench as for the behavioral model.

System Overview 15

Figure 2.8: Model of a HLS design flow

When the correct functionality as been established the synthesizable model are
run through the HLS tool which transforms it into an RTL model in either VHDL
or Verilog. An RTL simulation can then be performed to verify the functionality
before performing the RTL synthesis for either FPGA or ASIC.

A major advantage of using HLS are the shorter simulation times since run-
ning the C++ test benches are around 1000 times faster than RTL simulations.
Another advantage is that the tool can perform timing transformations such as
pipelining the design automatically thus freeing up time for the designer.

The quality of the resulting RTL depends of course on the high-level descrip-
tion inputted to the HLS tool. Writing a functional description as if it was targeted
at software may thus result in a poor end result. It is therefore important that the
development of the high-level description are carried out keeping in mind that
the final target is hardware as one would when designing RTL using VHDL.

16 System Overview

Chapter 3
Hardware implementation

A key challenge in the design and implementation of a turbo decoder is balanc-
ing the decoding performance and throughput versus the area and power con-
sumption. In this thesis, the max-log-MAP algorithm has been implemented as it
is more hardware friendly than the log-MAP while still offering good decoding
performance. The target communication standard imposes strict requirements on
the throughput that has to be met. To obtain high throughput values the decoder
generally needs to employ a high degree of parallelism. Thus a high throughput
leads to an increased area. As the LTE standard consists of different categories
with different throughput requirements and the hardware implementation in this
work are therefore aimed at having a scalable parallelism degree to support the
different requirements. To decrease the power consumption an early stopping
criterion can be implemented. In this thesis, a new stopping criterion with the
aim of a negligible performance and area penalty are implemented in hardware.

3.1 Max-log-MAP Decoder

The max-log-MAP decoder implements the equations (2.8) - (2.12) that were pre-
sented in the previous chapter. These are implemented in three sub-blocks, the
branch metric unit (BMU) that calculates the set of γk(s′, s) at each trellis step,
the state metric unit (SMU) that calculates the forward and backward state met-
rics during the forward respectively backward recursion and the log-likelihood
ratio unit (LLRU) which calculates the a-posteriori LLR from (2.12). The input
to the decoder consists of the channel estimation of the systematic and parity
bit provided as soft decisions as well as the apriori LLR. From this, the decoder
then outputs the a-posteriori LLR and the extrinsic LLR. The architecture of the
implemented max-log-MAP decoder is shown in figure 3.1.

The apriori LLRs are stored in a memory during the forward recursion to
prevent a memory read/write conflict during the backward recursion in which
the a-posterior LLR are written to the LLR memory. Instead of storing the forward
state metric during the forward recursion, the A + Γ term in (2.12) that, as seen
in (2.9), are calculated in the SMU are stored in the AΓ memory thus saving an
addition step in the LLRU. The Beta stakes memory stores the backward state
metrics between iterations and are needed due to the utilization of the sliding
window(SW) approach.

17

18 Hardware implementation

Figure 3.1: Architecture of the implemented max-log-MAP decoder
with extrinsic scaling factor of 0.75

Hardware implementation 19

3.1.1 Sliding window

In the sliding window approach, the codeword is split into windows of length L.
The decoding are then performed by a forward and backward recursion of each
window. In contrast an implementation of the max-log-MAP without any mod-
ifications i.e the no sliding window approach (NSW), performs a full forward
recursion before the start of the backward recursion. The NSW suffers from high
memory requirements for large codeword sizes since at minimum eight state met-
rics needs to be stored for each trellis step. The maximum codeword size of LTE is
6144 which would lead to a substantial amount of on-chip memory. In the sliding
window (SW) approach on the other hand only L sets of state metrics need to be
stored and with L ranging around 32-64, this leads to significant memory savings
thus the SW approach is practically always taken for hardware implementations.

A problem with the use of an SW is that the backward metrics are unknown
at the start of the backward recursion of a window. The initial values at the end
of the window therefore have to be estimated. A common method for the estima-
tion is to use a guard window that extends into the next window. The backward
metrics are initialized to zero at the end of the guard window over which a back-
ward recursion are then performed. The backward metrics obtained at the start of
the guard window are then used as the initial values for the backward recursion
of the SW. The drawbacks with this method are either a lower throughput due to
the delay of the added backward recursion or additional hardware needs to be
added to perform the initialization in parallel with the forward recursion.

In this implementation, another method in which the metrics from the pre-
vious iteration are used as the initial values is employed. In the first iteration
the backward metrics at the end of the windows are initialized to zero and the
values obtained at the end of the backward recursion are stored in memory and
then used to initialize the backward metrics in the next iteration. In this method
there is no added decoding delay but it requires additional memory to store the
metrics between iterations. This additional memory is fixed and don’t depend on
the parallelization degree and will therefore have a low impact on the total area
when the design is parallelized.

3.1.2 Branch Metric Unit

The BMU calculates the set of branch metrics for each trellis step according to
(2.8). From (2.8) it is seen that the value of γk(s′, s) only depends on the asso-
ciated codeword which in LTE consists of a pair of bits resulting in four unique
branch metrics at each trellis step. Furthermore the codewords ’11’ and ’10’ are
the negation of ’00’ respectively ’01’ and the implementation of the BMU there-
fore only requires three adders and are shown in figure 3.2.

3.1.3 State Metric Unit

The SMU calculates the state metrics by using eight of the add-compare-select(ACS)
units shown in figure 3.3 in parallel. The recursive way of these calculations pre-
vents the block from being pipelined and it thus sets an upper bound of the max-

20 Hardware implementation

Figure 3.2: Architecture of the branch metric unit

imum achievable frequency of the decoder. It also tends to make the state metrics
to grow in each step thus a normalization method are required to be employed
to prevent errors arising due to arithmetic overflow. The normalization method
chosen in this work are called modulo normalization and are a popular method
since it has a small impact on the length of the critical path.

In modulo normalization instead of preventing overflowing the metrics are
allowed to overflow, this works since it is the difference between the metrics that
affects the LLR calculations and not their actual value. As long as the absolute
difference between any two metrics are bounded by C

2 with C being a constant
and by using the modified comparison rule defined in (3.1) the actual differences
can be obtained[11].

z(m1, m2) = m1MSB ⊕m2MSB ⊕ y(m̂1, m̂2) (3.1)

3.1.4 Log-likelihood Ratio Unit

The LLRU calculates L(uk|y) by first calculating the sum Ak−1(s′) + Γk(s′, s) +
Bk(s) for each branch. The maximum result associated with a transition due to
+1 as well as -1 are then calculated by a tree compare-select(CS) network. The
surviving result of the -1 is then subtracted from the result of the +1 to form the
L(uk|y). The CS network is shown in figure 3.4.

Hardware implementation 21

Figure 3.3: Architecture of a ACS unit of the state metric unit

3.1.5 Extrinsic Scaling

The absent correction term in the max-log-MAP compared to the log-MAP, as
seen in 2.11, tends to make the output estimation of the max-log-MAP a bit too
optimistic. To reduce the performance penalty of the missing correction term
the extrinsic information can be scaled down after each half-iteration[10]. The
optimal scaling factor ranges between 0.7 to 0.9 and depends on the SNR and the
iteration number. In this implementation, a constant scaling factor of 0.75 which
allows for a hardware friendly implementation has been chosen.

3.2 Interleaver

The interleaver consists of two address generator block, one which generates the
addresses in the forward direction from (2.16) to (2.21) and one that generates the
addresses in the backward direction according to (2.22) and (2.23). Since π and
g are always smaller than K the forward address generator can be implemented
as shown in figure 3.5 while the backward generator is implemented as in figure
3.6. During the forward recursion, the output of the interleaver is the address
generated by the forward generator while in the backward recursion the address
from the backward generator is outputted. At the end of the sliding window
in the forward recursion, the π and g information of the forward generator is
used as the π0 and g0 values to initialize the backward generator which will then
output the addresses in the inverse order.

22 Hardware implementation

Figure 3.4: The compare-select network finding the maximum of
the eight inputs

Figure 3.5: Address generator block for the forward direction

Hardware implementation 23

Figure 3.6: Address generator block for the backward direction

3.3 Turbo Decoder

With the max-log-MAP decoder and interleaver in place, the turbo decoder can
then be implemented. The architecture of the turbo decoder that uses a single
MAP decoder are shown in figure 3.7. It consists of an input memory bank which
in turn consists of three memories, one for the systematic bit and one for each of
the parity bits. The LLR memory stores the extrinsic information from the MAP
decoder. The general structure of a turbo decoder as shown in figure 2.3 usu-
ally consists of two sub-decoders, however, the data dependency between them
prevents them from being run in parallel and the turbo decoder are therefore im-
plemented by using only one sub-decoder. During the first half of an iteration
Le are read and written from and to the memory in the consecutive order. The
systematic bit and the parity1 bit are read in the same order as well. During the
second half, Le and ys are read in the interleaved order while the parity2 bit is
read in the consecutive order. This leads to the updated extrinsic LLR to be cal-
culated in the interleaved order as well and the de-interleaving are performed
simply by writing the memory using the interleaved address.

The a-posteriori LLR are only used during the last half iteration to performed
the hard decision which is done during the backward recursion. Therefore no
extrinsic information are stored in memory during the last half iteration.

24 Hardware implementation

Figure 3.7: Block diagram of a turbo decoder with one MAP decoder

3.4 Parallel Structure

To increase the throughput the decoding can be performed in parallel by using
multiple MAP decoders. In these implementations, the codeword is divided into
equally long blocks where the number of blocks is equal to the number of MAP
decoders. The input and LLR memories are needed to be split as well to pre-
vent memory conflicts and for every added decoder an additional interleaver
are required as well. If no memory conflicts occur due to the parallelization the
throughput is increased by a factor equal to the number of used MAP decoders.
As seen in the previous chapter each of the defined codeword sizes of LTE are
even divisible by 2,4 and 8 and thus turbo decoders using these number of MAP
decoders can be implemented without any memory conflicts.

If more than eight decoders are used some of them has to be deactivated if the
current codeword size is not even divisible by the decoders used. Considering a
turbo decoder using 32 MAP decoders, if the codeword size is less than 512 only
8 of the cores would be running while the others are idle and if the codeword size
is between 512 and 1008 16 of the decoders would be active.

The architecture of a parallel turbo decoder using N MAP decoders is shown
in figure 3.8. The parallel structure requires the addition of a interconnect net-
work to route the data between memories and the MAP decoders as well as a
block calculating the minimum address of the outputs of the interleavers.

3.4.1 Minimum Address Block

As seen in figure 2.15 each generated address will be separated by a factor of L
and so the minimum address at each step can be used to address all the memo-
ries. The minimum address can be found using a compare-select structure whose
length depends on the number of MAP decoders used. In figure 3.9 the min-

Hardware implementation 25

Figure 3.8: The turbo decoder using N MAP decoders.

imum address block for the case of 8 decoders are shown and three stages are
needed to find the minimum of the 8 addresses. The minimum number of stages
required to find the minimum address is given by log2(NMAP). The CS block for
the minimum address block are implemented as in figure 3.10 and consists of a
comparator and a mux and selects the minimum address out of the two inputs.

3.4.2 Interconnect network

During the forward recursion, the data read from the memories has to be routed
to the correct MAP decoder and during the backward recursion the opposite
holds. The routing is performed by a master-slave batcher network, in figure
3.11 the network for four MAP decoders are shown. The master network sorts
the input addresses in ascending order by using two input sorting block imple-
mented as in figure 3.12. If the lower input address is less than the upper the
outputs are switched and the sel output is set to ’1’ otherwise the output and the
input are equal. The slave network uses the generated select signals from the
master network to apply the inverse sorting order to its input. The select block
consists of two muxes as shown in figure 3.13 and just as in the sorting block the
outputs are the switched inputs if the sel signal is high.

To route the LLR and systematic inputs to the MAP decoders they are pro-
vided as the input to the slave network. During the backward recursion the
extrinsic LLR from the MAP decoders are provided as the input to the master
network together with the generated addresses. It is the addresses that are used
for the comparison and the Le data are traveling along with the addresses.

26 Hardware implementation

Figure 3.9: Block finding the minimum address out of eight inputs

Figure 3.10: Block finding the smallest of the two inputs

Hardware implementation 27

Figure 3.11: The master-slave interconnect network for 4 MAP
decoders

Figure 3.12: The two input sorter used in the master network. If the
lower input is smaller than the upper the inputs are switched
and the sel signal is set to ’1’

28 Hardware implementation

Figure 3.13: The select block in the slave network. When the input
sel signal is high the input are switched

3.5 Stopping Criteria

The stopping criteria are implemented by modifying the decoders in figure 3.7
and 3.8 and the resulting architecture for the one MAP turbo decoder are shown
in figure 3.14. The idea behind the stopping criteria in question is to stop the
updating of the extrinsic information that is above a certain threshold and thus
the decoder need a way to determine if the value should be written to the memory
or not. This is achieved by attaching a status bit to every Le and thus one extra
bit are required to be stored in the LLR memory. As seen in figure 3.14 the extra
hardware required, together with the extra memory bit, for the stopping criteria
consists of a threshold compare unit(TCU) for every MAP decoder used and the
early stopping unit. The TCU determines if the Le shall be written to the memory
or not. At the end of each half iteration, the output value of the early stopping
unit is checked to determine if the decoding can be stopped. Some small changes
are also done in the MAP decoder. The status bit is also provided in the input and
is checked at every step. If the status bit is high then only the state metrics needs
to be calculated which means that no value has to be stored in the AΓ memory
during the forward recursion and during the backward recursion no value has to
read from the memory and the LLRU are idle as well.

The stopping criteria thus allow for potential lower total energy consump-
tion in mainly two ways. Firstly, by the potentially reduced number of memory
accesses to the LLR and AΓ memory and the reduced number of calculations per-
formed by the LLRU. Secondly, a reduced decoding time due to fewer iterations
performed.

3.5.1 Threshold Comparison Unit

The status bit is updated during the backward recursion in the threshold com-
parison unit(TCU) which are shown in figure 3.15. If the status bit of the input is
already high then nothing is done in this step and the block sets the write signal
to false and nothing is written to the memory. Otherwise the absolute value of the
extrinsic LLR are compared to the threshold and the result of the comparison are

Hardware implementation 29

Figure 3.14: The turbo decoder with the stopping criteria.

set as the new status bit and the write signal is set to true so that the new status
bit and the Le are stored in memory.

3.5.2 Early Stopping Unit

The early stopping unit is a simple block that determines if all extrinsic values
have reached the threshold in which case the decoding can be stopped. This can
be implemented using a one-bit register, a two input AND gate, a NMAP AND
gate and a mux as shown in figure 3.16. The status bits outputted from the TCUs
are set as the input to the NMAP AND gate which’s output are the input to the two
input AND gate together with the register value. At the start of each half iteration
the register is initialized to ’1’ and during the forward recursion it keeps its value.
During the backward recursion the result of the AND operations becomes the
new value of the register. If any of the Le values haven’t reached the threshold
then the corresponding status bit are ’0’ and thus the result of the AND operation
will be ’0’ as well while if every Le is above the threshold the value of the register
will be ’1’ when the end of the half iteration are reached.

30 Hardware implementation

Figure 3.15: The threshold comparison unit. It compares the ex-
trinsic LLR to the threshold and decides the next value of the
status bit

Figure 3.16: Block detecting if the decoding can be stopped

Chapter 4
Results

This work has resulted in two different implementations of an LTE compliant
turbo decoder. One implementation includes the stopping criteria described in
the previous chapters and the other does not use any stopping criteria. Both
implementations can be configured to use 1, 2, 4, 8 or 16 MAP decoders in paral-
lel thus reaching a maximum throughput of 110 Mbits/s running at a clock fre-
quency of 200 MHz when performing 7 full iterations. The number of iterations,
as well as the stopping threshold, can be configured at runtime.

The decoders are in the form of integer implementation using signed integers
for representing the data. In this work, the soft input information is represented
by 4 bits, the forward and backward metrics by 10 bits and the extrinsic LLR by
8 bits with no stopping criteria and 7 bits for the stopping criteria. The stopping
criteria can thus take the values between -64 to 63.

4.1 Decoding Performance

The error correction performance is commonly measured by either the bit error
rate(BER) or by the block error rate(BLER). BER measures the ratio between the
number of wrongly decoded bits to the total amount of decoded bits whereas
the BLER measures the ratio between information blocks with errors to the total
amount of blocks. In many applications the data cannot be used if the information
block contains any errors and therefore the BLER measure are used in this report.
The modulation, de-modulation, rate matching and encoding have been done
using the Matlab LTE toolbox and the AWGN channel have been simulated by
the ‘awgn’ function in Matlab.

4.1.1 No Stopping Criteria

In figure 4.1 the BLER for the no stopping criteria turbo decoder are shown for
different number of iterations. The simulations were performed for the native
code rate of 1

3 with the modulation scheme of QPSK. During the development, the
turbo decoder in the Matlab LTE toolbox has been used as a reference. The result
of the Matlab implementation for 8 iterations as well as no input quantization is
also plotted in figure 4.1.

31

32 Results

-1.3 -1.2 -1.1 -1 -0.9 -0.8 -0.7

SNR (dB)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
L

E
R

BLER Results QPSK Code Rate 1/3

Matlab ref 8 it

6 it

7 it

8 it

9 it

10 it

Figure 4.1: BLER for the turbo decoder without any stopping cri-
teria for different iteration numbers for the code rate of 1

3

Looking at figure 4.1 it is seen that the Matlab functional model performs a
little bit better. Around the point at which the BLER is 10−1, the hardware imple-
mentation performs about 0.02 dB worse than the Matlab model. With the higher
input precision as well as being a purely functional model the Matlab decoder are
expected to perform better thus the hardware implementation are in line with the
expected performance.

From figure 4.1 it is also seen that the performance increases with each addi-
tional iteration which is expected, however it is also seen, by the decreasing dis-
tance between the curves, that the performance gained by increasing the number
of iterations diminishes the higher the iterations gets. Each additional iteration
also increases the decoding delay thus lowering the throughput which has to be
taken into consideration when setting the number of iterations.

In the LTE standard, a code rate of 1
3 with QPSK is only used in case of poor

channel conditions as it provides the best error correction capabilities. In better
channel conditions a better efficiency can be obtained by increasing the code rate
and/or using a higher modulation scheme as 16QAM or 64QAM. In figure 4.2
the BLER for the same setup as in 4.1 are shown for a code rate of 1

2 . As seen in
figure 4.2 increasing the code rate from 1

3 to 1
2 the SNR level for which the BLER

is 10−1 is increased by around 2.4 dB. A part from the decreased error correction
performance the behavior are similar to the 1

3 case.

Results 33

1 1.1 1.2 1.3 1.4 1.5 1.6

SNR (dB)

10
-4

10
-3

10
-2

10
-1

10
0

B
L

E
R

BLER Results QPSK Code Rate 1/2

Matlab ref 8 it

6 it

7 it

8 it

9 it

10 it

Figure 4.2: BLER for the turbo decoder without any stopping cri-
teria for different iteration numbers for the code rate of 1

2

4.1.2 Stopping Criteria

The stopping criteria under investigation will potentially lead to a reduced power
and energy consumption by reducing the number of required memory accesses
in conjunction with the potential to stop the decoding before completing the set
amount of iterations. The effect of different thresholds on the memory accesses
and performed iterations are shown in figure 4.3 and 4.4 with the SNR ranging
between 2 to -0.8 dB. For these simulations, a code rate of 1

3 with QPSK were used
and the maximum number of iterations were sat to 7 i.e 14 half iterations.

Starting with figure 4.3 it is seen that as expected a lower threshold result in
a greater reduction in the number of required memory accesses. At an SNR of 2,
the required memory accesses ranges between 47 % to 53 % for the thresholds of
30 respectively 60. The amount of accesses then grows as the SNR decreases and
at the SNR of 0 dB it now ranges between 51 % and 60 %. Beyond the SNR of 0
dB the growth accelerates and at an SNR of -0.8 dB the reduction in the number
of memory accesses ranges between 38 % and 22 %.

Looking at figure 4.4 it can again be seen that a lower threshold results in
larger savings. It is also seen that a threshold of 60 results in very low savings in
performed iterations over the whole SNR range. At an SNR of 2 dB the threshold
of 30 results in an average of only 5 half iterations being performed while the
threshold of 50 results in 7 half iterations thus half the maximum set number of
iterations. The required number of half iterations then grow as the SNR decreases

34 Results

-1 -0.5 0 0.5 1 1.5 2

SNR(dB)

45

50

55

60

65

70

75

80

M
e
m

 A
c
c
(%

)

Mem Access Overview

th 30

th 35

th 40

th 45

th 50

th 60

Figure 4.3: Average percentage of needed memory accesses for dif-
ferent thresholds for the code rate of 1

3

and at -0.8 dB no reduction in the number of iterations are observed.
The BLER of the stopping criteria implementation for the same conditions as

in figure 4.1 are shown in figure 4.5. The result of the no stopping criteria for 7
iterations is plotted as a reference.

Figure 4.5 shows that the lower thresholds of 30 and 35 results in a consid-
erable performance loss at this SNR range. A threshold of 40 results in a perfor-
mance loss of around 0.01 dB while for the rest of the thresholds no noticeable
performance loss is observed.

In figure 4.6 the number of memory accesses are shown for the same setups
as in 4.5. At this SNR range the maximum number of iterations are practically
always performed as seen in figure 4.4 and are therefor not presented. However
there is still gains in the amount of needed memory accesses as are shown in
figure 4.6. At the SNR of -1 dB using a threshold of 45 results in a reduction of 25
% in the number of memory accesses needed and the threshold of 60 results in a
reduction of 18 %.

The same simulations were also performed for the code rate of 1
2 and in figure

4.8 and 4.7 the number of iterations performed and memory accesses are shown.
The increased code rate makes the extrinsic LLR values to grow more slowly and
the thresholds therefore have to be decreased.

As shown in figure 4.7 and 4.8 the behavior are similar to the 1
3 code rate case

apart from the increased SNR and reduction of the threshold magnitudes.
The BLER and average percentage of memory accesses for the different thresh-

Results 35

-1 -0.5 0 0.5 1 1.5 2

SNR(dB)

4

5

6

7

8

9

10

11

12

13

14

N
b

r
o

f
h

a
lf

 i
te

ra
ti

o
n

s

Iteration overview

th 30

th 35

th 40

th 45

th 50

th 60

Figure 4.4: Average number of performed half iterations for different
thresholds for the code rate of 1

3 . Maximum number of half
iterations are 14

olds are shown in figure 4.9 respectively figure 4.10 for the code rate 1
2 .

The threshold of 20 results in a considerable performance loss while higher
thresholds results in a very small or no performance loss as shown in figure 4.9.

4.2 Area Numbers

The high-level synthesis of the different configurations was performed in Cata-
pult using 65 nm libraries from ST Microelectronics. The RTL output was then
synthesized in Design Vision using low power 65 nm libraries. With the avail-
able memories limited the synthesis were performed without memories and the
area were extrapolated from the closest matching memories. The synthesis was
performed for the clock frequency of 200 MHz for all configurations.

In table 4.1 the area figures for the no stopping criteria implementation are
presented for different numbers of MAP decoders. The area of the logic area
i.e excluding the memories for the 32 and 64 MAP decoder configurations are
extrapolated using a ratio of 1.95 which is the ratio between the 16 MAP and 8
MAP configuration.

Using 16 MAP decoders results in an area of around 1.5 mm2 at 200 MHz.
From table 4.1 it is seen that the main part of the area is occupied by memory. For
the 1 MAP configuration, the memory occupies around 87 % of the total area, for

36 Results

-1.3 -1.2 -1.1 -1 -0.9 -0.8 -0.7

SNR (dB)

10
-4

10
-3

10
-2

10
-1

10
0

B
L

E
R

BLER Results QPSK Code Rate 1/3

ref 7 it
th 60
th 50
th 45
th 40
th 35
th 30

Figure 4.5: BLER for the stopping criteria turbo decoder for different
thresholds. The code rate are 1

3

the 2 and 4 MAP configurations around 80 % are occupied by memory and for all
other configurations around 70 % of the area are occupied by memories.

In table 4.2 the area numbers for the stopping criteria are shown as well as the
area penalty compared to the corresponding configuration without any stopping
criteria. The amount of memory is the same as for the implementation without
any stopping criteria.

Table 4.2 shows that excluding the memories the stopping criteria leads to
an estimated area penalty of around 5 to 8 % depending on the number of MAP
decoders used. When the memories are also included the resulting area penalty
are less than 3 % for all configurations.

4.3 Throughput

The throughput numbers for the different configurations running at 200 MHz
for 7 iterations are shown in table 4.3. At this frequency and iteration numbers,
16 MAP decoders are needed at minimum to reach the target throughput of 100
Mb/s. The throughput scales linearly with the frequency and the number of em-
ployed MAP decoders.

If higher throughputs are needed the design is synthesizable at 400 MHz
when using general purpose libraries thus doubling the throughput and achiev-
ing a maximum throughput of 879.6 Mb/s if 64 MAP decoders are used and only

Results 37

-1.3 -1.2 -1.1 -1 -0.9 -0.8 -0.7

SNR(dB)

55

60

65

70

75

80

85

90

M
e
m

 A
c
c
(%

)

Mem Access Overview

th 30

th 35

th 40

th 45

th 50

th 60

Figure 4.6: Average percentage of memory accesses for the different
thresholds at low SNR and a code rate of 1

3

8 MAP decoders are needed to reach the 100 Mb/s target.

4.4 Power Simulations

The power simulations were performed for the 8 MAP configurations for both
implementations. To match the memory requirements with the available mem-
ories the sliding window length were increased from 64 to 128. The simulations
were performed for the code word size of 3072 for 7 iterations over a time equal
to the time required for the no stopping criteria implementation to finish. The
average consumed energy for 7 different SNR levels are shown in figure 4.11 for
a stopping threshold of 45.

As figure 4.11 shows the greatest reduction in the energy consumption are
achieved at larger SNR levels as expected from the memory access result in 4.6. In
the best case scenario(1.5 dB) a reduction in energy consumed by 63 % is achieved
and at an SNR of -1 dB a reduction of almost 17 %. At the SNR of -1.5 dB only a
small reduction in are observed. However, at this low SNR, the BLER is as seen in
figure 4.5 almost equal to one and practically no code word are decoded correctly.

38 Results

1 1.5 2 2.5 3 3.5 4

SNR(dB)

45

50

55

60

65

70

75

80

85

90

M
e
m

 A
c
c
(%

)
Mem Access Overview

th 20
th 25
th 30
th 35
th 40

Figure 4.7: Average percentage of needed memory accesses for dif-
ferent thresholds for the code rate of 1

2

Nbr MAP Dec Area(mm2)(no mem) Est Area(mm2) ratio(to 1 MAP)
1 0.032 0.244 1
2 0.068 0.365 1.5
4 0.122 0.562 2.3
8 0.237 0.876 3.6

16 0.462 1.525 6.3
32 0.902 2.813 11.5
64 1.759 5.405 22.1

Table 4.1: Area numbers of the no stopping criteria implementation
for different configurations synthesized at 200 MHz

Results 39

1 1.5 2 2.5 3 3.5 4

SNR(dB)

5

6

7

8

9

10

11

12

13

14

N
b

r
o

f
h

a
lf

 i
te

ra
ti

o
n

s

Iteration Overview

th 20
th 25
th 30
th 35
th 40

Figure 4.8: Average number of performed half iterations for different
thresholds for the code rate of 1

2 . Maximum number of half
iterations are 14

Nbr MAP Dec Area(mm2)(no mem) Est Area(mm2) Area penalty(%)(no mem/mem)
1 0.033 0.245 4.7/0.4
2 0.069 0.366 1.3/0.3
4 0.128 0.569 4.9/1.2
8 0.255 0.894 7.6/2

16 0.498 1.561 7.8/2.4
32 0.971 2.882 7.6/2.5
64 1.893 5.483 7.6/1.5

Table 4.2: Area numbers of the stopping criteria implementation for
different configurations synthesized at 200 MHz

Nbr MAP Dec 1 2 4 8 16 32 64
Throughput (Mbits/s) 6.9 13.7 27.5 55 110 219.9 439.4

Table 4.3: Throughput numbers for the different configurations at
200 MHz for 7 iterations using low power libraries

40 Results

1 1.1 1.2 1.3 1.4 1.5 1.6

SNR (dB)

10
-3

10
-2

10
-1

10
0

B
L

E
R

BLER Results QPSK Code Rate 1/2

ref 7 it

th 40

th 35

th 30

th 25

th 20

Figure 4.9: BLER for the stopping criteria for different thresholds
for the code rate of 1

2

1 1.1 1.2 1.3 1.4 1.5 1.6

SNR(dB)

55

60

65

70

75

80

85

90

M
e
m

 A
c
c
(%

)

Mem Access Overview

th 20
th 25
th 30
th 35
th 40

Figure 4.10: Average percentage of memory accesses for the differ-
ent thresholds at low SNR with a code rate of 1

2

Results 41

Nbr MAP Dec 1 2 4 8 16 32 64
Throughput (Mbits/s) 13.75 27.5 55 110 219.9 439.8 879.6

Table 4.4: Throughput numbers for the different configurations at
400 MHz for 7 iterations using general purpose libraries

Figure 4.11: Energy consumption of one 3072 bit code word for
both implementations with the stopping threshold set to 45.

42 Results

Chapter 5
Discussion Analysis

The resulting stopping criteria implementation are summarized together with
some existing turbo decoder implementations in table 5.1. With different imple-
mentations using different technologies and clock frequencies etc. the numbers
can‘t be compared directly but they can provide a hint of the relationship between
the implementations.

In [7] a turbo decoder using up to 64 MAP decoders using a 65 nm technol-
ogy are presented. The maximum throughput is 1.2 GBits/s for 6 iterations at 400
MHz with an area of 8.57 mm2. It also presents results for other MAP configura-
tions and clock frequencies and in table 5.1 the numbers for the 16 MAP are used.
In [9] a decoder with up to 8 MAP decoders with a throughput of 128 Mbits/s
at 8 iterations implemented in 90 nm technology are presented. A turbo decoder
using 8 radix 4 MAP decoders in 130 nm technology are presented in [8].

Since the implementation in [7] also uses 65 nm technology it is most suited
for a comparison. The throughput for the implementation in this work for 6 iter-
ations are 128 Mbits/s at 200 MHz and from table 5.1 it is seen that the decoder
in [7] have a higher throughput for the same number of MAP decoders and equal
clock frequency. This is due to a difference in the architectures. In [7] the forward
recursion of the next sliding window are performed in parallel with the backward
recursion of the current window. Thus when the backward recursion is complete
the forward recursion of the next window are already finished and the backward
recursion can be started immediately. This leads to a higher throughput com-
pared to the architecture in this work where the recursions are performed one
after another. Using the architecture in [7] the throughput are approximated as

Throughput ≈ K ∗ f
I ∗ (K/P + W)

where K is the code word length, f is the frequency in MHz, I the number of
performed half iterations, P the parallelism degree and W the length of the sliding
window. Thus the throughput depends on the chosen window length. For the
architecture in this work the throughput can be estimated as

Throughput ≈ K ∗ f
2 ∗ I ∗ K/P

which are independent of the window length. It should be noted that the
difference in throughput between the two architectures decreases the more MAP

43

44 Discussion Analysis

This
w

ork
[7]

[9]
[8]

Standard
LTE

LTE
LTE

LTE
R

adix
2

2
2

4
M

A
P

D
ecoders

16
16

8
8

Technology
65

nm
65

nm
90

nm
130

nm
C

lock
Frequency

200
M

H
z

200
M

H
z

275
M

H
z

355
M

H
z

T
hroughput

128
M

bits/s
(6

it)
230

M
bits/s

(6it)
129

M
bits/s

(8
it)

390
M

bits/s
(5.5

it)
A

rea
1.6

m
m

2
2.1

m
m

2
2.1

m
m

2
3.57

m
m

2

T
able

5.1:
C
om

parisons
to

im
plem

entations
in

previous
w
ork

Discussion Analysis 45

decoders that are employed since the difference between K/P and W decreases.
For P equals 64 the decoder in [7] have a throughput of 640 Mbits/s at 200 MHz
and the decoder in this work would have a throughput of around 512 Mbits/s.

To achieve the increased throughput the architecture in [7] requires an addi-
tional BMU, alternatively memory storing the branch metrics, and an extra SMU
to be able to perform a forward and backward recursion in parallel. Further-
more, all the memories are required to be dual port memories since a read and
write operation are required in each clock cycle. This should lead to an increased
area which table 5.1 also shows. For 16 MAP decoders the area penalty of [7] are
around 0.5 mm2 and for 64 MAP decoders it is around 0.7 mm2 or 1 mm2 without
the stopping criteria.

5.1 Stopping criteria

The main purpose of this thesis was to investigate the potential savings of the
presented stopping criteria and it‘s potential drawbacks. In this section the ef-
fects of the stopping criteria on the performance, power/energy consumption
and area will be discussed. The discussion will mainly focus on the case where
the code rate of 1/3 is used which is done since the behavior at higher code rates
are similar.

5.1.1 Performance VS Savings

In figure 4.5 that shows the BLER for different thresholds it is seen that for the case
of a code rate of 1

3 using the stopping thresholds of 50 and 60 leads to no visible
performance degradation. The threshold of 45 leads to a very small performance
loss at SNR levels above -1 dB while for lower SNR no loss is observed. The
threshold of 40 results in a similar behavior with a more noticeable loss at lower
SNR. Figure 4.5 also shows that thresholds of 35 and 30 leads to a considerable
loss in the performance of the decoder and are thus not viable options at least for
low SNR levels.

In figure 4.6 it is seen that a lower threshold result in a greater reduction in
the number of performed memory accesses and figure 4.4 shows that the same
holds for the number of performed iterations. However, a reduction in the num-
ber of performed iterations is only observed at SNR levels above -0.5 dB. For the
memory accesses, a difference of the threshold magnitude of 5 results in a dif-
ference in the number of memory accesses of around 2 %. The implementation
of the stopping criteria thus makes it possible to trade performance for a greater
reduction of the energy consumption.

As there is no difference in the performance between the thresholds of 50 and
60 there is no real reason to chose 60 since the threshold of 50 leads to greater
savings in the amount of memory accesses. Furthermore the threshold of 45 only
results in a very small performance loss for SNR levels above -1 dB and might
thus be an even better alternative in most cases.

As the SNR increases the BLER decreases and at some point, the BLER will
become so small that even lower thresholds than 45 can be used with no loss in

46 Discussion Analysis

practice. The most optimal threshold thus depends on the channel conditions and
should be set accordingly to achieve the best results. Still, fixing the threshold to
45 when the code rate of 1

3 are used would result in a reduction in the amount of
required memory accesses of between 15 % and 45 %.

5.1.2 Power and Energy

As seen in figure 4.11 using a threshold of 45 leads to a reduction in the energy
consumption of around 17 % at the SNR of -1 dB. At the SNR of 0 dB the reduction
in energy consumption has grown to around 40 % and around the 0.5 dB point of
the reduction is almost 50 %. The stopping criteria thus introduce considerable
savings in the amount of energy consumed by the turbo decoder with no or only
a very small performance loss as previously discussed.

It shall be kept in mind that these simulations were performed using a sliding
window length of 128, instead of the proposed 64, to be able to match the memory
requirements of the implementation with the available memory sizes. The imple-
mentation thus uses a larger amount of memory which should lead to a higher
power consumption. Therefore the amount of consumed energy is expected to be
larger than if a sliding window of 64 were to be used and it is therefore the dif-
ference between the implementations that shall be compared and not the actual
number.

The simulations were also done using the configuration with 8 MAP decoders
running at 200 MHz which as seen in table 4.3 does not meet the throughput re-
quirement of 100 Mb/s. The were several reasons that the 16 MAP configuration
were not used. One was that it was not possible to match the memory require-
ments perfectly with the memories, another is the time requirements. Performing
the high-level synthesis and RTL synthesis for 16 MAP takes several hours thus
the turn around time for correcting problems are large. Furthermore, the mem-
ories used limits the maximum clock frequency to around 200 MHz thus it was
not possible to reach the 100 Mb/s throughput for 8 MAP decoders.

5.1.3 Area

In table 4.2 it is seen that the estimated area penalty of the stopping criteria are
less than 3 % for all configurations when the area of the memories is included. It
should be noted that the area numbers presented are post-synthesis and the area
of the memories have been estimated thus they are an estimation of the real area
which would be obtained after performing the physical layout.

Excluding the memory area, table 4.2 shows that the area penalty due to the
stopping criteria is less than 10 % for all configurations. Considering the potential
savings in energy consumption ranging between 17 % to almost 50 % this area
penalty is a small price to pay.

Discussion Analysis 47

5.2 Conclusions

In this thesis an implementation of an early stopping criterion for a turbo decoder
has been presented. The implementation of the stopping criterion can be config-
ured so that no performance loss are observed compared to an implementation
with no stopping criterion. Yet the energy consumption can be reduced by up
to 50 % in good channel conditions while still providing a reduction of between
10 to 20 % for low SNR levels. The implemented stopping criterion only leads
to a small area penalty of a few percent. Thus the presented stopping criterion
can be implemented with the result of no performance loss while still providing
a considerable reduction in the energy consumption and a small area penalty, all
of which makes it an attractive choice.

5.3 Further Work

A continuation of this work would be to add support for the use of 32 and 64
MAP decoders in parallel to increase the throughput. Another part would also
be to put the implementation through the whole ASIC design flow to get more
accurate estimations on the area as well as the power and energy consumption.
This would require access to a wider range and variety of memory sizes to allow
for an as efficient implementation as possible. Another extension would also be
to investigate the effect of the stopping criteria for other architectures like the one
presented in [7] as well as the effect if a radix 4 architecture would be used. An-
other thing would also be to perform the power simulations for different thresh-
olds as well as for different MAP configurations.

48 Discussion Analysis

References

[1] 3GPP TS 36.212 V10.6.0 (2012-06)

[2] C.Berrou, A.Glavieux, P.Thitimajshima, Near shannon limit error-correcting
coding and decoding: turbo-codes, in: IEEE International Conference on
Communication, May 1993, pp. 1064 - 1070

[3] L. R. Bahl, J. Cocke, F. Jelinek and J. Raviv, Optimal decoding of linear codes
for minimizing symbol error rate, IEEE Trans. on Information Theory , pp.
284 - 287, March 1974.

[4] Silvio A. Abrantes, From BCJR to turbo decoding : MAP algorithms made
easier, April 2004

[5] S Dolinar, D Divsalar, Weight Distributions for Turbo Codes Using Random
and Nonrandom Permutations, TDA Progress Report 42-122

[6] Johan Hokfelt, Ove Edfors, Torleiv Maseng, Turbo codes: correlated extrin-
sic information and its impact on iterative decoding performance, Vehicular
Technology Conference, 1999 IEEE 49th pp. 1871 - 1875 vol.3

[7] Yang Sun , Joseph R. Cavallaro Efficient hardware implementation of a
highly-parallel 3GPP LTE/LTE-advance turbo decoder, INTEGRATION, the
VLSI journal 44 (2011) 305 - 315

[8] Christoph Studer, Christian Benkeser, Sandro Belfanti, Qiuting Huang, De-
sign and Implementation of a Parallel Turbo-Decoder ASIC for 3GPP-LTE,
TO APPEAR IN IEEE JOURNAL OF SOLID-STATE CIRCUITS 2011

[9] C.-C. Wong, H.-C. C. Y.-Yu Lee, A 188-size 2.1mm2 reconfigurable turbo de-
coder chip with parallel architecture for 3GPP LTE system, in Symp. VLSI
circuits dig. tech. papers, Kyoto, Japan, June 2009, pp. 288 - 289

[10] M Andrei, L Trifina, D Tarniceriu, INFLUENCE OF EXTRINSIC INFORMA-
TION SCALING FACTOR ON MAX-LOG-MAP DECODING ALGORITHM
FOR TURBO CODES WITH TRANSMISSION ON CHANNEL AFFECTED
BY MIDDLETON CLASS-A IMPULSIVE NOISE

[11] C. Bernard Shung, Paul H. Siege1, Gottfried Ungerboeck, Hemant K. Tliapar,
VLSI Architectures for Metric Normalization in the Viterbi Algorithm

49

50 References

[12] J. Sun, O.Y. Takeshita, Interleavers for turbo codes using permutation poly-
nomials over integer rings, IEEE Trans. Inform. Theory 51 (January) (2005)
101 - 119.

[13] Jorge Castinera Moreira, Patrick Guy Farrell, Essential of Error-Control Cod-
ing, chapter 1 p. 22 - 26

[14] Jorge Castinera Moreira, Patrick Guy Farrell, Essential of Error-Control Cod-
ing, chapter 6 p. 189 - 192

Tu
rb

o
 d

eco
d

er w
ith

 early sto
p

p
in

g
 criteria

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, 2016.

Turbo decoder with early stopping
criteria

Henrik Ljunger

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2016-551 http://www.eit.lth.se

H
e

n
rik Lju

n
g

e
r

Master’s Thesis

