
High speed detecting and identification
for car charging on electric roads

IULIANA STOICA AND VIKTOR NYBOM
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY |
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2017

IU
LIA

N
A

 STO
IC

A
 A

N
D

 V
IK

TO
R

 N
Y

B
O

M
H

igh speed detecting and identifi
cation for car charging on electric roads

LU
N

D
 2017

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2017-564

http://www.eit.lth.se

High speed detecting and identification for car
charging on electric roads

Iuliana Stoica And Viktor Nybom

Division of Industrial Electrical Engineering and Automation
Faculty of Engineering (IEA), Lund University

Department of Electrical and Information Technology (EIT)
Lund University

Supervisors:
Lars Lindgren (IEA)

Fredrik Tufvesson (EIT)

Examiners:
Mats Alaküla (IEA)

Mats Gustafsson (EIT)

March 2, 2017

c© 2017
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

The constantly increasing awareness of protecting the environment has put electri-
cal roads in the spotlight as an alternative solution to fossil driven means of trans-
port. Dan Zethraeus has developed an innovative idea for a prototype electrical
road which conductively supplies power to the cars whilst driving. The concept is
to place a line of short rail segments in the middle of the drive lanes where each
rail can have either grounded or positive polarity. The aim of this thesis work is
to find solutions for the timing, detection and identification of cars so that the
positive conductive rails are switched on correctly. The possible electromagnetic
interference from the road is to be investigated and the communication methods
adjusted accordingly. Finally, a demonstrator is built as a proof of concept for
illustrating and testing the presented solution.

This report starts by presenting possible theoretical solutions for the detection and
identification. Experiments that are set up to further analyse the most promising
methods, and also the construction of the electronics for the detection and iden-
tification modules of the demonstrator follow. Furthermore, a simulation setup
for analysis of the electromagnetic interference is tested. The complete solution
and the whole setup of the demonstrator is presented in the last part. Results
are presented for the performance of the demonstrator when tested on a real car
driving at 30 km/h.

i

Terminology

EMI - electromagnetic interference
RFID - radio frequency identification
RSU - radio station unit
TSS - Traffic Supervisions Systems

ii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Related work . 1
1.3 Aim of this thesis work . 3
1.4 Limitations . 3

2 Approach 5
2.1 Approach and dividing the problem 5
2.2 Finding information . 5

3 Theoretical solutions 7
3.1 Solutions for car identification . 7

3.1.1 RFID technology . 8
3.2 Solutions for car positioning . 13

3.2.1 Identifying antenna signal strength 14
3.2.2 Doppler effect . 14
3.2.3 Inductive detection . 16
3.2.4 Conductive pickup signaling . 19
3.2.5 Short circuit detectors on rail 20
3.2.6 Hall effect sensors . 21
3.2.7 Sound and vibration . 21

3.3 Different communication schemes 22
3.3.1 Scenario one . 22
3.3.2 Scenario two . 23
3.3.3 Scenario three . 23

4 Analysis and testing 25
4.1 Car positioning . 25

4.1.1 Pendulum as experimental setup 25
4.1.2 Inductive system from the previous thesis work 26
4.1.3 Experimenting with different near field antennas 29
4.1.4 Simulating, testing and building 31
4.1.5 Testing the detection on a road with a car 39

4.2 Car identification . 42

iii

4.3 EMI . 43
4.3.1 EMI from electric car . 47

4.4 The Complete system . 47
4.4.1 Building . 48
4.4.2 Programming . 49
4.4.3 Final test . 50
4.4.4 Result . 51

5 Discussion and future work 57

A Program Code 59
A.1 Receiver Arduino Due: The rail road computer 59
A.2 RSU . 81

A.2.1 StartServerUDP.java . 81
A.2.2 Monitor.java . 84
A.2.3 RoadConnectionUDP.java . 86
A.2.4 CarServerThread.java . 93
A.2.5 RecThread.java . 93
A.2.6 RSU2Road.java . 97

A.3 Car code . 98
A.3.1 serial.c . 98
A.3.2 testSync.cc . 100
A.3.3 monitor.h . 104
A.3.4 monitor.cc . 104
A.3.5 connection.h . 106
A.3.6 connection.cc . 108

iv

Chapter1
Introduction

1.1 Background

There is a consensus that greenhouse gas emissions must be reduced in order to
keep the planet in the stable state which we are used to Oreskes [2004]. One way to
reduce emissions is by working towards using renewable energy. About a quarter
of the energy usage in Sweden comes from the transport sector and road traffic
stands for 94% of this energy consumption [Ene, 2013, p.32]. Most of this traffic
is still in need of fossil fuel and the swedish government has the goal of a ’fossil-
free vehicle fleet’ as of year 2030. [fos, 2013, p.35]. The inventor Dan Zethraeus
is working on an idea for a prototype electric road, called ElOnRoad, with the
aim of lowering the need of batteries and the need to stop and recharge electric
vehicles. If the whole vehicle fleet can be driven by electricity then the problem
has been minimized to that of making fossil-free electricity in the power-grid. Dan
Zethraeus’ idea is to place a line of short rail segments in the middle of the traffic
lanes and have conductive sliding contacts mounted underneath the vehicles. The
rail segments are placed so that every second segment is connected to ground as a
negative polarity terminal and every other segment can be switched between the
grounded negative polarity and a positive polarity. In this way a car with three
sliding contacts and rectifiers can get constant DC power as shown in figure 1.1.
The rail segments are thought to be one meter in length and have a short isolated
area between each other. This master thesis aims to solve the timing, detection
and identification of cars so that the switching of the positive conductive rails is
done correctly. A demand on the system is that there should only be rails turned
on underneath a correctly equipped electric car.

1.2 Related work

There have been several master theses involved in the ElOnRoad project prior to
this one.

1

2 Introduction

Figure 1.1: Electric road giving constant DC power to a car with
three sliding contacts passing over it.

Philip Abrahamsson Completed his master thesis [Abrahamsson, 2015] on a
first overall design. Part of the focus was on simulating the magnetic prop-
erties and design of over-voltage protection using LT-spice, Matlab and
FEMM. Abrahamsson also did simulations on lightning strikes hitting the
road and what effects this would give. Abrahamsson’s results on magnetic
properties have been background knowledge in our work, although the ge-
ometry doesn’t fully align.

Marcus Andersson Completed his master thesis [Andersson, 2014] with focus
on the switching circuit in the rails. Andersson was also part of building
and fitting all the electronics in a full-scale proof of concept.

Henrik Fritzon Sund Completed his master thesis [Sund, 2014] with focus on
detecting a vehicle and creating a control system for activating the switching
of an individual rail. Sund’s work has been of great help to us and a great
part of our master thesis is a further development of his work and thoughts.

Filip Lillevars had not fully completed his master thesis before we wrote ours
but given support in first hand on our work.

Emil Landqvist & Theodor Hallerby Completed their master thesis [Landqvist
and Hallerby, 2015] with focus on developing a more comprehensive model
of the road. The main focus has been on the thermal aspects and analysing
overheating in different environments.

There are a couple of other electric road projects emerging in Sweden. The two
biggest are shortly mentioned here.

Elways [elw, 2015] Is a system that allows both heavy and light electric vehicles
to charge while driving. The system consist of a rail in the road, with sliding
slots. An arm on the vehicle can grab on to the rail and have a conductive
transmission of power.

Introduction 3

eHighway [sie, 2016] Is a system that lets trucks and high vehicles to charge
while driving. In this system there are power lines hanging over the road
and the trucks have pickups mounted on the roof. Quite similar to a the
electric train network.

Other work found to be related to this master thesis is the use of RFID in train
systems and car positioning described in section 3.2.1.

1.3 Aim of this thesis work

The aim of this thesis work is:

1. To come up with a theoretic solution to uniquely identify a correctly equipped
car, traveling at speeds between 20 km/h and 200 km/h and to determine
when to activate and deactivate the positive one meter rail segments in the
electrical road ElOnRoad. This should have enough accuracy so that a rail
is only active when it absolutely needs to be and no high potential parts
point out from under the passing car.

2. To identify and determine the possible electromagnetic interference from the
road and compensate the communication for this.

3. To build a demonstrator as proof of concept capable of identifying, position-
ing and correctly activating something at a speed of around 50 km/h.

1.4 Limitations

Some parts of the combined and full solution as well as some minor parts of
our work have been left out since it could hinder Dan Zethraeus from protecting
sensitive parts of his invention.

Identification methods using cameras or lasers are not considered in this report
since the environment around a road can get wet and dirty and components
mounted on a car are subject to high tear.

This master thesis aims at designing a proof of concept turning on LED lights
instead of a power giving rail. This thesis does not aim at finding or using
components or optimizing code for use in a real prototype with demands on
heat and durability.

It is in this report expected to be sufficient length between the ends of the car
and the sliding pickup contacts relative to the length of a rail to make sure
it is possible to have no active parts peek out from under the car.

In between standstill and 10 km/h are considered special conditions and will not
be the focus of this thesis work.

4 Introduction

Chapter2
Approach

2.1 Approach and dividing the problem

The aim of this master thesis is to both identify a specific car and to accurately
determine a defined position of the car in order to switch the rail on and off with
the correct timing. As a first approach, the idea of using RFID (radio frequency
identification) and the inductive detection circuit built by Fritzon were further
examined, [Sund, 2014, p.5-17]. After gaining some understanding of how RFID
systems work (see section 3.1.1), it was decided to handle the theoretical solution
for the identification and precise positioning separately. Different possible ways
to determine the position of the car are presented in section 3.2. After this an
analysis of possible ways to combine the solutions with RFID are discussed in
section 3.3. The chosen solution is then tested and analyzed in chapter 4 where
finally a complete test of the proof of concept is carried out and described in
section 4.4.

2.2 Finding information

A lot of knowledge and know-how from courses attended at LTH have been of use to
us working with this thesis project. Most of the knowledge and information about
radio transmission and RFID are gathered from the RFID Handbook [Finkenzeller,
2010] and from various research articles found on the Internet. Our supervisor
Lars Lindgren has been a great help to most of our other needs of finding and
gaining information and knowledge about everything from EMI (electromagnetic
interference) to design and measurements.

5

6 Approach

Chapter3
Theoretical solutions

The overall idea for the system, shown in Figure 3.1, is to use a two-way com-
munication link between each car and a Radio Station Unit (RSU) marked as A.
Between each charging rail there is a possibility to place a radio detector or re-
ceiver, marked as C in the picture. This since the material in the isolation part
is not blocking radio waves and magnetic fields as the material in the conductive
rails does.

Figure 3.1: Sketch of the overall idea of the system.

3.1 Solutions for car identification

Methods presented in this chapter are based on RFID (radio frequency identifica-
tion) technology which is more suitable for this application.

7

8 Theoretical solutions

3.1.1 RFID technology

A RFID system consists of two main parts, the interrogator, or the reader, and
the transponder which is located on the object to be identified [Finkenzeller, 2010,
p. 6]. The reader generates a radio signal and when a transponder is located
within the reader’s range and can pick up the signal it gets activated and starts
data exchange. The transponder consists of a coupling element and a microchip
where data is stored and modulation is done. A transponder can be passive if it
gets power supplied by the field generated by the reader or active if it has its own
power source.

Communicating data can be done in full-, half-duplex or sequential mode. In full-
duplex mode both sides are sending and receiving data simultaneously, whereas in
half-duplex and sequential mode reader and transponder are taking turns on send-
ing data. Transfer of energy from reader to transponder is continuous in duplex
mode but it occurs only in between the messages in sequential mode [Finkenzeller,
2010, p. 39]. All digital modulation techniques can be used to transmit data but
amplitude shift keying is the one most commonly used. There are a few coupling
methods,i.e ways of energy transfer between reader and transponder. Based on
reasonable distance ranges for this applications and availability of products on the
market this report will only review inductive and backscatter coupling [Finken-
zeller, 2010, p. 22, 45].

A quick review of radio waves and the different kind of fields that can be found
around an antenna is given for a better understanding of the coupling methods.
The regions surrounding an antenna are usually divided into three zones: reactive
near-field, radiating near-field (Fresnel) and far-field (Fraunhofer) [Balanis, 2005,
p. 34]. The transition boundaries between these regions are gradual but there
are general approximations that work for most antennas. The transition from
reactive near field to radiating near field and far field is usually approximated by
the transition distances r1 and r2 [Balanis, 2005, p. 34]:

r1 = 0.62 ·
√
D3/λ

r2 = 2D2/λ,

where D is the largest dimension of the antenna and λ is the wavelength, see figure
3.2. Note that D must be much larger than the wavelength for these boundaries
to be valid. For very short dipole antennas, where the largest dimension of the
antenna is less than the wavelength, the transition out of the reactive near-field is
according to Balanis often approximated by:

r1 = λ/2π, (3.1)

Radio waves are electromagnetic radiation created by accelerating charges. This
movement of charges generates electric and magnetic fields which together form
electromagnetic fields. In the reactive near-field, which is the region closest to

Theoretical solutions 9

Figure 3.2: Field regions of an antenna, where r1 and r2 indicate
the transitions into the reactive near-field and the far-field re-
spectively.

the antenna, the electric and magnetic fields have greater magnitudes and varying
phases. Also the pattern of the electromagnetic wave is not fully formed yet and
the electric and magnetic fields decay with the square and cube of the distance
to the antenna respectively [Rudge et al., 1982, p.13]. In the radiating near-field
region, the radiating fields dominate but the pattern still varies with the distance.
And finally in the far-field the electric and magnetic fields are orthogonal to each
other and the radiation pattern of the electromagnetic waves decays linearly with
the distance which means it does not significantly vary with distance anymore
[Rudge et al., 1982, p.13].

3.1.1.1 Inductive coupling

Inductively coupled RFID systems usually have a passive transponder which is
energized by magnetic fields in the near-field of the antenna [Evdokimov et al.,
2010, p.7]. On the transponder side there is an LC circuit that resonates at a
specified frequency, the coil is the coupling element and works as an antenna.
The reader generates an alternating magnetic field which induces a voltage in the
transponder’s antenna. This voltage is rectified and will be the power supply to
the microchip, see figure 3.3.

The induced current will have opposite sign and act against the generating mag-
netic field according to Faraday’s induction law. This means the induced current
creates a magnetic field of its own which induces a voltage in the generator coil
on the reader side causing a voltage drop and thus a weakening of the magnetic
field strength on the reader side. By switching a load resistor on and off the
transponder can change the magnitude of this voltage drop and let the switch

10 Theoretical solutions

Figure 3.3: Sketch showing the principle of inductive coupling

timing be controlled by the data to be sent. Transmitting data this way is called
load modulation, [Finkenzeller, 2010, p.40-43]. Inductively coupled systems can
operate in the LF (low frequency) range usually around 125 kHz with a range of
up to 0.5 m and HF (high frequency), usually 13.56 MHz with a range of up to 1
m, [Evdokimov et al., 2010, p.7]. The near field at 13.56 MHz is roughly limited to
3.5 m according to 3.1 mentioned earlier. Practical limitations do however reduce
the range to about 1 m. Range is thus one of the main factors that affect the
frequency choice and antenna dimensions for an RFID system. One disadvantage
with inductive coupling is susceptibility to electromagnetic disturbances such as
those generated by welding robots or strong electric motors [Finkenzeller, 2010,
p.26].

3.1.1.2 Backscatter coupling

In backscatter coupling the reader’s antenna sends electromagnetic waves that are
reflected back by the transponder antenna. The way in which the electromagnetic
waves are reflected back depends on the properties of the transponder such as
cross sectional area and antenna characteristics. The reflection cross-section can
be altered by a load connected to the transponder’s antenna and thus data can be
sent by modulating the reflected amplitude.

Since backscatter systems operate in the far-field of an antenna they usually have
a range of more than 1 meter and the most common operating frequencies for
backscatter coupling are 868 MHz (Europe) and 915 MHz (USA) or the microwaves
band. [Finkenzeller, 2010, p.156]. Because of the long range the radiated power
is low so the transponder usually is of active type. Data transmission still relies
exclusively on the power in the electromagnetic field emitted by the reader but is
according to Finkenzeller more robust against electromagnetic disturbances than
inductive coupled systems, [Finkenzeller, 2010, p.45-48].

3.1.1.3 Applications

RFID technology has been widely used in the transport sector for speed measure-
ments, vehicle counting, wagon tracking, updating time tables for bus and train
arrivals, electronic toll collection (ETC) and more [Xiaoqiang and Manos, 2011].

Theoretical solutions 11

This section will present a few examples of relevant high-speed RFID applications
and experiments.

LF spectrum

Most of the RFID applications in the LF (low frequency) spectrum have an op-
erating frequency of 125 kHz. TSS (Traffic Supervisions Systems) is a company
which has developed solutions for several ITS (Intelligent Transportation System)
applications for roads and railways. Their systems can be structured into two
categories: AVI (Automatic Vehicle Identification) and AVL (Automatic Vehicle
Location). In AVI systems the tags are placed on the vehicle and readers in the
infrastructure. In AVL systems the reader is mounted on the vehicle and tags are
placed at specific positions in roads/railways, each tag corresponding to a location
registered in a database. The read tag ID can for example be sent to a central
information system via radio or just used by the car processing unit for different
purposes.

One of the company’s AVL systems, called TPL (train position locator), has inter-
esting specifications. It has a speed range of 0-300 km/h with a position accuracy
of ± 1 cm at low speeds and ± 50 cm at the maximum speed, [TSS, 2015]. The
antenna dimensions are 108x335x59 mm and the tag housing has a diameter of
40 mm and a length of 330 mm. The EMI environment under a train should have
similarities to the one under a car getting power supplied conductively driving on
an electrical road. The specifications of this system makes it very interesting for
the project.

HF spectrum

RFID systems with an operating frequency of 13.56 MHz are said to be working
in the HF (high frequency) spectrum. Optys Corporation, an RFID design and
developing company has done high-speed reading tests with a 19.5 cm long tag
and 30x10 cm antenna at an operating frequency of 13.56 MHz. The tag was
attached on top of a H0 scale model train and the antenna was suspended above
the rails. When moving at the speed of 113 km/h the tag was successfully read
once. Unfortunately a documentation report could not be found but a video of the
experiment can be watched at [Optys Corporation, 2011]. The distance between
the reader and the tag is not specified but judging from the video it may be
roughly 10-15 cm. The standard used in this system is ISO 15693 which includes
basic communication protocols and anticollision algorithms which allow tags to
take turns in communicating with the reader.

UHF spectrum

The standard called EPC Global Gen2 specifies RFID systems with a range of 2.5
cm - 10 m and operating frequencies in the UHF (ultra high frequency) spectrum

12 Theoretical solutions

(858 - 930 MHz). Each RFID tag, active or passive, contains an universal identifier
in the form of an EPC code (electronic product code) saved on the memory chip.

This protocol is built to suit inventories in warehouses where many products have
to be identified fast and information such as shelf life, shipping date have to be
read/written to a tag. Therefore the reader has to go through these three states:
select (where a population of tags are selected for inventory), inventory (where
each tag is identified by its EPC) and access (where the reader can read/write
to the tag’s memory chip). The tag goes through the following states for com-
munication: ready (waiting to be selected for an inventory), arbitrate (has been
selected but waits for its turn to identify itself), reply(identifies itself), acknowl-
edged (identification succeeded), open and secured (access to the tag’s memory),
[epc, 2008, p.45-48].

Harting Technology Group (HTG) has done high-speed tests using their SL89
RFID tag, RF-R500-p-EU reader and WR80-30 antenna. The antenna’s operating
frequency is specified to 902-928 MHz and the tag uses the standard EPC Gen2.
The tag was mounted on the car facing the side of the road where the reader
was placed at a distance of 2.5 m at the passing point. When driving past the
antenna at 200 km/h HTG got 9 correct readings of the 96 bit EPC identifier.
Using their smaller Ha-VIS RF-ANT-WR30-EU antenna and Ha-VIS RF-R500-
c-EU reader HTG still got 1 correct reading at 200km/h. Further specifications
of the experiment and a video can be found at [Wermke et al., 2014a], [Wermke
et al., 2014b].

Another highly interesting application is ATIS (Automatic Train Identification
System) which is primarily used in identifying cargo trains usually traveling at
speeds less than 100 km/h, [Xiaoqiang and Manos, 2011]. This system has been in
use in China since 2007. A UHF reader is placed between the rails and a passive
tag is mounted on the train and its reading distance is specified to about 1.4 m.
Since it would be unnecessary for the reader to constantly be turned on, magnetic
steel detection systems are placed at distances of 40-50 m from the reader to send
turn-on and turn-off signals to the reader when trains are approaching or leaving
the area. When a train is approaching, the reader gets turned on and the read tag
ID is sent further to a central information system which can update time tables
for example. The reader is then turned off when the train has activated the other
magnetic steel detection system. The system also includes a module which can
write information to tags.

It seems like there is a large focus on research regarding the adjusting of such
a system to modern high-speed and ultra high-speed trains which can reach a
velocity of up to 500 km/h. The biggest challenges are the tag latency and the
fact that the tag is within the reading range for a very short period of time for
very high speeds, [Xiaoqiang and Manos, 2011].

Theoretical solutions 13

Choosing frequency and protocol

The reading distance needed between reader and transponder will decide the ap-
propriate coupling method to be used. Power losses in the environment in which
the system is meant to be used, the regulations for the allowable radiated power
specified for each frequency range and limitations on antenna sizes give further
constraints.

As mentioned before the power of the magnetic field decays with the cube of the
distance in the near-field which corresponds to 60 dB/decade. Thereafter the
power of the electromagnetic field decays linearly with distance in the far-field
which corresponds to 20 dB/decade. The specifications for the maximum allowed
transmit power is usually given as the field strength at a distance of 10 m from
the reader. Lower frequencies have a larger near-field region according to equation
3.1 which means a higher initial transmit power will decay to the same strength
at 10 m as a lower initial power transmitted at a higher frequency, [Finkenzeller,
2010, p.162] This is an interesting optimization aspect when choosing to work with
inductively coupled systems. A lower frequency means a slower reading speed
though since there are fewer wave periods per unit of time to process. The reading
range could instead be increased by using larger tags, and thereby get a longer
time window and more time for the reading to take place.

The environment of an RFID system can cause problems. Metallic surroundings
can affect the strength of the field between reader and transponder and thus reduce
the reading area. This is due to eddy currents induced in the metal which oppose
the initial field according to Lenz’s law. There are many solutions to this problem,
one of them being ferrite shielding where a piece of ferrite with high magnetic
permeability is placed between the antenna and the metal. This will prevent eddy
currents but the field strength may get higher so adjustments have to be made,
[Finkenzeller, 2010, p.107-108].

An issue with using UHF RFID is that the operating frequency allowed varies and
there exists one standard in the US and one standard in EU. To maximize the
efficiency of the antennas of the reader these are often tuned to either the EU
standard or the US standard and not both. So to use the UHF system in the
whole world both antenna standards would need to be installed.

In an application such as identifying objects moving at high speeds a simple pro-
tocol would be the best suited. The extra functionality that EPC gen2 has is not
needed in this case and would contribute to longer read latency, mostly because
of the anti collision algorithms.

3.2 Solutions for car positioning

In this section the different methods that were considered for the the positioning
are described. Since no electric active parts are allowed to be exposed in front or
back of the car the positioning needs to be accurate to within centimeters, even at

14 Theoretical solutions

higher speeds. As the environment can get dirty and the electrical road is subject
to wear and tear some methods as for example methods using photodetectors are
not suitable for this system and will not be further discussed in this report.

3.2.1 Identifying antenna signal strength

This method requires two transmitter antennas on the car and one after each
power delivering rail.

Figure 3.4: Car positioning using two antennas that send synchro-
nized as seen in A. The third antenna (placed in the road)
detects when the two signals have the same strength as seen in
B.

The car’s position is identified when the receiver antenna registers the same signal
strength from both transmitter antennas, see figure 3.4. Trying to compare two
signal strengths is problematic since the signals can get affected differently by the
surroundings. Electromagnetic interference from the road can for instance affect
the reception. Thus the amplitude of the received signals does not only depend on
the distance from the car. This makes it difficult to determine when the two signals
have the same amplitude. Since the positioning also has high time constraints there
is a very short time window for processing the data more thoroughly in order to get
higher accuracy. This idea is decided to be to problematic and not to be analyzed
any further.

3.2.2 Doppler effect

The components required are one receiver antenna after each power delivering rail
and one/two sending antennas on the car.

Theoretical solutions 15

Having a radio transmitter on a moving car, the intercepted frequency will be
higher than the source frequency when the car is approaching the receiver and
lower when the car is moving further away due to the Doppler effect. Therefore the
difference between the observed and emitted frequency will have a step form going
from positive to negative if the transmitter is approaching the receiver directly.
Using this method the position of the car is detected by identifying this frequency
hop, see figure 3.5.

Figure 3.5: Car positioning by detecting the frequency hop caused
by the Doppler effect. The car (marked as the red square) is
moving from left to right with constant speed as indicated by
the velocity vector vs. At the time instances t1, t2 and t3 the
received frequency will be higher, equal and lower than the sent
frequency respectively.

The formula describing the relationship between the emitted frequency, fs and the
received frequency fr for a stationary receiver is:

fr =
c

λ
=

c

c± vs
· fs,

where λ is the wavelength, c is the speed of light and vs is the radial component
of the speed of the transmitter, i.e the velocity component along a straight line
between the transmitter and receiver, [Tipler and Gene, 2008, p.518-519]. Since the
received frequency is higher when the transmitter is approaching, the wavelength
will be shorter and that is when the velocity gets a negative sign as indicated by
the formula.

In this case the receiver is approached at an angle because the transmitter is placed
on the car at a height h from the road. The radial component of the velocity
will thus not switch signs directly when passing the receiver but rather make a
slower transition depending on the angle, see figure 3.5. This is the reason why
the frequency hop does not change like a perfect step curve but it monotonically
decreases instead. The effect of the height on the change in frequency can be seen
in figure 3.6a for relevant heights between 10-30 cm, which is a reasonable range

16 Theoretical solutions

(a) (b)

Figure 3.6: Doppler shift at 1 GHz and 100 km/h passing speed
with detector placed after 1 m for a) different heights h of car
ground clearance and b) different sideway positions s. The blue
line corresponds here to the car being in the other lane.

for the ground clearance of a car. The figure also shows that the Doppler shift is
about 200 Hz in total for a 1 GHz wave, if the car travels at 100 km/h. Moving
laterally relative to the receiver will give less change in frequency, see figure 3.6b,
where a movement of 3.25 m means that the car has switched lanes, considering
that a typical bidirectional road has a width of 6.5 m, [VGU, 2004].

In the scenario with one transmitter antenna, this should be placed on the front
part of the car in such a way that when the position has been detected the on-signal
to next rail should be sent. The off-signal to the rail about to be left behind can
then be calculated with the help of the speed and the distance between the antenna
and the last pickup (assuming this is some standard or that it is communicated
to the system by the car) and adding some time margin. In the scenario with
two antennas, the additional antenna would be placed on the back of the car and
would signal when a rail should be turned off. The latter scenario is more accurate
in case the car is accelerating but also safer in case something goes wrong, like an
accident, corrupt speed data or other errors in the system.

The problem with this method is once again the accuracy. The method first
demands very stable frequency references for the signals of the transmitter and
receiver antennas. Secondly as seen in picture 3.6a the accuracy of the frequency
shift is very dependent on the height difference between transmitter and detector,
making the method harder to realize for a fast and high accuracy detection.

3.2.3 Inductive detection

The principle of magnetic induction is a common way of detecting cars approaching
drive-throughs and traffic lights. These detectors are usually called inductive-loop
traffic detectors and consist of wire loops installed in the roadways and a processing

Theoretical solutions 17

unit. The loop is oscillating with a certain frequency which increases as a car passes
over it because the large amount of metal on the car lowers the inductance of the
loop. Changes in frequency are processed and give the detection signal.

Using magnetic induction in traffic applications has many advantages. It is a
simple solution. It is very resistant to wear, tear and dirty environments. This
method does not have enough accuracy to be used for identifying the position
of a car on an electric road though. The idea of using magnetic induction and
two resonant circuits has however been analysed and tested with good results
in a previous master thesis [Sund, 2014] where a proof of concept was built to
detect a car. The system, shown in figure 3.7, consists of a series LC circuit as
a transmitter and a parallel LC circuit as a receiver. Both tuned at the same
resonant frequency. The working principle is relying on the fact that alternating
current flowing through the transmitter circuit generates an alternating magnetic
field, which can induce a voltage in the receiver circuit. In a way, simplified, this
is the same way that the RFID systems work. A parallel LC circuit is used on
the receiver side because it has a high impedance at resonance while a series LC
circuit has a low impedance which enables high current through it which is needed
to create a strong magnetic field.

Figure 3.7: Illustration from earlier master thesis [Sund, 2014, fig
3, p.7] showing the differences of the resonance circuits at the
transmitter and receiver.

At the resonant frequency an LC circuit is purely resistive which means the re-
actances of the inductor and the capacitor cancel each other out. The resonance
frequency in an LC circuit is then given by:

2πf0L =
1

2πf0C
⇔ f0 =

1

2π
√
LC

, (3.2)

where L and C are the inductance and the capacitance.

As a measure of efficiency in a resonant circuit, the quality factor Q is defined as
the ratio between the energy stored in the circuit and the average power dissipated.

18 Theoretical solutions

For a resonant circuit with an sinusoidal input signal with the angular resonant
frequency ω, the expression is:

Q = ω
energy stored

average power dissipated
.

The total energy in a resonant circuit is constant at resonance and oscillates back
and forth between the inductor and capacitor. This means that the total energy
stored in the system at any time is equal to the maximum energy stored in either
the inductor or the capacitor. Since the system is purely resistive at resonance
the average power loss is simply Pavg = I2pkR/2, where Ipk is the peak current,
[Thomas, 2004, p.87-92]. The Q factor in a series RLC circuit at resonance can
then be derived as follows:

Q = ω0
Etot

Pavg
= ω0

1
2LI

2
pk

1
2I

2
pkRs

= ω0
L

Rs
=

√
L/C

Rs
, (3.3)

The formula for the Q factor in a parallel RLC circuit can be derived in a similar
way to:

Q = ω0RpC =
Rp√
L/C

, (3.4)

The Q factor is not only an indicator of efficiency but since it is a function of
power losses it relates to the bandwidth and ringing in the circuit as well. Solving
the equation |H(ω)| = 1/

√
2 for ω gives two solutions, ω1 and ω2 which are the

frequencies at which half power occurs. This gives the following bandwidth for the
series and parallel circuits:

∆ω = ω1 − ω2 =

{
R/L, (series)

1/RC, (parallel)
, (3.5)

By putting eq. 3.3, 3.4 and 3.5 together it can be showed that the bandwidth in
a resonant circuit is:

Q =
ω0

∆ω
, (3.6)

Factorising the transfer function and inverse transforming to get the impulse re-
sponse in the time plane, gives an expression for the time constants for a parallel
and series RLC circuit. The time constants are 2RC and 2L/R. Using this to-
gether with eq. 3.3 and 3.4 gives the following relationship between the Q factor
and the time constant in a resonant RLC circuit:

Q =
τω0

2
(3.7)

Theoretical solutions 19

Thus the Q factor is a useful parameter when designing a resonant circuit not only
as a measure of efficiency but also bandwidth and time constant. A higher Q value
means a smaller bandwidth but a higher time constant which means the ringings
in the oscillations will die out slower.

Sund’s idea and ground work shows good potential and should be analyzed further.
There is for instance a lack of experimentation and analyses of how accurate or fast
the system is or could be. In his system a simple amplitude comparative method
is used to detect the car [Sund, 2014, p.51-58] which leaves much to wish for in
accuracy.

3.2.4 Conductive pickup signaling

Using the fact that the pickups have conductive contact with the rails and the
power is transmitted as direct current it would be feasible to send a sinusoidal
signal down from a pickup to a rail. If two pickups send two different sinusoidal

Figure 3.8: Positioning using pickup two (p2) and three (p3), each
sending a sinusoidal signal with a specific frequency down to the
rails. When p2 makes a jump from rail C to rail B the control
unit turns on rail A. When (p3) makes a jump from rail C to
rail B the control unit turns off rail C. In the figure there are
also antennas to show the use of wireless positioning.

signals it would be possible to distinguish the pickups from each other as seen in
figure 3.8. If one signal is detected at one of the rails by the control unit and then
detected at the adjacent rail by the next control unit, it is said that a jump has
occurred. The more accurately this jump is detected, the more accurately can the
position be decided. At low speeds this jump would probably be detected directly
as it occurs. As the pickups might bounce off the road it could get difficult to
accurately detect the signal at high speeds. Challenging parts of this method are
high pass filtering the signal from the power rails, and the need for the power rails
and pickups to be high frequency isolated from neighboring pickups and rails.

20 Theoretical solutions

3.2.5 Short circuit detectors on rail

Instead of sending and detecting a signal sent through the pickups it could be
possible to design the rails so that a passing pickup could trigger short circuits
placed at specific positions on the rail as seen in figure 3.9. In order to make the
detection more robust against false positives, detection when no detection should
occur, two short circuits at two different positions on the rail can be designed to
occur at the same time. To make double detections occur when it is time to turn
a rail on or off, four short circuit gaps have to be placed on the rail. As shown in
figure 3.9, equidistantly placed pickups cause the short circuit detection pattern to
include two double detections of each of the double detection gap pairs. This can
be seen in figure 3.9 where for instance the times t1 and t4 have the same short
circuit gap pairs. One way to make sure that the switching of a rail takes place

Figure 3.9: The case where the cars have equally spread pickups
p1-p3. The rail is equipped with four gaps along z-axis with
potential difference to the rail that the pickups short circuit
when they move over them. The gaps are placed so that two
pickups short circuit gaps at the same time when a rail should
be turned on (t3) or turned off (t4).

at the correct detection is to have a state machine in the control unit code. This
state machine goes through the states resembling the timelines in the graph shown
in the lower left of figure 3.9 and therefore knows when the correct detection pair
occurs.
Another way to distinguish between correct and false detection pairs is to move
the middle pickup on the car a little to the side. This has been done in figure 3.10
where the middle pickup (p2) has been moved backwards and the positioning of
the short circuit detectors on the rails has been moved. This gives rise to a new
detection pattern as shown in the lower left of figure 3.10 that don’t have doublets
of the detection pairs as the previous method had.

These conductive short circuit methods might work using hall detectors instead
and in that way eliminating the need for isolated conductive parts and the risk

Theoretical solutions 21

Figure 3.10: The case where the cars have equally spread pickups
p1-p3. The rail is equipped with four gaps along z-axis with
potential difference to the rail that the pickups short circuit
when they move over them. The gaps are placed so that two
pickups short circuit gaps at the same time when a rail should
be turned on (t3) or turned off (t4).

of the pickup jumping over the detection area as well as easier rail design. This
could be further investigated later.

3.2.6 Hall effect sensors

The concept is the same as in the short circuit method in 3.2.5, but with Hall
effect sensors instead of short circuit sensors. By placing electromagnets on each
side of pickup 3 and Hall effect sensors before each ground rail it should be possible
to make an accurate detection.
The Hall effect is the phenomenon arising when an electric current passes through
a metal located in a magnetic field. A potential proportional to the current and
the magnetic field arises perpendicular oriented to them both. [Hall, 1879]. Hall
effect sensors are commonly used for measuring rotational speed of motors. Often
the sensors are of either a linear version or an on-off switch version. The analog
sensors give an output proportional to the strength of the magnetic field whilst
the switching version acts as a saturated transistor. For the sensors to work in the
setup presented in 3.2.5 there can’t be any ferromagnetic material placed between
the magnet and the sensor which might be hard to achieve in the final design.

3.2.7 Sound and vibration

The frequency content in the sound wave that arises when the pickup has contact
with the conductive material of the rail should be very distinct and different from

22 Theoretical solutions

that when the pickup has contact with the isolation material between the rails.
It should be possible to determine when a pickup leaves and enters a rail using
one or more vibration sensors in the area around the isolator parts. It might
also be possible to analyze the sound and see distinctive changes in the vibrations
depending on how many pickups that are on the same rail. If the hardware and
the algorithm doing this can be made fast and cheap enough it is a possible way
for precise detection. The method is however somewhat difficult to realize since
no pickups have been designed or built yet to test this out on.

3.3 Different communication schemes

Different scenarios for the communication in the overall system have been briefly
analyzed. Figure 3.11 is meant to help visualizing them all. The possible com-
munication channels considered are a two-way communication link between each
car and the Radio Station Unit (RSU) placed on the side of a road at appropri-
ate intervals. The RSU uses some sort of radio communication, wifi or 3/4G, to
communicate with each car, marked by A in the picture. Wired communication
medium is used to communicate with the electronics in the road, marked by B in
the picture. Between each charging rail there is a possibility for a radio detector
or receiver, marked as C in the picture. There should also be a possibility for each
control unit to communicate with its neighbor directly, marked as D in the figure.

Figure 3.11: Illustrative sketch of the communication system to aid
the understanding of the scenarios.

3.3.1 Scenario one

Using RFID tags between each road section and a RFID reader on the car, the
car can read a tag on the road that corresponds to the next rail. The car can then
communicate this tag ID together with its unique car ID to the RSU via channel

Theoretical solutions 23

A. The RSU now has an uniquely identified car with a roughly accurate physical
position. The RSU sends a signal to the corresponding rail control unit making it
ready to switch the rail on and off. The switching occurs when a detection, using
the possible ways described in solutions for car positioning 3.2, is triggered. In
this scenario the intelligence is centralized to the RSU and the control units are
only triggers controlling the switching of one rail. The RFID system is designed
for use of many tags and few readers.

The scenario needs a fast working RFID system and a fast working long range
communication so that the time from reading the RFID tag to switching the rail
is not exceeded. If a car is traveling at a speed of 200 km/h and the RFID tag
is read one meter before the switch is triggered, that gives a total time of 18 ms.
Since the detection occurs at the rail control unit the communication between the
car, RSU and rail control unit in this scenario doesn’t have to be deterministic, just
performed fast and reliably enough. Detection solutions thought of as appropriate
for this scenario, out of the brief analyzing done in solutions for car positioning
3.2 are Hall effect sensors and inductive detection.

3.3.2 Scenario two

This scenario is very similar to the previous scenario, except the RFID readers
are placed in the road and a tag is placed on the car. In other words, this one
way communication setup is the other way around from that in scenario one. The
approaching car sends its own tag ID and a GPS position to the RSU. The RSU
sends information about which tags are clear and accepted for use to all the rail
control units in the vicinity of the GPS position. When the car tag ID is read by
the rail control unit the position is roughly confirmed and the upcoming rail can
be informed to get ready to be switched on, through communication link D. The
accurate switching is again performed by one of the solutions from solutions for
car positioning 3.2.

In this scenario the key corresponding to a car is the RFID tag which is constant
and hard to keep secret. This makes it hard to identify which car is activating
which rail in a satisfying manner. The RFID tags are also much cheaper than the
readers, this scenario resulting in a more expensive road. On the other side this
scenario doesn’t have the same constraints on the communication speed for either
channel A or B.

3.3.3 Scenario three

In this scenario the intelligence is distributed to the control units of each individual
rail and there needs to be a two way communication link between car and control
unit at each individual rail. The rail identifies itself with a RFID tag and the car
sends a rail unique code that the rail uses to both identify and position the car.
The long range channel A is used to negotiate the unique codes and other essential
information. This scenario demands that the car is able to send a key and the

24 Theoretical solutions

speed, possibly around 32 + 8 bit, to a control unit at least 150 times per second
for a radio range of around 0.5 m. This constraint is set by the maximum speed
of 200 km/h and that a message should be sent at least three times to be received
correctly.

There is no perfect way thought of in solutions for car positioning 3.2 to send so
much information from the car to the rail control unit and at the same time find
a very accurate position at high speeds. Techniques that could be possible with
more analyzing and investigation could be Conductive pickup signaling, Identifying
antenna signal strength, inductive detection or Doppler effect. All of them might
be hard to get to send enough information and at the same time accurately acquire
the position.

Chapter4
Analysis and testing

4.1 Car positioning

One of the most promising methods in solutions for car positioning: 3.2 and
also the one which could be tested immediately was the inductive method. An
experimental setup to do comparing experiments was built and calibrated, then
different antennas and frequencies were analyzed. Finally a detection system was
built, implemented and tested outdoors.

4.1.1 Pendulum as experimental setup

In order to perform repeatable low speed tests in the laboratory a swing was built
consisting of a rectangular wood plank suspended at the short ends as a swing.
The length of the swinging pendulum measured from the pivot point to the center
of mass of the plank was 258 cm and the plank itself had a length and width of
45 cm and 9.5 cm respectively. The height from the plank to the floor was about
10 cm as seen in figure 4.1a. The energy of a swing at any point is the sum of the
potential and kinetic energy and this energy is conserved if the friction is neglected.
Approximating the swing as a simple pendulum and setting up the energy balance
equations gives the following expression for the pendulum’s velocity at a height h:

Etot = mghstart = mgh+
mv2

2
⇔ v =

√
2g(hstart − h)

where m is the mass the of the pendulum, g is the gravitational acceleration,
hstart is the height from which the pendulum is released and v is the velocity
at the height h. According to this equation the velocity of the pendulum at the
equilibrium point is 4.43 m/s (15.95 km/h) when released from a height of 1 m
(from the floor). This was approximately the highest speed tested with since it
was hard to manually release the pendulum from a higher height than this without
it swinging sideways. For a more accurate velocity measurement and to get an

25

26 Analysis and testing

accurate position reference a photodiode was placed underneath the swing and a
strong light source was pointed from above. By measuring the time during which
the swing shadowed the sensor the speed could be calculated, since the width of
the wood plank shadow could be measured. The measurement circuit is shown in
figure 4.1b.

(a) (b)

Figure 4.1: 4.1a The setup with the swing without the strong light
source lit. To the right in the picture an Arduino Uno and photo
detection circuit can be seen and under the swing there is room
place the system to be tested. 4.1b Measurement circuit for the
photodiode with R1 = 10 kΩ.

4.1.2 Inductive system from the previous thesis work

First off the circuit from the previous master thesis work [Sund, 2014] was tested,
which has a resonance frequency of 29 kHz. The detection circuit sent out a 5 V
high car detect signal when the voltage over the receiver coil was above a cali-
bratable threshold, implemented using a single comparator. This means that the
detection circuit sent out a high signal once every period and that the high signal
lasted for the time the voltage over the coil was positive and above this threshold.
For testing purposes the threshold was tuned to 2.6 V and the swing was mounted
5.5 cm over the detector. In the original master thesis the detection was made
by receiving the signal as an interrupt and once an interrupt had occurred the
interrupt handling was turned off for a fixed amount of time, corresponding to the
estimated speed the car should have on the road the system was implemented on.
One disadvantage with this way of doing a detection is the lack of precision since
it is only relying on a correct tuning of a threshold for the field’s amplitude. Fur-
thermore the detection has little protection against interference or altering of the
received frequency and amplitude. In the tests performed in this work advantage
was taken of the fact that the transmitter coil is made in a horizontal loop and the

Analysis and testing 27

receiver is made in a vertical loop. The envelope of the transmitted magnetic field
therefore has the shape of two lobes with a zero point in between. This zero point
corresponds to the point straight underneath the transmitter coil, shown as the
dotted lines in figure 4.2. Using an Arduino Uno1 the 30 kHz changes were filtered

Figure 4.2: The magnetic field sent out from the horizontal coil and
picked up by the vertical receiver coil.

out and time stamps for the detected rise and fall of the first and second lobe were
gathered. A very precise measurement of the detection distance was made using
the speed information and reference time stamps of the photo diode, see figure
4.3. This shows that the low point between the lobes can easily be detected with a

Figure 4.3: Plot of time stamps for rise and fall detection in reference
to the photo diode

very high degree of accuracy. In this first experiment the position error was below

1open-source prototyping platform, https://www.arduino.cc/

28 Analysis and testing

1 cm. The maximum theoretical speed of this method is limited by the rise time
of the magnetic field since the magnetic field strength has to rise high enough for
a change to be detectable. The point between the two lobes should always exist
since the two lobes have a half period phase shift to each other and therefore the
signal always has to pass a point with zero magnetic field.

To test the consequences of a phase shift and other possible frequencies, a digital
square wave oscillator was programmed on an Arduino Uno. By using the internal
clock and timers, a pin toggle of 29.9 kHz with the possibility to turn the signal on
and off fast was created. A push-pull transistor output stage was built following
the later stage in the schematics for the transmitter in the previous master thesis
[Sund, 2014, p10]. The transmitter coil was then powered by this output stage
and driven by the Arduino pin toggle signal. Since the transmitter coil acts as
a resonance circuit the square wave gets filtered into a sinusoidal magnetic field.
A stationary simulation setup was made by placing the transmitter and receiver
coil still at the optimal lateral transfer position but keeping the desired height
constant, see fig 4.4.

Figure 4.4: The stationary simulation setup. A Oscilloscope mea-
sured the magnetic field from transmitter coil, voltage over re-
ceiver coil and driving signal from Arduino

A passing car could roughly be simulated by turning the square wave signal to the
new output stage on and off for the time corresponding to a distance at a specific
speed. Moving the transmitter laterally at a height of 10 cm over the receiver in
the movement axis gave an approximation of the strength of the inductive field at
different distances from the receiver. The distance from the midpoint where the
induced voltage in the receiver was under 10% of the maximum value was around
0.5 cm. This gave a 1 cm long vertical distance, 10 cm under the transmitter, where
the magnetic field was almost zero.

4.1.2.1 Simulating high speeds at 29.9 kHz

To simulate a car passing the system at 100km/h, the Arduino was programmed to
turn on the signal for 4 ms, turn off the signal for 400 µs, corresponding to 1.1 cm,

Analysis and testing 29

and then turn on the system again for 4 ms. This resulted in figure 4.5.

Figure 4.5: A simulated car passing using the 30 kHz receiver and
transmitter placed at optimal reading range and then turning
off the 30 kHz square wave for 400 µs to simulate a 1.1 cm low
magnetic low point that passes in 100 km/h. Blue is the mag-
netic field radiated from the transmitter. Yellow is the voltage
over the receiver. Turquoise is the 5 V square wave generated
by the Arduino feed into the transmitter coil.

To simulate the phase shift the off time had to be a factor of the period time. For
29 kHz the period time is 33 µs so an off time (the signal can be high or low) of
33 µs should make a phase shift and force the receiver to pass through a low-point.
By experimenting, a delay of 11 µs made the Arduino pause its clock for 15 µs
making a 30 µs off time and phase shift shown in figure 4.6.

This shows that it is possible to detect the passing inductive coil at very high
speeds by using the fact that the signal makes a phase shift and the magnetic field
passes through a low-point. But it should be better to use a higher frequency so
there is a longer low-point in relation to the period time to detect. Increasing the
frequency gives lower rise times and longer low point for the coils which in turn
would give a faster and more distinct detection so the receiver coil and the receiver
circuit were remade.

4.1.3 Experimenting with different near field antennas

The transmitter and receiver are both resonating coils acting as near field antennas.
The word antennas is used here in a wider sense than the common definition,
since we are calling them coil antennas. Equation 3.2 was used to adjust the
resonance frequency of the LC circuit. The inductance was chosen such that

30 Analysis and testing

Figure 4.6: A Simulated phase shift using the 30 kHz receiver and
transmitter placed at optimal reading range and then pausing
the 30 kHz square wave for 15 µs. Blue is the magnetic field
radiated from the transmitter. Yellow is the voltage over the
receiver. Turquoise is the 5 V square wave generated by the
Arduino feed in to the transmitter coil. The phase shift takes
place at the time Ax (solid line) and is seen in the receiver coil
185 µs later (dotted line).

simulations of the circuit showed a good rise time and relatively low transients
and the capacitance was adjusted according to eq. 3.2. A rough approximation of
how many windings and what cross section area a coil should have to get a certain
inductance was empirically found.

Copper thread with a diameter of 0.6 mm was used in order to lower the power
losses. The inductance of the coil was measured by connecting a known capac-
itor in parallel with the unknown coil, doing a frequency sweep and looking for
the frequency where the voltage over the coil had a peak. The inductance was
then calculated using eq. 3.2. The resonance frequency was easier to observe by
connecting a big resistor in series with the parallel LC circuit because it lowered
the voltage span over the LC circuit making it easier to observe the peak (10 and
100 kΩ were used in the experiments).

In the experiments presented in this report, the dimensions of the transmitter coil
antenna tested with were kept roughly the same as in Sund’s work but the receiver
coil antenna had smaller diameter and a ferrite core. First the new antennas were
tuned to 300 kHz for a higher position accuracy since more periods per unit of time
would be available for processing. Later on the antennas were retuned to 140 kHz
because the maximum allowed field strength at 300 kHz is very low compared to

Analysis and testing 31

around 9−148 kHz [PTSFS, 2015, p.13]. And since the chosen RFID system runs
on 125 kHz, 140 kHz seemed like a good frequency to aim for. The maximum
allowed field strength at 140 kHz and a distance of 10 m from the antenna is 42
dB uA/m [PTSFS, 2015, p.13]. This corresponds to 0.158 nT:

42 dB µA/m = 20 · log(
H

1 µA/m
)

⇔ H = 125.892 µA/m

⇔ B = µ0µrH = 0.158 nT.

4.1.4 Simulating, testing and building

The 140 kHz system consists of a transmitter stage and a receiver stage. As the
transmitter stage an Arduino Uno acts as a signal generator and together with a
transmitter antenna the sending stage is to be mounted underneath a car. The
receiving stage consists of a receiver antenna, rectifier electronics and an Arduino
Due2 with an Ethernet and SD-card reader shield3. The receiver antenna, elec-
tronics and Arduino are to be put inside a road segment mock-up with LED lights
on it. Instead of delivering power to a passing car, the segment lights up its LED
lights when the car passes.

4.1.4.1 Receiver and transmitter antennas

The transmitter coil or antenna was finally constructed by 33 turns of 0.6 mm
copper wire in the shape of an rectangle with a length of 375 mm and width
of 70 mm. This gave an inductance of 554 µH. The resonance frequency of the
transmitter was tuned to 140 kHz with a series capacitance of 2.470 nF. The
receiver antenna was constructed by 49 turns of 0.6 mm copper wire wound around
a ferrite core from an old AM radio. The inductance of the receiver antenna then
became 128.9 µH and got the resonance frequency 140 kHz with 10 nF. The two
antennas are shown in figure 4.7. The skin effect had to be considered when
measuring the impedance of the transmitter and receiver LC circuits. Therefore
the measurements were made with an LCR meter instead of the usual four-point
measurements with the multimeter. The skin effect is the tendency of the current
density to be distributed in the area close to the surface of the conductor and not
in the middle. Higher skin effect means that the current flows through an area
smaller than the cross section area of the conductor, thus the resistance is higher.
This is due to the eddy currents generated inside the conductor which counteract

2Arduino Due is a more powerful developing board based on a 32-bit ARM core micro-
controller. More information on https://www.arduino.cc/en/Main/ArduinoBoardDue

3Arduino ethernet shield is an extention to the Arduino giving it an ethernet jack and
a micro SD-card reader. This effectivly giving the Arduino the means to communicate
through network and save information on an micro SD-card. More information can be
found on https://www.arduino.cc/en/Main/ArduinoEthernetShield

32 Analysis and testing

Figure 4.7: The transmitter (top one in picture) and receiver an-
tenna, at an earlier resonance tuning. The dimensions and
shape are the same as in the chosen 140 kHz setup. Only the
number of windings and the tuning capacitance value differ.

the current in the middle of the conductor. The skin depth in a copper wire can
be calculated according to:

δ =

√
2

ωµrµ0σ

where µ0 is the magnetic permeability of free space µ0 = 4π · 10−7T · m/A, µr

is the relative magnetic permeability (it has the value 1 for air), ω is the angular
frequency and σ is a parameter specific to copper. The formula shows that the skin
effect is higher for higher frequencies and it can be calculated that the skin effect
starts affecting the resistance first after 49 kHz where δ is 0.3 mm, i.e equal to the
radius of the wire which means the current flows through the whole cross section
area. At the frequency of 140 kHz δ is approximately 0.178 mm which means that
a little over half of the cross section area of the conductor is used. Since the radius
and the skin depth are so close to each other there is no equation to calculate the
resistance of the conductor. Another factor probably affecting the resistance in
the coil more strongly is the proximity effect, i.e losses in the conductor due to
eddy currents induced by magnetic fields that are close by. The series resistance
in the transmitter circuit was measured to 14.51 Ω and to 2490 Ω in the parallel
circuit at the exact resonance frequency of 140.660 kHz. The quality factors for
the transmitter and receiver circuits are 32.64 and 21.98 respectively. The time
constants are 73.77 µs for the transmitter and 49.74 µs for the receiver according
to eq. 3.7. Impedance measurements for the transmitter antenna and receiver
antenna can be seen in figures 4.8 and 4.9.

The reason behind winding the receiver around a ferrite core was to lower the
number of turns and the radius while keeping the inductance value high. The
reason to want a high inductance value is to get a stronger signal. A side effect of
using a ferrite core is that the core might be saturated by static magnetic fields

Analysis and testing 33

(a) (b)

Figure 4.8: Bandwidth of the tuned transmitter antenna. The band-
width is approximately 4 kHz

(a) (b)

Figure 4.9: Bandwidth of the tuned receiver antenna. The band-
width is approximately 6.5 kHz

from the electrical road. To test the affect the current of the road will have on
the signal strength in the inductive detection an experiment was made. The aim
of the experiment is to see how a neodymium magnet at different distances affects
the amplitude of the induced voltage in the receiver antenna.

4.1.4.2 Test of static magnetic impact on ferrite core

To test the effect a strong magnetic field would have on the 140 kHz induced voltage
in the receiver antenna, a neodymium magnet was used and placed at different
distances from the receiver. The receiver was placed at optimal reading range from
the transmitter. A square wave generated by an Arduino Uno was sent as input
to the transmitter and the induced amplitude was measured while the magnet was
placed at different heights from the receiver, see figure 4.10.

34 Analysis and testing

(a) (b)

Figure 4.10: A piece of neodymium magnet was fastened with tape
on slices of hard plastic and placed above the magnetic receiver,
the number of slices used gave a measurement of the height
between them which was hard to measure otherwise because of
the attraction force. Each slice had a thickness of 1.5 mm.

Figure 4.11 shows the results. The peak around the height of 4.5 mm is probably
a result of the resonance in the transmitter coil and receiver coil are not fully
aligned. When the magnet saturates the ferrite core slightly the permeability is
lowered, inductance raised and the resonance frequency lowered in the receiver
resonance circuit. This probably result in the receiver and transmitter circuits
aligning better and therefore a peak arises. As it can be seen in the figure the
receiver is not affected at all if the magnet is placed at a distance higher than
approximately 7 mm.

The exact characteristics of the neodymium magnet were not known, but an usual
neodymium magnet of grad N50 has a residual flux density, Br, of 1.4 T [NdFeB
Specialists E-magnets UK, 2016]. The magnet used is roughly 5 mm in diameter
and 2 mm thick. An expression [Magnetics, 2016] describing the magnetic field
strength along the central axis of a round neodymium magnet is:

B =
Br

2
· t+ x

r2 + (t+ x)2
− x√

r2 + x2
,

where r is the radius of a cylinder magnet, t the thickness of the magnet and x the
distance from the face of the magnet to the measured point. The magnetic field
of the magnet at the distance 7 mm using this formula results in roughly 56 mT.
According to our experiments in figure 4.11 this is the lower bound that affects the
receiver. The static magnetic field at a distance r from a wire carrying a current
I is given by:

B =
µ0I

2πr
,

Analysis and testing 35

Figure 4.11: How the amplitude of the induced voltage over the
receiver varies with a neodymium magnet placed at different
heights from it.

where µ0 is the magnetic permeability of free space µ0 = 4π · 10−7T ·m/A. As-
suming that 10 mm is the nearest distance from the receiver the pickups will drain
current and that the maximum flowing current will be 400 A. This results in a
maximum induced magnetic field of 8 mT at the receiver ferrite core.

The probable magnetic field induced by the wires and pickup is lower then a fifth of
the field strength that made an impact on the ferrite core. Therefore the induced
field from the high current in the system should not affect the inductive detector.

4.1.4.3 Rectifier and receiver Arduino

Once the resonance frequency was decided upon and antennas built a receiver
circuit was made. Due to previous experience with Arduino it was easy to keep
using it. The Arduino Due is used as a receiver since it has higher performance
than the Uno board with a faster processor, more memory and faster ADC (analog
to digital converter).

As seen in previous tests, using hardware to send a digital signal on the rise of the
wave and hence detect the frequency is one way to detect the signal. A second
way is to convert the signal to an analog value corresponding to the amplitude
of the waves and then sample it. A third way would be to just sample the raw
wave and do all analysis in software. As a first step it was decided to try to do
the detection on the signal amplitude and check that the signal had the correct
frequency by frequency detection. A sketch of the detection circuit for the receiver
is shown in figure 4.12a. This circuit converts the frequency to a digital square

36 Analysis and testing

wave and the amplitude to an analog value which could be read using the ADC.
The Arduino Due can only handle voltages up to 3.3V so both circuits are built
to have an output in the 0-3.3V range. The frequency analyzing was however
never implemented in code since the bandwidth of the antennas was so narrow
and the detection algorithm works satisfactory using only amplitude information.
The inductance in the transmitter antenna was near the lower acceptable limit,

(a) (b)

Figure 4.12: 4.12a) Schematic of the receiver antenna electronics
with a rectifier in the lower half and in the half above is a
comparator converting the sine wave to a square wave signal.
4.12b) The PCB of the receiver electronics

leading to a suboptimal filtering of the square wave to sine wave shown in figure
4.13. The ripple in the driving square wave was caused by the antenna load. In this
figure it is also possible to read out that the resonance frequency of the antenna
is not exactly 140 kHz but slightly lower as the sine period is slightly longer than
the driving 140 kHz.

(a) (b)

Figure 4.13: A none perfect filtering of the square wave to sine wave
in the sending antenna. The blue curve is the driving square
wave signal. The yellow curve is the field out from the antenna
measured with a magnetic-field probe

Doing the same experiment as with the antennas in section 4.1.2.1 a much faster
rise time could be seen. In figure 4.14 the reading from the oscilloscope during a

Analysis and testing 37

stationary test with the signal generating Arduino pausing the signal for 400 µs is
seen as a faster result than that of the 30 kHz in figure 4.5.

Figure 4.14: Simulated response of the receiver and transmitter
(tuned to 140 kHz) at a speed of 100 km/h, i.e the square wave
is paused for 400 µs. The transmitter and receiver are placed
at optimal reading positions. The pink signal is magnetic field
from transmitter coil. The yellow is the voltage over the receiver
coil. Blue is the driving square wave signal from the Arduino.

4.1.4.4 Building a mock-up segment

To test the system a mock-up of a road segment was built. The mock-up was
equipped with LED strips and lights, instead of power giving rails, so that a visual
observation could take place. The driving electronics built for the LED lights are
shown as schematics in figure 4.16. The mock-up was constructed by bending a
metal plate to a shape resembling the shape of the rail segments. The aim was
to make a mock-up resembling the magnetic features of the real theoretic rail
segments to make an as close as possible proof of concept test. The mock-up rail
was also used to analyze the EMI impact on the rail as further described in section
4.3. The interior of the mock-up consists of batteries to power the LED strips and
receiving electronics. To hold everything in place styrofoam, tape and hot-glue
were used. The final result of this first mock-up can be seen in the figure 4.15
together with the transmitter antenna in a box to the left.

The driver circuit for the power LED is shown in figure 4.16a. The two transistors
work together in regulating the current to the LED in such a way that when the
current through M1 is too big the npn transistor is triggered thus reducing the

38 Analysis and testing

Figure 4.15

(a) (b)

Figure 4.16: a) Driver circuit for the power LED, D1 is the power
LED, M1 - MOSFET(P80NF10), C1- 1000uF, D2 - 3.3V. b)
Driver circuit for the LED strips, D1 is the LED strip, C1-
1000uF, D2 - 3.3V, M1 - MOSFET(P80NF10)

current. The driver circuit for the LED strips is a simple switch configuration, i.e
when the Arduino pin is high the transistor starts leading current and the strip
is turned on, see figure 4.16b. The Zener diodes have the purpose to protect the
Arduino in case something goes wrong and the voltage gets too high but it would
have been safer to use a optocoupler instead.

4.1.4.5 Detection algorithm and code

In figure 4.17 an eight states algorithm is shown. In the Arduino code of the road
segment the detection algorithm is implemented as function ampCalcFix(), see
line 764 in apendix A.1. In the algorithm three tests and one timing are made

Analysis and testing 39

Figure 4.17: Help sketch for eight state detection algorithm

to ensure a correct detection. First the time between s0 and s3 has to be longer
than 100 µs (sorting out short spikes). Then the time between s0 and s1 has to
be longer than the time between s3 and s4 (steeper slope at zero point between
slopes). And finally the time between s0 and s3 has to be longer than the time
between s3 and s5 (to not waiting too long for the second lobe). If too much time
passes since s0 was passed, then the state machine is restarted. If none of the
tests failed, the detection is considered correct and a signal is sent at s6 to turn
on the next power rail. In figure 4.18b signals from an indoor test with the swing
/pendulum setup are showing that the detection works. The signal used to turn
on the LED strips is the pink one shown in figure 4.18b.

(a) (b)

Figure 4.18: 4.18a Swing dropped from 1 m Giving a passing speed
of around 4 m/s (almost 15 km/h).The Arduino Due is using
a state machine with eight states 4.18b. Each state transition
makes a change in the light blue (signal 2) curve. And as the
state has transitioned in the right way the turn on flag, here
seen as pink (signal 3), is turned on and off.

4.1.5 Testing the detection on a road with a car

As the indoor tests showed that the detection worked and stable results were
collected it was decided to do a test outdoors with a real car passing over the
rail mock-up with the implemented receiver. The described detection algorithm,
oscilloscope readings and data dumps of the sampled amplitude values were tested

40 Analysis and testing

with a real car passing. The test took place in the fuel yard of the combined
heat and power plant in Örtofta, where a car could safely accelerate and pass the
mock-up segment at high speed. The transmitter antenna and driving Arduino
were placed in a box mounted behind a Volvo V70 shown in picture 4.19. The road
rail mock-up was placed and filmed from multiple angles with high speed footage
filming the LED lights from the side shown in picture 4.20. Multiple passes over

Figure 4.19: The sending circuit mounted on the car

Figure 4.20: The rail mock-up at the Örtofta test location. A high
speed camera can be seen rigged in the far left of the picture.

the mock-up were performed and all the passes were correctly detected. Figure
4.21 shows footage from the high speed camera where it can be seen how the LED
lights turn on when the car passes over the mock-up at 100 km/h. The transmitter

Analysis and testing 41

lies in the front of the box and the LED lights are supposed to turn on when the
rise of the second lobe is detected at s6 and turn off at the fall of the second lobe
shown in the earlier figure 4.18b.

Figure 4.21: Detection of car passing in 100km/h from the left.
Screen-shots from a high speed camera to the left and zoomed
in on the right. The LED stripe is turned on in the middle two
frames.

The sampled amplitude values were also dumped to an SD card by the Arduino.
In figure 4.22 two over passes are presented. One when the car passed a little
to the side of the mock-up rail and one when the car passed straight over. The
amplitude damping of the receiver was not properly tuned and as a result a high
ringing is observed at the higher values. This ringings are a weakness in the
receiver electronics construction whose exact cause was not fully investigated.

42 Analysis and testing

(a) (b)

Figure 4.22: Saved values from two different passes by the car. In
4.22a the car passed in an angle to the side of the mock-up. In
4.22b a perfect passing is shown. High ringings are observed at
higher amplitudes, caused by a fault in the receiver electronics
or the arduino sampling.

4.2 Car identification

The initial ideas for the identification of a car were to test HF or UHF RFID
modules since they had successfully been used in similar applications, see sec-
tion 3.1.1.3. There were also some ideas about building a radio transceiver from
scratch but that idea was quickly discarded since none of the authors had suffi-
cient radio knowledge and the extensive work wouldn’t have permitted meeting
the deadline for the project. Before deciding which path to continue on, the TSS
company was found. Since their products are adapted to traffic environments and
they have impressive results the company was contacted in order to borrow their
products for testing. Three tags and and one antenna were used in testing, see
figure 4.23a and 4.23b.

The recommended distance between the antenna and the tag is 45 cm in order
to get good results at high speeds. But tests were made at low speed with a
cart, which the antenna is mounted on, driving over the tags in the lab. The tests
showed that the tag was successfully read at lower distances at low speed. In order
for the tags to not interfere with each other the distance between them should be
at least 40 cm.

The antenna communicates with the computer through a serial RS232 connection
written in C. The main code on the car side, found in appendix A.2.6, is written in
C++ and consists of four threads: one for communication between car and antenna,
two threads handling incoming and outgoing messages and one tread that lets the
user manually insert the speed.

Analysis and testing 43

(a) (b)

Figure 4.23: a) Picture showing the TSS products used, the antenna
and a tag. The antenna and the processing unit are enclosed in
the box. The box has a length, width and height of 36x16x9 cm
b) The antenna is a coil wound around a core. The processing
unit and a small tag for testing purposes are also shown.

4.3 EMI

It is important to investigate the electromagnetic interference under an electrical
car driving on a conductive electrical road so that the position and identification
electronics can be adjusted accordingly.

Firstly, the behavior of electrical sparks between the road and the pickups was
analyzed by using a setup made by one of the project’s supervisors, Lars Lindgren.
These sparks are generated if the pickups bounce off the road a bit and lose contact
with it for a short amount of time which can happen if the car is driving at high
speeds. Information about the EMI under a train would have been interesting
to compare to, but no solid data could be found. Secondly, tests were made to
investigate if the car motors could cause any electromagnetic interference. To test
the interference from an electric car the positioning coil antenna was placed on the
ground and an electric car was droven over it. The signal from the receiver coil
was measured and analyzed.

The test rigg built by Lindgren has been very useful in simulating the behavior of
the sparks. The part simulating the road and the pickups consists of two circular
metallic tracks with a small sleigh fastened between them. The sleigh has four
contacts, two on each track and it is free to rotate, see figure 4.24.

The grey rectangles represent the conducting parts of the rails and the receiver
antenna is located in between them. The red loop antenna simulates the path the
current takes from the rail and up to the car battery through the pickup. Stray
inductances are not shown in the circuit. The capacitor between the loop antenna
and ground is added to counteract the effect of all the stray inductances and thus
make the induced voltage in the receiver clearer to see.

In the real setup the sleigh is surrounded by a metal case as a safety precaution,

44 Analysis and testing

Figure 4.24: The setup for simulating the effect of electrical sparks
between the road and the pickups.

see figure 4.25. The whole setup can be seen in figure 4.26. The DC voltage input

Figure 4.25: Picture of the circular metallic tracks and the sleigh.
On the sleigh the four mentioned contact points and short cir-
cuiting wires can be seen.

goes to the loop antenna and the sleigh contacts through a load in series with a
capacitor, the loop antenna can be seen closer in figure 4.27a.

Two sets of experiments were made. In the first one, the pickup was perfectly
aligned above the rail and since the magnetic field in this position is perpendicular
to the field in the receiver antenna no disturbances should be registered. In the
second one, the pickup was positioned at a 45 degree angle with the rail, shown in
figure 4.27b, simulating the situation when the pickup is not centered around the
rail but still has contact through the contact shoe. In this case the magnetic field

Analysis and testing 45

Figure 4.26: The whole setup: in the lower left corner is a wooden
box containing transformers and rectifiers with a parallelly con-
nected capacitor to give a stable DC input. On the top shelf is
the set of capacitors which have the task of making the ringings
sharper and on the leftmost bench is the prototype road.

(a) (b)

Figure 4.27: On the rail of the prototype there is a loop antenna
simulating a pickup. a) In this particular position the pickup is
perfectly centered above the rail.b) The pickup has a 45 degrees
angle with the rail

in the loop will affect the signal in the receiver antenna. Each experiment was run
with both 40 A and 80 A as the input to see how the current difference will affect
the receiver. The different signals measured during the experiments can be seen
in figure 4.28.

Figure 4.29 and 4.30 show the results when the pickup was placed at 90 and 45
degrees with respect to the road. The amplitude of the ringings doesn’t exceed
2 V peak to peak which shouldn’t be a problem since our transmitter circuit gen-
erates a voltage of approximately 7 V peak to peak in the receiver circuit and the
transmitter’s magnetic field could be made up to twenty times stronger without
exceeding the restrictions that are mentioned in section 4.1.3. The current differ-
ence didn’t lead to a significant difference in amplitude in the ringings. This is a
good result because the relationship between the current increase and amplitude

46 Analysis and testing

Figure 4.28: The signals that were measured on the oscilloscope.
Yellow is the voltage over the receiver antenna located in be-
tween the rails, turquoise and magenta are the voltage and the
current through the circular tracks and blue is a signal indicating
the rotation speed of the sleigh.

(a) (b)

Figure 4.29: The ringings in the receiver antenna when the loop
antenna was placed at a 90 degree angle with the rail and the
current was 80 A in left picture and 40 A in right picture

of the ringings is not linear. Since the relationship seems to be less than linear it
is reasonable to think that the amplitude of the ringings at 400 A will be lower
than the voltage our transmitter coil could induce in the receiver antenna.

The reason for the ringings picked up when the antenna was placed at a 90 degree
angle can be that the antenna wasn’t perfectly aligned. The source of the high
voltage spikes was not closely investigated but it is probably related to capaci-
tive and inductive stray fields which can come from cable loops in the circuit or
interference from the motor.

Analysis and testing 47

(a) (b)

Figure 4.30: The ringings in the receiver antenna when the loop
antenna was placed at a 45 degree angle with the rail and the
current was 80 A in left picture and 40 A in right picture

4.3.1 EMI from electric car

Some small experiments were carried out by taping the transmitter under a Nissan
Leaf, a fully electric car, and analyzing the response when it passed over the mock-
up rail. The Arduino detection algorithms showed no problems with detecting the
transmitter coil passing by. By connecting the receiver antenna directly to an
oscilloscope, the possible EMI was intended to be further measured and analyzed.
As shown by the two seconds long sample in figure 4.31a, where the car passed
the transmitter at low speed, no significant interference was registered around
the detection signal. However, an interesting spike could be observed in figure
4.31b. In this passing, a spike could be observed before the transmitter passed
the receiver. The transmitter was in this experiment mounted on the rearmost
part of the car and the car was driving forward at a speed of about 20 km/h
over the mock-up rail. The spike had the same frequency as the transmitter
antenna and must have been caused by some part of the car frame forming a loop,
that the transmitter induced the frequency in. This car frame loop then acted
as an antenna. The amplitude is about a tenth of the amplitude received from
the transmitter itself. This experiment shows that no obvious electromagnetic
interference seemed to have been caused by the car’s power electronics or motors.

4.4 The Complete system

With a working system for detection, a working system for identifying and ex-
periments showing that the EMI would not be a big problem it was decided to
put it all together in a complete system to prove the concept. Out of the three
communication schemes discussed in section 3.3, scheme one would be easiest to
implement. This since the RFID reader is expensive and big but the tags are
smaller and easier to mount on the road. Furthermore the communication paths
do not have to be deterministic since the timing critical detection is done solely in

48 Analysis and testing

(a) (b)

Figure 4.31: 4.31a A two second long sample of the induced volt-
age in the receiver when the car was passing over it with the
transmitter turned on. The transmitter signal is clearly seen by
the receiver. 4.31b The same experiment as in a) but here an
extra spike can be seen in the middle of the picture

the Arduino.

As such the idea is that the car reads the RFID tag and sends the read RFID
tag ID, an unique car ID and the car speed to the road side unit. The road side
unit (RSU) then sends a message to the corresponding rail telling it to be ready
to detect an inductive coil passing. From the speed information the RSU also tells
the rail how long it should be turned on. Using the inductive detector the rail
computer activates the "rail" at the correct time. With the help of a timer the
Arduino then turns the rail off again as the time corresponding to the distance
and speed have passed. In the complete system, the "rail" is still implemented
with LED strips for visualization.

4.4.1 Building

To test the system, one more detection circuit - an antenna for the inductive
detector and one Arduino Due, were put together with the same characteristics
as the one described in section 4.1.4.3. One more mock-up rail was also built but
with a simpler construction. A one meter wooden stud was used as the frame
with the antenna and LED strips taped to it. Figure 4.32 shows the complete rail
segment with the tags and the LED strips mounted, where the distance between
a tag and a receiver coil antenna is 1.15 m. Furthest left in the figure is a tag
followed by a one meter negative rail, a receiver antenna and an one meter active,
switchable rail simulated by a LED strip. Then again a tag, an one meter negative
rail, a receiver antenna and finally a one meter active, switchable rail simulated
by a LED strip. Both Arduino rail computers were, as described earlier, equipped
with Ethernet shields and connected together with a router and a laptop computer
at the side of the road. The laptop computer acted as the road side unit (RSU)
in the experiment.

From the time it takes for a car to read an RFID tag and then reach the next in-

Analysis and testing 49

Figure 4.32: The complete rail segment seen from above. LED strips
are mounted on the side, shining downwards in the picture. The
distance between the center points of a tag and an antenna is
1.15 m. The orange and the white cable in the picture are
the Ethernet cables that connect the Arduino computers to the
router.

ductive detection point, the tag ID, speed and car identification must have reached
the road side computer and activated the upcoming Arduino rail computer. The
distance between an RFID tag and the inductive detector is thought to be roughly
one meter giving a maximum time of 18 ms if the car is traveling at 200 km h−1.
Some quick tests of round-trip time for 3G and 4G mobile networks showed way
higher latencies. The same tests done on a private, ordinary, 2.4 Ghz wifi showed
better results with latencies around 1 ms but with occasional spikes. As such it
was decided to use a wifi router to connect the car to the RSU computer for the
test. In the car an ordinary laptop was used to communicate with the RFID reader
and, using a usb wifi dongle, the RSU.

4.4.2 Programming

The complete program overview showed in figure 4.33 consists of a server with
multiple classes written in java. The server can be broken down into three pieces.
One part handles the rails (RSURoad.java and RoadConnection- UDP.java), one
part handles the cars (CarServerThread.java and RecThread- .java) and the
last part is a single class implementation which acts as a monitor and makes the
communication between the threads ’thread safe’ (Monitor.java). The flow of
the program goes as follows:

1. The car connects to the wifi and the RSU server with an identification of
itself through the CarServerThread.java .

2. The car reads an RFID tag on the road.

3. The car sends the read tag ID together with the speed to the RSU through
the RecThread.java.

4. The RSU calculates the corresponding on-time for the received speed in
RSURoad.java and sends this to the rail computer linked to the tag ID
through the RoadConnectionUDP.java thread.

50 Analysis and testing

5. The rail computer activates the function ampCalcFix() and waits for a
detection to occur within a time determined by the on-time received. A
timer to send a backup message turning off the previous rail is also started.

6. A backup message turning off the previous rail is sent from this rail com-
puter.

7. If a correct detection occurs the LED strip gets turned on by this rail com-
puter. Otherwise if too much time passes, nothing happens.

8. The LED strip gets turned off. Either by this rail computer’s turn off timer
or by the backup signal sent by the next rail.

Figure 4.33: The complete program overview. All the classes shown
in the RSU except the monitor are threads

4.4.3 Final test

A way to mount the RFID reader and the inductive transmitter antenna on a car
was needed in order to perform the final test where the car was supposed to drive
over the complete rail segment mock-up at 50 km/h. After some discussion the
decision arrived at using a trailer on which to mount the equipment. A trailer
was bought to the project and the equipment was mounted as shown in figure
4.34. The equipment was powered using the 12 V outlet in the car. A parking
house which was often empty was chosen to be the test place. The equipment
was mounted and the complete mock-up was laid out. The test setup is shown in

Analysis and testing 51

figure 4.35. As described earlier the car needs to send its speed to the RSU when
a tag is read for the correct timing to take place. A way to transfer the speed
from the car to the laptop used in our system was never implemented. So a speed
was instead manually typed into the system and then the driver aimed to pass the
road at that speed.

Figure 4.34: In the upper left corner is a picture of the built frame
for mounting the reader and transmitter. In the lower left the
frame can be seen from the side. To the right is the trailer with
the frame, reader and transmitter installed

Figure 4.35: The final test setup is being arranged. The car is going
to drive over the mock-up from the left in the picture and the
LED strips can be seen pointing towards the camera of this
picture as the white stripe on the black tape on the mock-up

4.4.4 Result

A passing of the car driving at the real speed of around 35 km/h and with the
system speed set to 33 km/h is shown in figure 4.36 to 4.39. The first picture

52 Analysis and testing

4.36 shows the first rail and the LED strip getting activated. Figure 4.37 shows
the second rail and LED strip getting activated. In figure 4.38 the first rail and
LED strip get turned off again. Finally in figure 4.39 the second rail and LED
strip get turned off. Multiple passes were performed, and the system read the tag
ID, transferred this information over wifi to the laptop at the side of the road,
and activated the detection system in the road segments correctly every time. But
since the timing relied on the driver passing the mock-up at the same speed that
had been typed into the system, some of the passes did not have the correct turn
off timing.

Figure 4.36: The detection and turning on of the first rail segment
represented by the LED strip in front of the trailer tires.

Analysis and testing 53

Figure 4.37: The detection and turning on of the second rail seg-
ment represented by the LED strip in front of the trailer tires.

54 Analysis and testing

Figure 4.38: The timing of the first rail-computer (Arduino) turning
off the first rail segment represented by the LED strip behind
the trailer.

Analysis and testing 55

Figure 4.39: The timing of the second rail-computer (Arduino) turn-
ing off the second rail segment represented by the LED strip
behind the trailer.

56 Analysis and testing

Chapter5
Discussion and future work

The final experiment shows that the software and hardware designed in this thesis
works for detecting and identifying a moving vehicle with a little help. By help, it
is meant here that the speed has to be manually given to the computer in the car.
A possible way to get the speed information from the car into the laptop running
our program would be to use an open OBD reader1 with a suitable API. This
was however not investigated due to the limited time frame for the project. The
problem of inputting the speed manually, as well as the too small test area and
the safety issues, since it was a place open to the public, restricted the posibility
of testing the complete setup at full speed. The fact that the RFID system is
specified to work at higher speeds, and that the earlier high speed test in section
4.2 went well, still gives some confidence that the complete system would work at
higher speeds as well. The final solution built is only a demonstrator for showing
a proof of concept of our idea. As such the components and code are not in any
way optimized. Software and hardware optimization gives even greater confidence
that the system would be robust in tests at higher speeds.

A drawback of the design chosen to work with is the use of an RFID system
developed by an external company. This system is built for trains and costs tens
of thousands of euros each, making it a very expensive solution. What the price
would be at the mass production of the scale road is not known and this could be
further investigated in the future.

The EMI experiments in section 4.3 point in the direction that the interference
should be possible to overcome and handle. But these experiments are made in a
model of how the real system might behave. How the real EMI environment will
be, with a 400 Ampere current flowing through the pickups, whose shape, behavior
and performance is unknown, is hard to model. It would be good to make further
experiments on the model with higher current values to see if the relation between
current and interference can be better determined.

1OBD stands for "On-board diagnostics" and is a interface connection to a vehicle’s
self-diagnostic and reporting capability that now is standardized in most cars and often
can give real time information

57

58 Discussion and future work

To conclude it is deemed that all of the goals and aims set up for this thesis project
were met with a satisfying outcome.

AppendixA
Program Code

A.1 Receiver Arduino Due: The rail road computer

1 #include <SPI.h>
2 #include <SD.h>
3 #include <Ethernet.h>
4
5 #define DEBUG 1
6
7 //metal
8 //#define RAIL6 1
9
10 //tree
11 #define RAIL7 1
12
13 // Ethernet
14 #ifdef RAIL7
15 byte mac[] = {
16 0xDE , 0xAD , 0xBE , 0xEF , 0xFE , 0x07
17 };
18 IPAddress ip(192, 168, 1, 167);
19 #endif
20
21 #ifdef RAIL6
22 byte mac[] = {
23 0xDE , 0xAD , 0xBE , 0xEF , 0xFE , 0x06
24 };
25 IPAddress ip(192, 168, 1, 166);
26 #endif
27
28 int port = 5217;
29 IPAddress server (192, 168, 1, 33);
30 IPAddress preRail (192, 168, 1, 166);
31
32 unsigned int localPort = 8888;

59

60 Program Code

33 // An EthernetUDP instance to let us send and receive packets
over UDP

34 EthernetUDP Udp;
35
36 #define UDP_TX_PACKET 255
37 #define PRIME 0X0F
38 #define SETID 0X0A
39 #define GETID 0x0B
40 #define TURNON 0X0C
41 #define TURNOFF 0x0D
42 #define ACKPRIME 0x06
43 #define ACKSETID 0X05
44 #define ACKGETID 0x04
45 #define ACKTURNON 0X03
46 #define ACKTURNOFF 0x02
47 #define PING 0x01
48
49 char turnOffMsg []={’?’,’0’,’D’,’0’,’1’,’0’,’1’,’K’};
50
51 byte lastMsgNbr;
52 byte tagId[] = {0x00 ,0x00 ,0x00 ,0x00};
53 byte data [257];
54 byte dataOut [257];
55 byte dataLength =0;
56 byte stage = 0;
57 byte hexStage =0;
58 unsigned long etherPreTime =0;
59 volatile boolean primed =0;
60
61 #define LED1 53
62 #define LED2 51
63 #define LED3 49
64 #define LED4 47
65 #define LED_CAR_PIN 7
66 #define LED_STRIPE_PIN 5
67 #define FEQ_PIN 6
68 #define AMP_PIN A0
69 #define AMP_HYST 100
70 #define maxAmpInit 600
71 #define minAmpInit 1000
72
73 #ifdef RAIL6
74 // RailInMetal
75 #define ampTop 1200
76 #define ampMid 800
77 #define ampBot 400
78 #endif
79
80 #ifdef RAIL7
81 //Rail on tree
82 #define ampTop 1800

Program Code 61

83 #define ampMid 1400
84 #define ampBot 1000
85 #endif
86
87 volatile boolean testLedToggle;
88 volatile int errorFlag;
89 File root;
90 const int chipSelectSD = 4;
91 char filePrefix [] = "dr5a";
92 char fileName [16];
93 int fileNbrH =0;
94 int fileNbrL =0;
95 char fileEnd [] = ".txt";
96
97 volatile int pasTimerReset;
98 volatile int sendTurnOff =0;
99

100 unsigned long fF,fR,sF ,sR;
101 boolean flagDetect = false; // Detect
102 boolean flagCollectData=false;
103 boolean flagCarDetect=false;
104 volatile int stateCarPassed;
105 volatile int lastState;
106 volatile int nextInt;
107 volatile int nextLow;
108 #define BUFFER_SIZE 8 //8=8 samples mean value. compered at

68khz
109 #define BUFFER_SIZE_BINDEX 3
110 uint16_t buf[BUFFER_SIZE];
111
112 int val;
113 int maxAmp;
114 int maxAmpHalf;
115 int minAmp;
116 int ampState;
117 int oldAmpState;
118 int ampDetectHigh =0;
119 int ampDetectLow =0;
120 int ampFailDetect =0;
121 const int twoFactHighLow = 1; //high > 1^2 * low
122 #define NBR_STATE 8
123 unsigned long ampStateTime[NBR_STATE];
124 unsigned long ampDeltaLowTime;
125 unsigned long ampDeltaHighTimeDiv;
126 unsigned long ampStartTime;
127 unsigned long ampNowTime;
128 unsigned long ampLastTime;
129 unsigned long ampDeltaRise;
130 unsigned long ampDeltaFall;
131 int ampCarDetect;
132

62 Program Code

133 unsigned long timeTest =0;
134 unsigned long timeTestS =0;
135
136 static __inline__ void digitalWriteDirect(int pin , boolean val

){
137 //http :// forum.arduino.cc/index.php?topic =175617.0
138 if(val) g_APinDescription[pin]. pPort -> PIO_SODR =

g_APinDescription[pin].ulPin;
139 else g_APinDescription[pin]. pPort -> PIO_CODR =

g_APinDescription[pin].ulPin;
140 }
141
142
143
144 void InitsdLogger (){
145 /*
146 The circuit:
147 * SD card attached to SPI bus as follows:
148 ** MOSI - pin 11
149 ** MISO - pin 12
150 ** CLK - pin 13
151 ** CS - pin 4
152 */
153 // see if the card is present and can be initialized:
154 if (!SD.begin(chipSelectSD)) {
155 errorFlag =1;
156 digitalWriteDirect(LED1 , LOW);
157 digitalWriteDirect(LED4 , HIGH);
158 // don’t do anything more:
159 return;
160 }
161 fileNbrL =0;
162 fileNbrH =0;
163 sprintf(fileName ,"%s%d%s", filePrefix , fileNbrL , fileEnd);
164 while(SD.exists(fileName)){
165 digitalWriteDirect(LED3 , HIGH);
166 fileNbrL ++;
167 if(fileNbrL >7){
168 fileNbrH +=10;
169 fileNbrL =0;
170 }
171 int i =fileNbrL+fileNbrH;
172 sprintf(fileName ,"%s%d%s", filePrefix , (i), fileEnd);
173
174 }
175 digitalWriteDirect(LED3 , LOW);
176 }
177 void ledCount(int count){
178 switch (count)
179 {
180 case 0:

Program Code 63

181 digitalWriteDirect(LED4 , LOW);
182 digitalWriteDirect(LED3 , LOW);
183 digitalWriteDirect(LED2 , LOW);
184 break;
185 case 1:
186 digitalWriteDirect(LED4 , HIGH);
187 digitalWriteDirect(LED3 , LOW);
188 digitalWriteDirect(LED2 , LOW);
189 break;
190 case 2:
191 digitalWriteDirect(LED4 , LOW);
192 digitalWriteDirect(LED3 , HIGH);
193 digitalWriteDirect(LED2 , LOW);
194 break;
195 case 3:
196 digitalWriteDirect(LED4 , HIGH);
197 digitalWriteDirect(LED3 , HIGH);
198 digitalWriteDirect(LED2 , LOW);
199 break;
200 case 4:
201 digitalWriteDirect(LED4 , LOW);
202 digitalWriteDirect(LED3 , LOW);
203 digitalWriteDirect(LED2 , HIGH);
204 break;
205 case 5:
206 digitalWriteDirect(LED4 , HIGH);
207 digitalWriteDirect(LED3 , LOW);
208 digitalWriteDirect(LED2 , HIGH);
209 break;
210 case 6:
211 digitalWriteDirect(LED4 , LOW);
212 digitalWriteDirect(LED3 , HIGH);
213 digitalWriteDirect(LED2 , HIGH);
214 break;
215 case 7:
216 digitalWriteDirect(LED4 , HIGH);
217 digitalWriteDirect(LED3 , HIGH);
218 digitalWriteDirect(LED2 , HIGH);
219 break;
220 }
221 }
222
223 void InitTimerFast(Tc *tc, uint32_t channel , IRQn_Type irq ,

uint32_t time100us)
224 //http :// ko7m.blogspot.se /2015/01/ arduino -due -timers -part -1.

html
225 {
226 pmc_set_writeprotect(false);
227 pmc_enable_periph_clk(irq);
228 // clock2 is /8 and clock4 is /128
229 TC_Configure(tc , channel , TC_CMR_WAVE | TC_CMR_WAVSEL_UP_RC

64 Program Code

| TC_CMR_TCCLKS_TIMER_CLOCK3);
230 uint32_t rc = 263 * time100us; // VARIANT_MCK / 32 / 10000 *

time100us;
231 TC_SetRC(tc , channel , rc);
232 // TC_Start(tc , channel);
233 tc ->TC_CHANNEL[channel]. TC_IER= TC_IER_CPCS;
234 tc ->TC_CHANNEL[channel]. TC_IDR =~(TC_IER_CPCS);
235 NVIC_EnableIRQ(irq);
236 }
237 void InitTimerSlow(Tc *tc, uint32_t channel , IRQn_Type irq ,

uint32_t timeMilli)
238 //http :// ko7m.blogspot.se /2015/01/ arduino -due -timers -part -1.

html
239 {
240 pmc_set_writeprotect(false);
241 pmc_enable_periph_clk(irq);
242
243 TC_Configure(tc , channel , TC_CMR_WAVE | TC_CMR_WAVSEL_UP_RC

| TC_CMR_TCCLKS_TIMER_CLOCK5);
244 uint32_t rc = 32 * timeMilli; //32000 / 1000 * timeMilli;
245 TC_SetRC(tc , channel , rc);
246 // TC_Start(tc , channel);
247 tc ->TC_CHANNEL[channel]. TC_IER= TC_IER_CPCS;
248 tc ->TC_CHANNEL[channel]. TC_IDR =~(TC_IER_CPCS);
249 NVIC_EnableIRQ(irq);
250 }
251 void AdcInit ()
252 // http :// nicecircuits.com/playing -with -analog -to-digital -

converter -on-arduino -due/
253 {
254 // Setup all registers
255 pmc_enable_periph_clk(ID_ADC); // To use peripheral , we must

enable clock distributon to it
256 adc_init(ADC , SystemCoreClock , ADC_FREQ_MAX ,

ADC_STARTUP_FAST); // initialize ADC_FREQ_MIN =20 ksample
ADC_FREQ_MAX =544 ksample

257 adc_disable_interrupt(ADC , 0xFFFFFFFF);
258 adc_set_resolution(ADC , ADC_10_BITS);
259 adc_configure_power_save(ADC , 0, 0); // Disable sleep
260 adc_configure_timing(ADC , 0, ADC_SETTLING_TIME_3 , 1); // Set

timings - standard values
261 adc_set_bias_current(ADC , 1); // Bias current - maximum

performance over current consumption
262 adc_stop_sequencer(ADC); // not using it
263 adc_disable_tag(ADC); // it has to do with sequencer , not

using it
264 adc_disable_ts(ADC); // deisable temperature sensor
265 adc_disable_channel_differential_input(ADC , ADC_CHANNEL_7);

//pin A0
266 adc_configure_trigger(ADC , ADC_TRIG_SW , 1); // triggering

from software , freerunning mode

Program Code 65

267 adc_disable_all_channel(ADC);
268 adc_enable_channel(ADC , ADC_CHANNEL_7); // just one channel

enabled
269
270 // configure Peripheral DMA
271
272 }
273
274 // the setup routine runs once when you press reset:
275 void setup() {
276 sendTurnOff =0;
277 errorFlag =0;
278 pinMode(FEQ_PIN ,INPUT);
279 pinMode(AMP_PIN ,INPUT);
280 pinMode(LED_CAR_PIN ,OUTPUT);
281 pinMode(LED_STRIPE_PIN ,OUTPUT);
282 // pinMode (13, OUTPUT);
283
284 pinMode (39, OUTPUT);
285 digitalWrite (39,LOW);
286 testLedToggle=LOW;
287
288
289
290 InitTimerSlow(TC2 ,1, TC7_IRQn , 500); // used for TimerReset

. last variabel: time [ms]
291 InitTimerFast(TC2 , 2, TC8_IRQn , 1800); // used for

TimerNoFreq. last variabel: time [ms/10]
292 pasTimerReset =0;
293
294
295 AdcInit ();
296 adc_start(ADC);
297 pinMode(LED1 ,OUTPUT);
298 pinMode(LED2 ,OUTPUT);
299 pinMode(LED3 ,OUTPUT);
300 pinMode(LED4 ,OUTPUT);
301 digitalWrite(LED_CAR_PIN , LOW);
302 digitalWrite(LED_STRIPE_PIN , LOW);
303 clearFreqState ();
304 clearAmpState ();
305 digitalWriteDirect(LED1 , HIGH);
306
307 #ifdef DEBUG
308 Serial.begin (115200);
309 #endif
310
311 delay (100);
312 InitsdLogger ();
313 PDC_ADC ->PERIPH_RPR = (uint32_t) buf; // address of buffer
314 PDC_ADC ->PERIPH_RCR = BUFFER_SIZE;

66 Program Code

315 PDC_ADC ->PERIPH_PTCR = PERIPH_PTCR_RXTEN; // enable receive
316 delay (1000);
317 // start the Ethernet connection:
318 Ethernet.begin(mac , ip);
319 Udp.begin(localPort);
320 lastMsgNbr= 0;
321
322 }
323
324 void clearFreqState (){
325 lastState =-1;
326 stateCarPassed =-1;
327 nextInt =0;
328 nextLow =0;
329 fR=fF=sR=sF=0;
330 }
331
332 void clearAmpState (){
333 minAmp=minAmpInit;
334 maxAmp=maxAmpInit;
335 ampState =0;
336 oldAmpState =0;
337 ampDetectHigh =0;
338 ampDetectLow =0;
339 ampFailDetect =0;
340 digitalWriteDirect(LED4 , LOW);
341 digitalWriteDirect(LED3 , LOW);
342 digitalWriteDirect(LED2 , LOW);
343 // digitalWriteDirect(LED1 , LOW);
344 for(int i=0; i < NBR_STATE; i++){
345 ampStateTime[i]=0;
346 }
347 ampDeltaLowTime =0;
348 ampDeltaHighTimeDiv =0;
349 ampStartTime =0;
350 ampNowTime =0;
351 ampCarDetect =0;
352 // digitalWriteDirect(LED_CAR_PIN , LOW);
353 // digitalWriteDirect(LED_STRIPE_PIN , LOW);
354 ampDeltaRise =0;
355 ampDeltaFall =0;
356 ledCount(fileNbrL);
357
358 }
359
360 void startTimerReset (){
361 // Start and reset timmer to reset statemachine when no

change for long
362 //uses timmer TC2 chanel 1
363 TC2 ->TC_CHANNEL [1]. TC_CCR &= ~TC_CCR_CLKDIS;
364 TC2 ->TC_CHANNEL [1]. TC_CCR |=

Program Code 67

365 TC_CCR_CLKEN | // enables the clock if CLKDIS is not 1
366 TC_CCR_SWTRG; // the counter is reset and the clock is

started
367 TC_GetStatus(TC2 , 1);
368 digitalWriteDirect(LED1 , LOW);
369
370 }
371
372 void startTurnOffTimer (){
373 //uses timmer TC2 chanel 2
374 TC2 ->TC_CHANNEL [2]. TC_CCR &= ~TC_CCR_CLKDIS;
375 TC2 ->TC_CHANNEL [2]. TC_CCR |=
376 TC_CCR_CLKEN | // enables the clock if CLKDIS is not 1
377 TC_CCR_SWTRG; // the counter is reset and the clock is

started
378 TC_GetStatus(TC2 , 2);
379 }
380 void startTimerSendTurnOffBack (){
381 //uses timmer TC2 chanel 0
382 TC2 ->TC_CHANNEL [0]. TC_CCR &= ~TC_CCR_CLKDIS;
383 TC2 ->TC_CHANNEL [0]. TC_CCR |=
384 TC_CCR_CLKEN | // enables the clock if CLKDIS is not 1
385 TC_CCR_SWTRG; // the counter is reset and the clock is

started
386 TC_GetStatus(TC2 , 0);
387 }
388
389 // the loop routine runs over and over again forever:
390 void loop() {
391 ethernet ();
392
393 if(primed){ // start recive if primed
394 if((adc_get_status(ADC) & ADC_ISR_ENDRX) != 0){ // waiting

for buffer to fill upp (544 ksample /16=18 khz
395 ampCalcFix ();
396 PDC_ADC ->PERIPH_RPR = (uint32_t) buf; // address of

buffer
397 PDC_ADC ->PERIPH_RCR = BUFFER_SIZE;
398 PDC_ADC ->PERIPH_PTCR = PERIPH_PTCR_RXTEN; // enable

receive
399 }
400 }
401 // ampPrint ();
402 if(pasTimerReset){
403 clearAmpState ();
404 pasTimerReset =0;
405 primed =0;
406 }
407 readCommand ();
408 if(sendTurnOff){
409 sendTurnOff =0;

68 Program Code

410 sendMsg(preRail ,turnOffMsg);
411 #ifdef DEBUG
412 Serial.print("TurnOff sent");
413 #endif
414 }
415 }
416 void ethernet (){
417 char packetBuffer[UDP_TX_PACKET]={};
418 noInterrupts ();
419 int packetSize = Udp.parsePacket ();
420 interrupts ();
421 int startIndex =0;
422 if (packetSize)
423 {
424 IPAddress remote = Udp.remoteIP ();
425 Udp.read(packetBuffer , UDP_TX_PACKET);
426 char checksum = 0;
427 for(int i=0; i < packetSize; i++){
428 checksum ^= packetBuffer[i];
429 if(packetBuffer[i]==’?’){
430 startIndex=i;
431 #ifdef DEBUG
432 Serial.print("StartIndex: ");
433 Serial.println(startIndex);
434 #endif
435 }
436 }
437 if(packetBuffer [0]==’?’){
438 if(! checksum){
439 data [0] = hexDecode(packetBuffer [1]) <<4; // *16
440 data [0] += hexDecode(packetBuffer [2]);
441 if((data [0]== lastMsgNbr) && ((data [0] & 0xF0)!= 0)){
442 #ifdef DEBUG
443 Serial.print("same: ");
444 #endif
445 }else{
446 data [1] = hexDecode(packetBuffer [3]) <<4; // *16
447 data [1] += hexDecode(packetBuffer [4]);
448 for(int i = 0; i < (data[1]<<1);i+=2){
449 #ifdef DEBUG
450 Serial.print("index:");
451 Serial.println(i);
452 #endif
453 data [2+(i>>1)] = hexDecode(packetBuffer [5+i])

<<4; // *16
454 data [2+(i>>1)] += hexDecode(packetBuffer [6+i]);
455 }
456 if(packetBuffer [(4+ data [1]) <<1]){
457 #ifdef DEBUG
458 Serial.println("correct!");
459 #endif

Program Code 69

460 }
461 instruction ();
462 lastMsgNbr=packetBuffer [1];
463 }
464 #ifdef DEBUG
465 Serial.println("awnser");
466 #endif
467 Udp.beginPacket(Udp.remoteIP (), Udp.remotePort ());
468 Udp.write(’!’);
469 checksum=’!’;
470 for(int i = 0; i < dataOut [1] + 2; i++)
471 {
472 #ifdef DEBUG
473 Serial.print((char)hexEncode(dataOut[i] >>4)); //

/16
474 Serial.print((char)hexEncode(dataOut[i] & 0xF)); //

%16
475 #endif
476 checksum ^= hexEncode(dataOut[i] >>4);
477 checksum ^= hexEncode(dataOut[i] & 0x0F);
478 Udp.write(hexEncode(dataOut[i] >>4)); // /16
479 Udp.write(hexEncode(dataOut[i] & 0x0F)); // %16
480 }
481
482 Udp.write(checksum);
483 Udp.endPacket ();
484 // lastInstruction = millis ();
485 #ifdef DEBUG
486 Serial.println("done");
487 #endif
488 }
489 }else if(packetBuffer [0]==’!’){
490 //TODO send again if this is not recived after sendMsg.
491 #ifdef DEBUG
492 Serial.println("gotAwnser");
493 #endif
494 }
495 }
496
497
498 }
499 byte hexDecode(byte c)
500 {
501 if(c >= ’0’ && c <= ’9’)
502 {
503 return c - ’0’;
504 }
505 else if(c >= ’a’ && c <= ’f’)
506 {
507 return c - ’a’ + 10;
508 }

70 Program Code

509 else if(c >= ’A’ && c <= ’F’)
510 {
511 return c - ’A’ + 10;
512 }
513 else
514 {
515 return 0;
516 }
517 }
518
519 byte hexEncode(byte n, boolean cap)
520 {
521 if(n >= 0 && n <= 9)
522 {
523 return n + ’0’;
524 }
525 else if(n >= 10 && n <= 15)
526 {
527 if(cap)
528 {
529 return n - 10 + ’A’;
530 }
531 else
532 {
533 return n - 10 + ’a’;
534 }
535 }
536 else
537 {
538 return ’0’;
539 }
540 }
541
542 byte hexEncode(byte n)
543 {
544 return hexEncode(n, true);
545 }
546 void instruction (){
547 #ifdef DEBUG
548
549 Serial.print("msg recived. lenght");
550 Serial.println(data [1]);
551 for(int i = 0; i < data [1] + 2; i++)
552 {
553 Serial.print((char)hexEncode(data[i] >>4)); // /16
554 Serial.print((char)hexEncode(data[i] & 0xF)); // %16
555 }
556 Serial.println("\n msg end");
557 #endif
558
559 if(data [0]== SETID){

Program Code 71

560 if(data [1]==4){
561 #ifdef DEBUG
562 Serial.println("setId start");
563 #endif
564 for(int i=0;i<data [1]; i++){
565 tagId[i]=data[i+2];
566 #ifdef DEBUG
567 Serial.println(tagId[i]);
568 #endif
569 }
570 dataOut [0]= ACKSETID;
571 dataOut [1]=1;
572 dataOut [2]= PRIME;
573 #ifdef DEBUG
574 Serial.println("setId done");
575 #endif
576 }
577 }
578 if(data [0]== GETID){
579 dataOut [0]= ACKGETID;
580 dataOut [1]=4;
581 for(int i=0;i<dataOut [1]; i++){
582 dataOut[i+2]= tagId[i];
583 #ifdef DEBUG
584 Serial.println(dataOut[i+2]);
585 #endif
586 }
587 #ifdef DEBUG
588 Serial.println("getId done");
589 #endif
590
591 }
592 if(data [0]== PRIME){
593 primed =1;
594 dataOut [0]= ACKPRIME;
595 #ifdef DEBUG
596 Serial.println("priming");
597 #endif
598 if(data [1]==2){
599 int onTime = ((data [2] & 0XFF) << 8) + ((data [3])

& 0XFF);
600 #ifdef DEBUG
601 Serial.println(onTime);
602 #endif
603 InitTimerFast(TC2 , 2, TC8_IRQn , onTime); // used

for TimerTurnoff. last variabel: time [ms/10]
604 onTime=onTime >>3;
605 InitTimerSlow(TC2 ,1, TC7_IRQn , onTime); // used

for TimerReset. last variabel: time [ms] >>3
makes wait time: 10/8=1. times longer

606 startTimerReset ();

72 Program Code

607 dataOut [1]=1;
608 dataOut [2]=0;
609 InitTimerFast(TC2 , 0, TC6_IRQn , onTime); // used

for TimerTurnoff. last variabel: time [ms/10]
610 #ifdef DEBUG
611 Serial.println("time to send turnoff");
612 Serial.println(onTime);
613 #endif
614 }
615 }
616 if(data [0]== TURNON){
617 #ifdef DEBUG
618 Serial.println("turning on");
619 #endif
620 digitalWriteDirect(LED_CAR_PIN ,HIGH);
621 digitalWriteDirect(LED_STRIPE_PIN ,HIGH);
622 dataOut [0]= ACKTURNON;
623 dataOut [1]=1;
624 dataOut [2]= TURNON;
625 }
626 if(data [0]== TURNOFF){
627 #ifdef DEBUG
628 Serial.println("turning off");
629 #endif
630 dataOut [0]= ACKTURNOFF;
631 dataOut [1]=0 x01;
632 dataOut [2]= TURNOFF;
633 digitalWriteDirect(LED_CAR_PIN ,LOW);
634 digitalWriteDirect(LED_STRIPE_PIN ,LOW);
635 }
636
637
638 }
639
640 void sendMsg(IPAddress rec , char msg []){
641 Udp.beginPacket(rec , localPort);
642 Udp.write(msg ,8);
643 Udp.endPacket ();
644 }
645
646 void readCommand (){
647 if (Serial.available () > 0) {
648 int command= Serial.parseInt ();
649 if(command ==0){
650 Serial.println("0=help , 1=list , 2= readCurentFile , 3=

chose file to read , 4= eraseAll");
651 }else if(command ==1){
652 char tempName [16];
653 Serial.println("------print list -------");
654 int i = 0;
655 int ii= 0;

Program Code 73

656 sprintf(tempName ,"%s%d%s", filePrefix , i, fileEnd);
657 while(SD.exists(tempName)){
658 Serial.print(" ");
659 Serial.println(tempName);
660 i++;
661 if(i>7){
662 ii+=10;
663 }
664 int j= ii+i;
665 sprintf(tempName ,"%s%d%s", filePrefix , j, fileEnd);
666 }
667 Serial.println("------Done!-------\n\n");
668 }else if(command ==2){
669 File tempFile = SD.open(fileName);
670 if (tempFile) {
671 Serial.println("----------------------");
672 Serial.println(fileName);
673
674 // read from the file until there ’s nothing else in it

:
675 while (tempFile.available ()) {
676 Serial.write(tempFile.read());
677 }
678 // close the file:
679 tempFile.close();
680 Serial.println("----------------------\n\n");
681 } else {
682 // if the file didn’t open , print an error:
683 Serial.println("error opening file");
684 }
685
686 }else if(command ==3){
687 char tempName [16];
688 Serial.println("Read file number:");
689 while(Serial.available ()==0){
690 }
691 int i = Serial.parseInt ();
692 if(i==0){
693 return;
694 }
695 sprintf(tempName ,"%s%d%s", filePrefix , i, fileEnd);
696 if(SD.exists(tempName)){
697 File tempFile = SD.open(tempName);
698 if (tempFile) {
699 Serial.println("----------------------");
700 Serial.println(tempName);
701
702 // read from the file until there ’s nothing else in

it:
703 while (tempFile.available ()) {
704

74 Program Code

705 Serial.write(tempFile.read());
706 }
707 // close the file:
708 tempFile.close();
709 Serial.println("----------------------\n\n");
710 } else {
711 // if the file didn’t open , print an error:
712 Serial.println("error opening file");
713 }
714 }else{
715 Serial.println("No file with that name exists");
716 }
717
718
719 }else if(command ==4){
720 char tempName [16];
721 Serial.println("remove All? (y/n)");
722 while(Serial.available ()==0){
723 }
724 int temp = Serial.read();
725 Serial.println(temp);
726 if(temp != ’y’){
727 Serial.println("Aborted");
728 return;
729 }int i = 0;
730 int ii= 0;
731 sprintf(tempName ,"%s%d%s", filePrefix , i, fileEnd);
732 while(SD.exists(tempName)){
733 SD.remove(tempName);
734 i++;
735 if(i>7){
736 ii+=10;
737 }
738 int j= ii+i;
739 sprintf(tempName ,"%s%d%s", filePrefix , j, fileEnd);
740 }
741 Serial.println("Done removing");
742 }
743 }
744 }
745
746
747
748 boolean sdLog(char dataString []){
749 // open the file. note that only one file can be open at a

time ,
750 // so you have to close this one before opening another.
751 File dataFile = SD.open(fileName , FILE_WRITE);
752
753 // if the file is available , write to it:
754 if (dataFile) {

Program Code 75

755 dataFile.println(dataString);
756 dataFile.close();
757 return 1;
758 }
759 // if the file isn’t open , pop up an error:
760 else {
761 digitalWriteDirect(LED1 , LOW);
762 return 0;
763 }
764
765 }
766 void ampCalcFix (){
767 val =0;
768 for (int i=0; i<BUFFER_SIZE; i++){
769 val+=buf[i];
770 }
771 val=val >>BUFFER_SIZE_BINDEX;
772 if(val <minAmp){
773 minAmp=val;
774 }
775 if(maxAmp <val){
776 maxAmp=val;
777 }
778 // /
779 if((ampState ==0)&& (ampMid <val)){
780 #ifdef DEBUG
781 Serial.println("StartDetect");
782 // Serial.println(startIndex);
783 #endif
784 maxAmp=val;
785 ampStartTime= micros ();
786 ampStateTime[ampState]= ampStartTime;
787 startTimerReset ();
788 ampState =1;
789 minAmp=val; //to find new minAmp
790 digitalWriteDirect(LED4 , HIGH);
791 digitalWriteDirect(LED3 , LOW);
792 digitalWriteDirect(LED2 , LOW);
793 // /
794 }else if((ampState ==1)&& (ampTop <val)){
795 ampNowTime = micros ();
796 ampStateTime[ampState] = ampNowTime;
797 ampState =2;
798 ampDeltaRise = ampNowTime -ampStartTime;
799 digitalWriteDirect(LED4 , LOW);
800 digitalWriteDirect(LED3 , HIGH);
801 // digitalWriteDirect(LED2 , LOW);
802 // ^
803 }else if(ampState ==2 && (val+AMP_HYST) < maxAmp){
804 ampDetectHigh=maxAmp;
805 maxAmpHalf= maxAmp >>2;

76 Program Code

806 ampStateTime[ampState] = micros ();
807 ampState =3;
808 digitalWriteDirect(LED4 , HIGH);
809 // digitalWriteDirect(LED3 , HIGH);
810 // digitalWriteDirect(LED2 , LOW);
811 // \
812 }else if(ampState ==3 && (val <ampMid)){
813 ampNowTime= micros ();
814 ampLastTime=ampNowTime;
815 ampStateTime [3] = ampNowTime;
816 ampDeltaHighTimeDiv = (ampNowTime -ampStartTime);//>>

twoFactHighLow;
817 // FailDetect 1 To short High!
818 if(ampDeltaHighTimeDiv <100){
819 ampFailDetect =1;
820 ampState =20;
821 return;
822 }
823 ampState =4;
824 // ampDeltaHighTimeDiv=ampDeltaHighTimeDiv *10; //fix
825 digitalWriteDirect(LED4 , LOW);
826 digitalWriteDirect(LED3 , LOW);
827 digitalWriteDirect(LED2 , HIGH);
828 // \+
829 // }else if((ampState ==3 || ampState ==4) && val <

maxAmpHalf){
830 // ampStateTime [4] = micros ();
831 // ampState =5;
832 // digitalWriteDirect(LED4 , HIGH);
833 // // digitalWriteDirect(LED3 , LOW);
834 // // digitalWriteDirect(LED2 , HIGH);
835 // // v
836 }else if((ampState ==4)&& (val <ampBot)){
837 ampNowTime= micros ();
838 ampStateTime[ampState] = ampNowTime;
839 ampDeltaFall = ampNowTime -ampLastTime;
840 ampState =5;
841 digitalWriteDirect(LED4 , HIGH);
842 digitalWriteDirect(LED3 , LOW);
843 // digitalWriteDirect(LED2 , HIGH);
844 // Faildetect 2 to long DeltaFall
845 if(ampDeltaRise < ampDeltaFall){
846 ampState =20;
847 ampFailDetect =2;
848 }
849
850 }else if(ampState ==5 && (ampMid <val)){
851 ampNowTime=micros ();
852 ampStateTime[ampState]= ampNowTime;
853 ampDeltaLowTime = (ampNowTime -ampLastTime);
854 ampDetectLow=minAmp;

Program Code 77

855 ampState =6;
856
857 digitalWriteDirect(LED4 , LOW);
858 digitalWriteDirect(LED3 , HIGH);
859 }else if(ampState ==5){
860 // Faildetect 3 to long low
861 unsigned long currentMillis = micros ();
862 if ((currentMillis - ampNowTime) >=

ampDeltaHighTimeDiv){
863 ampState =20;
864 ampFailDetect =3;
865 ampStateTime[ampState]= currentMillis;
866 }
867 // /
868 }else if(ampState ==6 && ampTop <val){
869 // Correct Starting rail.
870 if(ampDeltaLowTime < ampDeltaHighTimeDiv){
871 digitalWriteDirect(LED_CAR_PIN , HIGH);
872 digitalWriteDirect(LED_STRIPE_PIN , HIGH);
873 ampCarDetect =1;
874 startTurnOffTimer ();
875 startTimerSendTurnOffBack ();
876 #ifdef DEBUG
877 Serial.println("detect");
878 // Serial.println(startIndex);
879 #endif
880 }
881 ampState =7;
882 digitalWriteDirect(LED4 , HIGH);
883 ampStateTime [6]= micros ();
884 // digitalWriteDirect(LED3 , HIGH);
885 // digitalWriteDirect(LED2 , HIGH);
886
887 }else if((ampState ==7) && (val <ampBot)){
888 ampStateTime[ampState] = micros ();
889 ampState =0;
890 primed =0;
891 // digitalWriteDirect(LED_STRIPE_PIN , LOW);
892 // digitalWriteDirect(LED_CAR_PIN , LOW);
893 digitalWriteDirect(LED4 , LOW);
894 digitalWriteDirect(LED3 , LOW);
895 digitalWriteDirect(LED2 , LOW);
896 }
897
898 }
899 void ampPrint (){
900 if(ampState ==20){
901 char dataString [512] = "";
902 sprintf(dataString ,"Fail %d! at System time s0: %u uS

Lowest detect: %d Highest detect: %d", ampFailDetect ,
ampStateTime [0], minAmp , maxAmp);

78 Program Code

903 if(ampFailDetect ==2)
904 sprintf(dataString ,"%s dRise: %u, dFall: %u", dataString ,

ampDeltaRise ,ampDeltaFall);
905 for (int i = 1; i < NBR_STATE; i++) {
906 sprintf(dataString ,"%s, s%d-s0: %u uS", dataString , i

, (ampStateTime[i]-ampStateTime [0]));
907 }
908
909 // Serial.println(dataString);
910 if(!sdLog(dataString)){
911 // Serial.println ("fail to write 2");
912 }
913 clearAmpState ();
914 }else if(pasTimerReset){
915 char dataString [256] = "";
916 if((ampCarDetect)){
917 //#define NBR_STATE 4
918 // unsigned long ampStateTime [4];
919 if(ampCarDetect){
920 sprintf(dataString , "Correct!");
921 }
922 sprintf(dataString ,"%s Full Detect at System time s0: %u

uS , dRise: %u, dFall: %u", dataString , ampStateTime
[0], ampDeltaRise ,ampDeltaFall);

923 for (int i = 1; i < NBR_STATE; i++) {
924 sprintf(dataString ,"%s, s%d-s0: %u uS", dataString , i

, (ampStateTime[i]-ampStateTime [0]));
925 }
926 sprintf(dataString ,"%s, time low between loobes: %u uS,

lobMax: %d [mV], min: %d [mV]", dataString ,
ampDeltaLowTime , ampDetectHigh , ampDetectLow);

927 // Serial.println(dataString);
928 if(!sdLog(dataString)){
929 // Serial.println ("fail to write 1");
930 }
931 }else{
932 sprintf(dataString ,"Fail! detect at System time s0: %u

uS Lowest detect: %d Highest detect: %d",
ampStateTime [0], minAmp , maxAmp);

933 for (int i = 1; i < NBR_STATE; i++) {
934 sprintf(dataString ,"%s, s%d-s0: %u uS", dataString , i

, (ampStateTime[i]-ampStateTime [0]));
935 }
936 // Serial.println(dataString);
937 if(!sdLog(dataString)){
938 // Serial.println ("fail to write 2");
939 }
940 }
941 clearAmpState ();
942 pasTimerReset =0;
943 primed =0;

Program Code 79

944
945 }
946 }
947
948 //TC1 ch 0
949 void TC8_Handler ()
950 {
951
952 TC2 ->TC_CHANNEL [2]. TC_CCR &= ~TC_CCR_CLKEN;
953 TC2 ->TC_CHANNEL [2]. TC_CCR |= TC_CCR_CLKDIS; // disable clock
954 // TC_Stop(TC2 , 2);
955 TC_GetStatus(TC2 , 2);
956 digitalWriteDirect(LED_CAR_PIN ,LOW);
957 digitalWriteDirect(LED_STRIPE_PIN ,LOW);
958 #ifdef DEBUG
959 Serial.print("TC8 timeout");
960 // Serial.println(startIndex);
961 #endif
962 }
963 //send turn off to previus rail
964 void TC6_Handler ()
965 {
966
967 TC2 ->TC_CHANNEL [0]. TC_CCR &= ~TC_CCR_CLKEN;
968 TC2 ->TC_CHANNEL [0]. TC_CCR |= TC_CCR_CLKDIS; // disable clock
969 // TC_Stop(TC2 , 2);
970 TC_GetStatus(TC2 , 0);
971 #ifdef DEBUG
972 Serial.print("SendingTurnOff");
973 // Serial.println(startIndex);
974 #endif
975 sendTurnOff =1;
976 // sendMsg(preRail ,turnOffMsg)
977 }
978
979 void TC7_Handler (){
980 TC2 ->TC_CHANNEL [1]. TC_CCR &= ~TC_CCR_CLKEN;
981 TC2 ->TC_CHANNEL [1]. TC_CCR |= TC_CCR_CLKDIS; // disable clock
982 // TC_Stop(TC2 , 2);
983 TC_GetStatus(TC2 , 1);
984 stateCarPassed =10;
985 pasTimerReset =1;
986 // digitalWriteDirect(LED2 , LOW);
987 digitalWriteDirect(LED_CAR_PIN ,LOW);
988 digitalWriteDirect(LED_STRIPE_PIN ,LOW);
989 digitalWriteDirect(LED1 , HIGH);
990 #ifdef DEBUG
991 Serial.print("TC7 timeout");
992 // Serial.println(startIndex);
993 #endif
994

80 Program Code

995 }

Program Code 81

A.2 RSU

A.2.1 StartServerUDP.java

1 import java.net.DatagramSocket;
2 import java.net.InetAddress;
3 import java.util.ArrayList;
4 import java.util.Scanner;
5 import java.util.concurrent.ConcurrentHashMap;
6
7
8 public class StartServerUDP {
9 Scanner scan = new Scanner(System.in);
10 Monitor mon = new Monitor ();
11 long startTime;
12 long endTime;
13 ConcurrentHashMap <String ,RoadConnectionUDP > clientsList =

new ConcurrentHashMap <String ,RoadConnectionUDP >();
14 /**
15 * @param args
16 */
17 public static void main(String [] args) {
18 // TODO Auto -generated method stub
19 new StartServerUDP ().run();
20 }
21 public void run(){
22 Monitor mon = new Monitor ();
23 CarServerThread carS = new CarServerThread(mon , 5123);
24 carS.start ();
25
26 int tempInt =0;
27 int port =8888;
28 try{
29 RoadConnectionUDP client1 = new RoadConnectionUDP(

InetAddress.getByName("192.168.1.166"), port , mon);
30 RoadConnectionUDP client2 = new RoadConnectionUDP(

InetAddress.getByName("192.168.1.167"), port , mon);
31 client1.start ();
32 client2.start ();
33 clientsList.put("0025806", client1);
34 clientsList.put("0025807", client2);
35
36 RSU2Road rsu2road = new RSU2Road(clientsList , mon);
37 rsu2road.start();
38 }catch (Exception e) {
39 // TODO Auto -generated catch block
40 System.out.println("fail");
41 e.printStackTrace ();
42 }
43

82 Program Code

44
45 int allTagids [] = {25806 ,25807 ,25809};
46
47 RoadConnectionUDP picked = null;
48
49
50 while(true){
51 if(scan.hasNext ()){
52 String myLine = scan.next();
53 switch (myLine){
54 case "list":
55 for(String s:clientsList.keySet ()){
56 System.out.println("tag:"+ s + " : Adress=" +

clientsList.get(s).toString ());
57
58 }
59 break;
60 case "pick":
61 System.out.print("tagNumber:");
62 String pick= scan.next();
63 picked = clientsList.get(pick);
64 if(picked !=null){
65 System.out.println("picked index:"+pick + " : "+picked);
66 }
67 break;
68 case "setid":
69 if(picked !=null){
70 System.out.print("id:");
71 picked.setTagId(Integer.parseInt(scan.next()));
72 }else{
73 System.out.println("no connection picked");
74 }
75 break;
76 case "getid":
77 if(picked !=null){
78 System.out.println("picked.getTagId ()");
79 }else{
80 System.out.println("no connection picked");
81 }
82 break;
83 case "sendsetid":
84 if(picked !=null){
85 System.out.print("id:");
86 picked.sendSetTagId(Integer.parseInt(scan.next()));
87 }else{
88 System.out.println("no connection picked");
89 }
90 break;
91 case "sendgetid":
92 if(picked !=null){
93 picked.sendGetTagId ();

Program Code 83

94 }else{
95 System.out.println("no connection picked");
96 }
97 break;
98 case "prime":
99 if(picked !=null){

100 System.out.print("time [ms/10 = *100us]:");
101 int timeset= Integer.parseInt(scan.next());
102 System.out.print("\n");
103 if(timeset >0){
104 picked.sendPrime(timeset);
105 }else{
106 picked.sendPrime ();
107 }
108 }else{
109 System.out.println("no connection picked");
110 }
111 break;
112 case "stop":
113 if(picked !=null){
114 picked.sendStop ();
115 clientsList.remove(picked);
116 picked=null;
117 }else{
118 System.out.println("no connection picked");
119 }
120 break;
121 case "turnon":
122 if(picked !=null){
123 picked.sendTurnON ();
124 }else{
125 System.out.println("no connection picked");
126 }
127 break;
128 case "turnoff":
129 if(picked !=null){
130 picked.sendTurnOFF ();
131 }else{
132 System.out.println("no connection picked");
133 }
134 break;
135 case "close":
136 mon.removeCar (0);
137 break;
138 default:
139 printHelp ();
140 break;
141
142 }
143 }
144

84 Program Code

145 }
146 }
147 private void printHelp (){
148 System.out.println("----------Help ---------");
149 System.out.println("h/help =Print a list of all commands (

THIS)");
150 System.out.println("list =Print a list of all connected");
151 System.out.println("pick =pick connection in list to do:")

;
152 System.out.println(" setid id =setid in class");
153 System.out.println(" getid =getid from class");
154 System.out.println(" sendsetid id =send setid to road");
155 System.out.println(" sendgetid =send getid to to road.

update class");
156 System.out.println(" stop =disconnect client");
157 System.out.println(" turnon =send getid to to road. update

class");
158 System.out.println(" turnoff =send getid to to road.

update class");
159
160 System.out.println("-------End Help ---------");
161
162 }
163 public void printConnected(String s){
164 System.out.println(s);
165 }
166
167 }

A.2.2 Monitor.java

1 import java.io.IOException;
2 import java.util.Iterator;
3 import java.util.Arrays;
4 import java.util.ArrayList;
5 import java.util.ListIterator;
6 import java.util.ArrayDeque;
7 import java.util.HashMap;
8 import java.util.Map;
9
10 public class Monitor {
11
12 private Map <Integer , Car > carMap;
13 private ArrayDeque <String[]> latestTagsDetected;
14 private int curSizeTD = 0; /* current size of

latestTagsDetected */
15 private int maxCars = 50;
16 private int nextAvailableID = 0;
17
18 public Monitor () {
19 carMap = new HashMap <Integer , Car >(10);

Program Code 85

20 latestTagsDetected = new ArrayDeque <>();
21 }
22
23 /* called by RecThread when a new car client has connected */
24 public synchronized int addCar(String id) {
25 Car c = new Car(id);
26 carMap.put(nextAvailableID , c);
27 int softID = nextAvailableID;
28 nextAvailableID = nextAvailableID % maxCars;
29 notifyAll ();
30 return softID;
31 }
32
33
34 public synchronized void removeCar(int id) {
35 carMap.get(id).setRemove(true);
36 notifyAll ();
37 }
38
39 public synchronized boolean shouldContinue(int id) {
40 boolean a = carMap.get(id).getRemove ();
41 if(a) {
42 carMap.remove(id);
43 notifyAll ();
44 }
45 return !a;
46 }
47
48 /* called by RecThread */
49 public synchronized void tagDetected(String t1 , String t2) {
50 String [] ret = {t1,t2};
51 latestTagsDetected.add(ret);
52 curSizeTD ++;
53 notifyAll ();
54 }
55
56 /* called by RoadSendTestThread */
57 public synchronized String [] getDetectedTagID () {
58 while(curSizeTD == 0) {
59 try{
60 wait();
61 } catch (InterruptedException e) {
62 System.out.println("Error: Couldn ’t wait: " + e.getMessage

());
63 }
64 }
65 curSizeTD --;
66 return latestTagsDetected.poll();
67 }
68
69 /* Car is an inner class in Monitor */

86 Program Code

70 private class Car {
71
72 boolean remove;
73 String ID;
74
75 public Car(String id) {
76 remove = false;
77 ID = id;
78 }
79
80 public void setRemove(boolean r) {
81 remove = r;
82 }
83
84 public boolean getRemove () {
85 return remove;
86 }
87
88 public String getID () {
89 return ID;
90 }
91 }
92 }

A.2.3 RoadConnectionUDP.java

1 import java.io.IOException;
2 import java.io.InputStream;
3 import java.io.OutputStream;
4 import java.io.PrintStream;
5 import java.io.UnsupportedEncodingException;
6 import java.math.BigInteger;
7 import java.net.DatagramPacket;
8 import java.net.DatagramSocket;
9 import java.net.InetAddress;
10 import java.net.Socket;
11 import java.nio.ByteBuffer;
12 import java.nio.ByteOrder;
13 import java.util.Queue;
14 import java.util.concurrent.ConcurrentLinkedQueue;
15 import java.util.concurrent.TimeUnit;
16 import java.util.concurrent.locks.Lock;
17
18
19 public class RoadConnectionUDP extends Thread {
20
21 private Queue <int[]> sendQue;
22 private DatagramSocket socket;
23 private InetAddress address;
24 private int port;
25 private int stage =0;

Program Code 87

26 private int dataLength =0;
27 private boolean hexStage =false;
28 private int[] data = new int [256];
29 private byte[] dataIn = new byte [256];
30 private Monitor mon;
31
32 private int id=0;
33 private Object lock = new Object ();
34 private int lastCarEnergyUsed =0;
35 private boolean newEnergyUsed = false;
36 final private int PRIME =0X0F;
37 final private int SETID =0X0A;
38 final private int GETID =0x0B;
39 final private int TURNON =0X0C;
40 final private int TURNOFF =0x0D;
41 final private int ACKPRIME =0X06;
42 final private int ACKSETID =0X05;
43 final private int ACKGETID =0x04;
44 final private int ACKTURNON =0X03;
45 final private int ACKTURNOFF =0x02;
46 final private int PING =0x01;
47 private boolean stop = false;
48 private int[] lastMsg;
49
50 //Debug
51 long timeStart =0;
52 long timeEnd =0;
53
54 // constructor
55 public RoadConnectionUDP(InetAddress address , int port ,

Monitor mon) throws Exception
56 {
57 socket= new DatagramSocket ();
58 socket.connect(address , port);
59 this.address = address;
60 this.port = port;
61 sendQue = new ConcurrentLinkedQueue <int[]>();
62 this.mon=mon;
63 }
64 public synchronized void run(){
65
66 while (true) {
67
68 try {
69
70 if(! sendQue.isEmpty ()){
71 lastMsg=sendQue.poll();
72 sendRecive(lastMsg); // protected
73
74 }
75 wait();

88 Program Code

76
77 } catch (Exception e) {
78 // TODO Auto -generated catch block
79 e.printStackTrace ();
80 }
81 }
82
83 }
84 private void sendRecive(int[] lastMsg2) throws IOException {
85 // TODO Auto -generated method stub
86 if(lastMsg2 ==null){
87
88 }
89 byte checksumSend;
90 DatagramPacket dpSend;
91 byte[] dataRec;
92 byte [] dataToSend = new byte [((lastMsg2 [1]) <<1)+6];
93 dataToSend [0]=’?’;
94 checksumSend=’?’;
95 int i3=0;
96 while (i3 <= (((lastMsg2 [1]) <<1)+2)){
97 System.out.print(i3);
98
99 checksumSend ^=(hexEncode ((lastMsg2 [(i3/2)] & 0xFF) >>4));

// /16
100 checksumSend ^=(hexEncode(lastMsg2 [(i3/2)] & 0xF)); // %16
101 dataToSend[i3+1] = (hexEncode ((lastMsg2 [(i3)/2] & 0xFF)

>>4)); // /16
102 dataToSend[i3+2] = (hexEncode(lastMsg2 [(i3/2)] & 0xF)); //

%16
103 i3++;
104 i3++;
105 }
106 dataToSend[dataToSend.length -1]= checksumSend;
107
108 boolean retry=true;
109 int retrys = 0;
110 byte checksum =0;
111 dataRec = new byte [255];
112 while(retry && retrys < 10){
113 retry=false;
114 dpSend = new DatagramPacket(dataToSend , dataToSend.length ,

address ,port);
115
116 socket.send(dpSend);
117 DatagramPacket dp = new DatagramPacket(dataRec , dataRec.

length ,address ,port);
118
119 try {
120 socket.receive(dp);
121 } catch (Exception e) {

Program Code 89

122 // TODO Auto -generated catch block
123 //e.printStackTrace ();
124 retry=true;
125 retrys ++;
126 }
127 if(dp.getLength () !=255){
128 checksum =0;
129 for(int i=0; i < dp.getLength () ; i++){
130 checksum ^= dataRec[i];
131 }
132 System.out.println("checksum ="+ checksum);
133 System.out.println(new String(dataRec));
134 }
135
136 }
137 if(checksum ==0){
138 data [0] = hexDecode(dataRec [1]) <<4; // *16
139 data [0] += hexDecode(dataRec [2]);
140 data [1] = hexDecode(dataRec [3]) <<4; // *16
141 data [1] += hexDecode(dataRec [4]);
142 for(int i = 0; i < (data[1]<<1);i+=2){
143 data [2+(i>>1)] = hexDecode(dataRec [5+i]) <<4; //

*16
144 data [2+(i>>1)] += hexDecode(dataRec [6+i]);
145 }
146 instruction(data);
147 }
148 timeEnd=System.nanoTime ();
149 System.out.println(" time:" +(timeEnd -timeStart) + "ns\n");
150 if(retrys == 10){
151 System.out.println("fail , no ack");
152 }
153
154 }
155 public String toString (){
156 return ""+ address;
157
158 }
159 synchronized public void sendStop () {
160 notifyAll ();
161 stop=true;
162 // TODO Auto -generated method stub
163
164 }
165 synchronized public void sendPrime (){
166 timeStart = System.nanoTime ();
167 int[] b= {PRIME ,0x01 ,0x01};
168 try {
169 sendQue.add(b); // protected
170 notifyAll ();
171 } catch (Exception e) {

90 Program Code

172 // TODO Auto -generated catch block
173 e.printStackTrace ();
174 }
175 }
176 synchronized public void sendPrime(int time100us){
177 timeStart = System.nanoTime ();
178
179 int[] bytes = intToByteArray(time100us);
180 System.out.println("DEBUG primeing , time:" + time100us);
181 int[] b= {PRIME ,0x02 ,bytes [2],bytes [3]};
182 try {
183 sendQue.add(b); // protected
184 notifyAll ();
185 } catch (Exception e) {
186 // TODO Auto -generated catch block
187 e.printStackTrace ();
188 }
189
190 }
191 synchronized public void sendTurnON () {
192 // TODO Auto -generated method stub
193 int[] b= {TURNON ,0x01 ,0x01};
194 try {
195 sendQue.add(b); // protected
196 } catch (Exception e) {
197 // TODO Auto -generated catch block
198 e.printStackTrace ();
199 }
200 notifyAll ();
201 }
202 synchronized public void sendTurnOFF () {
203 // TODO Auto -generated method stub
204 int[] b= {TURNOFF ,0x01 ,0x01};
205 try {
206 sendQue.add(b); // protected
207 } catch (Exception e) {
208 // TODO Auto -generated catch block
209 e.printStackTrace ();
210 }
211 notifyAll ();
212 }
213 synchronized public int getTagId (){
214 return id;
215 }
216 public void sendGetTagId (){
217 int[] b= {GETID ,0x01 ,0x01};
218 try {
219 sendQue.add(b); // protected
220 } catch (Exception e) {
221 // TODO Auto -generated catch block
222 e.printStackTrace ();

Program Code 91

223 }
224 }
225 synchronized public void setTagId(int id){
226 this.id = id;
227 }
228 public synchronized void sendSetTagId(int id){
229 int[] bytes = intToByteArray(id);
230 int[] b = {SETID ,bytes.length };
231 int[] sum = new int[b.length + bytes.length];
232 System.arraycopy(b, 0, sum , 0, b.length);
233 System.arraycopy(bytes , 0, sum , b.length , bytes.length);
234 setTagId(id);
235 try {
236 sendQue.add(sum); // protected
237 } catch (Exception e) {
238 // TODO Auto -generated catch block
239 e.printStackTrace ();
240 }
241 notifyAll ();
242 }
243 private int[] intToByteArray(int value) {
244 return new int[] {
245 (value >>> 24) & 0XFF ,
246 (value >>> 16) & 0XFF ,
247 ((value >>> 8) & 0XFF),
248 (value & 0xFF)};
249 }
250
251 private void instruction(int[] data){
252
253 if(data [0]== ACKGETID){
254 int tempid= ((data [2]& 0XFF) << 24) +
255 ((data [3]& 0XFF) << 16) +
256 ((data [4] & 0XFF) << 8) +
257 ((data [5]) & 0XFF);
258 setTagId(tempid);
259 }
260 if(data [0]== ACKPRIME){
261
262 }
263
264 }
265
266 private String toHex(String arg) {
267 try {
268 return String.format("%02x", new BigInteger (1, arg.getBytes

("UTF -8")));
269 } catch (UnsupportedEncodingException e) {
270 // TODO Auto -generated catch block
271 e.printStackTrace ();
272 }

92 Program Code

273 return null;
274 }
275
276 byte hexDecode(int c)
277 {
278 if(c >= ’0’ && c <= ’9’)
279 {
280 return (byte)(c - ’0’);
281 }
282 else if(c >= ’a’ && c <= ’f’)
283 {
284 return (byte)(c - ’a’ + 10);
285 }
286 else if(c >= ’A’ && c <= ’F’)
287 {
288 return (byte)(c - ’A’ + 10);
289 }
290 else
291 {
292 return 0;
293 }
294 }
295 byte hexEncode(int i, boolean cap)
296 {
297 if(i >= 0 && i <= 9)
298 {
299 return (byte) (i + ’0’);
300 }
301 else if(i >= 10 && i <= 15)
302 {
303 if(cap)
304 {
305 return (byte) (i - 10 + ’A’);
306 }
307 else
308 {
309 return (byte) (i - 10 + ’a’);
310 }
311 }
312 else
313 {
314 return ’0’;
315 }
316 }
317 byte hexEncode(int i)
318 {
319 return hexEncode(i, true);
320 }
321 }

Program Code 93

A.2.4 CarServerThread.java

1 import java.net.ServerSocket;
2 import java.net.Socket;
3 import java.io.IOException;
4
5 public class CarServerThread extends Thread {
6
7 private Monitor mon;
8 private int port;
9
10 public CarServerThread(Monitor m, int p) {
11 mon = m;
12 port = p;
13 }
14 public void run(){
15
16 ServerSocket serverSocket = null;
17 try {
18 serverSocket = new ServerSocket(port);
19
20 while(true){
21 new RecThread(serverSocket.accept (), mon).start ();
22 System.out.println("CarConnected");
23 }
24
25 } catch (IOException e) {
26 System.err.println("Could not listen on port: " + port);
27 System.exit (1);
28 }
29
30 }
31
32 }

A.2.5 RecThread.java

1 import java.net.Socket;
2 import java.io.BufferedReader;
3 import java.io.InputStreamReader;
4 import java.io.BufferedWriter;
5 import java.io.OutputStreamWriter;
6 import java.io.IOException;
7 import java.util.Arrays;
8
9
10 public class RecThread extends Thread {
11
12 private Monitor mon;
13 private Socket mySocket = null;
14 private BufferedReader in;

94 Program Code

15 private BufferedWriter out;
16
17 public RecThread(Socket socket , Monitor m) {
18 mySocket = socket;
19 mon = m;
20 try {
21 in = new BufferedReader(new InputStreamReader(mySocket.

getInputStream ()));
22 out = new BufferedWriter(new OutputStreamWriter(mySocket.

getOutputStream ()));
23 } catch (IOException e) {
24 System.out.println("Error: Couldn ’t connect: " + e.

getMessage ());
25 }
26 }
27
28 private int charArrayToInt(char[] data ,int start ,int end)

throws NumberFormatException
29 {
30 int result = 0;
31 for (int i = start; i < end; i++)
32 {
33 int digit = (int)data[i] - (int)’0’;
34 if ((digit < 0) || (digit > 9)) throw new

NumberFormatException ();
35 result *= 10;
36 result += digit;
37 }
38 return result;
39 }
40
41
42
43 public void run(){
44
45 String speed = "000";
46 String tagID , ID;
47 int s = 0, t = 0, i = 0;
48 int state = 0, softID = 0;
49 char ch;
50 char[] tagIDArray = new char [7];
51 char[] speedArray = new char [3];
52 boolean msgNotDone = true;
53 boolean alive = true;
54 boolean carAdded = false;
55
56 while(alive){
57 try {
58 if(in.ready ()) {
59 msgNotDone = true;
60 while(msgNotDone) {

Program Code 95

61 ch = (char) in.read();
62 // System.out.println ("I read char " + ch);
63 switch(state) {
64 case 0:
65 if(ch == ’?’) {
66 state ++;
67 Arrays.fill(tagIDArray ,’0’);
68 Arrays.fill(speedArray ,’0’);
69 // System.out.println ("in case0");
70 }
71 break;
72 case 1:
73 // System.out.println ("in case1");
74 if(ch == ’?’) {
75 state = 0;
76 } else if(ch == ’S’) {
77 state = 2;
78 } else if(ch == ’T’) {
79 state = 3;
80 } else if(ch == ’I’) {
81 state = 4;
82 } else if(ch == ’!’) {
83 msgNotDone = false;
84 state = 0;
85 // System.out.println ("I rec !");
86 }
87 break;
88 case 2:
89 if(ch == ’?’) {
90 state = 0;
91 break;
92 }else if(ch == ’!’) {
93 msgNotDone = false;
94 state = 0;
95 break;
96 }
97
98 // System.out.println ("in case2");
99 speedArray[s] = ch;

100 // System.out.println ("I put ch " + ch + "in speed at
index " + s);

101 s++;
102 if(s == 3) {
103 speed = String.valueOf(speedArray);
104 s = 0;
105 state = 1;
106 System.out.println("speed: " + speed);
107 }
108 break;
109 case 3:
110 // System.out.println ("in case3");

96 Program Code

111 if(ch == ’?’) {
112 state = 0;
113 break;
114 }else if(ch == ’!’) {
115 msgNotDone = false;
116 state = 0;
117 break;
118 }
119 tagIDArray[t] = ch;
120 // System.out.println ("I put ch " + ch + "in tagID at

index " + t);
121 t++;
122 if(t == 7) {
123 tagID = String.valueOf(tagIDArray);
124 mon.tagDetected(tagID , speed);
125 t = 0;
126 state = 1;
127 System.out.println("tagId: " + tagID);
128 }
129 break;
130 case 4:
131 // System.out.println ("in case4");
132 if(ch == ’?’) {
133 state = 0;
134 break;
135 }else if(ch == ’!’) {
136 msgNotDone = false;
137 state = 0;
138 break;
139 } else {
140 ID = String.valueOf(ch);
141 softID = mon.addCar(ID);
142 carAdded = true;
143 state = 1;
144 }
145 break;
146 }
147 }
148 }
149 if(carAdded && !mon.shouldContinue(softID)) {
150 System.out.println("Thread says: I should die");
151 try{
152 mySocket.close();
153 System.out.println("Clientsocket closed");
154 } catch (IOException e) {
155 e.printStackTrace ();
156 }
157 alive = false;
158 }
159 Thread.sleep (1);
160 } catch (IOException e) {

Program Code 97

161 e.printStackTrace ();
162 } catch (InterruptedException e) {
163 }
164 }
165 }
166 }

A.2.6 RSU2Road.java

1 import java.util.concurrent.ConcurrentHashMap;
2
3
4 public class RSU2Road extends Thread {
5 Monitor mon;
6 ConcurrentHashMap <String ,RoadConnectionUDP > clientsList;
7 public RSU2Road(ConcurrentHashMap <String ,RoadConnectionUDP >

clientsList , Monitor mon){
8 this.clientsList = clientsList;
9 this.mon = mon;
10 }
11 public void run(){
12 while(true){
13 String [] tagInfo = mon.getDetectedTagID ();
14 if(tagInfo !=null){
15 if(tagInfo.length ==2){
16 RoadConnectionUDP client=clientsList.get(tagInfo [0]);
17 if(client !=null){
18 int time = (int)(2.6*3.6/ (Integer.parseInt(tagInfo [1]))

*10000); // time to turn on for 2.6m (avstand(
sandare ,avtagare) + 1.07m + 1.15m + maginal)

19 // 2.6/8 = 0.325m
20 if(time <65000){
21 System.out.println("time: " + time+ ", tagid: " +

tagInfo [0]);
22 client.sendPrime(time);
23 }else{
24 System.out.println("To slow speed! time=" + time);
25 }
26 }
27 }
28 }
29 }
30 }
31 }

98 Program Code

A.3 Car code

A.3.1 serial.c

1 #include "serialport.h"
2
3 #include <sys/types.h>
4 #include <sys/stat.h>
5 #include <fcntl.h>
6 #include <termios.h>
7 #include <stdlib.h>
8 #include <strings.h>
9 #include <stdio.h>
10
11
12 /* baudrate settings are defined in <asm/termbits.h>, which is
13 * included by <termios.h> */
14 #ifndef BAUDRATE
15 #define BAUDRATE B9600
16 #endif
17
18 #define _POSIX_SOURCE 1 /* POSIX compliant source */
19
20 static int fd , c, res;
21 static struct termios oldtio , newtio;
22 static const char *device;
23
24 int serial_init(const char *modemdevice)
25 {
26 /*
27 * Open modem device for reading and writing and not as

controlling tty
28 * because we don’t want to get killed if linenoise sends

CTRL -C.
29 **/
30 device = modemdevice;
31 //fd = open (device , O_RDWR | O_NOCTTY | O_NDELAY);
32 fd = open (device , O_RDWR | O_NOCTTY);
33 if (fd < 0)
34 {
35 perror (device);
36 exit(-1);
37 }
38
39 tcgetattr (fd, &oldtio); /* save current serial port

settings */
40 bzero (&newtio , sizeof (newtio)); /* clear struct for new

port settings */
41
42 /*

Program Code 99

43 *BAUDRATE: Set bps rate. You could also use cfsetispeed
and cfsetospeed.

44 *CRTSCTS : output hardware flow control (only used if the
cable has

45 *all necessary lines.)
46 *CS8 : 8n1 (8bit ,no parity ,1 stopbit)
47 *CLOCAL : local connection , no modem contol
48 *CREAD : enable receiving characters
49 **/
50 newtio.c_cflag = BAUDRATE | CS8 | CLOCAL | CREAD;
51
52 /*
53 *IGNPAR : ignore bytes with parity errors
54 *ICRNL : map CR to NL (otherwise a CR input on the

other computer
55 * will not terminate input)
56 * otherwise make device raw (no other input

processing)
57 **/
58 newtio.c_iflag = IGNPAR | ICRNL;
59
60 /*
61 * Map NL to CR NL in output.
62 * */
63 #if 0
64 newtio.c_oflag = ONLCR;
65 #else
66 newtio.c_oflag = 0;
67 #endif
68
69
70 /*
71 * ICANON : enable canonical input
72 * disable all echo functionality , and don’t

send signals to calling program
73 **/
74 #if 1
75 newtio.c_lflag = ICANON;
76 #else
77 newtio.c_lflag = 0;
78 #endif
79
80 newtio.c_lflag &= ~(ICANON | ECHO | ECHOE | ISIG);
81
82 /*
83 * initialize all control characters
84 * default values can be found in /usr/include/termios.h,

and are given
85 * in the comments , but we don’t need them here
86 * */
87 newtio.c_cc[VINTR] = 0; /* Ctrl -c */

100 Program Code

88 newtio.c_cc[VQUIT] = 0; /* Ctrl -\ */
89 newtio.c_cc[VERASE] = 0; /* del */
90 newtio.c_cc[VKILL] = 0; /* @ */
91 newtio.c_cc[VEOF] = 4; /* Ctrl -d */
92 newtio.c_cc[VTIME] = 0; /* inter -character timer unused */
93 newtio.c_cc[VMIN] = 1; /* blocking read until 1 character

arrives */
94 newtio.c_cc[VSWTC] = 0; /* ’\0’ */
95 newtio.c_cc[VSTART] = 0; /* Ctrl -q */
96 newtio.c_cc[VSTOP] = 0; /* Ctrl -s */
97 newtio.c_cc[VSUSP] = 0; /* Ctrl -z */
98 newtio.c_cc[VEOL] = 0; /* ’\0’ */
99 newtio.c_cc[VREPRINT] = 0; /* Ctrl -r */

100 newtio.c_cc[VDISCARD] = 0; /* Ctrl -u */
101 newtio.c_cc[VWERASE] = 0; /* Ctrl -w */
102 newtio.c_cc[VLNEXT] = 0; /* Ctrl -v */
103 newtio.c_cc[VEOL2] = 0; /* ’\0’ */
104
105 /*
106 * now clean the modem line and activate the settings for

the port
107 **/
108 tcflush (fd, TCIFLUSH);
109 tcsetattr (fd, TCSANOW , &newtio);
110
111 /*
112 * terminal settings done , return file descriptor
113 **/
114
115 return fd;
116 }
117
118 void serial_cleanup(int ifd){
119 if(ifd != fd) {
120 fprintf(stderr , "WARNING! file descriptor != the one

returned by serial_init ()\n");
121 }
122 /* restore the old port settings */
123 tcsetattr (ifd , TCSANOW , &oldtio);
124 }

A.3.2 testSync.cc

1 #include "serialport.h"
2 #include "connection.h"
3 #include "connectionclosedexception.h"
4 #include "monitor.h"
5
6
7 #include <iostream > // std::cout
8 #include <thread > // std:: thread

Program Code 101

9 #include <chrono > // std:: chrono :: seconds
10 #include <sys/types.h>
11 #include <unistd.h>
12 #include <stdexcept >
13 #include <vector >
14
15 #define BAUDRATE B9600
16
17 using namespace std;
18
19 /* run method of comTSS thread */
20 void runTSS(Monitor& mon){
21
22 unsigned char bufIn [100] = {0};
23 int bytes_read [100];
24 int pos = 0;
25 unsigned char STX = 2, ETX = 3;
26 vector <unsigned char > send;
27
28 //int fd = serial_init ("/dev/ttyACM0 ");
29 int fd = serial_init("/dev/ttyUSB0");
30
31 while(true) {
32
33 //read from RFID antenna
34 int i = 0;
35 while(true) {
36 cout <<"one more time"<<endl;
37 i = 0;
38
39 bytes_read[pos] = read(fd , bufIn+pos , 1);
40
41 if(bufIn[pos] == STX) {
42 bytes_read[pos] = read(fd , bufIn+pos , 1); //read command
43 bytes_read[pos] = read(fd , bufIn+pos , 1);
44 cout <<"Tag read: ";
45 while(bufIn[pos] != ETX) {
46 cout <<bufIn[pos]<<" ";
47 send.push_back(bufIn[pos]);
48 i++;
49 bytes_read[pos] = read(fd , bufIn+pos , 1);
50 }
51 cout <<endl;
52 mon.putMsg(send);
53 send.clear();
54 bytes_read[pos] = read(fd , bufIn+pos , 1); //read crc
55 } this_thread :: sleep_for(chrono :: milliseconds (5));
56 }
57 }
58 serial_cleanup(fd);
59 }

102 Program Code

60
61 /* run method of comRSURec thread */
62 void runRSURec(Monitor& mon , shared_ptr <Connection >& conn) {
63
64 unsigned int recv_msg = 0;
65
66 while(true) {
67 try{
68 recv_msg = conn ->read();
69
70 } catch (ConnectionClosedException &) {
71 cout << " no reply from server. Exiting." << endl;
72 exit (1);
73 }
74 this_thread :: sleep_for(chrono :: milliseconds (500));
75 }
76 }
77
78 /* run method of comRSUSend thread */
79 void runcomRSUSend(Monitor& mon , shared_ptr <Connection >& conn ,

unsigned char id){
80 vector <unsigned char > curMsg;
81 vector <unsigned char > prevMsg;
82
83 try {
84 conn ->write(’?’);
85 conn ->write(’I’);
86 conn ->write(id);
87 conn ->write(’!’);
88 } catch (ConnectionClosedException &) {
89 cout << " no reply from server. Exiting." << endl;
90 exit (1);
91 }
92
93 while(true) {
94 mon.getMsg(curMsg);
95 if(curMsg != prevMsg){
96 cout <<"curMsg != prevMsg"<<endl;
97
98 for(vector <unsigned char >:: iterator it = curMsg.begin() ;

it != curMsg.end(); ++it){
99 try{

100 conn ->write ((*it));
101 cout <<" "<<*it;
102
103 } catch (ConnectionClosedException &) {
104 cout << " no reply from server. Exiting." << endl;
105 exit (1);
106 }
107 }
108 cout <<endl;

Program Code 103

109 prevMsg = curMsg;
110 curMsg.clear();
111 } else {
112 cout <<"curMsg == prevMsg"<<endl;
113 }
114 // this_thread :: sleep_for(chrono :: milliseconds (2000));
115 }
116 }
117
118 void runSpeed(Monitor& mon) {
119 string line;
120 int s = 0;
121 while (cin >> s) {
122 mon.putSpeed(s);
123 cout <<"Speed updated"<<endl;
124 this_thread :: sleep_for(chrono :: milliseconds (500));
125 }
126 }
127
128 //int main(){
129 int main(int argc , char* argv []) {
130 if (argc != 3) {
131 cerr << "Usage: myclient host -name port -number" << endl;
132 exit (1);
133 }
134
135 int port = -1;
136 try {
137 port = stoi(argv [2]);
138 } catch (exception& e) {
139 cerr << "Wrong port number. " << e.what() << endl;
140 exit (1);
141 }
142
143 shared_ptr <Connection > conn(new Connection (argv[1], port));
144 if (!conn ->isConnected ()) {
145 cerr << "Connection attempt failed" << endl;
146 exit (1);
147 }
148
149 Monitor m;
150
151 thread comTSS(runTSS ,std::ref(m));
152 thread comRSURec(runRSURec ,std::ref(m),std::ref(conn));
153 thread comRSUSend(runcomRSUSend ,std::ref(m),std::ref(conn),’0

’);
154 thread carSpeed(runSpeed ,std::ref(m));
155 carSpeed.join();
156 comTSS.join();
157 comRSURec.join();
158 comRSUSend.join();

104 Program Code

159 }

A.3.3 monitor.h

1 #ifndef MONITOR_H
2 #define MONITOR_H
3
4 #include <mutex > // std::mutex , std:: unique_lock
5 #include <condition_variable > // std:: condition_variable
6 #include <vector >
7 #include <chrono >
8
9 class Monitor {
10
11 public:
12 Monitor ();
13 void putMsg(std::vector <unsigned char > d);
14 void getMsg(std::vector <unsigned char >& d);
15 void putSpeed(int v);
16 void updatePowerConsumed(unsigned int a);
17
18 private:
19 std:: mutex mtx;
20 std:: condition_variable cv;
21 bool controlCheck = false; // true means the car is

allowed to draw power from the road
22 unsigned int powerConsumed = 48;
23 int speed =0;
24 std::vector <unsigned char > updatedSpeed;
25 size_t nextRead = 0, nextWrite = 0, curSize = 0, buffSize =

100;
26 std::vector <std::vector <unsigned char >> data;
27 std:: chrono :: high_resolution_clock :: time_point t_start , t_end

;
28 std:: clock_t c_start;
29
30 };
31
32 #endif

A.3.4 monitor.cc

1 \end{}
2 #include "monitor.h"
3 #include <iostream > // std::cout
4 #include <chrono >
5 #include <ctime >
6
7 using namespace std;
8

Program Code 105

9 Monitor :: Monitor (): data(buffSize){}
10
11 /* called by comTSS thread when it has read data from RFID

antennen */
12 void Monitor :: putMsg(vector <unsigned char > d){
13 unique_lock <mutex > lck(mtx); //take the mutex
14 while(curSize == buffSize) {cv.wait(lck);}
15 cout <<"in put msg";
16 data[nextWrite]. push_back(’?’);
17 data[nextWrite]. push_back(’S’);
18 char s[4]={’0’,’0’,’0’,’0’};
19 sprintf(s,"%03d",speed);
20 data[nextWrite]. push_back(s[0]);
21 data[nextWrite]. push_back(s[1]);
22 data[nextWrite]. push_back(s[2]);
23 data[nextWrite]. push_back(’T’);
24 data[nextWrite]. insert(data[nextWrite].end(), d.begin(), d.

end());
25 data[nextWrite]. push_back(’!’);
26
27 for (vector <unsigned char >:: iterator it = (data[nextWrite]).

begin() ; it != (data[nextWrite]).end(); ++it){
28 //cout << " " << hex << static_cast <unsigned int >(*it);
29 cout << " " << *it;
30 }
31 cout <<endl;
32 nextWrite = (nextWrite + 1) % buffSize;
33 curSize ++;
34 lck.unlock (); // release the mutex
35 cv.notify_all ();
36 }
37
38 /* called by comRSUSend thread */
39 void Monitor :: getMsg(vector <unsigned char >& vec) {
40
41 unique_lock <mutex > lck(mtx);
42 while(curSize == 0) {cv.wait(lck);}
43 vec = data[nextRead];
44 data[nextRead]. clear();
45 nextRead = (nextRead + 1) % buffSize;
46 curSize --;
47 // c_start = clock();
48 // t_start = chrono :: high_resolution_clock ::now();
49 lck.unlock ();
50 cv.notify_all ();
51 }
52
53 /* called by carSpeed */
54 void Monitor :: putSpeed(int a) {
55 unique_lock <mutex > lck(mtx);
56 speed = a;

106 Program Code

57 char s[4]={’0’,’0’,’0’,’0’};
58 sprintf(s,"%03d",speed);
59 updatedSpeed.push_back(’S’);
60 updatedSpeed.push_back(s[0]);
61 updatedSpeed.push_back(s[1]);
62 updatedSpeed.push_back(s[2]);
63 lck.unlock ();
64 cv.notify_all ();
65 }
66
67 /* called by comRSURec */
68 void Monitor :: updatePowerConsumed(unsigned int a) {
69 unique_lock <mutex > lck(mtx);
70 // clock_t c_end = clock ();
71 //t_end = chrono :: high_resolution_clock ::now();
72 powerConsumed = a;
73 cout <<"Power consumed updated: "<< a << endl;
74 //cout << chrono ::duration <double , milli >(t_end -t_start).

count() << " ms\n"<<endl;
75 //cout << 1000.0 * (c_end -c_start) / CLOCKS_PER_SEC << " ms\n

"<<endl;
76 lck.unlock ();
77 cv.notify_all ();
78 }

A.3.5 connection.h

1 //
--

2 //
3 // Client/Server communication package
4 //
5 // Connection header file
6 //
7 // Change log
8 // 950323 RH Initial version
9 // 951212 RH Modified to allow subclassing of class Connection
10 // 970127 RH Changed "private" to "protected"
11 // 990125 PH Changed function names: Read -> read , etc.
12 // 000114 PH int -> bool , virtual destructors , other minor

changes
13 // 010129 PH added void type to initConnection
14 // 011212 PH changed char* arguments to const char*
15 // changed connection closed handling to exception
16 // unsigned char instead of char/int in write/read
17 // 020102 PH split into separate file for each class
18 // 040421 PH added namespace , new casts , cleaned up a lot
19 // 050113 PH added deregisterConnection , new registration (

vector),
20 // added check for server shutdown , many more changes

Program Code 107

21 // 130515 PH removed namespace
22 //
23 //

--

24
25 #ifndef CONNECTION_H
26 #define CONNECTION_H
27
28 class Server;
29
30 /* A Connection object represents a connection (a socket) */
31 class Connection {
32 friend class Server;
33 public:
34 /* Establishes a connection to the computer ’host’ via
35 the port ’port’ */
36 Connection(const char* host , int port);
37
38 /* Creates a Connection object which will be initialized
39 by the server */
40 Connection ();
41
42 /* Closes the connection */
43 virtual ~Connection ();
44
45 /* Returns true if the connection has been established */
46 bool isConnected () const;
47
48 /* Writes a character */
49 void write(unsigned char ch) const;
50
51 /* Reads a character */
52 unsigned char read() const;
53
54 protected:
55 /* The socket number that this connections communicates on */
56 int my_socket;
57
58 /* Set to true when the constructor has called signal ()
59 to ignore broken pipe. See comment in the constructor */
60 static bool ignoresPipeSignals;
61
62 /* Initialization from server , receives socket number s */
63 void initConnection(int s);
64
65 /* Server fetches the socket number */
66 int getSocket () const;
67
68 /* Prints error message and exits */
69 void error(const char* msg) const;

108 Program Code

70 };
71
72 #endif

A.3.6 connection.cc

1 //
--

2 //
3 // Client/Server communication package
4 //
5 // Connection implementation file
6 //
7 // Change log
8 // 950323 RH Initial version
9 // 951212 RH Modified to allow subclassing of class Connection
10 // 970127 RH Added extra include to make the file compile

under Linux
11 // 990125 PH Changed function names: Read -> read , ...
12 // 000114 PH int -> bool , virtual destructors , other minor

changes
13 // 010129 PH added void type to initConnection
14 // 011212 PH changed char* arguments to const char*
15 // changed connection closed handling to exception
16 // unsigned char instead of char/int in write/read
17 // 020102 PH split into separate file for each class
18 // 040421 PH added namespace , new casts , cleaned up a lot
19 // 050113 PH added deregisterConnection , new registration (

vector),
20 // added check for server shutdown , many more changes
21 // 090127 PH added include of cstdlib , for exit()
22 // 130515 PH removed namespace
23 //
24 //

--

25
26 #include "connection.h"
27 #include "connectionclosedexception.h"
28
29 #include <iostream >
30 #include <cstdlib > /* exit() */
31 #include <cstring > /* memcpy () */
32 #include <csignal > /* signal () */
33 #include <sys/types.h> /* socket (), connect (), read(), write

() */
34 #include <sys/socket.h> /* socket (), connect () */
35 #include <netdb.h> /* gethostbyname () */
36 #include <arpa/inet.h> /* htons () */
37 #include <unistd.h> /* close (), read(), write () */

Program Code 109

38 #include <sys/uio.h> /* read(), write() */
39 #include <netinet/in.h> /* sockaddr_in */
40
41 bool Connection :: ignoresPipeSignals = false;
42
43 Connection :: Connection(const char* host , int port) {
44 /*
45 * Ignore SIGPIPE signals (broken pipe). A broken pipe (only

?)
46 * occurs in a client , when it tries to write to a dead

server.
47 * When the signal is ignored , :: write() returns -1 as the

count
48 * of written bytes. Connection ::write() tests for this and
49 * throws ConnectionClosedException when it happens.
50 */
51 if (! ignoresPipeSignals) {
52 signal(SIGPIPE , SIG_IGN);
53 ignoresPipeSignals = true;
54 }
55
56 my_socket = socket(AF_INET ,SOCK_STREAM , 0);
57 if (my_socket < 0) {
58 my_socket = -1;
59 return;
60 }
61
62 sockaddr_in server;
63 server.sin_family = AF_INET;
64 hostent* hp = gethostbyname(host);
65 if (hp == 0) {
66 my_socket = -1;
67 return;
68 }
69
70 memcpy(reinterpret_cast <char*>(& server.sin_addr),
71 reinterpret_cast <char*>(hp->h_addr),
72 hp ->h_length);
73 server.sin_port = htons(port);
74 if (connect(my_socket ,
75 reinterpret_cast <sockaddr *>(& server),
76 sizeof(server)) < 0) {
77 my_socket = -1;
78 }
79 }
80
81 Connection :: Connection () {
82 /*
83 * See previous constructor for comments.
84 */
85 if (! ignoresPipeSignals) {

110 Program Code

86 signal(SIGPIPE , SIG_IGN);
87 ignoresPipeSignals = true;
88 }
89 my_socket = -1;
90 }
91
92 Connection ::~ Connection () {
93 if (my_socket != -1) {
94 close(my_socket);
95 }
96 }
97
98 bool Connection :: isConnected () const {
99 return my_socket != -1;

100 }
101
102 void Connection :: write(unsigned char ch) const {
103 if (my_socket == -1) {
104 error("Write attempted on a not properly opened connection")

;
105 }
106 int count = :: write(my_socket , &ch , 1);
107 if (count != 1) {
108 throw ConnectionClosedException ();
109
110 }
111 }
112
113 unsigned char Connection ::read() const {
114 if (my_socket == -1) {
115 error("Read attempted on a not properly opened connection");
116 }
117 char data = ’ ’;
118 int count = ::read(my_socket , &data , 1);
119 if (count != 1) {
120 throw ConnectionClosedException ();
121 return data;
122 }
123 return data;
124 }
125
126 void Connection :: initConnection(int s) {
127 my_socket = s;
128 }
129
130 int Connection :: getSocket () const {
131 return my_socket;
132 }
133
134 void Connection :: error(const char* msg) const {
135 std::cerr << "Class Connection: " << msg << std::endl;

Program Code 111

136 exit (1);
137 }

112 Program Code

Bibliography

EPCglobal 2008, EPC Radio-Frequency Identity Protocols Class-1 Generation-2
UHF RFID Protocol for Communications at 860 MHz – 960 MHz. EPC-
global Inc., 2008. Version 1.2.0. Available at http://www.gs1.org/sites/
default/files/docs/epc/uhfc1g2_1_2_0-standard-20080511.pdf, [2 De-
cember 2015].

Energiläget 2013. Svenska statens energimyndighet, 2013. Available in printed
form or at http://www.energimyndigheten.se/statistik/energilaget/.

Fossilfrihet på väg. Statens offentliga utredningar, 2013. ID-nummer: SOU
2013:84.

Traffic Supervisions Systems TSS, 2015. Available at http://www.compprof-rtp.
com/tss-tag/, [4 December 2015].

Elways, 2015. Available at http://elways.se, [4 December 2015].

eHighway, Siemens, 2016. Available at http://w3.siemens.se/home/se/sv/
Mobility/interurban_mobility/road_solutions/elvagar-klimatsmarta-
och-kostnadseffektiva-transporter/Pages/elvagar-klimatsmarta-och-
kostnadseffektiva-transporter.aspx, [22 December 2016].

Philip Abrahamsson. Electro mechanic design and test of conductive electrical
road system - overall system design and protection. Master’s thesis, Division of
Industrial Electrical Engineering and Automation Faculty of Engineering, Lund
University, 2015. CODEN:LUTEDX/(TEIE-5349)/1-53/(2015).

Marcus Andersson. Electro mechanic design and test of conductive electrical road
system - primary power circui. Master’s thesis, Division of Industrial Electrical
Engineering and Automation Faculty of Engineering, Lund University, 2014.
CODEN:LUTEDX/(TEIE-5348)/1-44(2014).

C.A. Balanis. Antenna theory. John Wiley & Sons, Inc., Hoboken, New Jersey,
third edition, 2005. ISBN 978-0-471-66782-7.

S. Evdokimov, B. Fabian, O. Günter, Ivantysynova L., and H. Ziekow. RFID
and the Internet of Things: Technology, Applications and Security Challenges,

113

http://www.gs1.org/sites/default/files/docs/epc/uhfc1g2_1_2_0-standard-20080511.pdf
http://www.gs1.org/sites/default/files/docs/epc/uhfc1g2_1_2_0-standard-20080511.pdf
http://www.energimyndigheten.se/statistik/energilaget/
http://www.compprof-rtp.com/tss-tag/
http://www.compprof-rtp.com/tss-tag/
http://elways.se
http://w3.siemens.se/home/se/sv/Mobility/interurban_mobility/road_solutions/elvagar-klimatsmarta-och-kostnadseffektiva-transporter/Pages/elvagar-klimatsmarta-och-kostnadseffektiva-transporter.aspx
http://w3.siemens.se/home/se/sv/Mobility/interurban_mobility/road_solutions/elvagar-klimatsmarta-och-kostnadseffektiva-transporter/Pages/elvagar-klimatsmarta-och-kostnadseffektiva-transporter.aspx
http://w3.siemens.se/home/se/sv/Mobility/interurban_mobility/road_solutions/elvagar-klimatsmarta-och-kostnadseffektiva-transporter/Pages/elvagar-klimatsmarta-och-kostnadseffektiva-transporter.aspx
http://w3.siemens.se/home/se/sv/Mobility/interurban_mobility/road_solutions/elvagar-klimatsmarta-och-kostnadseffektiva-transporter/Pages/elvagar-klimatsmarta-och-kostnadseffektiva-transporter.aspx

114 BIBLIOGRAPHY

Foundation and Trends in Technology, Information and Operations Manage-
ment. Publishers Inc., 2010. ISBN 978-1-601-98444-9. Volume 4, no 2.

K. Finkenzeller. RFID Handbook: Fundamentals and applications in contactless
smart cards, radio frequency identification and near-field communication. John
Wiley & Sons, Ltd, third edition, 2010. ISBN 978-0-470-69506-7.

E. H. Hall. On a new action of the magnet on electric currents. Technical report,
American Journal of Mathematics 2, No. 3, pages 287–292., 1879. Available at
http://www.jstor.org/stable/2369245?seq=6#page_scan_tab_contents ,
[15 January 2016].

Emil Landqvist and Theodor Hallerby. Thermal Modeling and Power Limitation
of the ElOnRoad system - Modelation and simulation of the thermic capabili-
ties. Master’s thesis, Division of Industrial Electrical Engineering and Automa-
tion Faculty of Engineering, Lund University, 2015. CODEN:LUTEDX/(TEIE-
5350)/1-65/2015).

K&J Magnetics. Surface fields 101, 2016. URL https://www.kjmagnetics.com/
blog.asp?p=surface-fields-101. [28 February 2016].

NdFeB Specialists E-magnets UK. Grades of Neodymium, 2016. Available at
http://www.ndfeb-info.com/neodymium_grades.aspx,[20 February 2016].

Optys Corporation. OptRFID, High speed reader: reading tags at 43 & 113 km/h.
2011. Available at https://www.youtube.com/watch?v=n2g_4Do_3R4, [2 De-
cember 2015].

Naomi Oreskes. Vägar och gators utformning, VGU. Technical report, 2004. Sci-
ence 03 Dec 2004: Vol. 306, Issue 5702, pp. 1686 DOI: 10.1126/science.1103618.

PTSFS. Post och telestyrelsens föreskrifter om undantag från tillståndsplikt för an-
vändning av vissa radiosändare. Post och telestyrelse, 2015. Available at http:
//www.pts.se/upload/Foreskrifter/Radio/PTSFS-2015_4-undantag.pdf.

A.W. Rudge, K. Milne, Olver A.D., and Knight P. The handbook of antenna
design. Peter Peregrinus Ltd., London, UK, 1982. ISBN 978-0-906-04882-5.
Volume 1.

Henrik Fritzon Sund. Electro mechanic design and test of conductive electrical
road system - implementation of the control unit. Master’s thesis, Division of
Industrial Electrical Engineering and Automation Faculty of Engineering, Lund
University, 2014. CODEN: LUTEDX/(TEIE-5327)/1-121/(2014).

Lee H. Thomas. The design of CMOS radio-frequency integrated circuits. Cam-
bridge University Press, second edition, 2004. ISBN 978-0-521-83539-8.

A. Paul Tipler and Mosca Gene. Physics for scientists and engineers. W.H.
Freeman and Company, New York, sixth edition, 2008.

VGU. Vägar och gators utformning, VGU. Technical report, 2004. Avail-
able at http://www.trafikverket.se/TrvSeFiler/Foretag/Bygga_och_
underhalla/Vag/Vagutformning/Dokument_vag_och_gatuutformning/

http://www.jstor.org/stable/2369245?seq=6#page_scan_tab_contents
https://www.kjmagnetics.com/blog.asp?p=surface-fields-101
https://www.kjmagnetics.com/blog.asp?p=surface-fields-101
http://www.ndfeb-info.com/neodymium_grades.aspx
https://www.youtube.com/watch?v=n2g_4Do_3R4
http://www.pts.se/upload/Foreskrifter/Radio/PTSFS-2015_4-undantag.pdf
http://www.pts.se/upload/Foreskrifter/Radio/PTSFS-2015_4-undantag.pdf
http://www.trafikverket.se/TrvSeFiler/Foretag/Bygga_och_underhalla/Vag/Vagutformning/Dokument_vag_och_gatuutformning/Vagar_och_gators_utformning/Sektion_landsbygd-vagrum/sektion_%20landsbygd_vagrum.pdf
http://www.trafikverket.se/TrvSeFiler/Foretag/Bygga_och_underhalla/Vag/Vagutformning/Dokument_vag_och_gatuutformning/Vagar_och_gators_utformning/Sektion_landsbygd-vagrum/sektion_%20landsbygd_vagrum.pdf
http://www.trafikverket.se/TrvSeFiler/Foretag/Bygga_och_underhalla/Vag/Vagutformning/Dokument_vag_och_gatuutformning/Vagar_och_gators_utformning/Sektion_landsbygd-vagrum/sektion_%20landsbygd_vagrum.pdf

BIBLIOGRAPHY 115

Vagar_och_gators_utformning/Sektion_landsbygd-vagrum/sektion_
%20landsbygd_vagrum.pdf,[30 November 2015].

R. Wermke, O. Wilmsmeier, and J. Regtmeier. How fast is fast? RFID iden-
tifies objects up to 200 km/h. Harting Technology Group, 2014a. Available
at http://www.harting-rfid.com/fileadmin/harting/documents/rfid/
aktuelles/fachartikel/Whitepaper_RFID_highspeed_HARTING.pdf, [2
December 2015].

R. Wermke, O. Wilmsmeier, and J. Regtmeier. How fast is fast? RFID identifies
objects up to 200 km/h. Harting Technology Group, 2014b. Available at https:
//www.youtube.com/watch?v=sZ9yE0Lw_so, [2 December 2015].

Zhang Xiaoqiang and Tentzeris Manos. Applications of Fast-Moving RFID Tags
in High-speed Railway Systems. Technical report, 2011. International Journal
of Engineering Business Management. Volume 3, No. 1, pp. 27-31.

http://www.trafikverket.se/TrvSeFiler/Foretag/Bygga_och_underhalla/Vag/Vagutformning/Dokument_vag_och_gatuutformning/Vagar_och_gators_utformning/Sektion_landsbygd-vagrum/sektion_%20landsbygd_vagrum.pdf
http://www.trafikverket.se/TrvSeFiler/Foretag/Bygga_och_underhalla/Vag/Vagutformning/Dokument_vag_och_gatuutformning/Vagar_och_gators_utformning/Sektion_landsbygd-vagrum/sektion_%20landsbygd_vagrum.pdf
http://www.trafikverket.se/TrvSeFiler/Foretag/Bygga_och_underhalla/Vag/Vagutformning/Dokument_vag_och_gatuutformning/Vagar_och_gators_utformning/Sektion_landsbygd-vagrum/sektion_%20landsbygd_vagrum.pdf
http://www.harting-rfid.com/fileadmin/harting/documents/rfid/aktuelles/fachartikel/Whitepaper_RFID_highspeed_HARTING.pdf
http://www.harting-rfid.com/fileadmin/harting/documents/rfid/aktuelles/fachartikel/Whitepaper_RFID_highspeed_HARTING.pdf
https://www.youtube.com/watch?v=sZ9yE0Lw_so
https://www.youtube.com/watch?v=sZ9yE0Lw_so

High speed detecting and identification
for car charging on electric roads

IULIANA STOICA AND VIKTOR NYBOM
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY |
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2017

IU
LIA

N
A

 STO
IC

A
 A

N
D

 V
IK

TO
R

 N
Y

B
O

M
H

igh speed detecting and identifi
cation for car charging on electric roads

LU
N

D
 2017

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2017-564

http://www.eit.lth.se

	ViktorIulia-exjobb-positionsdetektering_Final_EIT_rev2.pdf
	Introduction
	Background
	Related work
	Aim of this thesis work
	Limitations

	Approach
	Approach and dividing the problem
	Finding information

	Theoretical solutions
	Solutions for car identification
	RFID technology

	Solutions for car positioning
	Identifying antenna signal strength
	Doppler effect
	Inductive detection
	Conductive pickup signaling
	Short circuit detectors on rail
	Hall effect sensors
	Sound and vibration

	Different communication schemes
	Scenario one
	Scenario two
	Scenario three

	Analysis and testing
	Car positioning
	Pendulum as experimental setup
	Inductive system from the previous thesis work
	Experimenting with different near field antennas
	Simulating, testing and building
	Testing the detection on a road with a car

	Car identification
	EMI
	EMI from electric car

	The Complete system
	Building
	Programming
	Final test
	Result

	Discussion and future work
	Program Code
	Receiver Arduino Due: The rail road computer
	RSU
	StartServerUDP.java
	Monitor.java
	RoadConnectionUDP.java
	CarServerThread.java
	RecThread.java
	RSU2Road.java

	Car code
	serial.c
	testSync.cc
	monitor.h
	monitor.cc
	connection.h
	connection.cc

