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Abstract 

Nowadays, number inversion is of great significance and a complex arithmetical 

operator, especially the implementation in hardware. It provides a higher speed 

performance and lower power consumption. 

Initially, the conversion of the inputs to floating-point numbers contains sign, 

exponent, and mantissa parts. The scope of the project is to perform an 

approximation of the number inversion function. In this paper, the number 

inversion function carried out by two methods: one based on Harmonized 

Parabolic Synthesis and the other one on an unrolled Newton-Raphson algorithm. 

It is worth mentioning that the implementation of these two methods performed as 

an Application Specific Integrated Circuit using a 65nm Complementary Metal 

Oxide Semiconductor technology with Low Power High Threshold Voltage 

transistors. Furthermore, the investigation and comparison for various aspects such 

as accuracy, error behavior, chip area, power consumption, and performance for 

both methods are realizable. 

Keywords: harmonized parabolic synthesis, unrolled Newton-Raphson, power 

consumption. 
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CHAPTER 1 

1 Introduction 

Unary function, especially non-linear operations such as sine, logarithmic, 

exponential and number inversion functions have been widely applied in computer 

graphics, wireless systems and digital signal processing [1]. These functions are 

simple in software for low-precision cases. However, concerning high precision 

and high-speed applications, software implementations are insufficient. Therefore, 

hardware implementations for these functions are worth considering.  

To implement these non-linear operations in hardware, there are several 

different methods to consider, i.e. Look-Up Table (LUT), COordinated Rotation 

DIgital Computer (CORDIC) algorithm, Harmonized Parabolic Synthesis (HPS) 

and unrolled Newton-Raphson (NR) algorithm. In this thesis, LUT and CORDIC 

are briefly introduced. On the contrary, we implement HPS and NR method both 

in software and in hardware. Furthermore, the investigation and comparison, 

which are of great interest, for various factors such as accuracy, error behavior, 

chip area, power consumption, and performance. 

For accuracies up to about 12 bit, a LUT is simple, fast and strait forward 

method to implement approximations in hardware. Reading a value from the table 

or matrix is much faster than calculating the number with an algorithm or using a 

trigonometric function. However, the primary drawback of a LUT is its memory 

usage. In many cases, when higher precision is required, the size of the LUT 

increases exponentially, which is not always feasible.  

A CORDIC algorithm is a simple and efficient method to calculate hyperbolic 

and trigonometric functions. The basic idea is vector rotation with a number of 

stages to improve accuracy. Adders/subtractors are required to determine the 

direction of each rotation. The primary advantage is that hardware multiplications 

are avoidable, which decreases the complexity of the design. Based on the 

CORDIC algorithm, only simple shift-and-add operations are required for tasks 

such as real and complex multiplications, divisions, square root calculations, etc. 

However, the latency of the implementation is an inherent drawback of the 

conventional CORDIC algorithm [2]. Furthermore, it requires n+1 iterations to 

obtain n-bit precision, which leads to low speed carry-propagate additions, low 

throughput rate and chip area consuming shift operations.  

Erik Hertz and Peter Nilsson [3] have recently proposed a parabolic synthesis 

method. It is an approximation method for the implementations of unary functions. 

It is a new method with high-speed performance. It contains pre-processing, 
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processing, and post-processing part. By combining with a synthesis of parabolic 

functions, the approximation of the target function, such as sine, exponential, 

logarithm and number inversion functions, is realizable. The improved method 

based on parabolic synthesis, HPS, requires only two sub-functions, combined 

with second-order interpolation, which results in better speed performance.   

The NR iteration algorithm is also applicable. It is a method named after Isaac 

Newton and Joseph Raphson to find approximations to the roots of a real-valued 

function. This method is hardware-friendly. In this algorithm, A LUT is often 

required to select a start value, also called as an initial guess. It is important for the 

initial guess to be as close as possible to the true result. To meet the bit precision 

requirement, several iterations are necessary. It is worth mentioning that more 

iterations yield smaller sizes of the LUTs. Therefore, there is a trade-off between 

the number of iterations and the size of LUTs.  

In this thesis, we focus on the HPS and NR method. There are totally five 

architectures implemented in hardware based on HPS and NR method. The 

comparison of the hardware design concerning various aspects such as accuracy, 

error behavior, chip area, power consumption and speed performance achieved. 

The power consumption, both static and dynamic, estimated for different clock 

frequencies. When applying HPS methods, different numbers of intervals in the 

second sub-function have a large influence on the error behavior, critical path, and 

chip area. Hence, three different architectures built using 16, 32, and 64 intervals 

in the second sub-function. Two different Matlab models designed based on both 

HPS and NR methods. All implementations designed in Very High Speed 

Integrated Circuit Hardware Description Language (VHDL) and synthesized using 

a 65nm Complementary Metal Oxide Semiconductor (CMOS) technology. 

Various synthesis libraries such as Low Power High Threshold Voltage (LPHVT), 

Low Power Low Threshold Voltage (LPLVT), and General Purpose Standard 

Threshold Voltage (GPSVT) are considered.  

As a result, chip area, timing and power consumption using different clock 

frequencies reported. Furthermore, the physical layouts for both HPS and NR 

method after Place and Route (P&R), demonstrated as well.  
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1.1 Thesis Outlines 

 

Remaining chapters, listed as follows:  

Chapter 2 introduces general algorithm for number inversion function. 

Chapter 3 describes the detailed Parabolic Synthesis theory.  

Chapter 4 demonstrates HPS theory. 

Chapter 5 illustrates NR theory.  

Chapter 6 describes general hardware architecture using HPS method. 

Chapter 7 explains general hardware architecture using NR method. 

Chapter 8 expounds error behavior analysis in Matlab. 

Chapter 9 introduces three different implementations regarding to three different 

intervals by using HPS and two different implementations with respect to two 

different number of NR iterations. All five detailed architectures are included. 

Chapter 10 lists and analyzes the result of Chapter 9, including error behavior, 

error metrics, chip area, timing and power consumption. 

Chapter 11 contains conclusion and future work of this thesis work. 

Appendix A lists the coefficients in the second sub-function using HPS method, 

the coefficients in LUTs of NR iteration method, and the power consumptions at 

various frequencies for all architectures. 
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CHAPTER 2 
2 Algorithm for number inversion 

In this thesis, the algorithms for number inversion function are applicable by 

using floating-point numbers [4], containing a mantissa and an exponent. It is 

worth mentioning that the exponent scales the mantissa [5]. The separation for the 

computation for both the mantissa and the exponent is achievable. This separation 

results in the reduction of the computation complexity due to the approximation is 

on a limited mantissa range. In addition, the computation of the exponent is simple 

in hardware. Table 2.1 describes the transformation of a fixed-point number to a 

floating-point number in number base 2. 

Table 2.1 The transformation of a fixed-point number to a floating-point number 

in number base 2. 

Base 10 158 

Fixed-point base 2 0000000010011110 

Exponent 

Index 

 0   0   0   0   0   0   0   0   1   0   0   1   1   1   1   0  

15 14 13 12 11 10  9   8   7   6   5   4   3   2   1   0 

Floating-point base 2 1.001111000000000·27 

The exponent is depending on the most significant bit of the fixed-point number. 

The exponent when using floating-point representation thus scales the mantissa. 

The implementation is computing the mantissa of binary function as an 

approximation. Figure 2.1 demonstrates the block diagram of the approximation.  

 

Fig 2.1 The block diagram of the approximation. 
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As shown in Figure 2.1, the input v is the mantissa part of the floating-point 

number. The output z is the output after the approximation.  

2.1 Number inversion function 

As mentioned in Table 2.1, the transformation of a fixed-point number to a 

floating-point number is realizable. When computing the number inversion 

function, the output z, shown in (2.2). 

indexvvvV
z

2

1

15210 


 
                                                                           (2.2) 

where V0 is the integer bit of v, v-1, v-2, …, v-15 are the fractional bits of v. 

In (2.3) is (2.2) modified. 

index

vvvV
z 



 2
1

15210 
                                                                     (2.3) 

which explains why the index is negative. 

Figure 2.2 illustrates the inverse function in the range from 1 to 2.  

 

Fig 2.2 The curve of number inversion function. 

The algorithm of the number inversion function, illustrated in Figure 2.3. 
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Fig 2.3 The block diagram of number inversion. 

The input is a floating-point number with an exponent part and a mantissa. As 

shown in Figure 2.3, the computation for the mantissa and the exponent is separate. 

For the exponent, the sign bit changes depending on the result. Concerning the 

mantissa, if the mantissa of the result is less than 1, the exponent has to be 

subtracted with 1. In addition, if the mantissa is less than 1, multiply the mantissa 

with 2. Note that, in this thesis, we focus on the approximation part, performed by 

HPS and NR method, which are in further chapters. 
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CHAPTER 3 
3 Parabolic Synthesis 

This chapter contains the description of the Parabolic Synthesis algorithm. It is 

an approximation method for implementing unary functions. Parabolic Synthesis 

is the product of a series of second order sub-functions [6], defined as s1(x), 

s2(x)… sn(x) to approximate the original function, defined as
 
forg(x), shown in (3.1). 

)()()()()( 321 xsxsxsxsxf norg                                               (3.1) 

The number of sub-functions affects the accuracy. When the number of sub-

functions, n, goes to infinite, the original function, forg(x), is fully satisfied. In order 

to develop these sub-functions, the help function is used. The first help function, 

f1(x), is defined as the quotient of the original function, forg(x), and the first sub-

function, s1(x), as shown in (3.2). 

)()()(
)(

)(
)( 32

1

1 xsxsxs
xs

xf
xf org

                                               (3.2) 

In the same manner, the following help functions, fn(x), is defined as shown in 

(3.3). Note that, the nth help function is to develop the nth+1 sub-function.  

)()()(
)(

)(
)( 21

1 xsxsxs
xs

xf
xf nn

n

n
n 

                                        (3.3) 

3.1 First sub-function 

In order to apply Parabolic Synthesis method, the normalization of the target 

function is essential, to the range 10  x on the x-axis and 10  y on 

the y-axis. This normalization results in the original function, forg(x). 

Figure 3.1 demonstrates an example of an original function, forg(x). 
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Fig 3.1 An example of an original function, forg(x). 

In addition, the original function, forg(x), should satisfy the requirements as 

follows: 

1. The original function, forg(x), should be strict concave or convex. This is due to 

that the sub-functions are second order polynomials which are strict concave 

or convex.  

2. The first help function, f1(x), has a limited value when x goes to 0. This 

indicates that if the original function, forg(x), does not have a limited value 

when x goes to 0, the first help function, f1(x), is not defined at all.  

3. The limited value in requirement 2 should be smaller than 1 or larger than -1 

after it is subtracted with 1. If the limited value in requirement 2 is not inside 

the interval, the first sub-function, s1(x), is not deployable since the gradient is 

not positive in the interval.  

The first sub-function, s1(x), is a second order polynomial, as shown in (3.4). 

)()( 2
1111 xxcxklxs                                                                     (3.4) 

    As shown in Figure 3.1, the first sub-function, s1(x), should cut the same starting 

point and ending point as the original function, forg(x), since it is to approach forg(x). 

The starting point is (0, 0) which gives l1 to be 0. The coefficient k1, calculated to 

be 1, based on both the starting point and the ending point. The first sub-function, 

s1(x), is thus simplified according to (3.5). 

)()( 2
11 xxcxxs                                                                                   (3.5) 
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The coefficient c1, calculated according to (3.6). 

)(

)(
lim

)(

)(
lim1

2
1

0
1

0 xxcx

xf

xs

xf org

x

org

x 



                                                     (3.6) 

    Note that, since x2 goes faster towards 0 than x, the limit in (3.6), modified as 

shown in (3.7). 

xc

xforg
x )1(

)(
lim1

1
0 




                                                                                           (3.7) 

The coefficient c1, calculated according to (3.8). 

1
)(

lim
0

1 
 x

xf
c org

x
                                                                                      (3.8) 

3.2 Second sub-function 

The second sub-function, s2(x), is designed to approach the first help function, 

f1(x). Figure 3.2 demonstrates an example of the first help function, f1(x). 

 

Fig 3.2 An example of a first help function, f1(x). 

The second sub-function, s2(x), is a second order polynomial as well, defined in 

(3.9). 

)()( 2
2222 xxcxklxs                                                                     (3.9) 
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Figure 3.3 demonstrates an example of a comparison between a first help 

function, f1(x), and a second sub-function, s2(x). 

 

Fig 3.3 A second sub-function, s2(x), compared to a first help function, f1(x). 

Since the second sub-function, s2(x), is to approach the first help function, f1(x), 

both functions should cut the same starting point (0, 1), and the same ending point 

(1, 1). The coefficient l2, calculated to be 1, based on the starting point, and the 

coefficient k2, calculated to be 0, based on both the starting point and ending point. 

The second sub-function, s2(x), is simplified as shown in (3.10). 

)(1)( 2
22 xxcxs                                                                                 (3.10) 

The coefficient c2, is to ensure the quotient of f1(x) and s2(x) to be 1 when x 

equals 0.5. In (3.11), is the coefficient, c2, calculated. 

)1)
2

1
((4 12  fc                                                                                           (3.11) 

Similarly, by dividing the first help function, f1(x), with the second sub-function, 

s2(x), an example of a second help function, f2(x), is illustrated in Figure 3.4.  
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Fig 3.4 An example of a second help function, f2(x). 

As shown in Figure 3.4, the second help function, f2(x), contains both convex 

and concave curves. To apply this methodology, the second help function, f2(x), 

should be segmented into two intervals and both intervals should be renormalized.  

3.3 N
th

 sub-function when n>2 

When developing the third help function, s3(x), the second help function, f2(x), 

should be renormalized into two intervals due to requirement 1, mentioned in 

Section 3.1. As shown in Figure 3.4, the second help function appears both convex 

and concave curves. By dividing the interval into two intervals, 5.00  x  

and 15.0  x , the curve is strict convex or concave again.  

Hence, the second help function, f2(x), is shown in (3.12). 



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
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15.0)(

5.00)(
)(

1,2

0,2

2 xxf

xxf
xf                                                                 (3.12) 

The second help function, f2(x), consists of a pair of concave and convex curves. 

The renormalization for both these curves is essential, to the interval 10  x
on the x-axis.  

Figure 3.5 demonstrates partially the segmented and renormalized second help 

function, f2(x). 
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Fig 3.5 The segmented and renormalized second help function, f2(x). 

It is worth mentioning that x3 replaces x based on (3.14). The purpose of this 

replacement is to map the input x to the normalized parabolic curve. 

)2(3 xfractx                                                                                               (3.13) 

The third sub-function, s3(x), for each interval, is shown in (3.14). 
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In the same manner, the nth help function, fn(x), can be developed according to 

(3.15). Along with the growth of n, the number of pairs of concave and convex 

curves is higher. 
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Hence, the nth sub-function, sn(x), can be developed as shown in (3.16). 
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It is worth mentioning that xn replaces x, as shown in (3.17).  Similar to the 
replacement in the third sub-function, s3(x), this replacement is to map the input x 
to the normalized parabolic curves.  

)2( 2xfractx n
n

                                                                                        (3.17) 

The nth sub-function, sn(x), thus partially described as sn,m(xn), shown in (3.18). 

)(1)( 2
,, nnmnnmn xxcxs                                                                       (3.18) 

The coefficient, cn,m , can be calculated in the same manner as in (3.11), shown 
in (3.19). 
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CHAPTER 4 

4 Harmonized Parabolic Synthesis 

Based on the Parabolic Synthesis, a superior methodology, called Harmonized 

Parabolic Synthesis (HPS), only requires two sub-functions, as described in (4.1). 

Both the sub-functions are second order polynomials. Note that, the second sub-

function, s2(x), is combined with second-degree interpolation. The output accuracy 

thus depends on the number of intervals in the interpolation. 

)()()( 21 xsxsxforg                                                                                     (4.1) 

Similar to the Parabolic Synthesis, the normalization of the original function, 

forg(x), is essential, to the range 10  x on the x-axis and 10  y  on the 

y-axis. Additional requirements for the original function, forg(x), listed as follows: 

1. The original function, forg(x), should be strict concave or convex. This is due to 

that the sub-functions are second order polynomials which are strict concave 

or convex.  

2. The first help function, f1(x), has a limited value when x goes to 0. This 

indicates that if the original function, forg(x), does not have a limited value 

when x goes to 0, the first help function, f1(x), is not defined at all. 

4.1 First sub-function 

The first sub-function, s1(x), is determined to approach the original function, 

forg(x), as defined in (4.2). 

)()( 2
1111 xxcxklxs                                                                     (4.2) 

Since the first sub-function, s1(x), has the same starting point and the ending 

point as the original function, forg(x), the coefficient l1, calculated based on the 

starting point, and the coefficient k1, calculated based on both the starting point 

and ending point. The coefficient, c1, is selected by scanning from the interval (-

1.5, 0) and (0, 1.5) respectively based on the concavity and convexity of the 

original function, forg(x). 

4.2 Second Sub-function 

The second sub-function, s2(x), is determined to approach the first help function, 

f1(x), as explained in Section 3.2. The former first help function, f1(x), is divided 

into 4 intervals as shown in Figure 4.1. 
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Fig 4.1 The first help function, divided evenly. 

The number of intervals is
n2 . Along with the growth of n, the improvement of 

the precision is realizable. Concerning the second sub-function, s2(x), with respect 

to the ith interval, the general formula can be expounded according to (4.3). 

)()( 2
,2,2,2,2  xxcxklxs iiii                                                       (4.3) 

where i is from 0 to       . 

The first help function in each interval, defined as f1,i(x), is approached by the 

second sub-function, s2,i(x), in each corresponding interval. To calculate all the 

coefficients, three specific coordinates in each interval, which are the starting point, 

the middle point, and the ending point, are important. The general formula of the 

second sub-function, s2,i(x), in each interval can be expounded according to (4.4). 
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It is worth mentioning that x replaces x. The purpose of this replacement is to 

maintain the normality in each interval by multiplying by
2 , according to (4.5). 

)2( xfractx 

                                                                                              (4.5)  

In order to compute the coefficient, l2,i, in each interval, the starting point of 

each interval is essential, as shown in (4.6). 

),(1,2 istartfl i                                                                                             (4.6) 

When computing the coefficient, k2,i, which is the slope in each interval, is 

expressed according to (4.7). 

),(),( 11,2 iendfistartfk i                                                                    (4.7) 

Computing the coefficient, c2,i, requires the help of the middle point in each 

interval, as shown in (4.8). 

)
2

1
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2

1
((4 ,2,2,1,2 iiii klfc                                                                      (4.8) 

The second sub-function in each interval, s2,i(x), can be modified based on (4.3), 

as shown in (4.9). 

2
,2,2,2,2,2 )()(  xcxcklxs iiiii                                                       (4.9) 

This modification saves an adder in hardware by adding k2,i and c2,i manually, 

defined as j2,i , according to (4.10). 

iii ckj ,2,2,2                                                                                             (4.10) 

According to (4.9) and (4.10), the second sub-function in each interval is 

according to (4.11). 

2
,2,2,2,2 )(  xcxjlxs iiii                                                                    (4.11) 

4.3 Selection of a proper c1 
The selection of the coefficient, c1, is extremely essential since c1 is not only to 

meet the precision requirement of the output, but also to realize a hardware 

friendly architecture. The steps of developing c1 combined with the number of 

intervals in the second sub-function, s2(x), listed as follows: 

First, select every value from the interval (-1.5, 0) and (0, 1.5) respectively 

based on the convexity and concavity of the original function, forg(x). Depending 

on the different values of c1, the first sub-function, s1(x), is settled. Second, the 
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second sub-function, s2(x), is developed based on (4.1). Finally, the computation 

of the precision of the output is realizable with these two sub-functions.  

The error e(x) described according to (4.12). 

))()()(()( 21 xsxsxfabsxe org                                                           (4.12) 

When presenting the accuracy of a function, the method of using logarithms 

provides a great resolution. We propose the concept of Decibel (dB) [8].  

4.4 Bit Precision 

4.4.1 Definition 

There are two equal ways of defining the result in decibels. With respect to 

power measurements, described according to (4.13). 

)(log10
0

10
p

p
PdB                                                                                         (4.13) 

where p is the measured power and p0 the reference power. With respect to the 

measurements of amplitude, described according to (4.14). 

)(log20
0

10
a

a
AdB                                                                                          (4.14) 

where a is the measured amplitude and a0 the reference amplitude. 

4.4.2 Combination of Decibel and Binary Number         

This combination provides a great result. In Binary representation, the 

transformation of the numbers in number base 2 to decibel is shown in (4.15). 

dB62log20 10                                                                                             (4.15) 

Since 6dB represents 1 bit in resolution, this transformation leads to a simplified 

comprehension of the result. For instance, if the error equals 0.001, the 

transformation, described according to (4.16). 

dB60001.0log20 10                                                                                (4.16) 

which represents 10 bits in resolution. 
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4.5 An example of c1 selection 
As a result, the bit precision is a function of c1 combined with the number of 

intervals in the second sub-function, s2(x). Figure 4.2 [9] demonstrates an example 

of c1 selection. 

 

Fig 4.2 C1 selection with 1 interval in the second sub-function, s2(x). 

There are two peak values approximately 0.3 and 1.1 respectively. The 

precision can be greater than 11 bits. However, to realize a hardware friendly 

architecture, these peak values are not always feasible. A simple hardware 

architecture is realized by selecting c1as 0, 0.5, or 1. Note that if the graph of the 

original function is convex, the sweeping range of c1 is from -1.5 to 0. Another 

method to increase the freedom of selecting c1 is to increase the number of 

intervals in the second sub-function, s2(x). 
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CHAPTER 5 

5 Newton-Raphson 

In general, the NR methodology [10] is an iterative process to approximate the 

root of a function. The NR iteration, as described in (5.1). 
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                                                                                         (5.1) 

In (4.1), xn is from the previous iteration, f (xn) stands for the value at xn. The 

derivative of f (xn), )( nxf   stands for the slope of f(xn) at xn. The number n is the 

number of iteration subtracted with 1. 

Hence, the first iteration, as expounded in (5.2). 
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xf
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                                                                                            (5.2) 

where x0 is the initial guess for a single root σ of the equation.  

5.1 An example of NR iterations 

For instance, assume that the equation, f(x), illustrated in (5.3), is to be 

approximated. The precision requirement is that the error is less than 0.000000001.     

263)( 2  xxxf                                                                                     (5.3) 

Figure 5.1 demonstrates the graph of the equation, f(x). 
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Fig 5.1 The curve of the equation, f(x). 

The derivative of f(x), )(xf   is shown in (5.4). 

66)(  xxf                                                                                                (5.4) 

There are two roots in the interval (0, 1) and (1, 2) respectively. To calculate the 

root in the interval (0, 1), assume that the initial guess x0 equals 0.5. Assume that 

15 decimal places are reserved. The first iteration, is as shown in (5.5).                                
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The second iteration is as described in (5.6).                                                              
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Furthermore, the third iteration is as shown in (5.7). 
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xx                                                 (5.7) 

The true value of the root σ in the interval (0, 1) is approximately 

0.422649730810374. Therefore, the error e is as shown in (5.8). 

000000001.0152830000000008.0)( 3  xabse                    (5.8) 
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After applying only three iterations, the precision requirement is fully satisfied. 

Hence, it is critical for x0 to be as close as possible to the real root. Note that if the 

equation, f(x), is a continuous derivative, the iterations will strictly converge to σ 

by developing an initial guess x0 that is close enough to σ. 

In the example above, to meet the precision requirement, three iterations are 

required. However, this may not be applicable for most of the cases nowadays. In 

1991, Paolo Montuschi and Marco Mezzalama discussed the possibility of using 

absolute error instead of relative error in order to apply fixed number of iterations, 

specifically, only one or two iterations [11]. That leads to an optimization to 

minimize the absolute error with a good initial guess. In 1994, Michael J. Schulte, 

Earl E. Swartzlander and J. Omar discussed how to optimize the initial guess for 

reciprocal functions [12]. They focused on the optimization of the initial guess 

interval by interval to minimize the absolute error. The general formula is as 

illustrated in (5.9). 
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22

22

                                                                                      (5.9)  

where n stands for the initial guess, n is the number of iteration, p and q are the 

circumscription of the interval.  

This formula can be realizable by applying LUTs to select a proper initial guess 

n  that is close enough to the true value σ, which leads to an increased speed of 

the NR convergence.  

5.2 Reciprocal, square root, square root reciprocal 

The NR methodology provides tremendous unary function approximations such 

as reciprocal (number inversion), square root, and square root reciprocal by using 

different setups of the initial guess, x0, described as follows: 

If f(x) is set to (5.10),                           

a
x

xf 
1

)(                                                                                                 (5.10) 

The modification of the general iteration in (5.1) is according to (5.11). 

)2(1 nnn axxx                                                                                        (5.11) 

These iterations go to 1/a so that the reciprocals can be calculated.  

If f(x) is set to (5.12),    

axxf  2)(                                                                                               (5.12) 
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The modification of the general iteration in (5.1) is according to (5.13). 
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These iterations go to √  so that the square root can be realizable.  

If f(x) is set to (5.14), 
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)(                                                                                               (5.14) 

The modification of the general iteration in (5.1) is according to (5.15).                           

)3(
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n ax

x
x                                                                                       (5.15) 

These iterations go to 1/√  so that the square root reciprocals can be calculated. 

It is worth mentioning that this setup can also be used to calculate √  by simply 

multiplying it by a. 
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CHAPTER 6 

6 Hardware Architecture Using HPS 

The HPS procedure consists of three steps: pre-processing, processing, and 

post-processing, as shown in Figure. 6.1.  

 

Fig 6.1 The procedure of HPS. 

Both the pre-processing part and the post-processing part are conversion steps. 

The processing part is the approximation step.  

6.1 Pre-processing 

In order to ensure that the output x is in the interval (0, 1), the conversion of the 

input v is essential. An example of sine function, described in (6.1). 

)sin()( vvf                                                                                                    (6.1) 

The input domain of v is from 0 to π/2. In order to normalize the output x to be 

in the interval (0, 1), the input v should be multiplied by 2/π. Hence, the original 

function is as shown in (6.2). 
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)
2

sin()( xxforg


                                                                                         (6.2) 

6.2 Processing 

6.2.1 Architecture of HPS 

According to (4.1), (4.2), and (4.11), the architecture of HPS can be 

demonstrated according to Figure 6.2. 

 

Fig 6.2 The architecture of the processing step using HPS with 16 intervals. 

With respect to the first sub-function, s1(x), and the second sub-function, s2(x), a 

squarer unit should be applied. It is worth mentioning that, if the coefficient, c1, is 

selected to 0, the squarer unit in the first sub-function, s1(x), is no longer required.  

6.2.2 Squarer 

As mentioned in Section 6.2.1, a squarer unit is required. Figure 6.3 illustrates 

the squarer unit. 
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Fig 6.3 The squarer unit algorithm. 

As shown in Figure 6.3, the computation of the output, p, is realizable by 

squaring the least significant bit of x. The computation of the output, q, is also 

realizable by squaring the two least significant bits of x. The computation of the 

remaining r and s can be realizable in the same manner. By applying this 

algorithm, the implementation of the partial output of   
  is realizable, which leads 

to a reduction of chip area compared to the multiplier counterpart. 

However, there are plenty of adders in the algorithm shown in Figure 6.3. To 

save adders, Erik Hertz [13] put an optimized algorithm forward. The reduction of 

the ellipses containing x0x0, x1x1, x2x2, and x3x3 is realizable, to x0, x1, x2, and x3 

respectively. Moreover, it is realizable to move all the squares to the next column. 

The modification of the algorithm in Figure 6.3 is as shown in Figure 6.4. 
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Fig 6.4 The optimized squarer unit. 

The factor, p0, in the partial product, p, can be optimized according to (6.4).    

0000 xxxp                                                                                                 (6.4) 

Since p0 cannot have an influence to p1, p1 equals 0. The value of q1 is as shown 

in (6.5). 
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The value of q2 is as illustrated in (6.6). 
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The value of r2 is as shown in (6.7). 
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The computations of the remaining factors in the corresponding vectors are in 

the same manner, as shown in Table 6.1. 
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Table 6.1 The remaining factors in the corresponding vectors. 

factor value 

3r  
3

02
3

3 22  xxq  

4r  
4

12
4

2 22  xxx  

3s  3
3 2r  

4s  4
03

4
4 22  xxr  

5s  5
13

5
5 22  xxr  

6s  6
23

6
3 22  xxx  

By applying this simplified squarer unit, plenty of adders saved which leads to 

the optimization of the hardware architecture.  

6.2.3 Truncation and Optimization 

Due to floating-point representation, the coefficients, l2,i, j2,i and c2,i, result in 

truncation, to limit the word length. By simulating different word lengths, each set 

of the coefficients, l2,i, j2,i, and c2,i,can be optimized to meet the required output 

precision.  

6.3 Post-processing 

The input of the post-processing step y is ranging from 0 to 1. The output of 

post-processing step z should be in the same range as the target function to meet 

the requirement. Take sin(x) as a target function for instance, the input x is ranging 

from 0 to π/2, which is the same range for y from 0 to 1. Hence, the equation in the 

post-processing step should be z = y. 
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CHAPTER 7 

7 Hardware Architecture Using NR 

According to Chapter 5, a LUT is essential to select a proper initial guess n  

that is close enough to the true root value σ. This is to speed up the NR 

convergence, which results in less number of iterations. A general architecture of 

NR algorithm is as shown in Figure 7.1.  

 

Fig 7.1 The general architecture of NR iterations. 

However, in order to meet a specific precision requirement, the deduction of the 

number of iterations results in a larger LUT size. Hence, there is a trade-off 

between the size of the LUT and the number of iterations. It is worth mentioning 

that the function inside every iteration block differs when the target function is 

altered, which means if the target function changes, the modification for the 

function inside each iteration block is essential. This is the main drawback of NR 

iterations.  
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CHAPTER 8 

8 Error Analysis 

8.1 Error Behavior Metrics 

In order to measure error behavior, there are 5 major factors to be considered, 

namely, maximum positive and negative absolute error, median error, mean error, 

standard deviation [14] and root mean square (RMS) error.  

8.1.1 Maximum positive and negative error 

The maximum positive and negative errors are the most absolute difference and 

the least absolute difference between the actual value and the approximated value 

respectively.  

8.1.2 Median error 

Median error is the value of the sample that lies in the middle position of one set 

of samples. For an odd set of samples, the median error is the value of the sample 

that is in the middle position. That is, the number of larger samples equals the 

number of smaller samples. For an even set of samples, the median error is the 

average value of the two central samples.  

8.1.3 Mean error 

Mean error is the average of all the error samples. Each error sample is the 

difference between the actual value and the approximated value. Assume that the 

approximated values are expressed as y1, y2, …, yn, the actual values are expressed 

as x1, x2, …, xn. Mean error can thus be described according to (8.1). 
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                                                                                  (8.1) 

where n is the number of samples. 

8.1.4 Standard deviation  

Standard deviation is a measure of how are the samples spreading out. That is to 

say, it is the square root of the variance. The variance defined as the average of the 

squared differences from the mean value of errors. To sum up, standard deviation 

is as shown in (8.2). 
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8.1.5 RMS 

The RMS error is the square root of the mean square error. Mean square error is 

the average of the squares of the difference between approximated values and 

actual values, as described in (8.3). 
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                                                                             (8.3) 

8.2 Error Distribution 

Error distribution is an alternative factor to consider. It illustrates the 

possibilities of each value of error that occurs. Figure 8.1 demonstrates an example 

of error distribution.  

 

Fig 8.1 An example of error distribution. 

As shown in Figure 8.1, the x-axis represents the value of the error and the y-

axis stands for the number of errors that appear. Figure 8.1 is close to a Gaussian 

distribution, which means the possibilities of errors are high in the center and 

decrease on the sides.  

 



51 
 

CHAPTER 9 

9  Implementation of Number Inversion 

applying HPS and NR iteration 

In this chapter, the implementation of the number inversion architecture is 

applicable for two different methods. For the HPS method, the implementations 

for three different architectures with different intervals are realizable in hardware. 

For the NR method, the implementation is realizable for one and two iterations 

respectively. The common input that is to be converted is in the interval (1, 2) with 

a 15-bit mantissa and an output precision of 16 bits. 

9.1 HPS 
Based on the HPS method mentioned in Chapter 4, the implementation of the 

number inversion function is realizable in hardware. The coefficients of the sub-

functions, s1(x) and s2(x), are selected according to the method mentioned in 

Section 4.1 and Section 4.2. Furthermore, the hardware implementation consists of 

three different architectures with different number of intervals, namely 16, 32, and 

64 intervals, when developing the second sub-function, s2(x).  

9.1.1 Development of Sub-functions 

As mentioned in Section 4.1, the normalization of the original function, forg(x), 

is essential, to the range 10  x on the x-axis and 10  y  on the y-axis. 

The number inversion function, shown in (9.1).  
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9.1.1.1 Pre-processing 

As mentioned in Chapter 2, the mantissa, v, is ranging from 1 to 2. In the pre-

processing part, the range of the input to the processing part x is subtracted with 1 

as shown in (9.2).  

1 vx                                                                                                          (9.2) 
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9.1.1.2 Processing 

Initially, the normalization of the original function, forg(x), is essential, to the 

range 10  x  on the x-axis and 10  y  on the y-axis. The original 

function, forg(x), shown in (9.3). 
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Figure 9.1 demonstrates the graphs of the original function, forg(x), and the target 

function, f(x). 

 

Fig 9.1 The graphs of the original function, forg(x), and the target function, f(x). 

9.1.1.3 Post-processing 

In the post-processing part, divide the output y by 2. Since the output y from the 

processing part is from 10  z , the output z from the post-processing part has 

to be in the range from 15.0  z . The post-processing is as illustrated in 

(9.4). 

2
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y
z                                                                                                          (9.4) 

The pre-processing, processing, and post-processing parts result in the 

target function, f(x). 
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9.1.1.4 First Sub-function 

The first sub-function, s1(x), is a second order polynomial, defined in (9.5). 

)()( 2
1111 xxcxklxs                                                                  (9.5) 

    As shown in Figure 9.1, the first sub-function, s1(x), should cut the same starting 

point and ending point as the original function, forg(x), since it is to approach forg(x). 

The starting point is (0, 1) which gives l1 to be 1. The coefficient k1, calculated to 

be -1, based on both the starting point and the ending point. The first sub-function, 

s1(x), is thus simplified according to (9.6). 

)(1)( 2
11 xxcxxs                                                                        (9.6) 

9.1.1.5 Selection of a proper c1 

Regarding Section 4.3 and 4.5, the combination of c1 and the number of 

intervals divided by the second sub-function s2(x) is important to select a proper c1. 

Figure 9.2 demonstrates the precision function of c1, sweeping from -0.8 to 0, 

combined with different number of intervals in the second sub-function, s2(x). 

 

Fig 9.2 The precision function for c1, combined with 2, 4, 8, 16, 32, 64 intervals in 

the second sub-function. 

In order to gain a hardware-friendly architecture, c1 is selected to 0. 

Furthermore, to meet the output precision requirements of 16 bits, the numbers of 

intervals of the second sub-function, s2(x), are selected to 16, 32, and 64. 

Since c1 is selected to 0, the first sub-function s1(x), is simplified according to 

(9.7). 
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xxs  1)(1                                                                                                   (9.7) 

The first help function, f1(x), is the quotient of the original function, forg(x), and 

the first sub-function, s1(x), described in (9.8). 

xxs

xf
xf org




1

1

)(

)(
)(

1

1                                                                               (9.8) 

9.1.1.6 Second sub-function 

According to Section 4.2, based on the number of intervals, the different sets of 

coefficients, l2,i, j2,i, and c2,i, of the second sub-function, s2(x), are developed. They 

are as listed in Table A.1 to A.9 in Appendix A.1.  

9.1.2 Hardware architecture 

Figure 9.3 demonstrates the hardware architecture of the HPS methodology for 

the number inversion function. 

 

Fig 9.3 The hardware architecture of the number inversion function. 

It consists of three steps, pre-processing, processing, and post-processing. The 

pre-processing step is the normalization part in the algorithm. In the processing 

step, two sub-functions are required to approximate the target function. In the 

post-processing step, the values (with normalized input) obtained from the 

previous step are translated into true values. These three steps are in Section 

9.1.1.1, 9.1.1.2, and 9.1.1.3 in detail. 
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Based on Figure 9.3, a detailed block diagram of the different parts of the 

implementation of the number inversion function is as shown in Figure 9.4. As 

described in Chapter 2, the input is a floating-point number with exponent part and 

mantissa part. The computation for the mantissa and the exponent is separate. For 

the exponent, the sign bit changes depending on the result. Concerning the 

mantissa, if the mantissa of the result is less than 1, the exponent has to be 

subtracted with 1. In addition, if the mantissa is less than 1, multiply the mantissa 

with 2. In the approximation part, the mentioned three steps are used. 

 

Fig 9.4 The block diagram of the procedure of number inversion function. 

9.1.2.1 The optimized hardware architectures 

The optimized hardware architectures of three different number of intervals in 

the second sub-function, s2(x), are demonstrated in Figure 9.5, Figure 9.6, and 

Figure 9.7. They are architectures using HPS method with 16, 32 and 64 intervals. 

In the corresponding s2 parts in the figures, the size of the LUT (l2,i, j2,i, and c2,i, in 

the figures) increases when the number of intervals increases in each architecture. 

The needed word lengths to meet the required precision become smaller, thus, 

result in smaller multipliers, adders and squarer. Among these three architectures, 

the 64-interval structure claims the largest size of the LUT and the smallest 

multipliers, adders and squarer. 
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Fig 9.5 The hardware architecture for 16-interval structure. 

 

Fig 9.6 The hardware architecture for 32-interval structure. 
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Fig 9.7 The hardware architecture for 64-interval structure. 

9.2 NR Iteration 
This section contains the introduction of one-stage NR iteration and two-stage 

NR iteration.  

9.2.1 Initial Guess 

As mentioned in Chapter 7, in order to achieve a quick convergence, a good 

initial guess is crucial. If the number of stages is only one, a large LUT containing 

different initial guesses for the different intervals is required. Furthermore, along 

with the growth of the number of stages, the reduction of the size of LUT is 

significant. Based on equation (5.9), two LUTs after truncation and optimization 

regarding one-stage iteration and two-stage iteration, listed according to Table 

A.10 and A. 11 in Appendix A.2. 

9.2.2 Hardware Architecture 

The diagrams in Figure 9.8 and Figure 9.9 demonstrate the architectures using 

NR method for a single iteration and two iterations (unrolled) with needed word 

lengths to meet the required output precision. Compare to the architecture for two 

iterations, the one-stage iteration architecture claims a larger LUT size, but a 

smaller number of components. 
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Fig 9.8 The hardware architecture for one-stage NR iteration architecture. 

 

Fig 9.9 The hardware architecture for two-stage NR iteration architecture. 
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CHAPTER 10 

10 Implementation Results 

The implementation results consist of error behavior, error metrics, chip area, 

timing, and power estimation. By applying a 65nm LPHVT COMS technology, 

the implementation results include these aspects for all hardware architectures. All 

of the conditions are at normal case and at room temperature. 

10.1 Error Behavior 

Figure 10.1 represents the error behavior for the 16-interval structure in the 

second sub-function, s2(x).  

 

Fig 10.1 The error behavior before and after truncation and optimization applying 

16-interval structure. 

As shown in Figure 10.1, the black and grey curves represent the error before 

and after the truncation and optimization respectively. The errors are lying equally 

around 0.  

Figure 10.2 demonstrates the error in Figure 10.1 in bit unit.  
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Fig 10.2 The error of Fig 10.1 in bit unit. 

According to Figure 10.2, the 16-bit target precision requirement is satisfied. 

Figure 10.3 describes the error distribution in Figure 10.1.  

 

Fig 10.3 The error distribution based on Fig 10.1. 
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As shown in Figure 10.3, the error is in the interval of (-1.5·    , 1.5·    ). In 

general, it realizes a Gaussian distribution, which represents a probability 

distribution.  

The error distribution of 32, and 64 intervals in the second sub-function, s2(x), 

can be realized in the same manner, as shown in Figure 10.4 and Figure 10.5. 

 

Fig 10.4 The error distribution for 32-interval structure. 

  

Fig 10.5 The error distribution for 64-interval structure. 
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According to Figure 10.3, Figure 10.4, and Figure 10.5, along with the growth 

of the number of intervals in the second sub-function, s2(x), the numbers of errors 

slightly decrease around zero.  

Figure 10.6 and demonstrates error behavior after truncation and optimization 

applying one-stage NR iteration. The errors are lying equally around 0. Figure 

10.7 illustrates error behavior before truncation and optimization. The errors are 

not lying around 0. It is not readable when placing these two figures together.  

 

Fig 10.6 The error behavior after truncation and optimization applying one-stage 

NR iteration. 
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Fig 10.7 The error behavior before truncation and optimization applying one-stage 

NR iteration. 

Figure 10.8 demonstrates the error in Figure 10.6 in bit unit. 

 

Fig 10.8 The error in Fig 10.6 in bit unit. 

According to Figure 10.8, the 16-bit target precision requirement is realizable. 

The error distribution is as described in Figure 10.9 based on Figure 10.6.  
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Fig 10.9 The error distribution based on Fig 10.6. 

As shown in Figure 10.9, the error is in the interval (-1.5·    , 1.5·    ). In 

general, it realizes a Gaussian distribution, which is a probability distribution.  

The error distribution of the two-stage NR iteration is realizable in the same 

manner, as shown in Figure 10.10. 

 

Fig 10.10 The error distribution of two-stage NR iteration 
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According to Figure 10.9 and Figure 10.10, along with the growth of the 

number of iterations, the reduction of the size of the LUT is significant. This 

results in that the error distribution becomes wider. As mentioned in Chapter 7, 

there is a trade-off between the size of LUT and the number of NR iterations.  

To close this section, the HPS architectures claim a better error distribution than 

the NR iteration architectures. The error distributions for both NR iteration 

architectures are much wider. The most of the errors for 16-interval structure 

applying HPS are lying in the interval (-0.5·    , 0.5·    ) according to Figure 

10.1. However, with respect to Figure 10.6, the most of the errors for one-stage 

NR iteration architecture are lying in the interval (-1·    , 1·    ). This indicates 

that the 16-interval structure claims a better error behavior than one-stage NR 

iteration architecture. 

10.2 Error metrics 
Table 10.1 illustrates the error metrics for five architectures after truncation and 

optimization. 

Table 10.1 Error metrics for five architectures after truncation and optimization. 

Error type 16HPS 

(10-6/bits) 

32HPS 

(10-6/bits) 

64HPS 

(10-6/bits) 

1NR 

(10-6/bits) 

2NR 

(10-6/bits) 

Maximum 

positive error 

13.5/16.24 14.0/16.17 13.5/16.24 15.7/16.06 11.8/16.43 

Maximum 

negative error 

13.4/16.24 13.0/16.29 13.3/16.26 15.2/16.01 11.7/16.43 

Mean error 2.40/18.73 2.52/18.66 2.53/18.66 4.65/17.77 3.96/18.01 

Median error 2.11/18.92 2.18/18.87 2.19/18.87 4.12/17.95 3.77/18.08 

Standard 

deviation 

2.99 3.15 3.15 5.67 4.66 

RMS 3.00 3.16 3.16 5.69 4.66 

According to Table 10.1, there are slight differences for each error factor. Due 

to Gaussian distribution, the differences between the Standard deviation and the 
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RMS in each metrics are small as well. In general, the HPS architectures claim the 

smaller errors concerning all the error types above.  

10.3  Synthesis Constraints 
There are two synthesis constraints, high-speed constraint and low-area 

constraint. For a high-speed circuit, a specific high clock frequency and 0-area 

constraint are set. In order to realize a high-speed constraint, a small clock period 

is set in the synthesis script to maintain a high clock frequency. In order to realize 

an area optimized circuit, the max chip area in the synthesis script is set to zero 

and a low clock frequency (high clock period) is in specific.  

10.4  Chip Area 

Table 10.2 demonstrates the minimum chip area for five hardware architectures. 

To be clear, 16HPS stands for 16 intervals in the second sub-function, s2(x), for 

HPS method, 1NR stands for one stage iteration for the NR method. The 

representations of the remaining architectures are in the same manner.  

Table 10.2 Chip area when minimum chip area constraint is set. 

Architecture Chip Area 

(combinational, 

μm2) 

(%) Chip Area (total, 

μm2) 

(%) 

16HPS 5599 98 5857 98 

32HPS 4956 87 5213 87 

64HPS 4759 83 5016 84 

1NR 4106 72 4364 73 

2NR 5710 100 5968 100 

To synthesis the design, we add registers. This results in the difference between 

the combinational chip area and total chip area.  

By setting no chip area constraints, the maximum chip area for five 

architectures are as listed according to Table 10.3. 

Table 10.3 Chip area when maximum speed constraint is set. 

Architecture Chip Area 

(combinational, 

μm
2
) 

(%) Chip Area (total, 

μm2) 

(%) 

16HPS 9328 81 9590 82 

32HPS 7996 70 8257 70 

64HPS 7828 68 8086 69 

1NR 7079 62 7337 63 

2NR 11455 100 11729 100 
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    Based on Table 10.2 and Table 10.3, the two-stage NR iterations architecture 

claims the largest chip area. On the contrary, the one-stage NR iteration 

architecture claims the least chip area. Along with the growth of the number of 

intervals in the second sub-function, s2(x), applying HPS, the chip area shows a 

tendency to decline.  

10.5  Timing 

Table 10.4 illustrates timing report for high-speed circuits. The general idea is 

to locate the minimum clock period when maintaining a minimum slack. 

Therefore, the minimum clock period represents the highest possible clock 

frequency.  

Table 10.4 Timing report when maximum speed constraint is set. 

Architecture Critical 

Path/Frequency 

(combinational, 

ns/MHz) 

Frequency 

(%) 

Critical 

Path/Frequency 

(total, ns/MHz) 

Frequency 

(%) 

16HPS 4.53/221 138 4.85/206 136 

32HPS 3.92/255 159 4.27/234 154 

64HPS 3.46/289 180 3.77/265 174 

1NR 3.55/282 176 3.88/258 170 

2NR 6.25/160 100 6.56/152 100 

Table 10.5 demonstrates timing report for low-area circuits by setting the max 

chip area in the synthesis script to 0.  

Table 10.5 Timing report when minimum chip area constraint is set. 

Architecture Critical 

Path/Frequency 

(combinational, 

ns/MHz) 

Frequency 

(%) 

Critical 

Path/Frequency 

(total, ns/MHz) 

Frequency 

(%) 

16HPS 11.15/87 138 11.61/86 139 

32HPS 10.00/100 159 10.39/96 155 

64HPS 8.91/112 178 9.30/108 174 

1NR 9.60/104 165 10.02/100 161 

2NR 15.77/63 100 16.21/62 100 

According to Table 10.4 and Table 10.5, the two-stage NR iterations 

architecture claims the largest critical path. However, 64 intervals HPS 

architecture claims the least critical path. Along with the growth of the number of 

intervals in the second sub-function, s2(x), applying HPS, the critical path shows a 

tendency of decline as well.  
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10.6  Power estimation 
The power in CMOS transistors consists of dynamic power and static power, as 

shown in (10.1). 

staticdynamictotal PPP                                                                                  (10.1) 

The static power is the power consumed when there is no circuit activity. It is 

due to sub threshold currents, reverse bias leakage gate leakage, and another few 

currents [15]. The static power consumption is the product of the device leakage 

current and the supply voltage. On the contrary, the dynamic power is the power 

consumed when the inputs are active. It is due to dynamic switching events. It 

consists of switching power and internal power, as shown in (10.2).        

ernalswitchingdynamic PPP int                                                                        (10.2) 

According to the tool vendor, “The switching power is determined by the 

capacitive load and the frequency of the logic transitions on a cell output” – 

quoted from [16]. Moreover, “The internal power is caused by the charging of 

internal loads as well as by the short-circuit current between the N and P 

transistors of a gate when both are on” – quoted from [16]. The dynamic power is 

thus as expressed according to (10.3). 

faCVPdynamic
2                                                                                             (10.3) 

where a is the activity factor, C is the switched capacitance, V is the supply 

voltage, and f is the clock frequency.  

Figure 10.11 demonstrates the power consumption for 16, 32, and 64 intervals 

in the second sub-function, s2(x), applying HPS as well as one-stage, and two-stage 

NR iteration architectures at multiple clock frequencies. All the power 

consumption values are as listed in Table A.12 to Table A.16 in Appendix A.3. 



69 
 

 

Fig 10.11 The power consumption for five architectures at multiple clock 

frequencies. 

Figure 10.12 demonstrates the zoomed-in figure of Figure 10.1. 

 

Fig 10.12 The zoomed-in figure of Fig 10.1. 

In Figure 10.11 and Figure 10.12, the two-stage NR iteration architecture claims 

the highest power consumption. On the contrary, the 64-interval structure applying 

HPS method claims the lowest power consumption. All five curves are close in 

Figure 10.11. The last point is at the highest possible frequency. However, when 

zooming in Figure 10.11 partially, there are slight differences. When applying 
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HPS, the power consumption is less along with the growth of the number of 

intervals in the second sub-function, s2(x). When applying the NR iterations, the 

power consumption is increasing along with the growth of the number of iterations 

due to a large reduction of the LUT size. In general, one-stage NR iteration 

consumes less power, two-stage NR iterations consumes more power. 

Figure 10.13 illustrates the switching power, internal power, static power and 

total power for 64 intervals in the second sub-function, s2(x), applying HPS after 

post synthesis simulation at multiple clock frequencies. 

 

Fig 10.13 The switching power, internal power, static power and total power for 

64 interval structure applying HPS after post synthesis simulation at multiple clock 

frequencies. 

Figure 10.14 illustrates the switching power, internal power, static power and 

total power for one-stage NR iteration architecture after post synthesis simulation 

at multiple clock frequencies.  
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Fig 10.14 The switching power, internal power, static power and total power 

applying one-stage NR iteration after post synthesis simulation at multiple clock 

frequencies. 

The green curve is switching power, the red curve is internal power, the blue 

curve is static power, and the grey curve is total power. The dynamic power is the 

difference between total power and static power, which is absent in the figure due 

to the closeness between total power and dynamic power. Comparing Figure 10.13 

to Figure 10.14, all curves of power are close. However, the switching power and 

the internal power in 64 intervals applying HPS are slightly less than one-stage NR 

iteration.  

Figure 10.15 and Figure 10.16 demonstrates the switching power, internal 

power, static power and total power for 64 intervals in the second sub-function, 

s2(x), applying HPS and one-stage NR iteration after post layout simulation at 

multiple clock frequencies respectively. 
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Fig 10.15 The switching power, internal power, static power and total power for 

64 interval structure applying HPS after post layout simulation at multiple clock 

frequencies. 

 

Fig 10.16 The switching power, internal power, static power and total power 

applying one-stage NR iteration after post layout simulation at multiple clock 

frequencies. 
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The power consumption after post layout simulation is larger than that after post 

synthesis simulation at corresponding frequencies for both architectures. 

10.7  Physical Layout 

Figure 10.17 and Figure 10.18 demonstrates the physical layout of two different 

architectures.  

 

Fig 10.17  The physical layout of 64 interval structure applying HPS method. 

After P&R, the core size is 86.3 (width) multiplied by 83.2 (height), which is 

7180 um2 and the die size is 126.3 (width) multiplied by 123.2 (height), which is 

15560 um2. The die size is, however, not relevant since there are no pads. 

According to Table 10.1, the minimum chip area of 64HPS architecture is 4759 

um2. The core utilization is 99.86%.  

 

Fig 10.18 The physical layout of one-stage NR iteration architecture. 
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The core size is 83.3(width) multiplied by 75.4 (height), which is 6281 um2 and 

the die size is 123.3 (width) multiplied by 115.4 (height), which is 14229 um2. The 

theoretical minimum chip area of this architecture in Table 10.1 is smaller than 

that of 64HPS architecture. It is also true for the actual core size. The core 

utilization is 99.90%. 
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CHAPTER 11 

11 Conclusions 

11.1 Comparison 
In this thesis, the implementations for three different architectures applying HPS 

and two different architectures applying NR iteration are realizable. For the HPS 

method, the growth of the number of intervals in the second sub-function, s2(x), 

results in less chip area, smaller critical path, and less power consumption. In 

order to realize a simple hardware with maintained accuracy, the fixed coefficients 

are essential. For NR iteration, a lager LUT gives fewer iterations, but larger chip 

area, larger critical path, and significant larger power consumption. This is due to 

that a significantly larger LUT size achieves significantly quicker convergence. 

The major merits of HPS method compared to NR iterations, listed as follows:  

Multiple target function: Plenty of unary functions such as sine, logarithmic, 

exponential, reciprocal and even square reciprocal is realizable applying HPS 

method. On the contrary, the amount of the implementations of different functions 

by NR iterations is far more less. 

High flexibility: For the HPS method, different target functions have the 

similar hardware architecture. The differences are the sets of the coefficients. This 

is not applicable for NR iterations. For NR iterations, when changing the target 

function, the modification of the hardware architecture is essential.  

11.2 Future Work 
For the HPS method, it is inevitable that along with the growth of the number of 

intervals in the second sub-function, s2(x), the output precision will be better. What 

is more, the coefficients in the second sub-function can be deeper optimized. 

Finally, the modification for the architectures is applicable to meet a better 

performance. 

For the NR iteration method, it is possible to scale down the size of LUT by half 

in one-stage NR iteration.  
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Appendix A 

A.1 The coefficients in the second sub-function using 

HPS method. 

Table A.1 The coefficients l2,i of 16-interval structure. 

coefficient value coefficient value 
l2,0 1.000000000000000 l2,8 0.666679382324219 

l2,1 0.941184997558594 l2,9 0.640014648437500 

l2,2 0.888893127441406 l2,10 0.615409851074219 

l2,3 0.842117309570313 l2,11 0.592613220214844 

l2,4 0.800010681152344 l2,12 0.571456909179688 

l2,5 0.761917114257813 l2,13 0.551773071289063 

l2,6 0.727287292480469 l2,14 0.533416748046875 

l2,7 0.695663452148438 l2,15 0.516357421875000 

Table A.2 The coefficients j2,i of 16-interval structure. 

coefficient value coefficient value 
j2,0 0.062347412109375 j2,8 0.027740478515625 

j2,1 0.055267333984375 j2,9 0.025573730468750 

j2,2 0.049285888671875 j2,10 0.023651123046875 

j2,3 0.044250488281250 j2,11 0.021911621093750 

j2,4 0.039947509765625 j2,12 0.020385742187500 

j2,5 0.036224365234375 j2,13 0.019012451171875 

j2,6 0.033020019531250 j2,14 0.017761230468750 

j2,7 0.030212402343750 j2,15 0.016632080078125 

Table A.3 The coefficients c2,i of 16-interval structure. 

coefficient value coefficient value 
c2,0 0.003555297851563  c2,8 0.001083374023438  
c2,1 0.002975463867188  c2,9 0.000961303710938  
c2,2 0.002517700195313  c2,10 0.000854492187500  
c2,3 0.002151489257813  c2,11 0.000762939453125  
c2,4 0.001846313476563  c2,12 0.000686645507813  
c2,5 0.001602172851563  c2,13 0.000610351562500  
c2,6 0.001388549804688  c2,14 0.000549316406250  
c2,7 0.001235961914063  c2,15 0.000503540039063  
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Table A.4 The coefficients l2,i of 32-interval structure. 

coefficient value coefficient value 
l2,0 1.000000000000000 l2,16 0.666679382324219 

l2,1 0.969696044921875 l2,17 0.653076171875000 

l2,2 0.941192626953125 l2,18 0.639999389648438 

l2,3 0.914283752441406 l2,19 0.627471923828125 

l2,4 0.888885498046875 l2,20 0.615394592285156 

l2,5 0.864868164062500 l2,21 0.603790283203125 

l2,6 0.842109680175781 l2,22 0.592605590820313 

l2,7 0.820518493652344 l2,23 0.581840515136719 

l2,8 0.800018310546875 l2,24 0.571479797363281 

l2,9 0.780479431152344 l2,25 0.561447143554688 

l2,10 0.761901855468750 l2,26 0.551757812500000 

l2,11 0.744194030761719 l2,27 0.542419433593750 

l2,12 0.727279663085938 l2,28 0.533393859863281 

l2,13 0.711112976074219 l2,29 0.524642944335938 

l2,14 0.695648193359375 l2,30 0.516288757324219 

l2,15 0.516357421875000 l2,31 0.508323669433594 

Table A.5 The coefficients j2,i of 32-interval structure. 

coefficient value coefficient value 
j2,0 0.031188964843750  j2,16 0.013854980468750  
j2,1 0.029357910156250  j2,17 0.013305664062500  
j2,2 0.027648925781250  j2,18 0.012756347656250  
j2,3 0.026062011718750  j2,19 0.012268066406250  
j2,4 0.024658203125000  j2,20 0.011779785156250  
j2,5 0.023315429687500  j2,21 0.011352539062500  
j2,6 0.022094726562500  j2,22 0.010925292968750  
j2,7 0.020996093750000  j2,23 0.010559082031250  
j2,8 0.019958496093750  j2,24 0.010192871093750  
j2,9 0.018981933593750  j2,25 0.009826660156250  
j2,10 0.018066406250000  j2,26 0.009460449218750  
j2,11 0.017272949218750  j2,27 0.009155273437500  
j2,12 0.016479492187500  j2,28 0.008850097656250  
j2,13 0.015747070312500  j2,29 0.008483886718750  
j2,14 0.015075683593750  j2,30 0.008300781250000  
j2,15 0.016632080078125  j2,31 0.008056640625000  
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Table A.6 The coefficients c2,i of 32-interval structure. 

Coefficient Value Coefficient Value 
c2,0 0.000915527343750  c2,16 0.000244140625000  
c2,1 0.000854492187500  c2,17 0.000244140625000  
c2,2 0.000732421875000  c2,18 0.000244140625000  
c2,3 0.000671386718750  c2,19 0.000183105468750  
c2,4 0.000671386718750  c2,20 0.000183105468750  
c2,5 0.000549316406250  c2,21 0.000183105468750  
c2,6 0.000488281250000  c2,22 0.000183105468750  
c2,7 0.000488281250000  c2,23 0.000183105468750  
c2,8 0.000427246093750  c2,24 0.000122070312500  
c2,9 0.000427246093750  c2,25 0.000122070312500  
c2,10 0.000366210937500  c2,26 0.000122070312500  
c2,11 0.000366210937500  c2,27 0.000122070312500  
c2,12 0.000305175781250  c2,28 0.000122070312500  
c2,13 0.000305175781250  c2,29 0.000122070312500  
c2,14 0.000305175781250  c2,30 0.000122070312500  
c2,15 0.000305175781250  c2,31 0.000122070312500  
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Table A.7 The coefficients l2,i of 64-interval structure. 

Coefficient Value Coefficient Value 
l2,0 1.000000000000000  l2,32 0.666664123535156  
l2,1 0.984611511230469  l2,33 0.659797668457031  
l2,2 0.969703674316406  l2,34 0.653076171875000  
l2,3 0.955223083496094  l2,35 0.646453857421875  
l2,4 0.941169738769531  l2,36 0.639999389648438  
l2,5 0.927543640136719  l2,37 0.633659362792969  
l2,6 0.914283752441406  l2,38 0.627464294433594  
l2,7 0.901405334472656  l2,39 0.621368408203125  
l2,8 0.888908386230469  l2,40 0.615394592285156  
l2,9 0.876708984375000  l2,41 0.609558105468750  
l2,10 0.864868164062500  l2,42 0.603797912597656  
l2,11 0.853340148925781  l2,43 0.598159790039063  
l2,12 0.842102050781250  l2,44 0.592597961425781  
l2,13 0.831153869628906  l2,45 0.587188720703125  
l2,14 0.820510864257813  l2,46 0.581832885742188  
l2,15 0.810142517089844  l2,47 0.576614379882813  
l2,16 0.800003051757813  l2,48 0.571456909179688  
l2,17 0.790130615234375  l2,49 0.566413879394531  
l2,18 0.780487060546875  l2,50 0.561431884765625  
l2,19 0.771080017089844  l2,51 0.556564331054688  
l2,20 0.761909484863281  l2,52 0.551750183105469  
l2,21 0.752967834472656  l2,53 0.547042846679688  
l2,22 0.744194030761719  l2,54 0.542427062988281  
l2,23 0.735641479492188  l2,55 0.537887573242188  
l2,24 0.727287292480469  l2,56 0.533386230468750  
l2,25 0.719116210937500  l2,57 0.528991699218750  
l2,26 0.711120605468750  l2,58 0.524673461914063  
l2,27 0.703300476074219  l2,59 0.520439147949219  
l2,28 0.695648193359375  l2,60 0.516273498535156  
l2,29 0.688186645507813  l2,61 0.512199401855469  
l2,30 0.680847167968750  l2,62 0.508331298828125  
l2,31 0.673698425292969  l2,63 0.504714965820313  
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Table A.8 The coefficients j2,i of 64-interval structure. 

Coefficient Value Coefficient Value 
j2,0 0.015563964843750 j2,32 0.006896972656250 
j2,1 0.015075683593750 j2,33 0.006774902343750 
j2,2 0.014648437500000 j2,34 0.006652832031250 
j2,3 0.014221191406250 j2,35 0.006469726562500 
j2,4 0.013793945312500 j2,36 0.006347656250000 
j2,5 0.013427734375000 j2,37 0.006225585937500 
j2,6 0.013000488281250 j2,38 0.006103515625000 
j2,7 0.012634277343750 j2,39 0.005981445312500 
j2,8 0.012329101562500 j2,40 0.005859375000000 
j2,9 0.011962890625000 j2,41 0.005798339843750 
j2,10 0.011657714843750 j2,42 0.005676269531250 
j2,11 0.011352539062500 j2,43 0.005554199218750 
j2,12 0.011047363281250 j2,44 0.005432128906250 
j2,13 0.010742187500000 j2,45 0.005371093750000 
j2,14 0.010498046875000 j2,46 0.005249023437500 
j2,15 0.010253906250000 j2,47 0.005187988281250 
j2,16 0.010009765625000 j2,48 0.005065917968750 
j2,17 0.009704589843750 j2,49 0.005004882812500 
j2,18 0.009460449218750 j2,50 0.004882812500000 
j2,19 0.009216308593750 j2,51 0.004821777343750 
j2,20 0.009033203125000 j2,52 0.004699707031250 
j2,21 0.008850097656250 j2,53 0.004638671875000 
j2,22 0.008605957031250 j2,54 0.004577636718750 
j2,23 0.008422851562500 j2,55 0.004516601562500 
j2,24 0.008239746093750 j2,56 0.004394531250000 
j2,25 0.008056640625000 j2,57 0.004333496093750 
j2,26 0.007873535156250 j2,58 0.004272460937500 
j2,27 0.007690429687500 j2,59 0.004211425781250 
j2,28 0.007507324218750 j2,60 0.004150390625000 
j2,29 0.007385253906250 j2,61 0.004089355468750 
j2,30 0.007202148437500 j2,62 0.004028320312500 
j2,31 0.007080078125000 j2,63 0.003967285156250 
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Table A.9 The coefficients c2,i of 64-interval structure. 

Coefficient Value Coefficient Value 
c2,0 0.000183105468750  c2,32 0.000061035156250  
c2,1 0.000183105468750  c2,33 0.000061035156250  
c2,2 0.000183105468750  c2,34 0.000061035156250  
c2,3 0.000183105468750  c2,35 0.000061035156250  
c2,4 0.000183105468750  c2,36 0.000061035156250  
c2,5 0.000183105468750  c2,37 0.000061035156250  
c2,6 0.000122070312500  c2,38 0.000000000000000  
c2,7 0.000122070312500  c2,39 0.000000000000000  
c2,8 0.000122070312500  c2,40 0.000000000000000  
c2,9 0.000122070312500  c2,41 0.000000000000000  
c2,10 0.000122070312500  c2,42 0.000000000000000  
c2,11 0.000122070312500  c2,43 0.000000000000000  
c2,12 0.000122070312500  c2,44 0.000000000000000  
c2,13 0.000122070312500  c2,45 0.000000000000000  
c2,14 0.000122070312500  c2,46 0.000000000000000  
c2,15 0.000122070312500  c2,47 0.000000000000000  
c2,16 0.000122070312500  c2,48 0.000000000000000  
c2,17 0.000061035156250  c2,49 0.000000000000000  
c2,18 0.000061035156250  c2,50 0.000000000000000  
c2,19 0.000061035156250  c2,51 0.000000000000000  
c2,20 0.000061035156250  c2,52 0.000000000000000  
c2,21 0.000061035156250  c2,53 0.000000000000000  
c2,22 0.000061035156250  c2,54 0.000000000000000  
c2,23 0.000061035156250  c2,55 0.000000000000000  
c2,24 0.000061035156250  c2,56 0.000000000000000  
c2,25 0.000061035156250  c2,57 0.000000000000000  
c2,26 0.000061035156250  c2,58 0.000000000000000  
c2,27 0.000061035156250  c2,59 0.000000000000000  
c2,28 0.000061035156250  c2,60 0.000000000000000  
c2,29 0.000061035156250  c2,61 0.000000000000000  
c2,30 0.000061035156250  c2,62 0.000000000000000  
c2,31 0.000061035156250  c2,63 0.000000000000000  
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A.2 The coefficients in LUTs of NR Iteration 

Table A.10 The initial guess values of one-stage NR iteration. 

Initial 

guess 

Value Initial 

guess 
Value Initial 

guess 
Value 

1 0.998046875 39 0.869140625 77 0.771484375 
2 0.994140625 40 0.865234375 78 0.767578125 
3 0.990234375 41 0.865234375 79 0.765625 
4 0.986328125 42 0.859375 80 0.76171875 
5 0.982421875 43 0.857421875 81 0.76171875 
6 0.978515625 44 0.853515625 82 0.7578125 
7 0.974609375 45 0.853515625 83 0.755859375 
8 0.970703125 46 0.84765625 84 0.755859375 
9 0.966796875 47 0.84765625 85 0.751953125 
10 0.962890625 48 0.841796875 86 0.748046875 
11 0.958984375 49 0.841796875 87 0.74609375 
12 0.958984375 50 0.837890625 88 0.74609375 
13 0.953125 51 0.833984375 89 0.7421875 
14 0.94921875 52 0.833984375 90 0.7421875 
15 0.947265625 53 0.830078125 91 0.73828125 
16 0.943359375 54 0.826171875 92 0.736328125 
17 0.939453125 55 0.826171875 93 0.734375 
18 0.9375 56 0.8203125 94 0.732421875 
19 0.93359375 57 0.8203125 95 0.732421875 
20 0.927734375 58 0.814453125 96 0.728515625 
21 0.927734375 59 0.814453125 97 0.724609375 
22 0.923828125 60 0.8125 98 0.72265625 
23 0.91796875 61 0.80859375 99 0.72265625 
24 0.916015625 62 0.806640625 100 0.71875 
25 0.912109375 63 0.802734375 101 0.71875 
26 0.908203125 64 0.802734375 102 0.71484375 
27 0.904296875 65 0.798828125 103 0.71484375 
28 0.904296875 66 0.794921875 104 0.7109375 
29 0.900390625 67 0.79296875 105 0.7109375 
30 0.896484375 68 0.79296875 106 0.70703125 
31 0.89453125 69 0.787109375 107 0.70703125 
32 0.888671875 70 0.787109375 108 0.703125 

33 0.888671875 71 0.78515625 109 0.703125 

34 0.884765625 72 0.78125 110 0.69921875 

35 0.880859375 73 0.779296875 111 0.69921875 

36 0.876953125 74 0.775390625 112 0.6953125 

37 0.876953125 75 0.775390625 113 0.6953125 
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38 0.87109375 76 0.771484375 114 0.69140625 
115 0.69140625 158 0.62109375 201 0.560546875 
116 0.689453125 159 0.619140625 202 0.55859375 
117 0.689453125 160 0.6171875 203 0.556640625 
118 0.685546875 161 0.6171875 204 0.556640625 
119 0.681640625 162 0.61328125 205 0.5546875 
120 0.681640625 163 0.61328125 206 0.5546875 
121 0.6796875 164 0.61328125 207 0.5546875 
122 0.6796875 165 0.609375 208 0.55078125 
123 0.67578125 166 0.609375 209 0.55078125 
124 0.67578125 167 0.607421875 210 0.55078125 
125 0.671875 168 0.60546875 211 0.548828125 
126 0.671875 169 0.60546875 212 0.546875 
127 0.66796875 170 0.6015625 213 0.546875 
128 0.66796875 171 0.6015625 214 0.546875 
129 0.666015625 172 0.6015625 215 0.54296875 
130 0.6640625 173 0.59765625 216 0.54296875 
131 0.6640625 174 0.59765625 217 0.541015625 
132 0.66015625 175 0.595703125 218 0.541015625 
133 0.66015625 176 0.59375 219 0.5390625 
134 0.65625 177 0.59375 220 0.5390625 
135 0.65625 178 0.591796875 221 0.537109375 
136 0.65234375 179 0.58984375 222 0.537109375 
137 0.65234375 180 0.58984375 223 0.533203125 
138 0.650390625 181 0.587890625 224 0.533203125 
139 0.6484375 182 0.5859375 225 0.53125 
140 0.6484375 183 0.5859375 226 0.53125 
141 0.64453125 184 0.583984375 227 0.53125 
142 0.64453125 185 0.58203125 228 0.529296875 
143 0.642578125 186 0.58203125 229 0.529296875 
144 0.640625 187 0.578125 230 0.529296875 
145 0.640625 188 0.578125 231 0.52734375 
146 0.63671875 189 0.578125 232 0.525390625 
147 0.63671875 190 0.57421875 233 0.5234375 
148 0.6328125 191 0.57421875 234 0.521484375 

149 0.6328125 192 0.57421875 235 0.521484375 

150 0.6328125 193 0.572265625 236 0.51953125 

151 0.62890625 194 0.572265625 237 0.51953125 

152 0.62890625 195 0.568359375 238 0.51953125 

153 0.626953125 196 0.568359375 239 0.517578125 

154 0.625 197 0.56640625 240 0.515625 

155 0.625 198 0.564453125 241 0.515625 

156 0.625 199 0.564453125 242 0.515625 
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157 0.62109375 200 0.560546875 243 0.513671875 
244 0.51171875 249 0.5078125 254 0.501953125 

245 0.509765625 250 0.5078125 255 0.501953125 

246 0.509765625 251 0.50390625 256 0.501953125 

247 0.509765625 252 0.50390625   

248 0.5078125 253 0.501953125   

Table A.11 The initial guess values of two-stage NR iteration. 

Initial guess Value Initial guess Value 

1 0.96875 9 0.626953125 
2 0.91796875 10 0.626953125 
3 0.87890625 11 0.580078125 
4 0.83984375 12 0.580078125 
5 0.779296875 13 0.580078125 
6 0.763671875 14 0.5234375 
7 0.69921875 15 0.5234375 
8 0.69921875 16 0.5234375 

A.3 The power consumptions at various frequencies. 

Table A.12 The total power consumptions at various frequencies. 

Frequency(Hz) 

/Power(W) 

16HPS 32HPS 64HPS 1NR 2NR 

1 1.840e-08 1.684e-08 1.681e-08 1.463e-08 1.906e-08 

10 1.853e-08 1.697e-08 1.691e-08 1.475e-08 1.932e-08 

100 1.980e-08 1.821e-08 1.789e-08 1.595e-08 2.193e-08 

1000 3.247e-08 3.068e-08 2.770e-08 2.792e-08 4.803e-08 

10000 1.592e-07 1.553e-07 1.258e-07 1.484e-07 3.099e-07 

100000 1.427e-06 1.402e-06 1.106e-06 1.366e-06 2.918e-06 

1000000 1.410e-05 1.387e-05 1.091e-05 1.346e-05 2.902e-05 

10000000 1.409e-04 1.385e-04 1.090e-04 1.346e-04 2.901e-04 

100000000 1.661e-03 1.436e-03 1.090e-03 1.363e-03 4.977e-03 
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Table A.13 The switching power, internal power, static power and total power for 

64-interval architecture after post synthesis simulation 

Frequency(Hz) 

/Power(W) 

Switching Power Internal Power Static Power Total Power 

1 5.735e-12 5.169e-12 1.680e-08 1.681e-08 

10 5.735e-11 5.169e-11 1.680e-08 1.691e-08 

100 5.735e-10 5.169e-10 1.680e-08 1.789e-08 

1000 5.733e-09 5.164e-09 1.680e-08 2.770e-08 

10000 5.733e-08 5.164e-08 1.680e-08 1.258e-07 

100000 5.733e-07 5.164e-07 1.680e-08 1.106e-06 

1000000 5.733e-06 5.164e-06 1.680e-08 1.091e-05 

10000000 5.733e-05 5.164e-05 1.680e-08 1.090e-04 

100000000 5.733e-04 5.166e-04 1.680e-08 1.090e-03 
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Table A.14 The switching power, internal power, static power and total power for 

1NR architecture after post synthesis simulation 

Frequency(Hz) 

/Power(W) 

Switching Power Internal Power Static Power Total Power 

1 7.188e-12 6.140e-12 1.462e-08 1.463e-08 

10 7.188e-11 6.140e-11 1.462e-08 1.475e-08 

100 7.188e-10 6.140e-10 1.462e-08 1.595e-08 

1000 7.166e-09 6.121e-09 1.463e-08 2.792e-08 

10000 7.205e-08 6.168e-08 1.463e-08 1.484e-07 

100000 7.275e-07 6.237e-07 1.462e-08 1.366e-06 

1000000 7.233e-06 6.209e-06 1.464e-08 1.346e-05 

10000000 7.241e-05 6.216e-05 1.465e-08 1.346e-04 

100000000 7.355e-04 6.273e-04 1.462e-08 1.363e-03 
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Table A.15 The switching power, internal power, static power and total power for 

64-interval architecture after post layout simulation 

Frequency(Hz) 

/Power(W) 

Switching Power Internal Power Static Power Total Power 

1 1.182e-11 1.106e-11 1.714e-08 1.717e-08 

10 1.182e-10 1.106e-10 1.714e-08 1.737e-08 

100 1.171e-09 1.096e-09 1.705e-08 1.932e-08 

1000 1.178e-08 1.103e-08 1.712e-08 3.992e-08 

10000 1.185e-07 1.108e-07 1.711e-08 2.464e-07 

100000 1.174e-06 1.098e-06 1.710e-08 2.290e-06 

1000000 1.175e-05 1.100e-05 1.699e-08 2.276e-05 

10000000 1.180e-04 1.104e-04 1.700e-08 2.284e-04 

100000000 1.225e-03 1.150e-03 1.765e-08 2.376e-03 
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Table A.16 The switching power, internal power, static power, total power for 

1NR architecture after post layout simulation 

Frequency(Hz) 

/Power(W) 

Switching Power Internal Power Static Power Total Power 

1 1.293e-11 1.104e-11 1.476e-08 1.479e-08 

10 1.293e-10 1.104e-10 1.476e-08 1.500e-08 

100 1.293e-09 1.104e-09 1.476e-08 1.716e-08 

1000 1.296e-08 1.104e-08 1.475e-08 3.875e-08 

10000 1.322e-07 1.120e-07 1.473e-08 2.589e-07 

100000 1.335e-06 1.131e-06 1.470e-08 2.480e-06 

1000000 1.318e-05 1.114e-05 1.476e-08 2.434e-05 

10000000 1.350e-04 1.145e-04 1.472e-08 2.496e-04 

100000000 1.359e-03 1.180e-03 1.506e-08 2.539e-03 
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