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Abstract 

Nowadays, with the increasing complexity of System-on-Chip (SoC), 

traditional debugging approaches are not enough in multi-core architecture 

systems. Hardware tracing becomes necessary for performance analysis in 

these systems. 

The problem is that the size of collected trace data through hardware-

based tracing techniques is usually extremely large due to the increasing 

complexity of System-on-Chips. Hence on-chip trace compression 

performed in hardware is needed to reduce the amount of transferred or 

stored data.  

In this dissertation, the feasibility of different types of lossless data 

compression algorithms in hardware implementation are investigated and 

examined. A lossless data compression algorithm LZ77 is selected, 

analyzed, and optimized to Nexus traces data. In order to meet the hardware 

cost and compression performances requirements for the real-time 

compression, an optimized LZ77 compression algorithm is proposed based 

on the characteristics of Nexus trace data. 

This thesis presents a hardware implementation of LZ77 encoder 

described in Very High Speed Integrated Circuit Hardware Description 

Language (VHDL). Test results demonstrate that the compression speed can 

achieve16 bits/clock cycle and the average compression ratio is 1.35 for the 

minimal hardware cost case, which is a suitable trade-off between the 

hardware cost and the compression performances effectively. 
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                                  CHAPTER 1 

1. Introduction 

Collecting execution traces of programs is an important task for 

embedded system verification and debugging. With the increasing 

complexity of System-on-Chip, the size of collected trace data through 

hardware-based tracing techniques is usually extremely large. For example, 

monitoring a 32 bits bus in an RISC microprocessor clocked at 1 GHz 

generates a trace of 4G bytes per second. Storing such huge data or 

transferring the data out of the chip in real time brings a high hardware cost 

[1]. Therefore, the key problem with hardware-based tracing techniques is 

to reduce the size of collected trace data. Trace data size reduction 

techniques include three types – filtering, sampling, and compression. 

Filtering discards all references. Sampling stores relatively short references 

at regular intervals, discarding the intervening references. Only trace 

compression technique can retain all of the trace data information [2]. 

Compression techniques are divided into lossy compression technique and 

lossless compression technique. This master thesis focuses on implementing 

the lossless compression optimized based on the trace data from Ericsson’s 

ASIC platform.  

1.1. Nexus Trace Data 

In this thesis, the trace data adopts the Nexus IEEE-ISTO5001-2012 

standard. Nexus 5001 is a standard for global embedded processor debug 

interface, which is published by IEEE´s Industry Standard and Technology 

Organization. 

The Nexus standard defines trace and debug interface, including 

associated protocols and infrastructure that can serve tracing and controlling 

of multiple cores on a chip from the software debugger [3]. 

The original standard is the 1999 version, which was aimed to define a 

general-purpose specification that addressed the rigorous challenges for 

debug interfaces, and the need for efficient use of embedded processors that 

requires software and hardware development tools to access critical 

processor functionality [4]. Trace data can be read out through a JTAG port. 

As a modern System-on-Chip has entered into multicore era, a large 

number of logics have been integrated on the embedded processor. 
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Increased hardware complexity enables growing software complexity. The 

traditional debugging and testing approach through a JTAG port is obtrusive 

and time-consuming, which is not suitable for the advanced real-time 

embedded system.  

The newest standard is the 2012 version, which support a minimum pin 

interface (IEEE 1149.7) and a high speed serial protocol (Aurora), also 

continuing to support existing transport mechanisms: parallel (AUX) and 

IEEE 1149.1. Using an AUX port can achieve faster response when the 

systems are configured or used. 

The Nexus data employs a packet-based messaging tracing scheme with 

packet headers providing information about data source, destination, and 

type of payload [3]. Nexus standard defines 4 classes’ development features 

for vendors to use according to their needs. The higher the levels are 

adopted, the more debug information can be obtained.  

 Class1: Basic Run Control. Class1 standard implement the fewest 

Nexus development features for run-control debugging, including 

single stepping, breakpoints, watchpoints, and access to registers 

and memory while the processor is halted. 

 Class2: Instruction Trace. Besides class1 features, class2 standard 

add debug support for capturing program execution traces, 

watchpoint traces, and ownership traces in real time. Ownership 

traces are useful to correlate simultaneously executed threads in 

time [3]. 

 Class3: Data Trace. Besides class2 features, class3 standard add 

debug support for data traces, memory, and I/O read/write traces.  

This mainly related to implementation of full tracing capabilities. 

 Class4: Remote processor control and advanced trace. In addition to 

class3, class4 standard add memory substitution traces. Memory 

substitution allows the processor to execute instructions from the 

trace port rather than from the memory [3]. Memory substitution is 

implemented using address remapping for the I/O space (where the 

trace port is located) and for the memory (where the original 

executing program resides) [3].   

According to the Nexus Trace Data Standard, the trace messages can be 

classified into three categories depending on the type of information they 

contain: program (or instruction) traces, data traces (from the memory bus), 

and system traces (various signals of interest in debugging the implemented 

hardware or observing the inter-cores dependencies and so on) [3]. The 

trace data messages mainly include 5 types as below. 
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 Status message: This type of message indicates the status 

information from the target whenever there is a state change. Such 

as, Debug Status Message.  

 General register read/write message: This type of message is used 

for run control and configuration of watchpoint/breakpoint 

operations [3]. Such as, breakpoint/watchpoint messages.  

 Program trace message: This type of message is commonly used in 

multi-core systems. It has capability to detect and signal program 

trace errors. 

 Data trace message: This type of message is used for tracing data 

addresses and values. The Data Trace feature defines a standard 

protocol for data trace visibility of accesses to vendor-defined 

internal peripheral and memory locations. 

 Memory Access message: Non-intrusive access to internal memory 

blocks [3]. 

The Nexus Trace Messages can also be divided into two types, both 

Public Messages and Vendor-defined Messages. The format and meaning of 

Public Messages are defined by the specification of Nexus Standard. The 

Vendor-defined Messages are defined by the target processor vendor. In this 

thesis, Ericsson uses the class 4 of Nexus standard. It includes both Nexus 

public messages (like, data trace message, program trace message, and 

ownership trace message) and Ericsson’s own defined trace messages. 

1.2. Thesis Motivations 

Collecting execution traces of system programs become an important 

task for debugging and testing embedded systems. The traditional method of 

collecting trace data is intrusive and time-consuming, which cannot meet 

the usage requirements of real-time embedded systems. Especially, in multi-

core systems, the traditional method can cause timing requirements 

violations. 

Recognizing these issues, many vendors have developed modules with 

tracing capabilities and integrated them into their embedded platforms in 

order to improve debugging and testing efficiency, e.g., ARM’s Embedded 

Trace Macrocell, MIPS’s PDTrace [3].  

In order to improve the debugging capability of the debug software, a 

dynamic real-time trace debug block has been implemented in Ericsson’s 

ASIC platform also. The debug block provides a way to enable both 

traditional static target debugging but also enable non-intrusive real-time 
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target debugging while the system is up and running.  The debug block can 

collect all different kinds of trace messages, which are sent out from the 

DSPs in Ericsson’s platform. With these messages the software tools can 

recreate the complete program-flow, a better observability and 

controllability are achieved in the chip through using the debug block [5].   

However, the main problem with hardware tracing is the extremely 

large trace data that need to be collected. For example, a processor running 

at 1GHz produces gigabytes trace information for just one second of 

execution time [3]. Storing and analyzing such huge amounts of data results 

in expensive hardware and requires a very large on-chip buffer. 

Furthermore, transferring the trace data in real-time requires wide trace 

ports.  To meet such requirements would significantly increase the system 

complexity and cost. Therefore, reducing the trace data becomes a necessary 

and high valuable technique. 

The target of this thesis is to design a hardware compressor, to reduce 

the requirements of large on-chip trace buffers and wider trace ports for the 

embedded system with high complexity such as Ericsson’s ASIC platform. 

1.3. Thesis Objectives 

The main objective of this dissertation is to design a real-time lossless 

compressor optimized to the trace messages. In the Ericsson platform, the 

trace data messages are sent from several DSPs and received by the debug 

block. 

The specific requirements of this compressor proposed by Ericsson are 

as following. 

 Compression ratio: 2 to 5. (CR=
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 𝑠𝑖𝑧𝑒

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑑𝑎𝑡𝑎 𝑠𝑖𝑧𝑒
) 

 Compression speed:  16bits/clock to 64bits/clock. 

 Lossless Compression 

 Real-time Compression 

To achieve this objective, a real-time trace data compressor that can get 

a balance with acceptable compression ratio and low hardware cost is 

designed. 

1.4. Thesis Organization 

The remainder of this thesis is organized as follows: Chapter 2 presents 

the background for the compression algorithms. Chapter 3 presents the work 
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principle and selection reason of the selected compression algorithm, and 

the results of parameter simulation. Chapter 4 presents the architecture of 

the system design and explaining internal modules in detail. In addition, the 

test results are shown in this Chapter. Chapter 5 summarizes this thesis 

work and presents the potential directions of the future work of this thesis. 
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CHAPTER 2 

2. Background of Compression Algorithms 

For proposing an efficient compression algorithm optimized to the 

Nexus trace data, this chapter outlines the background study based on the 

compression algorithms.  

Data compression is a process of encoding data with fewer bits through 

removing the redundancies found in the input data stream. The more 

redundancies are found, the better compression ratio can be achieved. 

Regarding the Nexus trace data messages, there are two types of 

compression methods to extract the redundancies. One is general-purpose 

compression methods, and the other one is special-purpose compression 

methods.  

In Section 2.1, the general-purpose compression algorithms´ principles 

and operations are described. The specialized techniques and approaches of 

special-purpose compression are discussed in Section 2.2. 

2.1. General-Purpose Compression Algorithms 

General-purpose compression algorithms are generally classified into 

two categories, lossless compression algorithms and lossy compression 

algorithms. Lossy compression algorithms can achieve much better 

compression ratio with the sacrifice of losing part of original information. 

However, lossless compression algorithms can recover all the information 

compared to lossy compression algorithms. 

2.1.1.   Lossy Compression 

In lossy compression, only approximation information can be recovered 

when the compressed data is decompressed, which means the retrieved data 

is not identical to the original data. Hence the results of lossy compression 

can be used only in some special applications. 

Lossy compression is usually applied to the transmission and storage of 

images, audio, and video where some finer details of that information can be 

thrown away during the compression process and the introduced distortion 

in original information can be acceptable when uncompressed such data.  In 

these applications, the difference between the recovered data and the 

original data can be omitted to the human ears or eyes considering the 
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idiosyncrasies of human anatomy. For example, the human eyes and ears 

can see and hear only certain frequencies of lights and sounds. 

In contrast to lossless compression algorithms, the advantage of lossy 

compression algorithms is a significant improvement to the compression 

ratio with accepted distortions which can meet the requirements of the 

applications. Some lossy methods and their applications are summarized in 

the table 2.1 [6]. 

TABLE 2.1.  LOSSY COMPRESSION METHODS. 

Application Image Audio Video 

Compression methods 

Fractal compression AAC H.261 

JPEG ADPCM H.263 

Dolby ATRAC MNG 

Wavelet compression MP2 MPEG-1 

 MP3 MPEG-2 

 HILN MPEG-4 

 WMA Motion JPEG 

2.1.2.   Lossless Compression 

Lossless compression allows the original data to be exactly recovered 

from their compressed form. Lossless compressions are usually used in the 

applications where losing a single bit cannot be accepted, such as text files, 

archival storage database, which mostly contain vital information, and some 

special classes of images like medical imaging, fingerprint data, and 

astronomical images. Considering the importance of trace data integrity, this 

thesis will only focus on the lossless compression algorithms  

The lossless compression can be broadly classified into three types – 

dictionary based compression, statistical compression, and combinational 

compression. Combinational compression algorithms are commonly the 

combination of dictionary based compression algorithms and statistical 

compression algorithms. Usually a combinational compressor can achieve 

better compression ratio than both dictionary-based compressor and 

statistical compressor. However, the calculation complexity of 

combinational compression algorithms is higher.  
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2.1.2.1 History of Lossless Compression 

With the widely use of computer science and Internet technology, data 

compression has started to play a significant role since 1970s. The earliest 

compression technique is Morse code, which was invented in 1838. Modern 

work on data compression began in the late 1940s with the development of 

information theory [7].  

In 1949, Claude Shannon and Robert Fano invented Shannon-Fano 

coding. The algorithm of Shannon-Fano coding assigns shorter codes to 

symbols, which have more occurring probability. In 1951, David Huffman 

invented Huffman coding, which is a more efficient coding method than 

Shannon-Fano coding. In statistical algorithms, Huffman coding is widely 

used considering the computation complexity of arithmetic coding 

algorithms.  

In 1977, the first dictionary based compression algorithm LZ77 was 

published by Abraham Lempel and Jacob Ziv [8]. Typically, LZ77 uses a 

sliding window to compress data. In 1978, another dictionary based 

algorithm LZ78 was published by Abraham Lempel and Jacob Ziv [9]. 

Unlike LZ77, LZ78 uses whole input symbols as the dictionary to parse the 

input data. 

Both the LZ77 and LZ78 algorithms grew rapidly in popularity and 

have lots of variation algorithms. Most of the commonly used algorithms, 

such as, LZSS, LZO, and LZ4, shown in the Fig 2.1, are derived from the 

LZ77 algorithm and LZ78 algorithm [10]. Among them, Lempel-Ziv-Welch 

algorithm, which was created in 1984 by Terry Welch, is the most used 

compression algorithm in LZ78 family. LZSS algorithm is the 

representative algorithm in LZ77 family. 

In combinational algorithms family, Bzip2, Deflate, and LZMA are the 

most popular used algorithms in data compression applications. In 1993, 

Phil Katz invented Deflate algorithm, which belongs to a combinational 

compression algorithm, is the combination of LZ77 algorithm and Huffman 

algorithm [11]. Bzip2 is developed in 1996 and maintained by Julian 

Seward [11].  

The whole classification of lossless algorithms is shown in Fig. 2.1. 
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Fig. 2.1.  Data Compression Classification Chart. 
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2.1.2.2 Dictionary Based Compression 

The main idea of dictionary based algorithms is to replace repeated 

symbols with shorter codes, thus it is also called as substitution codes. In 

these methods, the dictionary, which is built during the compression 

process, contains a set of input strings appeared in the past. The principle of 

dictionary based algorithm is to find the match in the strings contained in 

the dictionary and to replace the match by shorter code words.  

In these techniques, no prior knowledge or statistical characteristics of 

the data being compressed are required. The compression speed is faster 

compared to statistical methods since several symbols can be encoded at a 

time. 

The dictionary based techniques can be static, dynamic or adaptive. The 

approach using the static dictionary is most often used when input strings 

are determined before coding begins and do not change in the whole 

compression process. As the most popular scheme of dictionary based 

algorithm, the dictionaries of Lempel and Ziv algorithms are adaptive or 

dynamic. LZ77 and LZ78 are the two most basic Lempel and Ziv 

algorithms. All others are the variants of LZ77 or LZ78, such as LZSS, 

LZW, LZR, LZT and LZJ etc. The difference between LZ77 and LZ78 is 

the method of building the dictionary. LZ77 uses part of the input symbols 

to set up the dictionary, however, LZ78 uses whole input symbols to set up 

the dictionary. In this part, LZ77 and LZ78 will be discussed. 

2.1.2.2.1 LZ77 Algorithm 

LZ77 algorithm is based on a sliding window. The sliding window is 

divided into two parts. The left part is called as search buffer or dictionary, 

which includes the symbols that have been input and encoded recently. The 

right part is called as look-ahead buffer, which includes the symbols needed 

to be encoded. The length of the search buffer is equal to the dictionary size. 

The length of the look-ahead buffer is equal to the value of the maximum 

length of the identical symbols. During the compression, the dictionary will 

be changed dynamically with the movement of sliding window. 

The compressed result is represented as (distance, length, next symbol). 

Distance indicates the offset from the start of the match symbols found in 

the sliding window to the current symbol. Length indicates the length of the 

match symbols. Next symbol indicates that a new phrase was found [10].  

Take an example, in Fig. 2.2, we assume that the new input text is “sir 

sid eastman”. The encoder scans the search buffer from right to left to find a 

match for the first symbol “s” in the look-ahead buffer. The search buffer is 
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empty at the beginning and there is no symbol stored in the search buffer, 

thus no match can be found in the search buffer. The output is (0, 0, s). The 

sliding window is shifted one position to the right. When the second 

symbols “si” are the input, the same symbols can be found in the dictionary, 

and the output is (4, 2, d). The window is then shifted to the right two 

positions. The encoder continues encoding the symbol until all the symbols 

are shifted from the look-ahead buffer to the search buffer. 

 
Search Buffer Look-ahead Buffer Output 

 sir_ sid_eastman_ (0,0,s) 

s irk_ sid_eastman_ (0,0,i) 

si r_ sid_eastman_ (0,0,r) 

sir _ sid_eastman_ (0,0,_) 

sir_ sid_eastman_ (4,2,d) 
     

Fig. 2.2.  Example of LZ77 Compression Algorithm. 

The pseudo code of LZ77 compression algorithms is shown in Fig. 2.3 

[12]. 

 
LZ77 Compression Algorithm 

  1: while look-ahead buffer is not empty do 

  2:    go backwards in search buffer to find longest match of the look-ahead buffer 

  3:    if match found  then 

  4:      print: (offset from window boundary ;) 

  5:      print: (length of match;) 

  6:      print: (next symbol in look ahead buffer ;) 

  7:      shift window by length + 1; 

  8:    else 

  9:      print: (0, 0, first symbol in look-ahead buffer); 

10:      shift window by 1; 

11:    end if 

12: end while 

Fig. 2.3.  Pseudo of LZ77 Compression Algorithm. 

2.1.2.2.2  LZ78 Algorithm 

  Instead of using a sliding window as used by LZ77, the dictionary of 

LZ78 contains all the previous symbols, which have been compressed. The 

outputs are two-field tokens (index, next symbol). Every input symbol is 

added into the dictionary after it has been compressed. Nothing is ever 

deleted from the dictionary during the whole encoded process. The 

dictionary starts with the null string at position zero. As symbols are input 
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and encoded, strings are added to the dictionary at positions 1, 2, and so on 

[11].   

Take an example, in Fig. 2.4, we assume that the new input text is “sir 

sid eastman”. The encoder searches the dictionary for an entry with the first 

input symbol “s”. There is no matched entry, the output is (0, s). The 

symbol “s” is added to the dictionary with the entry number 1. When the 

second symbols “si” is input, the dictionary is searched for an entry 

containing the two-symbol string “si”. If no match can be found, the string 

“si” is added to the next available position in the dictionary with entry 

number 5. The token (1, i) is output. The process continues until the end of 

the input stream is reached [11]. 

 
Dictionary Index Dictionary Content Input Output 

0 Null   

1 S sir_ sid_ eastman (0,s) 

2 I ir_sid_ eastman (0,i) 

3 R r_ sid_ eastman (0,r) 

4 _ _ sid_ eastman (0,_) 

5 Si sid_ eastman (1,i) 

6 D d_ eastman (0,d) 

7 _e _ eastman (4,e) 

Fig. 2.4.  Example of LZ78 Compression Algorithm. 

The pseudo code of LZ78 compression algorithms is shown in Fig. 2.5. 

 

LZ78 Compression Algorithm 

  1: while input stream is not end do 

  2:    go backwards in dictionary to find the index with match of the input symbol 

  3:    if match found  then 

  4:      print: (index) 

  5:      print: (next symbol in input stream ;) 

  7:      read the next symbol; 

  8:    else 

  9:      print: (0, symbol); 

10:      read the next symbol; 

11:    end if 

12: end while 

Fig. 2.5.  Pseudo of LZ78 Compression Algorithm. 
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2.1.2.3 Statistical Compression 

The main idea of statistical algorithms is to assign values to events 

depending on their occurring probability. Specifically, the data with higher 

occurring probability is represented by shorter code words.  

Generally in these techniques, either Huffman coding or Arithmetic 

coding needs prior knowledge or statistical characteristics of the data being 

compressed. A pre-scanning of the real data before coding is needed in 

order to get a code word table, which contains the mapping information 

between the real data and the code words for coding. 

There are two ways to eliminate the pre-scan procedure to adapt the 

requirements of real-time applications. The first method, Static Huffman 

coding or Static Arithmetic coding, is to use a known or default code word 

table for encoding [13]. The second method, Adaptive Huffman coding or 

Adaptive Arithmetic coding, is to use an encoding tree, which is adaptively 

constructed and maintained at sender as well as receiver side [13]. 

The most famous statistical algorithms are Huffman coding and 

Arithmetic coding. In this part, both Huffman coding and Arithmetic coding 

will be discussed. 

2.1.2.3.1 Huffman Coding 

In order to compress a string of symbols, Huffman coding is based on 

representing the symbols that have high occurrence probabilities with 

shorter code words and assigning longer code words to symbols that have 

low occurrence probabilities. 

Huffman coding technique can be static or dynamic (adaptive). Static 

Huffman coding uses a look-up table that stores the pre-defined frequency 

for each symbol. Dynamic Huffman coding calculates the frequency of 

every symbol according to the real occurring frequency. 

Huffman Coding algorithm basically builds a binary tree. The leaves 

represent the symbols of the input file. The code length for these symbols 

equals their depth in the tree (that is, their distance to the root node) [12]. 

Once the symbol frequency has been determined, the two elements with the 

lowest frequency are selected and inserted as leaves of a node with two 

branches. The sum of these two elements’ frequency becomes the frequency 

for a new node. The algorithm selects another two new elements with the 

lowest frequency in the left elements and inserts them in the tree. A 

Huffman tree is completed until the root node having a 100% frequency. 

The procedure of the Huffman tree generation is shown in Fig. 2.6 [10]. 
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Huffman Coding Algorithm 

  1: Parse the input, counting the occurrence of each symbol. 

  2: Determine the probability of each symbol using the symbol count. 

  3: Sort the symbols by probability, with the most probable first. 

  4: Generate leaf nodes for each symbol, including P, and add them to a queue. 

  5: While (Nodes in Queue > 1) 

        Remove the two lowest probability nodes from the queue. 

        Prepend 0 and 1 to the left and right nodes' codes, respectively. 

        Create a new node with value equal to the sum of the nodes’ probability. 

Assign the first node to the left branch and the second node to the right branch. 

        Add the node to the queue 

  6: The last node remaining in the queue is the root of the Huffman tree. 

Fig. 2.6.  Huffman Coding Algorithm. 

2.1.2.3.2 Arithmetic Coding 

Arithmetic coding was developed by IBM Company in 1979. 

Arithmetic coding is one of the most optimal entropy coding techniques if 

the objective is the best compression ratio [10]. However, its complexity is 

the most complicated. 

Arithmetic coding can achieve better compression ratio compared with 

Huffman coding. It is because Arithmetic coding uses fractional bits for its 

code words, while Huffman coding uses an integral number of bits. Thus the 

efficiency of Arithmetic coding can be made arbitrarily close to the entropy 

or information content by controlling its precision [14]. 

Arithmetic coding transforms the input data into a single rational 

number between 0 and 1[10]. For each symbol, the current interval is 

divided into subintervals. The length of subinterval is proportional to the 

occurring frequencies of the symbol. Then the subinterval of the current 

symbol is chosen again. This procedure is repeated for all symbols from the 

input file. At the end, the compressed result, which is a fixed-point binary 

number, is the output from the final interval.The procedure of Arithmetic 

coding is shown in Fig. 2.7 [10]. 
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Arithmetic Coding Algorithm 

  1: Calculate the number of unique symbols in the input. This number represents              

the base b (e.g. base 2 is binary) of the arithmetic code. 

  2: Assign values from 0 to b to each unique symbol in the order they appear. 

  3: Using the values from step 2, replace the symbols in the input with their codes. 

  4: Convert the result from step 3 from base b to a sufficiently long fixed-point    

binary number to preserve precision. 

  5: Record the length of the input string somewhere in the result as it is needed for 

decoding. 

   Fig. 2.7.  Arithmetic Coding Algorithm 

2.1.2.4 Combinational Compression Algorithm 

Combinational compression algorithms are normally based on the 

combination of dictionary based algorithm and statistical algorithm. In 

combinational compression algorithm, Gzip, Bzip2, and LZMA are three of 

the most widely used algorithms. Among them, Gzip and LZMA are the 

combination of statistical algorithm and dictionary based algorithm. Bzip2 

is a combination of Burrows-Wheeler Transformation (BWT) and Huffman 

coding. In Table 2.2, the constitutions of these three algorithms are shown. 

TABLE 2.2.  CONSTITUTIONS OF COMBINATIONAL ALGORITHM. 

Algorithm Algorithm Constitution 

Gzip 
 LZ77 

 Huffman coding 

LZMA 
 LZ77 

 Arithmetic coding 

Bzip2 

 Run-length encoding 

 Burrows-Wheeler transform 

 Move to front transform 

 Huffman coding 

    

Normally, a combinational compressor could achieve a better 

compression ratio than a dictionary based compressor or a statistical 

compressor. However, the calculation complexity is higher and this 

conclusion could also apply to Nexus trace data based on the experimental 

result.  
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2.2.  Special-Purpose Compression Algorithms 

Besides general-purpose compression algorithms, there are some 

researches on specialized compression algorithms focusing on Nexus trace 

data. These compression mechanisms are typically used to compress 

program trace message or address trace message. In this part, some 

specialized algorithms are introduced briefly. 

 Instruction compression 

For instruction compression, a technique named Packed Differential 

Instruction (PDI) [2] is proposed. Instruction compression is used to 

compress the special trace messages, which contain instruction execution 

information.  The PDI technique divides the instructions into frequently 

used instructions and unfrequently used instructions and uses a type of 

dictionary based algorithm to compress the frequently used instructions. 

 Address compression 

For address compression, several techniques exist to exploit the 

redundancies for address compression. Address compression is used to 

compress the address trace messages, which include data address and 

instruction address. Mache [15] replaces a data address with an offset, 

which is the difference between the last same type address and the current 

address. Packed Differential Address and Time Stamp (PDATS) have the 

same function as Mache. PDATS [2] converts the absolute addresses and 

time stamps into address offsets and time offsets. However PDATS is more 

complex than Mache, as it introduces variable length encoding of the offset. 

That means using the minimum number of bytes to encode address and time 

stamp offsets. Stream-based Compression (SBC) [16] relies on extracting 

instruction streams. A stream table is needed to keep relevant information 

about streams. Using indexes in the stream table replaces the whole stream. 

Value Prediction-based Compression (VPC) uses an address predictor, 

which is a cache like structure to store recently executed data addresses. The 

compression is achieved by replacing a data address with an identifier, 

which points to the cache entry. The cache entry stores the correctly 

predicted address.  

In most applications, in order to yield excellent compression ratio, 

special-purpose algorithms normally work together with general-purpose 

algorithms. 
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CHAPTER 3 

3. Compression Algorithm Selection 

3.1. Algorithm Selection 

Selecting a suitable compression algorithm among so many and 

different algorithms is not an easy thing. While one algorithm can achieve 

good compression ratio, the other can be with high throughput and another 

may require less hardware cost. Hence selecting an algorithm is a trade-off 

process. 

According to the thesis requirements, the three key performances, 

compression ratio (CR), throughput rate, and hardware cost, need to be 

considered in high priority when the compression algorithms are selected. 

In this thesis, the basic selection rules of the lossless data compression 

algorithms are as following: Firstly, the compressor must meet the real-time 

requirement. The operation time of data compression cannot be larger than 

the input rate of trace data. Secondly, the hardware cost of the data 

compressor should be low enough and the high compression ratio can be 

achieved [1]. Thirdly, the compressor should be optimized for the 

characteristics of the compressed data.  

3.1.1.  General Algorithm vs. Special Algorithm 

General-purpose compression algorithms are chosen in this thesis 

project. Selecting general-purpose compression algorithms is mainly based 

on the three below reasons. 

First of all, the characteristics of the trace data used in this thesis are 

considered. In the application of this thesis, Ericsson adopts high level of 

the Nexus trace class. There are more than 15 types of Nexus trace 

messages. That means the employed compression algorithm need to perform 

stably for all kinds of trace messages, not just for one or several types of 

them, such as program trace message, data trace message, etc. However, the 

modern special-purpose compression algorithms mainly focus on one 

specific type of trace messages, such as program trace message or address 

trace message. Thus choosing special-purpose algorithms and designing 

different compressor for each different trace message will lead to a high 

hardware cost and a high compression ratio in return. Considering the high 
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priority of hardware cost in this thesis, using a general-purpose algorithm is 

a more reasonable approach. 

Secondly, many specialized methods are not suitable for real-time trace 

compression. Special-purpose techniques could be categorized into two 

types: software-based and hardware-based.  Most software-based 

algorithms, such as PDAT, Mache, PDI, are not single-pass mechanisms, 

they need to collect and save the source data firstly and then compress the 

data. Hence the compression algorithms might not be fast enough to keep up 

with the trace generation rate in hardware [1]. The hardware-based 

algorithms are usually complex and with low throughput.  

Lastly, in order to achieve a better compression ratio, most of the 

special-purpose algorithms still need to work with another or several 

general-purpose algorithms, such as, PDI work together with LZ77 in [2]; 

value predictor combines with Bzip2 in [18]; SBC need add Gzip in [16]. 

Such approaches would be cost-prohibitive or infeasible for real-time 

compression in hardware [19]. Moreover, specialized compression 

algorithms normally do not support an open license, which is not preferred 

by this application. 

Thus a general-purpose algorithm is a better choice for this application. 

3.1.2. Dictionary-Based vs. Statistical vs. Combinational 

In this thesis, dictionary-based compression algorithms are selected 

based on the following four requirements.  

The first requirement is the real-time compression. According to the 

introduction of compression algorithms in section 2.1.2.3, static coding of 

statistical algorithms use a known or default code word table for encoding. 

The code word table stores a pre-defined frequency for each symbol of the 

input file. When the input symbols’ distribution fits the expected 

distribution stored in the static table, the static coding scheme can be 

effective. However, if the input symbols do not match well with the stored 

statistics, a poor compression result would be generated. It is possible that 

output files are larger than input files. In this application, however, the 

frequency distribution of Nexus trace data changes often and it is impossible 

to know and store the distribution of every trace message in advance. 

Therefore, static coding of statistical algorithms cannot be used in real-time 

compression.  

The other three key requirements are compression speed, compression 

ratio and area overhead. These three requirements are related and affect 

each other. A traded-off is thus needed. The algorithm with higher 



24 
 

compression ratio normally has higher complexity than the algorithm with 

lower compression ratio. A complex algorithm means extra hardware cost 

and slower compression speed. Therefore, the process of selecting a suitable 

algorithm is a process to trade-off these three requirements. 

Considering the requirements of this thesis, the design target is to 

implement a compressor, which can provide fast compression speed and use 

less area overhead with an acceptable compression ratio. In order to choose 

a suitable algorithm from the three types of compression algorithms, some 

test results of different types of data compressors processing the Nexus trace 

data are shown in the below.  

3.1.2.1 Evaluation Method 

 Original file with trace data 

All original files include Nexus trace data generated by DSPs in 

Ericsson hardware platform. 

 Timing measurement 

All timing measurements refer to the sum of the user and the system 

time reported by UNIX shell command time. In other words, only the CPU 

time are reported and ignore any idle time such as waiting for disk 

operations [18]. 

 Compression ratio measurement 

Compression ratio is a metric to measure the efficiency of compression 

algorithms. The definition of the compression ratio is shown in equation1. 

The algorithm with a higher compression ratio means the algorithm has a 

better compression.  

Compression Ratio = 
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑇𝑟𝑎𝑐𝑒 𝐹𝑖𝑙𝑒 𝑆𝑖𝑧𝑒

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑇𝑟𝑎𝑐𝑒 𝐹𝑖𝑙𝑒 𝑆𝑖𝑧𝑒
       (1) 

 Compressor 

All these compressors proposed in the following are implemented in 

software. 

Compressor using dictionary based algorithms: 

(1) LZ77 algorithm compressor: LZ4. 

(2) LZ78 algorithm compressor: LZW.  

Compressor using statistical algorithms: Dynamic Huffman coding.  

Compressor using combinational algorithms: Bzip2, LZMA. 
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 Compressor Performance Setting 

All compressors use the “-fast” option. In order to obtain the best 

compression performance, the dictionary size is increased to the maximum 

size allowed in each compressor. 

3.1.2.2 Evaluation Results 

Fig. 3.1 shows the average compression ratio of the compressors, when 

the Nexus trace data is compressed. Fig. 3.2 depicts the average 

compression speed of compressors processing the Nexus trace data. In Fig. 

3.1, the combinational algorithms (Bzip2 and LZMA) deliver the best 

compression ratio. The difference of compression ratio between dictionary 

based algorithms (LZ4 and LZW) and statistical algorithms (Huffman 

coding) is not significant. However, the advantage of using complex 

algorithms to get an excellent compression ratio results in low compression 

speeds.  In Fig. 3.2, the results show that combinational algorithms (Bzip2 

and LZMA) need most compression time. The processing time of statistical 

algorithms (Huffman coding) is more than those of dictionary based 

algorithms (LZ4 and LZW).  

  

 

Fig. 3.1.  Average compression ratio for Nexus trace data. 
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Fig. 3.2.  Average compression ratio for Nexus trace data. 

Comparing the compression speed of the compressors in term of 

execution time is not definitive. A comparison about average complexity of 

the compressors is preferred. In this part, the complexity of LZ4 and the 

complexity of Dynamic Huffman coding are compared. Since both LZ4 

algorithm and Dynamic Huffman coding algorithm have lower complexities 

compared with other dictionary based and dynamic statistical algorithms. 

In order to compress data, dynamic Huffman coding uses a code word 

table, which is adaptively constructed and maintained. Maintaining and 

reconstructing the table is the most time consuming process for Dynamic 

Huffman coding. Dynamic Huffman requires O(n) time step for maintaining 

the code table, compared with O(n2logn) steps for reconstructing a new one 

[20]. Hence, Dynamic Huffman coding has not been available for high-

speed applications because the maintaining and reconstructing is time-

consuming. In contrast with Dynamic Huffman coding, searching the 

longest match string is the most time-consuming step of a LZ4 compressor 

and forms the bottleneck of the performance. The average time complexity 

of the searching step is O(1) [21]. The complexity of combinational 

algorithms must be higher than other types of algorithms since the 

algorithms are a combination of statistical algorithms and dictionary based 

algorithms. Therefore, it is possible for dictionary-based algorithm to 

achieve high throughput.  

Hardware implementations of the three types of lossless algorithms 

have been reported in some literatures [14], [20], [22], [23], [24], [25], and 

[26]. In table 3.1, throughput and hardware cost reported in these 

applications are listed. For both combinational compressors (Gzip, Bzip2, 

and LZMA) and statistical compressors (dynamic Huffman coding), it is 

difficult to achieve a high throughput due to their complex algorithms. The 
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throughput of Huffman coding is around 0.5 bits/clock cycle, which are 

quite much lower than the thesis requirement. Moreover, the high 

complexity of the combinational compressors (Gzip, Bzip2, and LZMA) 

and statistical compressors (dynamic Huffman coding) is more hardware 

area consuming. For example, the hardware implementation of LZMA 

needs a 1.7M bit dual-port RAM and 120k gates. However, the dictionary 

based compressors can achieve high throughputs with low hardware cost. 

For example, the throughput of LZW can achieve 14 bits/clock cycle, at the 

same time, the hardware area is lower compared with the area overhead of 

combinational and statistical algorithms. 

TABLE 3.1.  HARDWARE IMPLEMENTATION OF COMPRESSOR. 

Algorithm Processor Complexity 
Throughput 

(bit/clock) 
Reference 

  
RAM 
bits 

Equivalent 
Gates  

  

LZ77 

AHA3521 

(40MHz) 

Not 

Stated 
Not Stated 4 [14] 

Spartan II XC200 
Xilinx FPGA 

36k 27K Not Stated [22] 

LZW 

Virtex II 

XC2V250-6fg456 

Xilinx FPGA 
(50MHz) 

140k 

dual-port 
24K 14 [23] 

Dynamic 

Huffman 
ASIC 4.5K 17.7K 0.5 [20] 

Gzip 
ASIC (IP core) 1.1M 250K 8 [24] 

ASIC (IP core) 1.1M 610K 8 [24] 

Bzip2 

Stratix II 

EP2S180F1020C3 
3.3M 162K 1.5 [25] 

Stratix II 

EP2S180F1020C3 
58.4M 1575K 1.5 [25] 

LZMA 

Virtex 5 

XC5VFX70T 
Xilinx FPGA 

(100MHz) 

1.7M 
dual-port 

120K max4 [26] 

 

Based on the above analysis, it is clear that an implementation of a 

statistical compressor in hardware is not an attractive design selection. It 

would be cost-prohibitive in terms of on-chip area and would be low in 

respect to throughput. Moreover, the compression ratio of a statistical 

compressor is lower than others. In Fig. 3.1, the compression ratio of 

Dynamic Huffman coding is the lowest. Actually, the implementation of 

compression is mainly depended on finding and reducing redundancy.  

Nevertheless, statistical algorithms have not this function. They are 

commonly used to optimize the compression ratio. Hence, statistical 
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algorithms usually work together with dictionary based algorithms or the 

other types of algorithms. Such as, in the application of Gzip, Huffman 

coding is used to improve the compression result of the compression of 

LZ77. For combinational algorithms, the complex algorithms produce the 

best compression ratio but introduce huge area overhead. In addition, the 

hardware realization of combinational models are quite complex for 

achieving high throughputs. On the other hand, dictionary based algorithms 

introduce acceptable area overhead and high throughput but sacrifice the 

compression efficiency [27]. 

In general, according to the requirements of this thesis, a dictionary 

based algorithm will be the best choice based on the following facts. 1) A 

dictionary based compressor does not require prior knowledge or statistical 

information of the symbols. Hence it can be in real-time. 2) A dictionary 

based compression has low complexity and can achieve high throughput 

with small hardware area and an acceptable compression ratio. 

3.1.3. LZ77 vs. LZ78 

Dictionary based algorithms have two basic categories, LZ77 and LZ78. 

In this section, the selection between LZ77 and LZ78 is discussed. The 

comparison is performed in two aspects, complexity and compression ratio.         

3.1.3.1 Compression Ratio 

Fig. 3.3 depicts the compression ratio of LZ77 and LZ78 algorithms 

compressing Nexus trace data files. The result shows that LZ77 algorithm 

outperforms LZ78 algorithm for smaller volumes of input data, which 

typically characterize Nexus trace data. When the dictionary size is 512 

bytes, the compression ratio of LZ77 is 1.64, which is better than the 

compression ratio 1.29 of LZ78. LZ78 algorithm performs effectively on 

large volumes of trace data. When the dictionary size is larger than 16M 

bytes, the compression ratio of LZ78 exceeds the compression ratio of LZ77.  

In addition, according to the work principle of LZ77 and LZ78, the smallest 

dictionary size needs to be 512 bytes for LZ78 compressor. Conversely, 

LZ77 can use 256 bytes dictionary. Therefore, LZ77 is more suitable to 

compress Nexus trace data for small hardware area consuming. 
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Fig. 3.3.  Compression ratio of LZ77 and LZ78. 

3.1.3.2 Complexity 

Table 3.2 shows the average time complexity of LZ77 and LZ78 

algorithms. The compression speed for both LZ78 and LZ77 algorithms 

depend on finding the maximum matching strings from the dictionary.  For 

LZ77 algorithm, a hash table is used to find the match strings. LZ78 uses 

trie data structure to achieve matching strings [11]. The complexity of LZ77 

is O(1), in contrast, the complexity of LZ78 is O(n) [28]. Hence LZ78 is 

more complex than LZ77, which is supported by the result of compression 

time in Fig. 3.4. In Fig. 3.4, LZ78 take more time to compress the same 

amount of data. Therefore, it is more likely to achieve high throughput with 

small area overhead using the LZ77 algorithm. 

TABLE 3.2.  COMPLEXITIES OF LZ77 AND LZ78. 

Algorithm Data Structure Time Complexity(average) 

LZ77 Hash Table O(1) 

LZ78 Trie O(n) 
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Fig. 3.4.  Compression time of LZ77 and LZ78. 

3.1.3.3 Scalability 

Using LZ77 algorithm is more convenient to achieve a complex 

compressor. Most of combinational algorithms are a combination of LZ77 

and a statistical algorithm. For example, Gzip compressor is the 

combination of LZ77 and Huffman coding; LZMA compressor is the 

combination of LZ77 and arithmetic coding. 

In a conclusion, LZ77 could be a good choice for Nexus trace data. In 

the following section, LZ77 algorithm and its implementation are discussed. 

3.2. LZ77 Algorithm 

The LZ77 algorithm was proposed by Ziv and Lempel in 1977[8]. It is a 

dictionary based compression algorithm and does not require prior 

knowledge or statistical characteristics of the symbols. This character makes 

the LZ77 algorithm suitable for real-time compression.  

The compression idea behind the LZ77 algorithm is to find a match 

string in a dictionary and replace the same string by a triplet (distance, 

length, next symbol). The third component “next symbol” is needed in cases 

where no string has been matched. However, the compression performance 

of LZ77 will be reduced when the third component is a part of every triplet.  

 In this thesis, a variation of the LZ77 algorithm used in Deflate 

algorithm is implemented. The algorithm eliminates the third component 

“next symbol” and writes a pair (distance, length) on the compressed stream 

[11]. Distance indicates the offset from the start of the match symbols found 
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in the sliding window to the current symbol. Length indicates the length of 

the match symbols. When no match is found, the compressed output is (0, 

literal). When a match is found, the compressed output is (1, distance, 

length).  

Considering that the available memory is limited, LZ77 algorithm uses 

a sliding window. The window can be divided into two buffers, one is the 

searching buffer, called dictionary, containing N symbols. The dictionary 

maintains the strings used recently. The other is the coding buffer, called 

look-ahead buffer, containing M symbols. The look-ahead buffer contains 

the symbols to be processed. 

The LZ77 processes data from left to right, inserting every string into 

the dictionary and outputting the compressed results. Data compression is 

achieved by performing four steps. 

The first step is to initialize the dictionary and the look-ahead buffer. 

The dictionary is filled with zeros and the look-ahead buffer is filled with 

the input strings. 

The second step is to search the dictionary and find the longest match 

Lmax for a string in the look-ahead buffer. Finding the longest match string is 

a key and the most time-consuming operation in the algorithm. The 

approach to find the maximum matching string is based on a hash table 

structure. 

The third step is to output the compressed results. If a match string 

cannot be found in the dictionary, the output is a literal, (0, literal). If a 

match is found, the output is a distance-length pair, (1, distance, length). 

The value of distance is the distance from the current string to the start of 

the matching string, the value of length is the match length.  

The last step is to insert the processed symbols into the dictionary and 

input new symbols into the look-ahead buffer. If a match is found, Lmax new 

symbols are placed in the look-ahead buffer by left-shifting the symbols in 

both the look-ahead buffer and the dictionary.  

An example is described to illustrate the compression algorithm. 

Supposing the input sequence is “aacaacabcabac”. (Dictionary size N = 6 

bytes, Look-ahead Buffer size M=4 bytes, min match length=2 bytes, max 

match length Lmax=4 bytes). The compression procedure is shown in Fig. 3.5. 
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a a c a a c d b c a b A c   Output 

 

 

a a c a a c d b c a b A c   (0,a) 

 

a a c a a c d b c a b A c   (0,a) 

 

a a c a a c d b c a b A c   (0,c) 

 

a a c a a c d b c a b A c   (1,3,3) 

 

a a c a a c d b c a b A c   (0,d) 

 

 Dictionary(size=6)   Longest match 

  

    Buffer(size=4)  Next Character 

 

Fig. 3.5.  Example of LZ77 compression. 

In the beginning, the dictionary is empty. The look-ahead buffer is filled 

with “aaca”. There is no match symbol found in the dictionary, the output is 

a literal (0, a). The processed symbol “a” is moved in the dictionary with 

index 0. The new input symbol “a” is moved into the look-ahead buffer.  

The process restarts by finding the match symbol in the dictionary.  

There is a match “a” found in the dictionary. However, the match length is 

less than the minimum match length 2 bytes. Therefore, the output is a 

literal (0, a). The processed symbol “a” is moved in the dictionary with 

index 0. The new input symbol “c” is moved into the look-ahead buffer.  

The process restarts. When there is no matching symbol found in the 

dictionary, the output is a literal (0, c). The processed symbol “c” is moved 

Dictionary 

 

Lookahead 

Buffer 
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in the dictionary with index 0. The new input symbol “d” is moved into the 

look-ahead buffer.  

The process starts again. There is now a new matching string found in 

the dictionary. The longest match length is 3 bytes, which is longer than the 

minimum matching length 2 bytes. The distance is 3 from the current 

symbol to the beginning matched symbol. Therefore, the output is a literal, 

(1, 3, 3). 

The compressed steps continue until the end of the input file. 

3.3. LZ77 Algorithm Simulation 

In this section, the simulation results with different values of parameters 

on the LZ77 algorithm performance are presented. The simulation code is 

implemented in C. The performance is evaluated according to the 

simulation results when the Nexus trace data generated from Ericsson’s 

ASIC platform are compressed.  

3.3.1. Parameters Analysis  

In order to optimize the solution, there are three aspects, compression 

ratio, compression speed, and hardware cost, which need to be explored 

when implementing the LZ77 algorithm. There are six parameters affecting 

these three performances. The parameters are dictionary size, look-ahead 

buffer size, hash table size, minimum match length, minimum move length, 

and the length of code word. In this part, an analysis on the influence of 

these parameters on the performances is discussed. 

 Dictionary Size 

The larger the dictionary size is, the more the match symbols can be 

found. Thus the compression ratio can be improved with the increased 

dictionary size. However, the increased dictionary size will slow down the 

compression speed. Because that the increased amount of matching 

iterations make the compressor take more time to search the dictionary and 

find the longest match string. At the same time, the larger dictionary size 

means increasing hardware area. 

 Hash Table Size 

Increasing the hash table size can improve the compression speed, since 

a larger hash table size can reduce the hash collision probability and the 

amount of matching iterations. However, a larger hash table size needs more 

memory space; hence higher hardware cost.  
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 Look-ahead Buffer Size 

The size of look-ahead buffer is the maximum match length, which is an 

input parameter depending on the input file and compression requirements. 

A larger look-ahead buffer brings higher hardware cost. The effect of the 

look-ahead buffer size on the compression ratio and the compression speed 

is related to the characteristic of the input file, which is needed to be 

analyzed through simulation. 

 Minimum Move Length 

Minimum move length means the number of symbols output from the 

look-ahead buffer. Increasing the minimum move length means a decreased 

number of match symbols, namely, a worse compression ratio. Basically, 

there is no effect on the compression speed and hardware cost by increasing 

the minimum move length. 

 Code Word Length 

The compression of LZ77 algorithm is achieved through transforming 

variable length strings into fixed length code word (1, distance, length). 

That means, the more match strings and the longer match strings are found 

and replaced by the code word, the better compression ratio is obtained. At 

the same time, the shorter code word is used, the better compression ratio is 

achieved. Hence the compression efficiency depends on the size of 

compressed result, namely the length of code word (1, distance, length).  

A code word consists of 3 parts, (1, distance, length). The flag part “1” 

needs 1 bit. The value of distance is the offset from the start of the match 

symbols found in the dictionary to the current symbol. Therefore, the 

distance part is determined by the dictionary depth. The range of it is from 1 

to the depth of dictionary minus 1, which needs log2
(dictionary depth) bits. For 

example, if the depth of dictionary is 256, the distance part needs 8 bits to 

represent the range of distance. 

The value of length indicates the length of the match symbol. It is 

determined by the look-ahead buffer size. The maximum length is the length 

of look-ahead buffer. It needs log2
(look-ahead buffer length) bits. For example, if the 

look-ahead buffer size is 8 bytes, the length needs 3 bits to represent the 

range of length. 

 Minimum Match Length 

Minimum match length is the match length, which is allowed to be 

replaced by the code word. The minimum match length depends on the code 

word length. In order to achieve a compression, the minimum match length 
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must be longer than the code word length. Otherwise, the compressed 

Nexus trace file will expand other than shrink. 

For example, in this paper, if the code word length is 10 bits or 11 bits, 

thus the minimum match length must be 16 bits. If the match string is less 

than 2 symbols, we do not replace the match string. Such as, if the match 

string is 8 bits, the file will be expanded if the match string (8 bits) is 

replaced by a code word (10 bits or 11 bits). 

Increasing minimum match length does not affect the compression ratio. 

However, the compression speed will be improved by increasing the 

minimum match length. Since the probability of finding the matching 

strings is reduced through increasing the minimum match length.  

Based on the above analysis, the effects of the parameters on the 

performances are not independent. Such as, increasing the dictionary size 

can improve the compression ratio. However, the compression speed would 

be slow and the hardware cost would be increased. In addition, these 

parameters also interact with each other. Like the dictionary size determines 

the range of code word, the length of code word determines the minimum 

match length. Hence, optimizing the algorithm parameters is necessary to 

trade off the compression performances (compression speed, compression 

ratio) and hardware cost. To find optimized parameters, some simulations 

with different parameters´ values need to be performed. 

3.3.2. Simulation Results 

Simulation with different parameters setting for the performances of the 

LZ77 algorithm is performed using the Nexus trace data. Nexus trace data 

are generated from Ericsson hardware platform. 

1) Dictionary Size & Hash Table Size 

The compression ratio and the compression speed with the different 

dictionary size and hash table size are shown in Fig. 3.6 and Fig. 3.7. The 

range of dictionary size M is from 256 bytes to 32K bytes. The range of 

hash key N is from 8 bits to 15 bits. The hash table size is equal to log2
M*2N 

bits.  

Fig. 3.6 shows that when the dictionary size is the same, increasing the 

hash table size does not effect on the compression ratio. The compression 

ratio increases as the dictionary size increases. Fig. 3.7 shows that the 

compression time increases with the dictionary size. The increased hash 

table size reduces the compression time.  
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Increasing the dictionary size brings a higher compression ratio, 

conversely, the hardware cost and the compression time increases 

exponentially. Considering the high throughput requirement and 

CR=1.5(about 33%) is acceptable, a dictionary size of 256 bytes is a 

reasonable choice for hardware implementation with a good compression 

efficiency. Hash key N of 15 bits could be a better choice to achieve a high 

compression speed. 

 

 

Fig. 3.6.  Compression ratio with different dictionary size and hash table size. 

 

       

Fig. 3.7.  Compression time with different dictionary size and hash table size. 
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2) Look-ahead Buffer Size  

Fig. 3.8 and Fig. 3.9 shows the compression ratio and the compression 

speed how to change with the different dictionary size and look-ahead 

buffer size. 

The size of the look-ahead buffer is equal to the longest match length, 

which is an input parameter of the algorithm. The effect of the look-ahead 

buffer size on the compression ratio and the compression speed is related to 

the characteristic of input file.  

As shown in Fig. 3.8, for different dictionary size, the highest 

compression ratio could be achieved when the look-ahead buffer size is 

equal to 4 bytes. When the dictionary size is 256 bytes, the best 

compression ratio is found when the look-ahead buffer size is from 2 bytes 

to 8 bytes. Fig. 3.9 shows that for a given dictionary size the look-ahead 

buffer size do not impact very much on the compression time as all curves 

are almost flat. 

 

  

Fig. 3.8.  Compression ratio with different dictionary size and  

look-ahead buffer size. 
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Fig. 3.9.  Compression time with different dictionary size  

and look-ahead buffer size. 

3) Minimum match length  

In Fig.3.10, the minimum match length has no impact on the 

compression ratio. In Fig.3.11, the minimum match length slightly affects 

the compression time. The longer the minimum match length is, the shorter 

the compression time is. Hence, the minimum match length of 24 bits is a 

good choice considering the compression speed requirement. 

 

 
Fig. 3.10.  Compression ratio with different hash table size 

 and minimum match length. 
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Fig. 3.11.  Compression time with different hash table size  

and minimum match length. 

 

4) Minimum move length 

In Fig. 3.12, the bigger minimum move length will lead to a lower 

compression ratio. Fig. 3.13 shows that the minimum move length has no 

impact on the compression time. Hence, in order to achieve a better 

compression ratio, minimum move length could be choose as 1 byte. 

 

 

Fig. 3.12.  Compression ratio with different dictionary size 

 and minimum move length. 
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Fig. 3.13.  Compression time with different dictionary size  

and minimum move length. 

According to the above analysis, table 3.3 shows the selected 

compression parameters, which can achieve a good trade-off between 

hardware complexity and application performance requirements.  

TABLE 3.3.  PARAMETERS SELECTION. 

Compression Parameters 

Size(bits) 
Hardware Cost(Bytes) Compression Performance 

Dictionary Size 256*8 Dictionary RAM 256 
Compression 

Ratio 

30% 

(estimated) 

Look-ahead Buffer Size 4*8 
Hash Table1 

RAM 
32K 

Compression 

Throughput 

16bits/cc 

(estimated) 

Minimum Match Length 24 
Hash Table2 

RAM 
256 

Minimum Move Length 8 
  

Hash  Key Width 15 
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CHAPTER 4 

4. LZ77 Hardware Implementation 

This Chapter describes the LZ77 hardware implementation. Section 4.1 

proposes a modified LZ77 algorithm. Section 4.2 provides a structure 

overview of the LZ77 encoder and Section 4.3 gives an in-depth explanation 

of the LZ77 hardware implementation.  

4.1. Optimized LZ77Algorithm 

In this section, based on the characteristic of Nexus trace data, an 

optimized LZ77 algorithm will be discussed. The main aim of optimizing 

the LZ77 algorithm is to improve the compression speed. 

According to the principle of LZ77, the common structure of LZ77 

compressor is shown in Fig. 4.1. There are 4 pieces of RAM, dictionary 

RAM, hash RAM1, hash RAM2, and look-ahead buffer RAM. Dictionary 

RAM is used to store the input Nexus trace data. Look-ahead buffer 

contains Nexus trace data, which are needed to be processed. Hash RAM1 

and hash RAM2 maintain the address information of Nexus trace data in 

dictionary. Controller is used to find the match string and output the 

compressed results. 

For LZ77 encoding, the main task of the compressor is to find a match 

string. Finding the longest match string in LZ77 algorithm is based on the 

hash table chain structure [11]. The hash RAM1 and hash RAM2 contain 

the address information of a 3-symbol string in the dictionary. LZ77 

compressor computes a hash value using a 3-symbol string output from the 

look-ahead buffer. The hash value is used as an index of the hash RAM1 

that has 215 entries. A 3-symbol string is hashed according to the hash value. 

The following cases can occur when we search for the maximal match string. 

(1) If there is no the address information in the hash RAM1, which means 

no match string can be found in the dictionary. Then the offset of a 3-

symbol string in the dictionary is stored in the hash RAM1. (2) If the hash 

RAM1 has the offset information and the hash RAM2 has no offset 

information, which means just one match might be found, thus the offset in 

the dictionary of a 3-symbol string is stored in the hash RAM1 and the old 

offset information stored in the hash RAM1 are moved into the hash RAM2. 

At the same time, the encoder examines the match string. (3) If both the 

hash RAM1 and hash RAM2 have the address information, which means a 
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hash collision happens. The performance of finding the maximum match 

string will be performed according to the address information in both the 

hash RAM1 and hash RAM2. A hash collision occurs basically as the hash 

index has 224 values and the hash RAM1 has 215 entries. It means that many 

3-symbol strings are mapped to the same entry in hash RAM1. When a hash 

collision occurs, the old address information stored in the hash RAM1 are 

moved into the hash RAM2, and the new address information is stored in 

the hash RAM1. This is time consuming. 

 

 

Fig. 4.1.  Structure of the LZ77 compressor. 

Finding the maximum match string is the key and the most time 

consuming operation in the compression process. The compression speed 

mainly depends on the time of finding the longest match string in the 

dictionary. In this thesis, the input speed of Nexus trace data is 16 bits/clock 

cycle. In order to satisfy the real-time requirement, the operation time for 

data compression cannot be larger than the input rate of trace data. However, 

when the hash collision occurs, many clock cycles are used to read the 

dictionary and match the string. This makes it hard to meet the requirement 

of compression speed (16 bits/clock cycle) at a small hardware cost. To 

address this problem, an optimized LZ77algorithm is proposed. There are 

two aspects modified. One is the format of code word. The other is the hash 

table. 
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 Code Word  

We propose to change the format of a code word from (1, distance, 

length) to (1, distance). It means that we have fixed match length. The code 

word design is crucial in achieving a good compression ratio. It should be 

noted that the compression efficiency greatly depends on the ratio of code 

word length and the length of replaced match string. Higher compression 

ratio can be obtained when the code word length is shorter. 

In general a code word contains 3 parts, which is flag, distance, and 

length. The distance part is determined by the dictionary depth. In this thesis, 

the depth of dictionary is 128 (27) bytes, the distance need 7 bits. The flag 

part “1” is 1 bit. The length part, which is determined by the look-ahead 

buffer size, represents the maximum match length. In Fig. 3.8, the 

compression ratio is the highest when the maximum match length is 2 bytes 

to 8 bytes when the dictionary size is 256 bytes. If the maximum match 

length is selected to 2 bytes, the length should be 2 bits. Thus the code word 

length is 10 bits. If the maximum match length is 8 bytes, the length should 

be 3 bits. Then the code word length is 11 bits. A consequence is that there 

is no point to compress an input symbol of length 8 bits, as it will result in a 

compressed result of 10 (or 11) bits. Thus we set the minimum match length 

to be 16 bits when the code word length is either 10 bits or 11 bits. 

We can make the code word length shorter by setting the maximum 

match length to be equal to the minimum match length. The format of code 

word is then simplified from (1, distance, length) into (1, distance). The 

advantage is that the information about length is not needed as every match 

length is 2 bytes. The benefit is that instead of using 10 bits, we only need 8 

bits. The compression ratio can be increased when the same match string 

can be replaces by shorter code word. 

 Hash Table 

The hash table is optimized by avoiding hash collisions, which can 

improve compression speed. When the minimum match length is 3 bytes 

and the hash table entries are set at 224, no hash collision can occur.  

However, the hardware cost will be 16M bytes, which is cost-prohibitive. 

Instead, if the minimum match length is 2 bytes, the hash table will be 64K 

bytes and no hash collision will occur. Compared to the hardware cost 16M 

bytes, the hardware cost 64K bytes can be accepted. The advantage with the 

2 bytes alternative is that the cost of memory is significantly reduced. At the 

same time, the compression speed is improved. Finding match string can be 

implemented in one clock cycle. 
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In general, the hardware cost and compression performances can be 

traded off through optimizing the LZ77 algorithm. The parameters of 

optimized LZ77 algorithm are listed in table 4.1. 

TABLE 4.1.  PARAMETERS SELECTION. 

Compression Parameters 
Size(bits) 

Hardware Cost 
(bytes) 

Dictionary Size 128*16 Dictionary RAM 256 

Look-ahead Buffer Size 2*8 Hash Table1 RAM 64K 

Minimum Match Length 16   

Minimum Move Length 16  
 

Hash  Key Width 16  
 

4.2. Hardware System Structure 

4.2.1. Hardware Approaches 

To fulfill real-time compression and speed up the string match time, two 

major hardware implementation methods are presented in the literature [17], 

[22], and [29]. One is Content Addressable Memories (CAM) approach, the 

other is systolic array approach.  

 CAM approach  

The CAM approach performs string match by full parallel searching. A 

CAM-based LZ77 compressor can process one input symbol per clock cycle. 

CAM has been considered the fastest architecture among all proposed 

hardware solutions. However, CAM uses much hardware and high power 

consumption [22]. The area of the CAM is approximated to be twice as 

much as the area of a RAM of the same capacity [17]. 

 Systolic Array Approach 

The systolic array is a regular pattern of processing elements 

interconnected in a simple way. Each processing element is connected to its 

adjacent element. The basic idea is to lay out an identical pattern of 

processing elements with simple interconnections [29]. Systolic array 

approach performs string match by pipelining. Compared with CAM 

approach, systolic array compressors are slower, however better in hardware 

cost [22]. 
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Both the CAM approach and the systolic array approach result in poor 

portability. Hence, a state machine approach, which can be easily 

transferred to different architecture, is adopted in this thesis. 

4.2.2. Architecture Overview 

The hardware structure of the optimized LZ77 encoder is illustrated in 

Fig. 4.2. The hardware of LZ77 compressor consists of a controller (finite 

state machine) and two two-port RAM. In this application, a format block is 

added based on the platform requirement.  According to the parameters 

selection in section 4.1, the size of dictionary memory is 128*16 bits and 

the hash table memory size is 216 *8 bits. 

The controller block, which is a finite state machine (FSM), is 

responsible for processing synchronization and administrating the 

collaborations between different sub-modulations. Nexus trace messages are 

stored in the dictionary RAM and sequentially clocked into the system. The 

addresses of processed trace messages in the dictionary are stored in the 

hash table RAM. The compressed results are sent to the format block and 

output in 64 bits/line format from the format block. 

 

 

Fig. 4.2.  Modified LZ77 compressor structure. 

4.2.3. Operating Principle 

The whole system works in one clock domain and the reset is an active 

low input signal used to reset the entire system. When the system receives a 

“enable” signal, the system starts to work and sends “rd_signal” signal to 

the testbench. Then the testbench starts to send the Nexus trace data to the 

compressor.  
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The Nexus trace messages are firstly stored in the dictionary RAM. 

When the first trace message is stored, the system starts to read the trace 

messages from the dictionary RAM and finds the match string in the 

dictionary RAM through checking the index of the hash table. If a match 

string is found, the controller sends a pair (1, distance) to the format block 

with a high signal “wrdis”. If no match string is found, the signal “wrlit” is 

set high and the original literal is sent to the format block in (0, literal) 

format. In the format block, the trace messages are sent out in 64 bits/line 

format when the signal “wrdata” is high. 

4.3. Block Descriptions 

In this section, the functions of all the sub-modules are described. Both 

the controller and the format blocks are implemented with a state machine 

approach.  

4.3.1. Storage Blocks 

In Fig. 4.2, there are two two-port RAMs used in the compressor: a 

dictionary RAM and a hash table RAM. 

 Dictionary RAM 

The dictionary RAM is used to store the input trace data. Considering 

the input speed of Nexus trace data is 16 bits/clock cycle and the size of 

dictionary is 256 bytes, therefore the RAM size is 128*16 bits. 

Every row of the dictionary is used as the look-ahead buffer since the 

minimum move length and the minimum match length are 2 bytes. 

The initial values of the dictionary RAM are zero. When the compressor 

starts to work, the trace messages are stored in the dictionary RAM and 

sequentially clocked into the look-ahead buffer for processing. 

 Hash Table RAM 

The hash table RAM contains the address information of the trace data 

in the dictionary. The entries of the hash table are 216. The RAM size is 

216*8 bits. 

The initial values of the dictionary RAM are 128. The highest bit of 

every row is a flag for refreshing the hash table. If the row is never written, 

the value of the bit is 1. Otherwise, if the row is written, the value of the bit 

is 0. The other 7 bits are used to store the address of the trace data in the 

dictionary since the maximum distance of a match symbol is 127. 
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Fig. 4.3.  Description of hash table RAM. 

4.3.2. Controller Block 

The controller block is the main functional block. The actual 

implementation in the controller block can be broken down into four key 

parts: match block, update block, data discriminator, and output generator. 

These blocks are detailed below. 

4.3.2.1. Interface Overview 
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4.3.2.2. Functionality 

When the compressor begins to work, it assigns the correct start-up 

values to all variables. The hash table RAM needs to be set the initial value 

128. The initial values of literal register group are 65536. The initial values 

stored in dictionary RAM are 0. 

 Match block 

When this block is trigger by the “enable” signal, the Nexus trace data 

are sequentially clocked into and stored in the dictionary RAM. The input 

speed of trace data is 16 bits/clock cycle, the width of dictionary RAM is 16 

bits. Therefore the trace symbol, which is 16 bits wide, can be written in a 

clock. After data is written in the dictionary RAM, Nexus trace data is read 

out in the next clock cycle. The reading operation is always delayed one 

clock cycle compared to the writing operation. As soon as Nexus trace data 

are available, the matching operation begins. 

The trace data read from the dictionary RAM is used as the hash table 

address to lookup the hash table. If the value in the corresponding address of 

hash table is 128, no match string is found in the dictionary RAM. The 

compressor output the pair (0, literal). The address of the trace symbol in 

the dictionary RAM is then written into the corresponding address of the 

hash table. For example, assuming the trace symbol is 13 and its address in 

the dictionary RAM is 27. The compressor will check the hash table address 

13 and write 27 in the address when there is no match symbol found. 

If the value in the corresponding address of hash table is not 128, a 

match string is found in the dictionary RAM. The controller reads the value 

from the Hash table RAM and calculates the difference between the value 

output from the Hash table RAM and the address of trace data in dictionary 

RAM. The compressor output the pair (1, distance). For example, assuming 

the trace symbol is 13 and its address in the dictionary RAM is 27, the value 

in hash table address 13 is 5. The compressor will check the hash tables 

address 13 and output (1, 27-5) when there is a match symbol found. 

 Update Block 

The hash table needs to be refreshed when the dictionary is full since 

the contents of hash table are the address information of trace symbols in 

the dictionary RAM. This means when a trace symbol is written in the 

address 127 of the dictionary RAM. The hash table will be refreshed. 

In this thesis, the compressor uses a register group and a two-port RAM 

to refresh the hash table instead of two pieces of RAM considering the 

hardware cost and compression speed. Using this approach, the system does 
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not need to stop the compression process and spend extra clock cycles 

waiting for the hash table to be refreshed. The advantage is that the 

compression speed can always be kept at 16 bits/clock cycle.  

The register group has 128 registers and the width of the register is 17 

bits. The compressor initializes each register with 65536 as the dictionary 

RAM is full. The highest bit of the register is a flag for judging whether the 

register is modified. If the value of the flag is 1, the register is never written. 

Otherwise if the register is modified with writes, the value of the flag is 0.  

The other 16 bits is for storing the trace symbols.  

 

 

 

Fig. 4.4.  Description of register group. 

Every time when the addresses of trace symbols are stored in the hash 

table RAM, the trace symbols are also written in the register group.  When 

the output from the hash table is not 128, the system will check the register 

group. If the same trace data can be found, it means there is a match string 

in the dictionary RAM. The compressor output the pair (1, distance). 

Otherwise if there is no the same trace symbol found, it means no match 

string in the dictionary RAM. The address of the trace symbol in the 

dictionary RAM is written into the corresponding index of the hash table. 
The trace symbol is stored in the register group. The compressor output the 

pair (0, literal).  

 Output data  

The replacement principle is as following. When a match string is 

found, the output data is a pair (1, distance). When no match string is found, 

the output data is a pair (0, literal). 

Data compression is achieved through finding a match string in the 

dictionary and replacing the match string in the look-ahead buffer with the 

distance from current string to the match string. When a match string is 

found, the string is compressed and the output data is a pair (1, distance). In 

this thesis, the length of a string is 16 bits. The size of dictionary is 128*16 

bits. Hence the maximum distance is 127, which can be represented with 7 

bits. The length of a pair (1, distance) is 8 bits. Therefore, a trace file can be 

compressed through replacing a string which is 16 bits with a pair (1, 

distance). 

 Data Discriminator 

……  

flag[16] symbol[15:0] 
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This block is used to discriminate if there is a match string in three 

successive trace data. A pipeline is used to improve the throughput. There is 

one clock cycle delay when read of the trace data from RAM. So the special 

situation when there are the same trace symbols are input successively 

within three clock is needed to be discriminated in advance to compensate 

the delay of reading operations from the dictionary RAM and the hash table 

RAM. 

There are three special situations to be discriminated when the trace 

messages are sequentially clocked into the system. The first situation is that 

three same trace symbols are input continuously, such as “222”. The second 

situation is that two same trace symbols are input continuously, such as 

“221”. The last situation is that two same trace symbols are input and a 

different symbol is put between these two symbols, such as “212”. 

4.3.3. Format Block 

4.3.3.1. Interface Overview 

 

  

 

 

 

 

 

 

 

4.3.3.2. Functionality 

This block is used to arrange the format of the compressed results from 

the controller. The compressed results are either a pair (0, literal) with 17 

bits or a pair (1, distance,) with 8 bits. The width of data is 64 bits/line 

outputted from the format block. Since the width of an output data is 64 bits, 

which cannot be divided exactly by 17 bits, there are several specific 

situations to be considered. Table 4.2 lists the situations in detail.   

When the 64 bits output signal “dout” is full of compressed messages, 

the signal “wrdata” becomes high and the data is sent out to the test bench. 

dout[63:0] 

wrdata 

       enable 

           stop 

 dinlit[16:0] 

           wrlit 

 dindis[7:0] 

         wrdis 
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TABLE 4.2.  INPUT AND OUTPUT LOGIC TABLE. 

Width Y of input data Empty bits X of output Condition 

17 bits 

(0, literal) 
X=17 bits 

X=Y, the literal can be put 

exactly. 

17 bits 
(0, literal) 

X<17 bits 

X<Y, only part of the literal 

can be put, the next input data 
is a literal. 

X<Y, only part of the literal 

can be put, the next input data 
is a pair (distance, length). 

8 bits 

(1, distance) 
X=8 bits 

X=Y, the literal can be put 

exactly. 

8 bits 

(1, distance) 
X<8 bits 

X<Y, only part of the literal 
can be put, the next input data 

is a literal. 

X<Y, only part of the literal 

can be put, the next input data 

is a pair (distance, length). 

4.4. Tests and Results 

To evaluate the LZ77 compressor, a series of tests are completed on a 

set of Nexus trace data. Fig. 4.5 shows the test approach, the compressed 

files are decompressed and the correctness of compressed results is analyzed 

through comparing the decompressed file with the original input file. The 

decompression program is implemented in C code. 

 

 

Fig. 4.5.  Verification environment. 
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The original input file is binary files, which need to be converted 

into .txt files. The LZ77 compressor processes the input files and sends the 

compressed results to the test bench. The compressed data are generated 

into compressed files through the test bench. The compressed files are text 

files and need to be converted into binary files. After decompressed by the 

decompression program, the decompressed files are compared with the 

original Nexus files. The comparator shows the analysis result. 

4.4.1. Evaluation Method  

 Test file   

All test files are the Nexus trace data generated by DSPs in Ericsson 

hardware platform. The files are named file1, file2, and file3, which are 

listed in Table 4.3.  

  Compressor 

All these compressors described in the following are implemented in 

software. 

Compressor using dictionary based compression algorithms: 

(1) LZ77 algorithm compressor: LZ4. 

(2) LZ78 algorithm compressor: LZW.  

Compressor using statistical compression algorithms:  

(3) Dynamic Huffman coding  

Compressor using combinational compression algorithms:  

(1) Bzip2, LZMA, Gzip 

 Compressor Performance Setting 

All compressors use the “-fast” option. In order to obtain the best 

compression performance, the dictionary size is increased to the maximum 

size allowed in each compressor. 

4.4.2. Test Results 

 Compression Ratio 

In Table 4.3, the compression ratio for each of the three files is reported 

for each compression algorithm. The average compression ratio of this 

thesis is 1.35, which is lower than the compression ratio requirement 2 

proposed in chapter 1. However, the achieved compression ratio is based on 

the smallest dictionary size 256 bytes. In contrast, the compression ratio of 

LZW is 1.32 with dictionary size 512 bytes. The compression ratio of Gzip 
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is 2.16 with the dictionary size 32K bytes. The compression ratio of LZ4 is 

1.62 with the dictionary size 16K bytes. In Section 3.3.2, we know 

increasing the dictionary size can improve the compression ratio. Hence the 

compression ratio can be improved by increasing the dictionary size. The 

simulation results show that the compression ratio can achieve 1.9 when the 

dictionary size is 32K bytes. We notice that the compression ratio, 2 to 5, is 

hard to achieve if only one type of compression algorithms is used, unless a 

huge dictionary size is adopted. A combinational compression algorithm is 

recommended to get a 2 to 5 compression ratio. Such as, all the compression 

ratios of combinational algorithms are higher than 2 in Table 4.3. At the 

same time, we compare the compression ratio with optimized code style 

against the compression ratio with the regular code style. The results are 

collected in Table 4.4. We observe that the optimized code word style 

improves the compression ratio.  

 FPGA Resources Utilized 

Table 4.5 summarizes the FPGA utilizations for the hardware 

implementation of the compressor. The design is compiled using Xilinx 

ISE13.4 software. The type of FPGA is Virtex7XC7VX485T-1. The delay 

and the hardware cost are mainly generated by the format block. Table 4.6 

lists the device utilization of the compression part. 

TABLE 4.3.  COMPARASION OF COMPRESSION RATIO. 

Data Sample 

(Nexus Trace Data) 

Compression Ratio  
( Size of uncompressed data / Size of compressed data ) 

Combinational Dictionary Statistical 

 Gzip Bzip2 LZMA Thesis LZ4 LZW Huffman 

 File1 (1.8MB) 2.0 2.95 4.21 1.4 1.5 1.28 1.29 

File2 (2.6MB) 2.0 2.97 4.09 1.9 1.52 1.3 1.3 

 File3 (3.5MB) 2.5 3.5 4.19 2.5 1.84 1.4 1.34 

Average 

Compression Ratio 
2.16 3.14 4.16 1.35 1.62 1.32 1.31 
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TABLE 4.4.  COMPARASION OF CODE STYLE. 

Data Sample 
(Nexus Trace Data) 

Proposed code style 
(1,distance) 

Traditional code style 
(1,distance,length) 

 Compression Ratio Compression Ratio 

 File1 (1.8MB) 1.28 1.2 

File2 (2.6MB) 1.36 1.24 

File3 (3.5MB) 1.4 1.3 

Average 

Compression Ratio 
1.35 1.25 

TABLE 4.5.  FPGA RESOURCE UTILIZATION OF THE COMPRESSOR. 

Synthesis configuration Complexity 
 

FPGA 

 

Maximum 

Frequency 

 

Throughput 
opt_mode opt_level 

RAM 

(Bytes) 

Number of 

Slice LUTS 

Number of Slice 

Registers 

speed normal 
64K +256 

(two-port) 
26825 2564 

 

 

Virtex 7 

XC7VX 

485T-1 

 

123MHz 

16 bits/cc 

speed high 
64K +256 

(two-port) 
24121 2516 120MHz 

area normal 
64K +256 

(two-port) 
26571 2500 55MHz 

area high 
64K +256 

(two-port) 
22960 2499 95MHz 

 

 
TABLE 4.6.  FPGA RESOURCE UTILIZATION OF COMPRESSION PART. 

Synthesis 
configuration 

Complexity 
 

FPGA 

 
Maximum 
Frequency opt_mode opt_level 

RAM 
(Bytes) 

Number of 

Slice LUTS 

Number of 

Slice Registers 

Speed normal 
64K +256 
(two-port) 

5865 2386 

 
 

Virtex 7 
XC7VX 
485T-1 

 

158MHz 

Speed high 
64K +256 
(two-port) 

4911 2420 158MHz 

Area normal 
64K +256 
(two-port) 

5899 2308 116MHz 

Area high 
64K +256 
(two-port) 

4859 2308 138MHz 

 

It is hard to directly compare the hardware cost with other hardware 

implementations reported in literature. Since the used FPGAs are different. 

In addition, the selected parameters are different also. Here a rough 
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comparison with other implementations is listed in the Table 4.7. The 

calculation of Equivalent Gates is according to the Xilinx’s 7 series FPGA 

specifications. According Xilinx’s design guide, in this thesis, we assume 

one LUT equals 15 gates and one register equals 7 gates [30], [31]. This 

compressor can achieve a higher throughput with hardware complexities 

compared to previous compression approaches. 

TABLE 4.7.  COMPARISION HARDWARE COST AND THROUGHPUT. 

Algorithm Processor 

Hardware Cost 

Throughput 

(bits/clock) 
RAM size 

(bytes) 

Equivalent 

Gates 

Dynamic 

Huffman [20] 
ASIC 

4.5K 

(CAM) 
17.7K 0.5 

LZRW [32] ASIC 38K 60K 7 

Thesis 
Virtex 7 

(XC7VX485T) 

64K+256 

(two-port) 
89K 16 

Gzip[24] ASIC 143K 610K 8 

Bzip2 
Stratix II 

(EP2S180F1020C3) 
7.3M 1575K 1.5 

LZMA[26] 
Virtex 5 

XC5VFX70T 

212K 

(dual-port) 
120K 4 
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CHAPTER 5 

5. Conclusion and Future Work 

5.1. Conclusion 

The subject of the dissertation is to implement a real-time lossless 

Nexus trace data compressor. This thesis investigates the state-of-the-art of 

lossless algorithms. The background of compression algorithms is presented 

in Chapter 2. In Chapter 3, the feasibility of different types of lossless 

algorithms in hardware implementation is examined. The LZ77 algorithm is 

selected through analyzing the three main performances, compression ratio, 

compression speed, and hardware overhead. We explore the characteristics 

of Nexus trace data through simulation and determine the parameters based 

on the thesis requirements.  

An optimized LZ77 compression algorithm is introduced in Chapter 4. 

There are two modified aspects. The first aspect, the compressed data are 

output in a pair (1, distance) instead of a triple (1, distance, length). The 

match length information is omitted. Because the maximum match length is 

equal to the minimum match length based on the characteristics of Nexus 

trace data – the compression ratio perform the best on a short match.  The 

second aspect, the entries of the hash table are set equal to 215 in order to 

improve the compression speed. Compared with the original LZ77 

algorithm, this approach reduces the hash collision probability and the 

amount of matching iterations. Therefore, the speed of finding the 

maximum match string becomes faster. 

The goal of this thesis is to achieve a data compressor that will meet the 

performance requirements, while minimizing the implementation cost. Test 

results have shown that the compression speed is 16 bits/clock cycle, which 

meet the speed requirement. The average compression ratio is 1.35 with the 

minimum hardware cost. The compression ratio is improved from 1.25 to 

1.35 when the optimized code word style (1, distance) is used. 

In general, the optimized scheme achieves a trade-off between the 

hardware cost and the compression performances. The optimized LZ77 

algorithm proposed in this dissertation is a cost-effective compressor 

focusing on Nexus trace data. 
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5.2. Future Work 

There is still a space to improve the compression ratio without 

increasing the hardware cost hugely. 

The first approach is to reduce the minimum move length from 2 bytes 

into 1 byte. According to the simulation results in section 3.3.2, the 

compression can be improved about 4% when the minimum move length is 

decreased from 2 bytes into 1 byte. But the compression time might be 

affected by this modification. 

The second approach is to do pre-processing on the Nexus trace data to 

make it more suitable for the dictionary based compression algorithms. 

Such as, for the time part, a differential processing can be used. Thus only 

the differential time is needed to be kept in the trace messages. Therefore 

the time part could be represented in a shorter code word. Based on 

calculation, the compression ratio can be improved approximately 7%. 

However, it is hard to increase the compression ratio higher than 2 if 

only the above two approaches are used. If the application requires the 

compression ratio greater than 2, a combinational compression algorithm is 

recommended. However, the hardware cost will increase. 
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