
R
eal-Tim

e Lo
ssless C

o
m

p
ressio

n
 o

f So
C

 Trace D
ata

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, December 2015.

Real-Time Lossless Compression
of SoC Trace Data

Jing Zhang

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2015-478

http://www.eit.lth.se

Jin
g

 Zh
an

g

Master’s Thesis

1

Master’s Thesis

 Real-Time Lossless Compression

of SoC Trace Data

Jing Zhang

Department of Electrical and Information Technology

Faculty of Engineering, LTH, Lund University

SE-221 00 Lund, Sweden

December 2015

2

Abstract

Nowadays, with the increasing complexity of System-on-Chip (SoC),

traditional debugging approaches are not enough in multi-core architecture

systems. Hardware tracing becomes necessary for performance analysis in

these systems.

The problem is that the size of collected trace data through hardware-

based tracing techniques is usually extremely large due to the increasing

complexity of System-on-Chips. Hence on-chip trace compression

performed in hardware is needed to reduce the amount of transferred or

stored data.

In this dissertation, the feasibility of different types of lossless data

compression algorithms in hardware implementation are investigated and

examined. A lossless data compression algorithm LZ77 is selected,

analyzed, and optimized to Nexus traces data. In order to meet the hardware

cost and compression performances requirements for the real-time

compression, an optimized LZ77 compression algorithm is proposed based

on the characteristics of Nexus trace data.

This thesis presents a hardware implementation of LZ77 encoder

described in Very High Speed Integrated Circuit Hardware Description

Language (VHDL). Test results demonstrate that the compression speed can

achieve16 bits/clock cycle and the average compression ratio is 1.35 for the

minimal hardware cost case, which is a suitable trade-off between the

hardware cost and the compression performances effectively.

3

Acknowledgments

 If we meet someone who owes us thanks,

 we right away remember that.

 But how often do we meet someone to whom

 we owe thanks without remembering that?

— JOHANN WOLFGANG VON GOETHE

Ottilie’s Diary (1809)

 The completion of this thesis gets a lot of help from my supervisor and

colleagues in Ericsson, my supervisors in Lund University, and my lovely

friends. Here, I want to thank all of them.

 Firstly, I would like to express my deepest gratitude to my supervisor

Lars Johan Fritz, who encouraged and motivated me all the time. I am

grateful for his support, guidance, and constructive advices on my work. In

addition, I also thank Pierre Rohdin G and Mats Fredriksson for their help

and encouragement in this period.

 Secondly, I am grateful to the supervisor Erik Larsson and Liang Liu

for their trust and help on my thesis. I should to thank for their suggesting

many ways in how to improve my thesis work. The same acknowledgement

should also go to Professor Peter Nilsson who acts as my examiner.

 Thirdly, I would like to thank my friends, Zhou Ruoxing and Liu Dan.

Their friendly advices and supportive attitude are of great help for me. In

particular, I am thankful to Yuan Mengze for his patiently instructions.

 Lastly but not least, a special thank goes to my family, this thesis might

not exist without their support and understanding.

 Many more peoples participated in various ways to ensure my research

succeeded and I am thankful to them all.

Jing Zhang

4

Contents
Abstract ... 2

Acknowledgments ... 3

1. Introduction ... 6

1.1. Nexus Trace Data .. 6

1.2. Thesis Motivations .. 8

1.3. Thesis Objectives .. 9

1.4. Thesis Organization ... 9

2. Background of Compression Algorithms .. 11

2.1. General-Purpose Compression Algorithms 11

2.1.1. Lossy Compression ... 11

2.1.2. Lossless Compression ... 12

2.2. Special-Purpose Compression Algorithms 21

3. Compression Algorithm Selection .. 22

3.1. Algorithm Selection .. 22

3.1.1. General Algorithm vs. Special Algorithm 22

3.1.2. Dictionary-Based vs. Statistical vs. Combinational 23

3.1.3. LZ77 vs. LZ78 ... 28

3.2. LZ77 Algorithm .. 30

3.3. LZ77 Algorithm Simulation .. 33

3.3.1. Parameters Analysis .. 33

3.3.2. Simulation Results ... 35

4. LZ77 Hardware Implementation ... 41

4.1. Optimized LZ77Algorithm .. 41

4.2. Hardware System Structure ... 44

4.2.1. Hardware Approaches ... 44

4.2.2. Architecture Overview .. 45

5

4.2.3. Operating Principle .. 45

4.3. Block Descriptions .. 46

4.3.1. Storage Blocks ... 46

4.3.2. Controller Block .. 47

4.3.3. Format Block ... 50

4.4. Tests and Results ... 51

4.4.1. Evaluation Method .. 52

4.4.2. Test Results ... 52

5. Conclusion and Future Work .. 56

5.1. Conclusion ... 56

5.2. Future Work .. 57

References ... 58

6

 CHAPTER 1

1. Introduction

Collecting execution traces of programs is an important task for

embedded system verification and debugging. With the increasing

complexity of System-on-Chip, the size of collected trace data through

hardware-based tracing techniques is usually extremely large. For example,

monitoring a 32 bits bus in an RISC microprocessor clocked at 1 GHz

generates a trace of 4G bytes per second. Storing such huge data or

transferring the data out of the chip in real time brings a high hardware cost

[1]. Therefore, the key problem with hardware-based tracing techniques is

to reduce the size of collected trace data. Trace data size reduction

techniques include three types – filtering, sampling, and compression.

Filtering discards all references. Sampling stores relatively short references

at regular intervals, discarding the intervening references. Only trace

compression technique can retain all of the trace data information [2].

Compression techniques are divided into lossy compression technique and

lossless compression technique. This master thesis focuses on implementing

the lossless compression optimized based on the trace data from Ericsson’s

ASIC platform.

1.1. Nexus Trace Data

In this thesis, the trace data adopts the Nexus IEEE-ISTO5001-2012

standard. Nexus 5001 is a standard for global embedded processor debug

interface, which is published by IEEE´s Industry Standard and Technology

Organization.

The Nexus standard defines trace and debug interface, including

associated protocols and infrastructure that can serve tracing and controlling

of multiple cores on a chip from the software debugger [3].

The original standard is the 1999 version, which was aimed to define a

general-purpose specification that addressed the rigorous challenges for

debug interfaces, and the need for efficient use of embedded processors that

requires software and hardware development tools to access critical

processor functionality [4]. Trace data can be read out through a JTAG port.

As a modern System-on-Chip has entered into multicore era, a large

number of logics have been integrated on the embedded processor.

7

Increased hardware complexity enables growing software complexity. The

traditional debugging and testing approach through a JTAG port is obtrusive

and time-consuming, which is not suitable for the advanced real-time

embedded system.

The newest standard is the 2012 version, which support a minimum pin

interface (IEEE 1149.7) and a high speed serial protocol (Aurora), also

continuing to support existing transport mechanisms: parallel (AUX) and

IEEE 1149.1. Using an AUX port can achieve faster response when the

systems are configured or used.

The Nexus data employs a packet-based messaging tracing scheme with

packet headers providing information about data source, destination, and

type of payload [3]. Nexus standard defines 4 classes’ development features

for vendors to use according to their needs. The higher the levels are

adopted, the more debug information can be obtained.

 Class1: Basic Run Control. Class1 standard implement the fewest

Nexus development features for run-control debugging, including

single stepping, breakpoints, watchpoints, and access to registers

and memory while the processor is halted.

 Class2: Instruction Trace. Besides class1 features, class2 standard

add debug support for capturing program execution traces,

watchpoint traces, and ownership traces in real time. Ownership

traces are useful to correlate simultaneously executed threads in

time [3].

 Class3: Data Trace. Besides class2 features, class3 standard add

debug support for data traces, memory, and I/O read/write traces.

This mainly related to implementation of full tracing capabilities.

 Class4: Remote processor control and advanced trace. In addition to

class3, class4 standard add memory substitution traces. Memory

substitution allows the processor to execute instructions from the

trace port rather than from the memory [3]. Memory substitution is

implemented using address remapping for the I/O space (where the

trace port is located) and for the memory (where the original

executing program resides) [3].

According to the Nexus Trace Data Standard, the trace messages can be

classified into three categories depending on the type of information they

contain: program (or instruction) traces, data traces (from the memory bus),

and system traces (various signals of interest in debugging the implemented

hardware or observing the inter-cores dependencies and so on) [3]. The

trace data messages mainly include 5 types as below.

8

 Status message: This type of message indicates the status

information from the target whenever there is a state change. Such

as, Debug Status Message.

 General register read/write message: This type of message is used

for run control and configuration of watchpoint/breakpoint

operations [3]. Such as, breakpoint/watchpoint messages.

 Program trace message: This type of message is commonly used in

multi-core systems. It has capability to detect and signal program

trace errors.

 Data trace message: This type of message is used for tracing data

addresses and values. The Data Trace feature defines a standard

protocol for data trace visibility of accesses to vendor-defined

internal peripheral and memory locations.

 Memory Access message: Non-intrusive access to internal memory

blocks [3].

The Nexus Trace Messages can also be divided into two types, both

Public Messages and Vendor-defined Messages. The format and meaning of

Public Messages are defined by the specification of Nexus Standard. The

Vendor-defined Messages are defined by the target processor vendor. In this

thesis, Ericsson uses the class 4 of Nexus standard. It includes both Nexus

public messages (like, data trace message, program trace message, and

ownership trace message) and Ericsson’s own defined trace messages.

1.2. Thesis Motivations

Collecting execution traces of system programs become an important

task for debugging and testing embedded systems. The traditional method of

collecting trace data is intrusive and time-consuming, which cannot meet

the usage requirements of real-time embedded systems. Especially, in multi-

core systems, the traditional method can cause timing requirements

violations.

Recognizing these issues, many vendors have developed modules with

tracing capabilities and integrated them into their embedded platforms in

order to improve debugging and testing efficiency, e.g., ARM’s Embedded

Trace Macrocell, MIPS’s PDTrace [3].

In order to improve the debugging capability of the debug software, a

dynamic real-time trace debug block has been implemented in Ericsson’s

ASIC platform also. The debug block provides a way to enable both

traditional static target debugging but also enable non-intrusive real-time

9

target debugging while the system is up and running. The debug block can

collect all different kinds of trace messages, which are sent out from the

DSPs in Ericsson’s platform. With these messages the software tools can

recreate the complete program-flow, a better observability and

controllability are achieved in the chip through using the debug block [5].

However, the main problem with hardware tracing is the extremely

large trace data that need to be collected. For example, a processor running

at 1GHz produces gigabytes trace information for just one second of

execution time [3]. Storing and analyzing such huge amounts of data results

in expensive hardware and requires a very large on-chip buffer.

Furthermore, transferring the trace data in real-time requires wide trace

ports. To meet such requirements would significantly increase the system

complexity and cost. Therefore, reducing the trace data becomes a necessary

and high valuable technique.

The target of this thesis is to design a hardware compressor, to reduce

the requirements of large on-chip trace buffers and wider trace ports for the

embedded system with high complexity such as Ericsson’s ASIC platform.

1.3. Thesis Objectives

The main objective of this dissertation is to design a real-time lossless

compressor optimized to the trace messages. In the Ericsson platform, the

trace data messages are sent from several DSPs and received by the debug

block.

The specific requirements of this compressor proposed by Ericsson are

as following.

 Compression ratio: 2 to 5. (CR=
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 𝑠𝑖𝑧𝑒

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑑𝑎𝑡𝑎 𝑠𝑖𝑧𝑒
)

 Compression speed: 16bits/clock to 64bits/clock.

 Lossless Compression

 Real-time Compression

To achieve this objective, a real-time trace data compressor that can get

a balance with acceptable compression ratio and low hardware cost is

designed.

1.4. Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 presents

the background for the compression algorithms. Chapter 3 presents the work

10

principle and selection reason of the selected compression algorithm, and

the results of parameter simulation. Chapter 4 presents the architecture of

the system design and explaining internal modules in detail. In addition, the

test results are shown in this Chapter. Chapter 5 summarizes this thesis

work and presents the potential directions of the future work of this thesis.

11

CHAPTER 2

2. Background of Compression Algorithms

For proposing an efficient compression algorithm optimized to the

Nexus trace data, this chapter outlines the background study based on the

compression algorithms.

Data compression is a process of encoding data with fewer bits through

removing the redundancies found in the input data stream. The more

redundancies are found, the better compression ratio can be achieved.

Regarding the Nexus trace data messages, there are two types of

compression methods to extract the redundancies. One is general-purpose

compression methods, and the other one is special-purpose compression

methods.

In Section 2.1, the general-purpose compression algorithms´ principles

and operations are described. The specialized techniques and approaches of

special-purpose compression are discussed in Section 2.2.

2.1. General-Purpose Compression Algorithms

General-purpose compression algorithms are generally classified into

two categories, lossless compression algorithms and lossy compression

algorithms. Lossy compression algorithms can achieve much better

compression ratio with the sacrifice of losing part of original information.

However, lossless compression algorithms can recover all the information

compared to lossy compression algorithms.

2.1.1. Lossy Compression

In lossy compression, only approximation information can be recovered

when the compressed data is decompressed, which means the retrieved data

is not identical to the original data. Hence the results of lossy compression

can be used only in some special applications.

Lossy compression is usually applied to the transmission and storage of

images, audio, and video where some finer details of that information can be

thrown away during the compression process and the introduced distortion

in original information can be acceptable when uncompressed such data. In

these applications, the difference between the recovered data and the

original data can be omitted to the human ears or eyes considering the

12

idiosyncrasies of human anatomy. For example, the human eyes and ears

can see and hear only certain frequencies of lights and sounds.

In contrast to lossless compression algorithms, the advantage of lossy

compression algorithms is a significant improvement to the compression

ratio with accepted distortions which can meet the requirements of the

applications. Some lossy methods and their applications are summarized in

the table 2.1 [6].

TABLE 2.1. LOSSY COMPRESSION METHODS.

Application Image Audio Video

Compression methods

Fractal compression AAC H.261

JPEG ADPCM H.263

Dolby ATRAC MNG

Wavelet compression MP2 MPEG-1

 MP3 MPEG-2

 HILN MPEG-4

 WMA Motion JPEG

2.1.2. Lossless Compression

Lossless compression allows the original data to be exactly recovered

from their compressed form. Lossless compressions are usually used in the

applications where losing a single bit cannot be accepted, such as text files,

archival storage database, which mostly contain vital information, and some

special classes of images like medical imaging, fingerprint data, and

astronomical images. Considering the importance of trace data integrity, this

thesis will only focus on the lossless compression algorithms

The lossless compression can be broadly classified into three types –

dictionary based compression, statistical compression, and combinational

compression. Combinational compression algorithms are commonly the

combination of dictionary based compression algorithms and statistical

compression algorithms. Usually a combinational compressor can achieve

better compression ratio than both dictionary-based compressor and

statistical compressor. However, the calculation complexity of

combinational compression algorithms is higher.

13

2.1.2.1 History of Lossless Compression

With the widely use of computer science and Internet technology, data

compression has started to play a significant role since 1970s. The earliest

compression technique is Morse code, which was invented in 1838. Modern

work on data compression began in the late 1940s with the development of

information theory [7].

In 1949, Claude Shannon and Robert Fano invented Shannon-Fano

coding. The algorithm of Shannon-Fano coding assigns shorter codes to

symbols, which have more occurring probability. In 1951, David Huffman

invented Huffman coding, which is a more efficient coding method than

Shannon-Fano coding. In statistical algorithms, Huffman coding is widely

used considering the computation complexity of arithmetic coding

algorithms.

In 1977, the first dictionary based compression algorithm LZ77 was

published by Abraham Lempel and Jacob Ziv [8]. Typically, LZ77 uses a

sliding window to compress data. In 1978, another dictionary based

algorithm LZ78 was published by Abraham Lempel and Jacob Ziv [9].

Unlike LZ77, LZ78 uses whole input symbols as the dictionary to parse the

input data.

Both the LZ77 and LZ78 algorithms grew rapidly in popularity and

have lots of variation algorithms. Most of the commonly used algorithms,

such as, LZSS, LZO, and LZ4, shown in the Fig 2.1, are derived from the

LZ77 algorithm and LZ78 algorithm [10]. Among them, Lempel-Ziv-Welch

algorithm, which was created in 1984 by Terry Welch, is the most used

compression algorithm in LZ78 family. LZSS algorithm is the

representative algorithm in LZ77 family.

In combinational algorithms family, Bzip2, Deflate, and LZMA are the

most popular used algorithms in data compression applications. In 1993,

Phil Katz invented Deflate algorithm, which belongs to a combinational

compression algorithm, is the combination of LZ77 algorithm and Huffman

algorithm [11]. Bzip2 is developed in 1996 and maintained by Julian

Seward [11].

The whole classification of lossless algorithms is shown in Fig. 2.1.

14

Fig. 2.1. Data Compression Classification Chart.

LZ4 (2011)

 (lz4)

LZR (1981)

LZSS (1982)

LZB (1987)

LZH (1987)

LZS (1994)

LZP (1995)

LZO (1996)

(lzop)

LZX (1995)

ROLZ (1991)

LZRW1 (1991)

D
ic

ti
o

n
a

r
y

C
o

m
p

r
e
ss

io
n

LZ77 (1977)

LZ78 (1978)

LZW (1984)

 (npress)

LZJ (1985)

LZMW (1985)

LZWL (2006)

LZC (1985) LZT (1987)

LZAP (1988)

Bzip2 (1996)

C
o
m

b
in

a
ti

o
n

C
o
m

p
r
e
ss

io
n

PPM (1984) PAQ (1984)

DEFLATE (1993)

(gzip)

LZMA (1998)

(7zip)

LZMA2 (2009)

S
ta

ti
st

ic
a
l

 C
o

m
p

r
e
ss

io
n

Dynamic Huffman coding

Static Arithmetic coding

Arithmetic coding

Dynamic Arithmetic coding

Huffman coding

Static Huffman coding

15

2.1.2.2 Dictionary Based Compression

The main idea of dictionary based algorithms is to replace repeated

symbols with shorter codes, thus it is also called as substitution codes. In

these methods, the dictionary, which is built during the compression

process, contains a set of input strings appeared in the past. The principle of

dictionary based algorithm is to find the match in the strings contained in

the dictionary and to replace the match by shorter code words.

In these techniques, no prior knowledge or statistical characteristics of

the data being compressed are required. The compression speed is faster

compared to statistical methods since several symbols can be encoded at a

time.

The dictionary based techniques can be static, dynamic or adaptive. The

approach using the static dictionary is most often used when input strings

are determined before coding begins and do not change in the whole

compression process. As the most popular scheme of dictionary based

algorithm, the dictionaries of Lempel and Ziv algorithms are adaptive or

dynamic. LZ77 and LZ78 are the two most basic Lempel and Ziv

algorithms. All others are the variants of LZ77 or LZ78, such as LZSS,

LZW, LZR, LZT and LZJ etc. The difference between LZ77 and LZ78 is

the method of building the dictionary. LZ77 uses part of the input symbols

to set up the dictionary, however, LZ78 uses whole input symbols to set up

the dictionary. In this part, LZ77 and LZ78 will be discussed.

2.1.2.2.1 LZ77 Algorithm

LZ77 algorithm is based on a sliding window. The sliding window is

divided into two parts. The left part is called as search buffer or dictionary,

which includes the symbols that have been input and encoded recently. The

right part is called as look-ahead buffer, which includes the symbols needed

to be encoded. The length of the search buffer is equal to the dictionary size.

The length of the look-ahead buffer is equal to the value of the maximum

length of the identical symbols. During the compression, the dictionary will

be changed dynamically with the movement of sliding window.

The compressed result is represented as (distance, length, next symbol).

Distance indicates the offset from the start of the match symbols found in

the sliding window to the current symbol. Length indicates the length of the

match symbols. Next symbol indicates that a new phrase was found [10].

Take an example, in Fig. 2.2, we assume that the new input text is “sir

sid eastman”. The encoder scans the search buffer from right to left to find a

match for the first symbol “s” in the look-ahead buffer. The search buffer is

16

empty at the beginning and there is no symbol stored in the search buffer,

thus no match can be found in the search buffer. The output is (0, 0, s). The

sliding window is shifted one position to the right. When the second

symbols “si” are the input, the same symbols can be found in the dictionary,

and the output is (4, 2, d). The window is then shifted to the right two

positions. The encoder continues encoding the symbol until all the symbols

are shifted from the look-ahead buffer to the search buffer.

Search Buffer Look-ahead Buffer Output

 sir_ sid_eastman_ (0,0,s)

s irk_ sid_eastman_ (0,0,i)

si r_ sid_eastman_ (0,0,r)

sir _ sid_eastman_ (0,0,_)

sir_ sid_eastman_ (4,2,d)

Fig. 2.2. Example of LZ77 Compression Algorithm.

The pseudo code of LZ77 compression algorithms is shown in Fig. 2.3

[12].

LZ77 Compression Algorithm

 1: while look-ahead buffer is not empty do

 2: go backwards in search buffer to find longest match of the look-ahead buffer

 3: if match found then

 4: print: (offset from window boundary ;)

 5: print: (length of match;)

 6: print: (next symbol in look ahead buffer ;)

 7: shift window by length + 1;

 8: else

 9: print: (0, 0, first symbol in look-ahead buffer);

10: shift window by 1;

11: end if

12: end while

Fig. 2.3. Pseudo of LZ77 Compression Algorithm.

2.1.2.2.2 LZ78 Algorithm

 Instead of using a sliding window as used by LZ77, the dictionary of

LZ78 contains all the previous symbols, which have been compressed. The

outputs are two-field tokens (index, next symbol). Every input symbol is

added into the dictionary after it has been compressed. Nothing is ever

deleted from the dictionary during the whole encoded process. The

dictionary starts with the null string at position zero. As symbols are input

17

and encoded, strings are added to the dictionary at positions 1, 2, and so on

[11].

Take an example, in Fig. 2.4, we assume that the new input text is “sir

sid eastman”. The encoder searches the dictionary for an entry with the first

input symbol “s”. There is no matched entry, the output is (0, s). The

symbol “s” is added to the dictionary with the entry number 1. When the

second symbols “si” is input, the dictionary is searched for an entry

containing the two-symbol string “si”. If no match can be found, the string

“si” is added to the next available position in the dictionary with entry

number 5. The token (1, i) is output. The process continues until the end of

the input stream is reached [11].

Dictionary Index Dictionary Content Input Output

0 Null

1 S sir_ sid_ eastman (0,s)

2 I ir_sid_ eastman (0,i)

3 R r_ sid_ eastman (0,r)

4 _ _ sid_ eastman (0,_)

5 Si sid_ eastman (1,i)

6 D d_ eastman (0,d)

7 _e _ eastman (4,e)

Fig. 2.4. Example of LZ78 Compression Algorithm.

The pseudo code of LZ78 compression algorithms is shown in Fig. 2.5.

LZ78 Compression Algorithm

 1: while input stream is not end do

 2: go backwards in dictionary to find the index with match of the input symbol

 3: if match found then

 4: print: (index)

 5: print: (next symbol in input stream ;)

 7: read the next symbol;

 8: else

 9: print: (0, symbol);

10: read the next symbol;

11: end if

12: end while

Fig. 2.5. Pseudo of LZ78 Compression Algorithm.

18

2.1.2.3 Statistical Compression

The main idea of statistical algorithms is to assign values to events

depending on their occurring probability. Specifically, the data with higher

occurring probability is represented by shorter code words.

Generally in these techniques, either Huffman coding or Arithmetic

coding needs prior knowledge or statistical characteristics of the data being

compressed. A pre-scanning of the real data before coding is needed in

order to get a code word table, which contains the mapping information

between the real data and the code words for coding.

There are two ways to eliminate the pre-scan procedure to adapt the

requirements of real-time applications. The first method, Static Huffman

coding or Static Arithmetic coding, is to use a known or default code word

table for encoding [13]. The second method, Adaptive Huffman coding or

Adaptive Arithmetic coding, is to use an encoding tree, which is adaptively

constructed and maintained at sender as well as receiver side [13].

The most famous statistical algorithms are Huffman coding and

Arithmetic coding. In this part, both Huffman coding and Arithmetic coding

will be discussed.

2.1.2.3.1 Huffman Coding

In order to compress a string of symbols, Huffman coding is based on

representing the symbols that have high occurrence probabilities with

shorter code words and assigning longer code words to symbols that have

low occurrence probabilities.

Huffman coding technique can be static or dynamic (adaptive). Static

Huffman coding uses a look-up table that stores the pre-defined frequency

for each symbol. Dynamic Huffman coding calculates the frequency of

every symbol according to the real occurring frequency.

Huffman Coding algorithm basically builds a binary tree. The leaves

represent the symbols of the input file. The code length for these symbols

equals their depth in the tree (that is, their distance to the root node) [12].

Once the symbol frequency has been determined, the two elements with the

lowest frequency are selected and inserted as leaves of a node with two

branches. The sum of these two elements’ frequency becomes the frequency

for a new node. The algorithm selects another two new elements with the

lowest frequency in the left elements and inserts them in the tree. A

Huffman tree is completed until the root node having a 100% frequency.

The procedure of the Huffman tree generation is shown in Fig. 2.6 [10].

19

Huffman Coding Algorithm

 1: Parse the input, counting the occurrence of each symbol.

 2: Determine the probability of each symbol using the symbol count.

 3: Sort the symbols by probability, with the most probable first.

 4: Generate leaf nodes for each symbol, including P, and add them to a queue.

 5: While (Nodes in Queue > 1)

 Remove the two lowest probability nodes from the queue.

 Prepend 0 and 1 to the left and right nodes' codes, respectively.

 Create a new node with value equal to the sum of the nodes’ probability.

Assign the first node to the left branch and the second node to the right branch.

 Add the node to the queue

 6: The last node remaining in the queue is the root of the Huffman tree.

Fig. 2.6. Huffman Coding Algorithm.

2.1.2.3.2 Arithmetic Coding

Arithmetic coding was developed by IBM Company in 1979.

Arithmetic coding is one of the most optimal entropy coding techniques if

the objective is the best compression ratio [10]. However, its complexity is

the most complicated.

Arithmetic coding can achieve better compression ratio compared with

Huffman coding. It is because Arithmetic coding uses fractional bits for its

code words, while Huffman coding uses an integral number of bits. Thus the

efficiency of Arithmetic coding can be made arbitrarily close to the entropy

or information content by controlling its precision [14].

Arithmetic coding transforms the input data into a single rational

number between 0 and 1[10]. For each symbol, the current interval is

divided into subintervals. The length of subinterval is proportional to the

occurring frequencies of the symbol. Then the subinterval of the current

symbol is chosen again. This procedure is repeated for all symbols from the

input file. At the end, the compressed result, which is a fixed-point binary

number, is the output from the final interval.The procedure of Arithmetic

coding is shown in Fig. 2.7 [10].

20

Arithmetic Coding Algorithm

 1: Calculate the number of unique symbols in the input. This number represents

the base b (e.g. base 2 is binary) of the arithmetic code.

 2: Assign values from 0 to b to each unique symbol in the order they appear.

 3: Using the values from step 2, replace the symbols in the input with their codes.

 4: Convert the result from step 3 from base b to a sufficiently long fixed-point

binary number to preserve precision.

 5: Record the length of the input string somewhere in the result as it is needed for

decoding.

 Fig. 2.7. Arithmetic Coding Algorithm

2.1.2.4 Combinational Compression Algorithm

Combinational compression algorithms are normally based on the

combination of dictionary based algorithm and statistical algorithm. In

combinational compression algorithm, Gzip, Bzip2, and LZMA are three of

the most widely used algorithms. Among them, Gzip and LZMA are the

combination of statistical algorithm and dictionary based algorithm. Bzip2

is a combination of Burrows-Wheeler Transformation (BWT) and Huffman

coding. In Table 2.2, the constitutions of these three algorithms are shown.

TABLE 2.2. CONSTITUTIONS OF COMBINATIONAL ALGORITHM.

Algorithm Algorithm Constitution

Gzip
 LZ77

 Huffman coding

LZMA
 LZ77

 Arithmetic coding

Bzip2

 Run-length encoding

 Burrows-Wheeler transform

 Move to front transform

 Huffman coding

Normally, a combinational compressor could achieve a better

compression ratio than a dictionary based compressor or a statistical

compressor. However, the calculation complexity is higher and this

conclusion could also apply to Nexus trace data based on the experimental

result.

21

2.2. Special-Purpose Compression Algorithms

Besides general-purpose compression algorithms, there are some

researches on specialized compression algorithms focusing on Nexus trace

data. These compression mechanisms are typically used to compress

program trace message or address trace message. In this part, some

specialized algorithms are introduced briefly.

 Instruction compression

For instruction compression, a technique named Packed Differential

Instruction (PDI) [2] is proposed. Instruction compression is used to

compress the special trace messages, which contain instruction execution

information. The PDI technique divides the instructions into frequently

used instructions and unfrequently used instructions and uses a type of

dictionary based algorithm to compress the frequently used instructions.

 Address compression

For address compression, several techniques exist to exploit the

redundancies for address compression. Address compression is used to

compress the address trace messages, which include data address and

instruction address. Mache [15] replaces a data address with an offset,

which is the difference between the last same type address and the current

address. Packed Differential Address and Time Stamp (PDATS) have the

same function as Mache. PDATS [2] converts the absolute addresses and

time stamps into address offsets and time offsets. However PDATS is more

complex than Mache, as it introduces variable length encoding of the offset.

That means using the minimum number of bytes to encode address and time

stamp offsets. Stream-based Compression (SBC) [16] relies on extracting

instruction streams. A stream table is needed to keep relevant information

about streams. Using indexes in the stream table replaces the whole stream.

Value Prediction-based Compression (VPC) uses an address predictor,

which is a cache like structure to store recently executed data addresses. The

compression is achieved by replacing a data address with an identifier,

which points to the cache entry. The cache entry stores the correctly

predicted address.

In most applications, in order to yield excellent compression ratio,

special-purpose algorithms normally work together with general-purpose

algorithms.

22

CHAPTER 3

3. Compression Algorithm Selection

3.1. Algorithm Selection

Selecting a suitable compression algorithm among so many and

different algorithms is not an easy thing. While one algorithm can achieve

good compression ratio, the other can be with high throughput and another

may require less hardware cost. Hence selecting an algorithm is a trade-off

process.

According to the thesis requirements, the three key performances,

compression ratio (CR), throughput rate, and hardware cost, need to be

considered in high priority when the compression algorithms are selected.

In this thesis, the basic selection rules of the lossless data compression

algorithms are as following: Firstly, the compressor must meet the real-time

requirement. The operation time of data compression cannot be larger than

the input rate of trace data. Secondly, the hardware cost of the data

compressor should be low enough and the high compression ratio can be

achieved [1]. Thirdly, the compressor should be optimized for the

characteristics of the compressed data.

3.1.1. General Algorithm vs. Special Algorithm

General-purpose compression algorithms are chosen in this thesis

project. Selecting general-purpose compression algorithms is mainly based

on the three below reasons.

First of all, the characteristics of the trace data used in this thesis are

considered. In the application of this thesis, Ericsson adopts high level of

the Nexus trace class. There are more than 15 types of Nexus trace

messages. That means the employed compression algorithm need to perform

stably for all kinds of trace messages, not just for one or several types of

them, such as program trace message, data trace message, etc. However, the

modern special-purpose compression algorithms mainly focus on one

specific type of trace messages, such as program trace message or address

trace message. Thus choosing special-purpose algorithms and designing

different compressor for each different trace message will lead to a high

hardware cost and a high compression ratio in return. Considering the high

23

priority of hardware cost in this thesis, using a general-purpose algorithm is

a more reasonable approach.

Secondly, many specialized methods are not suitable for real-time trace

compression. Special-purpose techniques could be categorized into two

types: software-based and hardware-based. Most software-based

algorithms, such as PDAT, Mache, PDI, are not single-pass mechanisms,

they need to collect and save the source data firstly and then compress the

data. Hence the compression algorithms might not be fast enough to keep up

with the trace generation rate in hardware [1]. The hardware-based

algorithms are usually complex and with low throughput.

Lastly, in order to achieve a better compression ratio, most of the

special-purpose algorithms still need to work with another or several

general-purpose algorithms, such as, PDI work together with LZ77 in [2];

value predictor combines with Bzip2 in [18]; SBC need add Gzip in [16].

Such approaches would be cost-prohibitive or infeasible for real-time

compression in hardware [19]. Moreover, specialized compression

algorithms normally do not support an open license, which is not preferred

by this application.

Thus a general-purpose algorithm is a better choice for this application.

3.1.2. Dictionary-Based vs. Statistical vs. Combinational

In this thesis, dictionary-based compression algorithms are selected

based on the following four requirements.

The first requirement is the real-time compression. According to the

introduction of compression algorithms in section 2.1.2.3, static coding of

statistical algorithms use a known or default code word table for encoding.

The code word table stores a pre-defined frequency for each symbol of the

input file. When the input symbols’ distribution fits the expected

distribution stored in the static table, the static coding scheme can be

effective. However, if the input symbols do not match well with the stored

statistics, a poor compression result would be generated. It is possible that

output files are larger than input files. In this application, however, the

frequency distribution of Nexus trace data changes often and it is impossible

to know and store the distribution of every trace message in advance.

Therefore, static coding of statistical algorithms cannot be used in real-time

compression.

The other three key requirements are compression speed, compression

ratio and area overhead. These three requirements are related and affect

each other. A traded-off is thus needed. The algorithm with higher

24

compression ratio normally has higher complexity than the algorithm with

lower compression ratio. A complex algorithm means extra hardware cost

and slower compression speed. Therefore, the process of selecting a suitable

algorithm is a process to trade-off these three requirements.

Considering the requirements of this thesis, the design target is to

implement a compressor, which can provide fast compression speed and use

less area overhead with an acceptable compression ratio. In order to choose

a suitable algorithm from the three types of compression algorithms, some

test results of different types of data compressors processing the Nexus trace

data are shown in the below.

3.1.2.1 Evaluation Method

 Original file with trace data

All original files include Nexus trace data generated by DSPs in

Ericsson hardware platform.

 Timing measurement

All timing measurements refer to the sum of the user and the system

time reported by UNIX shell command time. In other words, only the CPU

time are reported and ignore any idle time such as waiting for disk

operations [18].

 Compression ratio measurement

Compression ratio is a metric to measure the efficiency of compression

algorithms. The definition of the compression ratio is shown in equation1.

The algorithm with a higher compression ratio means the algorithm has a

better compression.

Compression Ratio =
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑇𝑟𝑎𝑐𝑒 𝐹𝑖𝑙𝑒 𝑆𝑖𝑧𝑒

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑇𝑟𝑎𝑐𝑒 𝐹𝑖𝑙𝑒 𝑆𝑖𝑧𝑒
 (1)

 Compressor

All these compressors proposed in the following are implemented in

software.

Compressor using dictionary based algorithms:

(1) LZ77 algorithm compressor: LZ4.

(2) LZ78 algorithm compressor: LZW.

Compressor using statistical algorithms: Dynamic Huffman coding.

Compressor using combinational algorithms: Bzip2, LZMA.

25

 Compressor Performance Setting

All compressors use the “-fast” option. In order to obtain the best

compression performance, the dictionary size is increased to the maximum

size allowed in each compressor.

3.1.2.2 Evaluation Results

Fig. 3.1 shows the average compression ratio of the compressors, when

the Nexus trace data is compressed. Fig. 3.2 depicts the average

compression speed of compressors processing the Nexus trace data. In Fig.

3.1, the combinational algorithms (Bzip2 and LZMA) deliver the best

compression ratio. The difference of compression ratio between dictionary

based algorithms (LZ4 and LZW) and statistical algorithms (Huffman

coding) is not significant. However, the advantage of using complex

algorithms to get an excellent compression ratio results in low compression

speeds. In Fig. 3.2, the results show that combinational algorithms (Bzip2

and LZMA) need most compression time. The processing time of statistical

algorithms (Huffman coding) is more than those of dictionary based

algorithms (LZ4 and LZW).

Fig. 3.1. Average compression ratio for Nexus trace data.

26

Fig. 3.2. Average compression ratio for Nexus trace data.

Comparing the compression speed of the compressors in term of

execution time is not definitive. A comparison about average complexity of

the compressors is preferred. In this part, the complexity of LZ4 and the

complexity of Dynamic Huffman coding are compared. Since both LZ4

algorithm and Dynamic Huffman coding algorithm have lower complexities

compared with other dictionary based and dynamic statistical algorithms.

In order to compress data, dynamic Huffman coding uses a code word

table, which is adaptively constructed and maintained. Maintaining and

reconstructing the table is the most time consuming process for Dynamic

Huffman coding. Dynamic Huffman requires O(n) time step for maintaining

the code table, compared with O(n2logn) steps for reconstructing a new one

[20]. Hence, Dynamic Huffman coding has not been available for high-

speed applications because the maintaining and reconstructing is time-

consuming. In contrast with Dynamic Huffman coding, searching the

longest match string is the most time-consuming step of a LZ4 compressor

and forms the bottleneck of the performance. The average time complexity

of the searching step is O(1) [21]. The complexity of combinational

algorithms must be higher than other types of algorithms since the

algorithms are a combination of statistical algorithms and dictionary based

algorithms. Therefore, it is possible for dictionary-based algorithm to

achieve high throughput.

Hardware implementations of the three types of lossless algorithms

have been reported in some literatures [14], [20], [22], [23], [24], [25], and

[26]. In table 3.1, throughput and hardware cost reported in these

applications are listed. For both combinational compressors (Gzip, Bzip2,

and LZMA) and statistical compressors (dynamic Huffman coding), it is

difficult to achieve a high throughput due to their complex algorithms. The

27

throughput of Huffman coding is around 0.5 bits/clock cycle, which are

quite much lower than the thesis requirement. Moreover, the high

complexity of the combinational compressors (Gzip, Bzip2, and LZMA)

and statistical compressors (dynamic Huffman coding) is more hardware

area consuming. For example, the hardware implementation of LZMA

needs a 1.7M bit dual-port RAM and 120k gates. However, the dictionary

based compressors can achieve high throughputs with low hardware cost.

For example, the throughput of LZW can achieve 14 bits/clock cycle, at the

same time, the hardware area is lower compared with the area overhead of

combinational and statistical algorithms.

TABLE 3.1. HARDWARE IMPLEMENTATION OF COMPRESSOR.

Algorithm Processor Complexity
Throughput

(bit/clock)
Reference

RAM
bits

Equivalent
Gates

LZ77

AHA3521

(40MHz)

Not

Stated
Not Stated 4 [14]

Spartan II XC200
Xilinx FPGA

36k 27K Not Stated [22]

LZW

Virtex II

XC2V250-6fg456

Xilinx FPGA
(50MHz)

140k

dual-port
24K 14 [23]

Dynamic

Huffman
ASIC 4.5K 17.7K 0.5 [20]

Gzip
ASIC (IP core) 1.1M 250K 8 [24]

ASIC (IP core) 1.1M 610K 8 [24]

Bzip2

Stratix II

EP2S180F1020C3
3.3M 162K 1.5 [25]

Stratix II

EP2S180F1020C3
58.4M 1575K 1.5 [25]

LZMA

Virtex 5

XC5VFX70T
Xilinx FPGA

(100MHz)

1.7M
dual-port

120K max4 [26]

Based on the above analysis, it is clear that an implementation of a

statistical compressor in hardware is not an attractive design selection. It

would be cost-prohibitive in terms of on-chip area and would be low in

respect to throughput. Moreover, the compression ratio of a statistical

compressor is lower than others. In Fig. 3.1, the compression ratio of

Dynamic Huffman coding is the lowest. Actually, the implementation of

compression is mainly depended on finding and reducing redundancy.

Nevertheless, statistical algorithms have not this function. They are

commonly used to optimize the compression ratio. Hence, statistical

28

algorithms usually work together with dictionary based algorithms or the

other types of algorithms. Such as, in the application of Gzip, Huffman

coding is used to improve the compression result of the compression of

LZ77. For combinational algorithms, the complex algorithms produce the

best compression ratio but introduce huge area overhead. In addition, the

hardware realization of combinational models are quite complex for

achieving high throughputs. On the other hand, dictionary based algorithms

introduce acceptable area overhead and high throughput but sacrifice the

compression efficiency [27].

In general, according to the requirements of this thesis, a dictionary

based algorithm will be the best choice based on the following facts. 1) A

dictionary based compressor does not require prior knowledge or statistical

information of the symbols. Hence it can be in real-time. 2) A dictionary

based compression has low complexity and can achieve high throughput

with small hardware area and an acceptable compression ratio.

3.1.3. LZ77 vs. LZ78

Dictionary based algorithms have two basic categories, LZ77 and LZ78.

In this section, the selection between LZ77 and LZ78 is discussed. The

comparison is performed in two aspects, complexity and compression ratio.

3.1.3.1 Compression Ratio

Fig. 3.3 depicts the compression ratio of LZ77 and LZ78 algorithms

compressing Nexus trace data files. The result shows that LZ77 algorithm

outperforms LZ78 algorithm for smaller volumes of input data, which

typically characterize Nexus trace data. When the dictionary size is 512

bytes, the compression ratio of LZ77 is 1.64, which is better than the

compression ratio 1.29 of LZ78. LZ78 algorithm performs effectively on

large volumes of trace data. When the dictionary size is larger than 16M

bytes, the compression ratio of LZ78 exceeds the compression ratio of LZ77.

In addition, according to the work principle of LZ77 and LZ78, the smallest

dictionary size needs to be 512 bytes for LZ78 compressor. Conversely,

LZ77 can use 256 bytes dictionary. Therefore, LZ77 is more suitable to

compress Nexus trace data for small hardware area consuming.

29

Fig. 3.3. Compression ratio of LZ77 and LZ78.

3.1.3.2 Complexity

Table 3.2 shows the average time complexity of LZ77 and LZ78

algorithms. The compression speed for both LZ78 and LZ77 algorithms

depend on finding the maximum matching strings from the dictionary. For

LZ77 algorithm, a hash table is used to find the match strings. LZ78 uses

trie data structure to achieve matching strings [11]. The complexity of LZ77

is O(1), in contrast, the complexity of LZ78 is O(n) [28]. Hence LZ78 is

more complex than LZ77, which is supported by the result of compression

time in Fig. 3.4. In Fig. 3.4, LZ78 take more time to compress the same

amount of data. Therefore, it is more likely to achieve high throughput with

small area overhead using the LZ77 algorithm.

TABLE 3.2. COMPLEXITIES OF LZ77 AND LZ78.

Algorithm Data Structure Time Complexity(average)

LZ77 Hash Table O(1)

LZ78 Trie O(n)

30

Fig. 3.4. Compression time of LZ77 and LZ78.

3.1.3.3 Scalability

Using LZ77 algorithm is more convenient to achieve a complex

compressor. Most of combinational algorithms are a combination of LZ77

and a statistical algorithm. For example, Gzip compressor is the

combination of LZ77 and Huffman coding; LZMA compressor is the

combination of LZ77 and arithmetic coding.

In a conclusion, LZ77 could be a good choice for Nexus trace data. In

the following section, LZ77 algorithm and its implementation are discussed.

3.2. LZ77 Algorithm

The LZ77 algorithm was proposed by Ziv and Lempel in 1977[8]. It is a

dictionary based compression algorithm and does not require prior

knowledge or statistical characteristics of the symbols. This character makes

the LZ77 algorithm suitable for real-time compression.

The compression idea behind the LZ77 algorithm is to find a match

string in a dictionary and replace the same string by a triplet (distance,

length, next symbol). The third component “next symbol” is needed in cases

where no string has been matched. However, the compression performance

of LZ77 will be reduced when the third component is a part of every triplet.

 In this thesis, a variation of the LZ77 algorithm used in Deflate

algorithm is implemented. The algorithm eliminates the third component

“next symbol” and writes a pair (distance, length) on the compressed stream

[11]. Distance indicates the offset from the start of the match symbols found

31

in the sliding window to the current symbol. Length indicates the length of

the match symbols. When no match is found, the compressed output is (0,

literal). When a match is found, the compressed output is (1, distance,

length).

Considering that the available memory is limited, LZ77 algorithm uses

a sliding window. The window can be divided into two buffers, one is the

searching buffer, called dictionary, containing N symbols. The dictionary

maintains the strings used recently. The other is the coding buffer, called

look-ahead buffer, containing M symbols. The look-ahead buffer contains

the symbols to be processed.

The LZ77 processes data from left to right, inserting every string into

the dictionary and outputting the compressed results. Data compression is

achieved by performing four steps.

The first step is to initialize the dictionary and the look-ahead buffer.

The dictionary is filled with zeros and the look-ahead buffer is filled with

the input strings.

The second step is to search the dictionary and find the longest match

Lmax for a string in the look-ahead buffer. Finding the longest match string is

a key and the most time-consuming operation in the algorithm. The

approach to find the maximum matching string is based on a hash table

structure.

The third step is to output the compressed results. If a match string

cannot be found in the dictionary, the output is a literal, (0, literal). If a

match is found, the output is a distance-length pair, (1, distance, length).

The value of distance is the distance from the current string to the start of

the matching string, the value of length is the match length.

The last step is to insert the processed symbols into the dictionary and

input new symbols into the look-ahead buffer. If a match is found, Lmax new

symbols are placed in the look-ahead buffer by left-shifting the symbols in

both the look-ahead buffer and the dictionary.

An example is described to illustrate the compression algorithm.

Supposing the input sequence is “aacaacabcabac”. (Dictionary size N = 6

bytes, Look-ahead Buffer size M=4 bytes, min match length=2 bytes, max

match length Lmax=4 bytes). The compression procedure is shown in Fig. 3.5.

32

a a c a a c d b c a b A c Output

a a c a a c d b c a b A c (0,a)

a a c a a c d b c a b A c (0,a)

a a c a a c d b c a b A c (0,c)

a a c a a c d b c a b A c (1,3,3)

a a c a a c d b c a b A c (0,d)

 Dictionary(size=6) Longest match

 Buffer(size=4) Next Character

Fig. 3.5. Example of LZ77 compression.

In the beginning, the dictionary is empty. The look-ahead buffer is filled

with “aaca”. There is no match symbol found in the dictionary, the output is

a literal (0, a). The processed symbol “a” is moved in the dictionary with

index 0. The new input symbol “a” is moved into the look-ahead buffer.

The process restarts by finding the match symbol in the dictionary.

There is a match “a” found in the dictionary. However, the match length is

less than the minimum match length 2 bytes. Therefore, the output is a

literal (0, a). The processed symbol “a” is moved in the dictionary with

index 0. The new input symbol “c” is moved into the look-ahead buffer.

The process restarts. When there is no matching symbol found in the

dictionary, the output is a literal (0, c). The processed symbol “c” is moved

Dictionary

Lookahead

Buffer

33

in the dictionary with index 0. The new input symbol “d” is moved into the

look-ahead buffer.

The process starts again. There is now a new matching string found in

the dictionary. The longest match length is 3 bytes, which is longer than the

minimum matching length 2 bytes. The distance is 3 from the current

symbol to the beginning matched symbol. Therefore, the output is a literal,

(1, 3, 3).

The compressed steps continue until the end of the input file.

3.3. LZ77 Algorithm Simulation

In this section, the simulation results with different values of parameters

on the LZ77 algorithm performance are presented. The simulation code is

implemented in C. The performance is evaluated according to the

simulation results when the Nexus trace data generated from Ericsson’s

ASIC platform are compressed.

3.3.1. Parameters Analysis

In order to optimize the solution, there are three aspects, compression

ratio, compression speed, and hardware cost, which need to be explored

when implementing the LZ77 algorithm. There are six parameters affecting

these three performances. The parameters are dictionary size, look-ahead

buffer size, hash table size, minimum match length, minimum move length,

and the length of code word. In this part, an analysis on the influence of

these parameters on the performances is discussed.

 Dictionary Size

The larger the dictionary size is, the more the match symbols can be

found. Thus the compression ratio can be improved with the increased

dictionary size. However, the increased dictionary size will slow down the

compression speed. Because that the increased amount of matching

iterations make the compressor take more time to search the dictionary and

find the longest match string. At the same time, the larger dictionary size

means increasing hardware area.

 Hash Table Size

Increasing the hash table size can improve the compression speed, since

a larger hash table size can reduce the hash collision probability and the

amount of matching iterations. However, a larger hash table size needs more

memory space; hence higher hardware cost.

34

 Look-ahead Buffer Size

The size of look-ahead buffer is the maximum match length, which is an

input parameter depending on the input file and compression requirements.

A larger look-ahead buffer brings higher hardware cost. The effect of the

look-ahead buffer size on the compression ratio and the compression speed

is related to the characteristic of the input file, which is needed to be

analyzed through simulation.

 Minimum Move Length

Minimum move length means the number of symbols output from the

look-ahead buffer. Increasing the minimum move length means a decreased

number of match symbols, namely, a worse compression ratio. Basically,

there is no effect on the compression speed and hardware cost by increasing

the minimum move length.

 Code Word Length

The compression of LZ77 algorithm is achieved through transforming

variable length strings into fixed length code word (1, distance, length).

That means, the more match strings and the longer match strings are found

and replaced by the code word, the better compression ratio is obtained. At

the same time, the shorter code word is used, the better compression ratio is

achieved. Hence the compression efficiency depends on the size of

compressed result, namely the length of code word (1, distance, length).

A code word consists of 3 parts, (1, distance, length). The flag part “1”

needs 1 bit. The value of distance is the offset from the start of the match

symbols found in the dictionary to the current symbol. Therefore, the

distance part is determined by the dictionary depth. The range of it is from 1

to the depth of dictionary minus 1, which needs log2
(dictionary depth) bits. For

example, if the depth of dictionary is 256, the distance part needs 8 bits to

represent the range of distance.

The value of length indicates the length of the match symbol. It is

determined by the look-ahead buffer size. The maximum length is the length

of look-ahead buffer. It needs log2
(look-ahead buffer length) bits. For example, if the

look-ahead buffer size is 8 bytes, the length needs 3 bits to represent the

range of length.

 Minimum Match Length

Minimum match length is the match length, which is allowed to be

replaced by the code word. The minimum match length depends on the code

word length. In order to achieve a compression, the minimum match length

35

must be longer than the code word length. Otherwise, the compressed

Nexus trace file will expand other than shrink.

For example, in this paper, if the code word length is 10 bits or 11 bits,

thus the minimum match length must be 16 bits. If the match string is less

than 2 symbols, we do not replace the match string. Such as, if the match

string is 8 bits, the file will be expanded if the match string (8 bits) is

replaced by a code word (10 bits or 11 bits).

Increasing minimum match length does not affect the compression ratio.

However, the compression speed will be improved by increasing the

minimum match length. Since the probability of finding the matching

strings is reduced through increasing the minimum match length.

Based on the above analysis, the effects of the parameters on the

performances are not independent. Such as, increasing the dictionary size

can improve the compression ratio. However, the compression speed would

be slow and the hardware cost would be increased. In addition, these

parameters also interact with each other. Like the dictionary size determines

the range of code word, the length of code word determines the minimum

match length. Hence, optimizing the algorithm parameters is necessary to

trade off the compression performances (compression speed, compression

ratio) and hardware cost. To find optimized parameters, some simulations

with different parameters´ values need to be performed.

3.3.2. Simulation Results

Simulation with different parameters setting for the performances of the

LZ77 algorithm is performed using the Nexus trace data. Nexus trace data

are generated from Ericsson hardware platform.

1) Dictionary Size & Hash Table Size

The compression ratio and the compression speed with the different

dictionary size and hash table size are shown in Fig. 3.6 and Fig. 3.7. The

range of dictionary size M is from 256 bytes to 32K bytes. The range of

hash key N is from 8 bits to 15 bits. The hash table size is equal to log2
M*2N

bits.

Fig. 3.6 shows that when the dictionary size is the same, increasing the

hash table size does not effect on the compression ratio. The compression

ratio increases as the dictionary size increases. Fig. 3.7 shows that the

compression time increases with the dictionary size. The increased hash

table size reduces the compression time.

36

Increasing the dictionary size brings a higher compression ratio,

conversely, the hardware cost and the compression time increases

exponentially. Considering the high throughput requirement and

CR=1.5(about 33%) is acceptable, a dictionary size of 256 bytes is a

reasonable choice for hardware implementation with a good compression

efficiency. Hash key N of 15 bits could be a better choice to achieve a high

compression speed.

Fig. 3.6. Compression ratio with different dictionary size and hash table size.

Fig. 3.7. Compression time with different dictionary size and hash table size.

37

2) Look-ahead Buffer Size

Fig. 3.8 and Fig. 3.9 shows the compression ratio and the compression

speed how to change with the different dictionary size and look-ahead

buffer size.

The size of the look-ahead buffer is equal to the longest match length,

which is an input parameter of the algorithm. The effect of the look-ahead

buffer size on the compression ratio and the compression speed is related to

the characteristic of input file.

As shown in Fig. 3.8, for different dictionary size, the highest

compression ratio could be achieved when the look-ahead buffer size is

equal to 4 bytes. When the dictionary size is 256 bytes, the best

compression ratio is found when the look-ahead buffer size is from 2 bytes

to 8 bytes. Fig. 3.9 shows that for a given dictionary size the look-ahead

buffer size do not impact very much on the compression time as all curves

are almost flat.

Fig. 3.8. Compression ratio with different dictionary size and

look-ahead buffer size.

38

Fig. 3.9. Compression time with different dictionary size

and look-ahead buffer size.

3) Minimum match length

In Fig.3.10, the minimum match length has no impact on the

compression ratio. In Fig.3.11, the minimum match length slightly affects

the compression time. The longer the minimum match length is, the shorter

the compression time is. Hence, the minimum match length of 24 bits is a

good choice considering the compression speed requirement.

Fig. 3.10. Compression ratio with different hash table size

 and minimum match length.

39

Fig. 3.11. Compression time with different hash table size

and minimum match length.

4) Minimum move length

In Fig. 3.12, the bigger minimum move length will lead to a lower

compression ratio. Fig. 3.13 shows that the minimum move length has no

impact on the compression time. Hence, in order to achieve a better

compression ratio, minimum move length could be choose as 1 byte.

Fig. 3.12. Compression ratio with different dictionary size

 and minimum move length.

40

Fig. 3.13. Compression time with different dictionary size

and minimum move length.

According to the above analysis, table 3.3 shows the selected

compression parameters, which can achieve a good trade-off between

hardware complexity and application performance requirements.

TABLE 3.3. PARAMETERS SELECTION.

Compression Parameters

Size(bits)
Hardware Cost(Bytes) Compression Performance

Dictionary Size 256*8 Dictionary RAM 256
Compression

Ratio

30%

(estimated)

Look-ahead Buffer Size 4*8
Hash Table1

RAM
32K

Compression

Throughput

16bits/cc

(estimated)

Minimum Match Length 24
Hash Table2

RAM
256

Minimum Move Length 8

Hash Key Width 15

41

CHAPTER 4

4. LZ77 Hardware Implementation

This Chapter describes the LZ77 hardware implementation. Section 4.1

proposes a modified LZ77 algorithm. Section 4.2 provides a structure

overview of the LZ77 encoder and Section 4.3 gives an in-depth explanation

of the LZ77 hardware implementation.

4.1. Optimized LZ77Algorithm

In this section, based on the characteristic of Nexus trace data, an

optimized LZ77 algorithm will be discussed. The main aim of optimizing

the LZ77 algorithm is to improve the compression speed.

According to the principle of LZ77, the common structure of LZ77

compressor is shown in Fig. 4.1. There are 4 pieces of RAM, dictionary

RAM, hash RAM1, hash RAM2, and look-ahead buffer RAM. Dictionary

RAM is used to store the input Nexus trace data. Look-ahead buffer

contains Nexus trace data, which are needed to be processed. Hash RAM1

and hash RAM2 maintain the address information of Nexus trace data in

dictionary. Controller is used to find the match string and output the

compressed results.

For LZ77 encoding, the main task of the compressor is to find a match

string. Finding the longest match string in LZ77 algorithm is based on the

hash table chain structure [11]. The hash RAM1 and hash RAM2 contain

the address information of a 3-symbol string in the dictionary. LZ77

compressor computes a hash value using a 3-symbol string output from the

look-ahead buffer. The hash value is used as an index of the hash RAM1

that has 215 entries. A 3-symbol string is hashed according to the hash value.

The following cases can occur when we search for the maximal match string.

(1) If there is no the address information in the hash RAM1, which means

no match string can be found in the dictionary. Then the offset of a 3-

symbol string in the dictionary is stored in the hash RAM1. (2) If the hash

RAM1 has the offset information and the hash RAM2 has no offset

information, which means just one match might be found, thus the offset in

the dictionary of a 3-symbol string is stored in the hash RAM1 and the old

offset information stored in the hash RAM1 are moved into the hash RAM2.

At the same time, the encoder examines the match string. (3) If both the

hash RAM1 and hash RAM2 have the address information, which means a

42

hash collision happens. The performance of finding the maximum match

string will be performed according to the address information in both the

hash RAM1 and hash RAM2. A hash collision occurs basically as the hash

index has 224 values and the hash RAM1 has 215 entries. It means that many

3-symbol strings are mapped to the same entry in hash RAM1. When a hash

collision occurs, the old address information stored in the hash RAM1 are

moved into the hash RAM2, and the new address information is stored in

the hash RAM1. This is time consuming.

Fig. 4.1. Structure of the LZ77 compressor.

Finding the maximum match string is the key and the most time

consuming operation in the compression process. The compression speed

mainly depends on the time of finding the longest match string in the

dictionary. In this thesis, the input speed of Nexus trace data is 16 bits/clock

cycle. In order to satisfy the real-time requirement, the operation time for

data compression cannot be larger than the input rate of trace data. However,

when the hash collision occurs, many clock cycles are used to read the

dictionary and match the string. This makes it hard to meet the requirement

of compression speed (16 bits/clock cycle) at a small hardware cost. To

address this problem, an optimized LZ77algorithm is proposed. There are

two aspects modified. One is the format of code word. The other is the hash

table.

43

 Code Word

We propose to change the format of a code word from (1, distance,

length) to (1, distance). It means that we have fixed match length. The code

word design is crucial in achieving a good compression ratio. It should be

noted that the compression efficiency greatly depends on the ratio of code

word length and the length of replaced match string. Higher compression

ratio can be obtained when the code word length is shorter.

In general a code word contains 3 parts, which is flag, distance, and

length. The distance part is determined by the dictionary depth. In this thesis,

the depth of dictionary is 128 (27) bytes, the distance need 7 bits. The flag

part “1” is 1 bit. The length part, which is determined by the look-ahead

buffer size, represents the maximum match length. In Fig. 3.8, the

compression ratio is the highest when the maximum match length is 2 bytes

to 8 bytes when the dictionary size is 256 bytes. If the maximum match

length is selected to 2 bytes, the length should be 2 bits. Thus the code word

length is 10 bits. If the maximum match length is 8 bytes, the length should

be 3 bits. Then the code word length is 11 bits. A consequence is that there

is no point to compress an input symbol of length 8 bits, as it will result in a

compressed result of 10 (or 11) bits. Thus we set the minimum match length

to be 16 bits when the code word length is either 10 bits or 11 bits.

We can make the code word length shorter by setting the maximum

match length to be equal to the minimum match length. The format of code

word is then simplified from (1, distance, length) into (1, distance). The

advantage is that the information about length is not needed as every match

length is 2 bytes. The benefit is that instead of using 10 bits, we only need 8

bits. The compression ratio can be increased when the same match string

can be replaces by shorter code word.

 Hash Table

The hash table is optimized by avoiding hash collisions, which can

improve compression speed. When the minimum match length is 3 bytes

and the hash table entries are set at 224, no hash collision can occur.

However, the hardware cost will be 16M bytes, which is cost-prohibitive.

Instead, if the minimum match length is 2 bytes, the hash table will be 64K

bytes and no hash collision will occur. Compared to the hardware cost 16M

bytes, the hardware cost 64K bytes can be accepted. The advantage with the

2 bytes alternative is that the cost of memory is significantly reduced. At the

same time, the compression speed is improved. Finding match string can be

implemented in one clock cycle.

44

In general, the hardware cost and compression performances can be

traded off through optimizing the LZ77 algorithm. The parameters of

optimized LZ77 algorithm are listed in table 4.1.

TABLE 4.1. PARAMETERS SELECTION.

Compression Parameters
Size(bits)

Hardware Cost
(bytes)

Dictionary Size 128*16 Dictionary RAM 256

Look-ahead Buffer Size 2*8 Hash Table1 RAM 64K

Minimum Match Length 16

Minimum Move Length 16

Hash Key Width 16

4.2. Hardware System Structure

4.2.1. Hardware Approaches

To fulfill real-time compression and speed up the string match time, two

major hardware implementation methods are presented in the literature [17],

[22], and [29]. One is Content Addressable Memories (CAM) approach, the

other is systolic array approach.

 CAM approach

The CAM approach performs string match by full parallel searching. A

CAM-based LZ77 compressor can process one input symbol per clock cycle.

CAM has been considered the fastest architecture among all proposed

hardware solutions. However, CAM uses much hardware and high power

consumption [22]. The area of the CAM is approximated to be twice as

much as the area of a RAM of the same capacity [17].

 Systolic Array Approach

The systolic array is a regular pattern of processing elements

interconnected in a simple way. Each processing element is connected to its

adjacent element. The basic idea is to lay out an identical pattern of

processing elements with simple interconnections [29]. Systolic array

approach performs string match by pipelining. Compared with CAM

approach, systolic array compressors are slower, however better in hardware

cost [22].

45

Both the CAM approach and the systolic array approach result in poor

portability. Hence, a state machine approach, which can be easily

transferred to different architecture, is adopted in this thesis.

4.2.2. Architecture Overview

The hardware structure of the optimized LZ77 encoder is illustrated in

Fig. 4.2. The hardware of LZ77 compressor consists of a controller (finite

state machine) and two two-port RAM. In this application, a format block is

added based on the platform requirement. According to the parameters

selection in section 4.1, the size of dictionary memory is 128*16 bits and

the hash table memory size is 216 *8 bits.

The controller block, which is a finite state machine (FSM), is

responsible for processing synchronization and administrating the

collaborations between different sub-modulations. Nexus trace messages are

stored in the dictionary RAM and sequentially clocked into the system. The

addresses of processed trace messages in the dictionary are stored in the

hash table RAM. The compressed results are sent to the format block and

output in 64 bits/line format from the format block.

Fig. 4.2. Modified LZ77 compressor structure.

4.2.3. Operating Principle

The whole system works in one clock domain and the reset is an active

low input signal used to reset the entire system. When the system receives a

“enable” signal, the system starts to work and sends “rd_signal” signal to

the testbench. Then the testbench starts to send the Nexus trace data to the

compressor.

46

The Nexus trace messages are firstly stored in the dictionary RAM.

When the first trace message is stored, the system starts to read the trace

messages from the dictionary RAM and finds the match string in the

dictionary RAM through checking the index of the hash table. If a match

string is found, the controller sends a pair (1, distance) to the format block

with a high signal “wrdis”. If no match string is found, the signal “wrlit” is

set high and the original literal is sent to the format block in (0, literal)

format. In the format block, the trace messages are sent out in 64 bits/line

format when the signal “wrdata” is high.

4.3. Block Descriptions

In this section, the functions of all the sub-modules are described. Both

the controller and the format blocks are implemented with a state machine

approach.

4.3.1. Storage Blocks

In Fig. 4.2, there are two two-port RAMs used in the compressor: a

dictionary RAM and a hash table RAM.

 Dictionary RAM

The dictionary RAM is used to store the input trace data. Considering

the input speed of Nexus trace data is 16 bits/clock cycle and the size of

dictionary is 256 bytes, therefore the RAM size is 128*16 bits.

Every row of the dictionary is used as the look-ahead buffer since the

minimum move length and the minimum match length are 2 bytes.

The initial values of the dictionary RAM are zero. When the compressor

starts to work, the trace messages are stored in the dictionary RAM and

sequentially clocked into the look-ahead buffer for processing.

 Hash Table RAM

The hash table RAM contains the address information of the trace data

in the dictionary. The entries of the hash table are 216. The RAM size is

216*8 bits.

The initial values of the dictionary RAM are 128. The highest bit of

every row is a flag for refreshing the hash table. If the row is never written,

the value of the bit is 1. Otherwise, if the row is written, the value of the bit

is 0. The other 7 bits are used to store the address of the trace data in the

dictionary since the maximum distance of a match symbol is 127.

47

Fig. 4.3. Description of hash table RAM.

4.3.2. Controller Block

The controller block is the main functional block. The actual

implementation in the controller block can be broken down into four key

parts: match block, update block, data discriminator, and output generator.

These blocks are detailed below.

4.3.2.1. Interface Overview

wrlit

doutlit[16:0]

doutdis[7:0]

wrdis

 enable

 stop

 rd_signal

addra[6:0]

addrb[6:0]

ena

enb

wea

dinlit[15:0]

enah

enbh

weah

addrah[15:0]

addrbh[15:0]

douth[7:0]

dinh[7:0]

Format

block

Hash

table

RAM

Testbench

Dictionary

RAM

flag[7] address[6:0]

48

4.3.2.2. Functionality

When the compressor begins to work, it assigns the correct start-up

values to all variables. The hash table RAM needs to be set the initial value

128. The initial values of literal register group are 65536. The initial values

stored in dictionary RAM are 0.

 Match block

When this block is trigger by the “enable” signal, the Nexus trace data

are sequentially clocked into and stored in the dictionary RAM. The input

speed of trace data is 16 bits/clock cycle, the width of dictionary RAM is 16

bits. Therefore the trace symbol, which is 16 bits wide, can be written in a

clock. After data is written in the dictionary RAM, Nexus trace data is read

out in the next clock cycle. The reading operation is always delayed one

clock cycle compared to the writing operation. As soon as Nexus trace data

are available, the matching operation begins.

The trace data read from the dictionary RAM is used as the hash table

address to lookup the hash table. If the value in the corresponding address of

hash table is 128, no match string is found in the dictionary RAM. The

compressor output the pair (0, literal). The address of the trace symbol in

the dictionary RAM is then written into the corresponding address of the

hash table. For example, assuming the trace symbol is 13 and its address in

the dictionary RAM is 27. The compressor will check the hash table address

13 and write 27 in the address when there is no match symbol found.

If the value in the corresponding address of hash table is not 128, a

match string is found in the dictionary RAM. The controller reads the value

from the Hash table RAM and calculates the difference between the value

output from the Hash table RAM and the address of trace data in dictionary

RAM. The compressor output the pair (1, distance). For example, assuming

the trace symbol is 13 and its address in the dictionary RAM is 27, the value

in hash table address 13 is 5. The compressor will check the hash tables

address 13 and output (1, 27-5) when there is a match symbol found.

 Update Block

The hash table needs to be refreshed when the dictionary is full since

the contents of hash table are the address information of trace symbols in

the dictionary RAM. This means when a trace symbol is written in the

address 127 of the dictionary RAM. The hash table will be refreshed.

In this thesis, the compressor uses a register group and a two-port RAM

to refresh the hash table instead of two pieces of RAM considering the

hardware cost and compression speed. Using this approach, the system does

49

not need to stop the compression process and spend extra clock cycles

waiting for the hash table to be refreshed. The advantage is that the

compression speed can always be kept at 16 bits/clock cycle.

The register group has 128 registers and the width of the register is 17

bits. The compressor initializes each register with 65536 as the dictionary

RAM is full. The highest bit of the register is a flag for judging whether the

register is modified. If the value of the flag is 1, the register is never written.

Otherwise if the register is modified with writes, the value of the flag is 0.

The other 16 bits is for storing the trace symbols.

Fig. 4.4. Description of register group.

Every time when the addresses of trace symbols are stored in the hash

table RAM, the trace symbols are also written in the register group. When

the output from the hash table is not 128, the system will check the register

group. If the same trace data can be found, it means there is a match string

in the dictionary RAM. The compressor output the pair (1, distance).

Otherwise if there is no the same trace symbol found, it means no match

string in the dictionary RAM. The address of the trace symbol in the

dictionary RAM is written into the corresponding index of the hash table.
The trace symbol is stored in the register group. The compressor output the

pair (0, literal).

 Output data

The replacement principle is as following. When a match string is

found, the output data is a pair (1, distance). When no match string is found,

the output data is a pair (0, literal).

Data compression is achieved through finding a match string in the

dictionary and replacing the match string in the look-ahead buffer with the

distance from current string to the match string. When a match string is

found, the string is compressed and the output data is a pair (1, distance). In

this thesis, the length of a string is 16 bits. The size of dictionary is 128*16

bits. Hence the maximum distance is 127, which can be represented with 7

bits. The length of a pair (1, distance) is 8 bits. Therefore, a trace file can be

compressed through replacing a string which is 16 bits with a pair (1,

distance).

 Data Discriminator

……

flag[16] symbol[15:0]

50

This block is used to discriminate if there is a match string in three

successive trace data. A pipeline is used to improve the throughput. There is

one clock cycle delay when read of the trace data from RAM. So the special

situation when there are the same trace symbols are input successively

within three clock is needed to be discriminated in advance to compensate

the delay of reading operations from the dictionary RAM and the hash table

RAM.

There are three special situations to be discriminated when the trace

messages are sequentially clocked into the system. The first situation is that

three same trace symbols are input continuously, such as “222”. The second

situation is that two same trace symbols are input continuously, such as

“221”. The last situation is that two same trace symbols are input and a

different symbol is put between these two symbols, such as “212”.

4.3.3. Format Block

4.3.3.1. Interface Overview

4.3.3.2. Functionality

This block is used to arrange the format of the compressed results from

the controller. The compressed results are either a pair (0, literal) with 17

bits or a pair (1, distance,) with 8 bits. The width of data is 64 bits/line

outputted from the format block. Since the width of an output data is 64 bits,

which cannot be divided exactly by 17 bits, there are several specific

situations to be considered. Table 4.2 lists the situations in detail.

When the 64 bits output signal “dout” is full of compressed messages,

the signal “wrdata” becomes high and the data is sent out to the test bench.

dout[63:0]

wrdata

 enable

 stop

 dinlit[16:0]

 wrlit

 dindis[7:0]

 wrdis

51

TABLE 4.2. INPUT AND OUTPUT LOGIC TABLE.

Width Y of input data Empty bits X of output Condition

17 bits

(0, literal)
X=17 bits

X=Y, the literal can be put

exactly.

17 bits
(0, literal)

X<17 bits

X<Y, only part of the literal

can be put, the next input data
is a literal.

X<Y, only part of the literal

can be put, the next input data
is a pair (distance, length).

8 bits

(1, distance)
X=8 bits

X=Y, the literal can be put

exactly.

8 bits

(1, distance)
X<8 bits

X<Y, only part of the literal
can be put, the next input data

is a literal.

X<Y, only part of the literal

can be put, the next input data

is a pair (distance, length).

4.4. Tests and Results

To evaluate the LZ77 compressor, a series of tests are completed on a

set of Nexus trace data. Fig. 4.5 shows the test approach, the compressed

files are decompressed and the correctness of compressed results is analyzed

through comparing the decompressed file with the original input file. The

decompression program is implemented in C code.

Fig. 4.5. Verification environment.

52

The original input file is binary files, which need to be converted

into .txt files. The LZ77 compressor processes the input files and sends the

compressed results to the test bench. The compressed data are generated

into compressed files through the test bench. The compressed files are text

files and need to be converted into binary files. After decompressed by the

decompression program, the decompressed files are compared with the

original Nexus files. The comparator shows the analysis result.

4.4.1. Evaluation Method

 Test file

All test files are the Nexus trace data generated by DSPs in Ericsson

hardware platform. The files are named file1, file2, and file3, which are

listed in Table 4.3.

 Compressor

All these compressors described in the following are implemented in

software.

Compressor using dictionary based compression algorithms:

(1) LZ77 algorithm compressor: LZ4.

(2) LZ78 algorithm compressor: LZW.

Compressor using statistical compression algorithms:

(3) Dynamic Huffman coding

Compressor using combinational compression algorithms:

(1) Bzip2, LZMA, Gzip

 Compressor Performance Setting

All compressors use the “-fast” option. In order to obtain the best

compression performance, the dictionary size is increased to the maximum

size allowed in each compressor.

4.4.2. Test Results

 Compression Ratio

In Table 4.3, the compression ratio for each of the three files is reported

for each compression algorithm. The average compression ratio of this

thesis is 1.35, which is lower than the compression ratio requirement 2

proposed in chapter 1. However, the achieved compression ratio is based on

the smallest dictionary size 256 bytes. In contrast, the compression ratio of

LZW is 1.32 with dictionary size 512 bytes. The compression ratio of Gzip

53

is 2.16 with the dictionary size 32K bytes. The compression ratio of LZ4 is

1.62 with the dictionary size 16K bytes. In Section 3.3.2, we know

increasing the dictionary size can improve the compression ratio. Hence the

compression ratio can be improved by increasing the dictionary size. The

simulation results show that the compression ratio can achieve 1.9 when the

dictionary size is 32K bytes. We notice that the compression ratio, 2 to 5, is

hard to achieve if only one type of compression algorithms is used, unless a

huge dictionary size is adopted. A combinational compression algorithm is

recommended to get a 2 to 5 compression ratio. Such as, all the compression

ratios of combinational algorithms are higher than 2 in Table 4.3. At the

same time, we compare the compression ratio with optimized code style

against the compression ratio with the regular code style. The results are

collected in Table 4.4. We observe that the optimized code word style

improves the compression ratio.

 FPGA Resources Utilized

Table 4.5 summarizes the FPGA utilizations for the hardware

implementation of the compressor. The design is compiled using Xilinx

ISE13.4 software. The type of FPGA is Virtex7XC7VX485T-1. The delay

and the hardware cost are mainly generated by the format block. Table 4.6

lists the device utilization of the compression part.

TABLE 4.3. COMPARASION OF COMPRESSION RATIO.

Data Sample

(Nexus Trace Data)

Compression Ratio
(Size of uncompressed data / Size of compressed data)

Combinational Dictionary Statistical

 Gzip Bzip2 LZMA Thesis LZ4 LZW Huffman

 File1 (1.8MB) 2.0 2.95 4.21 1.4 1.5 1.28 1.29

File2 (2.6MB) 2.0 2.97 4.09 1.9 1.52 1.3 1.3

 File3 (3.5MB) 2.5 3.5 4.19 2.5 1.84 1.4 1.34

Average

Compression Ratio
2.16 3.14 4.16 1.35 1.62 1.32 1.31

54

TABLE 4.4. COMPARASION OF CODE STYLE.

Data Sample
(Nexus Trace Data)

Proposed code style
(1,distance)

Traditional code style
(1,distance,length)

 Compression Ratio Compression Ratio

 File1 (1.8MB) 1.28 1.2

File2 (2.6MB) 1.36 1.24

File3 (3.5MB) 1.4 1.3

Average

Compression Ratio
1.35 1.25

TABLE 4.5. FPGA RESOURCE UTILIZATION OF THE COMPRESSOR.

Synthesis configuration Complexity

FPGA

Maximum

Frequency

Throughput
opt_mode opt_level

RAM

(Bytes)

Number of

Slice LUTS

Number of Slice

Registers

speed normal
64K +256

(two-port)
26825 2564

Virtex 7

XC7VX

485T-1

123MHz

16 bits/cc

speed high
64K +256

(two-port)
24121 2516 120MHz

area normal
64K +256

(two-port)
26571 2500 55MHz

area high
64K +256

(two-port)
22960 2499 95MHz

TABLE 4.6. FPGA RESOURCE UTILIZATION OF COMPRESSION PART.

Synthesis
configuration

Complexity

FPGA

Maximum
Frequency opt_mode opt_level

RAM
(Bytes)

Number of

Slice LUTS

Number of

Slice Registers

Speed normal
64K +256
(two-port)

5865 2386

Virtex 7
XC7VX
485T-1

158MHz

Speed high
64K +256
(two-port)

4911 2420 158MHz

Area normal
64K +256
(two-port)

5899 2308 116MHz

Area high
64K +256
(two-port)

4859 2308 138MHz

It is hard to directly compare the hardware cost with other hardware

implementations reported in literature. Since the used FPGAs are different.

In addition, the selected parameters are different also. Here a rough

55

comparison with other implementations is listed in the Table 4.7. The

calculation of Equivalent Gates is according to the Xilinx’s 7 series FPGA

specifications. According Xilinx’s design guide, in this thesis, we assume

one LUT equals 15 gates and one register equals 7 gates [30], [31]. This

compressor can achieve a higher throughput with hardware complexities

compared to previous compression approaches.

TABLE 4.7. COMPARISION HARDWARE COST AND THROUGHPUT.

Algorithm Processor

Hardware Cost

Throughput

(bits/clock)
RAM size

(bytes)

Equivalent

Gates

Dynamic

Huffman [20]
ASIC

4.5K

(CAM)
17.7K 0.5

LZRW [32] ASIC 38K 60K 7

Thesis
Virtex 7

(XC7VX485T)

64K+256

(two-port)
89K 16

Gzip[24] ASIC 143K 610K 8

Bzip2
Stratix II

(EP2S180F1020C3)
7.3M 1575K 1.5

LZMA[26]
Virtex 5

XC5VFX70T

212K

(dual-port)
120K 4

56

CHAPTER 5

5. Conclusion and Future Work

5.1. Conclusion

The subject of the dissertation is to implement a real-time lossless

Nexus trace data compressor. This thesis investigates the state-of-the-art of

lossless algorithms. The background of compression algorithms is presented

in Chapter 2. In Chapter 3, the feasibility of different types of lossless

algorithms in hardware implementation is examined. The LZ77 algorithm is

selected through analyzing the three main performances, compression ratio,

compression speed, and hardware overhead. We explore the characteristics

of Nexus trace data through simulation and determine the parameters based

on the thesis requirements.

An optimized LZ77 compression algorithm is introduced in Chapter 4.

There are two modified aspects. The first aspect, the compressed data are

output in a pair (1, distance) instead of a triple (1, distance, length). The

match length information is omitted. Because the maximum match length is

equal to the minimum match length based on the characteristics of Nexus

trace data – the compression ratio perform the best on a short match. The

second aspect, the entries of the hash table are set equal to 215 in order to

improve the compression speed. Compared with the original LZ77

algorithm, this approach reduces the hash collision probability and the

amount of matching iterations. Therefore, the speed of finding the

maximum match string becomes faster.

The goal of this thesis is to achieve a data compressor that will meet the

performance requirements, while minimizing the implementation cost. Test

results have shown that the compression speed is 16 bits/clock cycle, which

meet the speed requirement. The average compression ratio is 1.35 with the

minimum hardware cost. The compression ratio is improved from 1.25 to

1.35 when the optimized code word style (1, distance) is used.

In general, the optimized scheme achieves a trade-off between the

hardware cost and the compression performances. The optimized LZ77

algorithm proposed in this dissertation is a cost-effective compressor

focusing on Nexus trace data.

57

5.2. Future Work

There is still a space to improve the compression ratio without

increasing the hardware cost hugely.

The first approach is to reduce the minimum move length from 2 bytes

into 1 byte. According to the simulation results in section 3.3.2, the

compression can be improved about 4% when the minimum move length is

decreased from 2 bytes into 1 byte. But the compression time might be

affected by this modification.

The second approach is to do pre-processing on the Nexus trace data to

make it more suitable for the dictionary based compression algorithms.

Such as, for the time part, a differential processing can be used. Thus only

the differential time is needed to be kept in the trace messages. Therefore

the time part could be represented in a shorter code word. Based on

calculation, the compression ratio can be improved approximately 7%.

However, it is hard to increase the compression ratio higher than 2 if

only the above two approaches are used. If the application requires the

compression ratio greater than 2, a combinational compression algorithm is

recommended. However, the hardware cost will increase.

58

References

[1] C.Kao, S.Huang, and I.Huang, “A Hardware Approach to Real-Time

Program Trace Compression for Embedded Processors,” IEEE

Transactions on Circuits and Systems, vol. 54, no. 3, pp. 530-542,

March 2007.

[2] E.Johnson, J.Ha, and M.Zaidi, “Lossless Trace Compression,” IEEE

Transactions on Computers, vol. 50, no. 2, pp. 158-173, February

2001.

[3] V.Uzelac, “Algorithms and Hardware Structures for Real-Time

Compression of Program Traces,” 2010.

[4] The Nexus 5001Forum Standard for a Global Embedded Processor

Debug Interface, IEEE-ISTO, http://www.nexus5001.org/standard

[5] Design Specification for Debug in Ericsson.

[6] M.Morales-Sandoval, “Hardware Architecture for Elliptic Curve

Cryptography and Lossless Data Compression,” 2004.

[7] PM.Nishad, “A Novel Approach to Reduce Computational Complexity

of Multiple Dictionary Lempel Ziv Welch Mdlzw Using Indexed K

Nearest Twin Neighbor Ikntn Clustering and Binary Insertion Sort

Algorithms,” 2015.

[8] J.Ziv and A.Lempel, “A universal algorithm for sequential data

compression,” IEEE Transactions on Information Theory, vol. 65, no.

3, pp. 337-343, May 1977.

[9] J.Ziv and A.Lempel, “A compression of individual sequences via

variable-rate coding,” IEEE Transactions on Information Theory, vol.

IT-24, no. 5, pp. 530-536, Sep. 1978.

[10] http://ethw.org/History_of_Lossless_Data_Compression_Algorithms

[11] D.Salomon, “Data Compresssion Fourth Edition,” British, Springer,

ISBN978-1-84628-602-5, 2007.

[12] T.Bonny, “Huffman-based Code Compression Techniques for

Embedded Systems,” 2009.

[13] T.Kumaki, Y. Kuroda, T.Koide, and H.Mattausch, “CAM-Based

Huffman Coding Architecture for Real-Time Applications,” Japan.

http://ethw.org/History_of_Lossless_Data_Compression_Algorithms

59

[14] J.Nunez and S.Jones, “Gbit/s Lossless Data Compression Hardware,”

IEEE Transaction on Very Large Integration Systems, vol. 11, no. 3,

pp. 499-510, June 2003.

[15] A.D.Samples, “Mache: No-less trace compression,” ACM

Performance Eval. Rev., vol. 17, no. 1, pp. 89-97, May 1989.

[16] A.Milenkovic and M. Milenkovic, “Streamed-Based Trace

Compression,” IEEE Computer Architecture Letters, vol. 2, 2003.

[17] E.Anis and N.Nicolici “On Using Lossless Compression of Debug

Data in Embedded Logic Analysis,” IEEE International Test

Conference, pp. 1-10, 2007.

[18] M.Burtscher, I.Ganusov, S.Jackson, and N.Sam, “The VPC Trace-

Compression Algorithms,” IEEE Transactions on Computers, vol. 54,

no. 11, pp. 1329-1344, November 2005.

[19] V.Uzelac, A.Milenkovic, M.Milenkvic, and M.Burtscher, “Using

Branch Predictors and Variable Encoding for On-the-Fly Program

Tracing,” IEEE Transactions on Computers, vol. 63, no. 4, pp. 1008-

1020, April 2014.

[20] L.Liu, J.Wang, J.Lee, and R.Wang, “CAM-Based VLSI Architecture

for Dynamic Huffman Coding,” IEEE Transactions on Consumer

Electronics, vol. 40, no. 3, pp. 282-289, August 1994.

[21] http://bigocheatsheet.com/

[22] M.EL, A.Salama, and A.Khalil, “Design and Implementation of

FPGA-based Systolic Array for LZ Data Compression”.

[23] S.Naqvi, R.Naqvi, R.Riza, and F.Siddiqui, “Optimized RTL Design

and Implementation of LZW Algorithm for High Bandwidth

Applications,” PRZEGLĄD ELEKTROTECHNICZNY (Electrical

Review), Vols. ISSN 0033-2097, p. R. 87 NR, April 2011.

[24] http://inomize.com/index.php/content/index/gzip-hw-accelerator.

[25] S. Arming, R.Fenkhuber, and T.Handl, "Data Compression in

Hardware - The Burrows-Wheeler Approach," IEEE, 2010.

[26] I.Shcherbakov and N.Wehn, “A Parallel Adaptive Range Coding

Compressor: Algorithm, FPGA Prototype, Evaluation,” in the Data

Compression Conference, pp. 119-128, 2012.

[27] K.Basu and P.Mishra, “Efficient Trace Data Compression using

Statically Selected Dictionary,” IEEE VLSI Test Symposium, pp. 14-

19, 2011.

http://bigocheatsheet.com/
http://inomize.com/index.php/content/index/gzip-hw-accelerator

60

[28] http://bigocheatsheet.com/.

[29] J.Storer and J.Reif, “Parallel Architecture for high Speed Data

Compression,” 3rd Symposium on the Frontiers of Massively

Parallel computation, 1990.

[30] http://www.xilinx.com/training/fpga/what-is-the-difference-between-

an-fpga-and-an-asic.htm.

[31] http://www.xilinx.com/publications/prod_mktg/low-end-portfolio-

product-selection-guide.pdf.

[32] http://www.heliontech.com.

http://www.xilinx.com/training/fpga/what-is-the-difference-between-an-fpga-and-an-asic.htm
http://www.xilinx.com/training/fpga/what-is-the-difference-between-an-fpga-and-an-asic.htm
http://www.xilinx.com/publications/prod_mktg/low-end-portfolio-product-selection-guide.pdf
http://www.xilinx.com/publications/prod_mktg/low-end-portfolio-product-selection-guide.pdf
http://www.heliontech.com/

R
eal-Tim

e Lo
ssless C

o
m

p
ressio

n
 o

f So
C

 Trace D
ata

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, December 2015.

Real-Time Lossless Compression
of SoC Trace Data

Jing Zhang

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2015-478

http://www.eit.lth.se

Jin
g

 Zh
an

g

Master’s Thesis

