
A
n

alysis o
f th

e n
ite len

g
th

 p
erfo

rm
an

ce o
f sp

atially co
u

p
led

 co
n

vo
lu

tio
n

al co
d

es

Department of Electrical and Information Technology, 
Faculty of Engineering, LTH, Lund University, November 2015.

Analysis of the nite length
performance of spatially coupled 
convolutional codes

Ardiana Osmani
Hector Eric Moreno Trujillo

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2015-472

http://www.eit.lth.se

A
rd

ia
n

a O
sm

a
n

i &
 H

e
cto

r Eric M
o

re
n

o
 Tru

jillo

Master’s Thesis



Analysis of the �nite length performance of

spatially coupled convolutional codes

Ardiana Osmani

Hector Eric Moreno Trujillo

Department of Electrical and Information Technology

Lund University

Advisor: Michael Lentmaier

Saeedeh Moloudi

November 19, 2015



Printed in Sweden
E-huset, Lund, 2015



Abstract

Error control coding is an essential part of any well-designed digital communication
system. It has been used in structures to protect the information, by enabling reli-
able delivery of digital data over unreliable communication channels. Even though
this is an old topic, enlisted by Shannon in the late 40's, a lot of research is still
going on. There have been recently some interesting approaches about spatially
coupled LDPC codes and it promises excellent performance over a broad range of
channels.

Part of the current research by the Department of Electrical and Information
Technology is the construction of spatially coupled turbo like codes, including
braided convolutional codes (BCC) and their generalization. The behavior of this
type of codes when the length approaches in�nity has been analyzed and looks
very promising.

In this thesis we have investigated such codes in the �nite length regime. The
�rst thing that we do is implementing two decoders of rate 1/2 and rate 2/3 based
on the BCJR algorithm for convolutional codes. This is then used as a com-
ponent decoder for all constructions. Then we implement two di�erent kinds of
codes, parallel concatenated codes (PCC) and braided convolutional codes (BCC).
Furthermore we constructed three di�erent ensembles for coupled codes, spatially
coupled parallel concatenated codes and spatially coupled braided convolutional
code for two di�erent types which we call Type I and Type II. We also implement
a sliding window decoder for the spatially coupled ensembles.

In order to visualize the results we implement a simulation environment, we es-
timated the bit error probability with di�erent values of Eb/N0 for all the con-
structions. Since the computation time for these simulations was high, we used
the Alarik lunarc cluster facilities based in Lund university. We started by imple-
menting everything in Matlab but after evaluating the processing time, we decided
to implement the BCJR algorithm in C++. By doing this we managed to save a
lot of simulation time.

We plot all the points for the di�erent constructions in di�erent �gures. With
the help of the �gures we analyze the performance of the di�erent constructions.
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We can see that braided convolutional codes do not present an error �oor, which
is one of the drawback of parallel concatenated turbo like codes. This investi-
gation enables us to observe that the performance of spatial coupling for �nite
length gives a signi�cant BER performance for approaching the Shannon limit.
We can also observe that spatial coupling for braided convolutional codes gives
better performance than spatially coupled parallel codes.
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Chapter1

Introduction

Most of the communications nowadays are based in digital data transmission or
storage systems. The process of the generating, transmitting and receiving binary
digits has had an exponential increasing demand due to the high speed data net-
works used in commercial and non-commercial applications.

These bits have to be transmitted over a communication channel to a destina-
tion or stored in a medium, it is likely to �nd some of these bits corrupted by the
added noise introduced by a non optimal communication channel. In AMathemat-
ical Theory of Communications [1] Shannon splits this problem into two, represent
the information source output as a sequence of binary digits in an e�ective way
(source coding) and transmitting the sequences with redundant bits over the noisy
channel (channel coding).

Information 
Source

Source 
Encoder

Channel 
Encoder

Modulator

Channel

DemodulatorChannel 
Decoder

Source 
Decoder

Destination

Noise

u v

r

Figure 1.1: Transmission system

The digital transmission system can be depicted as in Figure 1.1. The information
source can be any source of data, in a continuous waveform or discrete symbols.
The source encoder creates the binary information sequence u, for continuous
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2 CHAPTER 1. INTRODUCTION

waveform it may use the help of analog-to-digital converters. This sequence is ide-
ally minimized in such a way that less bits per second are needed to reconstruct
the original signal. The channel encoder makes the transmitted message v less
susceptible to noise and interference introduced in the channel. This is made by
adding structured redundancy. A waveform is more suitable for being transmitted
over a physical channel, so a modulator converts digital output symbols v in ana-
log signals. Because the channel is subject of noise, distortion and interference, the
channel output di�ers from the channel input. On the receiver side, the reverse
process is applied in order to retrieve the original message. The demodulator pro-
cesses the waveform generating the encoded sequence r. The channel decoder uses
the redundancy to detect and correct the errors in the received word and estimates
a source code word û. The source decoder transform the estimated sequence û
into a source output and deliver it to the destination.

Shannon also states that every communication channel is de�ned by its capac-
ity Ct and as long as the transmission data rate Rt is less than the capacity we
can ensure reliability. With a proper encoding, the errors can be reduced to any
desired level. It is also stated that the bits should be encoded in sequences in such
a way that each bit has an in�uence not only in itself but in other bits transmitted.
This principle gave birth to the coding theory.

Not only the data transmission has grown in the last years but also the semi-
conductor industry, giving the possibility to implement more complex algorithms
for the error control which will protect more e�ciently the digital data a�ected by
the noisy channel.

1.1 Channel models

One task of the channel encoders is to adjust the information sequences for a given
channel. The channel can be represented or modeled in many di�erent ways and
complexity, here we introduce a couple of the simplest but most commonly used
channel models.

1.1.1 Binary Symmetric Channel

If we consider a communication system where binary modulation is used, the dis-
tribution of the noise is symmetric since the demodulator has only two levels,
this scenario represent the simplest but important channel model called binary
symmetric channel (BSC) where the crossover probability p describes entirely the
channel as we can see in Figure 1.2. Where p is the probability of receive a wrong
bit. The channel is also said to be memory less since the output depends only on
the transmitted waveform during one time interval. [3]

The probability p is closely related to the signal to noise ratio Es/N0, in a bi-
nary modulation scenario. Assuming that a common noise disturbance additive
white Gaussian noise (AWGN) is present in every system, p can be represented by
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p = Q

(
2Es
N0

)
where Q can be expressed in term of the complementary error function of Gaussian
statistics by:

Q =
1

2
erfc

(
x√
2

)

0

1

0

1

1-p

1-p

p

p

Figure 1.2: Probability diagram

1.1.2 Additive white Gaussian noise channel

This channel better known by its acronym AWGN is a model which gives a simple
but with practical relevance for modeling a channel. It is a random process which,
each sample is a zero-mean Gaussian random variable and its power spectral den-
sity is �at over the frequency range used with a level of N0/2 Watts per Hertz.
The white Gaussian noise channel can be simply described in terms of an input x
and the output y by:

y = x+ n

where n is the zero-mean Gaussian random variable with variance σ2 which is
independent of the input x. The conditional probability density function of the
output y is given by:

f(yj |x = xi) =
1√
2πσ

exp

[
−(yj − xi)2

2σ2

]
(1.1)

The AWGN channel is widely used because of its occurrence in many communi-
cation links such as satellite and deep-space links [3].

1.2 Contribution

Active research in the Department of Electrical and Information Technology in
Lund University is about the e�ect of the spatial coupling over serial/parallel
concatenated convolutional codes and braided convolutional codes. Di�erent en-
sembles have been introduced and the density evolution for erasure probabilities
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have been analyzed in order to calculate thresholds for di�erent rates [25] [27] [28].
These thresholds promise good performance but since no implementation and sim-
ulations have been done, the performance is still a theoretical estimation. Beside
the research made on the EIT not so many constructions of braided convolutional
codes have been made in previous works. The aim of this work is to investigate the
performance of the spatial coupling of parallel concatenated convolutional codes
and braided convolutional codes in the �nite length regime. For achieving that,
the previously introduced constructions will be implemented together with the
corresponding simulation tools in order to get some �gures of merit that will be
used for comparison and determine the feasibility of this class of codes. The �nal
result of this project will contribute not only to the department research but to
the general knowledge on the �eld.

1.3 Outline of the thesis

We start our thesis work with a short introduction of convolutional codes in Chap-
ter 2, the basic properties of their structure and distances. Examples are given
for the di�erent types of encoders. It is also introduced the concept of trellis and
the state diagram representation. Finally the BCJR algorithm is described in a
detailed way.

In the following chapter we discuss mainly the parallel concatenation and the
basic properties of their encoder and decoder structures, also the braided convo-
lutional codes are presented. The spatial coupling is introduced in Chapter 4,
therefore we can present the spatially coupled architectures of the parallel con-
catenated convolutional codes and braided convolutional codes. Also the window
decoder is introduced in the same chapter.

In Chapter 5 we present the simulation results for all the di�erent con�gura-
tions and comparisons between coupled and non coupled codes in the �nite length
together with di�erent scenarios to �nd out how does di�erent parameters a�ect
the �nal performance. Finally, in Chapter 6 some concluding remarks and a short
discussion on future investigation.



Chapter2

Theoretical Background

In general, there are two structurally di�erent types of codes, block codes and
convolutional codes. In block codes the information sequence is divided into blocks
of k information bits each. Each block is called a message and is represented by

u = (u0, u1, . . . , uk−1)

It is possible to create 2k di�erent messages. Each message u is transformed into
an n-tuple

v = (v0, v1, . . . , vn−1)

of bits, which is called a codeword. A set of 2k codewords with length n is called
a block code (n, k). The ratio R = k/n is called the code rate, and this is the
number of information bits entering the encoder per transmitted symbol. To
have a useful code, redundant bits are added to each message which then forms a
codeword [2] [3].

2.1 Convolutional Codes

Convolutional codes can be seen as nonblock linear codes over a �nite �eld. It dif-
fers from block codes because the information sequence is not separated in blocks.
They form an in�nite sequence which then is shifted into a register. The con-
volutional encoder accepts k-bits blocks of the message sequence u and produces
an encoded sequence v of n-symbol blocks also called a codeword. The encoded
block does not only depend on the k-bit blocks, it also depends on the m (memory
order) previous message block. The inputs that enter the encoder remains in the
encoder for an additional m time units. The encoder will produce a set of all
possible encoded outputs. These outputs will form the code. The number of in-
formation bits k entering the encoder per transmitted symbols n is called the code
rate R = k/n. The redundant bits are added to the information sequence when
k < n or R < 1 for combating the channel noise. Large minimum distance and
low error probabilities are achieved by increasing the memory order m, unlike with
block codes where k and n are increased in order to have the same e�ect [2] [3].

5



6 CHAPTER 2. THEORETICAL BACKGROUND

2.1.1 Encoding

In general a rate R = k/n convolutional encoder with the input (information)
sequence

u = (u0, u1, . . . , ut, . . .)

where ut = (u1tu
2
t . . . u

k
t ) and the output sequence

v = (v0v1, . . . , vt, . . .)

where vt = (v1t v
2
t . . . v

n
t ) must start at some �nite time. The relationship between

the information sequence and the output sequence is determined by

v=uG (2.1)

where

G =


G0 G1 . . . Gm

G0 G1 . . . Gm
G0 G1 . . . Gm

. . . . . . . . . . . .



is called the generator matrix of the encoder. The generator matrix G is a semi-
in�nite matrix composed by the sub-matrices:

Gi =


g01,i g11,i . . . gn1,i
g02,i g12,i . . . gn2,i
...

...
. . .

...
g0k,i g1k,i . . . gnk,i



It is often convenient to express the sequences in terms of the delay operator
D, also called the D-transform. Now the information sequence becomes

u(D) = (. . .+ u0D
0 + u1D

1 + . . .)

and the output sequence becomes

v(D) = (. . .+ v0D
0 + v1D

1 + . . .)

The relationship between the information sequence and the output sequence is
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determined by

v(D) = u(D)G(D) (2.2)

where the generator matrix is

Gi =


g01(D) g11(D) . . . gn1 (D)
g02(D) g12(D) . . . gn2 (D)

...
...

. . .
...

g0k(D) g1k(D) . . . gnk (D)



and the generator polynomials is

gij = gij,0 + gij,1D + gij,2D
2 + . . .+ gij,mD

m

for j = 1, 2, . . . , k and i = 1, 2, . . . , n [2] [3].

But why do we call them convolutional codes?

If we write the outputs v
(j)
t where j = 1, . . . , n as

v
(j)
t =

k∑
i=1

m∑
l=0

u
(i)
t−1 g

(j)
i,l

and writing the generator coe�cients of input i and output j into a generator
vector

g
(j)
i = (g

(j)
i,0 , g

(j)
i,1 , . . . , g

(j)
i,m)

then we can write

v(j) = u(1) · g(j)
1 + u(2) · g(j)

2 + . . .+ u(k) · g(j)
k =

k∑
i=1

u(i) · g(j)
i (2.3)

We can see that in equation 2.3 each output v(j) is related to each input u(i) by a

convolution of g
(j)
i and that is why we call them convolutional codes [4].
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We can classify codes in two ways:

1. Systematic and non-systematic: The output of the non-systematic en-
coder does not contain the information bits due to the convolutional pro-
cess. While in the systematic encoder the information sequence is unchanged
among the code sequences, the k input sequences are a copy of the �rst k
output sequences

2. Recursive and non-recursive: The recursive encoder uses both feedfor-
ward and feedback paths. While the non-recursive encoder only uses feed
forward paths

The advantage of a systematic encoder is that the parity can easily be appended
to the source sequence and if the receiver receives the correct sequence then it
doesn't need to recover the original source symbols [3] [5]. The following examples
are constructions that are used later on.

Example 2.1 A rate R=1/2 non-recursive non-systematic convolutional encoder.

Consider the polynomial generator matrix G = (1 +D2 +D3 1 +D +D2 +D3).
The encoder for this generator matrix can be built as in Figure 2.1.

D DD
u

v0

v1

Figure 2.1: Rate R=1/2 non-recursive non-systematic convolutional en-
coder

Example 2.2 A rate R=1/2 recursive systematic convolutional encoder.

Consider the polynomial generator matrix G = (1 1+D+D3

1+D2+D3 ). The encoder for this
generator matrix can be built as in Figure 2.2.

Example 2.3 A rate R=2/3 recursive systematic convolutional encoder.

Consider the polynomial generator matrixG =

(
1 0 1

D2+D+1

0 1 D2+1
D2+D+1

)
.The encoder

for this generator matrix can be built as in Figure 2.3.
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D DDu

v1

v2

Figure 2.2: Rate R=1/2 recursive systematic convolutional encoder

u1

u2 v2

v1

D D v3

Figure 2.3: Rate R=2/3 recursive systematic convolutional encoder

2.1.2 State Diagram

There are two di�erent ways to describe the encoding operation of an encoder,
with the help of a state diagram or with the help of a trellis. The trellis is the
most common representation since most decoding algorithms can be explained us-
ing it. The trellis will be explained in more detail in the next section.

A state of an encoder st is the stored output values of its delay elements at time
t. There can be a total of 2m di�erent states where m is the memory [4].

Before we can construct a state diagram, we have to �nd the output values of
the encoder (see Section 2.1.1) and the nextstate. The next state of an encoder
depends on the current memory state st and on the information sequence ut which
is shifted every time instants. At time t the encoder is in state st.

Example 2.4 The convolutional encoder in Figure 2.3 has a memory order m=2.
2m �> 22 = 4 states {s0(00), s1(01), s2(10), s3(11)}. The outputs of v(1),v(2),v(3)

and the nextstate for the di�erent inputs are presented in Table 2.1.
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State In/Out NS In/Out NS In/Out NS In/Out NS

s0 00 00/000 s0 01/011 s1 10/101 s3 11/110 s2
s1 01 00/001 s3 01/010 s2 10/100 s0 11/111 s1
s2 10 00/000 s1 01/011 s0 10/101 s2 11/110 s3
s3 11 00/001 s2 01/010 s3 10/100 s1 11/111 s0

Table 2.1: Input/Output and next state of the encoder in Figure 2.3

In Table 2.1 the column state represent the state that the encoder is in. In is
the input to the encoder and Out is the output generated by the encoder. NS is
the next state. For example if start in state s0 and the input is 00 the output
generated by the encoder will be 000, and the next state will be s0. For input 01
the output will be 011 and the next state will be s1 and so on. With the help
of Table 2.1 a state diagram can be constructed. The state diagram shows all
possible states, and all di�erent transitions from one state to another state. Each

transition is labeled with the input u
(1)
t , u

(2)
t and the outputs v

(1)
t ,v

(2)
t ,v

(3)
t . The

state diagram for the encoder in Figure 2.3 is constructed in Figure 2.4

Figure 2.4: The state diagram of the convolutional encoder in Figure 2.3

2.1.3 Trellis representation

The codewords of a convolutional code is often represented as a path through a
code tree also called a trellis code. A trellis consists of nodes and branches. The
nodes represent the encoder's state and the branches represent the state transition.
The nodes are ordered in rows and the columns correspond to a time slot. The
trellis in Figure 2.5 is the trellis structure of the convolutional encoder in Figure 2.3.
Since the encoder have two binary inputs there will be four branches stemming
from each node. Each branch is labeled with the input bits and the output bits.
These will represent the encoded sequence. To �nd the encoded sequence, the
encoder will start in state zero and an in�nite information sequence u will be fed
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followed by some termination bits also called constraint length. In this case the
constraint length will be one. The termination bits are added in order to drive the
encoder back to state zero and terminate the convolutional code [3].

00/000

01/011
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Figure 2.5: Trellis of the convolutional encoder in Figure 2.3

2.2 Distance Properties of Convolutional Codes

Ability of a code in error-correcting and error-detecting is determined by the dis-
tance properties of the code. The single most important distance property for
determining the error correcting of convolutional codes is free distance. The free
distance is the minimum Hamming distance between two di�erent codewords [8]:

dfree = min
(v′ 6=v′′ )

(dh(v′, v
′′
)) (2.4)

Since convolutional codes are linear the free distance is also the minimum Ham-
ming weight among codewords. The minimum Hamming weight can be found by
comparing all non-zero code sequences with all zero sequences [2]:

dfree = min
(v′ 6=v′′ )

(w(v′ + v
′′
)) = min

(u 6=0)
(w(v)) = min

(u6=0)
(w(uG)) (2.5)

If the di�erence is 3 then the free distance is 3 [3].

2.3 Decoding

Convolutional decoders have a trellis structure and there are two di�erent decoding
algorithms that use this structure. A decoding algorithm for convolutional codes
was introduced in 1967 by Viterbi and is known as the Viterbi algorithm since
then [9]. Omura showed that the Viterbi algorithm was a programming solution
of �nding the shortest path. And later Forney showed that it was a maximum
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likelihood (ML) decoding algorithm for convolutional codes [3]. The second algo-
rithm was introduced in 1974 by Bahl, Cocke, Jelinek and Raviv as a maximum
a posteriori probability (MAP) decoding method for convolutional codes and is
known as the BCJR algorithm [11].

The di�erence between the MAP method and the ML method is that in the MAP
method the probability of the information bit error is minimized and in the ML
decoding the probability of codeword error is minimized. The performance of these
two algorithms is essentially identical [3].

2.3.1 BCJR Algorithm

Since the BCJR algorithm is more complex than the Viterbi algorithm it was not
used during 20 years in practical implementations. When turbo codes came into
existence in 1993 Berrou, Glavieux and Thithimajshima created a modi�ed version
of the BCJR which then lead to a rebirth of the algorithm. The MAP decoder
gives better performance when the a priori probabilities changes from iteration to
iteration and that is why it is more preferred to use in iterative decoding such like
turbo codes. Since the BCJR algorithm needs to perform many multiplications
several versions such as max-log MAP and log-MAP have been proposed to reduce
the computation complexity. The one that we are going to use in this thesis is the
log-Domain BCJR algorithm (Log-APP) [2] [3] [6].

In this section we are going to describe the BCJR algorithm for the rate R = k/n
convolutional codes used on AWGN channel. The information or the message input
bit ui can take values 0 or 1 from the received sequence r which is the demodu-
lated sequence after the channel e�ects with an a priori probability P (ui). The
algorithm calculates the a posteriori probability (APP) L-values (log-likelihood
ratios) of each information bit [7].

L(ui) = log

[
p(ui = 0|r)

p(ui = 1|r

]
(2.6)

And the output of the decoder is given by

ûi =

{
0 if L(ui) > 0
1 if L(ui) < 0

(2.7)

for j = 0, 1, . . . , j − 1 [3].

Since we are going to calculate the bit error (BER) in the simulations which is
described in Chapter 5, the coded sequence is transmitted over a additive white
Gaussian noise channel [3]. If we substitute 2.6 in 1.1, the new Lch values can be
expressed as
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Lch(ui) = log

[
e−(r−1)2

2σ2

e−(r+1)2

2σ2

]
= log

[
e−(r−1)

2+(r+1)2

2σ2

]
=

2

σ2
r(ui) (2.8)

The BCJR algorithm has the following steps:

1. Compute metrics

2. Compute soft outputs

Since the BCJR algorithm uses a trellis structure we are going to describe how we
can use the trellis structure to compute the steps. Figure 2.6 shows the trellis of a
rate 1/2 convolutional code with four states S = {0, 1, 2, 3}. The solid line shows
the branches generated by an input zero and likewise, the dashed line by an input
one. Each transition has an output that is generated in the encoder. If we are at
time t the corresponding state will be St = s, the previous state will be S(t−1) = s

′

and the next state will be S(t+1) = s
′′
. The output of the decoder will be yt. The

complete sequence y will represent the past, the present and the future:

y = yt−1ytyt+1
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S1
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r = 1.5  -2Time: t-1 Time: t 
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βt-1(1)

αt-1(2)
βt-1(2)

αt-1(3)
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)
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t(S’1,S

2)
γt(S’2,S1

)

γ t(S
’ 3

,S 1
)

γt(S’3,S3)

γ
t(S’2,S

3)

Figure 2.6: Trellis of rate 1/2 with 4 states

2.3.1.1 Calculation of Metrics

The �rst step in the BCJR algorithm is to compute the metrics gamma, alpha and
beta. We start computing the gammas for each branch according to equation 2.9,
where La(uit) is the a priori probabilities of the information bits and Lch(vjt ) is
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the channel value. Every time we compute we label the branch with the value of
γt(s

′, s) as in Figure 2.6.

γt(s
′, s) =

K∑
i=1

La(uit)

(
1

2
− uit

)
+

N∑
j=1

Lch(vjt )

(
1

2
− vjt

)
(2.9)

For example if we use Figure 2.6 and assume that the a priori probabilities of the
information bits are equally likely [7]

La(uit) = 0, t = 0, 1, 2

and that

Lch(vjt ) =
2

σ2
r(ui)

to compute the branch stemming from S′0 to S2 (γ0(S′0, S2)) it will look as follow:

γ0(S′0, S2) =

N∑
j=1

Lch(vjt )

(
1

2
− vjt

)
=

(
(1.5)

1

2
+ (−2)

1

2

)

When we have the gammas which are related with the branches that arrive into
the state, we compute the alphas according to equation 2.10 and label each state
node with the value of αt(s). Since this is a forward procedure we start with the
initial condition 2.11 and repeat the procedure until we reach the end αn(0) [7].

αt(s) = max*(γt(s
′, s) + αt−1(s)) (2.10)

with the initial condition

α0(s) =

{
0 if s = 0

−∞ if s 6= 0
(2.11)

and

max*(x, y) = max(x, y) + ln(1 + e−|x−y|) (2.12)

For example to compute αt(0) we use the trellis in Figure 2.7. We can see that at
time t two branches arrives at state S0. One of the branches comes from S′0 and
the second one comes from S′1. The computation will be the following:

αt(0) = max*(γt(S
′
0, S0) + αt−1(0), (γt(S

′
1, S0) + αt−1(1))
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αt-1(0)
S’0

S’2

S’3

S’1

S0
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S3

S1

State 
s’

State 
s

γt(S’0,S0)
αt (0)

αt-1(1) γ t(S
’ 1

,S 0
)

Figure 2.7: Trellis computation of alpha

The last metric to compute is beta. Beta can only be calculated after the
complete sequence of gamma has been received. The procedure is computed in
a similar way as alpha. The di�erence is that we compute backwards, instead of
starting at the beginning of the trellis we start at the end with the initial con-
dition 2.14 and repeat the procedure until we reach the beginning. The betas
are obtained according to equation 2.13 by computing max* of the summation of
βt(s

′) and γt(s
′, s) that leave state st−1 = s′ [7].

βt−1(s′) = max*(γt(s
′, s) + βt(s)) (2.13)

with the initial condition

βL+m(s) =

{
0 if s = 0

−∞ if s 6= 0
(2.14)

For example to compute βt−1(0) we use the trellis in Figure 2.8. We can see that
at time t there is one branch stemming from state S0 to state S

′

0 and another one
from state S2 to state S

′

0. The computation will be the following:

βt−1(0) = max*(γt(S
′
0, S0) + βt(0), (γt(S

′
0, S2) + βt(2))
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βt-1(0)
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Figure 2.8: Trellis computation of beta

2.3.1.2 Calculation of Soft Output

The last step is to compute the soft output according to equation 2.15.

L(u
(i)
t ) = max*

(s′,s):ui
t=0

(αt−1(s′) + γt(s
′, s) + βt(s)) (2.15)

− max*
(s′,s):ui

t=1
(αt−1(s′) + γt(s

′, s) + βt(s))

Now that we have all the values of γs, αs and βs, we are able to compute the soft
output. The soft outputs are obtained by taking the max* of the summation of
αt−1(s′),γt(s

′, s) and βt(s) for all branches corresponding to input 0 and subtract
with the max* of the summation of αt−1(s′),γt(s

′, s) and βt(s) for all branches
corresponding to input 1. We start at the beginning of the trellis and repeat the
procedure until it reaches the end. [7].

For example to compute Lu0 we use the trellis in Figure 2.9. We can see that
at time t − 1 there are two branches stemming from each state, one with input
zero and another one with input one. Since the max* de�ned in equation 2.12
can only be used to evaluate two values and in this case we have four values for
each input. We have to take the max* of two separated states for each input at a
time, for example max*(S′0, S

′
1) and max*(S′2, S

′
3). And then take the max* of the

two resulting previous evaluations. The last step is to subtract the �nal values for
input 0 with input 1. The computation will be the following:

x(S′0,S′1,input0) = max*(αt−1(0) + γt(S
′
0, S0) + βt(0), αt−1(1) + γt(S

′
1, S0) + βt(0))

x(S′2,S′3,input0) = max*(αt−1(2) + γt(S
′
2, S1) + βt(1), αt−1(3) + γt(S

′
3, S1) + βt(1))

yinput0 = max*(x(S′0,S′1,input0), x(S′2,S′3,input0))

x(S′0,S′1,input1) = max*(αt−1(0) + γt(S
′
0, S2) + βt(2), αt−1(1) + γt(S

′
1, S2) + βt(2))
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x(S′2,S′3,input1) = max*(αt−1(2) + γt(S
′
2, S3) + βt(3), αt−1(3) + γt(S

′
3, S3) + βt(3))

yinput1 = max*(x(S′0,S′1,input1), x(S′2,S′3,input1))

L(0) = yinput0 − yinput1
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Figure 2.9: Trellis computation of soft output

2.3.1.3 Algorithm Summary

Here are all steps summarized together [7]

1. Compute metrics

γt(s
′, s) =

K∑
i=1

La(uit)(
1

2
− uit) +

N∑
j=1

Lch(vjt )(
1

2
− vjt )

αt(s) = max*(γt(s
′, s) + αt−1(s)), α0(s) =

{
0 if s = 0

−∞ if s 6= 0

βt−1(s′) = max*(γt(s
′, s) + βt(s)), βL+m(s) =

{
0 if s = 0

−∞ if s 6= 0

2. Compute soft outputs

L(u
(i)
t ) = max*

(s′,s):ui
t=0

(αt−1(s′) + γt(s
′, s) + βt(s))

− max*
(s′,s):ui

t=1
(αt−1(s′) + γt(s

′, s) + βt(s))
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Chapter3

Concatenated Convolutional Codes

A powerful technique of building long codes from short component codes known
as concatenation of codes was invented by Forney in 1966 [12]. Forney's goal was
to �nd codes where the probability of the errors decreased exponentially while the
block length and decoding complexity will only be increased algebraically. The
concatenated code consists of an inner code and an outer code. The inner code
is relatively short and decoded with a soft decoding algorithm. The outer code is
longer and it is decoded with an algebraic error-correction algorithm [3] [12].

Outer 
Encoder

Inner 
Encoder Channel Outer 

Decoder
Inner 

Decoder

Super decoderSuper encoder

Superchannel

Figure 3.1: Concatenated system

Figure 3.1 illustrates this �rst approach which corresponds to a serial con-
catenated system. The outer encoder uses a Reed-Solomon code (a class of linear
block code) and the inner encoder uses, for example, a convolutional code to clean
up the channel. A maximum likelihood decoding algorithm is used in the inner
decoder to correct most of the channel errors, but this will lead to a burst of er-
rors. The output of the inner decoder becomes the input of the outer decoder.
A Reed-Solomon code is used in the outer decoder since it is suited to cope with
burst of errors. The minimum distance of the overall code is the product of each of
the distance of each encoder. In order to decrease the burst of error, new compo-
nents are introduced, an interleaver and a deinterleaver. In this case the distance
will depend on the structure of the interleaver. The output of the outer encoder
is interleaved before entering the inner encoder. Then the output error burst
of the inner decoder is deinterleaved before entering the outer decoder. The con-
catenated system with interleaver and deinterleaver is shown in Figure 3.2 [12] [2].

19
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Outer 
Encoder Interleaver

Channel

Outer 
Decoder

Inner 
Decoder

Inner 
Encoder

Deinterleaver

Figure 3.2: Concatenated system with interleaver and deinterleaver

Totally random codes of large length are the ones which can give a very good
performance overall but that kind of codes are still not able to be decoded, on
the other hand codes which are well-structured are easier to decode. For that
reason the structure was one of the most important aspects and kept all the at-
tention while designing codes. However after the introducing of turbo codes [16]
by Berrou, Glavieux and Thitimajshima the research was focused again in codes
with random-like properties. The main principle of turbo codes is the use of two
weak or humble structured codes but still with enough construction for e�ciently
use iterative decoding techniques.

3.1 Parallel Concatenation

The concatenation in a parallel arrangement can be applied in both block codes
and convolutional codes. In this report we will only refer to the convolutional case.
Figure 3.3(a) shows the basic parallel concatenated encoding structure, consisting
of a parallel arrangement of two recursive codes, called constituent or component
codes. These two constituent codes can be the same code or di�erent ones, sys-
tematic or non-systematic. The encoders receive the name of upper and lower
encoders. Both receive the same input signal but for the lower one, the input is
permuted by an interleaver Π. In other words the two encoders operate in parallel
with di�erent versions of the information. The task of the interleaver is to create
independent input for each constituent code but it also has some other impacts
that we will discuss later in this chapter.

The output of the turbo encoder, called codeword, is composed by both the sys-
tematic output v(1) = ut and the parity sequences v(U) and v(L) plus a constraint
sequence for ensuring to return the encoders to the zero state. This constraint
sequence is also called termination bits. This is the �nal sequence which will be
sent through the channel.
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ut

vUt

vLt

Figure 3.3: (a). Basic turbo encoding structure. (b) Compact graph

Figure 3.3(b) depicts a recent way of representation, the compact graph, intro-
duced by Moloudi [27]. In compact graph representation each trellis is replaced by
a square called factor node. The length of factor node is written in it. In the men-
tioned �gure the upper and lower trellis are denoted by TU and TL, respectively.
Information and parity sequences are replaced by black circles and called variable
nodes ut, v

U
t and vLt . The interleaver is just a cross line on the connecting edge

between ut and TL, which is the same size as the sequences and the trellis N. Both
graphs are equivalents.

We can point out that turbo codes are parallel concatenated convolutional codes
with random-like properties, so simple SISO (soft-in soft-out) decoders with mes-
sages passing from one to the other and vice versa are used and will be described.
The use of a pseudorandom interleaver is a very important part of the design and
has a high weight in the �nal performance of the turbo codes.

3.1.1 Interleaving

The performance of a turbo code improves when the interleaver size is increased,
that means it has positive in�uence on the properties of the code and the iterative
decoding. Beside its main purpose mentioned before, the interleaver has a strong
in�uence over two important issues associated with the performance.

1. It is closely related to the distance properties of the code, which as we will
see are very important for the �nal performance.
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2. It can be e�ciently decoded. This means for the de-correlate nearby po-
sitions in the decoder input, which usually end up in similar close relation
after interleaving. These are also called short cycle events. The latter short
cycle events degrade the performance of turbo decoding [17].

In this report we refer normally to the interleaver as a Π, which will contain the
permutation positions with an speci�c size N. However there has been some re-
search around how to construct optimal pseudorandom interleaver who can give
the larger distance of the code and avoid the short cycle events. Deterministic pseu-
dorandom interleaver allow for discrete mapping of bits according to a designed
scheme and semi-random (s-random) interleaver exhibit a good performance in
this sector [18]

3.1.1.1 S-random interleaver

The purpose of the s-random interleaver is to create a sequence of length N with
a minimum distance S between each position of the sequence. In [18] is stated
that, for the interleaver Π, the new selected position Π(i) is accepted only if its
absolute di�erence from the previous S selected numbers Π(j) is greater than S.
This condition can be expressed as:

|i− j| ≤ S −→ |π(i)− π(j)| > S

And also pointed out that interleaver can be generated in reasonable time for

S <

√
N

2
(3.1)

The algorithm used in this thesis project to generate the sequence is as follow:

1. Given the interleaver size N, generate an integer pool of N elements without
replacement.

2. Set the maximum value of S according to expression 3.1 .

3. Select randomly an integer from the pool and check if it is outside of the
range ±S of the S past vales. If it is outside, keep the value and delete it
from the pool, otherwise reject it and place it back to the pool.

4. Repeat previous step until no integers are left in the pool or reach the
maximum iteration previously set.

5. If maximum iteration is reached decrease the value of S and start from step
3.

3.1.2 Iterative decoding

Before starting with the functionality of the iterative decoding we should recall
some algebraic properties for the log-likelihood ratios presented during the intro-
duction of the BCJR algorithm and some de�nitions. Having the sequence U in
the GF(2) Galois Field, with elements {0, 1}. The log-likelihood ratio of a binary
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random variable u, L(ui) can be expressed as in the equation 2.6, where p(ui)
denotes the probability of u of taking each of the values. The log-likelihood ratio
will be called, more commonly in this report, the L-value of the random variable
u [19]. We can de�ne the operator for the log-likelihood ratio values L(u), and use
the operator � as the notation for the addition:

L(u1) � L(u2) = L(u1 + u2)

following the aditional rules:

L(u) �∞ = L(u) L(u) �−∞ = −L(u) L(u) � 0 = 0

with some identities it can be demostrated that:

L(u1) � L(u2) = log
1 + eL(u1)eL(u2)

eL(u1) + eL(u2)

≈ sign(L(u1)) · sign(L(u2)) ·min(|L(u1)|, |L(u2)|) (3.2)

Where the reliability of the sum � is determined by the smallest reliability of the
terms.

According to what is previous stated we can see more clearly what the L-value
or soft value of a channel stands for. After transmission over a AWGN the log-
likelihood ratio of the x coded bits conditioned on the match �lter output y can
be calculated as follow:

L(x|y) = log
exp(−Es

No
(y − a)2)

exp(−Es

No
(y + a)2)

+ log
P (x = 0)

P (x = 1)

= Lch · y + L(x)

Where Lch = 4a ∗ Es
No for a fading channel. Lch is the log-likelihood ratio of the

crossover probability, is also called the channel reliability factor and L(x) is the a
priori L-value. Finally the output of a soft output decoder computes the a poste-
riori L values:

L(vi) = La(vi) + Lch(vi) + Le(vi)

The �rst two terms La(vi) and Lch(vi) are known as the intrinsic part, corre-
spond to the a priori and channel reliabilities of the symbol vi itself. Le(vi) is the
extrinsic a posteriori value which correspond to an estimate of vi based on other
symbols.

The iterative decoding of two constituent codes uses iterative message passing
(belief propagation) decoding. It can be made with reasonably low complexity
using the decoder shown in Figure 3.4(a). It works with two SISO decoders, using
theMAP algorithm already presented in previous chapter (BCJR). The interleaver
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Π must be the same used in the encoding process. At any time t, the decoder re-
ceives the information proceeding from the channel, the systematic information
Lu and the parity sequences L1

v and L
2
v.

π
π π-1

+ +

+ +
+

+

+

+

-

-
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Lv1

Lv2
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Decoder
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N

vUt
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TL
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vLt

(b)

(a)

Lower 
Decoder

Figure 3.4: (a). Iterative turbo decoder. (b) Compact graph representa-
tion.

In the �rst iteration of the upper decoder, the input information are the L-
values Lu and L1

v, since we still do not have information coming from the lower
decoder, the a priori information is set to zero as initial conditions. Information
goes through the decoder and the extrinsic L-value of the output feed the lower
decoder. That means that the inputs of the lower decoder are the channel values
Lu, which will be permuted by Π, the parity L2

v and the permuted version of the
extrinsic L-values coming from the upper one. After this information is processed
by the lower decoder, the extrinsic information is deinterleaved and added to the
upper decoder as a priori values. One decoding iteration is completed after both
upper and lower decoder have been activated. Every iteration represents a im-
provement of the performance.

For the subsequent iterations, the a priori L-values are replaced by the extrin-
sic a posteriori Le2 after being deinterleaved. These extrinsic L-values which pass
from one decoder to the other, represent the reliability information of the bits
being decoded. This exchange of messages is the way of this suboptimum interac-
tive process ensures that less information is lost compared to an optimal decoding
which is much more complex. After an appropriate number of iterations, the turbo
decoder output can be computed with the addition of the next terms, the extrinsic
output of the upper decoder, the deinterleaved version of the a posteriori L values
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of the lower decoder and the channel information Lu.

We can see in Figure 3.4(b) exactly the same compact graph we presented to-
gether with the turbo encoding structure. The advantages of using this graphs
are obvious because they can represent the encoding block and the iterative turbo
decoder. Factor graphs have been used for this representation purposes, however
the factor graphs of codes with convolutional components, can get very large as
the length of the component codes increases. So compact graphs will be used in
this report.

The two inputs of the upper decoder, L-values, are placed on each side of the
factor node TU . It is known that only extrinsic values are exchanged between the
component codes, so this operation is not shown in the compact graph. Another
consideration we can point out is the use of the interleaver, when we walk towards
the factor node, the sequence is permuted, but when we walk from the factor node,
the L-values should be depermuted.
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𝑝2
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2

+1.5 +1.0
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(𝑎) (𝑏) (𝑐)

(𝑑) (𝑒)

(𝑓) (𝑔) (ℎ)

Figure 3.5: Iterative decoding example
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We now present an example of a parallel concatenated code, to illustrate the
principle and the advantages of the iterative decoding [20]. Where the input block
are the vectors u = [u0, u1, u2, u3] and the parity vector of the �rst and second
constituent codes are p1 = [p11, p

1
2] and p2 = [p21, p

2
2], respectively as is represented

in the array showed in Figure 3.5(a). The transmitted values after being modulated
are in (b). The output after the e�ect of the channel is in (c). The horizontal
decoding is calculated with the help of the expression 3.2 between the information
and the parity vectors having as results the extrinsic L-values in (e). The same for
the vertical decoding but in this case considering the a priori L-values as in (g) to
calculate the extrinsic L-values in (h). After this calculation, the �rst iteration is
�nished and a posteriori information can be estimated adding the channel output
with both extrinsic information from both decoders. In this example the message
is properly decoded after the �rst iteration.

3.2 Parallel concatenated convolutional codes

After recalling the theory introduced in the previous sections. We can refer as
a parallel concatenated convolutional code PCC, to the codes which use parallel
concatenation, as depicted in Figure 3.3(a). Each of the constituent encoders are
the binary systematic feedback convolutional encoders shown in the Example 2.2
on chapter two. As it is in Figure 3.6. These encoders follow the generator matrix

G(D) = [1 1+D+D3

1+D2+D3 ].

ut v1t

vLt
ᴨ

vUt

D DD

D DD

Figure 3.6: PCC

Since both constituent codes are rate R=1/2, the �nal PCC rate is R=1/3,
having as an output the systematic v1 and the parity sequences vU and vL. Af-
ter a channel, the received L-values, Lu, L

1
v and L2

v will become the input of the
decoder introduced on Figure 3.4(a).
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A s-random interleaver was added to the previously presented structures with
an S = 28. The overall BER performance is shown as a function of SNR in Fig-
ure 3.7. Where a Turbo code 1/3 with a random interleaver of size 8192 and a
turbo code 1/3 with s-random interleaver of the same size are shown. Both with
the same systematic feedback component encoders. As we can see, the bit error
rate (BER) graph of a parallel concatenated convolutional code can be divided in
two sections:

1. Waterfall section. Where the bit error probability curve begins the charac-
teristic sharp drop [3]. This happened just after the SNR threshold.

2. Error �oor. Is where the BER curve starts to �atten out and is due the
minimum distance of the code.

Figure 3.7: S-random interleaver performance enhancement on PCC

It is clear the improvement in the error �oor section of the BER with the s-random
interleaver, the error �oor drops until the order of 10−7 for interleavers of the same
size. Much more will be discussed about the BER graphs and di�erent permuta-
tion length when we present all the results in Chapter 5.

3.3 Braided convolutional codes

Braided block codes were �rst introduced in [24] with two di�erent families of
codes based on the density of the storage array, tightly and sparsely braided block
codes, being proved that sparsely braided block codes has an improved perfor-
mance with iterative decoding over the tightly. Braided convolutional codes can
be seen as two-dimensional sliding array in which the symbols are protected by
horizontal and vertical component codes. In this project we will be referring as
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BCC to the sparsely braided codes which use convolutional codes as component
codes, the same way as PCC. The most important di�erence between PCC and
BCC is that in BCC, the parity sequence of the �rst component encoder is used
as input for the second encoder and vice versa [25].

On the array introduced in [26], the horizontal and vertical encoders are connected
by the parity sequences feedback, and it is because of this characteristic where the
systematic and parity symbols are braided together, that the BCC take their name.

A rate R=1/3 block wise BCC is illustrated in Figure 3.8, composed by two sys-
tematic convolutional encoders of rate R = 2/3 as components, also called upper
and lower encoders with the generator matrix

G =

(
1 0 1

D2+D+1

0 1 D2+1
D2+D+1

)
.

This convolutional encoders were introduced in chapter two in the example 2.3.
Another di�erence is that in this BCC encoder we will use three di�erent inter-
leavers of the same size but with di�erent permutation order. The upper encoder
has as input in any time instant t, a block of information symbols ut and a parity
sequence v2

t−1 coming from the output of the lower encoder after the interleaver
Π2. The inputs for the lower decoder is the permuted version of the information
ut by the interleaver Π and the permuted parity v1

t−1 from the upper encoder
through the interleaver Π1, so at a time t the output of the encoder is the tuple
vt = (v1

t ,v
U
t ,v

L
t ).

Rate 2/3 Upper 
Encoder 

Rate 2/3 Lower 
Encoder

πU

π

ut v1t

vUt

vLt

πL

Figure 3.8: BCC encoder

The encoding of procedure of BCC is not a straightforward scenario since
a equation system should be solve. For that reason, we choose in this thesis to
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omit the BCC encoder and instead a zero sequence is transmitted over the channel.

For BCCs, we have considered iterative message passing decoding with BCJR
component decoders, similarly to PCCs. The only considerations to be made are
to initialize the extrinsic outputs of the lower decoder to zero for the �rst iteration.

A block diagram representing the BCC decoder is illustrated in the Figure 3.9.
The inputs of the component decoders are the L-values (Lut , L

1
vt , L

2
vt) coming

from the channel and the extrinsic outputs created by each BCJR decoder. The
subtraction of the "intrinsic" information for each output is omitted in this dia-
gram in order to make it more clear (it is shown in Figure 3.4. Iterative turbo
decoder).

π

𝜋𝑈

𝜋𝐿 𝜋𝐿
−

𝜋𝑈
−

Upper
Decoder

Lower
Decoder

𝐿𝑣𝑡
1𝐿𝑣𝑡

2 𝐿𝑢𝑡

𝜋−

Figure 3.9: BCC decoder

Initial conditions should be considered for the �rst iteration of the upper de-
coder as zero and the output can be delivered from the summation of the a pos-
teriori L-values properly deinterleaved at the output of the lower decoder, the
extrinsic output of the upper decoder and the information ut.

As we can realize, the compact graph representation's convenience is more obvious
in the case of the BCC where the block diagram starts to be more complicated.
The compact graph of the BCC is shown in Figure 3.10. It is important to point
out the order of the inputs and outputs of the factor nodes, having as a convention
the furthest to the left as �rst input/output and the one on the right as second
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input/output. Also the same scenario as PCC, compact graph represents both en-
coder and decoder structures. This representation will become more helpful when
we introduce the coupled versions in the next chapter.

N

vUt

TU

TL

ut

vLt

N

πL

πU

π

Figure 3.10: Compact graph of BCC



Chapter4
Spatial Coupling

The concept of Spatial coupling (SC) has been exploited by LDPC codes for a long
time. It has been proved that spatially coupled LDPC codes have both large min-
imum distance and capacity-achieving, mainly on the performance of the waterfall
region. But the idea of coupling is not exclusive of the LDPC codes, recently it
has been used for coupling turbo-like codes, showing promising performance in
the �nite length scenario. This can be achieved by replacing the traditional block
interleaver in a turbo code by a convolutional interleaver [21].

Two new concepts are introduced in order to properly describe the coupling method.
The coupling length L which is not more than the number of encoders considered
in the arrangement. The other parameter is the coupling memory m. This param-
eter will give the information about with how many neighbor encoders at any time
instant t the current encoder will exchange information, the way this information
is exchanged depends on the type of concatenation. The scope of this project
will only deal with constructions were m=1, diagrams will also be presented when
introducing the constructions made for an easier visualization.

The good performance of spatially coupled codes is more evident when both, the
block length of the codes and the coupling length are larger. However, as we stated
before, the drawback is the complexity of the belief propagation BP decoding.

31
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4.1 Spatially Coupled Parallel concatenated codes

In this section we are going to describe the implementation of spatially coupled
parallel concatenated codes and then describe their decoding.

We consider a chain of L parallel concatenated codes with rate R = 1/3 in time
slots t = 0, . . . , L. The spatial coupling is obtained by connecting each block of
the chain to the one on the right and to the one on the left, as illustrated in Fig-
ure 4.1. The information sequence ut in Figure 4.1 is divided into two sequences
ut,previous and ut,current by a demultiplexer. A copy of the information sequence ut
is reordered by a permutation Πt and then divided into two sequences ut,previous'
and ut,current' by another demultiplexer. The input of the upper encoder in the

PCC at time t is (ut−1,previous,ut,current) reordered by a permutation ΠUpper
t . And

the input of the lower encoder is (ut−1,previous',ut,current') reordered by a permuta-
tion ΠLower

t . Figure 4.1 shows a block diagram of the encoder of spatially coupled
parallel concatenated codes with m = 1. At time t the dashed line represent the
information bits from the previous time slot t− 1 and the solid line represent the
information bits from the current time slot t that is used in the next time slot
t+1. The information sequences at the end of the chain are choosen in a way that
the output at time t = L + 1 becomes vL+1 = 0. This is done to terminate the
encoder of the SC-PCC. The transmitted sequence through the channel will be at
any time instant t, vt = (ut,v

Upper
t ,vLower

t ).

As we have mention in Chapter 3 parallel concatenated code can be decoded
using iterative message passing (belief propagation) decoding. The belief propa-
gation decoding of spatially coupled parallel concatenated codes can be visualized
with the help of the compact graph, as illustrated in Figure 4.2. In Figure 4.2
we can see that at time t the information message is divided into two sequences
ut,previous and ut,current by a demultiplexer. A copy of the information sequence ut
is reordered by a permutation Πt and then divided into two sequences ut,previous'
and ut,current' by another demultiplexer. The input of the upper decoder in the

PCC at time t is (ut−1,previous,ut,current) reordered by a permutation ΠUpper
t and

the parity bits. It also receives a-priori information on the systematic bit from the
lower decoder at time instant t− 1, t and t+ 1. The input of the lower decoder is
(ut−1,previous',ut,current') reordered by a permutation ΠLower

t and the parity bits.
It also receives a-priori information on the systematic bit from the upper decoder
at time instant t− 1, t and t+ 1 [23]
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𝑣𝑡−1
𝐿  𝑣𝑡

𝐿 𝑣𝑡+1
𝐿  

𝜋𝑡
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Figure 4.2: Compact graph of SC-PCC decoding process
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4.2 Braided convolutional codes: a class of spatially coupled
codes

As we point out early in this report, the main di�erence between BCC and PCC
is that in BCC the parity sequence of the upper component encoder vU is used
as input for the lower encoder and vice versa with vL. Two di�erent ensembles
introduced in [28] are described in this section. BCC Type I is the generalization
of original BCCs, which let us have higher coupling memories. And Type-II BCC
in which the information symbols are coupled over the time instants together with
the parity sequences.

4.2.1 Type I

It is considered the same rate-2/3 systematic convolutional encoder from the Fig-
ure 2.2 as each of the component encoders EU and EL of the BCC encoder. The
Figure 4.3 represent the original BCC or BCC Type I with coupling memory equal
to one. At the instant t, the �rst input of the upper encoder EU is the informa-
tion sequence ut, the second input is the permuted version with ΠU

t of the parity
sequence of the lower encoder generated in previous time instant vLt−1. In the
same way, the �st input of the lower encoder EL is the permuted version of ut
and the second input is the parity symbol from the previous time vUt−1, after being
reordered by the permutator ΠL

t .

In order to initialize the encoder, the values coming from t < 1 will be set as
zeros since we do not have any parity sequence known. The transmitted sequence
through the channel will be at any time instant t, vt = (ut,v

U
t ,v

L
t ). Regardless vt

is the codeword transmitted, and as we saw in chapter two, terminations bits are
created by the encoder in order to terminate in the zero state for both, systematic
and parity sequences. We will also transmit these termination bits with the same
e�ect of the channel in order to feed the next time encoder for coupling purposes.

The same restriction about the tail bits that drive the overall encoder to the
zero state is not straightforward. So a suboptimal but simpler approach is to add
a tail of zero bits to the information sequence. The length of the tail of zeros is a
function of a new parameter which we will see at the end of this chapter (window
size).

The main di�erence between the iterative decoding presented in the last chapter
for the uncoupled BCC and SC-BCC is that in the coupled case, each decoding
block receives L-values from the channel and the decoders at the same time instant
t, and the neighbors blocks in t − 1 and t + 1. We use the help of the compact
graph to show how the decoders exchange messages in di�erent time instants as
depicted in Figure 4.4. We know that the symbols coming from t<1 and t>L are
zero, so the L-values must be set to +∞ [25].



36 CHAPTER 4. SPATIAL COUPLING

𝜋
𝑡−

1

𝜋
𝑡−

1
𝑈

𝜋
𝑡−

1
𝐿

𝑢
𝑡−

1

𝑢
𝑡−

1

𝑣
𝑡−

1
𝐿

𝑣
𝑡−

1
𝑈

𝜋
𝑡

𝜋
𝑡 𝑈

𝜋
𝑡 𝐿

𝑢
𝑡

𝑢
𝑡

𝑣
𝑡 𝐿

𝑣
𝑡 𝑈

𝜋
𝑡+

1

𝜋
𝑡+

1
𝑈

𝜋
𝑡+

1
𝐿

𝑢
𝑡+

1

𝑢
𝑡+

1

𝑣
𝑡+

1
𝐿

𝑣
𝑡+

1
𝑈

𝐸
𝑈

𝐸
𝐿

𝐸
𝑈

𝐸
𝑈

𝐸
𝐿

𝐸
𝐿

𝑧𝑒𝑟𝑜
𝑠

F
ig
u
re

4
.3
:
B
C
C
en
co
d
er

T
y
p
e
I



4.2. BRAIDED CONVOLUTIONAL CODES 37
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Figure 4.4: Coupled BCC decoder Type I

The �rst input of the Upper decoder at the time instant t is the L-value of the
information symbol Lut plus the extrinsic value of the �rst output of the lower de-
coder after being de-permuted by Π−1. The second input is the permuted version
with ΠU of the summation of the third output of lower decoder and the parity
symbol LvLt−1

coming from t − 1. And the third input is the parity sequence Lvut
plus the second output of the lower decoder at t = t+ 1 de-permuted by Π−1L .

In the same way for the lower decoder at t, the �rst input is the permuted version
of the information Lut

after Π plus the �st output of the upper decoder at t. The
second input comes from the previous time instant t−1, de-permuted version with
Π−1L of the third output of the upper decoder plus the parity Lvut−1

and the third

input is the de-permuted with Π−1U version of the second output of the upper at
t+ 1 plus the parity sequence LvLt .
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4.2.2 Type II

BCC Type II di�ers from BCC Type I in the �rst input of the upper(EU ) and
lower(EL) encoders. Figure 4.5 shows the block diagram of BCC Type II for
coupling memory m = 1. According to this �gure the information sequence ut
at time t is divided into two parts ut,previous and ut,current. A copy of the in-
formation sequence ut is reordered by a permutation Πt and then divided into
two parts ut,previous' and ut,current'. The �rst input of the upper decoder is

(ut−1,previous,ut,current) reordered by a permutation ΠU,1
t , the second input is the

permuted version with ΠU,2
t of the parity sequence of the lower encoder gener-

ated one time instant before vLower
t−1 . Likewise, the input of the lower encoder

is (ut−1,previous',ut,current') reordered by a permutation ΠL,1
t and the second in-

put is the parity symbol from the previous time vUpper
t−1 , after being reordered by

the permutator ΠL,1
t . At time t the dashed line in Figure 4.5 represent the in-

formation bits from the previous time slot t − 1 and the solid line represent the
information bits from the current time slot t that is used in the next time slot t+1.

In order to initialize the encoder, the values coming from t < 1 will be set
as zeros since we do not have both parity and information sequence known.
The transmitted sequence through the channel will be at any time instant t,
vt = (ut,v

Upper
t ,vLower

t ). Regardless vt is the codeword transmitted, and as we
saw in chapter two, terminations bits are created by the encoder in order to ter-
minate in the zero state for both, systematic and parity sequences. We will also
transmit these termination bits with the same e�ect of the channel in order to feed
the next time encoder for coupling purposes. The same technique for termination
which is used in Type I is also used for Type II.

The decoding of braided convolutional codes for Type II can be visualized with
the help of the compact graph, as illustrated in Figure 4.6. In Figure 4.6 we can
see that at time t the information message is divided into two sequences ut,previous
and ut,current by a demultiplexer. A copy of the information sequence ut is re-
ordered by a permutation Πt and then divided into two sequences ut,previous' and
ut,current' by another demultiplexer. The �rst input of the upper decoder in the

time instant t is (ut−1,previous,ut,current) reordered by a permutation ΠU,1
t and the

parity bits. It also receives a-priori information on the systematic bit from the
lower decoder at time instant t− 1, t and t+ 1. The second input is the permuted
version with ΠU,2 of the summation of the third output of lower decoder and the
parity symbol vLt−1 coming from t− 1. And the third input is the parity sequence
vut plus the second output of the lower decoder in t = t+ 1 depermuted by ΠL,2.

In the same way for the Lower decoder in time instants t, the �rst input is
(ut−1,previous',ut,current') reordered by a permutation ΠL,1

t and the parity bits.
It also receives a-priori information on the systematic bit from the upper decoder
at time instant t − 1, t and t + 1. The second input comes from the previous
time instant t− 1, depermuted version with ΠL,2 of the third output of the upper
decoder plus the parity vut−1 and the third input is the depermuted with ΠU,2

version of the second output of the upper in t+ 1 plus the parity sequence vLt .
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Figure 4.6: Coupled BCC decoder Type II

4.3 Sliding window decoder

In order to combat the complexity of the belief propagation, a windowed decoder
(WD) is used to exploit the structure of the spatially coupled codes and decompose
the BP scheme into suboptimal decoding steps but maintaining the advantages in
terms of performance [22].

In order to illustrate how the window decoder works we can refer to the Fig-
ure 4.7, it shows a sliding window of size w = 3 which is shifted 3 times on a
iteration message passing decoder with coupling length L = 6. As we previously
presented in the parallel concatenated section, each decoding block is formed by
an upper and a lower decoder. An active research is going on regarding the in�u-
ence of the size of the window. Also the scheduling between the upper and lower
decoders of each block inside the window is under investigation to �nd the optimal
one.

Every position of the window decoder will perform a certain number of itera-
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tions. For instance, for iteration number I = 10, the message passing decoder
algorithm will go through every decoding block 10 times, then it will be shifted
one position to the right and perform the same number of iterations starting from
the second decoding block. With this behavior, the message is being updated, in
total, the size of the window w times the number of iterations. Thus it can achieve
a more accurate result when the iteration number increases.

Decoding 
Block

Decoding 
Block

Decoding 
Block

Decoding 
Block

Decoding 
Block

Decoding 
Block

t=1 t=2 t=3 t=4 t=5 t=6

initial termination

Figure 4.7: Window decoder

The simulation results that we will present use di�erent window sizes in order
to compare the impact on the performance, and the sequence is set to activate the
upper decoder in the �rst decoding block, then the lower decoder and so on to the
following blocks.
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Chapter5

Results

This chapter focuses on the error performance simulations as a function of the
signal to noise ratio (SNR) Eb/N0 for the special ensembles of PCCs and BCCs
presented in Chapter 3 and 4. The simulation program and most of the functions
were implemented in Matlab but the BCJR algorithm was implemented in C++.
The advantage of the C++ implementation is the time spent on the loops. The
algorithm was implemented in both programming languages having as result that
C++ implementation was 10 times faster than Matlab. The performance is evalu-
ated on an additive white Gaussian noise (AWGN) channel. Since many di�erent
ensembles were simulated, we used the Alaric Lunarc cluster facilities based in
Lund. Alarik is a SouthPole solution with 208 nodes containing two 64-bit, 8-core
AMD6220 (3.0 GHz), corresponding to a total of 3328 processors [29].

5.1 PCC uncoupled vs BCC uncoupled

The ensemble presented on Chapter 3, Sections 3.2 and 3.3 correspond to PCC
and the uncoupled version of BCC respectively. We used two identical R = 1/2,

8 states component encoders which follow the generator matrix G = (1 1+D+D3

1+D2+D3 )
for PCC. For uncoupled BCC, two identical R = 2/3, 4 states, component en-
coders with the generator matrix as in Example 2.3 are used. Iterative decoding
with the BCJR algorithm and I = 100 decoding iterations were used for all the
ensembles. Permutation sizes of 1000 and 8000 are shown for both ensembles plus
a 80000 permutation size for BCC uncoupled.

We can see in Figure 5.1 that PCC with a permutation length of 1000 exhibits an
error �oor at a BER of 10−5 and Eb/N0 of 1.4 dB. By increasing the permutation
size up to 8000 it achieves a steeper slope on the waterfall region and a error �oor
at a BER of 10−6 and Eb/N0=0.5dB due to the enhancement of the minimum
distance. At the same time the BCC do not show any error �oor for any of the
permutation lengths simulated. At low Eb/N0 PCC has better performance than
BCC, on the other hand for permutation size of 1000 BCC has better performance
after Eb/N0=2dB and at 1.2dB for 8000. A density evolution threshold has been
calculated in [30] with a value of 0.98dB, by tracking the probability density func-
tions of the decoder output L-values. For a permutation size of 1000, BCC achieves
BER level under 10−6 at an Eb/N0=2dB but as we keep increasing the permuta-
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tion size up to 80 000, it can achieve a BER of 10−7 with a Eb/N0=1.052dB, 0.07
dB away from the threshold and 0.3dB for permutation size of 8000.
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Figure 5.1: Error performance of R=1/3 BCC and PCC on a AWGN chan-
nel

5.2 PCC (coupled vs uncoupled)

In this section we present the simulation results for comparing the performance
of the parallel concatenated codes and the spatially coupled parallel concatenated
codes for permutation size of 1000 and 8000. For the spatially coupled case we
consider two identical rate R=1/2 component encoders in the arrangement pre-
sented in Figure 4.1, with the same generator matrix as in PCC. A coupling length
of L=100 is considered. Sliding window BCJR decoder with di�erent decoding it-
erations is used. Di�erent window sizes are used in order to investigate the impact
in the performance.

Figure 5.2 shows the performance of PCC ensemble with permutation size 1000.
We can also see the performance of the coupled case with similar permutation size
for window size 5, 6 and 10 with 10 iteration each. The total number of iterations
will be the product of the window size times the iteration number. That will be
50, 60 and 100 respectively. The waterfall region improves dramatically, reaching
up to 0.8dB between PCC and SC-PCC with w=10. The three di�erent windows
exhibit an error �oor at a BER in the order of 10−5 and Eb/N0 of 0.4dB, while for
the PCC version the error �oor starts at Eb/N0 of 1.2 dB. The uneven shape of
the error �oor suggest an a�ectation of error burst and perhaps a higher number
of iterations will make it look smoother. We can also see that the performance
improves even more when we increase the number of iterations, but at a w=6, the
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performance will not improve much further.
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Figure 5.2: Error performance of R=1/3 SC-PCC permutation size 1000
on a AWGN channel

The e�ects of increasing the permutation size is shown in Figure 5.3. Where
the waterfall region is closer to capacity and has a very steep slope. It achieves
a gain up to 0.4 dB when comparing the w=10 with uncoupled case. For w=5
and 10, the error �oor starts at Eb/N0 of 0.15 dB and a BER of 10−6. With
the permutation size of 8000 is more evident that w=6 will already give a good
performance and attempting a higher window size will not impact signi�cantly.

The best results for each permutation length are presented in Figure 5.4 together
with the uncoupled versions of them. As we can see, SC-PCC with permutation
size 1000 has a better waterfall curve than the uncoupled PCC with 8000 as per-
mutation size but because of the size of the interleaver it presents a worse error
�oor BER.
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Figure 5.3: Error performance of R=1/3 SC-PCC permutation size 8000
on a AWGN channel
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5.3 BCC Type I & II (coupled vs uncoupled)

We consider two identical rate R=2/3 component encoders in the arrangement pre-
sented in Figure 4.3 with the generator matrix in Example 2.3. The interleavers
Π,ΠL and ΠU were constructed randomly for Type I. The same for interleavers
of Type II which correspond to Figure 4.5. The coupling length for both types is
L=100. A zero tail of w-1 blocks is added since the termination is not straight-
forward, where w is window size. Thus we have a rate loss in both types. Sliding
window BCJR decoder with di�erent decoding iterations is used. Di�erent win-
dow sizes are used in order to investigate the impact in the performance. Two
permutation sizes are simulated, 1000 and 8000.

The result for a block length of 1000 is presented in Figure 5.5, where we can
see a window w=5 and 80 iterations for both types compared to the uncoupled
case. Type I reaches a BER of 10−4 at a Eb/N0 of 1.3 dB while Type II reaches
a BER performance of 10−7 at a Eb/N0=0.45dB. The performance for Type I is
very poor, we do not know the reason. Further investigation is required to make a
conclusion. Meanwhile the performance of Type II shows a normal waterfall curve.
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Figure 5.5: Error performance of rate R=1/3 SC-BCC permutation size
1000 on a AWGN channel

Two di�erent setting for the BCC coupled case Type I and Type II are shown
in Figure 5.6 for a permutation size of 8000, a window w=5 with I=80 iterations,
and a w=20 with I=20 iterations. Like we described in the case of SC-PCC, the
total number of iterations is the product of the window size times the iteration
number. The e�ect of the coupling improves dramatically the performance in more
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than 1dB for Type I and 1.47dB for Type II. We can see that with a window w=5,
BCC achieves a BER of 10−5 at an Eb/N0 of -0.05dB while with w=20 it reaches
the same BER at 0.05dB for Type I. In the case of Type II with a window w=5,
BCC achieves a BER of 10−6 at an Eb/N0 of -0.192dB while with w=20 it reaches
the same BER at -0.15dB. We can see that BCC do not present error �oor which
we expected after the uncoupled case. The e�ect of the iterations from 80 to 20 is
stronger than the impact of the window size. Finally as is clearly shown, Type II
have a better performance than Type I.
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Figure 5.6: Error performance of rate R=1/3 SC-BCC permutation size
8000 on a AWGN channel
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5.4 PCC coupled vs BCC coupled

In this section we present the best results that we have gotten from both coupled
cases of PCC and BCC for Type I & II. We can see in Figure 5.7 that BCCs do
not have a visible error �oor. The BER performance is signi�cantly higher in both
SC-BCC compared with the SC-PCC. There is a di�erence of about 0.15dB if we
compare the waterfall region of the SC-PCC with the SC-BCC Type I and 0.3dB
with the SC-BCC Type II. We can conclude that BCC has a better performance
with low Eb/N0 and is close to Shannon capacity. Type II has a slightly better
performance than Type I due to the e�ect of coupling both information sequences
and parity symbols.
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Chapter6

Conclusions

In this thesis the performance of spatially coupled convolutional codes has been
described. Three di�erent ensembles were constructed for coupled codes, one for
PCC and two types for BCC. Uncoupled PCC present better BER performance
with high SNR for small and long permutator lengths compared with uncoupled
BCC, although BCC didn't show any error �oor. On the other hand, when high
Eb/N0 the uncoupled BCC perform better. Spatial coupling gives a signi�cant
BER performance improvement overall. For SC-PCC gain up to 0.8dB and 0.4dB
was reached compared to the uncoupled case for short and long length respec-
tively. We can also conclude that with the coupling PCCs get slightly better
distance properties. Results of SC-BCC with a small length suggest that the
window decoder could get stuck in some error burst and the simulations are not
reliable. Further investigation is suggested in this scenario. Moreover when the
block length is higher the performance is dramatically enhanced for both construc-
tions, getting closer to the Shannon limit. The ensemble Type II showed signi�cant
performance improvement over the "original" braided construction (Type I). Thus
coupling both information symbols and parity symbols brings a performance en-
hancement. No error �oor shown suggest that the braided convolutional codes
have good distance properties. The results presented in this work give one step
forward in the current research of the feasibility of spatially coupled codes.

6.1 Future work

An s-random interleaver was implemented and the performance improvements over
the parallel concatenated convolutional codes were shown in section 3.2, Figure 3.7.
We know that the distance properties improve over the PCC but an interesting ap-
proach would be the e�ect of the s-random interleaver over the BCC and SC-BCC.

As it was pointed out at the beginning of chapter 4, in all the coupled ensem-
bles a coupling memory m=1 was used. It has already been shown in [28] that
increasing m would lead to a performance improvement. Some modi�cations can
be done to the simulations tools implemented in this work in order to compare the
impact on the BER performance with higher coupling memory.
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The number of iterations is not even in each decoding block inside the whole
coupled chain. The blocks in the middle will have more iterations compared to
the �rst blocks. Further research must be done regarding the scheduling inside the
�st window positions to see the impact of the performance.
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