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Abstract

The purpose of this project is to reverse engineer and re-design a PCI Express
communication system which is currently being used at ESS in Lund. The current
model is non-modifiable and our goal is to create a system open for customization.
The aspects explored are communication between hardware and software using
PCI Express, data handling and arbitration, direct memory access and how these
can be implemented in hardware. We have successfully re-created the original
design with a fully utilized read interface and a significantly slower write interface.
The write function has been studied to find possible options to improve the current
design. This system will be installed in 150 different parts of the accelerator and
although it is a small part, it will be vital for the overall performance.
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Chapter1
Introduction

This chapter summarizes the report and explains both the motivation and the
reason for this project being created. We introduce a background of how the ESS
particle accelerator will be used to split atoms to create neutrons, and we also
highlight the goals and purposes of this work to give the reader a good overview
of this project.

1.1 Background
The European Spallation Source (ESS) is a multi-disciplinary research facility
based on what will be the world’s most powerful neutron source [1]. It is a large
collaboration between 17 different countries with employees from over 40 different
nations. The facility will be built in Lund and is projected to reach full capacity
in 2025 with a run time of 5000 hours a year and reliability of 95% [2].

ESS will technically include four building parts:

1. The first part is the ion source responsible for delivering a proton beam.
For the facility’s current specifications the planned component for this part
is a compact Electron Cyclotron Resonance (ECR) source. The beam is
planned to fire with a frequency of 14 Hz and should be held for a period
of 2.86 ms. The reliability should reach 99.9% and thereby only contribute
0.1% to the total uncertainty.

2. Within the next part, the accelerator, the protons from the ion source are
pushed together and accelerated through the facility. 150 cavities are placed
along the 600 meter long tunnel to accelerate and guide the beam. Each
of these cavities will be connected with a Field-Programmable Gate Array
(FPGA), which will be responsible for real time regulation of the electric
field inside the cavity. An overview of the regulator system is shown in
Figure 1.1. The idea is to regulate the field so that the proton beam hits it
on it’s positive flank, making the protons accelerate. This is in theory done
by representing sampled data on the IQ plane and multiplying them with a
rotation factor to get to the sought positions [3].
The FPGA is also connected to a Central Processing Unit (CPU) responsible
for the FPGA setup, longtime logging and multi-pulse algorithms.

1



2 Introduction

Figure 1.1: Overview of the LLRF system setup.

3. The purpose of the target is to transform high powered proton beams to low
energy neutron beams. This is achieved by spallation, a process in which
splitter is ejected from a body after it is hit by a large impact. In this
case the impact will be produced by the accelerated proton beam. In this
project the body (the target) is specified as a rotating wheel of tungsten
cooled by helium gas. An important factor of this target is a radiation
shielding system consisting of approximately 7000 tons of steel. This is
crucial since spallation not only emits neutrons but also dangerous gamma-
and fast neutron radiation.

4. Research instruments constitute the final part of ESS. The facility is planned
to have 22 research instruments running in 2025. These instruments gather
neutrons to support research in a multitude of fields such as medicine,
biotechnology and energy.

1.2 Purpose of the project
1.2.1 Practical application
This application is meant to serve as an intermediary between software (SW)
driven applications and the FPGA. Figure 1.2 shows the setup for cavity testing
as it is today, where our design is placed on the digitizer board in the MTCA.4
crate to help the Low-Level Radio Frequency (LLRF) control system communicate
with the CPU. As of today there is a working design for the communication part
but its functionality is questionable. The original design was bought from a third
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party company that only provided a netlist file with constraint information (NGC)
for implementation. This makes it impossible to change or adapt the functionality.
To get full control of the implementation it would have to be rebuilt in-house. Since
this design has to fit with the current design SW, all settings and parameters of
the black-boxed design will therefore have to be reverse engineered.

Figure 1.2: Setup for cavity testing and electric field regulation

1.2.2 Goals

At the start of the project a number of partial goals were decided on, both theo-
retical and practical. The theoretical parts encompass the general understanding
of how a modern particle accelerator works. The practical parts will be designed
in both firmware and software and will be divided into five smaller milestones.
By proceeding in this manner the project will have a better structure and the
accomplishments will be easier to measure.

Goal 1

The first goal will be to create the custom Peripheral Component Interconnect
Express (PCIe) interface, as shown in Figure 1.3. The goal will be fulfilled when
communication between software and the interface behaves as the built in version.
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Figure 1.3: First set goal of the project.

Goal 2

The second goal will be to extend the interface with a Direct Memory Access
(DMA) block, as shown in Figure 1.4. This will be tested with one of the FPGAs
internal memory blocks to avoid unnecessary problems with the Double Data Rate
type Three (DDR3) Synchronous Dynamic Random Access Memory (SDRAM).
This goal will be fulfilled when it is possible to successfully transfer data to and
from the memory through the DMA.

Figure 1.4: Second set goal of the project.

Goal 3

During the third stage of the project the built in version of the PCIe IF and DMA
will be used again. The custom memory interface will then be added, as shown
in Figure 1.5, to get more control over writing and reading from the memory.
Because this block has to work for our memory block, we will also switch the
FPGAs internal memory to the DDR3 memory. This goal will be completed when
it is possible to read and write to the memory.
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Figure 1.5: Third set goal of the project.

Goal 4

Here the custom blocks from goal two and three are combined, as shown in Figure
1.6. No new blocks are added. This goal will be completed when goal two and
three are completed again in the combined system.

Figure 1.6: Fourth set goal of the project.

Goal 5

By adding the analog to digital input from the cavities, as shown in Figure 2.7,
a new interface is added to the system. Now there are two different inputs that
can write to memory. Since the software and the data from the cavities can not
write to memory at the same time, a write arbiter is needed. The purpose of this
arbiter is to control which input gets access to the memory and which input gets
delayed. This goal will be completed when the arbiter can give correct priority to
two different inputs and write the correct input to memory.
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Figure 1.7: Fifth set goal of the project.

Optional final goal
Time permitting, a final goal could be defined through the addition of a read
arbiter.A read arbiter has the same purpose as the write arbiter from the fifth
goal, the difference being that it manages reading from memory instead of writing.

1.3 Thesis structure
Here follows a short description of the chapters introduced in this report.

Introduction
Introduces the project and motivation to the thesis.

Theory
Explains some of the concepts used during the thesis.

System
Introduces the tools and equipment used during our work.

Implementation
Explains the functionality of all the included blocks.

Verification
Describes the tools used during verification.

Results
Presents the final results of the finished project.
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Analysis
Discusses our experience of this project and possible future work which could
advance the system.

References
Lists the references that have been used during the thesis.
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Chapter2
Theory

This chapter introduces multiple concepts such as the different bus systems that
have been used throughout the project. Only the most general and relevant parts
are included and described thoroughly.

2.1 PCI Express
2.1.1 Compability
PCIe is a third generation input/output (I/O) bus standard with second generation
predecessors PCI and PCI-X. The new bus is backwards compatible with the old
standards though, and can therefore be used together with older systems. This
feature simplifies the plug and play functionality of the bus as long as the connected
peripherals are compatible with the older bus standards.

One of the large differences of this version compared with the older standards is
the difference in internal connectivity of the bus. Both PCI and PCI-X use a multi-
drop parallel interconnected shared bus model. This means that the system has
one bus that all peripherals are connected to and through which they communicate
with each other in parallel. PCIe devices do not work simultaneously in parallel but
in serial point-to-point connections. Instead of communicating with a shared bus,
the devices are connected with switches or direct connections to a root complex.
PCI and PCI-X buses can be connected to the root complex as if they were PCIe
endpoints, making the whole structure backwards compatible.

2.1.2 Root complex structure
A root complex is used to connect the CPU and memory subsystems to PCIe
connections. This helps to relieve the CPU from work since the root complex
generates memory and I/O packages in response to the transactions sent by the
CPU. The same transactions can also be received from devices located further
downstream in the hierarchy. These devices can either be switches that allow
the root port to connect to more devices than it has available ports, or endpoint
devices that are all requesters or completers of PCIe transactions. An example of a
root complex system is shown in Figure 2.1. Memory blocks, Ethernet connectors
or graphic devices can all be endpoints if they follow the PCIe standard.

9



10 Theory

Figure 2.1: Example of a PCIe system with a root complex and mul-
tiple endpoints in the form of one memory, two PCIe endpoints
and a PCI/PCI-X bus which can be connected with multiple
peripherals which are compatible with older bus standards.

2.1.3 Enumeration

Since there is no available information at start up the CPU needs a method to iden-
tify the surrounding PCIe devices. Enumeration is a process that makes it possible
to identify the connected devices by finding the corresponding Vendor- and Device
ID numbers. These numbers are found at address zero of the PCIe compatibility
registers of each PCIe device. During enumeration the CPU addresses all possible
devices by going through all Bus, Device, Function (BDF) numbers. If a device
exists on the specified port the device will answer with its ID numbers whereas if
no device is present on the specified slot a value of all ones is returned. When all
devices that incorporate a Base Address Register (BAR) and have valid device-
and vendor IDs have been enumerated, the CPU can start sending transactions.
The addresses stay valid until the system is powered down and the settings are
lost. Once the system turns on again, the enumeration process restarts.
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Figure 2.2: Simple representation of a link between the layers of two
PCIe devices.

2.1.4 PCIe hierarchy
The communication between PCIe devices is managed by transmission and recep-
tion of packages. These packages are called Transaction Layer packages (TLP)
since they originate from the Transaction Layer of the PCIe hierarchy. This layer
is located at the top of the hierarchy, and is followed by the Data Link Layer and
the Physical Layer.A simplified version of how these layers communicate is shown
in Figure 2.2 [4].

Transaction Layer
The Transaction Layer contains buffers that are used to store inbound and outgoing
TLPs. The packages sent to the receiver are assembled with the data header, data
payload, and depending on whether it is included in the specification, an end to
end Cyclic Redundancy Check (CRC) field. On the receiving side this process is
reversed by extracting the information from the package before sending it to the
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device core. If the receiver buffer is full at the time a new transmission is started
then the package is stalled on the transmission side. This is a feature called flow
control and is implemented on the hardware level of the PCIe protocol.

Data Link Layer
When receiving a TLP from the Transaction Layer, the Data Link Layer adds a
sequence number and a Link CRC field to the header. Before sending the package
on to the Physical Layer, a copy of the TLP is saved in a replay buffer. When
the package is received by the Data Link Layer of the other device the CRC field
is checked for errors. If there is no error an Acknowledge (ACK) package is sent
back. When the acknowledgement is received the specified TLP is cleared from
the replay buffer. On the other hand, if there is an error, a NACK is sent back to
the transmitter. The transmitter then retransmits the TLP from the replay buffer.
In this way the transmission is self correcting on a transmission level without the
involvement of SW.

Physical Layer
The physical layer only has a minor role in affecting the outgoing packages in the
form of adding a start/end bit at the respective sides of the package. These bits are
called framing bits, as shown in Figure 2.3. The receiving side of the connection
uses these bits to determine where the packages start and end. In addition to this
task the physical layer is responsible for link training and initialization. These
processes configure both sides of a link to be synced with each other. An example
of one such configuration is where a device with two data lanes is connected to a
device with four data lanes. In such case the initialization process decides which
two of the four lanes on the second device shall be connected to the two of the
first device.

Figure 2.3: The contents of a TLP. The parts added by the individual
layers are marked with dotted lines. The Data and ECRC data
blocks are optional dependent on the purpose of the package.

2.1.5 TLP - Transaction layer package
Packages leaving the transaction layer can have multiple purposes e.g. memory- or
I/O requests. Independent of what kind of package it is, the first four byte header
of the TLP always has the same structure as shown in Figure 2.4. The Reserved
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(R) fields in the header must be left as zeros and are unmodified on their way to
the receiver. The other fields are important for knowing what the purpose of the
package is and what kind of attributes it has.

Figure 2.4: The first header present in all TLPs [5]
.

The Format (FMT) field indicates how big the header is in Double Words
(DW - 32 bits) and if the package contains data or not as shown in Table 2.1. In
the case of this system, only header sizes of three DWs are used since only 32-bit
addresses are supported.

Table 2.1: TLP formats

FMT TLP format
00 3 DW header, no data
01 4 DW header, no data
10 3 DW header, with data
11 4 DW header, with data

Type decides on the purpose of the package. In this system the formats needed
are shown in Table 2.2, although in the general case up to 17 different format and
type combinations can be supported.

Table 2.2: TLP types

Type FMT TLP type
00000 00 MRd - Memory Read Request
00000 10 MWr - Memory Write Request
01010 00 Cpl - Compeltion without data
01010 10 CplD - Completion with data

Traffic Class (TC) is used internally in the PCIe fabric and is responsible
for servicing the packages. TLP Digest (TD) indicates the presence of a digest
field at the end of the package, including an ECRC. The EP field shows if the
TLP is poisoned, which is an error detection concept not covered in this project.
Attribute (Attr) gives the possibility to modify the handling of TLPs. The first bit
in the field controls how the TLP is ordered, default or relaxed. The second bit is
responsible for hardware coherency management, which similar to TLP poisoning
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is an attribute not supported in this project. The length field contains the size of
the data payload in DWs.

In the case of the TLP being a memory request additional headers are added as
shown in Figure 2.6. The additional fields guarantee that the package is associated
with the right sources and destinations. Requester ID corresponds to the BDF
number of the system that requested the read/write. The Tag field helps with
pairing one request with its corresponding completion. Byte Enable (BE) tells
the completer which bytes of the package payload should be written/read. The
address field shows to- or from where data should be written/read.

Figure 2.5: The TLP header with the additional memory request
header.

For completions the TLP header is extended as shown in Figure 2.6. Completer
ID tells the requester which system sent the completion. This is defined as the
systems BDF number. The Completion Status field contains knowledge about
the packages valid status. Byte Count determines how much data remains to
be received for this tag. The Lower Address field is only set for memory read
completions. The value of the field is the byte address for the first enabled byte
of data returned with the completion [5].

Figure 2.6: The TLP header with the additional completion header.
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2.2 AXI - Advanced eXtensible Interface

AXI is a bus protocol first was introduced in 1996 by the company ARM. In 2010
the second version of the bus, AXI4, was introduced. Three versions of the pro-
tocol, AXI4, AXI4-Lite and AXI4-Stream were also brought out each with it’s
own use. AXI4 and AXI4-Lite are memory mapped interfaces implemented in the
form of two channel pairs, one data -and address channel in both directions, and a
response channel. This way it is possible for read and write transactions between
a master-slave pair to be performed simultaneously. The difference between these
two standards is that AXI4-Lite does not implement any burst functionality and
therefore can only send one package at a time. On the other hand AXI4-stream is
a high speed interface that only sends data and control signals, meaning that the
interface does not implement an addressing functionality. Many of the Intellectual
Properties (IP) that Xilinx provides supports one or multiple of these AXI inter-
faces, which therefore makes it a lot easier to design systems since all the blocks
share a common bus type.

Figure 2.7: AXI communication between master and slave.
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2.2.1 Master/Slave
The bus structure is built up by having a master and a slave. The master sends
write- and read- requests to the slave while the slave sends responses to the master.
Instead of having a header for different packages the bus has different channels
dedicated to different purposes. There are five channels: write- (W), read- (R),
address write- (AW), address read- (AR) and response- (R) channel. W and R
are dedicated for data transactions while AW and AR are dedicated to addressing
memory. The R channel indicates whether or not a write was completed properly.

Write channel
The write channel has five signals: data, valid, last, keep and ready. The master
offers one beat of data by asserting the valid signal. The data is accepted if the
ready signal is asserted one clock cycle when valid is high. By using last, the
master can tell the slave that the present data is the last data of the package.
Keep is a byte enable signal that indicates which bytes in data are valid.

Read channel
The read channel works in the same way as the write channel except data travels
from slave to master. The master accepts data by asserting the ready signal, whilst
valid, last and keep tells the master which data to accept.

Address write channel and response
There are seven signals in the AW channel: addr, valid, ready, burst, cache, len,
size, lock, qos and prot. These signals describe what will be presented on the W
channel as well as where data is stored. The master offers an address together with
a description of the package by asserting the valid signal. The slave accepts the
address by asserting ready for one clock cycle. In AXI4 the burst signal indicates
which mode the addressing should be in, e.g. incremental as we use in this design,
whilst the rest of the signals describe how to handle data. Len defines how many
beats the package carries, size is how many bytes each beat carries and cache
defines the possibility of modifying the data. To read more information on signal
declarations please turn to Xilinx AXI reference pages [6].

Address read channel
The AR channel works similarly to the AW channel but instead of to where and
how the master tells the slave from where and how. This way we know what to
suspect from the read channel.
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System

3.1 Development tools

3.1.1 ISE project navigator
Xilinx project navigator is a complete environment for the design and develop-
ment of Xilinx products [7]. It provides project and design source management
and allows the user in easy steps to transverse through the FPGA design flow
such as synthesis and place and route. ISE also provides a tool called chipscope
which allows the user to trigger and store signal values during run time for better
debug possibilities. After place and route has been performed a .bit file is created
containing all needed data to route the design on the FPGA. The program can
be run by using the command prompt in windows and can also be scripted using
Tool Command Language (TCL) scripts to automate the work flow. Even though
this is preferred we used the graphical interface when designing.

3.1.2 iMPACT
This program is used to configure the FPGA device. The FPGA connects its
routing net by reading the information on a Programmable Read Only Memory
(PROM). This PROM is configured via the JTAG connection on the board and
can be set up by iMPACT. iMPACT uses the .bit file created in ISE to generate
a .mcs file that is used to configure the PROM.

3.2 Debugging tools

3.2.1 ISim - ISE simulator
ISim has been the main debugging tool used to run pre-synthesis simulations of
the design. The tool is built into ISE and makes it possible to observe the design-
generated signals in response to predefined stimuli.

17
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3.2.2 Questasim
In extension to Isim, Questasim has been used. As a third party simulator it pro-
vides some extra features and behaves a little differently from the Isim simulator.
The reason for using different simulators will not be covered in this report to a
great extent than explaining the lessons learned whilst using the different tools.

3.2.3 Analyzer
This program is necessary when using Chipscope. In this program the user can
connect to the FPGAs JTAG connection, set up trigger conditions and create
signal waveforms of the sampled data. The connections on the FPGA are known
by configuring the program using an ISE generated .bit file. Waveforms can then
be exported as value change dump (VCD) files and analyzed in e.g. Questasim.
In Questasim VCD files needs to be converted to WLF files.

3.3 Hardware equipment
The given hardware is a SIS8300-L MTCA.4 Digitizer Struck Board shown in
Figure 3.1. The board contains multiple connectivity possibilities, such as analog
to digital- and digital to analog converter (ADC/DAC) channels and a JTAG
connector. The four lane PCIe bus will be the primary focus of this project. PCIe
is a point to point protocol that will handle the communication between the FPGA
located on the board, which is a Virtex6 model, and the software. Also accessible
on the board is a 4x4Gbit DDR3 memory that can be connected to the FPGA.
This is the memory which is referenced to in Chapter 1.2.2 when describing the
goals.

Figure 3.1: SIS8300-L MTCA.4 Digitizer Struck Board
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Implementation

4.1 Architecture overview
In Figure 4.1, an overview of the system is shown. All the system parts described in
this chapter are included along with an explanation of how the parts are connected.

4.2 PCI Express interface
The endpoint PCIe block of this project is the Virtex-6 Integrated Block for PCI
Express v2.5 [8] implemented using the IP CORE generator in ISE. This IP in-
cludes an AXI4-stream interface, which comes in handy when implementing the
rest of the design. The IP consists of modifiable vhdl code and a black box
(standard ISE component PCIE_2_0 [8]) containing the PCIe data- and physical
layers. The modifiable files consists of the AXI4-stream interface and the receive-
and transmit buffers. Thus the transaction layer that handles the incoming TLPs
needs to be implemented separately. For this task two blocks are implemented;
Egress is responsible for encoding outgoing TLPs and Ingress for decoding the in-
coming TLPs. With these two block a user is able to write and read 32 bit words
to a register file using write- and read requests. This register file contains control
signals for the circuit.To access the DDR3 memory a DMA block is implemented
to relieve the CPU of large data transfers. To do this the user sets up DMA reg-
isters seen in table 4.1, which the DMA block uses to create either write- or read
requests to send upstream.

4.2.1 Ingress
The Ingress block is the first step on the receiving side of the interface. In this block
the headers of the incoming packages are evaluated and reactions depending on
the format and type fields of the package are generated. A TLP sent downstream
is considered to be valid if it has the format and type of a write- or read request
of 32 bits or a completion containing data to be written to DDR3 memory.

When the logic detects a start of a TLP the Finit State Machine (FSM),
shown in Figure 4.2, determines the format and type of the package and triggers
transactions to corresponding states. In the write state, data and address are

19



20 Implementation

Figure 4.1: Overview of the system as a whole.
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decoded and sent together with a write enable signal to the internal register block.
At the same time the FSM transverse into the W8_STATE. This invokes a control
signal (write_busy) to go high, telling the FSM to wait in the W8_STATE until
the FSM is ready to accept a new TLP. If the TLP is a read request the address
is decoded and the data is discarded. The address is sent to the register block
and FSM waits in the W8_STATE until the control signal (comp_done) indicates
that a completion containing the right data was sent upstream before returning to
RST_STATE.

Figure 4.2: FSM with transaction triggers in block Ingress

The only way that a completion can be sent downstream is if a DMA trans-
action has been initiated by the CPU, in which case a read request has been sent
upstream. The completion will contain the requested data and should be for-
warded to the DMA unit, which will write it into memory. During transfer the
FSM will lock in RECEIVE_DMA_DATA state, leaving the DMA to handle all
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data until the last data has been received.

4.2.2 Egress
This block is responsible for generating TLPs that will be sent upstream in re-
sponse to requests from other blocks. The main objective is to create TLP headers
of the outgoing data. There are three possible scenarios that can occur namely:
DMA write transaction is initialized, DMA read transaction is initialized or a
completion needs to be sent as a reaction to a received read request.

Figure 4.3: FSM with transaction triggers in block Egress

DMA read request
In RST_STATE a DMA read request will be initiated by the computer writing
the DMA WRITE CTRL register, explained in Section 4.2.3. As this happens a
register called DMA_SEL is assigned to low to clarify that a read transaction is
active, and FSM shown in Figure 4.3 switches to DMA_TRAN_H1 state. Here it
waits until valid data from memory is present in the DMA_READ_FIFO shown in
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Figure 4.1. Because of packet configurations in the DMA_READ_FIFO a header
can now be created knowing that data will follow continuously. A write request
TLP is created and sent upstream together with requested data. This is written
to a base address specified by the DMA READ DST registers. If the read requests
length is larger then 128 bytes, which is the maximum payload size configured
in the PCIe block, the FSM cycles back to DMA_TRAN_H1 state after sending
first TLP to repeat the procedure - each time adding an offset of 128 bytes to the
base address until all requested data has been written to computer memory. As
the last package is sent an interrupt is sent to the computer to request a polling
of the IRQ Status register shown in Table 4.3.

DMA write request

Write request is mostly handled by the ingress block but needs to be initiated by
sending read requests to the computer. This way the CPU does not need to initiate
all transactions. In RST_STATE the FSM is waiting for DMA WRITE CTRL
to be written. When this happens DMA_SEL is asserted high and FSM switches
to DMA_TRAN_H1 state where the first request header is created. FSM then
switches to DMA_TRAN_H2 where addressing specified in DMA WRITE SRC
is made before returning to RST_STATE.

Completion

If a completion is requested the block builds the first header of the completion
header and then jumps to CPL_STATE_QW1, which will combine the second
header together with the requested data. The addressing of the register bank is
done in the RST_STATE so there is no latency loss as long as the transaction
buffer is ready.

4.2.3 Register file

This block contains registers that are available for read- and write operations from
CPU. The registers acts as control- and status registers so that the computer can
keep track of what’s happening on the hardware side of the system. The address
mapping can be read from Table 4.1 followed by an explanation of specific registers.
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Table 4.1: Register address mapping

Offset Access Function
0x000 R Module Identifier/Firmware Version register
0x010 R/W ADC Acquisition Control/Status register
0x011 R/W ADC Sample Control/Status register
0x020 R/W
0x021 R/W
0x0FF R/W Master Reset register
0x120 R/W ADC ch 1 Memory Sample Start Block Address
0x121 R/W ADC ch 2 Memory Sample Start Block Address
... R/W
0x129 R/W ADC ch 10 Memory Sample Start Block Address
0x12A R/W ADC chx Sample Block Length register
0x200 R/W DMA READ DST ADR LO32
0x201 R/W DMA READ DST ADR HI32
0x202 R/W DMA READ SRC ADR LO32
0x203 R/W DMA READ LEN
0x204 R/W DMA READ CTRL
0x205 R/W DMA readout Sample byte swap control
0x210 R/W DMA WRITE DST ADR LO32
0x211 R/W DMA WRITE DST ADR HI32
0x212 R/W DMA WRITE SRC ADR LO32
0x213 R/W DMA WRITE LEN
0x214 R/W DMA WRITE CTRL
0x220 R/W IRQ Enable
0x221 R/W IRQ Status
0x222 R/W IRQ Clear
0x400 R/W User defined register implementation
... ...
0x4FF R/W

0x000 - Module Identifier/Firmware Version register

This register is used by CPU to identify an open connection between the com-
puter and the FPGA. The content is read every time CPU communicates with the
FPGA.
Default value: 0x83012808



Implementation 25

0x010 - ADC Acquisition Control/Status register

Writing a value of 0x1 to this register will perform an immediate sampling of the
ADC channel.
Default value: 0x0

0x020 - Memory manual reset

This register resets the memory interface and the interconnect. This is because of
a reset problem that occurs when programming the FPGA via the PROM. Reset
by writing value 0x1. Reset needs to be de-asserted by writing 0x0.
Default value: 0x0

0x021 - Steady state signals

This register contains the steady state signals that validates a working design. The
bit description can be seen in Table 4.2
Default values: 0x0

Table 4.2: Register 0x021 - Memory steady state signals

Bit nbr Write function Read function
31 - -
... ... ...
2 - physical memory initialization done
1 - pcie link up
0 - bus master enable

0x0FF - Master register reset

Writing 0x1 to this register resets all register values to default values.
Default value: 0x0

0x120 - 0x129 ADC Memory Sample Start Block Address

This register contains the start addresses of the memory where ADC channels will
write their sample values. The user is responsible to check that the addresses do
not overlap.
Default values : 0x0

0x12A - ADC Sample Block Length register

This register defines the number of 256 bit blocks that will be written by each
active ADC channel per trigger.
Default value : 0x0
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0x200 - DMA READ DST ADR LO32
This register contains lower address of the computers DMA buffer. User writes
this before every memory read request.
Default value: 0x0

0x202 - DMA READ SRC ADR
This register contains the start address from which DMA will read the DDR3
memory.
Default value: 0x0

0x203 - DMA READ LEN
This register defines the number of bytes that is requested when performing a read
request. The user is responsible that the length and start address combined do
not overlap the last address of the DDR3 memory.
Default value: 0x0

0x204 - DMA READ CTRL
Writing the value 0x1 to this register will initialize a read request. Be sure to write
register 0x200 - 0x203 before initializing the transfer to get satisfying results.

0x210 - DMA WRITE SRC ADR LO32
This register contains lower address of the computers DMA buffer where data that
is suppose to be written are located.
Default value: 0x0

0x212 - DMA WRITE DST ADR
This register contains the base address of DDR3 memory to which the data will
be written.
Default value: 0x0

0x213 - DMA WRITE LEN
This register defines the number of bytes that is written when performing a write
request. The user is responsible that the length and start address combined do
not overlap the last address of the DDR3.
Default value: 0x0

0x214 - DMA WRITE CTRL
Writing the value 0x1 to this register will initialize a write request. The user
needs to be sure to write register 0x210 - 0x213 before initializing the transfer to
get satisfying results.
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0x221 - IRQ status
This register indicates when an interrupt has occurred. Table 4.3 shows the bit
representation of the register.

Table 4.3: Register 0x221 - IRQ status

Bit nbr Write function Read function
31 - -
... ... ...
15 - User IRQ happend
14 - DAQ Done IRQ happened
14 - -
... ... ...
1 - Write DMA Done IRQ happened
0 - Read DMA Done IRQ happened

0x222 - IRQ clear
By writing this register the user can reset and clear interrupts. Write functionality
are shown in Table 4.4

Table 4.4: Register 0x222 - IRQ clear

Bit nbr Write function Read function
31 - -
... ... ...
15 User IRQ clear -
14 DAQ Done IRQ clear -
13 - -
... ... ...
1 Write DMA Done IRQ clear -
0 Read DMA Done IRQ clear -

4.2.4 DMA
In this design the DMA is implemented as a state machine that regulates the
flow of data in and out of memory. The AXI interface on the PCIe block is
an AXI4-stream interface while the interconnect and memory interface has an
AXI4 interface that is memory mapped. One challenge for the DMA block is to
translate between the two formats. The FSM is implemented with four states as
shown in Figure 4.4. In RST_STATE the length registers are sampled at the
start of each data transfer. Data transfers are initiated by control signals from
either ingress- or egress block. If control signals initialize a read transfer, the
FSM switch to DMA_READ_TO_ROOT state in which logic constructs and
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sends read requests to the memory. In the meantime it also receives data from
the interconnects read channel. When all read requests have been sent the state
machine transverses to W8_STATE. Here it holds its state until all data has
been received. This is managed by a counter that keeps track of the numbers
of un-replied packages. When a write transaction is initialized the FSM switches
to DMA_AW_STATE in which the block generates an address based on DMA
WRITE DST, shown in Table 4.1. Because of the limitation on the maximum
payload size configured in the PCIe block this design does not need to send more
than one address per write transaction. After sending the address, FSM switches
to DMA_WR_FROM_ROOT state and data is sent to the AXI interconnect.
When the transfer has been made an interrupt can be generated and sent to CPU.

Figure 4.4: FSM with transaction triggers in block DMA

4.3 AXI interconnect - read/write arbiter
The AXI interconnect supports multiple functions relevant for this project’s sys-
tem, such as clock rate conversion, data width conversion and arbitration. The
DDR3 memory will run at double the rate of the PCIe system and therefore the
clock rate conversion is practical for this application. The interconnect supports
both clock rate multiplication and division, in this case a 1:2 conversion is used.
Since the AXI-converted data from the PCIe block have a data width of 64 bits
while memory receives data in chunks of 256 bits, data width conversion is needed.
By buffering the 64-bit data from the DMA in First In First Out (FIFO) buffers
on the ports of the interconnect it is possible to up-size the data to 256 bits which
then can be sent to the memory interface. This goes in both directions since the
data has to be downsized in the other direction when data is received from the
memory, as shown in Figure 4.5 [9].
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Figure 4.5: Structure of the interconnect.

As described in Chapter 1.2.2, the introduction of the ADC input creates a
need for read and write arbitration. The crossbar shown in Figure 4.5 includes an
read -and write arbiter which can be implemented when generating the intercon-
nect core, see a simplified model of our system in 4.6. The priority of the master
devices can be set to a normal round-robin style, which means that all of them
have the same priority, or are hard coded to a set priority.

Figure 4.6: Simple representation of the interconnect arbiter.

4.4 Memory interface
The memory interface that connects the on-chip design with the external DDR3
memory was generated with Xilinxs MIG for Virtex6 and Spartan6. The block
was generated in Verilog since the optional embedded AXI interface is unavailable
for VHDL implementation. Parameters needed for the interface, shown in Table
4.5, were acquired from the predefined memory specification. Memory type refers
to the DDR3 memory model located outside of the FPGA on the board. The
data width is the width of the bus connected from memory interface to memory.
The frequency specifies at which rate the DDR3 memory should be clocked. The
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burst length corresponds to the size of data bursts written to the memory. Other
parameters required to generate the memory interface, such as AXI data- and
address width, were customized to fit with the rest of the system [10].

Table 4.5: Memory specification parameters needed for the memory
interface.

Memory type Data width Frequency Burst length
MT41J256M16XX-15E 64-bit 400 MHz 8

The interface block consists of three parts: an AXI controller, an user interface
and a memory interface controller containing a physical layer to the memory, as
shown in Figure 4.7.

Figure 4.7: Overview of the memory interface.

4.4.1 AXI controller
The purpose of the AXI controller is to act as a slave to the master port of the
AXI interconnect. It also handles the data conversion between the AXI- and
user interface ports. Since the memory cannot handle too big bursts of data, the
controller is also responsible for splitting the bursts into smaller bursts of four or
eight packages depending on the specification in Table 4.5.

4.4.2 User interface
The user interface contains two FIFO buffers in which read and write data is
buffered, making it possible to control the order in which data from memory is
sent back. Since read data can be obtained in a different order than in which it
was requested, this reordering is necessary.

4.4.3 Memory interface controller
The memory interface consists of bank-, rank- and column controllers and an
arbiter that is connected to the physical layer. The controllers generate commands
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and timing parameters to send to the memory based on the translated data from
the user interface. Since there are multiple controllers, more than one command
can be active at the same time but only one at a time can be handled by the
memory. The arbiter solves this problem by giving the controllers priority in
round robin order. The active command is then forwarded to the physical layer
which handles the communication with the memory. In addition to handling the
low level communication the physical layer also handles memory initialization on
start up. The initialization process, shown in Figure 4.8, is performed internally
in the physical block right after resetting the system. During RAM initialization,
memory interface writes to mode registers located in the DDR3 memory. These
register determine the behavior of the memory, e.g burst length. The following
three steps are needed to guarantee correct timing between memory interface and
memory. Write leveling compensates for skew between the data strobe and clock.
Write calibration and read leveling takes care of skew between data and strobe.
The last calibration step, read phase detector calibration, synchronizes the clock
which samples data from memory with its corresponding data strobe.

Figure 4.8: Memory initialization process performed by the physical
layer in the memory interface.
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Chapter5
Verification

Three layers of tests were performed to confirm the expected behaviour of the
system. By following this structure, bugs were easier to find and the pace of our
work flow increased.

5.1 Test bench
Before moving on to the actual hardware, the easiest way to debug the Register
Transfer Language (RTL) code was to simulate with a test bench. The stimuli to
the code that was to be tested could be customized freely with a specified timing.
This way corner cases could be tested without the need to navigate to the specific
state in which they occurred. To make this process as effective as possible, only
small blocks were tested one at a time. Otherwise, it would have been hard to find
the origins of the problems.

There were also some clear disadvantages in using test benches while debug-
ging designs, such as long simulation times and test bench errors. These errors
were created by uncertainties of how the data from black boxes would look like.
Examples of such boxes are the lower levels of the PCIe layers and the physical
data from the software.

5.2 Chipscope
By adding a Chipscope core to the ISE project it was possible to see wave forms
in real-time on the FPGA. The desired trigger and data signals that were to be
observed have to be specified in the core after synthesis in ISE. The signals could
then be examined in Analyzer after the whole design programmed onto the Virtex6.

5.3 Software tests
Software scripts were provided at the start of the project to be able to test the
system from a user perspective. The scripts made it possible to write and read
to/from both the register file and DDR3 memory. Also, a large final test of writing
and reading the whole memory from top to bottom was used to find bugs that
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only appeared during large transactions. All software tests were written in C and
worked as procedures to the software kernel.
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Results

Here the results are presented in two parts. One part describes how big the design
got in terms of resources and the other part describes the system performance in
terms of speed at the end of the project.

6.1 Design resources
The results from the place and route report is divided into two parts. First, shown
in Table 6.1, is the device utilization. Utilization describes the amount of resources
calculated to be used in the design, such as memories and registers. The reported
distribution, shown in Table 6.2, describes how the resources are spread across the
Virtex6. The FPGA is divided into so called slices, each containing four LUTs and
eight flip-flops [11]. The number of used block RAMs are shown in Table 6.3

Table 6.1: Device utilization extracted from place and route report.

Type Amount

Slice LUT

Logic 13531 out of 80000
Route-thrus 1248

Memory Dual Port RAM 3310
Shift Register 985

Slice Register 24702 out of 160000

Table 6.2: Logic distribution extracted from place and route report.

Type Amount
Occupied Slices 9014 out of 20000

LUT Flip Flop pairs
Unused flip flop 7477 out of 29043
Unused LUT 9,969 out of 29043
Used LUT-FF pairs 11597 out of 29043
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Table 6.3: Part of specific feature utilization from place and route
report.

Type Amount
RAMB36E1 21 out of 264
RAMB18E1 2 out of 528

6.2 Performance
6.2.1 Clock frequency
In the design there are 7 different clock sources. The ADCs are paired into five
clock pairs driven on different speeds. All inside the span of 100 - 130 MHz. Our
system is driven by two clock sources. One PCIe reference clock and a system
clock. The PCIe reference clock runs at 100 MHz while the system clock runs at
125 MHz. Except from these the system clock is used to create the memory clock
which runs at 400 MHz.

6.2.2 Read
The read functionality was calculated since the software tests were not precise
enough. The calculations were based on the fact that every package is sent con-
tinuously. One package contains three headers of 32 bits and 32 blocks of data of
32 bits. These packages can be sent once every 18 clock cycles, with the PCIe bus
clocked at 125 MHz. This gives a data transmission rate of 847 MB/s.

6.2.3 Write
The write functionality was tested by performing a large write of the whole 2 GB
memory. The average time for one write of 2 MB was determined to 0.130 seconds.
This leads to an average transmission rate of 15 MB/s.
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Analysis

This chapter goes through the thoughts and ambitions drawn from this thesis.
Conclusions summarizes our thoughts, whilst future work describes what could be
accomplished with more time. Lessons learned describes problems encountered and
how they were solved, providing the reader with the knowledge to not duplicate
the same mistakes.

7.1 Conclusions
Looking back at the goals, described in Section 1.2.2, all of the parts planned for
build were completed. In addition, read/write arbitration is working and therefore
completes the optional, final goal. That said, although the results are satisfying,
the working process did not work out as planned in the goals. The main reason
can be attributed to our decision of using the AXI interface, which meant that
we could not test our components with the pre-existing blocks since they were
incompatible. On the other hand, this also accelerated the development of the
arbiter goals since the AXI interconnect has an easy to implement arbiter.

When observing the results, shown in Chapter 6, the read functions are about
56 times faster than the writes. This is to be expected for reasons further de-
scribed in Section 7.4. The reads are more relevant since the ADCs are the main
parts writing to memory, which also makes the overall results satisfying. When
comparing the results to the original version we have found that we have the same
performance.

A PCIe interface with our specifications, a 4x lane width and 2.5 Giga Transfers
per second, has a maximum transfer speed of 1GB/s. Because of protocol overhead
and delays a part of the transfer speed is lost as shown in the result of 847 MB/s of
the read calculations shown in Section 6.2. Generally the theoretical throughput
of the link can be calculated with equation 7.1, where PL is the payload size, OV
the protocol overhead, N the number of lanes and G is a parameter dependent on
what generation/version of the protocol is used [13].

ThroughputT HEO = PL

PL + OV
· N · G · (250MB/s) (7.1)
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7.2 Lessons Learned
Chipscope
Chipscope proved to be a powerful tool during the debugging process, although it
sometimes was hard to handle. To find all relevant signals was not always possible
since, as mentioned in Chapter 5.2, Chipscope is inserted into the work flow after
synthesis. The chosen signals could be gone since the design has been optimized
during synthesis. To solve this problem a keep attribute had to be introduced and
applied to the desired signals in the RTL code.

Isim
After using a lot of test benches, both self written and predefined by Xilinx, we
have had a lot of problems with Isim. Most of the problems have been worked
around by changing computer or by specifying the wave file which is going to be
run in ISE before even launching Isim. These problems were hard to predict and
find workarounds for. Later on in the project we switched simulation program to
Questasim which was a lot easier to handle. Questasims .do file is also a lot easier
to handle and more versatile then Isims .wfcg which only configures waveforms.

IP cores
The IPs that Xilinx offers, such as the AXI interconnect or PCIe interface, have
shown to possess a lot of features of which not all are supported for all scenarios.
One of these features is the PCIe interfaces option to obtain bus master status
through accessing the configuration ports. This bus mastering process was part
of the old version of PCI and are nowadays resolved internally in the PCIe block
without the need for user interference. A lot of these details were resolved simply
by putting more time into reading the documentation.

Because of the high simulation time for DDR3 memory and the lack of software
side on the PCIe interface we built our own simulation modules for these blocks.
By doing this we missed some key features that did not work in practice e.g.
memory not sending continuous packages and the PCIe block not being able to
receive discontinuous packages.

VHDL/Verilog
Our preferred writing language when the project was started was VHDL. When we
started to import some of Xilinx’s IPs we realised that not all of the implementation
options that existed for Verilog, were present for the same block in VHDL. An
example is the AXI connectivity option for the memory interface, which only
could be chosen in Verilog. This resulted in us learning a lot more about Verilog
but also about how a multiple language hierarchy is allowed to be constructed. If
the top layers of the design are made in VHDL and a sub block is implemented
in Verilog, no sub block of the Verilog code is allowed to be written in VHDL, as
shown in Figure 7.1a and 7.1b. This created a problem when the memory interface
needed to be implemented in Verilog to get access to the AXI interface. ISE needs
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to be set to have preference language Verilog for this to work, which made the rest
of the source code to violate the hierarchy structure. This was fixed by generating
the Verilog code in a new project, enabling us to extract the source code and then
add it to the current working project.

(a) Correct

(b) Incorrect

Figure 7.1: Illustration of correct/incorrect RTL code hierarchy.

AXI interconnect

The AXI interconnect core was one of the main blocks in our design. It provided
many of the features we needed such as clock- and width conversion and arbitra-
tion. One disadvantage was the fact that it did all these things. It is harder to
debug a design when it is not your own and you need to rely on documentation
to get a working design. We came to the conclusion that a feature called pack-
aging, which was supposed to wait to release data until whole packages had been
received, was needed. This was only working properly on the write channel. The
problem lead to timing problems on the read channel, when memory did not send
continuous data. This was fixed by inferring an extra FIFO between the DMA
and Egress, which stacked packages into continuous chunks before transforming
into TLPs.

Modifying memory command sequence

Nothing works as intended. That is one of the main lessons we have learned. In
the best of worlds you need to generate a IP core and then its plug and play. In
this case the memory interface used a chip select signal to disconnect the DDR3
memory. This signal was grounded on the Printed Circuit Board and therefore the
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inhabit command could not be used as in Table 7.1[12]. This would have made the
memory interface unusable but all IPs from Xilinx are provided with the actual
source code. By changing the state machine of the memory interface to send no
operation instead of inhabit commands this problem was resolved.

Table 7.1: SDRAM command control signals

CS RAS CAS WE Command
1 - - - Command inhabit (No operation)
0 1 1 1 No operation
0 1 1 0 Burst Terminate
0 1 0 1 Read burst
0 1 0 1 Read with auto precharge
0 1 0 0 Write burst
0 1 0 0 Write with auto precharge
0 0 1 1 Activate
0 0 1 0 Precharge
0 0 1 0 Precharge all
0 0 0 1 Auto refresh
0 0 0 0 Load mode register

7.3 If we were to do it again
The first thing that was noticeable was the documentation part. We lost a lot
of time to things that could have been predicted by reading documentation more
closely. We read relevant pages for the specific part we were working on, when we
should have taken the time to get a better overview.

We should have created better simulation modules for the black boxes in the
design. Chipscope is a powerful tool but the time to synthesize, place and route
and program the FPGA is a lot of overhead to get the conclusion that it is not
working.

Questasim was a great improvement from Isim. Isim had some nice features
but Questasim was more reliable and user friendly. Therefore to save both time
and frustration we would have switched to Questasim.

A more defined time schedule would have been helpful. We made one in the
beginning and stayed with it for 5 weeks. After that we fell behind and should
have created a revised version.

7.4 Future work
Reset
One problem that we have not resolved yet is an enumeration error that occurs
when we start the system for the first time. The problem is quickly resolved by
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restarting the enumeration process one time. A similar problem occurs in the
memory interface once the system starts, where the DDR3 memory initialization
process does not finish. Here also, the problem is resolved by an extra reset. Com-
bining these two problems concludes that there probably is an error somewhere in
the reset logic.

ADC
The extra ADC inputs to the interconnect have been simulated and tested. The
concept has been proven to work, although with some errors and not with the full
amount of ADCs. To complete this part of the project not only in simulation or
in an incomplete test environment would clearly be the next step forward.

DMA write
The solution when writing data to memory can be updated into a faster version.
As it works today the computer is only able to write 64 bytes to memory at a time.
After that one must update the DMA registers and start again. What should be
possible is to write the registers once with a large length. This would have made
the design faster and is definitely worth implementing.

The problem with the fast implementation is that the hardware has no control
over how completions is sent back after read requests has been sent upstream.
Completions can be received with different lengths and can be reordered. The
reordering would need to be handled by applying unique tags to the read requests.
This means that the completions would also have the unique tags and could have
been ordered in that manner. Combining the completers byte count- and length
field, refereed to in section 2.1.5, can be used to determine how many byte is left of
a completion and how large the current package is. This would have been helpful
when stacking data before sending it to the DDR3 memory.

Maximum payload size
Looking at the configurations of the PCIe block, a possibility of increasing the
maximum payload size is possible. As of today it is set to be 128 bytes while the
limit is at 1024 bytes. The burst length of the AXI interface has a maximum of
256 QW which is at most is a payload size of 2048 bytes. This means that if the
PCIe maximum payload size would increase the AXI interfaces in the design would
still be able to cope with the data sizes. This would have increased the speed of
the system as well as minimized the number of addresses sent to the memory.
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