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Abstract

Timing and synchronization in time is very important in many types of situations
e.g. in most measuring systems, during control of large and complex systems
or governance processes. There are different scenarios with different demands
on time synchronization accuracy regarding relative time measurements. Some
requires sub-nanosecond accuracy other sub-microsecond accuracy. The White
Rabbit project addresses this issue by using special hardware and software to
achieve sub-nanosecond accuracy. Because specialized hardware for synchroniza-
tion is not suitable for laptops, the goal of this thesis is to propose one or more
software-based solutions for synchronizing computers / laptops in a system with
high or with a low demand on the relative time accuracy. In this thesis we investi-
gate the newly defined PTP Ported to Silicon (PPSi) extension as a free software
package that supports Cygwin (Windows) and Linux operating systems and even
freestanding environments. PPSi is becoming a promising purely software PTP
implementation, capable of supporting a range of portable devices and platforms
in accelerator projects, with a good performance and scalability.
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Chapter 1
Introduction

The need to synchronize computer clocks in a network is almost as old as the
internet itself. In fact one of the oldest protocol still in use, called Network Time
Protocol (NTP), is a protocol for synchronizing computer in a wide area network
(WAN) and/or local area network (LAN). The question is what kind of synchro-
nization solutions exist today? Since NTP and DTSS (DTSS is a much simpler
time protocol compared to NTP) more complex timing systems has arrived, with
a higher demand on time accuracy.

New and more complex timing systems have created new projects and research
in the time synchronization area to accommodate the new demands (e.g. high
synchronization accuracy). These projects have led development to a new protocol
Precision Time Protocol (PTP) and hardware assisted PTP, White Rabbit (WR).
As of today there exist a couple of commercial and Open Source implementation
of PTP such as PTP daemon (PTPd) and PTP ported to silicon (PPSi).

1.1 Background

Timing and time synchronization is very important in many types of situations,
e.g. in most measuring systems, during control of large and complex systems
or governance processes. A typical example of a measuring system with a very
high demand on timing and time synchronization is accelerators in e.g. European
Spallation Source (ESS). Another type of situation that is less demanding is a
simple lab set up. Where the goals could be to investigate how disturbance events
affect the quality of service at different levels in the OSI model.

The European Spallation Source (ESS) is an association of European nations
that interact in the design and manufacture of one of Europe’s largest active in-
frastructure projects that investigate scientific questions using neutron beams.[1]
At present, 17 European countries have been committed to construct ESS with
Sweden and Denmark as host nations. The facility is being built in Lund (Swe-
den), while the Data Management and Software Centre (DMSC) are located in
Copenhagen.[2] ESS will be built, owned and operated by ESS AB. ESS AB is
a public company owned by the Swedish and Danish governments but it will be
possible for all other partners to contribute in this company.[2] According to [3],
the ESS accelerator is a major user facility known as a neutron source where cas-
cades of neutrons induced by spallation that provides proton beam with high level

3



4 Introduction

requirements at intense of 5 MW. As shown in Figure 1.1, the ESS accelerator
produces protons at the ion source. These protons are transported through dif-
ferent sections to the target that accelerates them to an appropriate energy to
create neutrons via the spallation process so that they can then be used in future
researches.[3]

Figure 1.1: A block diagram of ESS accelerator. credit ESS.

ESS will become the world’s most powerful neutron source that can be used in
a wide range of sciences, such as materials science, structural chemistry, biology
and geophysics. ESS will also support future researchs in medicine, environmental
science, climate, communication and transportation.

Figure 1.2: ESS overview. credit ESS technical design report.

A problem arises when scientists want to synchronize their laptop with any of
the ESS measuring devices (which are considering using White Rabbit hardware
for time synchronization). Scientists simply do not want to buy expensive WR
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hardware only for this use case, still they want to synchronize their computer with
the WR network, with as high accuracy as possible. In this thesis the laptops are
considered to run either Windows or UNIX.

As mentioned there exist different scenarios with different demands on accu-
racy regarding relative time measurements. Some require sub-nanosecond accuracy
and other sub-microsecond accuracy. There are a couple of projects that address
this issue, like the White Rabbit project. The White Rabbit is an open source
project, based on Ethernet. In this project, specialized hardware and software
are used to achieve sub-nanosecond accuracy using fiber with minimum link delay,
with length up to 10 km. In some cases specialized hardware is impossible/difficult
to attach to a laptop and a completely software based solution may be the only
alternative.[4][5]

1.2 Scope

The goal with this master thesis is to propose one or more software based solution
for synchronizing computers/laptops with system with high or with a low demand
on relative time accuracy. A high demand on relative time accuracy is represented
by accuracy in scale of nano- or microseconds and a low demand represents time
accuracy in scale of milliseconds.

1.3 Thesis outline

Chapter 1 In chapter 1, an introduction to time synchronization in networks
is presented as well as an overview of how time synchronization is achieved
today.

Chapter 2 In chapter 2, the theory required to understand this master thesis is
explained, including how the protocol used today to achieve time synchro-
nization and a general description of the protocols is presented. A small
introduction of timing system is also presented in this chapter.

Chapter 3 The PPSi solution is explained in chapter 3, with a detailed descrip-
tion of the software and a declaration of why the software was decided to be
the focus in this work. A description of Cygwin is presented in this chapter
as well.

Chapter 4 In chapter 4, the result and verification of the suggested software
solution are presented, including a comparison between the Cygwin (Win-
dows) configuration and the Linux configuration.

Chapter 5 In the final chapter of the report, a compilation of the discussion
and future work are presented.
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Chapter 2
Theoretical Background

This chapter presents basic theoretical information that is required to understand
the fundamental concepts of this thesis. The reader of this thesis has to understand
the general problems with timing system, how does time synchronization work,
time offset, frequency offset and jitter. In this chapter, the reader can also find
information about various time synchronization protocols such as, NTP, PTP and
also a short description of the White Rabbit project.

2.1 Timing system

Time synchronization is necessary in many applications involving widely distributed
resources in our life. For example, financial and legal transactions, transportation
and distribution systems. The idea of clock synchronization is based on that in-
ternal computer clocks may be accurate initially, but after a while there will be
a clock error due to clock drift so these drifty clocks must be synchronized to a
reference clock. To understand the idea of why time synchronization is needed, an
example is presented. In the airline reservation system, a seat can be sold twice
or not at all if the distributed computers are not synchronized.[6] It is important
that every timing system uses a reference time and that all nodes are synchronized
to that timing source. The primary clock source must fulfill rigorous requirements
so that it can be traceable to a common time standard such as universal coordi-
nated time (UTC) or international atomic time (TAI). GPS and atomic clocks are
examples of primary clock sources.

2.1.1 GPS

GPS can be used as a reference for providing time synchronization in most com-
puter networks used today, by using additional technologies the desired accuracy
regarding relative time measurements (e.g. sub-nanoseconds accuracy) can be
achieved. GPS is a satellite-based radio navigation system, developed and run
by the Department of Defense (DoD) in U.S. for the U.S. military, used to pro-
vide estimates of position, velocity and time and jointly controlled by defense and
transport ministries. DoD also transmits time signals on public carriers, which
can be used by everyone. GPS is referenced to an international time reference
and provides very accurate time synchronization and noise immunity but GPS

7



8 Theoretical Background

is scarce in computer synchronization since GPS requires an unobstructed line of
sight between transmitter and receiver. A GPS receiver can only be used outdoors.
Figure 2.1 shows a simple structure for a network synchronized via GPS. The GPS
sends time data messages to the time server which in turns (by using one of the
synchronization protocols) sends these time messages to the devices that need an
accurate time to synchronize their internal clock.[6]

There is various time synchronization protocols used today in computer net-
works. These protocols provide time synchronization in different ways depending
of accuracy requirements. Either the client sends a request to the server and then
the server sends a time message containing its current time, or the server sends its
current time to a group of clients needing a reference time to synchronize their local
clock using the received time messages. The most important time synchronization
protocols used are NTP and PTP.[6]

Figure 2.1: Structer of a network synchronized by GPS.

2.1.2 Atomic Clock

An atomic clock is another way of obtaining accurate time and provides very stable
and precise timescale. GPS navigation systems use atomic clocks. Without atomic
clocks the internet would not be synchronized. An atomic clock measures the time
by locking an electronic oscillator to the frequency of an atomic transition where
the oscillator is regulated by the vibration frequencies of an atomic system. The
frequencies are associated with a transition in cesium-133 atom where 1 second =
9,192, 631,770 cycles of the standard Cs-133 transition. The most accurate atomic
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clocks used today are cesium beam atomic clocks and rubidium clocks.[7]
In US, the cesium atomic clocks are maintained by the National Institutes of

Standards and Technology (NIST) in Boulder, Colorado. The international second
standard published in 1964 was based on the orbital period of the earth. In 1967
a second standard was based on the frequency of a transition in Cs-133 atom (this
frequency is exactly 9,192, 631,770 Hz).[7]

A cesium atomic clock operates by locking a crystal oscillator to the principal
microwave resonance frequency of the cesium atom. Figure 2.2 shows a simplified
structure of a cesium clock.

Figure 2.2: A simplified structure of cesium atomic clock.
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2.2 Computer clock

In most computers, the clock is represented by quartz or a SAW resonator oscil-
lator and a hardware counter that interrupts the processor at an interval of a few
microseconds called a tick. With each tick, the value of the hardware counter is
added to the variable representing the clock value. The system clock can be read
and set by an application, the readings increment at a nominal rate, depending
on the frequency of a tick. The frequency of the tick can be changed by a small
amount in some OS i.e. UNIX. It is not possible to change this value in Windows,
but there is a function that speeds up or down the system clock.[8] [9]

2.3 Time synchronization

The principal of synchronizing two computers is surprisingly simple and is the same
for all time protocols (NTP, DTSS and PTP). The principal is about measuring
the time offset between the two computers system clock. According to [9] the time
offset can be realized with this expression:

T (t) = T (t0) +R (t− t0) +D (t− t0)
2
+ x (t) (2.1)

T - time offset, t - current time, t0- the time at the previous measurement
update, R - frequency offset (clock wander (jitter) due to temperature change
etc...), D - drift due to resonator aging and x - stochastic error term. In most
cases, only the two first terms are calculated since they are dominating the last
two (this is the case for NTP and PTP, while DTSS only measures the first term).
Either PTP or NTP implementations for Windows adjust for frequency offsets
since Windows lack support for this feature.[9][12]

2.3.1 Time offset

The principal of calculating the time offset is trivial and is the same for all men-
tioned time protocols and is based on timestamps.

The fastest way for manually synchronizing your clocks at home would be
to use your wristwatch (which you have synchronized with an outside source i.e.
bus terminal) aka master clock. Then you would one by one adjust each clock in
your house aka slave clock, to match the time on your wristwatch. There will be
a small but acceptable offset between the master clock/wristwatch and the slave
clock, depending on how long time it took to adjust the slave clock.

This principle is the same for synchronizing computer(s) and server(s), except
there can be several master clocks. They are all stationary and the offset varies
a lot more between the master and the slave clock as a product of the one-way
delay. The basic concept for estimating the offset is shown in Figure 2.3.

In order to calculate the time offset between the master and the slave, the slave
sends a request synchronization message to the master. Before sending the message
a timestamp t1 of the slave clock is captured. On arrival the master captures a
timestamp t2 from its system clock and sends a response message, including t2 and
t3, t3is captured before sending response message. Once the slave got the response
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Figure 2.3: Concept of estimating time offset.

message it captures a timestamp t4. After this procedure the slave has acquired
all four timestamps and can estimate the time offset.[9]

T =
1

2
[(t2 − t1) + T (t4 − t3)] (2.2)

As should be clear, the offset is half of the round-trip delay and the precision of
this algorithm is heavily affected by two factors. The precision of the timestamps,
the closer to the hardware the timestamps are captured the better, to eliminate
as much OS latencies (caused by interrupts and delays in the kernel) as possible.
OS latencies are particularly harmful for this algorithm due to its high variance.
The second factor is the variance of the one-way delay calculation. Since the time
offset/one-way delay is calculated as the half of the round-trip delay and due to
the high latency variance in today's network, this will impact the precision of this
algorithm.[10]

2.3.2 Asymmetric delay

Asymmetric delays as mentioned before is undoubtedly the major contributor for
time offset and synchronization error, compared to symmetric delay which is much
easier to account for. Asymmetric delays can manifest in several different ways:
variation in queuing delays, variance in the network traffic, OS latencies, etc.... The
problem is that there is no good way to accommodate asymmetric delays, due to
its nature. White Rabbit solves most of the asymmetric delays by using superfast
WR switches, which has a deterministic delay and by capturing the timestamps in
hardware. Both NTP and PTP have ways for coping with asymmetric delay. The
first factor is to eliminate OS latencies, this can be done by time stamping closer
to physical layer e.g. MAC-layer. This will accord to [9] decrease OS latencies
from mille- or microseconds to nanoseconds.

To cope with asymmetry latencies on the path between master and slave, NTP
uses the Huff-n'-Puff Filter algorithm. This algorithm is designed to correct the
time offset in scenarios where either the upload or download link is considerably
congested compared to the other. This can occurs because of high possibility for
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difference in traffic volume on download or uploads direction of the transmission.
Huff-n'-Puff Filter algorithm measures the delay between the upload and download
link for several hours and remembers the minimum delay. In later stages with large
delays, this algorithm corrects the current offset using the sign of the offset and
the difference between the current offset and the minimum offset. Depending on
the sign of the offset, a negative or positive correction is performed.[9] [11]

For PTP on the other hand, four different methods have been suggested as a
way of coping with asymmetric delays.

One solution is to employ devices that have PTP support and have capabilities
to act as a PTP transparent clock. A transparent clock measures the time a PTP
packet is spent in the network device and this time is added in the correctionField
in the PTP frame, which is later used in the slave node for calculating the offset.
This method is probably the most accurate way of dealing with asymmetric delay
compared to the other methods, but has a side effect of being costly and not
everyone is willing to update their devices with PTP support.[10] [23]

Another method is to use boundary clocks (network device that can act as a
master and a slave, but on different PTP ports). According to [24], in the case
where the same number of network devices is used, adding a boundary clock be-
tween them can be helpful in reducing the asymmetric delay. As for the transparent
clock method, the boundary clock method needs PTP support in switches/routers,
but is less reliable compared to the first method.[10] [23]

In the last two methods, PTP supported routers/switches are not needed. The
first of the two is based on packet priority. In theory a packet with high priority
suffers less from queuing latencies and congestion.[10]

The final method is to configure switches/routers to have a fixed delay for
PTP frames. If PTP packet has a fixed delay in each network device the impact
of asymmetric delay is reduced.[10]

According to the institute of electrical and electronics engineers (IEEE) PTP
Power Profile default configuration values, the PTP packet has a default priority
of 4 which is a bit higher than “normal” packets, with transparent clock enabled
and boundary clock disabled.[16]

2.3.3 Jitter and Wander

Jitter between two clocks occurs when a variation occurs in the clock cycle, due to
the fact that the synchronization period between two clocks can never be perfectly
maintained. Jitter is quantified as the root-mean-square (RMS) between series of
time offsets. Clock wander is a product of the frequency offset between two clock
and is quantified as the RMS between a series of frequency offsets.[9]

2.3.4 Frequency offset

The second part of synchronizing slave and master is by measuring the frequency
offset/error. The frequency drift/error can manifest in several different ways, but
is often caused by environment issue on the oscillator, e.g. temperature, pressure
and voltage fluctuation. [9][10]
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Frequency errors are usually measured in ppm (parts per million) and can be
as large as several hundred parts per million. If there is no means of correcting
frequency error, an error of 100 ppm will introduce a time error of 8 seconds per
day.[9]

According to [9, p.6] the frequency error due to oscillator wander is a function
of averaging time, which in turns depends on the rate of time updates. Rate of
time updates less than around 15 min, frequency errors are dominated by network
jitter and time updates above 15 min, the oscillator wander dominates. NTP uses
a clock discipline algorithm, used to minimize the time offset and frequency offsets
and are described in more detail later.[9]

Calculating the frequency offset (FFO) between master (with frequency FM )
and slave (with frequency FS) is trivial and can be calculated as:

FFO =
FM − FS

FS
(2.3)

The values of R and D from (2.1) can be derived from the equation (2.3). In
the last term of (2.1) x includes all errors not covered by the other error terms,
such as temporary and unobvious frequency errors.[9] [10]

2.3.5 Clock discipline methods

To accommodate jitter and clock wander, a hybrid phase/frequency-lock feedback
loop algorithm is used. These algorithms which can operate in two modes; PLL
and FLL are used in the NTP discipline (PLL is used in PTPd and PPSi). These
algorithms are not defined in PTP since they are implementation specific.[12]

Figure 2.4: PLL.

Figure 2.4 shows a block diagram of the NTP discipline where the kernel op-
erates as a hybrid phase/frequency-lock feedback loop. The timestamps of a ref-
erence clock is compared to the timestamps of the system clock which represented
as a variable-frequency oscillator (VFO) and the phase difference is determined
by the synchronization protocol. In this case NTP is used to produce a raw offset
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sample Vd and delay measurement. All offset samples are passed through the clock
filter to produce a filtered update Vs, the result is a pulse per second (PPS) signal
transitions at intervals of 1 s. These updates are ranging from 16 to 1024 s.[9]

The phase and frequency predictions computed in the loop filter produce a
phase adjustment a and frequency adjustment b respectively. The clock adjust
method samples these predictors once each second when using daemon discipline,
or once each tick interrupt when using kernel discipline, to produce the system
clock update Vc. In PLL mode the frequency predictor is not used, however b is
computed by integrating the past values of Vs. The phase predictor is the offset
amortized over time to minimize the time offset. In FLL mode the phase predictor
is not used, however, b is computed directly as the average of the past values
of Vs with weight that is determined by poll interval, update interval and Allan
intercept (Allan intercept defines the intersection of the jitter and wander whereas
the coordinate of this intersection defines the average interval and poll interval).
The frequency predictor is computed as a fraction of the current offset, divided by
the time to minimize the frequency offset.[9]

According to [9], to demonstrate how clock discipline algorithm works, a client
sends message to a server at an interval of μ and a server responds at interval of
μ (usually). In PLL, a periodic phase is updated in intervals in order to minimize
the time offset and indirect the frequency error. In FLL the frequency is instead
periodically updated to minimize the frequency offset and indirect the time offset.
A PLL works better in the case where jitter dominates, FLL when clock/oscillator
wander dominates the time offset and/or frequency offset.

Figure 2.5: PLL/FLL prediction function.

As shown in Figure 2.5, a and b predictors are developed from the phase update
Vs where Vs is the phase offset produced by the clock filter. The phase correction
(a) represents the value of Vs, bFLL represents the frequency prediction that is
computed by taking the average of the past values of Vs. Finally, bPLL represents
the frequency prediction that is computed by integrating the past values of Vs.
Both bFLL and bPLL are combined with a weight, determined according to the
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factors mentioned above to produce the frequency correction (b).

2.4 Time Synchronization Protocols

Time synchronization protocols are used to determine the time offset of a local
clock relative to one or more remote clocks. There are several different synchroniza-
tion protocols in use today, which all uses one general model to time synchronize
computer(s)/server(s). The model works by letting the slaves send a request to
the master(s) which can also be a grandmaster. The grandmaster has a clock that
is synchronized to an external source e.g. GPS receiver. A master has the most
precise clock in its domain i.e. is not synchronized to an external reference clock.

The use of server/client terms instead of master/slave may seem equivalent,
but the relations between these terms are different. In the server/client relation-
ship, the client always sends a request to a server and the server responds while in
master/slave model, the slave is more passive and waits for the master to initiate.
Therefore it would be more suitable to use a master/slave model when describing
time protocols (NTP, PTP, WR).

2.4.1 Network Time Protocol

NTP was originally created and developed by David L. Mills at University of
Delaware and was further developed by some universities and companies. NTP
is the most known time synchronization protocol used on the internet. NTP is
free of charge and can be downloaded from [13] and can be used in all major OS.
NTP can be used both on local networks (LAN) and over the internet. According
to [9] NTP consist of three parts: a suit of algorithms, used to process the time
values; the protocol, used for exchanging time values between master and a slave;
and last the software program called NTP daemon. As of today 5 version of
NTP exist, the latest is NTP version 4. The four latest versions are interoperable
and can exchange time values and synchronize to another. NTP is a protocol
designed to synchronize clocks over the internet. This implies that NTP has higher
demand on security and infrastructure compared to PTP, which is design for clock
synchronization in LANs.

2.4.1.1 NTP performance

NTP is purely software based, to support as many network devices as possible,
which make NTP more sensitive for OS latencies and all timestamps suffers from
software latencies. Expected performance of NTP can vary a lot depending on
several factors e.g. OS, network traffic and hardware issues. In the scope of this
thesis, the main interest is the NTP performance on LANs. Unfortunately no
measurements of NTP performance on LANs exist (at least nothing that has been
published). According to [13], the performance (accuracy) of NTP over the internet
ranges from 5 ms to 100 ms and according to [14] a NTP client synchronized with
a GPS signal, accomplish a accuracy of tens of microseconds. NTP accuracy on
LAN should range between the two, closer to the first. The performance values
stated above is based on NTP running on Linux. The Windows version of NTP
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is less accurate; since Windows has less support for time operations and lower
timestamp resolution. NTP is suitable for timing systems with a low demand on
relative time accuracy, described in section 1.2.[15]

2.4.2 Precision Time Protocol

The Precision Time Protocol (PTP) is an IEEE 1588 standard. The first version
was released in 2002 and was known as PTPv1. The second IEEE 1588 version
was released in 2008 and known as PTPv2 or IEEE 1588-2008. The latest PTP
release (PTPv2) is used by most PTP implementations today. PTP is widely
used in industrial control and automation systems and is also used as a base
synchronization protocol in WR.[10][12]

PTP is used to synchronize independent clocks on separate nodes in distributed
applications that require better synchronization performance than NTP. PTP can
provides sub microseconds accuracy and precision in Ethernet-based networks and
is used in dedicated networks i.e. does not require a separate network infrastruc-
ture. This means that PTP is mixing time information with data when transferring
messages, meaning less cost since there is no need for extra cables in this approach.

The main problem with NTP is lack of hardware support. The problem with
timestamping frames is the same between PTP and NTP and is solved by times-
tamping the frames as close to the physical layer of the network as possible. This
eliminates latencies caused by the operating system and provides a better estima-
tion for the one-way delay. Thus PTP can provides a few microseconds accuracy in
networks with standard components consisting of switches and hubs while achieves
better than 100 ns in PTP compliant networks.[17]

PTP does not define algorithms for measuring and adjusting for clock fre-
quency errors since these algorithms are implementation specific. Unlike NTP
who uses PLL, FLL or a combination of both of them (hybrid) to adjust the clock.
PTP is suitable for synchronizing clocks in local area networks (LAN) since routing
PTP messages between networks lowers the time accuracy.[10][12]

2.4.2.1 Definition

PTP defines a master-slave hierarchy where the (grandmaster) server provides a
reference time to other clients in the network via a transparent clock (TC) as
shown in Figure 2.6. The nodes in the PTP network are called clocks. PTP
defines different types of clocks:[12]

• Ordinary Clock (OC): Is a device having only one PTP port. OC can be
either master or client.

• Boundary Clock (BC): A device with multiple PTP ports. A BC can be
a switch that connects two networks by locking its local oscillator to the
master and uses it as a reference time for all the nodes in these networks.

• Transparent Clock (TC): Multi PTP port device such as switches, bridges or
routers that forwards PTP messages, whether the these PTP messages are
modified by the TC hardware for the residence time that messages arrive and



Theoretical Background 17

leave TC. The jitter information from TC is stored in the correctionField in
the PTP header.

• Master clock (M): A clock that has the most precise time in its domain.

• Slave Clock (S): A SC can acting as a PTP boundary or ordinary clock
depending on the PTP configuration. The frequency and phase recovery in
PTP slave is based on the received and requested timestamps from a PTP
master which can be either grandmaster clock (GMC) or master boundary
clock.

• Slave Only Clock (SOC): A PTP ordinary clock which acting as a slave
and cannot become a master. This clock always receives its time from the
master.

• Preferred Grandmaster (PG): This clock always acts as a master and cannot
be a slave.

Figure 2.6: A simplified structure of PTP network (M stands for
master and S for slave).

PTP selects the role for each node in the network automatically i.e. master
or slave defined in the standard as the Best Master Clock (BMC). In the BMC
algorithm, each node entering a PTP network compares its local clock to the clocks
of all the nodes in network. The node enters automatically master mode if there
exist no other nodes in the networks or if all other clocks in that network are worse
(less accurate to the reference time). Otherwise the node enters slave mode which
means that all the nodes in the network are synchronized to the best available
reference time.[10][12]
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2.4.2.2 PTP synchronization

The synchronization in PTP is accomplished by exchanging PTP packets between
a master and a slave as depicted in Figure 2.7. The slave has to know the val-
ues of four timestamps to be able to synchronize to the master. Two kinds of
event messages are defined in PTP (Sync and Delay_Req). The event messages
are timestamped both on transmission and on reception. These messages are
used for measuring the offset and frequency drift between the master and the
slave. The regular messages (Follow_Up, Delay_Resp, Announce, Signaling
and Management) have a timestamp in data field and is used for exchanging
timestamps or other parameters.[10][12]

The aim of PTP synchronization is to compute the time offset between the
master clock and the local clock of the slave and the round trip delay between them.
The propagation time between the slave and its uplink element is called link delay.
In one-step mode, t1 is sent in Sync message and is periodically timestamped at
the time of transmission from the master to the slave which timestamps it at the
time of reception. In two-step mode, t1 is send in the Follow_Up message, which
is sent by the master to the slave. The use of one-step mode or two-step mode
is depending on the internal implementation of the master. In one-step mode,
the Sync message is generated in software layer which means less accuracy. In
case of two-step mode, the Follow_Up message is timestamped in the MAC layer
resulting better accuracy compared to SW generated timestamps. The slave sends
a Delay_Req message that is time stamped both on the master and on the slave.
Finally, the master sends Delay_Resp message containing t4. In this way, the
slave has a knowledge of all 4 timestamps.[10][12]

Figure 2.7: PTP synchronization.

Round− trip delay (δ) = (t4 − t1)− (t3 − t2) (2.4)

T ime offset (Θ) =
1

2
[(t2 − t1)− (t4 − t3)] (2.5)

An Announce message is only generated in the nodes that enter master mode
and sent periodically providing information about the master's clock quality and
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the data set required by BMC algorithm. Signaling message is used to nego-
tiate optional services and Management message is used for updating the data
set.[10][12]

2.4.2.3 Best master clock (BMC)

The Best Master Clock (BMC) algorithm determines which clock to be the master
(has the highest quality properties compared with the other clocks within the
PTP domain) and all other clocks to become slaves in the PTP domain. The
decision is based on comparing the data sets related to each PTP device within the
PTP domain. These data sets include e.g. priority, class, accuracy, variance and
distance to the neighboring PTP ports in the entire network. The BMC algorithm
is constantly active so that the state of each PTP device enters or leaves the entire
network dynamically. If the master clock is removed from the network or if the
current master no longer has the highest accuracy clock or in case of failure, the
BMC process should redefine a new clock to take the role of the current master
and adjusts all other clocks for the new BMC.[17]

Figure 2.8: The state transition graph for an ordinary clock in BMC.

To understand how BMC works, an example is illustrated in Figure 2.8. An
ordinary clock is designed so that it can be a slave or master. When PTP starts,
the clock enters the listening mode i.e. listens after announce message on the
PTP multicast address. The announce message contains information about the
clock that sent it. The ordinary clock compares its data sets with the information
provided in the announce message within the announce timeout interval. If the
announce message comes from a better clock, the ordinary clock enters a slave
mode. If the announce message comes from a worse clock (i.e. having a worse
data set in comparison), the ordinary clock enters master mode.[17]
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2.4.2.4 PTP performance

PTP was designed to be used in industrial control, automation systems and in
measurements that require microsecond accuracy and very low jitter. This is not
enough for e.g. particle accelerator, which requires much higher synchronization
accuracy. PTP is suitable in local area networks (LAN) and not as much in
WAN (as the case for NTP), since forwarding PTP messages through routers and
switches increase the jitter which affect the accuracy.[18]

2.5 White Rabbit

This section presents a short introduction to the White Rabbit (WR) project
including some basic on General Machine Timing (GMT) and its drawbacks, also
presents WR design goals, introduces some theoretical considerations about the
requirements of CERN and GSI and an explanation for how WR is intending to
meet these requirements. The synchronization scheme in WR and a description of
the central components in a WR system structure is presented.

2.5.1 Introduction

Large control systems have many distributed nodes that all needs to be synchro-
nized. The current control and timing system at CERN (General Machine Timing)
have many drawbacks; low speed (500 kbps), unidirectional communication and
complicated maintenance when using different timing systems in accelerators. Be-
cause of these drawbacks of the current timing system (GMT), CERN started
thinking about a suitable successor for the timing system of the Large Hadron
Collider (LHC) injectors in 2006. CERN is consisting of six accelerators and LHC
is the biggest (27 km long) with thousands of devices that serve the accelerators,
all of which needs to be precisely synchronized.[20]

At the same time the GSI Laboratory in Germany had already started a brain-
storming about the timing system for the FAIR facility. Both of CERN and GSI
have the same requirements regarding the need for high bandwidth, full-duplex
communication links and the choice of Ethernet for the physical layer, which were
important requirements for both CERN and GSI on their timing systems. The
White Rabbit project was the solution to solve these problems and was started by
CERN. GSI joined the project later and now the WR project is a collaboration
of many institutes and companies around the world.[4] This project is both open
hardware and open software which means that anyone can download and use WR
facilities.

An extension has been done to the standard Ethernet to simplify the node
synchronization in the control systems. The new feature added to Ethernet is
Synchronousmode (Sync−E) where all the nodes in the network use a common
clock generated by the master. Then they were encoded in the Ethernet carrier and
recovered by using a Phased Locked Loop (PLL) for precise time and frequency
transfer. Deterministic routing was done by using PTP where packet transmission
delay between two nodes will never exceed a certain boundary.
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2.5.2 Synchronization scheme

The aim of WR is to synchronize over 1000 nodes with sub nanoseconds accuracy
and picoseconds precision of synchronization over fiber lengths up to 10km. The
data network has to be deterministic with very low transmission latency. In order
to achieve the above requirements, the WR have to mix three technologies, PTP
(IEEE 1558), Sync-E and DDMTD phase tracking, so that WR easily can com-
pensate for environmental fluctuations.[19] In WR, the master provides its clock
either directly or via Sync-E compatible switches to the WR nodes. This process
is accomplished by defining a timing hierarchy, by naming one of the switch ports
as uplink and naming all other ports as downlink. The first switch in the hierar-
chy is called a grandmaster which has the highest clock accuracy referenced to an
external source, such as GPS. The downlink ports are then connected directly to
a final node or to an uplink port of another switch resulting in a tree of switches,
whereas all switch clocks are derived from the clock of a grandmaster as illustrated
in Figure 2.9

Figure 2.9: WR synchronization hierarchy.

After all timestamps have been transmitted and recovered, there is a problem
of compensating for transmission delay from electronics in WR switches and nodes
and from propagation delays on the fibers. Delays that are coming from switches
and nodes have to first be fixed by manual or automatic calibration, whereas
propagation delay on the fibers due to thermal effects is solved by using PTP
two-step mode. WR has to use continuous phase measurements instead of direct
time stamping since measuring clock phases is easier than measuring time intervals
between pulses according to.[4]

The phase measurement process used in WR is called Dual Mixer Time Dif-
ference (DMTD) scheme. The aim of using DMTD is to compare two clocks to
third clock whose frequency which has very slightly offset to the frequency of these
clocks. An analog structure of DMTD is presented in Figure 2.13 [24]. Let's as-
sume that the input clocks x(t) and y(t) are identical in amplitude and frequencies
(= fclk) and the phases are Θx and Θy respectively. Both of clocks are multiplied
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by mixers with the oscillator signal z(t) with frequency foffset and phase Θoffset

as:

x(t)z(t) = cos(2πtfclk +Θx) cos(2πtfoffset +Θoffset) =

1

2
cos(2πt (fclk + foffset)+Θx+Θoffset)+

1

2
cos(2πt (fclk − foffset)+Θx−Θoffset)

(2.6)

The result of equation 2.6 is two clock signals, one with high frequency and
the other with low frequency. The high frequency clock is removed by low pass
filter and the result is only one clock with low frequency. The mixing process
done here only affects the frequency of the signal clocks but the phase difference
between the two signals remains the same. If the clock offset is very close to the
frequency of the input clock fclk, then the phase difference can be measured with
higher accuracy using a simple counter. [24]

Figure 2.10: Structure of a analog DMTD.

According to [24], the analog DMTD used above provides very accurate phase
measurements, but the cost of external mixers and filters is high especially in
t.ex. WR switch. However, the analog DMTD is transformed to digital DMTD as
shown in Figure 2.11.

2.5.3 White Rabbit hardware

In this section, a description of the White Rabbit Ethernet Switch is introduced;
also some information about Simple PCIe FMC carrier (SPEC) and finally White
Rabbit PTP Core are presented.
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Figure 2.11: Structure of a digital DMTD.

2.5.3.1 White Rabbit switch

The switch is the core in a White Rabbit network and is implementing the actual
Ethernet switch (IEEE802.1D Bridge) with WR extensions, including low level
timing functions such as PLL, DMTD and fine timestamping. The extensions are
available only if the connected device is WR aware. If the connected device is
non-WR aware, the switch plays as a standard switch.

2.5.3.2 Simple PCIe FMC carrier (SPEC)

According to [21], the PCIe FMC carrier holds one FMC card and an SFP con-
nector where the PCIe side has a 4-lane interface, and the field-programmable
gate array (FPGA) Mezzanine Card (FMC) mezzanine slot uses a low-pin count
connector. This card is optimized in cost and supports the White Rabbit timing
and control network. A prototype of SPEC is shown in Figure 2.12.

Figure 2.12: SPEC prototype, credit Cosylab.
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2.5.3.3 White Rabbit PTP Core (WRPC)

WRPC is an implementation of Ethernet MAC for providing precise timing of syn-
chronization in timing control systems, when sending and receiving normal Eth-
ernet frames between user-defined HDL modules and a physical medium. WRPC
implements WR to achieve sub nanoseconds accuracy and picoseconds precision
of synchronization. WRPC can be a master or a grandmaster i.e. a WR master
referenced to 1PPS and 10 MHZ clock signal and distributes its clock to other WR
nodes in the entire network, or as a slave that synchronizes its local clock to the
WR master clock. Figure 2.16 shows the WRPC external interfaces.[22]

Figure 2.13: WRPC external interface.

2.5.4 WR performance

The WR performance depends on the WR network setup such as how many nodes
and switches are available in the network. WR aims to provide sub nanoseconds
accuracy and and picoseconds precision of synchronization depending on the net-
work setup. An advantage is that WR can compensate for propagation delay on
the fiber (due to variation of temperature on fibers).[35]



Chapter 3
Synchronization with PPSi

In this chapter the suggested solution to satisfy both the high demand and low
demand on relative time accuracy is presented. First, a small introduction and
an explanation why PPSi was chosen. Then, a detailed description of the PPSi
architecture and a comparison between the Cygwin version and the Linux version
of PPSi.

3.1 Introduction

PTP Ported to Silicon (PPSi) is a portable PTP implementation, originally de-
veloped for the White Rabbit project but is also suitable for different kinds of
networks. PPSi is licensed under the GNU Lesser General Public License, mean-
ing it is allowed to copy, distribute and modify the PPSi code with or without
fee.[25][29]

PPSi is the resulting effort to provide full support for a WRPTP (White Rab-
bit PTP) extension. In order to make PPSi portable it is required that the PPSi
daemon can work in different environments, hosted environments (e.g. Linux com-
puters) or freestanding environments (e.g. WR nodes with no operating system)
and is the reasons it is written in C. To accommodate this demand, the daemon
uses a modular design that separates PTP from the run time specific system calls.
This design approach allows easier porting for other types of environments. A
mayor part of this thesis has been to develop a Cygwin extension for PPSi.

3.1.1 Why PPSi

This section describes why PPSi (PTP ported to silicon) was chosen to be the
solution of the problems mentioned in section 1.2 Scope, why PPSi is a good
solution in our case and what problem PPSi has. Two problems are considered in
this master thesis to be solved. The first problem is to get a PC's internal clock
synchronized in a WR-network (the computer has no WR hardware and can be a
Linux or Windows computer). The second problem is to get a PC's internal clock
synchronized in time in a non-WR network, e.g. a master server/computer is first
synchronized with NTP and then let the other nodes/computers in the network
to be synchronized to the master (the computers has no WR hardware and can be
Linux or Windows computers).

25
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There exists a couple of solutions that addresses one or both of the problems
(NTP and several PTP implementations), but PPSi was chosen as the solution.
PPSi can achieve sub-microseconds accuracy of synchronization and it is possible
to get up to sub-nanoseconds accuracy with hardware assistance, according to one
of it's developer Alessandro Rubini. The WR project uses WR frames that are
compatible with a normal PTP frame, and therefore PTP will work fine for both
of the problems stated above. There are numerous different PTP implementations
but none is WR compatible. However, there exist no PTP implementation (free of
charge) that works for both Linux and Windows computers (only the one or the
other) and is compatible with WR hardware. Before this thesis, PPSi only worked
for Linux, WR computers (computer with WR hardware) and WR switches and
did not worked for Windows.

Another good reason to choose PPSi is that it is developed for WR, to work
with or without WR hardware. This approach will make it easier to add WR
hardware in a non-WR network in the future, without changing the software.

3.2 PPSi overview

The PTP protocol code is based on code from the PTPd project which is also
an Open Source PTP implementation under GNU LGPL license. Since WR is
based on the Ethernet standard, so is also PPSi. PPSi can send packets over UDP
or raw Ethernet (where the destination and source address is a MAC address),
depending on the architecture specific code (will be discussed later). PPSi can
be used as Ordinary Clock (OC) or as a Boundary Clock (BC). The user of PPSi
can configure PPSi for different working modes for each PTP port (a PTP port
is a virtual input for receiving PTP packets, defined IEEE 1588 protocol), PPSi
supports several PTP ports on a single physical port.[25]

There are also several diagnostic options in PPSi. Which can be configured
in different levels (providing more or less data) on each port and displays data
regarding: state machine, servo loop and frame I/O and can be changed at run
time. This feature can be very useful in circumstance where network sniffers are
unavailable. Another important build-time option is support for extensions, i.e.
WRPTP.[25][26]

In order to get several slaves to be synchronized to one master, PPSi initiates a
multicast group, this enables several slaves to synchronize to one master by joining
the multicast group. Currently PPSi does not support UDP over IPv6, but a patch
to enable UDP over IPv6 is under development.[26]

3.3 General Architecture

The PPSi design goal is to be self-contained and therefore uses Makefile to compile
the PPSi code. The top-level Makefile is used to build the object file ppsi.o, which
looks like a library for architecture specific code. In order to achieve portability,
the core PPSi code has no interaction with the outside world; instead this is up
to the architecture specific part of PPSi to provide.[25]
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Figure 3.1: PPSi architectur. Credit the PPSi developers.

The PPSi code can be divided in 3 parts (the filled red rectangles in Figure
3.1): The architecture specific code, the architecture-independent default protocol
code and the architecture-independent protocol extension code. This architectural
split conforms to the layering description in IEEE 1588 standard. The media-
independent layer (default protocol in PPSi), the media-dependent (arch-specific
in PPSi) and finally option- and profile-specific operation (protocol extension in
PPSi).

In order to build PPSi, a configuration file is needed. The configuration file
specifies what kind of architecture and possibly extension, to be build/used. This is
performed using Kconfig, which is a tool derived from the Linux kernel and can be
configured in an interactively or in a non-interactively way. The non-interactive
option is achieved by providing pre-build configuration files (called .config) one
for each architecture (with extension disabled). The interactive way is graphical
interface in the command prompt.

Configuring PPSi at run-time (e.g. enable diagnostic on each port) is achieved
by feeding “configuration strings” through the run time environment to PPSi.[26]

3.4 PPSi Internals

The goal of this section is to present deeper look at the PPSi code. The core
of PPSi, the state machine is thoroughly explained as well as the time-, network
operation, profiles and extensions.
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3.4.1 Default Protocol

PTP protocol is implemented in the “default protocol” part of the PPSi code. The
most interesting part is the Best Master Clock Algorithm (BMCA) which is the
algorithm used to decide what state a PTP port should enter. Another interesting
fact is that the servo/PLL implemented in PPSi is based on NTP's PLL algorithm,
because the PTP specification does not specify a servo algorithm (for clarification
the servo is the PLL in PPSi and is responsible for calculating the clock frequency
offset).

Figure 3.2: Data structure for pp_instance (only a collection of
the variables is presented).

Every configured PTP port runs a state machine, defined by an pp_instance
object (called ppi), which runs a pp_state_table[] structure shown in Figure 3.3.
The content of the state table depends on how PPSi is built (default or profile-
extended, a profile-extended can also refer to the default state table). As Figure
3.2 presents, most of the important variables are defined in pp_instance structure
and contains information about the current state, next state, diagnostic as well as
protocol flags and timestamp.[25]

The state machine in PPSi is purely network driven and has nothing PTP-
specific in the engine. The BMC algorithm is used to decide in which state each
port should enter.

Below is a list of all states a PTP port can enter in PPSi:

• Disabled: indicating the post is disabled and no message can be sent on this
port.[12]
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Figure 3.3: The state table structure.

• Faulty: in PPSi this state is for troubleshooting purposes and prints an error
message before entering initializing state.

• Initializing: in this state all network, hardware and data sets are initiated
and the clock identity is derived from the NIC card's (Network Interface
card) MAC-address.[12]

• Listening: is a temporary state at startup, before deciding to enter slave or
master state.

• Master: in the master state the port sends announce message (announcing
that this port is a master) as well as listening for sync and request messages
from slaves.

• Passive: the passive state, when a port is neither slave nor master and only
responses on incoming messages and sending delay request.[12]

• Slave: in this state the PTP port tries to synchronize to a master.

• Uncalibrated: PTP port enters this state when preparing to synchronize
to a master and cannot enter master state, this state is mainly used for
initializing servo.[12]

• Pre-master: not yet implemented in PPSi since this state is used in BC
situations.

3.4.2 Architecture specific

The architecture dependent code defines network and time operations and provides
the operations to each associate PTP port (called ppi). The time and network
operation structure is defined in pp_network_operation and pp_time_operation.
In most architecture (especially the hosted) a main loop is provided, which runs the
PPSi program. In most freestanding environments, a main loop is not provided,
because in those environments all object files are linked together with an externally
main loop.[25]

The main function of the architecture specific code refers to a single en-
try point called pp_state_machine(), which refers to the default protocol code.
pp_state_machine() is a procedure with a network frame as argument and oper-
ates synchronously and returns immediately. If available, the procedure returns a
wait value, indicating when to call the procedure again.
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Figure 3.4: The time operation structure.

In each pp_instance object a time operation structure is instantiated, the
structure points to all time-related related interaction between PPSi protocol and
the run time environment. The structure is presented in Figure 3.4.[25]

The get() method returns the time of the system clock. The adjust() method
is used for small adjustments on time in scale of nanoseconds and frequency (in
part per billion), depending on what the underlying architecture supports. In for
example Windows (and therefore Cygwin) there is no support for adjusting the
clock frequency. The set() method is only used for time jumps, when the time
offset is too large for a time adjustments. The initialize servo method is used to
return the current applied frequency correction, e.g. if the system is already in
process of adjusting the clock frequency, PPSi can take that into account.[25]

Timeouts are software based in PPSi and is implemented as inline functions
based on monotonic time in millisecond resolution. Since get() does not return
monotonic time we need a special function for timeouts. The timestamps in PPSi
are stored in Time Internal structures which has a high precision field (nano scale).
This field is only used by WR profile.[25]

Figure 3.5: The network operation structure.

Like the time operations, each PTP port also instantiate a network structure.
According to [25] “In case of a device having more physical ports (e.g. a BC),
each port has it's own driver, thus handling different hardware interfaces on the
same device”. In a hosted Linux environment there a possible to tell the kernel to
timestamp incoming frames (discussed later).[25]

In the initialization phase, each PTP port is using information in the instance



Synchronization with PPSi 31

of the network operation structure. Additionally, the multicast group is also ini-
tialized in this phase. Each architecture implements how PTP packets should be
sent, either over UDP and/or raw Ethernet, depending what the architecture sup-
port. Each architecture can pre-set what the default should be. If both UDP and
raw Ethernet is supported, a configuration can set up two PTP ports on a single
physical interface.[25]

The send() and recv() operations has two responsibilities: firstly receiving
and sending frames, secondly to collect timestamps for each operation. These
timestamps are later used in the PTP calculations. The check_packet() method
is used to check for frame arrival. Finally, the exit() method closes multicast and
the socket.[25]

3.4.3 Profiles and extensions

The “protocol extension” part of PPSi contains the PPSi extensions code, currently
only WRPTP extension is available.

Figure 3.6: Profile and extensions structure.

In PPSi, profiles and extensions are managed by protocol hooks, to modify
the state machine table. The available hooks are presented in Figure 3.6. The
purpose of profiles is for example to define modified state table, specific action
required to establish communication with a peer. As an example, in WR it is
required to perform specific action, in order to establish a WR link between two
WRPTP daemons after a successful announce handshake.[25]

The available hooks fulfills three types of roles:[25]

• Managing extension: init(), open() and close().

• Extending protocols: these hooks are responsible for changing the protocol
behavior, these are the hooks listening() and handle_followup().
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• The third role is to handle packet for profile-specific handshake, these are
the pack_announce() and unpack_announce() methods.

The structure can be extended to support new extensions, which is easier since
profiles and extensions are cut off from the default protocol.[25]

3.5 Supported architectures

PPSi was originally developed for WR networks and hosted Linux computers. As
of today PPSi can be runned on several other architectures. In this section all
current supported architectures are presented.

• arch-unix: this is the default configuration and should be used when building
PPSi for hosted Unix based environments. This architecture can run as an
OC or a BC.

• arch-cygwin: this is the Cygwin (Windows) configuration and should be
used when building PPSi for hosted Windows with Cygwin installed based
environments. This architecture can run as an OC clock.

• arch-wrs: the White Rabbit switch build, which includes special hardware
for time stamping and phase detection. This architecture should be used
for building WR switches, include special software and has the possibility
to fall back on default PTP when running in non-WR environment.

• arch-wrpc: the build for White Rabbit PTP Core architectures. The run
time environment is a soft-core CPU running within an FPGA.

• arch-bare-i386 and arch-bare-x86: these two are for freestanding type en-
vironments and “builds a Linux process that does not rely on standard li-
braries: both process startup and the few system calls are implemented in
assembly language by the ports themselves.” [25]

• arch-sim: this was made for the purpose of testing PPSi servo (non-WR).
PPSi built using this architecture, PPSi implements two PTP instances
that communicate: one master, one slave. The two instance communicate
through a software-only channel and the perceived flows at a faster pace.[25]

3.6 Cygwin

In this section a brief explanation of what Cygwin is and an explanation of why a
Cygwin extension instead of a Windows extension was made.

3.6.1 What is Cygwin?

Cygwin is free software under the GNU GPLv3 license developed by Red Hat (for-
merly Cygnus Solutions) and is a distribution of popular Open Source tools like
GNU, BSD and MinGW tools for Windows. Cygwin consists of two parts: the
most important part in scope of this thesis is a dynamic-link library (DLL) as an
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application programming interface (API) providing substantial POSIX functional-
ity. POSIX is family of standards that defines the API, the user command line (ls,
pwd, clear etc...) and also scripting interface. POSIX is specified by IEEE Com-
puter Society for preserving software application compatibility between operating
system (specifically UNIX variants), making it possible to build (and run) Linux
programs on Windows.[30] [32] POSIX is not an operative system (OS), instead
POSIX acts as an interface between the application and the library (the library
contains function calls to the underlying OS). POSIX defines how the communica-
tions to the library should be and how the library and the OS should respond.[31]

Cygwin is expected to run on all modern versions of Windows XP, Windows
Server 2003 up to the latest version of Windows, Windows 8.1 (Windows 10) and
Windows Server 2012R2 and can be run in both 32-bit and 64-bit Windows.[30]

Most of today's operating system is compliant with POSIX and the new version
of Windows (Windows 8.1, Windows Server 2012) has added more support for
POSIX.[33]

3.6.2 Why Cygwin?

There are a couple of reasons were chosen to build a Cygwin extension for PPSi
and not a plain Windows extension. The former reason to build a Cygwin patch
is due to the fact that the original PPSi program was written for Linux in POSIX
which is not supported in Windows. This means that there are three choices:

• Rewrite most of the PPSi source code to fit Windows.

• Use a POSIX emulator (Cygwin) on Windows and a write PPSi extension
for the emulator.

• Run Linux in a virtual machine.

We choose to use Cygwin and write a PPSi extension and leave rewrite PPSi
for Windows as future work. The reason why Cygwin was chosen over a virtual
machine is because the performance was expected to be worse (at least not better)
using a virtual machine compared to using Cygwin.
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Advantage Disadvantage
Rewrite PPSi source
code.

This solution is likely to have
best performance compared to
the other two. Since, in this
solution, PPSi runs directly
on the application layer, i.e.
less asymmetric latency.

Time consuming, rewriting
PPSi source code will take a
lot more time compared to the
other two.
Another downside with this
solution is that it will create
two versions of PPSi (one for
Windows and one for Linux
system), which is bad for the
future development of PPSi.

Using a POSIX em-
ulator and writing a
PPSi extension.

This solution will preserve the
portability of PPSi, therefore
future development is not a
problem.
Far less time consuming writ-
ing a PPSi extension, than
rewriting the source code.

Since Cygwin will run as com-
patibility layer around PPSi,
this will impact the perfor-
mance, i.e. PPSi will be
slower in Cygwin and adding
another application layer may
give more asymmetric delay.

Run virtual machine. No changes to PPSi are
needed.

This approach is likely to have
worse performance, despite
the host and guest OS share
the same hardware clock, the
actual value of the clock is dif-
ferent (the clock value is man-
aged by the OS) see section
2.2 Computer Clock.
Running PPSi in a virtual ma-
chine will only synchronize the
clock in the virtual machine.
The host has to then be syn-
chronized with the virtual ma-
chine, another way of intro-
ducing asymmetric delay.

Table 3.1: Comparison of different approaches to run PPSi in Win-
dows
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3.7 PPSi implementation in Cygwin

In this section, our approach of writing Cygwin extension is presented, as well as
the major differences between the Cygwin version and the UNIX version of PPSi
are discussed.

3.7.1 Approach

Since Cygwin provides a very complete POSIX functionalities as well as GNU
library, much of the UNIX code could be re-used. However, all time and network
operations have to be rewritten with what is supported in Cygwin (and Windows).

3.7.2 PPSi in Cygwin versus UNIX

The major difference between the Cygwin and UNIX is the time operation code.
The get() and set() methods are almost identical, but the init_servo() method
in Cygwin returns 0, i.e. no frequency adjustment is currently being applied and
the frequency offset is 0. UNIX has a function called adjtimex(), which among
several thing, returns the current frequency offset. Adjusting the clock frequency
is not supported at all in Windows and therefore not in Cygwin. NTP source code
was checked (in their Windows service) to see if they have a solution for adjusting
the clock frequency in Windows, but no solution was found. According to [34], if
the kernel has support to "discipline the clock frequency", then NTP provides a
feature for adjusting the clock frequency offsets. Despite having support for small
clock adjustments in Windows (which temporarily speeds up or down the clock
until the clock adjustment has been met) it is not supported in Cygwin. Instead
the set() clock method is used to set the clock which is less than optimal, more on
this in the chapter 5. Finally, the calc_timout() function is identical to the UNIX
version.[8] [28]

Another difference is how they receive packet timestamp is generated in UNIX;
the receive packet timestamp are generated at the kernel. This is achieved by
setting the SO_TIMSTAMP options on the socket at start up. This will tell
the kernel to timestamp incoming packets, the timestamps can later be collected
through packet control messages. This feature is not supported in Windows; in-
stead a software timestamp is generated for incoming packet.

There is also some differences in the network operation compared to UNIX.
In Cygwin only UDP packets is supported, because raw Ethernet frames is not
supported in Windows. Ignoring the differences state above the code is more or
less identical between the Cygwin and the UNIX version of PPSi.

3.8 Applications for PPSi

The main application of PPSi is with WR, which is used to provide precise time
accuracy for accelerator facilities. PPSi applications provides full support for
WRPTP extension and can be used in distributed data control systems to syn-
chronize diverse environments, both hosted (Linux- and Windows with Cygwin
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install based WR device) and freestanding such as WR end node without operat-
ing system by using a modular design that separates PTP code from the required
interaction with a specific environment taking the benefits from WRPTP and WR
networks. PPSi can be used as a standalone module that provides precise time syn-
chronization for both standard exiting (non-WR) devices or as a WR compatible
devices.[25]



Chapter 4
Result

This chapter shows the test result of the PPSi software in three different scenarios,
to test PPSi in different aspect. The calculated performance and verification of
the three scenarios are shown below.

4.1 Testing PPSi

In order to evaluate the performance of PPSi two different lab setups were chosen
to represent our objective (synchronization in a non-WR or/and WR network) and
the third lab setup was made to test WR, so that the software and the hardware
approaches for time synchronization could be compared. In order to measure the
performance, two clock pulses (1PPS) from the master clock and the slave clock
are compared in an oscilloscope. The clock pulse delay or clock pulse deviation
is measured using the oscilloscope and the measurements are used to calculate
the mean error and standard deviation of the relative time difference between two
clock pulses. In each test scenario the setup was running in approximately one
hour before measuring, so that the systems had time to stabilize.

4.1.1 SPEC to PPSi lab-setup

In this setup as shown in Figure 4.1 the performance of PPSi was measured by
synchronizing a 32-bit Linux (Debian) PC to a WR SPEC card. The SPEC board
was configured as a master was inserted into the PCIe slot of another PC. The PC
in the test setup was configured as a slave running PPSi. The SPEC board was
connected to a media converter (which converts an optical signal to an electrical
signal, i.e. fiber to twisted pair) with a 1 meter fiber cable; the slave was connected
into the media converter with either a 1 or 50 meter Ethernet cable respectively,
to see if the cable length has a significant impact on the synchronization error.

Pre-built binaries were installed in order to build the White Rabbit PTP
Core (WRPC), downloaded them to the FPGA and made the configuration of
the WRPC. The SPEC was configured as a master and would now send it's tim-
ing information to the slave. The 1PPS (clock pulse generated every time the
clock value is increased by one second) output of the SPEC board was connected
to the CH 1 of the oscilloscope via coaxial cable. The slave were connected to
the oscilloscope by a probe connected to the computer's parallel port, in order to
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Figure 4.1: Lab setup, SPEC master to PPSi slave

provide a 1PPS signal by running a small software program called pps− out.c was
used, available in the PPSi framework. These two signals were compared and the
relative time difference was measured. A WRPC can only (currently) send WR
PTP frames using raw Ethernet frames, therefore directly connecting a Windows
PC running PPSi to a SPEC card will not work (will be discussed in chapter 5).

An interesting note, is that when a media converter (optical/electrical) is used
WR is disabled, the reason is there is no direct fiber connected between the WR
master and the slave. WR uses information gather from the fiber in order to
track the master clock to get a high accuracy timestamps. Instead the SPEC
will run normal PTP and the synchronization accuracy will not be high (scale of
nanoseconds).

4.1.2 PPSi to PPSi lab-setup

In this setup as shown in Figure 4.2 the performance of PPSi was measured by
synchronizing two desktop computers running 32-bit Linux (Debian) operating
system and running PPSi. These two PCs were connected by a 1 or 50 meter long
Ethernet cable respectively. One PC was configured as a master and the other
as slave. Both the master and the slave were connected to the oscilloscope. The
1PPS output of the master was connected to the CH 1 of the oscilloscope and the
1PPS output of the slave was connected to the CH 2 of the oscilloscope. These two
signals were compared and the relative time offset was measured and analyzed.

4.1.3 SPEC to SPEC lab-setup

The setup as shown in Figure 4.3 was performed in order to compare how PPSi
by software adds up against White Rabbit. Two SPEC cards configured as master
and slave was used, a 1 meter fiber cable was used to connect the SPEC cards.
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Figure 4.2: Lab setup, PPSi master to PPSi slave

Figure 4.3: Lab setup, SPEC master to SPEC slave

The SPEC cards were connected to the oscilloscope with coaxial cables via the
DIO FMC board.

4.2 Measurement and verification

The results are shown in table 4.1 and were calculated using Matlab.
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Lab-setup Mean delay Standard deviation
WR SPEC card (mas-
ter) to computer (slave),
50 meter TP cable.

47.5 μs 16.9 μs

WR SPEC card (mas-
ter) to computer (slave),
1 meter TP cable.

48.2 μs 15.7 μs

PPSi master to com-
puter (slave) 1 meter
TP cable.

2.6 μs 13.0 μs

PPSi master to com-
puter (slave) via 50 me-
ter TP cable.

3.6 μs 10.6 μs

WR SPEC (master) to
WR SPEC (slave), 1
meter fiber cable.

15.9 ns 2.0 ns

Table 4.1: The performance of PPSi in the three different scenarios

The resolution of the relative time measurements must be taken into account
in order to ensure the authenticity of the calculation in table 4.1. According to the
LeCroy manual the resolution of the cursor used for measuring the relative time
difference between the two clock signals can be ±0.05% full scale for unexpected
traces. Therefore only one decimal digit is used in the calculated values in Table
4.1.

Figure 4.4 is an example of how the synchronization deviation/error was mea-
sured between the master and slave in each of the three different demonstrations
mentioned above.

Figure 4.4: Clock pulse deviation: PPSi master to PPSi slave
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Figure 4.5: Clock pulse delay between SPEC card and slave com-
puter (50 meter TP cable)

Figure 4.6: Clock pulse delay between SPEC card and slave com-
puter (1 meter TP cable)

In the first scenario (result shown in Figure 4.5 and 4.6) two different cable
lengths were used; the probes cable length was 2 meter and the coaxial cable
connected to the SPEC card was 1 meter. This will of course introduce some
delay between the clock signals but insignificant in this scenario. Assuming the
propagation delay in a coaxial cable is 1.57ns/ft the pulse delay will be around 5
ns. [36]
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Figure 4.7: Clock pulse deviation between PPSi master and slave
computer (50 meter TP cable)

Figure 4.8: Clock pulse deviation between PPSi master and slave
computer (1 meter TP cable)

As mentioned in Section 4.1, in order to test PPSi a software program called
pps-out (included in the PPSi framework) was used to generate a pulse-per-second
signal to a parallel port or a serial port. The parallel port was chosen in our sce-
narios since it has less delay and jitter than the serial port. However, running a
software program to generate 1PPS will introduce couple microseconds of system-
atic error, due to software delays. The pps-out reports how late it was before and
after generating the pulse edge, in our case it was between 0 and 2 microseconds.
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Figure 4.9: Clock pulse delay between two SPEC cards (1 meter
fiber cable, notice the scale on the x-axis)

In Figure 4.9 the result obtained by comparing the clock signals between two
SPEC cards is not as accurate and the mean is probably lower than Figure 4.9
shows. The reason is that it was difficult to get good samples from our oscilloscopes
in such a time scale.

To clarify what is measured in our scenarios, in the first (and the third) scenario
the clock offset or clock pulse delay between WR master and slave (running PPSi)
is measured by comparing their clock signals. In the second scenario the clock
deviation is measured, caused by the computer delay distribution in the slave and
master computer. The reason for choosing to call the measurements either clock
pulse delay or clock pulse deviation, is because the relative time difference in the
first and third scenario is always positive (i.e. there is always a delay between
the master clock pulse and the slave clock pulse), whereas in the second scenario
the clock pulses deviates from one another (relative time difference can be either
negative or positive). In first two lab setups the clock pulse delay or clock pulse
deviation was measured in about 1.5 hour (until 500 measurements was reached).
In the third lab setup only 158 samples/measurements was taken since there were
a lot less variance on the relative time difference between the two clock signals in
this case.

The distribution of the delays in the computer is caused by different entities
or factors, making the clocks deviate from one another in the second scenario and
most likely responsible for clock pulse delay in first scenario. The time it takes
to run PPSi and the pps-out software can be seen as a distribution, since the
time running the programs can vary (e.g. calculating the time offset, generating
timestamps for received and transmitted frames or generating a PPS signal to
the parallel port). The PPSi and pps-out program also reads and writes (pps-
out program only reads the clock) to the system clock which also takes different
amount of time, depending on the kernel. The OS and the kernel delay can also
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be represented by a distribution, since interrupts forcing the PPSi and pps-out
program to wait some time before running and the time it takes for accessing the
hardware and the system clock can vary a lot. There will also be some variations
of the delays in the NIC (Network Interface card), since the time for generating a
frame to the Ethernet port can aviate and there can also be some queuing delays
(in our case the queuing delay is more or less non-existing since there is very low
network traffic). Additionally, it takes some time for the hardware to produce an
electrical PPS signal to the parallel port. All distributions mentioned above cause
the clocks on the master and the slave in the second scenario to deviate from one
another.

Another big factor (most likely the biggest) is the internal computer clock,
which suffers of clock drift making the clock run too fast or too slow (relatively)
and is probably the reason why there can be a negative time difference in scenario
2, more on this in Chapter 5. In PPSi there is a PLL function with main objective
to accommodate for clock drift, but it is relatively slow compared to how fast the
computer clock drifts.

The delays in SPEC card are caused by the result of SFP transceiver and elec-
tronic components as well as the delays inside FPGA chip. Additional reception
delay is also caused on both sides by aligning recovered clock signal to the inter-
symbol boundaries of data stream as well as the delays caused from generating
timestamps. In addition to hardware delays, when running PPSi, the SPEC is
affected by the software delays, which is very small due to hardware timestamping
of transmitted and received frames. Another important aspect of the SPEC card
is that the clock in the card is a lot better compared to the computer system clock,
since it less sensitive for e.g. temperature changes and therefore do not suffers as
much from clock drift. Also, it more accurate compare to the computer system
clock.

In the third scenario, when using SPEC to SPEC, each master and slave has
more or less constant transmission and reception delays. As well as the delays that
are resulting from the hardware delays mentioned above. The clock pulse delay
between SPEC-to-SPEC is always positive since each WR master and WR slave
suffers from very small software delays hence, the slave is always being late since
the synchronization is never perfect.
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Discussion and conclusion

In this chapter the results of the three test scenarios are discussed. This chapter
also presents future work and improvements to the PPSi timing solution. Finally
a conclusion of the work and usage of PPSi is presented.

5.1 Discussion and expected result

This section compares the three test scenario and the result is discussed. It also
presents the expected performance of PPSi in Cygwin.

5.1.1 Test result comparison

In the first scenario a WR SPEC card was configured as master and connected
to the slave computer running PPSi through a media converter. This result is
interesting because this is a possible scenario at ESS and is probably closest to
reality of the three scenarios.

The result is believed to reflects how accurate the level of synchronization
will be and how distribution of the OS and software latencies impact the level of
synchronization. Considering how small the PPSi program is, a heavily loaded
computer will most likely not affect the synchronization error (having multiple
programs used for adjusting the clock while running PPSi will affect the syn-
chronization accuracy, but it is not a good practice and therefore not taken into
account). Having a heavily congested network card (and more network devices like
switches between the media converter and the slave) will most likely to increase
the synchronization error. The result will probably look as graph 4.5 and 4.6 but
shifted to the right (higher error) and bigger variance due to asymmetric queuing
delays.

The tail in graph 4.5 and 4.6 is believed to be caused by clock drift (causing
the clock to tick too fast) which in turn cancels the other delays (OS, software
latencies etc...), resulting in a lower offset between the master 's PPS signal and
slave 's PPS signal. The tail is not visible in the other two graphs (second scenario)
since the clock drift is assumed to be the same on both the master and the server,
therefore the clock drift distribution will be centered on 0.

The overall result was expected compared to other PPSi test result and the
results in similar scenarios are not expected to be better than this. Connecting a
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PC via media converter to WR network, will as mentioned in section 4.1.1 disable
WR on the link between the computer and the WR network.[25] The reason that
the result between using a 50 meter cable or 1 meter cable in the first two scenario
are so similar, is because the propagation delays in this cases are insignificant.
The reason it is insignificant in these case, is because the propagation delays is
more or less deterministic. In the second scenario, one of the computers ran PPSi
as master, that was connected to another computer that ran PPSi as slave. The
result is believed to show the computer delay distribution (times two, since the
computer delay distribution exists on both master and slave), since the network
delay in this scenario is more or less none existing.

If the graphs of the first two scenarios are compared, there is relatively big
difference between running SPEC as master or PPSi as master. This because, the
combined distribution (called the computer delay distribution) of the OS latencies
(caused by interrupts and the OS kernel), software latencies (cased by PPSi and
pps-out software) and clock drift, is more or less the same on both master and
slave computers in the second scenario. When the PPS clock signals are compared
and the clock pulse delay is measured by subtracting the relative time between
the PPS signals, the delays will cancel each other out (not always, is why the
distribution looks like it does). This is why the graph is centered on a couple
of microseconds. The negative values occur when the PPS signal from the slave
is generated early compared to the master's PPS signal. This is believed to be
caused by clock drift making the clock ticking too fast, canceling the other delays
and therefore the PPS signal to be generated sooner compared to the other PPS
signal.

It is believed that the reason there is a relatively big difference between using
a SPEC card as master instead of a PC, is because the cancelation of the delays
mentioned before doesn't occur in this scenario (at least not in the same manner).
The SPEC card doesn't suffers from OS latencies and very little from software la-
tencies due to having hardware generated timestamps of received and transmitted
package. The difference is believed to be caused by OS and software latencies and
clock drift on the slave computer, making the PPS clock signal to be generated
much (relatively) later compared to the signal from the SPEC card. The media
converter also introduces some delays but those are most likely to be very small
and insignificant. An interesting note is that the variances between the graphs in
the first two scenarios are the same (a little bit higher in the first scenario, caused
by the tail). This suggests that the error distribution is the same and is most
likely to be the same in similar scenarios, since the computer delay distribution
on the slave are the same.

The third scenario was more as a reference, used to compare to the result of
the other two scenarios, the result was very much expected and confirmed with
previous White Rabbit test. Comparing this result with the two other scenarios,
it is clear that having hardware generated timestamps; no OS and small software
related delays have big impact on the level of synchronization achievable.
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5.1.2 Expected performance of PPSi in Cygwin

There are downsides with Windows concerning time synchronization, most of
which already mentioned earlier in this document. The most sever is that Windows
lack functionality for adjusting the clock frequency, making it very hard adjusting
for clock drift. Another problem is the accuracy of the timestamps in Windows,
since it is possible to get software timestamps in scale of hundreds of nanoseconds,
compared to Linux which is in nanoseconds. Since PTP uses timestamps to cal-
culate time offset, this will of course affect the achievable level of synchronization.

As mentioned in section 4.1.1 the WRPC can only send frames using raw
Ethernet, making it impossible to directly connect a Windows computer running
PPSi to a WR network (PPSi in Windows/Cygwin only can send frames via UDP).
In order to solve this issue, we suggest using a Linux computer as a BC between
the WR network and the Windows computer (this will affect the accuracy on the
synchronization).

Using Cygwin as POSIX emulator also create another application layer which
will introduce both asymmetric and symmetric software related delays, making
PPSi in Cygwin run slower compared to Linux.

5.2 Future work

This section presents the future improvement of PPSi as well as future work on
White Rabbit.

5.2.1 Future improvements of PPSi

Since PPSi is the result of a development effort providing full support for WRPTP
extension, support a variety of devices and platforms which means that the path
is leaving open for new PTP profiles and new versions of the PPSi standard.
The current release of the PPSi standard works for both hosted (e.g. WR switch
running Linux, not Windows) and freestanding environments, without a host op-
erating system. The result of this master thesis is building a PPSi extension for
Cygwin (Windows). But since Cygwin runs as compatibility layer around PPSi
this will impact the performance, i.e. PPSi will be slower in Cygwin and adding
another application layer may give more asymmetric delay. However, our proposal
for a future work is to write a new standard for native Windows with much better
synchronization accuracy and lower forwarding package delays is a new challenge
for future developers.

It should be clear that PPSi is software program under development and there
are several features to be added in the future (to mention one, IPv6 addresses).
There is also the downside that WRPC (White Rabbit PTP core) used in the WR
hardware (like SPEC cards or WR switches) only uses raw Ethernet frames as
transport protocol, which is not supported in Windows. Adding support for UDP
in the WRPC is considered an important feature for future improvement, so it is
possible to directly connect a Windows computer to a WR network.
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5.2.2 SPEC drivers for Windows

As of today, it does not exist any Windows drivers for SPEC cards, making it hard
for Windows users to use White Rabbit. The effect of missing Windows SPEC
card drivers we think deserves a future study/development.

5.2.3 Building native Windows PPSi

The design suggested here is centered on the WRPTP standard. The objective is
designing a package that works on a native Windows producing better synchro-
nization accuracy. If new requirements appear over time, they should require new
solutions, but we cannot predict them at this stage.

5.2.4 Testing and evaluating PPSi in Cygwin

Unfortunately the PPSi Cygwin extension was not tested in this master thesis,
because writing a program to generate a 1 PPS output to the parallel port is
supposedly to be hard in Windows and no such program existed at the time of
this thesis. Therefore the evaluation of the Cygwin extension is left as a future
work.

5.2.5 Testing SPEC to computer for internal clock drift estimation

When sending or reception packets, each computer system records its own event
using its internal clock, and in order to properly understand the computer system
behavior, as reported by the events recorded on each computer, it is important
to estimate precisely the clock differences and drift. The results obtained in the
previous measurements show that the tail in graph 4.5 and 4.6 was expected caused
from the clock drift. In order to ensure if that is correct, an additional testing is
required, where two clock signals (1PPS) from the computer clock and the SPEC in
an oscilloscope are compared to study the delay characteristics and synchronization
time accuracy between them (the SPEC board is attached to the PC's PCIe express
slot). In order to get a computer internal clock to be synchronized in time with
SPEC, special software is needed for this purpose. Writing of this software and
testing this lab-setup are leaved as a future work.

5.3 Conclusion

In this thesis, a purely software time synchronization protocol called PPSi PTP
daemon is implemented. PPSi is an ideal timing protocol based on WRPTP. How-
ever, by using a combination of a freely software PPSi source code and WRPTP
core binaries and any other tools available on the hardware repository website,
was very helpful to achieve the target, as well as the purpose of the project. A
newly defined PPSi extension as a free software package has been designed that
supports Cygwin (Windows).

As a result of this work, using hardware achieves a better result compared to
a software only approach. In the case where using hardware is hard and/or too
costly a software approach is the only option.



Discussion and conclusion 49

As mentioned in section 1.2 Scope, one problem with two different demands
was considered to be solved (A high demand representing time synchronization
in scale of nano- or micro seconds and a low demand represents time accuracy in
scale of milliseconds). As a result of this thesis, PPSi is the proposed solution
to both of the demands considered in section 1.2. However, in Windows the high
demand is most likely not to be met, and is left as future improvement of the PPSi
software.
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AppendixA
Source code

The entire project source code is publicly accessible on the hardware repository
website. The links to all the repositories that were required for implementing and
testing PPSi are written below and can be downloaded by using git.

White Rabbit core collection.
This is the first official release with PPSi as the WR PTP engine. Is a
collection of cores in WR nodes and switches.
Git repository: wr-cores:git@ohwr.org:hdl-core-lib/wr-cores.git
Project website: http://www.ohwr.org/projects/wr-cores.

Software made for White Rabbit PTP core.
The software that runs on LatticeMico32 as part of WRPC gateware which
is responsible for controlling all HDL modules and carrying out WR time
synchronization in WR Slave or WR Master.
Git repository: wrpc-sw:git@ohwr.org:hdl-core-lib/wr-cores/wrpc-sw.
git.
Project webite: http://www.ohwr.org/projects/wrpc-sw.

Software support for the SPEC board.
Software for SPEC boards, includes kernel, user space Linux code and FMC-
bus driver. It is mainly used to flash the SPECs.
Git repository: git://ohwr.org/fmc-projects/spec/spec-sw.git.
Project website: http://www.ohwr.org/projects/spec-sw

Software PPSi.
PPSi is the software implementation of PTP including the WRPTP exten-
sion used for synchronization in White Rabbit networks. The software is
located here.
Git repository: git://ohwr.org/white-rabbit/ppsi.git.
Project website: http://www.ohwr.org/projects/ppsi.
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AppendixB
PPSi för realtidssynkronisering (Popular

science description in Swedish)

Vad händer om det försvinner eller läggs på några minuter eller sekun-
der i din datorklocka. De flesta datorer med interna klockor håller dem
reglerade med hjälp av vibrerande kristaller. Men även dessa kristaller
kan förlora sin noggrannhet p.g.a. yttre faktorer som fukt eller temper-
atur, vilket kan vara ett problem för vetenskapsmän som vill synkronis-
era klockan i deras dator till någon mätutrustning med högsta möjliga
noggrannhet. I denna artikel beskriver vi PTP Ported to Silicon (PPSi)
samt hur mjukvarustödet för PPSi kan användas för att nå en nog-
grannhet på mikrosekundsnivå.

I de flesta vardagliga tillämpningar spelar datorklockans noggrannhet inte så
stor roll, men inom ett flertal tillämpningar kan den vara av central betydelse.
Filhantering och arkivering, larm- och säkerhetssystem samt krypteringsnycklar
är bara några exempel där det kan vara viktigt att klockorna hos enskilda datorer
eller datorsystem är synkroniserade. Ett annat exempel som kräver en mycket hög
noggrannhet är acceleratorer i t.ex. ESS och CERN. En enkel laborationsuppsät-
tning är ett exempel på system som inte kräver lika stor noggrannhet.

För att uppnå tidssynkronisering med högre noggrannhet, så skapades PTP
(Precision Time Protocol). PTP är framtaget av IEEE (Institute of Electrical
and Electronics Engineers) med syfte att synkronisera datorer i ett LAN med hög
noggrannhet och kan nå en noggrannhet på mikrosekunden.

PTP kan tyckas vara mer än nog till de flesta tillämpningar, dock är det inte
tillräckligt för styrsystemen till acceleratorerna på CERN och ESS. Därför har
utvecklare från bl.a. CERN utvecklat ett system kallat White Rabbit (WR). WR
utnyttjar PTP och specialiserad hårdvara för att synkronisera över 1000 noder
med en noggrannhet på nanosekundsnivå.

Problemet med att använda White Rabbit är att det kräver speciell hårdvara,
som är dyrt och passar inte i alla datorer. I fall där extra hårdvara inte är möjligt,
är en mjukvarulösning det bästa alternativet. Vår uppgift har varit att undersöka
och föreslå en mjukvarulösning som kan användas för att tidssynkronisera datorer
i vanliga- och/eller White Rabbit nätverk.
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B.1 Principen för tidssynkronisering

Principen för tidssynkronisering är densamma för PTP och White Rabbit, som är
baserad på att master - och slave datorerna tar tidsstämplar på meddelanden de
skickar mellan varandra och att de delar dessa tidstämplar med varandra. Tid-
stämplarna t1, t2, t3 och t4 (figur 0.1) delas mellan slave och master för att beräkna
tidsförskjutning T. Figur 0.1 visar hur två datorer mäter tidsförskjutningen mellan
varandra. Vid tiden t1 skickar slave datorn ett meddelande vilket anländer vid
tiden t2 hos master. För att kunna beräkna fördröjningen krävs ytterligare en
överföring. Vid tiden t3 skickar master ett svarsmeddelande till slave inklusive t2
och t3 vilket anländer vid tiden t4. Slave har nu fått fyra tidsstämplar och kan nu
beräkna tidsförskjutningen T.

T = 1/2[(t2 − t1) + (t4 − t3)] (B.1)

Figure B.1: Tidssynkronisering.

Tidssynkronisera datorer är betydligt mer komplicerat än vad bilden ovan
visar, speciellt då det krävs noggrannhet större än ett par millisekunder. Dock ger
det en generell bild på hur principen fungerar.

För att hitta en lösning på problemen vi nämnt innan har vi sökt efter nu-
varande lösningar som kan fungera i de två scenarion vi satt upp. Vi stötte då på
PTP Ported to Silicon (PPSi) som är ett portabel Precision Time Protocol (PTP),
vilket betyder att PPSi är ett PTP program som ska fungera i många olika oper-
ativsystem (t.ex. Windows eller Linux), dock visade sig att PPSi inte fungerade
för Windows. Vår uppgift blev därför att skriva en utökning av PPSi så att det
går att köra på en Windows dator.

PPSi är utvecklat för White Rabbit projektet. PPSi synkroniserar nätverk-
senheter (servrar, switchar etc.) med hög precision genom att använda PTP. PPSi
kan användas för att nå noggrannhet på under sub-mikrosekunder och upp till
sub-nanosekunder med hjälp av hårdvara. PPSi kan fungera med (och utan) WR
hårdvara, vilket gör det enklare att lägga till WR hårdvara i ett icke WR nätverk
utan att ändra mjukvaran. PPSi fungerar för närvarande till både Linux/Windows
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datorer (och fristående datorer utan operativsystem). Vi såg PPSi som en lösning
på våra problem.

B.2 Hur noggrant blir det?

För att utvärdera hur bra tidssynkronisering kan fås i de två mål fallen (dvs. i ett
LAN och i ett WR nätverk), testades PPSi i två olika labborationsuppsättningar
som skulle motsvara de två fallen.

I den första uppsättningen kopplades två Linux datorer ihop med varandra,
PPSi kördes i de två datorerna så att det skulle synkroniseras med varandra. För
att mäta tidsförskjutning, användes att annat program som genererade en klock-
puls (mätsignal varje gång klockan ökade sekunderna med ett) till ett oscilloskop.
Klockpulserna från datorerna kunde jämföras för att mäta tidsförskjutningen. Re-
sultatet visas i figur 0.3.

Figure B.2: Tidsförskjutning mellan två Linux datorer. Synkronis-
erade med hjälp av mjukvara (PPSi).

I den andra uppsättningen användes ett speciellt datorkort kallat WR SPEC
kort som är ett speciellt framtaget kort för White Rabbit. SPEC kortet kopplades
till en Linux dator (som körde PPSi). Som i förra uppsättningen så kopplades
SPEC kortet och Linux datorn till ett oscilloskop så att tidsförskjutning kunde
mätas. Resultatet visas i figur 0.3.

I grafen ovan (figur 0.2) kan man se att de flesta mätvärden ligger strax över 0
och att vi har en medelvärdet på ca 3.6 μs, vilket tyder på att tidsförskjutningen
bruka vara runt 3.6 μs. Anledningen till att vi har mätvärden över och under
medelvärdet beror på flera faktorer. Den mest betydande faktorn är datorklockan.
Faktum är att datorklockan är långt ifrån perfekt och kan gå för fort eller för sakta
(kallat klockdrift). Detta beror på att oscillatorn som driver klockan är känslig för
ex. temperaturskillnader och fukt. Dessutom uppstår det fördröjningar i opera-
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tivsystem och i mjukvaran (PPSi programmet). Att köra ett mjukvaruprogram i
sig tar en vis tid i operativsystemet (OS), som kan vara upptaget vilket gör att
PPSi programmet får vänta. Dessa faktorer tillsammans påverkar fördröjningen
och ger upphov till tidsförskjutning mellan datorerna.

I den andra uppsättningen användes ett speciellt datorkort kallat WR SPEC
kort som är ett speciellt framtaget kort för White Rabbit. SPEC kortet kopplades
till en Linux dator (som körde PPSi). Som i förra uppsättningen så kopplades
SPEC kortet och Linux datorn till ett oscilloskop så att tidsförskjutning kunde
mätas. Resultatet visas i figur 0.3.

Figure B.3: Tidsförskjutning mellan ett WR SPEC kort och en Linux
dator.

Den största skillnaden mellan de två figurerna ovan är dels att grafen är
förskjuten det vill säga de flesta mätvärden ligger runt 50 μs, dels att där finns en
bakdel eller svans i figur 0.3 bland de lägre fördröjningarna (mellan 0 och 30 μs).
Denna bakdel (svans) tror vi beror på klockdrift, som gör att klockan går för fort,
på så vis tar ut de andra fördröjningarna (OS och mjukvara fördröjningar) och vi
får en lägre fördröjning.

Anledningen till att vi har en förskjutning mellan graferna är på grund av OS
och mjukvara relaterade fördröjningar i slaven, som fördröjer klockpulsen gener-
erat från slavens klocka. I ett SPEC kort finns det inget OS och mjukvarurelat-
erade fördröjningar är väldigt små, vilket gör att klockpulsen från SPEC kortet
sällan blir fördröjd, medan fördröjningar från slaven orsakas av OS, mjukvaru
fördröjningar och klockavdrift gör att klocksignalen från slaven genereras mycket
(relativt) senare jämförelse med signalen från SPEC kortet. Detta är inte fallet
i första uppsättningen eftersom OS fördröjningar, programvarufördröjningar och
klockdrift, är mer eller mindre densamma på både master- och slavdatorer vilket
gör att grafen i figur 0.2 är centrerat runt 0.

PPSi är för närvarande den enda mjukvarulösning som kan användas i både
WR och icke WR nätverk och kan enligt våra resultat ge en noggrannhet på 10-
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tals mikrosekunder (beroende på hur stor nätverkstrafiken är och hur stort LAN
som ska synkroniseras). Vi tror att PPSi öppnar vägen för nya PTP implementa-
tioner och stöder ett stort område av apparater, system och plattformar i framtida
acceleratorprojekt.
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