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Abstract

In circular accelerators, and in storage rings in particular, charged particles are
kept in a closed orbit for a very long time by means of a magnet lattice. When
the particle beam is bent by the magnetic field it emits light, which decreases the
particle beam energy by an amount equal to the radiated energy. Over many bends
in the magnets and many turns in the machine, these relatively small energy losses
amount to significant values, and so it is crucial to replenish this energy to keep
the beam orbiting. In storage rings, such as the MAX IV rings, this is done with
radio frequency (RF) cavities containing an oscillating electromagnetic field which,
on average, restores the correct amount of energy each turn. However, the beam
itself can excite so-called higher order modes (HOMs) in the cavities which can
ruin the beam stability if these HOMs happen to resonate well and have certain
resonating frequencies. The aim of this thesis is to determine the different HOMs
of the active 100 MHz cavities of the MAX IV storage rings, as well as the impact
these have on the beam stability.
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Chapter1
Introduction

There is a higher demand than ever for synchrotron radiation, with reasearch
groups from different scientific fields discovering its usefulness over the last decade
[1]. The MAX IV synchrotron radiation facility, currently being built on the
outskirts of Lund, Sweden, will provide scientists with light of higher quality1

than any other currently existing light source [3].
In order to produce this light, electrons are accelerated through a full energy

linear accelerator (linac) injector and are injected into one of the two storage
rings or the short pulse facility (SPF). The larger storage ring will have a beam
energy of 3 GeV and the smaller 1.5 GeV and they will be 528 m and 96 m in
circumference, respectively [4,5]. The light is "created" in insertion devices (IDs)
called undulators and wigglers [3], by the basic principle that accelerated charged
particles emit radiation, and is then carried through beamlines to the experiment
stations.

The beam energy must be replenished to make up for the energy lost in the
ID’s and bending magnets in the form of light. Failure to do so leads to poor beam
quality or even complete loss of the beam. To restore the energy, radio frequency
(RF) cavities are most often used. These are placed at one or more locations
around the storage ring and use resonating electromagnetic fields to accelerate
the particles. The (active) RF cavities of the MAX IV rings use the fundamental
resonance mode at 100 MHz to do this. Besides the active cavities, there are also
passive harmonic cavities placed around the ring. These are used to elongate the
electron bunches, which comprise the electron beam, and are fed by the beam
itself, rather than an external power amplifier. Thus, the energy lost by the beam
in those cavities has to be restored by the active cavities as well. The harmonic
cavities have their fundamental mode around 300 MHz, the third harmonic of the
active RF cavities [4, 5].

The electrons not only excite fields in the harmonic cavities, but also in the
100 MHz cavities. Of course, the field of the fundamental mode is excited, but
also many higher order modes (HOMs) at higher frequencies than the fundamental
frequency might be excited. If the amplitudes of the HOMs grow strong, they may
affect the trajectories of the particles. In particular HOMs with frequencies close
to critical beam frequencies, see Section 2.4, might give rise to an instability that
destroys the beam quality or even kills the beam. Therefore, it is very useful to

1in terms of brilliance [2]
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2 Introduction

know how the frequencies of these HOMs change in relation to the fundamental
mode when the cavity is tuned or when the temperature is changed due to de-
posited electromagnetic energy in the cavity walls. This thesis aims to determine
the different HOMs of the active 100 MHz cavities of the MAX IV storage rings,
as well as the impact these have on the beam stability, through measurements and
evaluations of the HOMs and calculations of the instabilities.

The MAX IV facility

Figure 1.1: Overview of the MAX IV facility. Picture by Johnny
Kvistholm.

The MAX IV facility consists of 4 main parts [4], not counting the X-ray beam-
lines, see Figure 1.1. The first part consists of the electron guns, one thermionic
and one photocathode [6], and the linac which make up a full energy injector, i.e.
a system where the energy of the electrons have nominal energy already at injec-
tion into the storage rings. This differs from e.g. MAX II, where the electrons
are injected at a sub-nominal energy and then accelerated to full energy in the
storage ring [7]. The second part is the smaller 1.5 GeV, 96 m circumference ring,
which will provide the users with soft X-rays. This ring is energy- and size-wise
similar to MAX II, but will of course be built with newer technology such as the
new magnet block concept [8, 9].

The third part is the bigger 3 GeV, 528 m circumference, ring, which will
provide the users with hard X-rays. This ring is one of the first of a new generation
of storage rings [5], which will have very low emittance2, and will be a big step
towards diffraction limited light sources [5], i.e. where the X-ray spot size on the
samples at the experiment stations will be limited by the optics and the diffraction

2a measure proportional to the electron beam size and divergence, [2, 10]
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limit and not by the electron beam size. This is done by means of a multi-bend
achromat3 (MBA) lattice [5], whereas the 1.5 GeV ring will have a more common
double-bend achromat4 (DBA) lattice. The fourth part is the SPF, at the end of
the linac. While the rings, because of the long bunch lengths, will produce fairly
long light pulses, the SPF is, as its name suggests, designed specifically to produce
short light pulses. There are also plans for extending the SPF into a free-electron
laser (FEL) [2, 10]. [4]

Coordinate systems

In accelerator physics, it is very common to have a co-moving coordinate system
with the coordinates x and z describing a deviation from the nominal orbit and
the coordinate s describing the position around the machine [2]. There are not
any equations that require a deeper knowledge of this type of system in this thesis,
but it does appear in a few places and it is good to keep it in mind.

In electromagnetism, the coordinate system is often changed, or transformed,
depending on the geometry of the studied system. The systems studied here,
namely the RF cavities, have a high degree of axial symmetry, so therefore, we use a
cylindrical coordinate system, see Figure 1.2. We do not derive the transformations
to and from a cartesian coordinate system here; it is assumed that the reader has
seen this type of coordinates before.

Figure 1.2: Schematic definition of the cylindrical coordinate sys-
tem.

3Basically a symmetry section of the machine. There will be 20 of these achromats in
the 3 GeV ring.

412 achromats in the 1.5 GeV ring.
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Chapter2
Theory

In this chapter the theoretical foundation of the thesis work is presented. We first
describe resonance cavities in general and then focus on the MAX IV cavities. We
then introduce the theoretically important entities Q-value and shunt resistance.
Lastly, we look at the beam spectrum and the interaction between the cavity
modes and the beam.

2.1 Resonance Cavities

Resonance cavities are hollow chambers made from some highly conductive mate-
rial, usually copper when the cavity is used at room temperature or above. The
cavity contains different modes which are highly dependent on the cavity geom-
etry. These modes have certain distributions of the electromagnetic fields that
can be excited in the cavity and the total field in the cavity can be decomposed
into these modes. There is one field distribution and oscillating frequency for each
mode. The mode with the lowest resonance frequency is called the fundamental
mode and modes with higher frequency than this are called HOMs.

In the following section, we present some fundamental concepts in resonance
cavity theory and the field equations for the modes in a cylindrical cavity with
perfectly conducting walls.

2.1.1 Maxwell’s equations

As with all macroscopic electromagnetic phenomena, the starting point of our
study is Maxwell’s equations:

∇×E(r, t) = −∂B(r, t)

∂t

∇×H(r, t) =
∂D(r, t)

∂t
+ J(r, t)

∇ ·B(r, t) = 0

∇ ·D(r, t) = ρ(r, t),

(2.1)

where E, B, H, D, J and ρ are the electric field, magnetic flux density, magnetic
field, electric flux density, current density and charge density, respectively. For

5



6 Theory

simplicity, the first four vector fields are often called simply E-field, B-field, H-
field and D-field. The two uppermost equations are often named Faraday’s law
of induction and Ampère’s generalized law and the bottom equation Gauss’ law.
The corresponding boundary conditions at perfectly conducting surfaces are [11]:

n̂×E = 0

n̂×H = JS

n̂ ·B = 0

n̂ ·D = ρS ,

(2.2)

where n̂ is the normal vector to the surface pointing into the enclosed volume, JS is
the surface current density and ρS is the surface charge density. At the frequencies
relevant here (100-1500 MHz), copper is a very good conductor [12], so perfect
electric conductor (PEC) boundary conditions is a reasonable approximation, as
we shall see later. Since we have vacuum as a medium inside the cavities, we have
the case where {

D = ε0E

B = µ0H,
(2.3)

where ε0 is the vacuum electric permittivity and µ0 is the vacuum magnetic per-
meability. With Eq. (2.3) the above equations can be expressed in terms of just
two vector fields, often E and H.

2.1.2 Solutions to Maxwell’s equations

To obtain the (most practical) field equations for the cavities, one must make quite
a few intermediate steps. These are left out here, but are thoroughly displayed in
chapters 2, 4, 5 and 6 in [11]. We now show the solution for a cylindrical geometry
with PEC boundary conditions. We let the z-axis be the symmetry axis, cf. Figure
1.2. Axially symmetric cavities are suitable since they have a mode with electric
field in the z-direction and a maximum along the symmetry axis. The particles
are then accelerated only in the z-direction. Often the diameter of the cylinder
is of similar size to or greater than the length, and in such a case the cavity is
usually referred to as a pillbox cavity.

The fields are time harmonic with time dependence e−iωt, where ω is the
angular frequency. We suppress the time dependence and use the complex space
dependent fields. These are related to the time domain fields by

E(r, t) = <
{
E(r, ω)e−iωt

}
,

where <{} is the real part of the enclosed expression. The solutions are
Emn`(r) =

ktmn
kmn`

√
ε`
d

(
iETmn(ρ) sin

`πz

d
+ ẑvmn(ρ) cos

`πz

d

)
Hmn`(r) =

ktmn
kmn`

√
ε`
d
HTmn(ρ) cos

`πz

d

(2.4)
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for transverse magnetic (TM) modes with ε` = 2−δ`,0, where δi,j is the Kronecker
delta, and

Emn`(r) = i
ktmn
ωmn`µ0

√
2

d
ETmn(ρ) sin

`πz

d

Hmn`(r) =
ktmn
ωmn`µ0

√
2

d

(
HTmn(ρ) cos

`πz

d
+ iẑwmn(ρ) sin

`πz

d

) (2.5)

for transverse electric (TE) modes. Indices t and T , for scalars and vectors, re-
spectively, indicate transverse components, vmn and wmn are the (normalized)
longitudinal components for the different mode types (TM/TE), d is the length
of the cavity, ρ = (x, y) is the transverse coordinate and m, n, and ` are integer
numbers with allowed values

m = 0, 1, 2, . . . n = 1, 2, 3, . . . ` =

{
0, 1, 2, . . . TM
1, 2, 3, . . . TE.

kmn` and ktmn are the total and transverse wavenumber of the modes, respectively.
The functions vmn and wmn are

vmn =

√
εmJm(ξmnρ/a)√
πaJ ′m(ξmn)

(
cosmφ

sinmφ

)
k2tmn =

ξ2mn
a2

(2.6)

wmn =

√
εmηmnJm(ηmnρ/a)√

π(η2mn −m2)aJm(ηmn)

(
cosmφ

sinmφ

)
k2tmn =

η2mn
a2

, (2.7)

where a is the radius of the cavity, ξmn is the nth zero to Jm(ρ), ηmn is the nth zero
to J ′m(ρ) and Jm(ρ) is the cylindrical Bessel function of order m. ρ is the radial
distance from the z-axis and φ is the azimuthal angle, and εm = 2 − δm,0. Since
we have perfect cylindrical geometry, the point φ = 0 is arbitrary and so both the
cosine and sine functions in Eqs. (2.6) and (2.7) can exist, which degenerates the
modes with m 6= 0. The transverse components of the fields are obtained through

ETmn(ρ) =

{
i kz`
k2tmn
∇T vmn(ρ), TM

−iωmn`µ0

k2tmn
ẑ ×∇Twmn(ρ), TE

HTmn(ρ) = Z−1mn`ẑ ×ETmn(ρ),

where Z−1mn` is the mode impedance defined by

Zmn` =

{
kz`

ωmn`ε0εr
, TM

ωmn`µ0

kz`
, TE,

where kz` = `π/d is the longitudinal wavenumber and k2mn` = k2tmn+k2z` and where
εr is the relative electric permittivity. With these modes we have an associated
resonance frequency, which is defined as

fmn` =
ωmn`
2π

=
kmn`c

2π
=

c

2π

√
k2tmn + k2z`, (2.8)
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Table 2.1: Frequencies for the 3 first TM and TE modes in a pillbox
cavity. The radius is 1.148 m and the length is 0.376 m.

Mode TM010 TM110 TM210 TE111 TE211 TE011

fmn` [MHz] 99.957 159.267 213.464 405.937 418.380 429.297

where c is the speed of light in the medium inside the cavity. The typical medium
is vacuum, with the speed of light c0 = c

√
εr. It is here assumed, with good reason,

that the medium is non-magnetic, and the relative permeability µr of the material
has been left out throughout this section, since then µr = 1. This is, in fact, valid
for the whole cavity, since copper, used for the cavity walls, is only very slightly
diamagnetic [13].

In reality, the time dependence of the fields is not purely harmonic, but also
have a damping term because of resistive losses in the cavity walls. It can be shown
that the total electric field, E(r, t), can be expanded in terms of the solenoidal
eigenfunctions, which are shown in Eqs. (2.4) and (2.5), together with a time
dependent amplitude function [11],

E(r, t) =

∞∑
n=0

en(t)En(r), (2.9)

where En(r) are the solenoidal eigenfunctions and en(t) are the time dependent
amplitude functions. This leads to a differential equation in en(t) which has the
general solution

en(t) = A cos(ωt+ φ)e−αnt, (2.10)

where ω =
√
ω2
n − α2

n, ωn is the resonance frequency and αn is the attenuation
constant of mode n. The time dependence is discussed more in Section 2.3.1.

2.1.3 Examples

As an example, we look briefly at the first few resonance frequencies in a pillbox
cavity. One of them is be the TMmn` = TM010, which is the mode used for
accelerating particles. The length of the pillbox is the same as for the MAX IV
100 MHz cavities, but the radius is much bigger to have the fundamental mode at
the same frequency. This is discussed more in the next section.

Because ηmn can adopt a smallest value which is smaller than that of ξmn, see
e.g. Appendix A in [11], the TE11 mode is the fundamental mode for an infinitely
long cylindrical waveguide. However, now that we have a cylindrical cavity of
finite length, this is not always true. In particular in this case, where we have a
very flat pillbox shape, the lowest TE-mode, the TE111, is far above the lowest
TM-mode, the TM010, see Table 2.1. Because of the flat geometry, there are very
many TM HOMs with increasing m and n between the fundamental TM and TE
modes.

The values in Table 2.1 were calculated analytically with Eq. (2.8). The
software that was used for evaluating the modes shown in Figures 2.1 and 2.2 is a
commercial software called COMSOLMultiphysics [14]. It was used extensively for
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obtaining numerical results throughout this thesis. For this simple geometry, Eqs.
(2.4) and (2.5) would give the exact solutions, but for more complex geometries,
like the ones in the subsequent section, a numerical solver is necessary. Numerical
calculations are never perfect, but the error in the frequencies obtained by Comsol
was found to be less than 10 kHz.

(a) TM010 (b) TM110 (c) TM210

Figure 2.1: The electric field norm of the 3 lowest TM modes of a
pillbox cavity.

(a) TE111 (b) TE211 (c) TE011

Figure 2.2: The electric field norm of the 3 lowest TE modes of a
pillbox cavity.

The discrepancies arise because of the element sizes in the mesh, which, be-
cause of limited computer RAM, need to be fairly large. The memory usage is
especially high for the 3D-solver, which was used here. However, while an axisym-
metric 2D-solver would be able to find the mode in Figure 2.1a, and probably be
more accurate, it would be more cumbersome to find the other modes in Figures
2.1 and 2.2, which have a non-constant φ-dependence. The 2D-solver can find
these, but the index n has to be entered for each number. For a non-symmetric
geometry, see Section 3.1, the 3D-solver is the only possibility, so therefore we
decided to start by building, and evaluating, the simpler 3D geometries first.
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2.2 The MAX IV Cavities

The cavities at MAX IV are of a type called capacity-loaded resonance cavitites,
which, while differing quite a bit from the pillbox geometry, retain some of the
same characteristics. There is still axial symmetry, but instead of having the end
walls completely flat, there are so-called inner tubes with capacitance plates going
into the cavity from one or both sides, see Figure 2.3. The electrons are accelerated
by the electric field, or the electric potential, in the small gap in the left-most side
of the Figure, along the z-axis.

The inner tubes and capacitance plates, internally in the MAX IV RF group
called mushrooms for short (because of the apparent resemblance), introduce some
of the characteristics of coaxial transmission lines into the pillbox. First, we only
look at an axially symmetric model of the cavities and later move on to add more
features like ports for power and HOM couplers.

Figure 2.3: Internal shape of the 100 MHz cavities for MAX IV,
without ports.

2.2.1 Features

One of the more noticeable effects of the mushroom(s) is that the spectral spacing
between the fundamental mode and the first HOM is increased dramatically, some-
what like in a ridge waveguide. In fact, if one keeps the fundamental frequency
the same, the radius of the cavity can be decreased from 1.148 m, in the pillbox
case, to 0.410 m, in the 100 MHz cavities. At the same time, the first HOM is
"pushed" upward, so that the bandwidth is also increased by a large amount. A
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Table 2.2: Comparison of the frequencies of the first 6 modes in a
pillbox and 100 MHz cavity, see Figure 2.3.

fpill [MHz] 99.957 159.267 213.464 229.427 265.174 291.584
f100 [MHz] 99.962 409.199 419.590 461.315 470.988 531.739

good measure of this is the fractional bandwidth, defined as in Eq. (5.28) in [11]:

bf =
BW

fcenter
= 2

f1 − f0
f1 + f0

,

where BW = f1 − f0 is the bandwidth and fcenter = 1
2 (f1 + f0) is the center

frequency, with f0 and f1 being the frequency of the fundamental mode and first
HOM, respectively. For the pillbox, bf = 0.458, and for the 100 MHz cavity,
bf = 1.215. The fractional bandwidth is a more useful number for waveguides,
but it serves well here as an example of how the frequencies are affected by the
mushroom. See Table 2.2 for a quick comparison of the frequencies of the 6 first
modes in either cavity.

The fundamental modes of the 100 MHz and harmonic cavities also look very
different from the pillbox equivalent, cf. Figures 2.4 and 2.1a. Some HOMs,
particularly the ones with very little field around the symmetry axis, look almost
the same but also have their frequencies "pushed" upward, cf. Figures 2.5 and
2.1b. The fields of the fundamental modes are still axially symmetric and fairly
confined to the center, but now the maximum does not occur on the z-axis, ρ = 0.
Also, many modes are "switched around", i.e. they glide away from their original
frequency if we continuously "grow" the mushroom out from one side of the pillbox,
with a different amount for each mode. The first 3 HOMs in the 100 MHz cavity
are completely different, as the first HOM, TM110, in the pillbox gets pushed to
the 4th place in the 100 MHz cavity.

2.2.2 Fundamental modes

E-field

Since the fundamental modes are of special interest for the acceleration of particles,
we take a closer look at them. Figure 2.4 shows a cross section of the electric field
norm of the fundamental mode of the 100 MHz cavities. The cross section is taken
through the center of the cavity, cf. Figure 2.3. The frequency of this mode is
99.9621 MHz, see Table 2.2. This mode is, as mentioned above, axially symmetric,
which means that it looks the same no matter how we rotate the cavity around
the z-axis. The z-axis is the symmetry axis of the cavity and it is thus the z-
component of the electric field that accelerates the particles. However, because
of the mushroom, the fundamental mode does not have a purely z-directed field

1While the fundamental frequency of the model is 99.962 MHz, the frequency that is
used in the rings is 99.931 MHz. This is because we need an integer number of wavelengths
around the ring to operate in a stable fashion. The cavity will be tuned to match this
criterion as well as possible.
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Figure 2.4: Cross section of the electric field norm of the fundamen-
tal mode in the 100 MHz cavities.

(a) Top view

(b) View along symmetry axis

Figure 2.5: Cross sections of the electric field norm of the 4th HOM
at 470.985 MHz in the 100 MHz cavity

anymore, it also has ρ-component, see Figure 2.6. As seen in the figure, the z-
component has the same sign along the z-axis, while the ρ-component changes sign.
Please note that the color scale has changed since we now also have negative values;
while |E| = 0 was dark blue before, it is now green. However, only electrons outside
the axis experience the ρ-components, since it vanishes on axis, and because of the
change in sign, the total, integrated ρ-field experienced by the electrons should be
small.
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(a) z-component (b) ρ-component

Figure 2.6: Components of the E-field of the fundamental mode in
the 100 MHz cavities. Please note the difference in color scale
from the norm plots.

Figure 2.7: Cross section of the B-field norm of the fundamental
mode in the 100 MHz cavities.

B-field

So far, we have only looked at the E-field; now, we investigate also the B-field.
Although this field has no direct implications for the calculations presented in
this thesis, see Section 2.4, it has some practical implications with regards to
cavity design. One important use of the B-field is for coupling the power from
the transmission line to the fundamental mode in the cavity. This is done via a
coupling loop, see Figure 3.7, which is placed in the ρ-z-plane, since the B-field of
the fundamental mode only has a φ-component.

As can be seen in Figure 2.7, the field is strongest along the inner tube, and
therefore the surface current density, JS , also takes on its largest values in the
same areas, see Eq. 2.2. Because of this, and that the walls are not actually
perfectly conducting, extensive watercooling of the mushroom is necessary. Since
the B-field of the fundamental mode only has a φ-component, the surface currents
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from this mode run from the capacitance plate, along the inner tube and around
the cavity to the "bottom" side in Figure 2.7.

2.3 Circuit analogy, Q-value and shunt resistance

In this section of the chapter, we look shortly at some other important aspects,
namely the circuit equivalent of a cavity, the Q-value of a mode and the thereto
related shunt resistance. These are important measures, because they tell us about
how well a mode resonates in the cavity and how strong the resulting field is in
the beam region.

2.3.1 Circuit analogy

To simplify the understanding of some characteristics of resonance cavities, one
can make a RLC circuit equivalent of the cavity, consisting of a capacitance, C,
an inductance, L, and a shunt resistance (or equivalent resistance), Rsh [11, 15].
Many types of resonance circuits exist, but here we choose a parallel circuit. The
capacitance and inductance together form the actual resonance circuit, while the
shunt resistance accounts for the resistive losses in the cavity walls. For each mode
we have a unique value of Rsh, L and C, with which the resonance frequency and
attenuation constant of the circuit can be calculated from e.g. Eq. (6.7) in [11].
The solution to this equation is

v(t) = A cos(ωt+ φ)e−αt, (2.11)

where v(t) is the voltage over the circuit components, ω0 = 1/
√
LC is the resonance

angular frequency, α = 1/(2RshC) is the attenuation constant and ω =
√
ω2
0 − α2.

Modes that resonate well in the circuit have high values of Rsh and C, since a
high resistance in a parallel RLC circuit makes most of the current go through the
capacitance and inductance, which are inherently lossless.

In fact, the time dependent amplitude function, en(t) (see Eq. (2.10)), for the
electric field in the cavity satisfies the same equation as the voltage in the circuit
equivalent, and thus has the same time dependence. This means that circuit theory
helps us evaluate the time dependence of the electric fields in a resonance cavity.

2.3.2 Q-value and shunt resistance

The Q-value, or Quality factor, is a measure of the attenuation of a mode. The
Q-value of a mode is defined by [11,15]

Q = 2π
stored energy time averaged over one period

dissipated energy during one period
= 2πf

W

Ploss
, (2.12)

where Ploss is the dissipated energy per period for the given mode. For example,
a mode might have one of the previously mentioned "dangerous" resonance fre-
quencies, but if the Q-value is low, i.e. if the mode does not resonate for very long
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in the cavity, it might not affect the beam very much. There are different ways to
quantify this, but the one used here is [11]

Q =
f0
∆f

=
f0

f+ − f−
, (2.13)

where f0 is the peak frequency of a mode and f+ and f− are the frequencies at
either side of the peak at -3 dB from the peak amplitude (full width at half maxi-
mum, FWHM). This quantization originates from circuit theory and is applicable
since we can make an accurate circuit equivalent of the cavity. The -3 dB limit for
FWHM is valid when speaking in terms of power amplitudes, not voltage.

It is not a big surprise then, that the Q-value and the attenuation coefficient,
α, are connected [11,15]:

Q =
ω0

2α
= ω0RshC =

Rsh
ω0L

. (2.14)

Thus, by measuring the Q-value, we can obtain information on for how long a
mode resonates in the cavity via Eq. (2.11). However, it is difficult to measure the
capacitance and inductance, so one must often rely on a theoretical calculation of
the shunt resistance, which can then be corrected to better correspond to the real
case, see below. While α gives the decay time of the fields, the shunt resistance is
used in many applications, e.g. the software ZAP, see Section 3.3, since it is in fact
important for the total force on the beam, and thus influences instabilities [10].
The shunt resistance can be defined as [11]

Rsh =
V 2

Ploss
, (2.15)

where V is the voltage over the path which the electrons take, i.e. roughly the
symmetry axis, z. The voltage between two points is defined as the line integral
of the electric field between these two points,

V =

∫
axis

E · ds =

∫
axis

Ez(0, 0, z)dz.

While the path integrated over corresponds quite well with the real path the
electrons take, the actual field strength might not. As seen in Eq. (2.10), the
electric field of the different modes varies as a cos(ωt). We here omit the extra
phase constant φ, since we cannot say at which phase in any given mode the bunch
enters the cavity. We also omit the decay factor, since the transit time, the time
it takes the bunch to pass the accelerating gap, is likely short compared to the
decay time, and that a non-decaying mode is the worst-case we can observe.

Multiplying by cos(ωt) (with t = z/c; z = 0 in the middle of the gap) gives us
the transit time corrected voltage, which leads to the corresponding transit time
corrected shunt resistance

Vcorr =

∫
axis

Ez cos(ω
z

c
)dz. (2.16)
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Although this does not give us the exact value of the voltage for each mode, due
to the unknown initial phase, it gives us information about which modes have a
very low shunt resistance in reality, and thus which modes we can disregard in our
later analysis. These modes are modes with an angular frequency such that the
transit time of the bunch is close to a full period of the mode, which then leads
to a very small net voltage. For the other modes, we should obtain the highest
possible values, so that we can later analyze a worst-case scenario.

The power loss is dependent on the surface current density and the conductive
properties of the cavity material:

Ploss =
RS
2

∫∫
S

|JS |2dS, (2.17)

where RS =
√

ωµ0

2σc
is the surface resistance and σc is the surface conductivity.

Both types of line integrals shown above can be evaluated numerically in Comsol
once the field distribution has been determined. It is also fairly straightforward to
write custom expressions containing the different factors.

Since the actual shunt resistance was not measured, another method was used
to estimate it. It is known that the fraction R/Q is independent of cavity wall
conductivity, and only dependent on the actual mode and the general geometry
[15], since, from Eq. (2.14),

Rsh
Q

=
1

ω0C
= ω0L =

√
L

C
.

This means that this fraction should be more or less the same for the theoretical
and measured values, since there are only very minor differences in geometry that
might affect L and C. Thus, we use the relation

Rmeas
Qmeas

=
Rsim
Qsim

⇔ Rmeas =
Qmeas
Qsim

Rsim (2.18)

to get an estimation of the actual value for the shunt resistance. For the first few
modes, Rmeas ≈ Rsim, but as we go to the higher HOMs, the theoretical model is
less and less accurate because of the large mesh, but also because some features,
like the pump slots and surface roughness, are not in the model. The relations in
Eq. (2.18) should still hold true, though.

2.4 Interaction with the beam

While the E-field can accelerate the particles, the B-field cannot change their
energy at all [16]. However, it can bend, or "kick", their trajectory and can
therefore also drive oscillations in the electron path around the ring. Thus, the
HOMs can accelerate and/or kick the beam in a uncontrolled way. The magnitude
of either of these effects is of course dependent on the field strength at the time of
passage of the electron bunches, which itself is dependent on the amplitude, phase
and the spatial distribution of the fields, see Eqs. (2.9) and (2.10). If some of
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the bunches are in phase with the field of a HOM, like for the fundamental mode,
they encounter the same field every time they pass through the cavity. This causes
the effect of the mode on the beam, and also the amplitude of the mode itself, to
increase at every passage. This is but one source of instabilities. In this thesis,
the focus is on longitudinal effects, which means that we only take the influence
of the Ez-component into account through the shunt resistance.

These effects can, of course, only arise if there are any such modes present in the
cavities. Because of the fractional bandwidth being so high for the 100 MHz cavity
(see Section 2.2.1), there is really no chance of the power source, which is spectrally
quite pure, inducing any HOMs in the cavities; all HOMs are excited by the beam
itself. If the bunches were infinitely short or had infinitely sharp edges, a Fourier
analysis would show that they contained infiniely high frequencies. This is not the
case, since the bunches in MAX IV are designed to be longitudinally extended2

and shaped, ideally, like a quartic Gaussian, e−ks
4

, where s is the longitudinal
coordinate. Thus, the beam only excites a certain, finite spectrum of frequencies
and it is only if the cavity has a mode near one of these frequencies that it can
grow to a considerable strength. The mode also needs to have some non-zero z-
component of the electric field in the beam region, otherwise it is not excited to
begin with3, but this is included when calculating the shunt resistance.

2.4.1 Synchrotron oscillation

The energy gain of a charged particle traversing a voltage is E = qU , where q = e
is the elementary charge. If we look at the main accelerating voltage in the cavity,
from the fundamental mode, it has the sinusoidal shape U = Umax sin(Ψ), c.f. Eq.
2.11, see Figure 2.8. One point in phase, Ψ0, corresponds to the phase at which a
nominal particle would arrive and gain exactly the amount of energy lost around
the orbit [2]. Note, however, that far from all particles are nominal and that some
particles in a bunch arrive later, Ψ1, and earlier, Ψ2, and gain different amounts
of energy.

Because the electrons are very light, they become relativistic very quickly. This
means that although they might gain or lose a little bit of extra energy, there is
no noticeable change in velocity. We do however have the relation R = mv/eB,
where R is the particle trajectory bending radius, m = m0γ is the particle mass
with m0 being the rest mass and γ being the relativistic factor, v is the particle
velocity and B = |B| [2]. We see from this that even though we essentially have
v = c = constant, the relativistic mass of the particle still changes with γ and
thus the bending radius also changes. Larger bending radius for larger energies,
and vice versa, translates to a longer path length around the machine for higher
energy particles than for lower energy particles.

Because we have no change in velocity, this change in path length translates
into a change in arrival time and thus a change in RF phase, Ψ. A higher energy
particle takes a longer path, taking longer time, and thus arrive later, see Ψ1 in
Figure 2.8, and vice versa for a lower energy particle, Ψ2. This means that a higher

2An effect of the harmonic cavities
3And it would, conversely, not affect the beam if it had been excited by some other

means
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Figure 2.8: Particles arriving at different RF phase. These gain
different amounts of energy, and because of difference in path
length, they approach the nominal phase, Ψ0.

energy particle gains less than nominal energy, E0 = eU0, which means that over
one turn, the net effect is a loss of energy. Conversely, a lower energy particle
has a net gain of energy. Thus, the particles slowly start to approach the nominal
phase, overshoot it and start the procedure over. These oscillations around the
nominal phase are called synchrotron oscillation, with angular frequency ωs. Even
though we have talked about this for individual particles, it also translates to
motion of the whole bunch, which, in the lowest order approximation, can be seen
as a macroparticle. This macroparticle oscillation is studied further in Subsections
2.4.2 and 2.4.3 and is a quite good approximation.

The voltage in Figure 2.8 gives rise to a potential in Ψ with a minimum around
Ψ0, which for small oscillations is linear and similar to a harmonic oscillator with
eigenfrequency ωs. Larger oscillations experience a more non-linear potential and
even larger oscillations can fall out of the potential well altogether. How much the
energy and phase can deviate from the nominal values is dictated by the so called
separatrix, which encloses a stable region in the ∆E-∆Ψ phase space. This stable
region is called a bucket. [2] There are many such buckets around the ring that
can be filled with particles. The buckets can be filled in different ways and the
way the buckets are filled is called the filling pattern. The filling pattern affects
the beam spectrum, see Subsection 2.4.2, and for a light source, this also affects
the outgoing light in the beamlines.
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2.4.2 Beam spectrum

To calculate the spectrum of the beam, one can take the Fourier transformation4

of the beam current, j(t), sampled at one spatial point in the ring, see e.g. [17],

J(ω) =

∞∫
−∞

j(t)e−iωtdt,

j(t) =
1

2π

∞∫
−∞

J(ω)eiωtdω.

The temporal distribution of the current looks somewhat like a picket fence made
out of peaks shaped like the individual bunches, see Figure 2.9a. The peaks will,
if all buckets are filled, be spaced with roughly the RF period, TRF , and the filling
pattern repeats itself after the revolution period, T0. The resulting spectrum can
be seen in Figure 2.9b. The small peaks, revolution peaks, stem from the revolution
period and the differences in bunch charge. The properties of the Fourier transform
makes the envelope of the spectrum take the shape of the bunches, so that we
do not have an infinite spectrum. The wider the bunches, the more narrow the
spectrum.

(a) Current signal in time.

(b) Resulting ferquency spectrum.

Figure 2.9: The beam current function sampled at one spatial point
in the ring and the resulting spectrum.

The bunches also oscillate around the nominal RF phase with the relatively
slow synchrotron frequency, ωs [2], see Subsection 2.4.1. There are more effects
which contribute to the total spectrum, such as transverse oscillations, charge vari-
ation between bunches and oscillations within the bunches themselves, but these
are neglected here. As an example to better show the effects of these synchrotron
oscillations, we can look at the case where we have one pointlike bunch going
around the ring, with small, rigid synchrotron oscillations around the nominal

4Please note that the timing convention here is different from that in Subsection 2.1.2.
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phase [17]:

j1(t) =

∞∑
n=−∞

δ(t− nT0 − τ cos[ωsnT0]),

where τ is some small amplitude in time of the oscillations. The Fourier transform
of this is

J1(ω) =

∞∑
k=−∞

e−iω(kT0−τ cos[ωskT0]) ≈

≈ ω0

∞∑
k=−∞

[
δ(ω − kω0)− iτ

2
(kω0 − ωs)δ(ω − kω0 + ωs)

− iτ

2
(kω0 + ωs)δ(ω − kω0 − ωs)

]
,

(2.19)

where ω0 = 2π
T0

is the revolution angular frequency. The approximation lies in the
small amplitude, τ . We see from Eq. (2.19) that the spectrum has main peaks at
integer values of the revolution frequency, kω0, with sidebands at kω0±ωs. Adding
more terms to the approximation, which is needed if the oscillations are larger,
adds more sidebands. When all h = T0

TRF
buckets are filled, as in Figure 2.9a, the

synchrotron oscillations of the different bunches couple through the HOMs they
give rise to. We then have h so-called longitudinal coupled bunch modes in the
beam, instead of just the single synchrotron oscillation we saw above. The result of
this is peaks at kωRF , with sidebands at kωRF ± (µω0 +ωs), where µ = 0, ..., h−1
is an integer index of the different longitudinal coupled bunc modes. We see that
the index µ factors to the ω0 term. This is because the difference in phase, due
to different longitudinal coupled bunch modes, between the bunches cause their
revolution angular frequency to shift a bit, but their synchrotron frequency is
unaffected.

2.4.3 Instabilities

A few times in this text we have mentioned instabilities, which are oscillations of
the beam itself around its nominal orbit and phase, driven by e.g. the HOMs,
which can grow so large that the beam is lost. There are both longitudinal and
transverse instabilities, both for subsequent bunches (collective instabilities) and
even within the bunches. The Ez component of the HOMs has a great impact in
the longitudinal direction5. We can see from e.g. Table A.1 that most of the modes
are TM modes, which means that the EZ-component, for symmetry reasons, is
the only non-zero E-field component on axis. From the same table we can also see
which modes can have a net accelerating effect on the particles in the longitudinal
direction by looking at the shunt resistances.

5Please note, though, that many TM-modes also have a quite large B-field amplitude
in the beam region, which can have a considerable effect on the beam in terms of trans-
verse coupled bunch instabilities. This is one example of future work that is needed, see
Chapter 6.
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From Eqs. (2.11) and (2.14), we can see that the time for the amplitude of a
mode to decrease to half of its maximum value is

t =
ln 2

π

Q

f0
.

This gives us times on the order of some tens of µs, which can be compared to the
temporal spacing of the bunches of 10−8 s, if every bucket is filled. Thus we can
conclude that the fields remain in the cavity for much longer than it takes for a
new bunch to enter, so that the HOM fields from a bunch affect a large number
of the following bunches.

The synchrotron oscillations described in Subsection 2.4.1 have many modes,
the first of which is the dipole mode, a rigid translation of the whole bunch, labeled
with the index a = 1. We here limit ourselves to this the most basic case, and
neglect the more complex higher order modes, i.e. quadrupole, a = 2, sextupole,
a = 3, etc. With this established, we now know that the instabilities we study
here are the rigid longitudinal coupled bunch instabilities.

Calculating the mode growth times

The HOMs can act as a driving force which make the synchrotron oscillations grow
in size until the bunches, or part of them, eventually "fall out" of the bucket. To
find out how dangerous such a mode is, one can calculate the complex coherent
synchrotron frequency shift, which in the Sacherer-Zotter formalism has the form
[18]

∆ω‖µ,a = i

(
a

a+ 1

)
eIbω

2
0η

3
(
L

2πR

)3
Eβ22πωs

·
[
Z‖

n

]eff
µ,a

. (2.20)

Here, µ = 0, 1, ..., h − 1 is the integer index for the different longitudinal cou-
pled bunch modes (see Subsection 2.4.2), a = 1, 2, ... is an integer index for the
synchrotron oscillation modes of the individual bunches and the superscript ‖ in-
dicates that it is the longitudinal quantities we study. Ib is the average bunch
current, η is the momentum compaction factor (see e.g. [2,10]), L = 2

√
πσ` is the

bunch length (with σ` being the standard deviation of the Gaussian bunch shape),
R is the average radius of the ring, E is the beam energy, β = v/c ≈ 1 and

[
Z‖

n

]eff
µ,a

=

∞∑
k=−∞

Z‖(ω
‖
k)ω0ω

‖−1
k ha(ω

‖
k)

∞∑
k=−∞

ha(ω
‖
k)

,

where Z‖(ω‖k) is the longitudinal impedance, ω‖k = (kh + µ + aνs)ω0 = kωRF +

µω0 + aωs (cf. Subsection 2.4.2 with a = 1) and ha(ω
‖
k) is a frequency dependent

form factor of the synchrotron mode, a, which is dependent on the unperturbed
bunch shape and length. Z‖(ω) has the equation [18]

Z‖(ω) =
Rsh(

1 + iQ
(
ωr

ω −
ω
ωr

)) ,
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where ωr is a cavity resonance angular frequency. ha(ω) has, for gaussian bunches,
the equation [18]

ha(ω) =

(
ωσ`
βc

)2a

exp

[
−
(
ωσ`
βc

)2
]
.

The HOM spectrum that one compares to is the one of the cavity being examined.
Z‖(ω

‖
k) is very small for most frequencies, but if the beam has a frequency near or

on one of the HOMs, this entity can grow from zero to Rsh.
The frequency shift in Eq. 2.20 is, as mentioned, complex, which means that

it has a real and an imaginary party. The real part, <{∆ω‖µ,a}, turns out to be the
real coherent synchrotron angular frequency shift of a mode, while the imaginary
part gives the growth rate of the mode, ={∆ω‖µ,a} = rgr = 1

τgr
, with τgr being the

growth time.

Synchrotron radiation damping

Luckily, there are not only growth effects, but also damping effects which can cancel
out and have an overall damping effect on the oscillations. The most obvious of
these, at least for a light source, is the damping due to synchrotron radiation (SR).
SR is always created when changing the velocity vector of a charged particle, which
is done in the many magnets around the storage ring. This damping rate has the
expression [2]

as =
W0

2T0E
(2 +D),

where W0 is the radiated energy during one turn of a particle travelling along
the nominal orbit and D is a term from particles not travelling along the nominal
orbit and which is set by the magnet lattice. The value of W0 and D for the
MAX IV 3 GeV ring are 360 keV and -0.847, respectively [2, 19], which gives us a
damping time of 1/as ≈ 0.0252 s = 25.2 ms. A quick note should be made here:
these values are for a "bare", linear lattice, i.e. a lattice where only the guiding
and focusing elements, dipole and quadrupole magnets, are taken into account.
Since the majority of the light is produced in the IDs, these also contribute to the
damping rate6. When comparing to the growth times, we want the case with the
least possible SR damping, which is without IDs.

Landau damping

There is also another source of damping, which stems from the RF system itself.
We said above that the potential experienced by the particles was similar to that
of a harmonic oscillator; this is not true when we have a double RF system,
i.e. one type of cavity with a fundamental frequency and another type with some
multiple of this frequency, like the active 100 MHz cavities and the passive 300 MHz
harmonic cavities. Having a system like this creates a flattening of the potential
around Ψ0 that not only enables bunch lengthening, but also introduces so-called
Landau damping of the synchrotron oscillations because of the non-linear forces

6There may even be special damping wigglers installed in the machine, see [3].
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around the nominal phase. With a single RF system we have more or less only one
synchrotron frequency, ωs, for small oscillations, but with a double RF system, we
get a broadening of this frequency by ∆ωs ≈ 1022 Hz. [20] This means that we now
have particles with a narrow band of synchrotron frequencies, and as we know from
basic mechanics, the oscillation amplitude of a driven oscillator declines as we go
away from the resonance frequency, which in our case is ωs. Thus, instabilities may
start to grow, but when they have grown enough in amplitude, the synchrotron
frequency of the particles starts to spread and they "slide off" the resonance [10].
The Landau damping time is given by approximately 1/(0.6∆ωs) ≈ 1.6 ms [21].

Course of action

It is crucial to calculate growth times for the instabilities, see Section 3.3, and
compare them with the damping times. The end result is not some kind of equi-
librium between the different effects; it is rather the case that one effect takes over,
in the sense that if the damping time is shorter than the instability growth time,
the total effect is damping. Since there are h = 176 coupled bunch modes in the
MAX IV 3 GeV ring, the growth times of all of these modes must be calculated
and compared to the different damping times.
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Chapter3
Theoretical work and Measurements

This chapter describes numerical calculations, using Comsol and ZAP, and mea-
surements.

3.1 Numerical calculations using 3D models

The cavity shape that has been used previously, e.g. in Figure 2.3, is a simplifi-
cation of the real cavities. In reality, there are also ports for pumps, needed to
obtain and maintain a high vacuum, HOM dampeners and power couplers, see
Figure 3.1. In the model, only the ports for power and HOM couplers have been
included, since they have a simple, cylindrical shape. The coupling loops them-
selves are not included, the models have a "blind flange" instead. The pump ports
have been left out since they, unlike the power and HOM ports, which are open
and circularly shaped internally, are slotted, which means that the hole shape is a
set of oblong slots of varying lengths. This was too difficult and/or time demand-
ing to model, so they were excluded. This turned out to affect the precision of
some modes in the model, most likely the ones with a surface current density not
parallel to the slots. Apart from this, also the probe loop ports, placed on the end
of the cavity towards the bottom of the "mushroom", were left out, since their
influence is negligible.

The effect of the extra ports on the previously symmetric geometry is that we
introduce new field components around the edges of the ports, e.g. a φ-component
where there were previously only ρ- and z-components, so that we no longer have
pure TE- or TM-modes. The volume also increases a bit, so the resonance frequen-
cies of most modes decrease. Besides this, also the Q-values and shunt resistances
change, most likely due to the surface currents having to re-route. The results
from the extended 3D geometry evaluation are collected in Table A.1 in Appendix
A Subsection A.1.1. In this table we list the obtained resonance frequencies, Q-
values according to Eq. (2.12), shunt resistance according to Eq. (2.15) and (2.16)
and finally the corrected shunt resistance according to Eq. (2.18).

It was previously also assumed that the boundary was a perfect electric con-
ductor, which is obviously not completely realistic. In Comsol, there is an option
to run the computation with the impedance boundary condition (IBC), where the
material parameters for the boundary, here copper, and the frequency dependence
are taken into account. Evaluations in Comsol’s axisymmetric solver showed that
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Figure 3.1: Internal shape of the 100 MHz cavities for MAX IV,
extended with ports for power and HOM couplers.

the resonance frequencies of the cavity modes were not affected by the impedance
boundary condition, see Table 3.1. The downside of using this boundary condition
is that it is very time consuming, which is already a problem for the 3D solver.
The upside of this boundary conditions is that it is easy for Comsol to calculate
the Q-value and other useful entities, like the shunt resistance, and that they are
also more accurate. Because of the very minor corrections to the frequencies and
the hardware limitations, it was decided that PEC boundary conditions were good
enough for finding the resonance frequencies.

3.2 Measurement setup

To measure the modes, a spectrum analyzer (Rohde & Schwarz FSL Spectrum
Analyzer 9 kHz - 3 GHz) was used. This device was used in a way where it was
connected to the two probe loops in the cavity to perform a transmission (S21)
measurement. To accomplish this, the frequency analyzer generates an output
signal which is swept over the desired frequency interval and sent to the first
probe loop, whereafter the modes excited in the cavity by the resulting fields
are coupled through the second probe loop and read back by the instrument.
The instrument then plots a graph where the amplitude of the recieved signal is
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Table 3.1: Comparison of the frequencies of a few example modes
in the 100 MHz cavity using different boundary conditions in
Comsol.

PEC IBC
99.969 99.966
461.321 461.309
626.397 626.336
856.843 856.853
937.522 937.526
1004.302 1004.311
1195.000 1195.006
1243.282 1243.286
1301.506 1301.508

plotted as amplitude as a function of frequency, see Figure 3.2. The amplitude
is here displayed in dBm relative to the input signal (0 dBm), which means that
the values in the graph are negative, since the signal is attenuated. The whole
measurement setup can be seen in Figure 3.3. It can be noted that the cavity
model in Figure 3.1 is rotated 90 degrees around the symmetry axis with respect
to the actual positioning, Figure 3.3, and viewed from the other side, to allow a
better view of the internal structure.

3.2.1 Performing the measurements

To obtain the relevant information, peak frequency, fr, and peak width, ∆f , see
Eq. (2.13), the amplitude span was, in general, set to 50 dBm and the frequency
span to 1-2 MHz, whereafter the central frequency of the display was increased
until a peak was seen. The values in Table A.1 gave some clue to where the
resonances might be located, but the search was in fact conducted in the more
thorough way described above. Once a peak had been found, it was zoomed in
on to improve the resolution. The amplitude span was set to 5 dBm and the
frequency span was set so that between -3 and -3.5 dBm from the top was visible.
The peak frequency and the frequency values at -3 dBm from the peak value were
then noted.

To get better values, most of the readings were done with the averaging func-
tion of the spectrum analyzer on, to reduce the noise. This function was set to
average over the last 50 readings. Especially for very weak peaks, this made a
lot of difference, whereas strong peaks were largely unaffected. The averaging was
turned off when using the RF trombone, described below, because a more real-time
view was then needed.

The spectrum was scanned in the interval from the fundamental frequency
(≈100 MHz) up to just above 1300 MHz. This was done at 3 different fundamental
frequencies with 200-400 kHz spacing in between each, to examine how the HOMs
"moved" relative to the fundamental mode. The change of frequency, or tuning,
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Figure 3.2: The spectrum analyzer. On the screen is a zoomed in
resonance peak. To the upper right, the connections to the
cavity can be seen.

of the cavity is done, both on the 100 MHz and harmonic cavities, by pushing one
or both walls, for 100 MHz and harmonic, respectively, inwards or outwards by
means of an electric motor. See Figure 3.4 for a picture of the tuning mechanism
on the 100 MHz cavities. The internal displacement the tuning mechanism gives
rise to is for these cavities up to ±1 mm.

The first actual measurements were done on a cavity with an open (in the RF
sense) transmission line, cf. Fig 3.3, but without the trombone and its adapter.
We noticed that when we moved another cavity which was standing close to the
open line, many of the peak values and widths changed by a rather large amount.
This made the first round of measurements forfeit, except that we now knew that
the resonances were greatly affected by what was connected to the cavity.

The next step we did was to attach the previously mentioned RF trombone
to the transmission line to investigate how the resonances and their widths were
affected by a change in length of the transmission line. The trombone is a device
that allows a continuous change in length of such a transmission line by simply
pulling one end out, see Figure 3.5. This enabled us to find the "worst case
scenario", i.e. where the HOM peaks were as narrow as possible.

Our measurements showed that the length of the transmisson line had an
even greater impact on some modes than was seen before. One trombone length,
essentially one length of the transmission line, could produce a rather sharp reso-
nance, while another length showed complete attenuation of the same resonance,
see Figure 3.6. Of course, this change in length is wavelength dependent and so is
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Figure 3.3: The measurement setup. To the front left is the spec-
trum analyzer and in the center is the cavity with the measure-
ment cables connected. Going into the right side of the cavity is
part of the transmission line through which the power is fed. At
the end of the transmission line, an RF trombone is attached.

different for all modes. Also, some modes, most likely TE modes or other modes
that do not couple well to the power coupling loop, were completely unaffected by
the trombone.

After these measurements were done, the coupling loop was taken out of the
cavity, see Figure 3.7. This was done to put it into another cavity which had previ-
ously had a leak at the ceramic window separating the vacuum in the cavity from
the air in the transmission line. This gave us a good opportunity to measure the
resonances for a cavity with just a blind flange attached instead of the transmission
line. This is essentially what is described for the model in Section 3.1. This would
provide a good test of the model. The measurement data for the cavity without
transmission line can be seen in Table A.2 in Appendix A Subsection A.1.2.

Because the transmission line played such a significant role in the performance
of the cavity, we decided that no further measurements were to be done on the
100 MHz cavities until we could measure on one that was connected to the actual
RF system at the MAX IV site. Besides the transmission line, the RF system also
contains a circulator and a transmitter from the power source. It is unknown how
this setup behaves for HOMs.

Because of time restriction, a thorough measurement and analysis of the har-
monic cavities was never done. This is an example of future work that can be
done, see Chapter 6.
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Figure 3.4: Tuning mechanism of the 100 MHz cavities. Moving
the walls in or out changes the internal geometry and thus the
resonance frequencies.

3.3 ZAP calculations

To calculate the mode growth in the cavities, the software ZAP [18] was used.
This software calculates the spectrum of the beam and compares it to the cavity
modes, which are input as separate data. ZAP uses this information to calculate
the growth time of different rigid, longitudinal coupled bunch instability modes1.
The code is fairly old and can only handle up to 20 different HOMs and only
Gaussian or parabolic bunch shapes. Luckily, as seen in Table A.1, many shunt
resistances were very small, so we could easily pick out the modes most likely to
influence the beam. Of the two bunch shape choices, Gaussian is the one that fits

1The code can actually handle many more things, such as transverse instabilities, etc.,
but we had previously decided to focus on the longitudinal ones.
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Figure 3.5: The RF trombone used for the measurements. The
length is 25-30 cm with the extendable part extending up to ca
10 cm, which means a total change in line length of ca 20 cm.

(a) Narrowest peak achievable for this
mode.

(b) Same peak at another trombone
length.

Figure 3.6: The same peak at two different lengths of the trombone.

best, so this is the one we went with, even though it gives a different spectrum
than the real shape.

ZAP calculates the complex coherent synchrotron frequency shift according to
Eq. (2.20) and from that the growth rate, rgr. There are two different outputs,
one sorted after largest real frequency shift and one sorted after shortest growth
time. Because the input data for the ZAP calculations needed to be analyzed and
treated before the calculations could be run, the results of the ZAP runs are shown
in Section 4.3.
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Figure 3.7: Coupling loop for the 100 MHz cavities. The inner
conductor of the coax continues out into the loop and then
goes back to attach to the outer conductor, a design made for
coupling to the B-field in the cavity.



Chapter4
Analyzing the Data

In this chapter, we explain how we analyzed the theoretical and measured data.

4.1 Matching theory to measurements

We now have to match the data from both theoretical models and measurements
to e.g. correct the shunt resistance to the correct mode. This is complicated
for frequencies above 620 MHz, since the measured and theoretical results then
start to deviate. This is likely due to missing elements in the model, such as the
pump slots, which were predicted to have little to no effect on the lower modes.
Luckily, there are some "solitary" modes in the spectrum, i.e. modes which have
no very close neighbors, that one could try to match the spectrum from. Many of
the previously axially symmetric modes are such solitary modes, and even more
luckily, these are the ones with the largest shunt resistances.

Thus, we were able to match at least the first part of the spectrum as well
as the modes with the largest shunt resistances and correct their values with the
measured Q-values. To match more modes, and with higher certainty, one would
have to extend the model further with the missing elements.

4.2 Tuning linearity

One important aspect when tuning the cavity is to know how the HOMs drift
relative to the fundamental frequency. Using the frequency data from Table A.2,
we set the HOM frequencies as a function of the fundamental frequency at the 3
tuning points. We then calculated a linear fit of the HOM values on the form

fHOM = kfitx+mfit,

which we then subtracted from the measured values at each tuning point, x =
ffundamental, to form the relative spectral offset. The relative spectral offset then
tells us about how far from a linear movement of the HOMs we are. The resulting
values can be seen in Table A.3 and a histogram of the values can be seen in Figure
4.1. If such a value is small, it means that the linear fit matches the HOM frequency
dependence well. The average of this distribution is approximately 34 · 10−6 MHz
and the standard deviation is 0.0168 MHz, which is much less than one per mille
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Figure 4.1: Histogram of the values in Table A.3.

of the absolute frequency. This means that even though we did not necessarily
measure the cavity at exactly the nominal frequency 99.931 MHz, we can safely
interpolate most of the data to find out which HOM frequencies we end up with
for a given fundamental frequency. Only very few modes behave non-linearly.

It should be noted that the frequency data was measured at room temperature
and without the coupling loop, but from an earlier, more incomplete measurement
where the loop was present, we could also see the linear movement of the HOMs.
The increased temperature during operation should only affect the absolute fre-
quency of the individual peaks, not how they move during tuning. The tempera-
ture was assumed to be constant in the cavity. A non-constant temperature model
needs more sophisticated measurements and calculations.

The values listed in Table A.2 were taken over several days, which means that
there might be slow temperature fluctuations in the ambient temperature which
would then look like HOM drift. This effect might also affect values measured
during one single day. As can be seen in Table A.3, most of the values have
small offsets with the general characteristic that the two end-points have the same
sign and the center point has the opposite sign with respect to the end-points.
We believe that this is a good example of this temperature dependence. The
temperature has for some reason been different on the day that the center point
was measured1 and this has shifted the frequency with respect to the two other
measurement days.

1During one of the measurement days, there was a lot of work going on inside the
MAX II tunnel and the doors were left open. Since the temperature in the ring tunnel
is kept at ca 28 ◦C, and the area enclosed by the ring is usually at room temperature,
this will have caused the temperature to rise a bit. The values at the center point were,
most of them, measured on 150330, which was a monday. On mondays the accelerator
is usually down for maintenance, so we deem this scenario likely.
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Figure 4.2: ZAP calculations for two different bunch lengths and
two cases of cavity resonance frequencies for 100 MHz cavity
3170/6 without coupling loop.

4.3 Instabilities

This section describes the analysis and calculations that were done on the insta-
bilities with the software ZAP. A short introduction to this software can be found
in Section 3.3.

4.3.1 Initial calculations

The result of the ZAP calculations for the 100 MHz cavity 3170/6 can be seen
in Figure 4.2. The data used was the f2 and Q2-values from Table A.2 and
the shunt resistances from Table A.1, corrected with the Q2-values from Table
A.2. The calculations were run with two different bunch lengths of 1 and 5 cm,
corresponding to without and with harmonic cavities, respectively. In one case,
the actual spectrum of the Gaussian bunches was used and in the second, a "worst
case" scenario was established by the code by moving the cavity resonances to
the nearest beam spectrum peak. Figure 4.2 also shows the damping times for
synchrotron radiation damping and Landau damping, to which the growth times
need to be compared.

Some of the theoretical modes could not be matched to the measured ones for
different reasons, see Section 4.1, so for those the theoretical frequencies and Q-
values were used instead. This means that the frequencies might be off by as much
as 2 MHz, and that the shunt resistances are overestimated. Table 4.1 lists the
different HOM frequencies, f , the worst case frequencies, fwc, as well as whether
the worst case frequency is within the frequency range during mechanical tuning
and wheter the worst case frequency growth times are below Landau damping.
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Table 4.1: Frequencies of the HOMs used in ZAP as well as whether
the worst case frequencies are within the respective frequency
intervals during mechanical tuning and whether the worst case
frequency growth times are below Landau damping. An as-
terisk, *, denotes modes that have theoretical frequencies and
Q-values.

f [MHz] fwc [MHz] fwc in span τgr below damping
408.744 408.808 No Yes
461.213 461.044 No Yes
620.447 620.593 No Yes
784.263 784.116 Yes Yes
856.267 856.225 Yes No
910.897 910.733 Yes Yes
993.127 993.063 No No
1002.804 1002.715 Yes Yes
1004.498 1004.418 Yes No
1007.561 1007.825 No No
1017.086 1016.910 No No
1033.421 1033.376 Yes No
1093.470* 1093.561 N/A Yes
1193.301 1193.492 No Yes
1243.847 1244.025 No No
1291.200* 1291.152 N/A No
1292.360* 1292.287 N/A Yes
1293.600* 1293.423 N/A Yes



Analyzing the Data 37

4.3.2 Including the temperature dependence

The values used for the previous calculations were measured at ca 22 ◦C, but the
working temperature of the active cavities will be within the temperature span
30-60 ◦C. Because we were not able to do any measurements at the MAX IV site,
to get a better estimate of the growth rates, we need to correct the frequencies,
Q-values and shunt resistances to better match the real case. While we do not
simulate the effect of the coupling loop, this should mostly affect the Q-values.
Q-values and shunt resistances change with temperature mostly because of the
change in surface resistance, while the small change in volume due to thermal
expansion should be the largest reason for changes in frequency.

The following linear model for the change in frequency was used [15]:

f(T ) = f0 (1− α(T − T0)) ,

where f0 is the frequency at 22 ◦C, α = 1.66 · 10−5 is the thermal expansion
coefficient for copper, T is the actual temperature and T0 is the temperature where
f0 was measured. In this way, we modeled the change of temperature to 45 ◦C,
which lowered all frequencies, and then "tuned" the fundamental mode back to its
nominal frequency, 99.931 MHz. Because we had information about how the HOMs
move during tuning, see Section 4.2, we obtained estimates for the frequencies of
all HOMs at higher temperature. This scheme follows the same principles as a
real temperature tuning scheme and allows us to keep the fundamental frequency
the same while changing the frequencies of the HOMs.

For the Q-values and shunt resistances, the temperature dependence stems
from the change in material resistivity, which affects the surface resistance, see
Eqs. (2.14), (2.15) and (2.17). Since RS =

√
ωµ0

2σc
and σc = 1/ρc, with ρc being

the resistivity, we can directly use the following linear model for the resistivity [12]

ρ(T ) = ρ0 (1 + ξ(T − T0)) ,

where ρ0 = 1.68 · 108 is the resistivity measured at the reference temperature T0
(usually 20 ◦C) and ξ = 0.003862 is an empirical parameter fitted from measure-
ment data. For 45 ◦C, we get that the surface resistance changes by a factor
of
√

(1 + ξ(T − T0)) ≈ 1.0472, which makes the Q-values and shunt resistances
change by the same factor.

After correcting the input values, the same ZAP calculations were run again
and new results were obtained, see Figure 4.3. In Table 4.2, we list the actual cavity
spectrum frequencies after temperature correction, f , and worst case frequencies,
fwc. We also checked whether the worst case frequency is within the frequency
range, the range of frequencies the HOM can take during temperature tuning
(30-60 ◦C), and wheter the worst case frequency growth times are below Landau
damping. If the worst case frequency lies within the frequency range, it means that
it is possible to cross it at some point during temperature tuning, which could then
cause the HOM to start driving a previously damped instability. If this instability
also has a growth time which is below Landau damping, we have a potentially
dangerous situation. One interesting point that can be made here is that although
the HOM frequencies change when we change temperature and tune the cavity,
not all the worst case frequencies change, cf. Table 4.1.
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Figure 4.3: ZAP calculations for two different bunch lengths and
two cases of cavity resonance frequencies for 100 MHz cavity
3170/6 without coupling loop. The values used for this round
of calculations were corrected to the operating temperature of
45 ◦C.

One major similarity between Figures 4.2 and 4.3 is that we in both pictures
have the HOM at 1093 MHz around or below Landau damping, even with the
actual spectrum, which means that this instability is not Landau damped. While
one should keep an eye on this in future measurements, it is not necessary to take
this mode very seriously at the moment, as it is one of the theoretical ones, i.e.
frequency, Q-value and shunt resistance are completely theoretical. In the future,
a better matching between theory and measurement might show that this mode
is off by several 100 kHz, even some MHz, and the Q-value and shunt resistances
will be lower.

One major difference between the Figures is that the instability at 461 MHz
has gone down severely in growth time. This is a good example of how things
can change when the conditions in the cavity change; the general behaviour of
instabilities with the actual spectrum is that growth times go up, partly because
Q-values and shunt resistances go down, but this one mode takes a dive of more
than 2 orders of magnitude and is suddenly not Landau damped anymore. One
possible solutions to this problem is to change the temperature further in either
direction, while still keeping the fundamental frequency constant, and examine
how this mode behaves then.
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Table 4.2: Frequencies of the HOMs (after temperature correction)
used in ZAP as well as whether the worst case frequencies are
within the respective frequency intervals when temperature tun-
ing (30-60 ◦C) and whether the worst case frequency growth
times are below Landau damping. An asterisk, *, denotes modes
that have theoretical frequencies and Q-values.

f [MHz] fwc [MHz] fwc in span τgr below damping
408.592 408.808 No Yes
461.037 461.044 Yes Yes
620.197 620.025 No Yes
783.866 784.116 Yes Yes
855.940 855.658 No No
910.524 910.733 No Yes
992.743 992.495 Yes No
1002.401 1002.147 No Yes
1004.089 1003.851 Yes No
1007.138 1007.257 Yes No
1016.703 1016.910 Yes No
1033.008 1032.808 Yes No
1093.052* 1092.993 N/A Yes
1192.767 1192.924 Yes Yes
1243.366 1243.457 Yes No
1290.707* 1290.584 N/A No
1291.867* 1291.719 N/A Yes
1293.106* 1292.855 N/A Yes
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Chapter5
Summary and conclusions

We measured the full HOM spectrum of a MAX IV 100 MHz cavity up to ca 1300
MHz and the measured peaks were compared to the theoretical frequencies. While
not all peaks could be identified, the most important ones, i.e. the ones with a
possibly large impact on the beam, could be identified and studied. By correcting
the theoretical shunt resistances and Q-values with the measured Q-values, we
obtained values for the "real" shunt resistances. The assumption used to do this
was that the fraction Rsh/Q is fairly independent of deficiencies in the surface
structure of the cavity and mostly dependent on the actual mode and the general
geometry.

We tried to predict the shift of the whole HOM spectrum when changing the
cavity temperature from the measurement temperature of roughly 22 ◦C to its
operating temperature of 45 ◦C. This was done by using the fact that we know the
temperature dependence of the mode frequencies for small changes of temperature,
and by using our measured linear dependence on the mode frequency shifts during
mechanical tuning of the cavity.

A beam instability study was also performed with the code ZAP, both for the
HOMs at the frequencies measured at room temperature and for the predicted
frequencies at operating temperature. By doing this, one can estimate how much
the instabilities are affected by temperature tuning of the cavity. The instability
study had to be limited to rigid longitudinal coupled bunch instabilities to fit
withing the time limit and scope of the thesis work. The data and methods
presented in this thesis allow for further studies of rigid transverse coupled bunch
instabilities and also for coupled bunch instabilities of higher order, where the
bunch shapes could oscillate at multiples of the synchrotron frequency.
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Chapter6
Future work

This chapter descibes the future work that can, and to some extent will, be done
to make a more complete analysis of this part of the MAX IV 3 GeV ring.

• The level of detail in the Comsol model should be increased, i.e. the pump
slots and maybe even the ports for the coupling loops should be included.
As discussed earlier, this requires more RAM than what is available at the
moment. One option here is to use the Lund University computing cluster,
Lunarc [22]. Another is to get an upgraded computer, but this is most likely
harder to motivate.

• Full measurements of the spectra should be done at the MAX IV site, with
connected transmission lines and for all available cavities. The spectra
should be measured at three different temperature points to enable linearity
study. This data should then be used in an extended instability study (see
below).

• Full measurements and analyses of the harmonic cavities should be done in
the same way as for the active cavities. However no considerations regarding
a transmission line and coupling loop are needed.

• The effect of the B-field should be taken into account and studies on trans-
verse instabilities conducted.

• Higher order synchrotron oscillations (a > 1) should be included in the
calculations.

• The spectrum of the actual simulated bunch shape could be calculated and
more realistic calculations, with the flat potential from the harmonic cavi-
ties, could be made. This need other methods than those used here.

• Studies could be conducted for the 1.5 GeV ring also. The cavities are the
same, but because they also have individual discrepancies from the theoret-
ical shape, a measurement series is necessary. Furthermore, the instability
study needs to take into account the beam properties of this ring.
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AppendixA
Appendix

A.1 All theoretical and measurement data

A.1.1 Data from extended 3D model

Table A.1: Data from the evaluations of the extended 3D model.
We here see the obtained resonance frequencies of the eval-
uations, Q-values according to Eq. (2.12), shunt resistances
according to Eq. (2.15) and (2.16) and corrected shunt resis-
tances according to Eq. (2.18). Modes corresponding to axially
symmetric ones are marked with an asterisk, *. The # column
is for crossreferencing the modes with Table A.2. Not all modes
could be matched, hence the missing numbers.

# Mode type fr [MHz] QPEC Rsh [kOhm] Rcorr [kOhm]
1 TM* 99.8966 20965 3532 3368
2 TM* 408.167 33981 25 N/A
3 TM 419.151 29230 0 0
4 TM 419.769 29134 0 0
5 TM* 461.185 36076 262 257
6 TM 469.181 42737 1 1
7 TM 470.335 42688 0 N/A
8 TM 529.689 54811 0 0
9 TM 531.978 55550 0 0
10 TM 553.845 28001 0 0
11 TM 554.660 28073 0 0
12 TM 600.128 62304 0 0
13 TM 601.267 62392 0 N/A
14 TM* 620.835 30097 76 92
15 TE* 624.571 70294 0 -
16 TM 627.664 61531 0 -
17 TM 630.560 60157 0 -
18 TM 656.818 44126 0 -

Continued on next page

49



50 Appendix

Table A.1 – continued from previous page
# Mode type fr [MHz] QPEC Rsh [kOhm] Rcorr [kOhm]
19 TM 657.548 43818 0 -
21 TM 717.221 42206 0 -
22 TM 717.803 42298 0 -
23 TM 729.597 59297 0 -
24 TM 733.015 59938 0 -
25 TM 734.328 60164 0 -
26 TM 736.566 62052 0 -
27 TM 740.902 75829 0 -
28 TM 742.116 75879 0 -
29 TM* 784.310 39267 527 501
30 TM 818.672 48540 0 -
31 TM 819.625 47983 0 -
32 TM 837.174 59430 0 -
33 TM 842.013 52521 0 -
34 TM 842.395 52769 0 -
35 TM 846.401 49888 3 -
36 TM 848.389 62946 0 -
37 TM 851.667 51544 0 -
38 TM* 854.822 48460 4 -
40 TM 869.777 80159 0 -
41 TM 870.420 78267 3 -
42 TM 880.206 83922 4 -
43 TM 881.647 61643 0 -
44 TM 882.055 50129 0 -
45 TM 882.247 63088 0 -
47 TM* 910.306 41034 278 220
49 TM 928.786 59160 2 -
50 TM 931.315 61853 0 -
51 TE* 936.905 83518 0 -
52 TM 939.207 44024 1 -
53 TM 940.690 44663 0 -
54 TM 947.979 58515 0 -
55 TM 954.880 53967 0 -
56 TM 957.435 55097 0 -
57 TM 962.467 63698 0 -
58 TM 967.412 57703 0 -
59 TM 968.219 58003 0 -
60 TM 978.155 55842 0 -
61 TM 978.388 55573 0 -
62 TE* 988.755 84918 0 N/A
63 TM 992.219 65258 21 19
64 TM 994.627 65874 1 1

Continued on next page
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Table A.1 – continued from previous page
# Mode type fr [MHz] QPEC Rsh [kOhm] Rcorr [kOhm]
65 TM 1001.02 108634 3 1
66 TM* 1001.95 43753 268 N/A
67 - 1004.70 73519 47 3
68 - 1005.59 75729 71 -
69 - 1007.52 59782 39 18
70 - 1016.65 88855 4 N/A
71 - 1019.68 90832 0 0
72 - 1033.89 58504 4 -
73 - 1035.65 60495 0 -
74 - 1038.66 81812 0 -
75 - 1043.43 81020 0 -
76 - 1063.04 60039 0 -
77 - 1069.62 56013 1 -
78 - 1073.51 54552 0 -
79 - 1076.91 62967 0 -
80 - 1077.40 55911 0 -
81 - 1079.49 56476 0 -
82 - 1080.49 57434 0 -
83 - 1080.99 57296 0 -
84 - 1087.91 59917 0 -
85 - 1089.47 60283 0 -
86 TM* 1093.47 34409 932 -
87 - 1094.57 62528 2 -
88 - 1094.84 62321 0 -
89 - 1135.53 84561 2 -
90 - 1138.72 86296 0 -
91 - 1139.29 114490 0 -
92 - 1147.89 133000 0 -
93 - 1149.99 92925 2 -
94 - 1155.16 96417 0 -
95 - 1163.19 75647 2 -
96 - 1163.68 79320 0 -
97 - 1176.25 59668 4 -
98 - 1177.01 60798 1 -
99 - 1179.42 61392 0 -
100 - 1180.47 59318 0 -
101 - 1181.13 60190 0 -
102 - 1184.38 62581 4 -
103 - 1186.39 62837 3 -
104 - 1189.75 61316 4 -
105 TM* 1192.16 44175 73 63
106 - 1200.18 54507 1 -

Continued on next page
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Table A.1 – continued from previous page
# Mode type fr [MHz] QPEC Rsh [kOhm] Rcorr [kOhm]
107 - 1202.90 55318 0 -
108 - 1209.95 66967 0 -
109 - 1210.43 68210 0 -
110 - 1210.89 89337 0 -
111 - 1214.77 102048 0 -
112 - 1220.99 65101 0 -
113 - 1221.47 65249 0 -
114 TE* 1226.28 95416 0 -
115 - 1239.71 49658 2 -
116 - 1240.19 49408 0 -
117 TM* 1241.14 52969 27 20
119 - 1254.30 64393 4 -
120 - 1256.10 64249 0 -
121 - 1259.73 54488 1 -
122 - 1260.21 52625 0 -
123 - 1267.21 61896 3 -
124 - 1268.84 88870 0 -
126 - 1272.89 61403 2 -
127 - 1278.87 69529 6 -
128 - 1280.35 70805 1 -
129 - 1281.43 73932 4 -
130 - 1282.28 70100 0 -
131 - 1282.75 71085 2 -
132 - 1286.39 91718 13 -
133 - 1286.48 132232 1 -
134 - 1287.11 95713 2 -
135 - 1288.50 100734 0 -
136 - 1291.20 74972 23 -
137 - 1292.36 66764 41 -
138 TM* 1293.60 65723 131 -
139 - 1296.25 82761 7 -
140 TE* 1301.38 80263 1 -
141 - 1302.43 59850 15 -
142 - 1303.27 58943 7 -
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A.1.2 Data from measurements on 100 MHz cavity 3170/6 without cou-
pling loop

Table A.2: Data from measurements on 100 MHz cavity 3170/6
without coupling loop. The indexed numbers refer to the dif-
ferent tuning points of the fundamental frequency. The [# col-
umn is for cross referencing the (center) modes with Table A.1.
Not all modes could be matched, hence the missing numbers.

# f1 Q1 f2 Q2 f3 Q3

1 99.682 20343 99.9421 19988 100.3611 20072
2 - - 408.744 - 408.788 -
3 419.338 27956 418.799 27920 417.944 27863
4 419.787 27986 419.249 27950 418.399 27893
5 461.241 35480 461.213 35478 461.182 35476
6 469.620 27625 469.702 29356 469.852 29366
7 470.740 - 470.816 - 470.952 -
8 527.191 43933 526.968 43914 526.626 43886
9 530.445 48222 530.217 48202 529.867 48170
10 554.040 26383 553.895 26376 553.673 27684
11 554.544 24111 554.412 25201 554.220 25192
12 600.480 60048 600.520 60052 600.599 60060
13 601.715 26162 601.775 - 601.835 -
14 620.559 36503 620.447 36497 620.276 38767
15 621.463 51789 621.303 56482 621.060 56460
16 621.808 29610 621.880 23918 622.014 -
17 627.490 52291 627.352 52279 627.149 52262
18 656.488 34552 656.440 34549 656.384 34547
19 657.199 38659 657.155 41072 657.104 41069
20 715.234 9054 715.146 9933 715.023 9662
21 718.364 39909 718.201 39900 717.952 39886
22 718.904 12612 718.744 21140 718.501 29938
23 725.954 - 725.875 - 725.770 -
24 733.350 48890 733.260 48884 733.134 48876
25 733.552 38608 733.463 40748 733.340 43138
27 741.505 61792 741.531 61794 741.586 61799
28 742.469 67497 742.498 74250 742.556 74256
29 785.007 37381 784.263 37346 783.100 37290
31 822.081 5872 821.826 5479 821.451 5009
32 836.966 3182 836.896 3021 836.812 3088
33 837.816 5859 837.739 5660 837.644 5584
34 843.173 49598 843.088 49593 842.964 49586
35 843.879 46882 843.797 46878 843.687 46871
36 846.437 44549 846.044 44529 845.437 44497

Continued on next page
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Table A.2 – continued from previous page
# f1 Q1 f2 Q2 f3 Q3

37 851.527 50090 851.119 50066 850.496 50029
38 856.315 40777 856.267 38921 856.211 38919
39 863.859 14162 863.715 14892 863.508 15420
40 865.728 24048 865.537 24043 865.256 24035
41 875.791 13684 875.664 13268 875.484 13265
42 880.561 48920 880.558 48920 880.568 46346
43 882.422 21010 882.421 16970 882.431 13171
44 882.955 10388 882.908 11036 882.866 13583
45 883.639 42078 883.669 42079 883.737 42083
46 883.752 42083 883.782 44189 883.850 46518
47 911.133 31418 910.897 32532 910.548 33724
48 913.603 7251 913.564 7488 913.533 7250
49 927.711 9277 927.590 10422 927.346 14051
50 929.030 20645 928.747 18211 928.392 13263
51 931.807 20257 931.478 23884 930.961 28211
52 937.517 49343 937.087 46854 936.441 40715
53 938.210 15380 937.995 15898 937.638 17364
54 943.956 12586 943.779 11103 943.492 11100
55 956.086 50320 955.878 50309 955.532 50291
56 958.546 50450 958.340 50439 957.989 50420
57 966.740 - 966.667 - 966.588 -
58 968.834 37263 968.775 38751 968.656 40361
59 969.441 11016 969.385 11016 969.282 11015
60 978.737 51512 978.386 51494 977.808 48890
61 978.869 25760 978.523 26447 977.955 31547
62 987.327 - 987.243 - 987.115 -
63 993.118 58419 993.127 58419 993.121 58419
64 995.680 62230 995.692 62231 995.688 62230
65 1002.093 37115 1001.999 37111 1001.827 35780
66 1002.989 - 1002.804 - 1002.528 -
67 1004.726 4101 1004.498 4672 1004.155 5804
69 1007.801 28794 1007.561 27988 1007.164 27977
70 1017.112 - 1017.086 - 1017.073 -
71 1020.407 85034 1020.426 85035 1020.433 85036
72 1033.588 - 1033.421 - 1033.171 -
73 1035.518 - 1035.370 - 1035.168 -
74 1036.624 19197 1036.424 16451 1036.092 11022
75 1052.704 - 1052.636 - 1052.551 -
76 1062.351 - 1062.290 - 1062.175 -
77 1070.107 24321 1070.007 23778 1069.816 24879
78 1071.352 26131 1071.275 26782 1071.123 28187
79 1076.756 9970 1076.646 11703 1076.440 15601
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Table A.2 – continued from previous page
# f1 Q1 f2 Q2 f3 Q3

80 1079.389 4200 1079.126 4199 1078.684 4532
81 1080.669 13179 1080.352 10489 1079.850 7296
82 1081.516 27038 1081.322 27726 1080.990 28447
83 1082.503 - 1082.293 2195 1082.602 -
84 1087.917 10771 1087.749 11099 1087.444 11569
85 1089.798 54490 1089.655 54483 1089.376 54469
- 1095.170 - - - - -
87 1095.537 47632 1095.436 47628 1095.280 47621
88 1095.987 47652 1095.914 47648 1095.790 52180
89 1136.281 75752 1136.287 75752 1136.268 75751
91 1139.266 54251 1139.274 54251 1139.262 56963
- 1149.600 - - - - -
92 1150.189 71887 1150.149 71884 1150.057 71879
93 1153.875 10395 1153.779 10302 1153.598 10883
94 1155.953 96329 1155.963 88920 1155.949 88919
95 1164.066 48503 1163.973 48499 1163.800 48492
96 1165.833 6406 1165.725 6549 1165.528 6548
97 1174.960 41963 1174.816 41958 1174.556 41948
98 1177.357 53516 1177.225 53510 1176.983 53499
99 1180.403 34718 1179.978 33714 1179.277 32758
100 1181.110 42182 1180.639 43727 1179.859 47194
102 1185.091 42325 1184.819 45570 1184.355 49348
103 1186.286 4477 1186.144 4688 1185.876 5490
104 1187.913 12912 1187.664 10797 1187.280 8188
105 1193.769 38509 1193.301 38494 1192.515 39751
106 1200.472 - 1199.700 - 1198.487 15565
107 1203.461 48138 1202.683 48107 1201.412 48056
109 1211.460 - 1211.298 - 1211.068 -
110 1211.785 60589 1211.653 60583 1211.416 60571
111 1219.759 8903 1219.691 8838 1219.544 8240
112 1222.606 30565 1222.550 30564 1222.435 29815
113 1222.936 55588 1222.878 58232 1222.761 58227
114 1226.408 12264 1226.228 13045 1225.911 13774
116 1242.564 27012 1242.284 27606 1241.813 32679
117 1243.851 42891 1243.847 40124 1243.823 36583
118 1244.206 7406 1244.202 9216 1244.172 9285
119 1254.596 14588 1254.002 17914 1253.000 21603
120 1256.463 - 1255.820 - 1254.799 -
121 1259.615 8871 1259.253 7870 1258.665 7404
123 1266.295 27528 1266.069 28135 1265.680 28765
124 1266.977 14397 1266.863 14396 1266.651 15261
125 1271.991 - 1271.915 - 1271.876 5628

Continued on next page
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Table A.2 – continued from previous page
# f1 Q1 f2 Q2 f3 Q3

126 1272.516 33487 1272.398 31034 1272.179 20193
127 1277.752 34534 1277.669 33623 1277.496 29709
128 1281.304 64065 1280.991 64050 1280.453 67392
129 1282.059 53419 1281.736 53406 1281.190 51248
130 1282.721 47508 1282.492 55761 1282.099 61052
131 1283.751 38902 1283.555 40111 1283.216 36663
132 1287.002 85800 1286.991 85799 1286.935 80433
133 1287.959 67787 1287.961 61331 1287.925 49536
134 1288.713 11716 1288.643 11932 1288.508 12510
135 1289.377 80586 1289.396 85960 1289.397 85960
136 1291.997 68000 1291.879 67994 1291.657 67982
138 1293.296 61586 1293.126 61577 1292.804 61562
- 1294.850 47957 - - 1294.436 46230
139 1298.022 6691 1297.324 - 1295.742 3314
142 1304.730 50182 1304.660 48321 1304.520 48316
143 1305.887 54412 1305.808 54409 1305.655 52226
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A.1.3 Data from HOM drift linearity check

Table A.3: Results of the linear fit subtraction (relative spectral
offset) described in Section 4.2. The frequencies used are the
frequencies in Table A.2. The blank spaces are due to one
or more missing frequencies. The right-most column is the k-
parameter in the linear fit, i.e. a measure of how sensitive the
actual mode is to tuning. Non-linear modes are marked with N.

f2 [MHz] Point 1 [MHz] Point 2 [MHz] Point 3 [MHz] k
408.744 - - -
418.799 0.0021 -0.0033 0.0013
419.249 0.0026 -0.0042 0.0016
461.213 0.0022 -0.0035 0.0014
469.702 0.0028 -0.0045 0.0017
470.816 0.0021 -0.0034 0.0013
526.968 0.0027 -0.0043 0.0017
530.217 0.0027 -0.0043 0.0017
553.895 0.0018 -0.0029 0.0011
554.412 0.0032 -0.0052 0.0020
600.520 0.0023 -0.0037 0.0014
601.775 -0.0057 0.0092 -0.0035
620.447 0.0015 -0.0024 0.0009
621.303 0.0023 -0.0037 0.0014
621.880 0.0028 -0.0045 0.0017
627.352 0.0030 -0.0048 0.0019
656.440 0.0033 -0.0053 0.0020
657.155 0.0031 -0.0050 0.0019
715.146 0.0029 -0.0047 0.0018
718.201 0.0021 -0.0034 0.0013
718.744 0.0023 -0.0037 0.0014
725.875 0.0034 -0.0056 0.0021
733.260 0.0029 -0.0048 0.0018
733.463 0.0032 -0.0051 0.0020
741.531 0.0020 -0.0033 0.0013
742.498 0.0017 -0.0028 0.0011
784.263 0.0055 -0.0089 0.0034
821.826 0.0055 -0.0090 0.0034
836.896 0.0045 -0.0072 0.0028
837.739 0.0045 -0.0073 0.0028
843.088 0.0020 -0.0032 0.0012
843.797 0.0034 -0.0055 0.0021
846.044 0.0040 -0.0065 0.0025
851.119 0.0053 -0.0086 0.0033
856.267 0.0033 -0.0053 0.0020
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Table A.3 – continued from previous page
f2 [MHz] Point 1 [MHz] Point 2 [MHz] Point 3 [MHz] k
863.715 0.0039 -0.0063 0.0024
865.537 0.0041 -0.0067 0.0026
875.664 0.0038 -0.0062 0.0024
880.558 0.0023 -0.0037 0.0014
882.421 0.0018 -0.0029 0.0011
882.908 0.0052 -0.0085 0.0032
883.669 0.0030 -0.0049 0.0019
883.782 0.0030 -0.0049 0.0019
910.897 0.0048 -0.0078 0.0030
913.564 0.0049 -0.0080 0.0031
927.590 -0.0076 0.0123 -0.0047
928.747N 0.0156 -0.0253 0.0097
931.478 0.0020 -0.0033 0.0012
937.087 0.0072 -0.0117 0.0045
937.995 -0.0016 0.0027 -0.0010
943.779 -0.0003 0.0005 -0.0002
955.878 -0.0017 0.0027 -0.0010
958.340 -0.0030 0.0048 -0.0018
966.667 0.0060 -0.0097 0.0037
968.775 -0.0037 0.0060 -0.0023
969.385 -0.0020 0.0032 -0.0012
978.386 -0.0019 0.0032 -0.0012
978.523 -0.0016 0.0027 -0.0010
987.243 0.0011 -0.0018 0.0007
993.127 -0.0032 0.0051 -0.0020
995.692 -0.0036 0.0059 -0.0022
1001.999 -0.0032 0.0052 -0.0020
1002.804 0.0034 -0.0055 0.0021
1004.498 0.0038 -0.0061 0.0023
1007.561 -0.0016 0.0026 -0.0010
1017.086 0.0045 -0.0072 0.0028
1020.426 -0.0037 0.0059 -0.0023
1033.421 0.0029 -0.0048 0.0018
1035.370 0.0056 -0.0091 0.0035
1036.424 -0.0015 0.0025 -0.0009
1052.636 0.0038 -0.0062 0.0024
1062.290 -0.0026 0.0042 -0.0016
1070.007 -0.0046 0.0075 -0.0029
1071.275 -0.0043 0.0070 -0.0027
1076.646 -0.0045 0.0072 -0.0028
1079.126 -0.0028 0.0046 -0.0018
1080.352 0.0013 -0.0022 0.0008
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Table A.3 – continued from previous page
f2 [MHz] Point 1 [MHz] Point 2 [MHz] Point 3 [MHz] k
1081.322 -0.0030 0.0049 -0.0019
1082.293N 0.1001 -0.1623 0.0622
1087.749 -0.0053 0.0086 -0.0033
1089.655 -0.0075 0.0122 -0.0047
- - - -
1095.436 0.0010 -0.0017 0.0006
1095.914 -0.001 0.0016 -0.0006
1136.287 -0.0044 0.0072 -0.0028
1139.274 -0.0039 0.0062 -0.0024
- - - -
1150.149 -0.0043 0.0069 -0.0026
1153.779 -0.0041 0.0066 -0.0025
1155.963 -0.0047 0.0076 -0.0029
1163.973 -0.0036 0.0058 -0.0022
1165.725 -0.0036 0.0058 -0.0022
1174.816 -0.0043 0.0070 -0.0027
1177.225 -0.0045 0.0074 -0.0028
1179.978 -0.0025 0.0041 -0.0016
1180.639 -0.0033 0.0053 -0.0020
1184.819 -0.0040 0.0065 -0.0025
1186.144 -0.0061 0.0098 -0.0038
1187.664 0.0026 -0.0043 0.0016
1193.301 -0.0050 0.0080 -0.0031
1199.700 0.0047 -0.0077 0.0029
1202.683 -0.0027 0.0044 -0.0017
1211.298 0.0048 -0.0078 0.0030
1211.653 -0.0038 0.0061 -0.0023
1219.691 -0.0058 0.0094 -0.0036
1222.550 -0.0038 0.0062 -0.0024
1222.878 -0.0036 0.0059 -0.0023
1226.228 -0.0042 0.0068 -0.0026
1242.284 -0.0031 0.0050 -0.0019
1243.847 -0.0027 0.0044 -0.0017
1244.202 -0.0036 0.0059 -0.0023
1254.002 -0.0070 0.0113 -0.0043
1255.820 0.0023 -0.0037 0.0014
1259.253 -0.0007 0.0012 -0.0005
1266.069 -0.0039 0.0063 -0.0024
1266.863 -0.0044 0.0071 -0.0027
1271.915N 0.0129 -0.0209 0.0080
1272.398 -0.0045 0.0072 -0.0028
1277.669 -0.0061 0.0099 -0.0038
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Table A.3 – continued from previous page
f2 [MHz] Point 1 [MHz] Point 2 [MHz] Point 3 [MHz] k
1280.991 -0.0052 0.0085 -0.0032
1281.736 -0.0040 0.0064 -0.0025
1282.492 -0.0037 0.0060 -0.0023
1283.555 -0.0036 0.0058 -0.0022
1286.991 -0.0059 0.0096 -0.0037
1287.961 -0.0061 0.0098 -0.0038
1288.643 -0.0034 0.0056 -0.0021
1289.396 -0.0046 0.0074 -0.0028
1291.879 -0.0049 0.0080 -0.0031
1293.126 -0.0074 0.0121 -0.0046
- - - -
1297.324N -0.0708 0.1147 -0.0439
1304.660 -0.0042 0.0068 -0.0026
1305.808 -0.0040 0.0065 -0.0025
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