
H
ig

h
 Leve

l Sy
n

th
e

sis fo
r D

e
sig

n
 o

f V
id

e
o

 P
ro

ce
ssin

g
 B

lo
ck

s

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, March 2015.

High Level Synthesis for Design
of Video Processing Blocks

Ayla Chabouk
Carlos Gómez

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2015-435

http://www.eit.lth.se

A
.C

h
ab

o
u

k &
 C

.G
ó

m
ez

Master’s Thesis

Department of Electrical Engineering and Information
Technology

Master of Science Thesis

High Level Synthesis for Design of Video
Processing Blocks

Authors:
Ayla Chabouk
Carlos Gómez

Supervisors:
Joachim Rodrigues

Thomas Lenart

March 20, 2015

Printed in Sweden
E-huset, Lund, 2015

Abstract

Nowadays the technology is progressing continuously. The designers are devel-
oping products with new features and always giving to the user an innovative
technological solution for the society problems. The standard methods to design
new devices are becoming slower for the demand of the products. Due to this
growing complexity, some possible substitutes of the traditional Register Transfer
Level (RTL) design flow has been appeared. This situation is becoming a bigger
problem which needs to be solved and that is why many opened researches exist
about it.

In the early 90s started the idea of High Level Synthesis (HLS) and in the ac-
tual market is getting more relevance like a substitution of the standard designing
methods. In a brief description, High Level Synthesis is an automatic compilation
technique that translates a software program to a hardware circuit. The critical
step to jump to this new field is if High Level Synthesis will give to the designers,
at least, the same design possibilities and the same quality of results as handwrit-
ten hardware design. During the last ten years many companies and academic
organizations has emerged which have been developing new tools for High Level
Synthesis.

The scope of this Master’s Thesis is to evaluate one of these commercial tools
(Catapult from Calypto), to understand the possibilities and the limitations of
it. The purpose of the thesis is to study, analyze and test the tool with reference
models (video blocks) provided by ARM Sweden. The handwritten RTL descrip-
tion of the models, were provided by ARM to be used to verify and compare the
correctness and the QoR (Quality of Results) of the RTL generated by the HLS
tool, Catapult.

After developing the Master’s Thesis, Catapult obtained the same functional-
ity, the same performance and the same operating frequency with all the blocks
worked with. However, the principal limitation of Catapult that was experienced
during the work, is the total area of the generated RTL in more complex designs.
The two larger designs developed in Catapult resulted in a larger area score result
after synthesis compared with the handwritten RTL. Apart from this issue, HLS
gives a huge advantage in comparison with handwritten RTL: the short time it

i

takes to develop a complete hardware design and the possibility to explore different
area/performance trade-off.

ii

Acknowledgement

This Master’s Thesis would not be possible without the support and guidance of
both of our supervisors. We would like to thank to Thomas Lenart, our supervisor
at ARM, for all the daily meeting and for his valuable comments and advices during
the thesis work. He was always available for help with the countless problems that
we faced during the last months. His attention and inspiration dedicated to us
during the time we spent working with him is invaluable. We would also like to
thank to Joachim Rodrigues, our supervisor at LTH, for encouraging our ideas
and for the many insightful suggestions. He was always trying to get the best of
us. All we have learnt through the master’s program and the thesis is something
that we will never forget.

We would like to thank to ARM for having trust on us and giving us the
possibility of doing the thesis with them. We want to thank them for making
our stay over the last six months comfortable and for proving us the latest and
advanced tools and access to all the facilities.

We would like to thank to Calypto for all the support, clarifications and guid-
ance that they have given to us during the thesis.

We would like to express our gratitude to all the person involved in our edu-
cation in both universities, LTH and ETSIT, that have helped us to improve our
skills and our knowledge during the last 6 years. We are really thankful with them
due to giving us the opportunity of living this great experience.

Finally, we would like to say that all these would not be possible without the
love and support of our families and friends.

Ayla Chabouk Jokhadar

Carlos Gómez González

iii

iv

Contents

Abstract i

Acknowledgement iii

Table of Contents v

List of Figures ix

List of Tables xi

Abbreviations xiii

1 Introduction 1
1.1 Background . 1
1.2 Catapult . 3
1.3 Thesis scope and objectives . 4
1.4 Thesis organization . 4

2 HLS design and Catapult flow 7
2.1 Architecture . 8

2.1.1 Communication by channels 8
2.1.2 Bit-accurate data types 10
2.1.3 Memory implementation 12

2.2 Catapult flow . 13
2.2.1 Catapult tasks 15
2.2.2 Output files 26
2.2.3 Verification 27
2.2.4 Synthesis 31

2.3 Catapult Library Builder . 32
2.3.1 Cell Library 32
2.3.2 Memory libraries 34

3 Reference Designs 35
3.1 Simple blocks . 36

v

3.1.1 DBL filter H.264 36
3.1.2 DBL filter HEVC 37
3.1.3 DBL filter Real 37

3.2 Complex blocks . 37
3.2.1 DBL SAO 37
3.2.2 HEVC Controller block 38

4 Implementation 39
4.1 Development of simple blocks . 39
4.2 Development of DBL SAO . 42

4.2.1 Structure development 43
4.2.2 Constraints Set 45

4.3 Development of the HEVC Controller Block 46
4.4 Refinement of simple blocks . 48

4.4.1 No-channel solution 49
4.4.2 Refinement for latency reduction 50

4.5 Refinement of the DBL SAO . 51
4.5.1 First comparison 51
4.5.2 Second comparison 52
4.5.3 Improvements 52
4.5.4 Flat design comparison 56
4.5.5 Final comparison 58

4.6 Refinement of the HEVC Controller Block 59
4.7 Problems . 61

4.7.1 Multiple calling to the top level block in the testbench 61
4.7.2 Using of the function available inside two nested loops 62
4.7.3 Bidirectional communication in channel 62
4.7.4 Constant values in the size of an array and the slice function 63
4.7.5 Throughput value 63
4.7.6 Two blocks reading from the same memory 63
4.7.7 Use of if and else if 64
4.7.8 Reducing area 64
4.7.9 Synthesis 65
4.7.10 DirectInput 65
4.7.11 Shift left operator 66
4.7.12 Loops with non-constant number of iterations 66

5 Results 67
5.1 Simple blocks . 67
5.2 Complex blocks . 69

5.2.1 DBL SAO 69
5.2.2 HEVC Controller Block 70

6 Conclusion 73
6.1 Advantages . 73
6.2 Disadvantages . 74
6.3 Final conclusion . 74

vi

Bibliography 77

vii

viii

List of Figures

1.1 Catapult flow from the input C code to the generated RTL code. . . 3

2.1 Parts of an ac_channel. 9
2.2 Dialog of Architecture step in the selection of memories. 14
2.3 Complete Catapult flow. 14
2.4 Catapult’s steps involved in the RTL generation. 15
2.5 Window of Catapult where the input files has to be added. 16
2.6 Hierarchy Constraint Editor dialog of Catapult. 17
2.7 Dialog of the Library step where the libraries are selected. 18
2.8 Mapping settings: clock frequency, duty cycle, offset... 19
2.9 Mapping advanced settings: enable and reset signals. 19
2.10 Mapping dialog in the step of choosing the kind of block: DESIGN. . 19
2.11 Mapping dialog in the step of choosing the kind of block: CCORE. . 20
2.12 Dialog where the architecture constrains has to be set up, in particular

the module tab. 21
2.13 Architecture step’s window in the Interfaces/resources tab. 22
2.14 Architecture step’s window in the core tab. 23
2.15 Architecture step’s window in the loop tab. 24
2.16 Dialog of the Resources step. 25
2.17 Schedule dialog. 26
2.18 Schematic view of an RTL. 27
2.19 Verification files for C and RTL simulation. 28
2.20 Catapult verification process. 29
2.21 Catapult library builder window. 33

3.1 Schema of the filtering process where are included the studied blocks 36

4.1 Steps followed to modify the original C model code into a HLS C code. 41
4.2 Schematic view of the DBL SAO architecture. 44
4.3 Schematic view of the HEVC controller block developed with 4 sub-

blocks and the controller like the top function. 47
4.4 Schematic view of the DBL SAO developed like 6 hierarchical blocks

with the communication between them with channels. 51
4.5 Schematic view of the DBL SAO developed like 5 hierarchical blocks. 54

ix

4.6 Schematic view of the DBL SAO developed like 4 hierarchical blocks. 55
4.7 Schematic view of the DBL SAO developed like 3 hierarchical blocks. 55
4.8 Schematic view of the DBL SAO developed like 2 hierarchical blocks. 56
4.9 Schematic view of the DBL SAO developed like a flat design without

channels. 57

5.1 Graph with the sequential, combinational and total area. 68
5.2 Graph where the area progress in the DBL SAO block is shown in bars. 70
5.3 Graph where the area progress in the HEVC Controller block is shown

in bars. 72

x

List of Tables

2.1 Basic C/C++ data types and corresponding representation in high-
level synthesis [3]. 12

5.1 Comparison between original RTL design and HLS RTL with the chan-
nel implementation. 67

5.2 Comparison between original RTL design and HLS RTL without chan-
nels. 68

5.3 Progress of the DBL SAO’s area from the first design until the flat
design. 69

5.4 Relation of area in each sub-block. 71
5.5 Progress of the HEVC Controller block area from the first design until

the last design. 71

xi

xii

Abbreviations

ASIC Application Specific Integrated Circuit

BS Boundary Strength

DBL De-blocking

FIFO First In First Out

FPGA Field Programmable Gate Array

FSM Finite State Machine

HDL Hardware Description Level

HEVC High Efficiency Video Coding

HLS High Level Synthesis

HLS C code C code used in HLS tool

Model C C code provided by ARM

RTL Register Transfer Level

QoR Quality of Results

SAO Sample Adaptive Offset

xiii

xiv

Chapter1
Introduction

1.1 Background

Back in the early 1990s started the idea of changing the hardware design meth-
ods, looking for another programming language that can substitute to the tedious
Hardware Description Languages (HDL).

The principal limitation of handwritten Register Transfer Level (RTL) was and
continues being the time the designers spend writing code, and because of this,
High Level Synthesis (HLS) is becoming more relevant although it has not yet
obtained the same results and same quality as the RTL obtained by the hardware
designers with HDLs. A detailed description of the hardware in the traditional
RTL coding takes long time for the whole process of design, but also it gives more
options in terms of timing. By long time we mean that many steps are involved,
for example:

• Before coding the RTL, the designer normally creates a reference model,
test its behavior to make sure it matches the functionality desired.

• The hardware architecture needs to be developed to write hardware descrip-
tion of the design and check its functionality against the reference to make
sure it meets the initial requirements.

Because of this, HLS has emerged as a possible substitution of the RTL de-
scription, to shorten the development time of new hardware devices. HLS is a
process that transforms an algorithmic description of a desired behavior into a
hardware implementation. The input code is analyzed, architecturally constrained
and scheduled to generate RTL. This means that the designer can use a higher
level functional description, avoiding some hardware details, to get the same de-
sign with the same architecture. The HLS flow uses a serie of steps which are
allocation, scheduling, binding and RTL generation. Allocation is the step decid-
ing how much resources are needed; scheduling divides the software behavior into
the steps that define the finite state machine (FSM); binding maps the variables
and instructions to hardware components; and finally the RTL generation creates

1

2 Introduction

HDL code that can be synthesized. These steps make debugging of HLS tools
complicated. For example a small change in the schedule produces a significant
impact on the generated RTL.

HLS techniques have been studied for more than 20 years. The first HLS tools
that appeared in the early 1990s took a less detailed HDL and translated it to
gate-level circuit description. The use of high level programming languages like C
or C++ started later, in the late 1990s [1]. This trend started to grow because of
the following reasons:

• The execution of C/C++ codes is faster than HDL, because it contains less
details.

• C had a large code base.

• There were more software developers than hardware developers.

However, this idea of HLS has not yet reached the popularity expected at the
beginning, even though it seems to have a lot of advantages. One of the advantages
that HLS gives to the designers when C or C++ is used as input language, is that
they are untimed designs and that make them easier to write. As mentioned, the
scheduling step is in charge of making it timed, assigning a small piece of code to
each step that can be executed in one single clock cycle. The main advantages of
untimed models are:

• Have less detail thus they simplify the test and verification process.

• Can be easily redesigned for different architectures to get other design goals
because they are more generic than hardware modules.

• Large number of untimed models have already been designed. Although
they can not be synthesized immediately to obtain a high quality RTL, they
can be converted with less effort to be suitable for HLS than making a new
timed design.

Even though C gives some advantages, being a high level description language
requires some hardware aspects to be described to generate a correct RTL with
HLS. Examples of these are:

• All the non-software elements has to be described, for example: line buffers
and access to memory.

• Variables and signals need to be bit accurate.

• Memory access and patterns should be defined.

• The synchronous communications has to be described.

Despite of this, HLS has not found its place in the industry developing pro-
cess and has not replaced RTL design yet but on the market the users can find
commercial HLS tools like for example:

Introduction 3

• Catapult [4].

• Vivado HLS [5].

• Bluespec [6].

• C-to-Silicon [7].

• Cynthesizer [8].

• Synphony C [9].

1.2 Catapult

Catapult is a HLS tool that from C and C++ code generates RTL code.

Figure 1.1: Catapult flow from the input C code to the generated
RTL code.

Figure 1.1 describes the Catapult workflow and how it generates RTL from C
code. After developing the C code, a testbench can be included in Catapult flow
to run a C simulation to check if the behavior implemented is correct. Once this
simulation works, the user starts to execute different steps in the tool to set some
constraints and configuration parameters (scheduling, DPFSM, analysis...). Once
all the steps are done, it generates the RTL and reuses the same testbench as the
one used in the C simulation to verify C/RTL consistency.

The comparison between C and the RTL is done in a simulation software, in
our case using Questasim. Catapult also includes a synthesis flow to give the user
the possibility of generating the scripts for correctly used synthesis tools. Thus

4 Introduction

Catapult gives the user the possibility to develop functional RTL that can be
synthesized for either FPGA or ASIC technology.

1.3 Thesis scope and objectives

This thesis has been developed in ARM’s office in Lund in collaboration with the
video team. All the hardware and support we have needed has been provided by
ARM during this time, and we have also received very useful help from Calypto
during the thesis to understand the tool better. Two versions of Catapult have
been used during the thesis, starting with 7.2a, but during the development of
the thesis we changed to the version 8.0 to solve some issues with the synthesis
process.

The main objective of this Master’s thesis is to evaluate, Catapult, for the
design of video process blocks.

These are the objectives of the work:

• Get started and familiar with a commercial HLS tool.

• Verify the quality of the auto-generated hardware compared with the hand-
written RTL, in terms of area, latency and throughput.

• Evaluate if the design process with HLS is easier and faster than traditional
hardware design.

• Study the quality of the generated RTL in terms of area, operating fre-
quency, functionality and performance.

• Asses which are the types of designs that are more suitable to obtain better
results than hand-made RTL code.

We have accomplished all these objectives by testing different blocks and de-
signs. To make a fair comparison, ARM has provided us with handwritten RTL
code for each evaluated block which have been used as a reference to evaluate and
compare.

The first step has been to evaluate some simple blocks to learn the different
configuration parameters and the limitations of the tool; in other words, to get
familiar with the tool. Once this was done, a larger design (SAO filter block),
which is compounded by smaller blocks, has been tested in Catapult. Finally, to
get more reliable results another "complex" block (HEVC controller block) has
been designed. This report describes how to write the input C code for HLS, the
main uses of Catapult, and how the development of the small blocks and large
blocks have been done through the tool.

1.4 Thesis organization

The thesis is organized as follows:

Introduction 5

Chapter 2 describes how HLS code should be written to obtain high quality
RTL. Also this chapter explains some of the most useful options and features of
Catapult C, as well as the process we have followed to use the tool properly.

Chapter 3 explains the behavior and functionality of the blocks developed in
Catapult like the de-blocking HEVC filter, the de-blocking real filter and the SAO
filter for HEVC.

Chapter 4 describes the implementation of each of these blocks in HLS, as well
as how we have improved the blocks when not obtaining the expected results. The
problems we have found and its solutions have been written in this chapter.

The results obtained in the thesis are presented in the chapter 5.

Finally, we discuss future work in this field and the conclusions in chapter 6.

6 Introduction

Chapter2
HLS design and Catapult flow

Although in HLS the source code is described in C, C++ or System C language,
the goal is to create an RTL description. Therefore the C code needs to be written
in a different way as a purely behavioral C program. During the development of
the input code for the HLS tool, there area some structural hardware constructs
that could be skipped in standard C but not in the hardware world [2], for example:

• Non-software modules: such as caches.

• Memory access to write or read from a memory.

• Bit-accurate interfaces and variables.

To use a non-HLS C program in Catapult we have to change the input and
output interface, but if the goal is to obtain a high quality RTL, it is necessary to
improve also the content, avoiding for example multiple and inefficient access to
memories or the use of many static variables. The input code should be written
in the most efficient way giving as much details and information as possible.

This chapter will discuss some of the most important coding rules that should
be followed and it will also define a small guide of how Catapult works with a
description of every steps with its options.

This chapter is divided into the following sections:

• Architecture: this section describes how to write a HLS C code to get high
quality RTL, the types for communication between blocks, bit-accurate data
types that are included in HLS, and how the memories are implemented in
a design.

• Catapult Flow: this part describes how the RTL is generated in Catapult,
which are the steps to generate it, how to verify the C code and the RTL
and the generation of the netlist with a synthesis tool.

• Catapult Library Builder: the section introduces and explains another tool
provided by Catapult characterize a custom standard cell library, a library
valid for Catapult and also how to generate a library for a specific memory.

7

8 HLS design and Catapult flow

2.1 Architecture

To write the input C code for the HLS tool is necessary to follow some rules to
generate high quality RTL. The most important aspect is that a HLS C code will
not have the same structure as a normal C program.

The C algorithm should be split in the same way as a hardware design is
structured. Each block that appears in the architecture of the hardware design,
should appear in the C code. It can appear as a hierarchical block, as a CCORE or
even as an inline function. These options will be described later. Each block (big
or small blocks) has to be implemented as a function and that function can call
other functions. Similar to RTL, HLS must define a top function, which connects
the rest of the blocks and describes the interface of the complete design.

The blocks of a design need to communicate. If the blocks are hierarchical
blocks, the communication should be done with the type ac_channel, which will
be explained in the section 2.1.1. By hierarchical blocks, we mean blocks that,
for example, one of them needs information from other block to get started and
it will not start until that information has arrived. The communication between
two hierarchical blocks is recommended to be synchronous.

If the communication is done with a block in a lower hierarchical level, the
communication can be done in the same way as a standard C code, calling the
function of the lower hierarchical block in the upper function. If this is done, a
handshake communication will not be implemented between the blocks.

The communication between two hierarchical blocks is done in the top function
where the call to both blocks is done, but the communication between one block
and for example, an inline function, is done inside the same block, as a function
call.

It is very important to make a diagram before starting to code to properly
understand which is the top level module of the design (there can only be one)
and which are the rest of the blocks that are going to compound the design, what
is the functionality of all of them and how the communication between them will
be managed. In this case the user does not have to think like a C code developer,
the user should think like a hardware designer.

2.1.1 Communication by channels

The ac_channel is a type used by Catapult to communicate between two hierar-
chical blocks. The ac_channel class is essentially a FIFO (First In First Out) that
guarantees that reading and writing of data between blocks occurs in the right
order. It implements, in RTL, a handshake communication between the blocks
and therefore the ac_channel is the most reliable connection between hierarchical
modules. In each hierarchical block, its inputs and its outputs are defined like
channels. Inputs coming from the outside can sometimes be defined like "direct
inputs" to avoid the input register generation, but if an input is defined like a
DirectInput, it is necessary to provide the design with another signal to make the

HLS design and Catapult flow 9

synchronization with the rest of the blocks possible. Also it is not possible to use
a channel and a DirectInput in the same block, the block does not get a correct
synchronization and the RTL verification fails.

The main problem of the channel is that involves the generation of three signals
and a FIFO pipe, which means that the resources used by the design increases.
The channel creates a FIFO pipe because the producer can write data in it even
though the consumer does not read it. The signals that are involved in a channel
interface are:

• The data signal: this signal connects the first block with the FIFO pipe and
the FIFO pipe with the second block and it is used for transmitting the
data.

• Control signals:

– Ready signal: the sender block is notified that the receiver block is
ready to accept and read new data.

– New data signal: the sender block notifies the receiver block that new
data has been written in the FIFO.

Figure 2.1 shows the signal implementation of a channel.

Figure 2.1: Parts of an ac_channel.

The channel provides hand-shake communication between the blocks and dur-
ing the RTL generation process the user can select the size of the FIFO pipe. If
the user knows that the receiving block is always ready to read the data, the FIFO
pipe size can be set to 0, so it will never be implemented. In this case, every time
the producer writes, the consumer has to read it and the producer can not write
more until the consumer reads. If the user does not set any size of the FIFO pipe,
Catapult will automatically give them the minimum size to get the design work-
ing, but this is not always as efficient as desired. For a better implementation, it
is better to define the size if the maximum value is known. Last thing to men-
tion about a channel is that it is not a bidirectional communication, bidirectional
communication requires two channels.

The declaration of a channel is done in this way:

ac_channel<type of data> channel_name.

There is no limitation on the data types that can be used to send through the
channel, but if the user wants to send more than one type of data, a struct should

10 HLS design and Catapult flow

be declared with those types and then the struct will be the data to send through
the channel.

Furthermore ac_channel type provides some useful functions to check the
availability of the channel before it is read. These functions are just applicable to
input channels. The functions provided by ac_channel are:

• available(): this function gives as a result if there are items available, at
least one, in the FIFO pipe in a specific channel. This function should be
always called when a channel is read, because read from an empty channel
is not allowed in Catapult and will cause a stall. Here is an example of how
to use it:

if(input_channel.available(1)){

variable = input_channel.read();

...

output_channel.write(data);

}

It is also possible to specify how many items you want to be available in the
channel before reading them: input_channel.available(number_items).

• size(): this function returns the number of items that are stored in the FIFO
pipe. It is also useful if the design needs to wait until some amount of data
is stored in the pipe. Here is an example of how to use it:

if(input_channel.size() == number_items){

variable = input_channel.read();

...

output_channel.write(data);

}

The main problem of using channels in the communication between blocks
is that channels not only generates all the signals mentioned before, a channel
implementation also generates an input register in the receiving block and that
means more area in the design.

2.1.2 Bit-accurate data types

C, C++ and System C can be the sources of a HLS code but when the C code is
written, it just describes the functionality of the design. The C code in Catapult
has to give enough information to be able to synthesize efficient and correct RTL
code and for example it must give some information about the number of bits used
in the interfaces, signals or in the intermediate variables. For making this possible,
apart from the usual libraries of C, Catapult uses libraries that contain data types
like ac_int<> and ac_fixed<> that allows bit accurate integer and fixed point
numbers respectively, both signed and unsigned.

HLS design and Catapult flow 11

• ac_int<int width, bool signed>: it will generate a signal with the number
of bits as defined with "width" and setting the boolean "signed" to false it
will be unsigned and vice versa. For example:

ac_int<8, false> a; => unsigned variable of W=8 bits.

0<= a <= 2W − 1 by increments of 1.

ac_int<32, true> b; => signed variable of W=32 bits.

−(2W−1)<= b <= 2W−1 − 1 by increments of 1.

• ac_fixed<int width, int integer, bool signed>: will generate a signal with
the number of bits defined with "width" and the number of integer bits the
same as defined in the variable "integer". If signed or unsigned is the same
as with the ac_int. For example:

ac_int<8, 6, false> c => unsigned variable with 6 integer bits

and 2 decimal bits. (W=8, I=6).

0<= c <= (1− 2−W)2I by increments of 2I−W .

ac_int<32, 24, true> d => signed variable with 24 integer bits

and 8 decimal bits. (W=32, I=24)

−0.5 ∗ 2I<= d <= (0.5− 2−W)2I by increments of 2I−W .

Some functions also allows the user to read or write only selected bits of a
signal or variable:

• Slice read: slc<width>(int lsb), this function enables the possibility to read
selected bits of a signal. The bits that are read are the bits from the less
significant bit (lsb) to the bit lsb + width. For example:

ac_int<3, false> a =5; (101)

ac_int<2, false> b = a.slc<2>(0); (01)

ac_int<2, false> c = a.slc<2>(1); (10)

• Slice write: set_slc(int lsb, const ac_int<width,sign>, this function enables
the possibility to change the values of selected bits in a signal. The bits that
are changed are from the less significant bits to lsb+width with the bits given
as a second parameter to the function. For example:

ac_int<4, false> a =0; (0000)

ac_int<2, false> b = 3; (11)

a.set_slc(1,b); (0110)

Table 2.1 is shows the corresponding representation between the data types of
standard C/C++, Catapult, VHDL and Verilog.

12 HLS design and Catapult flow

Table 2.1: Basic C/C++ data types and corresponding representa-
tion in high-level synthesis [3].

C++ Code Catapult VHDL Verilog

bool My_Var
ac_int<1,false>

My_Var std_logic My_Var
reg

My_Var
-char My_Var
-signed char My_Var
-signed char int My_Var

ac_int<8,true>
My_Var

std_logic_vector
(7 downto 0) My_Var

reg [7:0]
My_Var

-unsigned char My_Var
-unsigned char
int My_Var

ac_int<8,false>
My_Var

std_logic_vector
(7 downto 0) My_Var

reg [7:0]
My_Var

-short My_Var
-signed short My_Var
-signed short int
My_Var

ac_int<16,true>
My_Var

std_logic_vector
(15 downto 0) My_Var

reg [15:0]
My_Var

-unsigned short My_Var
-unsigned short
int My_Var

ac_int<16,false>
My_Var

std_logic_vector
(15 downto 0) My_Var

reg [15:0]
My_Var

-int My_Var
-signed My_Var
-signed int My_Var

ac_int<32,true>
My_Var

std_logic_vector
(31 downto 0) My_Var

reg [31:0]
My_Var

-unsigned My_Var
-unsigned int My_Var

ac_int<32,false>
My_Var

std_logic_vector
(31 downto 0) My_Var

reg [31:0]
My_Var

-long My_Var
-signed long My_Var
-signed long int My_Var

ac_int<32,true>
My_Var

std_logic_vector
(31 downto 0) My_Var

reg [31:0]
My_Var

-unsigned long My_Var
-unsigned long
int My_Var

ac_int<32,false>
My_Var

std_logic_vector
(31 downto 0) My_Var

reg [31:0]
My_Var

-long long My_Var
-signed long long My_Var
-signed long
long int My_Var

ac_int<64,true>
My_Var

std_logic_vector
(63 downto 0) My_Var

reg [63:0]
My_Var

-unsigned long long
My_Var
-unsigned long long int
My_Var

ac_int<64,false>
My_Var

std_logic_vector
(63 downto 0) My_Var

reg [63:0]
My_Var

2.1.3 Memory implementation

Catapult is also capable to generate memories inside the design or generate memory
interfaces to make the blocks able to connect with an external memory that is not

HLS design and Catapult flow 13

included in the design. It is fundamental to declare or to call the memories in the
correct way to obtain the desired architecture in the final design.

Catapult divides the memories in two types depending what is the memory
purpose and how the memory is declared in the code:

• Read and write memories declared inside the design: these memories are
the ones that are implemented inside the design and the design reads from
them and writes to them.
These type of memories appear in the Architecture step that will be ex-
plained in the section 2.2.1, and the user can decide if the memories should
be externalized or not. Externalize means that the memory is not imple-
mented inside the design and generates interfaces. These memories are
declared inside one of the blocks in the design, for example, in the top level
block.

• Read or write memories declared outside the design: this kind of memory is
never included in the design and is always given to the blocks as pointers.
The area is not included in the design, but in the RTL tab (schematic view
of the generated RTL) the user is able to see a block, which is the memory,
to simplify the understanding of the generated architecture, but it is an
"empty" block that does not consume resources.
This type of memory is not declared in the blocks or the top level, they
are only declared in the testbench to test the behavior of the design and
the most important thing, they are passed to the function in C as pointers.
The user can check that they are not included, in the RTL’s area score tab,
checking the memory area usage to be zero for this kind of memories.

During the Architecture step the user can select which kind of memory to
implement, for example single port memory, dual port memory or separate ports
for write and read as the Figure 2.2 shows. The user can choose to implement the
memory as registers, but this option is just reasonable when it is a small memory.
To do this in an efficient way, there is a target to set that defines the maximum
size of an array. If the size of an array is less or equal to that number, it will be
treated by default as registers.

It is also possible to select the number of bits in the enable signal to allow the
user to read or write individual parts of a memory word. For example if the width
of a write memory is 32 bits (a word) and the variable num_byte_enable, that is
shown in Figure 2.2 is set to 4, it means that we are able to write individual bytes
(8 bits or more in each write access). In addition, the user can set the input and
output delays of the memory.

2.2 Catapult flow

This section will explain the possibilities Catapult gives to the user during its
flow. It will describe the different tasks Catapult has to go through to generate

14 HLS design and Catapult flow

Figure 2.2: Dialog of Architecture step in the selection of memories.

the RTL, the output files it will generate after hardware implementation, the
verification process, and the synthesis process.

Figure 2.3: Complete Catapult flow.

Figure 2.3 shows the Catapult tasks and below, shows the output files gener-
ated, the files generated to make the verification and the files generated to run the
synthesis.

HLS design and Catapult flow 15

2.2.1 Catapult tasks

To achieve the desired design with Catapult, it provides the user with some tasks
to generate as closer as possible the architectural and micro-architectural design
of the system. In the source code, the architecture of the design is described and
then, during the process of RTL’s generation, the micro-architectural description
is done to reach exactly, or at least as closer as possible, design as the one that
would be obtained with the development of the HDL code for making the hardware
design.

We will explain the different steps in Catapult that need to be followed to
describe the micro-architecture of a design, and to create at the end the RTL
code. All these steps are shown in the Figure 2.4 and this is what is appearing in
the left lateral bar of the main screen of the tool.

Figure 2.4: Catapult’s steps involved in the RTL generation.

This is done in each of the steps:

1. Input Files: before starting a project, the user needs to provide the source
code to Catapult and this is done in the window of Catapult that is shown in
Figure 2.5. The input files that Catapult needs are the C code that will be
synthesized to generate RTL. The header files are not necessary to specify
because Catapult can find them in the working directory. Therefore they
should be placed in the same folder as the C file or at least in the working
directory. If the user wants to add a testbench file to the project, it should
be also added in this step but has to be marked as "exclude" (see Figure 2.5)
to exclude it from the implementation process because if this is not done,
the testbench will be also synthesized to generate RTL.

16 HLS design and Catapult flow

Figure 2.5: Window of Catapult where the input files has to be
added.

2. Hierarchy: in this step the user can see all the functions that are described
in the C code in the left lateral of the window and in the right of it, the
hierarchy for each function can be chosen for developing a correct design.
There are three options of hierarchy as it is shown in Figure 2.6:

• Top: only one function is allowed to be top in the design because that
function will be the one that is called for starting the implemented
process. In this function should make all the calls to the rest of the
functions (recursively) that are contained in the block. In other words,
it is the top-level block for the whole design and is the one that connects
the rest of the blocks together.

• Block: the block option designates the function to a sub-block, one
hierarchical block or CCORE. This means that they are in one hier-
archical level down related to the top function.

• Inline: the rest of function not labelled to "block" or "top" are designed
to inline meaning that they are inside one of the hierarchical blocks.

Typically the hierarchy is designated in the source code files by using the
instruction hls_design pragma. To make a proper use of this, just in the
line above the function definition, should be added "#pragma hls_desing"
followed by one of the three hierarchy names. The pragma settings are re-
flected directly in the dialog. Changing the settings in that window, override
the pragma settings. If no hls_design pragmas are used, all the functions
are considered to be Inline by default.

HLS design and Catapult flow 17

Figure 2.6: Hierarchy Constraint Editor dialog of Catapult.

3. Libraries: At this step the target technology that is going to be used to
synthesize is set up with its library and the memory libraries are added to
the design. All the libraries needed for the design are added in this step.
When the user reaches this step, the C code is compiled and the user can
verify the behavior of the C code with the testbench. This will be explained
better in the section 2.2.3.
Figure 2.7 shows the Library dialog. The target technology to design the
system is selected in the "Technology" box. The selected technology will
be the same for the synthesis process. The libraries must be checked in the
white box located in the left side of the dialog. It is also possible to see
that there is a button to "Memory Generator". We will talk about it in the
section 2.3.2. And finally if the user clicks in the "search path" button, a
window will appear showing where the location of the *.lib files are, and if
one of the locations is missing should be added.
Apart from the technology and the memory libraries, Catapult allows the
user to load libraries that represent other synthesized blocks or designs previ-
ously generated in Catapult and use them in the current generation. Because
of this, there are two ways to generate a design:

• Bottom-up design: each block is processed and generates the RTL sep-
arately from the rest of the blocks, and at the end, when the top level
function is being run through the Catapult flow, the top level function
needs to include the library files of the rest of the blocks previously
generated. With these files, Catapult can generate the whole design.
This method usually gives better results in area than the top-down ap-
proach. When Catapult runs this option, it generates each module in
a different file, therefore when the synthesis process is done out of Cat-

18 HLS design and Catapult flow

apult, it is necessary to include all the files that compound the system
in the synthesis process. One of the advantages of this method is that
the user can analyze the latency, throughput and area of each block,
but the disadvantage is that Catapult does not give some information
for the top block (latency and throughput). But the most important
advantage is that when just one of the blocks is being modified, the
user does not need to process each block again, only the one modified
because the user can still use the libraries and RTL of the non-modified
blocks. To make this easier to follow, Catapult labels the libraries of
the blocks with a sub-index that represent the version number (see Fig-
ure 2.7): block_read.v1, block_read.v2 and block_read.v3 (the latest
version).

• Top-down design: all the blocks are processed at the same time, se-
lecting in the hierarchy step if they are top, block or inline functions.
When this option is chosen, the tool only generates one RTL where
all the functionality is described and in the RTL file, each block is
declared like independent modules. In this case the user can not check
the information of each block, but Catapult provides the user with the
information of latency, throughput and area of the whole design.

Figure 2.7: Dialog of the Library step where the libraries are selected.

4. Mapping: in this step the clock parameters are set like for example, the
clock frequency (in MHz), the duty cycle, the offset and the edge (rising or
falling). Furthermore the user can select which kind of reset that should

HLS design and Catapult flow 19

be used in the design (synchronous, asynchronous or both) and it is also
possible to implement an enable signal. All these can be seen in Figure 2.8
and Figure 2.9.

Figure 2.8: Mapping settings: clock frequency, duty cycle, offset...

Figure 2.9: Mapping advanced settings: enable and reset signals.

Figure 2.10: Mapping dialog in the step of choosing the kind of
block: DESIGN.

20 HLS design and Catapult flow

Figure 2.11: Mapping dialog in the step of choosing the kind of
block: CCORE.

One of the important functions of this step is the selection of the "Block
Type"(Figure 2.10). For each block in the design, you can set whether it
should be implemented as part of the Design or as a CCORE. A top block
is always implemented like a part of the Design and also every block that
we do not want to encapsulate in a CCORE. A CCORE will be optimized
and stored as a reusable block. Catapult will not optimize the design across
CCORE boundary. A CCORE is a kind of block that does not allow the user
to implement channels inside because they are called inside of a Design block.
In addition there are two types of CCORE: combinational and sequential.
Each one of them means that the CCORE is built with combinational or
sequential components respectively.

5. Architecture: The architecture step is where the tool gives the possibility
to set the constraints to define the micro-architecture of the design.

In this step the user can set the constraints for characterizing loops, mem-
ories, input and output interfaces, arrays and core. As can be shown in all
the figures of this section, there are different areas to define its constrains
and those are the following ones:

• Module: the user can set some general options about how the module
is generated, like for example, as it shown in the Figure 2.12, it can
be set the effort level (medium or high) that Catapult will applies
to design optimization during scheduling, the design goal that can be
focus on area optimization or in latency optimization. In addition the
user can set input and output delays.

HLS design and Catapult flow 21

Figure 2.12: Dialog where the architecture constrains has to be set
up, in particular the module tab.

• Interface: in this step the user can see the input and output interfaces
that are going to be implemented in the design and are described in
the C implementation, having the possibility to change the kind of
interface that it has been set by default. All these can be seen in the
Figure 2.13.

For each interface, the kind of protocol that will be generated in the
RTL can be selected, like for example, a wire wait protocol, a wire
enable protocol or only a wire protocol. When in the source code an
input is declared like a channel the default protocol is a wire wait
protocol. For each interface the user is allowed to select the input and
output delay and if the signal is a channel the width of the FIFO pipe
that was already mentioned in the section 2.1.1 can also be selected.

22 HLS design and Catapult flow

Figure 2.13: Architecture step’s window in the Interfaces/resources
tab.

• Core: in the core section the user can select its effort level and design
goal. However, it has two new fields that permit give more information
to the tool for building a more specific design. These, as shown in
Figure 2.14, are the maximum latency and the area goal that is the
expected value of latency and area respectively. The tool will try
to achieve it but if it can not, it will generate a warning. It is also
possible to change the share allocation time that is the percentage of
clock period reserved for the logic needed to share components. This
can affect the latency and area of the design. Increasing the percent of
sharing allocation will typically produce a smaller design with a longer
latency. The default value of this parameter is 20% of the clock cycle.

HLS design and Catapult flow 23

Figure 2.14: Architecture step’s window in the core tab.

• Arrays: here the user can see the arrays that are declared in the source
code. If an array is not very big in terms of size (the size of the array
that is considered big can be set in the Catapult options), it will be
implemented as registers, else it will be implemented using a memory.
The memories that can be selected in this step are the ones included
in the libraries step. These default settings can be changed in the
corresponding tab of the architecture step, just selecting the array we
want to characterize. If the user selects a memory, it is also possible
to select which kind of memory to be implemented. If the memory is
declared inside the modules and it is used for exchange data between
blocks, the memory can be externalized to create its interface but it
will not be included in the design.

• Loops: the tool finds all the loops implemented in the design and
allows to the user to set some constraints, like for example pipelining
or unrolling as shown in Figure 2.15. For every loop in the design,
there are two options and both options are applicable at the same time
depending on how the user wants to characterize it for generating the
RTL. The two options are:

– Unroll: if we check the box of "unrolling", the loop will be com-
pletely unrolled that is the same as copy the loop body as many
times as the number of iterations in the loop. In the schedule
step, it will put as many iterations as possible in a clock cycle
instead of an iteration in each clock cycle. It is possible to unroll
it partially. The number set in the "Partial" field specifies how
many times the loop body is copied.

24 HLS design and Catapult flow

– Pipeline: when the box of "Pipeline" is checked means that the
loop is going to be pipelined with the "initiation interval" the user
sets. This "initiation interval" is how often the next iteration of
the loop starts. It is important to know that the loops nested
inside of a pipelined loop are automatically pipelined too.

The box "Loop iterations" in Figure 2.15 refers to the number of times
the loop runs before it exits. It is possible constrain the number of
loop iterations if the number estimated by Catapult is not correct.
It is important to mention also the option that allows to the tool to
merge the loop with other loops or, in the other hand, maintain one
loop independent of the rest of the loops. If the box "Loop can be
merged" is checked, then it means that the corresponding loop can be
executed in parallel with other loops (normally this is done in series).
This reduces latency and area consumption. Finally, a relevant feature
is that Catapult always generates a main loop at the top of the design
because in the hardware design the blocks work like infinite loops.

Figure 2.15: Architecture step’s window in the loop tab.

6. Resources: during this step the different components that have been mapped
to the functionality of the source code is shown. These components will
appear at the end in the schematic view of the RTL. The user can select
which adder or multiplier to use in the design (depending on the delay
and the area). If the user does not choose the components, Catapult will
automatically select and takes the one which fits best with the constraints
given previously as shown in Figure 2.16.

HLS design and Catapult flow 25

Figure 2.16: Dialog of the Resources step.

7. Schedule: at this point the user can check how the functionality of the
source code has been translated from an untimed to timed and how it has
been assigned to each clock cycle a part of the C code. It can be also checked
which loops that consume more execution time. The tool allows the user
to change the schedule, moving the different operations to different clock
cycles. However, the limitation is for example, one operation that its result
is the input of another operation can not be moved to a later time than the
beginning of the operation depending on it. This limitations are highlighted
as red marks shown in Figure 2.17. The figure shows all the operations on
the left side sorted by timing execution. If double-clicking on the operation
it will show which is the corresponding piece of code. The drawbach is that
the user can not see the pipeline stages in a clear way and this makes it
difficult to check where the pipeline stages have been placed in the design.

26 HLS design and Catapult flow

Figure 2.17: Schedule dialog.

8. RTL: This is the last step, when the Verilog and the VHDL code is gen-
erated. The user can access the codes but they are almost unreadable.The
RTL diagram is also generated in this step. In the RTL diagram the user can
see the data path, the components and resources used in the design, area
and timing information and schematic view of the RTL. The Figure 2.18
you can see an example of a schematic view of a generated RTL.

2.2.2 Output files

Once the RTL is generated, Catapult provides the user with some useful informa-
tion to show how the design has been implemented in hardware.

The user can find these files in the Output Files folder generated by Catapult
in the working directory. Some of the information given in these files is:

• Schedule: Catapult provides the user with a schema about how the opera-
tions are scheduled in the design and in which clock cycle the operations are
placed. This information can show the user where the pipeline stages are
placed in the design and which are the operations that consume more time
and increase the latency. If the design has more than one block, this schema
also shows the user which blocks are the ones which needs more time of
execution to finish its defined functionality. An example of schema is shown

HLS design and Catapult flow 27

Figure 2.18: Schematic view of an RTL.

in the Figure 2.17 and has already been described in the section 2.2.1 when
explaining the schedule step.

• Schematic -> RTL: Catapult also gives an architecture schematic view of
the generated RLT where all the operations are included and it shows how
they are connected. This schema also shows the memories even when they
are not included in the design to give the user a better understanding.
The user can see the FIFO pipes generated by the channels and the added
registers to perform the pipeline stages. It displays critical paths and path
timing data that can be really useful for understanding how the design is
made. An example of this is shown in the Figure 2.18.

• Schematic -> Critical path: Catapult finds the critical paths of the design
and the paths limiting the clock frequency of the design. The user can see
the critical path reflected in the RTL schematic.

• Reports -> RTL: This report gives the information about the resources used
in the design and useful information of how the design has been character-
ized. The information given is the timing, latency and throughput of the
design, the bill of materials, the area score of each type of elements, how
the registers are mapped, a timing report... and other useful information.

2.2.3 Verification

Catapult allows the user to create a unique testbench for verification for both, the
C code and the generated HDL code. This is a very useful feature since after the
Library step, when the compilation of the C code has been done, Catapult gives
the possibility to run a testbench to test the behavior of the C program. Testing
the functionality of the design described in C before starting the generation of the

28 HLS design and Catapult flow

RTL, is very useful because the user can test if the source code has been developed
correctly and if the functionality is the one expected. These are the basic steps
to be checked before starting to generate the RTL, else it will not describe the
correct functionality in hardware.

After running the complete process in Catapult, and after the tool has gener-
ated RTL, Catapult provides the user with an RTL simulation. Both mentioned
simulations can be shown in the Figure 2.19. In the folder Verification, there
are two folders: gcc folder for C simulation and Modelsim [10] folder for RTL
simulation.

Figure 2.19: Verification files for C and RTL simulation.

The RTL testbench is basically the same test as the test written previously for
the C program. Catapult compares the results from the C code and the results from
the HDL code and if they match, then it has been correctly generated. Although
Catapult is not testing specifically the functionality of the RTL, if the functionality
in C is correct, then if this comparison passes, it also means that RTL has the
same functionality.

The comparison done by Catapult is explained in the Figure 2.20. The drivers
prepare the input data that the testbench gives to the C code and make it suitable
for the RTL code and then they take the output data coming from the RTL, and
compare it with the output data coming from the C. Catapult does not only check
if the result is correct, Catapult also checks if they are coming in the right order.
To make this verification possible, it is necessary to enable the option of SCVerify
that Catapult has before the execution starts.

Another advantage of this verification in Catapult is when the tool runs the
simulation of the RTL in Modelsim. The test shows some useful signals in the
wave window to highlight the detection of an error. The waveform shows the

HLS design and Catapult flow 29

Figure 2.20: Catapult verification process.

input and output signals, signals that indicates when each block is being used,
when the system is running or stalled. These signals give very useful information
to understand where errors are coming from and it helps to know where the user
should look in the code or in the architecture constrains.

During this work we have done two different simulations to compare the be-
havior of the developed systems. The first simulation that has been done is with
the testbench we have written in Catapult, like a first verification of the system
although it has low test coverage. The second verification process has been done
in the ARM flow, to get the same test coverage as any other ARM block. We
have verified the code in two ways because during the first verification we could
find the majority of the errors and once the first verification was working, usually
the verification with ARM test also works. In the ARM flow we have done the
verification of the RTL and the C code.

Verification in Catapult

The process is divided in three parts:

• Catapult runs the C verification using the testbench to get the reference
result.

• Catapult runs the RTL simulation with the same data as the testbench
developed for the C code. The inputs given by the testbench are able to

30 HLS design and Catapult flow

reach the RTL code through drivers as already mentioned. Catapult gets
the output data of the RTL when the simulation is finished.

• Catapult compares the result of the C verification and the RTL simulation.
If the comparison gives the same results the test passes and it means that
there is a high probability of having a correct behaving RTL.

To make a correct comparison between the C code and the RTL for the sys-
tems we have worked with, we have tried to get the same input signals from files
that were used to test the handwritten RTL. For example, when a system or block
involves memories, files were given to the testbench that contains the initial and
final of the memories. These contents are the real possible values for which the
systems or blocks have been designed for. So with these files, the testbench intro-
duce known data to the system with its corresponding correct output. For each
block we have developed multiple tests to check the behavior in different situa-
tions. This kind of test runs really fast under Catapult execution thus we can run
them until obtain a good coverage result.

Although Catapult provides the user with this useful feature to test the C code
and the RTL code, it is necessary to add some code lines in the testbench to make
it possible:

• Add the SCVerify header to the testbench code, "#include mc_scverify.h".

• Use CSS_MAIN macro instead of the function main. This change allows
Catapult to go through the simulation in HDL correctly.

• Wrap the call of the top level function with the CSS_DESIGN macro.

• Change the command return to CSS_RETURN, which allows Catapult to
return an error in HDL if necessary.

Verification in ARM’s flow

The verification we do in ARM’s verification flow gives a better test coverage than
the previous one but also takes longer time. This is why we have only run ARM’s
verification when the previous one was already working as expected, to minimize
the quantity of errors to solve.

The ARM’s verification flow checks at the same time the behavior of the
RTL and of the C code with many different inputs and control signals including
situations that touch all the corners of the system and its boundaries. If the
behavior of the HLS C code is the same as the behavior of the handwritten RTL
it is sure that the functionality of both systems are the same.

We also run another test in the ARM’s flow. We run the reference C model
at the same time as the RTL generated by Catapult to check also if both codes
have the same behavior. With this two verification process described before, all
the blocks or systems we have been working with, has been tested with high test
coverage.

HLS design and Catapult flow 31

2.2.4 Synthesis

After writing the C code in Catapult and generating the RTL, the next step (to
finish with the characterization of the system that Catapult offers) is to run the
synthesis of the RTL. Running the synthesis, apart from giving us post-synthesis
area and timing results, it also generates the netlist of the design and the netlist
is the source to calculate the power consumption. The power has not been one of
the objectives of this thesis but we can make some assumptions based on the clock
frequency, the area and the bill of materials.

During this thesis work, we have run the synthesis in two different ways. The
one most used has been the synthesis with Catapult that gives the possibility after
generating the RTL to run the synthesis with DesignCompiler [11]. This is the
fastest way to do it because it is done automatically without having to define
any option, obtaining correct results of area and timing of the design. We have
also run the synthesis in ARM’s flow like ARM does normally with its designs.
Synthesizing the design in ARM’s flow has some advantages which are explained
in the following sections.

Synthesis in Catapult

The synthesis in Catapult is done through the tool DesignCompiler. Catapult pro-
vides the user with scripts to run the synthesis and obtain post-synthesis area and
timing information of the designs. Having this functionality inside the Catapult
interface is useful because without leaving the tool, the user is able to create a
complete design from C source code to netlist.

It is not necessary to do any previous steps before running synthesis or give
any parameters to the tool. Catapult is responsible to give the DesignCompiler
the RTL code and also the constraints needed, for example the system clock.
This is very useful to obtain a better estimation of the area of the design. As
mentioned before, Catapult is always overestimating the values of area score and
underestimating slack when it is generating the RTL. For this reason, running the
synthesis is very important to have a better estimation of the area and also to
check if there are any timing violations.

The results of area given by the synthesis in Catapult are the results we have
used to compare with, because it is a very fast estimation of the area with a high
precision. Although it is a fast execution, this is the step that takes more time
comparing with the RTL. The run time depends on the size of the design: larger
design, longer time.

Synthesis in ARM’s flow

Although the synthesis can be run in Catapult, make it in the ARM’s synthesis
flow is important to have two different point of view and also for evaluating if
the result obtained in Catapult synthesis is correct. It has been checked that
both synthesis results are similar and this is why the synthesis of Catapult has

32 HLS design and Catapult flow

been used during development. When the synthesis is done in the ARM’s flow,
the same constraints as the ones applied to the original design have been applied.
Also, when running the synthesis in ARM’s flow, it generates reports where all
information is collected in the timing report or the violations constraints reports.
The user can check which are the paths that violate timing (setup time or hold
time).

The most important use of the synthesis in the ARM’s flow has been for
obtaining the area values of the handwritten RTLs which we have compared with
our generated RTL. The user can get easily from the synthesis the area report,
where the area of each block that is implemented in the design is described. Its
combinational and sequential area also appears. This has been useful for improving
the generated RTL by Catapult, because it was known where the area differences
were situated.

2.3 Catapult Library Builder

The evaluation license we have from Catapult comes with a standard library char-
acterized by Catapult. It is a very important step to characterize the target library
that is going to be used in the synthesis step. When Catapult generates an RTL
code, the scheduler is giving latency and throughput results with the constraints
defined but also with the information taken from the libraries. If the target library
used for the synthesis step is not the same as the one used for the RTL generation
in Catapult, the best result in terms of latency, throughput and area will not be
obtained and the RTL generated is going to lose precision and quality. This hap-
pens because if the target library is not used for the RTL generation, for example,
in the schedule and resource steps, Catapult is doing in an inefficient way the
selection of the components and its scheduling because it has not the information
of the characterized cells from the target library.

2.3.1 Cell Library

To characterize a library for Catapult, the license given by Calypto provides an-
other tool, "Library Builder". With this tool, Catapult is able to characterize all
the library cells from a .lib file and a .db file of the target library. It is necessary
to also give Library Builder some constraints and information about the library,
to be able to make a good characterization for Catapult and correct generation of
RTL.

For the characterization of the cells, Catapult takes each cell that is in the
original library and runs it with DesignCompiler to get area and delay information.

As shown in Figure 4.1, that is an example of the principal window of Library
Builder program, all the components from the original library are listed on the
left side. For example, the first component that is shown is the inverter, and
inside it there are two cells defined, the inverter with 1 and 8 bits respectively. In
addition, each of the mentioned cells that is going to be characterized in different

HLS design and Catapult flow 33

Figure 2.21: Catapult library builder window.

points can also be seen. During the characterization process, Catapult Library
Builder collects multiple sets of characterization data (area and timing) for each
cell. The cells, by default, have 4 characterizations each: the fastest (100%), 75%,
50% and the smallest (0%). If the user wants to add or delete some points of the
characterization, it is possible to set this in the options.

The characterization process works as follows for each component:

1. Get the fastest data set and run DesignCompiler with the target delay spec-
ified for the fastest clock frequency.

2. Get smallest data set and run DesignCompiler with the target delay specified
for the smallest clock period.

3. Get each intermediate data set. Use the values obtained from the fastest
and smallest characterizations to calculate the delay which is going to be
used in the intermediate characterizations. Then run DesignCompiler again
for each intermediate point. Intermediate points are specified by the Clock
Period Percentages setting.

When the Ultra Mode option is selected the characterization of the library
takes around one week to finish and if the Ultra Mode is not selected, the char-
acterization takes less than one day. Although it takes more time, with the Ultra
Mode selected, the library characterized gives better results.

It is very important to select the Wire Load Mode to zero, because if not
the characterization of the library creates an overly pessimistic Catapult library.
These tips are in the Catapult C online help.

34 HLS design and Catapult flow

2.3.2 Memory libraries

Even when the design does not include memories (only the interface) inside it, the
memory libraries characterization should be done, to allow Catapult to create the
interface of the memory with the necessary information about it.

This characterization is done with Catapult (not with another extra tool) in
the library step. As it was shown in Figure 2.7, it exists a button called "Memory
Generator" and is where the memory characterization is done. To be generated,
Catapult needs the RTL description of the memory, which kind of memory is going
to be implemented (single port memory, double port memory...) and needs also
to know how the pins of the memory are connected.

If the memories are not going to be included in the design a deeper character-
ization should not be performed.

Chapter3
Reference Designs

This section contains a brief description of the video blocks and designs we have
been working with during the project. The C model and the handwritten RTL
were given for this HLS study, therefore knowledge about how to implement the
algorithms was not completely necessary.

Before starting to explain the functionality of each filter, it should be described
what de-blocking filter (DBL filter) means, because all modules we have been
working with are DBL related. A de-blocking filter is a video filter used in decoding
and encoding of video to improve visual quality and prediction performance. This
is done by filtering the edges between the macro-blocks that compound a video
frame. The filter should improve the appearance of decoded pictures[12].

This chapter is divided in two sections:

• Simple blocks: blocks which have no sub-blocks inside them, this means that
they are not compounded with other sub-blocks and they do not implement
any communication protocol as channels inside them.

• Complex blocks: blocks which are compounded by two or more sub-blocks.
The sub-blocks need communication between them and can be implemented
as hierarchical blocks, CCOREs or as a flat design.

All the blocks developed during this work are involved in a filtering process of
video signals as shown in Figure 3.1.

Figure 3.1 describes three types of blocks:

• Controller blocks: these are the blocks located to the left in the figure. They
take the control data coming from a video signal and prepare it for the filter.
One of the developed complex blocks is in this group.

• Filters: these are the filter cores. We have developed some of them as simple
blocks. They are located in the center of the figure.

• SAO block: these blocks are located to the right in the figure and they filter
again the signals coming from the filter cores. The other developed complex
block is in this group.

35

36 Reference Designs

Figure 3.1: Schema of the filtering process where are included the
studied blocks

3.1 Simple blocks

In this section is explained the behavior and the characteristics of some simple
blocks we have developed. Some of them are filter cores and the rest are sub-
blocks of the complex blocks.

3.1.1 DBL filter H.264

The H.264 filter appears in both paths in a system, the decoding path and the
encoding path. This feature makes that the in-loop effects of the filter are taken
into account in reference macro-blocks used for prediction. While encoding, the
filter strength can be selected. If the filter is not switched off, the filter strength is
determined with techniques that use the adjacent blocks, quantization step size,
and the steepness of the luminance gradient between blocks.

This filter operates with 4x4 or 8x8 transform block in the luma and chroma
planes. For each edge of a small block, is assigned a boundary strength based on
if it is also a macroblock boundary, the coding of the block, and if it is a luma
or chroma edge. Where there are more probability to have a higher distortion, a
higher strength of filter is applied. In most cases the filter can modify one or two

Reference Designs 37

samples on either side of the edge and in some particular cases it can modify even
three samples[12].

3.1.2 DBL filter HEVC

The High Efficiency Video Coding standard (HEVC) is one of the most recent video
projects of the ITU-T VCEG and ISO/IEC MPEG standardization organizations.
In comparison with the H.264, HEVC aims to reduce around 50% bit rate under
the same visual quality [13].

The HEVC standard uses two different coding schemes, the block-based pre-
diction and the transform coding. The size of the blocks for both coding scheme
can vary from 4x4 to 64x64. This standard may produce blocking artifacts in the
block boundaries. These artifacts are produced because the algorithm does not
fully consider the correlation between adjacent blocks.

In HEVC the de-blocking filter has been designed to reduce or eliminate com-
pletely the artifacts in the block boundaries [14].

3.1.3 DBL filter Real

The purpose of the real video filter we have studied during the Master’s Thesis,
is to filter the edge between two 4x4 blocks, using the same algorithm for the
vertical and the horizontal edges. To decide which edges should be filtered, it
uses the motion vector and the transform block mask in the same way as in H.264.
Each block is filtered horizontally and vertically before going to the next 4x4 block.
Depending on the block activity, the type of the filter is determined. There are
three types of filter: strong, normal and weak.

3.2 Complex blocks

In this section is explained the behavior of each complex block, including their
sub-blocks. We have developed two complex blocks the DBL SAO and the HEVC
Controller block

3.2.1 DBL SAO

The SAO filter is the Sample Adaptive Offset filter used in HEVC. It is located after
the de-blocking filter. The main purpose of this filter is to reduce the distortion
between the original samples and the final samples (reconstructed). With the SAO
filter, the video compression can be improved in both, objective and subjective
measures [15]. This is done compensating the distortion between the original video
and the reconstructed video during the encoding process [16]. The SAO filter was
designed to increase picture quality, reduce banding artifacts, and reduce ringing
artifacts [17].

38 Reference Designs

This filter applies offsets that are located in a lookup table in the bit stream.
It has two modes: edge offset mode or band offset mode. The edge offset mode
compares the value of a sample with two of its pixel neighbors using directional
gradient patterns. Then the samples can be classified in five categories: minimum,
maximum, edge with the lower sample value, edge with the higher sample value
and monotonic. If the sample is in one of the four first categories, then an offset
is applied[17] [18].

The band offset mode checks the amplitude of a single sample and applies an
offset based on it. There are 32 bands where the sample can be categorized by its
amplitude. Only for four consecutive bands the offset is specified, because sample
amplitudes tend to be clustered in a small range in flat areas (they are prone to
banding artifacts) [17] [18].

3.2.2 HEVC Controller block

This block is responsible for parsing control data from FIFO pipes and provides
it to the filter cores. It reads the parameters from FIFOs and prepares the data
in the correct format to give to the filter. It is compounded by 5 blocks:

• PU parameters parser: it reads prediction units of various size from a FIFO
and places them in registers.

• TU parameters parser: it reads also transform units of various size from a
FIFO and stores them in registers.

• Boundary strength block: with the data from the PU parameter parser, it
generates boundary strength values for the filter.

• Edge QP parameters block: with the data from both input blocks, it gen-
erates edge flags and QP values.

• Controller block: it is the responsible for connecting all the sub-blocks,
and processing all the prediction units to generate filter and SAO control
information.

Chapter4
Implementation

In this section we are going to explain the development of simple and complex
blocks. The development of each block is described as well as the improvements
done and the problems we have found with the tool. Every section in this chapter
is divided in simple blocks (filter cores only compound by one block each) and
complex blocks. The complex blocks are DBL SAO, where is explained how we
have developed the larger de-blocking SAO filter compounded by more than one
block with communication between them, and the HEVC controller block where
is described how we have developed this complex block once we have understood
more Catapult.

4.1 Development of simple blocks

During the first part, we have being working with some simple blocks to familiarize
with the tool and learn all the specifications and rules we should follow to develop
a design in Catapult. To do this we have been provided with some simple blocks
that the RTL had been developed previously in Verilog, to compare the results
with the RTL generated by Catapult.

All the designs we have tested during this step consist of simple blocks (there
is no communication between blocks) that receives one or more pixels and several
control signals and produces one or more pixels. All the blocks have been im-
plemented as Design blocks. In the first design we have implemented handshake
communication in the interface, which means that the input and output interface
have been implemented as channels for all blocks. To evaluate these simple blocks
we have used ARM libraries for RTL generation.

For making the first implementation we have declared all the inputs and out-
puts of the system as channels and modify them to be bit accurate. To get a high
quality RTL is very important to define the interface as close as possible to the
handwritten RTL. Frequently one channel for the input pixels, other channel for
the control signals and the last channel for the output signals are created in the
blocks.

39

40 Implementation

The main problem we faced during this part has been the area score, because
we achieved more area score than the handwritten RTL. It is very important to
get similar area score with Catapult for making it useful in ARM’s flow, as well as
same functionality, latency and throughput. To discover why our implementation
is implying a big difference in area, we have analyzed all the blocks we have studied
to find a common point between them and be able to solve the problem.

The blocks we have analyzed in this part are:

• SAO filter core.

• De-blocking Real filter core.

• De-blocking HEVC filter core.

• De-blocking controller HEVC sub-block edge QP parameters.

• De-blocking controller HEVC sub-block boundary strength calculation.

One of the blocks we have developed separately is the filter core of the DBL
SAO design. This filter is included in the DBL SAO block. It was important the
development of this block because is one of the simpler blocks, thus is very easy
to find the differences between the original handwritten RTL and the HLS RTL.

In the case of the DBL SAO filter core, with an implementation like the one
described previously, with channels in the interface, we got twice the area for the
same operating frequency. This was not a good result, but then we started to
investigate where the area in our design was originated.

The throughput and the latency were the first parameters that were checked.
The latency had one more cycle than the handwritten RTL therefore we decided to
improve the code as much as we could and also the micro architecture constraints
to get one clock cycle less of latency to obtain the same characteristics.

Once we got it, we knew that both systems had the same pipeline stages. How-
ever this was not the problem of the area, because we were still having more area.
We continued investigating the HLS design, checking the number of components
like adders or subtractors used by the design.

Although the operators were not exactly the same, both designs used a similar
number of them, and the functionality was the same, therefore we thought the
problem did not come from the combinational process.

When we checked the area reports that the synthesis process create, we noticed
that the sequential area was bigger in the HLS design (always more than 150%
compared with the original) but the combinational area was +/- 25%. With this
conclusion in the filter core of the DBL SAO, we started to develop the rest of the
blocks that ARM gave to us. We always followed the same steps:

Implementation 41

Figure 4.1: Steps followed to modify the original C model code into
a HLS C code.

• First step: it is fundamental to know how the interface of the block is,
because the inputs and outputs are not defined in the same way in the RTL
and in the C model. In the C model is only described the main behavior
and it is not described any hardware signal, like start or enable signals. To
know the interface of the blocks, we studied the RTL code of the block and
then start the implementation in C modifying the interface to use channels.

• Second step: we study the code looking for some hardware descriptions like
reading from a register or implementing some special signals like stall signals
that have to be added to the HLS code.

• Third step: the data types are changed to ac_int to get a better area score
defining the bit accurate. It is also important to reuse variables, because we
can reduce the number of variables initialized in the code. One important
aspect is to reduce the number of static variables as much as possible.

• Fourth step: check if Catapult understands the code, running the RTL
generation process with the code.

Although the results in area in the majority of the blocks were not the desired
at that point, we have obtained the same latency and throughput for almost all of
them. There are just one block, the de-blocking HEVC boundary strength filter,
where we did not obtain the same latency value (it used more than double of the
original design). We have studied this block in the section 4.4, to understand why
Catapult has not been able to achieve the latency in this block.

During the development of the de-blocking HEVC edge QP parameters we
discovered an important feature to verify if a block is working as expected or not.
In the Architecture step of the Catapult flow, the input and output signals are
listed. If there is one signal that is highlighted, it means that the signal is never

42 Implementation

used in the code, and the reason for this is that the interface is not defined properly
or the code is not working as expected.

In the DBL HEVC edge QP parameters, we knew that the interface was defined
correctly, so the problem was that the HLS C code was not understanding properly
the code. We checked the code and discovered that there was one function defined
in the C model developed in ARM that works for int types but not for ac_int
types. This function allows the user to get some bits from a signal, therefore to
avoid its use we have substituted with the slc method provided with the ac_int
types. The method is used in many blocks developed during this Master’s Thesis
so we have had to avoid the use of this function in all the block where it appeared.

4.2 Development of DBL SAO

To test the quality of the RTL generated by Catapult, ARM provided us with two
larger blocks than the previous ones which had been generated before by them,
to compare the final results of original RTL with the HLS. In this section we will
describe the development of one of them, the DBL SAO. They also gave to us the
C model of the blocks and with some slides to understand how is the behavior of
the design and how they had developed the architecture.

The C model developed to check the behavior of the design was written without
any hardware description, it was written like a software code. This means, for
example, that the line buffer block was not described in the model, because the
number of times the blocks read or write in the memory is not important for the
behavior of the design.

To develop the DBL SAO have been followed some steps to reach the best
solution in terms of area:

• Develop the architecture: With the architectural description of the design we
drew a simple architecture schema to be sure how the design was partitioned
that we were going to develop in HLS. This step gives the developer a general
idea of the blocks that should be developed in the system. Each of these
blocks will be a function in the C code. The functionality of them can change
during the development of the code, but the main idea should be maintained.
These blocks or functions are the ones which give the functionality to the
whole system. The architecture of the design has been redesigned during
this work to reach the best solution with the same behavior as the original
RTL, but the functionality of each block has not changed.

• Data-path: Once the blocks that were going to be implemented was selected,
the next step was to create the sub-blocks only with the interfaces, define
the data-path without functionality and connect them to implement the
communication of the system.

This should be done before giving the functionality to the blocks, to be sure
that each module has the necessary signals to connect with the rest and

Implementation 43

receive data from the input wires or assign data to the output wires. We
implemented a bypass system.
This method is useful at the beginning because the user can understand how
the blocks should be connected and how the intermediate channels work. It
is also important to check that all the signals in the design are available
when they are needed. The synchronization between the control signals
and the other signals must be exact. The type ac_channel simplifies the
synchronization of the system.

• Functionality: when we had the interconnection of the blocks implemented,
then the functionality had to be described but without modifying the con-
nections between the blocks. In our case the functionality had been de-
scribed in the same way as it is done in the C model, but dividing the
operations and the algorithms between the blocks. We also implemented
the non-software parts of the design like the line buffer. The functionality
of this module was not defined in the C model because it is not useful to
test the behavior of the DBL SAO. We have modified some operations to
get less registers and operators when the RTL is generated.

• Verification in Catapult: the next step is to verify if the code is functionally
correct. To do this, it is necessary to write a C testbench where the func-
tionality of the design is tested. This testbench will be valid for the C code
and also for the generated RTL as explained in the section 2.2.3.
The testbench has to test the C code before generating the RTL, to see if
the source code is working as expected. After the generation of the RTL,
the output of the C code is compared with the output of the RTL generated
to check if the behavior of C and RTL are the same.
Once the C model is working, the next step is to create the RTL in Catapult
with the same micro architectural constraints as the original design. We will
obtain a first approximation of timing and area score in Catapult. The area
score that Catapult gives after the RTL generation is usually bigger than
the area score after synthesis. When the RTL is generated the testbench
written previously is run in Modelsim, and compared with the results given
by the RTL. When the RTL has the same behavior as the C code, the test
pass. To verify the C code and the RTL with a good test coverage, once
it had been developed and tested in Catapult, we added it to the ARM
verification flow.

• Synthesis: the last step is to generate the netlist of the design with the
RTL generated by Catapult and compare timing and area with the original
design. This is also done in Catapult with the software DesignCompiler.

4.2.1 Structure development

In the C model provided by ARM there is one main function where the func-
tionality of the system is described. However in HLS we need to develop one
function for each block we want to implement with hierarchy or as a CCORE and

44 Implementation

it is also needed another block to connect them (the top level function). Each
block/function described makes a specific function, as a hardware sub-block, to
give the final functionality to the complete design. As described previously, we
first started drawing the architecture in a very general way with the help of the
architecture description given. When all the blocks has a well defined function and
the communication between them is correct, then we can start coding the blocks
as described below.

Figure 4.2: Schematic view of the DBL SAO architecture.

In our case we have divided the system in five blocks, the function names are
general and the functionality is described deeply in the code.

• Read: this block is responsible for reading values from memory and give
them to the rest of the blocks. The read memory is not included inside
the design, as described in section 2.1.3, and the tool generates the memory
interface automatically.
This is the only block in the design that reads from the memory, thus it is
necessary to give it all the addresses to get the input pixels and the input
control data from the memory. Two or more blocks are not allowed to read
from the same memory, to do this an arbiter should be implemented. Instead
it reads both, the input pixels and the control data used by the rest of the
blocks first and then send them through channels.

• Line buffer: this is the block that is not defined in the original model. It
was not developed because in the C model the non-software modules do not
have to be described. Thus it does not care about how many times the code
accesses the memory or for how long the program is executed. However in
Catapult it is completely necessary to describe this kind of blocks, if we want
the generated RTL to have the same behavior as described in the original

Implementation 45

RTL. The purpose of this block is avoid multiple read of the same address
from the same memory. With the implementation of this block in the design,
it decreases the memory accesses because only it is necessary one access to
the memory for each address and the operations are done more effective.

This line buffer stores two line of pixels (36 pixels), while the third line is
being received. The block is able to send the data required to the next block
and then overwrite the pixels that would not be used any more to store the
one coming in the input. It is described with some hardware details because
this kind of module must be described with many details if the user wants
to obtain the same implementation as in the handwritten code.

• Filter: this block is the one that performs the filtering operation. This filter
has been developed previously as a simple block. The original C code written
for this block has been modified to be more efficient for RTL generation, for
example, we have written the code thinking in hardware style coding to
reduce the number of variables used or reduce the complexity of some of the
operations.

• Write: the write block performs the write operations of the block. Like in
the read block, the interface is generated automatically by the tool, because
the memory is not included inside the system. This block is also responsible
for calculating the destination address for the output.

• Control: the control block receives the input from outside and then is the
responsible to give to each block the control signals they need. This block
has been divided in two blocks to avoid the bidirectional communication with
channels between two blocks (this problem is explained in the section 4.7.3).
The block receives through the input interface some control signals, and
gives the information to the read block to obtain from the memory all the
information needed in the system. The second part of the control block
receives data from the read block and gives these data to the filter and the
write block.

4.2.2 Constraints Set

One important aspect in the system design is to make a good comparison between
the system developed in a standard way and the system developed in Catapult is
that both systems must have the same characteristics in terms of latency, area and
throughput. It is very important to try to reach the same characteristics in both
systems, because, if we for example get more latency, that means the system needs
another pipeline stage to get the same throughput and an additional pipeline stage
in the system means more registers in the system implementation.

We want to be sure we get the same results in all the blocks that are part of
the DBL SAO, thus we decided to implement and generate the RTL separately
for each sub-block and then, in a final step, join all in the same system. We have
used a bottom up generation in Catapult. For each block we have studied the
latency, the throughput and the bill of materials. Once we got a similar solution

46 Implementation

to the original in all the blocks, we have implement a top block of the system that
connects all of them.

As previously explained, Catapult is not reporting the throughput as expected
because it is measuring in other terms. Therefore during the verification process
in Modelsim, with the help of the waveform we checked the throughput of the
signals to verify that the system was working as expected.

To get the same value of latency and throughput as the handwritten code we
have pipelined all the loops with an initiation intervals of one for all, to be able to
get an input to each block in each clock cycle. We have also unrolled some of the
loops to reach a better solution in terms of latency. The loops we have unrolled
in the systems are loops that do not have access to memory or write or read from
a channel. Like in standard RTL, Catapult does not allow the user to access a
channel or a memory more than once to in the same clock cycle.

During the resource step we have not set any specific component for the op-
erations, because Catapult selects the ones which fit better with the constraints
given during the Architecture step.

4.3 Development of the HEVC Controller Block

After implementing DBL SAO and having more knowledge about Catapult, to get
more reliable results in terms of design’s quality, we developed another "complex"
block with five different sub-blocks. This block is the HEVC controller block and
the C model has been developed by ARM. The block are compounded by three
types of blocks:

• Input blocks: there are two blocks that read input signals from a FIFO.
To implement this kind of reading process we have used ac_channel type,
because there is not another way to implement a read process from a FIFO
pipe in Catapult.

• Output blocks: these two blocks receive data from the controller and the
input blocks and generate the outputs. These outputs are not defined as
channels.

• Top block: this block is the controller. It has been implemented like the top
block because it calls the rest of the functions. It connects the sub-blocks
between them and reads also from memory and write to memory.

One of the important aspects that were studied with the development of this
block, is the time HLS can save in comparison with the traditional hardware
design. We know how long time ARM took to develop the C model, and also how
long time we spent developing it for HLS, therefore we know how much time we
spent in the process. The time spent in the project would not be the same if the
C model is developed for HLS from the beginning, because we have spent time
improving the system to get a better solution.

Implementation 47

In this case a model has been developed for each different sub-block, and then
the controller block is the top function, responsible to call the rest. This imple-
mentation simplified the modifications to achieve high quality RTL with Catapult,
because we have developed each sub-block separately and we can also test them
with a testbench for each of them.

Figure 4.3: Schematic view of the HEVC controller block developed
with 4 sub-blocks and the controller like the top function.

After testing the four sub-blocks separately, we implemented the controller to
test the behavior of the complete HEVC controller block.

Two of the blocks that are part of the HEVC controller block have previously
been developed as simple blocks, the boundary strength and the edge QP param-
eters blocks. These two blocks are the ones which generate the outputs of the
complete block. The two blocks left are the ones which read the data coming from
the input.

The biggest problem we found during the development of this block were in the
input blocks. The C model was developed to receive the inputs from functions that
generate the necessary inputs randomly. For a HLS code it is not valid, because
it has to implement the interface exactly as is done in the RTL. We have had
to modify the input interface to receive the necessary signals, without modifying
the functionality. Another problem found in this block, is that the latency of the
block depends on the input values, this means that depending on the value of the

48 Implementation

inputs, the block reads more or less values from the input FIFO pipe.

To implement a FIFO pipe in the input of a block,it is necessary to implement
the type ac_channel explained in the section 2.1.1, because it is necessary to
perform one access to the same FIFO pipe each cycle. Implementing a channel
produces some disadvantages in the block because it sometimes generates more
logic than the necessary. This makes the final area score, before making any
refinement of the code larger than the expected.

To get a correct value, similar to the handwritten RTL’s area score we have
made refinements to the code.

Although in Figure 4.3 the controller appears as another sub-block, it is im-
plemented as the top function. It controls which signals are sent to the sub-blocks
and when each block is executed.

4.4 Refinement of simple blocks

Once we developed all the new blocks, we began to investigate in the same way
as we have done before with the filter core of DBL SAO. The results we obtained
were very similar to the results given by the DBL SAO filter core, we noticed that
the sequential area in HLS RTL is always bigger than the sequential area of the
handwritten RTL.

The HLS design was generating more registers than necessaries in the system
and this was producing a huge increase in area. The problem of the increased
sequential area can come from different sources, for example:

• Different number of pipeline stages: this was one of the errors we have to
face during the area issue investigation. When the blocks were given to
us, we did not know any information about timing and we developed the
blocks with the latency and the throughput we though can be the correct.
If a system is compared with another that does not have the same timing
constraints like latency or throughput the comparison is not valid, because
the number of registers can change, for example if the pipeline stages are not
the same. Therefore we first got the necessary information to know which
are the characteristics of each block, to have a good comparison reference
before making any conclusions.

• Generation of input register: this was also one important error in the major-
ity of the designs. As the Catapult training explained, we used ac_channel
types for all the interfaces, because it simplifies the communication between
blocks, and gives the user the possibility to easily implement a hand-shake
communication. This communication brings with it some problems, that we
have explained previously in this report (section 2.1.1), like for example the
generation of FIFO pipe between two blocks, and also it generates some reg-
isters inside the blocks that sometimes increase in a large quantity the area
score. The solution to this problem is to avoid the use of ac_channels in the

Implementation 49

interface but this also complicates the implementation of the communication
between the blocks.

• Wrong placement of the pipeline stages: this mismatch not always generates
more area, but if we want to compare the same designs it is important to
have the same number of pipeline stages and placement, because the width
of the registers depends on the location of the registers. From our point of
view a correct comparison is made with exactly the same pipeline stages in
the design.

The main problem in all our blocks is coming from the registers (input and
intermediate registers) generated by Catapult in the designs. In these blocks,
the registers that are more significant in the area used, are the input registers,
because they are simple blocks with a large amount of bits in the input interface
(data input and control signals). This problem is obvious in the DBL SAO filter
core. With the channel interface implementation, an input register appears that
took the same area score as all the sequential part in the handwritten RTL.

This problem can only be solved by avoiding the channels in the interface, and
using a wire protocol communication or a DirectInput. To do this we redefined all
the blocks to get the area closer to the original design.

4.4.1 No-channel solution

With the solution we got from the study of the simple blocks and the DBL SAO
filter core we tried to avoid the use of channels in the designs to see if the source
of increase in area was coming from the channel implementation.

To do this we have redesigned all the simple blocks again, avoiding the use
of channels in the input and output interface. We had to modify the input and
output interfaces to implement it like usual signals instead of channels. Catapult
always need that if an output is not a channel it should be declared as a pointer
in the interface. If the outputs are not declared like pointers the block would not
work as expected, unless the block or the function has only one output, and then
the block can return the solution as usual C code instead of using a pointer.

Once we had taken out the channels and implemented the blocks like CCOREs
or flat designs, we compared the area score we obtained and how they are divided
in sequential and combinational area.

The design with CCOREs has resulted in a big reduction in the sequential
part (the design saves the area from the register implemented with the channels)
but there is also an remarkable reduction in the combinational area.

Catapult reaches the same area or sometimes even better area score than the
handwritten RTL. During the development of this part of the project, we also set
some parameters in Catapult to simplify to Catapult to improve from the area
and timing constraints. These parameters are the shared allocation of the clock
cycle. Reserving some parts of the clock cycle prevents Catapult reaching the
same latency as the handwritten code and this means that more pipeline stages

50 Implementation

are required (more registers) to reach the same throughput. When this value is
set to zero, Catapult can reach the same latency and number of pipeline stages
are the same, thus the comparison is fair.

4.4.2 Refinement for latency reduction

As mentioned in the section 4.1, the de-blocking HEVC boundary strength did
not reached the same latency as the original RTL. We have studied the block to
understand where Catapult misinterpreted the C description to be able to reach the
original latency. This block has a lot of conditional statements in its description.
In many cases, the condition statements contains large operation to do like for
example a wide adder or multiple reads from the input signals.

The first solution we got for this block has the correct throughput but more
than the double in latency and also more than two times larger area. With these
results we could say that the generated architecture was not the same as the
handwritten RTL.

In addition of making some improvements like bit accurate in the code and
avoid the use of channels in the interface, we also modified the conditional state-
ments. The conditions that were inside the statements have been moved out of the
statement to calculate it before the condition is checked. During this process we
noticed that some of the conditions were repeated. With the description we have
done, we avoided this repeated calculations. Then, after generating the RTL, the
latency was reduced until one more clock cycle than the original latency and the
area was almost the same as the original RTL design.

Although Catapult can make some improvements that are not described in the
code, it can not detect the repetition of part of the code in some statements to
reduce the number of operations. Making the operations of the conditional state-
ments before the condition is evaluated is efficient, because the scheduling process
can improve the operations done in each cycle before reaching the conditional
statement.

To get the same latency as in the original RTL we continued studying the
module and comparing the implementation done in the C model with the im-
plementation in HDL. We found some differences between the blocks, because in
the HDL, all the variables are calculated before starting the Finite State Machine
(FSM). However, in C we do not have to implement a FSM but we can calculate
all the variables at the beginning of the code and only write in the output signals
at the end of the code, to make easier to Catapult to understand the architecture.
With this new improvement we did, we finally obtained the same latency in the
block with a similar area score.

Implementation 51

4.5 Refinement of the DBL SAO

During the refinement of the DBL SAO we have improved the results in terms of
area. We have explained this process divided in steps until we reached the best
solution.

4.5.1 First comparison

The first comparison was done after getting the behavior of the system and with
all the blocks developed like hierarchical blocks. Catapult gives an estimation of
area and time slack of the system. It is usually an over estimation of the area,
this is the reason why we always, after the generation of the RTL, obtain larger
area score than the original design. To make as good comparison as possible of
this block, we decided to make the comparison after run the synthesis.

To make the comparison we decided to synthesize both HDL descriptions with
the same libraries although the generation of the RTL had not been with the
libraries used by ARM. We did the comparison of the area after running the
synthesis of both systems in the ARM flow. The generation of the RTL had
been done with a different technology and with this technology the schedule of
the system was different, thus the HLS system could not reach the same clock
frequency work.

The architecture of this first solution is described in the Figure 4.4.

Figure 4.4: Schematic view of the DBL SAO developed like 6 hi-
erarchical blocks with the communication between them with
channels.

52 Implementation

In this architecture we can see that all the blocks described in the section 4.2.1
are implemented like hierarchical blocks and the communication between them are
implemented using channels.

The result we got with this first solution was more than two times larger in
area and with a lower frequency (half of the working frequency set in the original
RTL)

Although the RTL was generated with the standard libraries provided by Cat-
apult, the synthesis was run with the libraries of ARM to make a fair comparison.

4.5.2 Second comparison

The second comparison was done with the same structure as the first one but
using the libraries of ARM in the development of the RTL in Catapult. Now the
limitation in the work frequency was not in the read process and the design can
reach the original working frequency.

The system had exactly the same behavior as the original one and also the
same latency and throughput, but the area was still larger than the hand written
RTL.

4.5.3 Improvements

Due to the results we got in the first and the second comparison we decided to make
some improvements to the design to get a closer value to the original area score.
Calypto explained that the maximum deviation between a reference handwritten
RTL code and the HLS implementation is usually not more than 15% They also
said that Catapult can achieve a similar area if the design has the same structure,
but in our case, we did not have the same architecture.

In the handwritten RTL the communication between the blocks is not im-
plemented as channels. The system does not need a handshake communication
between its blocks because the system knows when the signal is going to be avail-
able and when the signal should come out of the system. This allows the designer
to avoid a handshake communication between the blocks and this reduces the num-
ber of communication signals as well as the registers to implement FIFO pipes in
each handshake signal.

Our objective at this point was to describe the HLS design as close as possible
to the handwritten RTL.

There are two fields where we can improve the final RTL. We can improve the
C code that is the source to the generation of the RTL, and the architecture, that
is done with the steps Catapult provides to the user.

• Improvements in the code: this improvements refers to a modification in
the C source code to give more details in the description and then Catapult
can achieve a better approximation in area compared to the original design.

Implementation 53

This modifications in the code can generate also a decrease in latency and
this leads to a reduction in the number of pipeline stages and less number
of registers in the design. The source code describe how the functionality of
the system should be and the data flow in the system.

We have done some improvements in all the blocks of the system to try to
get a better result. For example we have increased the usage efficiency of
the registers in the line buffer block, to reduce the number of registers use
in this block. At the beginning, the implementation of this block was very
general, but when we improved the code, we described it as close as possible
to the RTL implementation.

We have also improved the C code that describes the filter core block. The
filter core is the simplest block implemented in the DBL SAO, and during
the synthesis process we saw that in HLS, still being the smallest block, but
its area is twice the original. To do the improvements, we have read the
RTL codes of the original designs, to be sure the original implementation is
the same as the HLS implementation. It is impossible to describe it with
the same level of details in C and in Verilog, that is why. Catapult can
increase the area because the user can not define for example timing and
other hardware constraints.

• Improvements in the definition of the architecture: this refers to the im-
provements the user can make during the Catapult steps to generate the
RTL. For example, define the interfaces like channels or like DirectInputs,
define the blocks that are in the system like hierarchical blocks or CCOREs
or set the sharing allocation in a clock cycle.

This parameters that we can select during the process are very important to
get a good final result. A bad selection of one of these constraints can cause
that RTL can not be generated or result in more area in the system. It’s
also important to select which needs to be unrolled or merged and which
ones no.

As mentioned before, one of the most important difference between the hand-
written RTL code and the HLS design is the use of hierarchical blocks in the
system and also the usage of channels for the communications.

At the beginning, las described in the section 2.1, we have developed the system
with hierarchical blocks and channels, because we did not know that they implies
this huge quantity of logic and registers.

We have improved the code to reduce the number of loops and registers used
for example in arrays. But the parts that has involved a bigger reductions in the
area score has been when we have reduced the number of channels in the system.

To reduce the number of channels, we have to decrease the number of hier-
archical blocks, because a channel is always related with a hierarchical block. In
Figure 4.4 the filter core only receives a number of pixels, do some operations with
them and send them to the output. We can try to avoid the use of this hierar-
chical block, and this implied the reduction in the number of channels we use in

54 Implementation

the design. First we develop the filter core like a CCORE. The CCORE has been
developed inside a hierarchical block, the line buffer block.

We then get a schema as described in the Figure 4.5.

Figure 4.5: Schematic view of the DBL SAO developed like 5 hier-
archical blocks.

The result obtained in terms of area continued to be worse than the reference
model. We continued reducing the number of channels in the system as much as
possible to try to close the area gap.

We have done some steps to improve as much as possible the system, and this
will be described below.

• Implementing the first control block, like an inline function in the read block,
removing one channel. In that case the inputs that before were received by
the first control block is now received by the read block. The schema is
shown in the Figure 4.6.

Implementation 55

Figure 4.6: Schematic view of the DBL SAO developed like 4 hier-
archical blocks.

Figure 4.7: Schematic view of the DBL SAO developed like 3 hier-
archical blocks.

56 Implementation

• Implementing the write block, like an inline function in the line buffer block,
removing two channels, the one that was going from the line buffer to the
write block and the channel which came from the second control block is
joined with the one which goes from the second control to the line buffer.
The schematic view of the architecture can be seen in Figure 4.7.

Figure 4.8: Schematic view of the DBL SAO developed like 2 hier-
archical blocks.

• Implementing the second control block, inside the line buffer block, removing
yet another channel. In this case there is no communication between the
second control block and the line buffer because the read block is giving the
information directly from the second control to the line buffer. The schema
is shown in the Figure 4.8.

4.5.4 Flat design comparison

Finally we got a better RTL description in terms of area implementing the design
as a flat design avoiding the use of channels. This solution is the one that is closer
in architectural design to the handwritten RTL.

We have shown how the area has been decreased when we reduced the number
of channels used. The best solution we could reach is the solution that is most
similar to the original design, with one flat design, and the rest of the small blocks

Implementation 57

developed like functions in the code.

The solution we have reached does not use channels in the design, because it
does not need hand shake communication between blocks or even in the input or
output interfaces.

To reach this solution, we have also added some constraints during the genera-
tion process of the RTL code. This step is very important to get the solution with
the correct latency and throughput. We have reduced the sharing allocation for
the clock cycle until zero because in our design it is not necessary and Catapult
can generate the RTL even without errors if it does not save any percentage of the
clock cycle.

It is also important to generate the RTL with the goal of reducing the latency,
which will reduce the number of pipeline stages and finally the number of registers
used in the design.

Figure 4.9: Schematic view of the DBL SAO developed like a flat
design without channels.

Figure 4.9 shows the solution as a flat design. As shows in the Figure, there
are only one CCORE implemented (filter core), the rest of the blocks have been
implemented like inline functions. That is why there is only one block that connects
to both memories and also read the configuration registers.

58 Implementation

4.5.5 Final comparison

Although the results obtained at this point were better than in the beginning, we
decided to continue improving the design using the same architecture as shown in
Figure 4.9. We have focused to improve the design on three areas:

• Statement conditions: During the development of the simple blocks and
also during the development of this "complex" design, we noticed that the
conditional statements must be well defined to get the best solution. The
C model we have used to generate the RTL with Catapult, is written as
a software model, so the efficiency has not been the goal of the code. We
studied the code, and saw that there were many conditional statements
and also we noticed that some of the conditions were repeated along the
code. Reducing the number of conditions or checking if some conditions
were repeated in the code resulted in better area results. We have faced
some problems also with the conditional statements. The operations done
inside a conditional statements are just calculated when the condition is
placed in the schedule. Therefore if the user calculates the operation inside
the conditional statement before it, Catapult improves better the design in
the scheduling step, obtaining a better area result.

• Sequential and combinational parts: although the code is developed in C,
Catapult can generate better RTL description if the operations with the
input signals are calculated before starting the main functionality of the
system. This means, for example, if one variable depends only on the inputs
but it is not used until the end of the process, is better to calculate at the
beginning than at the moment it is used. With this implementation the user
allows Catapult to place the operation in the clock cycle which makes the
design more efficient instead of only having the possibility to place it in the
last clock cycles.

• Reduced efficiency: the source code has been modified from 6 hierarchical
blocks until a flat design. This resulted in efficiency loss in the code in
comparison with one made directly like a flat design. Transforming the hi-
erarchical design to a flat design as we have done, means to join all the codes
of the different blocks, missing some possible improvements that should be
done. This is the reason because we have spent more time improving the
code to get the same efficiency as if we would have developed it directly as
a flat design. These changes caused a reduction of the latency and the area
used. One of the examples of the reduced efficiency is for example that with
hierarchical blocks the read block needed to read all the control signals at
the same time generating a big amount of registers, but with a flat design
it is possible to read the control signals in different moments allowing to
reduce the number of registers and the area.

These new changes in the code make that the area was 27% closer to the
original design, but it was not enough. The line buffer block were not developed
as efficiency as in the original code and this could be one of the problems to get
the original size of the system.

Implementation 59

For designing it like the RTL description, we needed to redefine some parts of
the code to use shift registers instead of using arrays. The shift operator has given
us some problems because the number of shifts of the shifted variable can not be
an ac_int type, only an int type. Once we solved this issue using int constant
values, we redesigned the line buffer removing four 8 bit-registers used in the line
buffer. This new design resulted in a big improvement in the line buffer area and
also in the complete system, making now the design 15% closer to the original
RTL’s area.

4.6 Refinement of the HEVC Controller Block

After test the behavior of the block and run some tests with high test coverage,
we checked the area result. At the beginning the result we obtained in terms of
area was larger than the original RTL, more than two times larger comparing with
the original RTL. We expected this difference between the designs because the C
model has not been designed for HLS, so it did not follow the coding rules for
HLS.

To improve and refine this block we have divided the work in two parts:

• Refinement of the sub-blocks: we could separately run a testbench for each
block, therefore we started studying each block to improve individually first,
and at the end improve the top block. Although some of the blocks had been
developed previously like simple blocks we have tried to continue reducing
them to get the best possible result.

– Boundary strength block: it has been explained before in section 4.4,
because we had to reduce the latency to get the same performance as
the original design. We split the combinational part and the sequential
part, but we have also improved some of the conditions and operations
during this part of the work. We have checked the RTL description
given by ARM to describe the behavior exactly as the original RTL.
We have divided the block in two parts, the reset function and the
main function because we have implemented the sub-blocks as inline
functions. If we call the function two times (one for reset and one for
its main functionality) in the top function, we would have two copies
of the function in the controller when only one is needed. First the
function with the functionality of the reset and after the one with the
main functionality. We deleted also one static signal declared in the C
model that was not necessary in this block.

– Edge QP parameters: we have tried to follow the high quality code
rules in HLS and set the number of bits for all the variables. This
block has not been improved so much in this part of the thesis because
we improved it before in the section 4.4.

– PU parameters parser: This sub-block is an input block, and therefore
it has a channel as an input which results in an increase in the area

60 Implementation

used. We have had some problems to reduce it because it had many
conditions and operations. We have reduced the number of bits of all
variables and we have also recoded the system to make more efficient
the conditions. The block has been split in two sub-blocks, one that
initialize all the variables at the beginning of a new job, and the other
which has the main functionality. We have done this because it has
been implemented as an inline function in the top block and first needs
to be initialized and then used for its main purpose.

– TU parameters parser: This is the block that has more area score
in comparison with the original design. It had three static variables
because it needed to store the result of previous iterations to calculate
the next. At the beginning it was more than three times larger, but
reducing the number of static variables and recoding all the block we
achieved around two times bigger only. It is also an input block, so
it has a channel in the input interface. We continued improving it
because it generated many registers in the complete block. Finally we
reached an area score 78% larger than the original. To see where the
increase of the area was coming from we checked the Bill of Materials
and also the RTL schema. We realized that Catapult was generating
the twice the number of register needed.

• Refinement of the controller block: we have designed as a flat design with
the sub-blocks defined as inline functions. The design is a flat design because
it is the solution closer to the original design. In addition, a block can not be
called conditionally, this means that the call to a block can not be done inside
a conditional statement, thus we could not implement the sub-blocks like
design blocks. In this part we have focused on modify the loops conditions
to has loops with a fixed number of iterations instead of having loops with
a variable number of iterations. Catapult can better improve the code if it
knows the maximum number of iterations and then inside the block, with
a conditional statement, can go out from the loop with a "break" when all
the necessary iterations has been done.
We have also recoded all the small functions that are called in the top
function. We have tried to avoid the use of switch conditional statement,
because Catapult always generates more logic with this type of conditional
statement.
Another important reduction we did was to reuse the variables. Many vari-
ables and signals were declared in the C model, we tried to reuse them, to
generate in the RTL less number of registers.

Basically we have followed the guidelines and rules we have learnt during the
development of the rest of the blocks.

One of the biggest problem in this block has been the static variables. The
code needs to store the data from the previous result to calculate the next one in
some of the sub-blocks. This situation is not a big problem in an RTL description,
because the variable is stored unless it is modified or restarted. The problem in
C is that the variable must be declared as a static, and Catapult generates more

Implementation 61

logic than necessary. This means that less number of static variables or with less
number of bits the code has better results.

During the refinement process we have tried to implement the output blocks
(Boundary Strength and Edge QP parameters) like CCOREs. If they are generated
like a CCORE they could be implemented more efficient. When we tried to do
this, the simulation of the RTL did not work, because the static variables used
by the CCORE were declared outside the block and could not reach them. Thus
we have implemented all the sub-blocks as inline functions. Implementing the
sub-blocks as inline functions causes also other problems for the complete block.
When a sub-block is declared as an inline function, the user is not able to set
some constraints, for example the design goal, the effort level or the percentage of
sharing allocation.

Although the BlueBook [2] recommends always set the number of bits of all
the variables with ac_int or ac_fixed, there are some cases where Catapult can
generate better RTL description when the variables are declared like integer instead
of bit-accurate types. We haven seen these cases when we have set the number of
bits in the intermediate variables in the inline functions. If we change the types
to bit-accurate types we obtained after synthesis larger area score than if we leave
them like integers.

4.7 Problems

Here are described the problems we have faced during the implementation and
refinement of simple and complex blocks. For each problem described is also
explained the solution we have implemented to solve it.

4.7.1 Multiple calling to the top level block in the testbench

In the first design developed in Catapult, we have developed it exactly as the
hardware design, for each data that comes into a single block we executed all the
blocks. In other words, each time the block received a pixel, it is executed and
then stopped until the next pixel.

When we developed the testbench, we had to call the top level function multiple
times to finish all the processing, one call to the top level function for each pixel
coming in each block (324 pixels), because the top function is responsible to call
the rest of the blocks. The design worked in the C verification with GCC compiler
but in the Modelsim simulation it did not work. We checked the signals in the wave
window in Modelsim and we could check that the RTL worked, but the verification
system of Catapult said that the test failed.

We continued to study this problem and we discovered that the problem was
in the comparison between the C code and the RTL. When the output of a system
is not a channel (in our case a memory), the testbench compares the output at the
end of each call trying to compare the output with the results obtained previously

62 Implementation

in C, this means, that each time one pixel was processed, Catapult compares all
the memory. In our case, we had to compare when the data is written in the
output memory. Then the implementation was correct but the comparison was
not done as expected.

To solve this problem, we generated a loop inside each block that iterated the
number of times it needs to complete the whole pixel block (324 pixels) and then,
the top level function calls to the next block. This solves the problem because the
testbench now only has to call once to the top function and the top level once to
each block. These changes do not increase the latency or the throughput of the
system because we set all the loops to be pipelined with II = 1, and the operations
are done in parallel.

Now the comparison works because the C code execution finish when all the
processing have been done, thus the process have finished also in the RTL and the
test passed.

4.7.2 Using of the function available inside two nested loops

In Catapult, when two loops are nested and then the code check the availability
of data in the FIFO of an ac_channel signal, the compiling process gives an error,
because the use of the function available is not correct.

We could not find the source of this error because sometimes we need to check
the availability of a channel inside a big process and this makes it even more
difficult to code. We tried to search the Catapult online help on how the available
function should be used but we did not find any information.

The solution to this problem was to check the availability of the channel before
the second loop and then generate the loop before reading from the channel.

4.7.3 Bidirectional communication in channel

During the development of the code, we had some problems with the communi-
cation with the blocks because of the channel type. The system required a bidi-
rectional communication between two blocks, but this process with the channels
is difficult to make it works.

If in the same call, the function write in an output channel which is connected
to another block that needs the data to give back to the first block, and then the
first block reads this information coming from the second block, the system will
stall because it has nothing on the input channel coming from the second block to
the first block and it can not read the information from the FIFO and the program
can not continue.

To solve this problem, we have split one of the blocks to avoid the bidirectional
communication. It can be solved also preloading some value in the input channel
and then the first block would not stall, but we could not solve solve the problem
like this, because the first block needs an information that depends on the data it

Implementation 63

sends.

4.7.4 Constant values in the size of an array and the slice function

Catapult provides the user with the type ac_int type as we have explained in
Section 2.1.2. This type also provides some functions to simplify the coding in
Catapult. Two of these functions are the slc and set_slc, which allow the user
to set or read some of the bits of one signal. During the development of the
code we use the two functions but noticed that we can not use the functions
with variable parameters of width and less significant bits. We have to solve this
problem implementing conditional statements before using the function to give
them constant values.

if (condition 1) {

ac_int_variable.slc<constant_width_1>(constant_lsb_1)

}

if (condition 2) {

ac_int_variable.slc<constant_width_2>(constant_lsb_2)

}

In Catapult is not allowed also to create an array with a variable size. This is
because a variable array is difficult to translate to the RTL design because it would
be translated to a memory or a bank of registers that can not have a variable size.
The solution to this problem is to generate an array with the largest possible size
in the code and only use the part needed for each condition.

4.7.5 Throughput value

When the RTL is finally developed in Catapult, it gives some information about
the design like for example, area, latency or throughput. We had some misun-
derstandings with the throughput value, because we understand for throughput
the number of cycles between two consecutive outputs, but the tool reports the
throughput as the number of cycles the block takes to produce an output after it
has been initialized, and the throughput of the complete design like the maximum
of the block’s throughput.

This cause that the throughput given by Catapult does not give any useful
information to us. To check the throughput we have to check the wave window
during the simulation of the RTL in Modelsim.

4.7.6 Two blocks reading from the same memory

During the implementation of the read block, we noticed that Catapult did not
allow two blocks to read from the same memory, it is not capable of automatically

64 Implementation

creating an arbiter to access the memories. There are two ways to address this
problem:

• Implement another block that would be the arbiter and give the proper data
to the blocks. This solution is not the one which would work best because
involves a bidirectional communication between two blocks thus it can cause
other problem.

• Split the control block in two. The first one receives the input data and
gives the read block the necessary information to read the blocks of memory
it needs. The read block reads the data which will be use in the second part
of the control block and also the pixels. When the read block has finished
then the second part of the control block takes the data given by the read
block and uses it to make the proper calculations. In this way we don’t
implement any bidirectional communication and the tool works perfectly.

4.7.7 Use of if and else if

While we were using the tool, we noticed that it is important to write the condi-
tional statements in the correct way. For example to write else if, if the conditional
statement is exclusive because if not, when Catapult translate the C code to RTL,
it interprets that both conditions can be possible at the same time and if the con-
dition involves a write or read process Catapult will generate more read or write
logic than needed.

4.7.8 Reducing area

The area score has been the problem that has always appeared in the designs
when we have developed them. We have not been able to reach the same area as
the original design in the DBL SAO block. This problem is coming from the way
Catapult translate the C code to RTL description.

Although the C code is written with as much details as possible, the C language
has not the same description level as VHDL or the Verilog, and that is one of the
reasons why we can not reach the same area and the same solution.

If you compare two designs to see if they are equal, it is necessary to have
the same architecture and the same throughput and latency. In our design, the
throughput and the latency were the same but the architecture was not exactly
the same. At the beginning we described the design in the C code similar to the
RTL but not exactly the same (the C design for example uses channels). During
the development of the blocks, we discovered that to get the same solution as the
original, we need to describe it exactly the same in the C code.

During the thesis we have tried to do this, and finally we got a good solution
avoiding the use of channels as we have explained in section 4.5. We think the
area score is one of the most important limitations with HLS design and also with
Catapult C.

Implementation 65

4.7.9 Synthesis

When we run the synthesis in ARM’s flow, we face some problems related to coding
rules . The RTL generated by Catapult does not declare the inputs and outputs
as wires, this would not be a problem if ARM would have the same rule but it has
not. Therefore we have to change some configuration files in the ARM’s flow to
change this characteristic, to run the synthesis in the flow with the RTL generated
by Catapult.

We decided to run the synthesis in Catapult to check the area result and once
we had a good value in terms of area and latency, we synthesized the block in the
ARM’s flow. We have always done the synthesis first in Catapult because we do
not need to copy or modify any of the files, thus the synthesis is faster in Catapult.
Catapult synthesis gives a very similar result to the ARM’s synthesis. We have
only run the synthesis in the ARM’s flow, when we have finished a design, and we
wanted to check the area score and the timing violations like other ARM’s blocks,
and when we need to check some of the reports. We can not check the reports like
the area report or the constraints violations report when we run the synthesis in
Catapult because they are not generated in the synthesis process.

4.7.10 DirectInput

In the process of reducing the area of the blocks, we have tried to implement the
inputs as DirectInput to avoid the use of channels. A DirectInput is an input
signal without any communication protocol, the data comes from the outside and
enters the block without any input register.

This is the implementation we want for our interface, and that is why we have
tried to implement like this. The area was reduced a little bit in comparison with
the implementation with channels or the wire protocol but the problem started
in the RTL verification. When we run the testbench in Modelsim, the test was
always failing. We checked the wave form in Modelsim and discovered that the
DirectInput signals were not changing its value properly, it changed its value in
different moments than the rest of the control input signals.

We tried to solve the problem using idle signals to synchronize transactions,
that is an option in the SCVerify mode. The simulation seems to work, although
it continued to fail. We again checked the waves and noticed that continued failing
because the DirectInput signals continued taking the values incorrectly.

We tried to solve the problem but the Catapult support told us that it was
impossible to solve the error with the input and output signals we had, because
the synchronization with the signals we have is not possible.

Finally we decided to do not implement the input as DirectInputs in the design.

66 Implementation

4.7.11 Shift left operator

During the development of the HEVC controller block we were facing a problem
related to the shift left operator. To adapt the code for HLS, we changed the
data types of the intermediate variables and interfaces in the C model to bit-
accurate data types. With these changes we get better area score because Catapult
understands that the interface and the variables need less resources. The problem
appears when a variable defined like an ac_int is left shifted. Although the shift
operation is only done to check a condition and not assign a value to a variable,
the result of the operation is stored in the shifted variable, so if it has not the
necessary width to get the correct value from the operation, it would never work.
The problem we have faced is described in the next example:

ac_int<3, false> a =5; (101)

if ((a « 3) > 5) -> It would be never true, because when a shift left

operation is done the variable "a" is the one which storage the result

and it has only three bits, so the result of a « 3 is 000, instead of

101000. To solve this the correct expression is:

if ((a.to_int() « 3) > 5)

if (((ac_int<6,false>)a « 3) > 5)

The solution we implemented was to always convert the shifted variable to int
with the function to_int() or to the ac_int type with the correct number of bits
before making the shift left operation.

4.7.12 Loops with non-constant number of iterations

During the refinement process of both complex blocks we found some inefficient
implementations of loops. When a loop has a non-constant number of iterations,
Catapult can not implement the loop efficiently because it does not know the
number of executions of the loop. During the Architecture step, in the Catapult
tasks, the loops which has not a constant number of iterations are marked with
a small question mark, for identifying the loops that have not always the same
number of iterations.

To solve this problem, we followed the guidelines given by the Bluebook [2].
We set the number of iterations to the maximum number of iterations the loop
can do. Then, inside the loop we write some conditional statements to go out from
the loop if we have reached the end iteration for each condition with a "break".

The implementation of loops with constant number of iterations results in a
better area score because Catapult can improve efficiently the operations done
inside the loop.

Chapter5
Results

This chapter shows the results of simple and complex blocks in terms of area
obtained during this work. The time saved with HLS design is also analyzed in
this chapter to check if HLS allows the users to save time in the designing process.

All the results shown in this chapter presents the relation between the HLS
design and the original RTL design. (HLS area / Original area)

5.1 Simple blocks

Table 5.1 shows the comparison between the original blocks and the ones which
their input and output interfaces are developed with channels.

Table 5.1: Comparison between original RTL design and HLS RTL
with the channel implementation.

Name Combinational Sequential Total

SAO filter 126% 285% 176%

Filter HEVC 99% 1016% 196%

Real filter 82% 484% 135%

Filter controller HEVC BS 133% 331% 170%

Filter controller HEVC edge QP 372% 114% 150%

Table 5.1 shows that the main area problem with the channel’s implementation
are the sequential area. The sequential area of any of this filters is less than 2.5
except the last one because it is an exception. With this information we solved
the problems like we have explained in the section 4.4 to reach a better solution
with HLS.

67

68 Results

The results with the filters implemented as flat designs without any channel
in the input and output interfaces are shown in the Table 5.2.

Table 5.2: Comparison between original RTL design and HLS RTL
without channels.

Name Combinational Sequential Total

SAO filter 69% 64% 67%

HEVC filter 74% 179% 102%

Real filter 67% 148% 83%

Filter controller HEVC BS 77% 201% 100%

Filter controller HEVC edge QP 201% 69% 87%

The results in Table 5.2 are completely different from the results in Table 5.1.
We can see that there have been a big reduction in the area score reducing the
relation to less than 1.05 in all the filters. The sequential area is only larger in
the controller HEVC edge QP filter, but in the rest the combinational area is
smaller than the original one. The sequential area in the blocks have different
values depending on the block.

The results, where the original design, the design with channels and the one
without channels, are compared and shown in Figure 5.1.The sequential, combi-
national and total area score are compared.

Figure 5.1: Graph with the sequential, combinational and total area.

Results 69

During the study of the simple blocks, we have developed more small filters
but we only have included some of them in the report. We have decided to do
this because although we have developed the other filters without channels, the
comparison with the handwritten RTL could be unfair or incorrect because we
didn’t have the information about the latency and throughput of the original
filters.

Finally we can say that the designs without channels have improved the area
score because they do not have the input and intermediate registers to storage the
values coming from the channel. This results have been the reason because of we
have designed the complex blocks like flat designs, without using channels.

5.2 Complex blocks

5.2.1 DBL SAO

The table 5.3 shows the incremental development process that the DBL SAO block
has gone through during this work. It starts when all the blocks were designed
like hierarchical blocks and the communication between them with channels and
the last solution is the one designed like a flat design, only the filter core like a
CCORE and all the improvements to the read and write process and the line buffer
redesigned.

Table 5.3: Progress of the DBL SAO’s area from the first design
until the flat design.

Comparisson Relation

All hierarchical blocks 287%

5 hierarchical blocks 265%

4 hierarchical blocks 214%

3 hierarchical blocks 212%

2 hierarchical blocks 173%

Flat design 161%

Flat design with improvements 116%

With the results shown in the table and in Figure 5.2 we can see step by
step how the hierarchical blocks are reduced down to a flat design, the area is
continuously reduced. In Table 5.3 is shown the relation of the total between the
handwritten RTL and the RTL generated by Catapult C, and in Figure 5.2 is
shown this relation and the percentage of sequential and combinational area for

70 Results

each solution.

Figure 5.2: Graph where the area progress in the DBL SAO block
is shown in bars.

In the figure 5.2 we see that the percentage of sequential and combinational
area is more or less the same in Catapult solutions but in the handwritten RTL
the combinational part is one third of the total area. During the reduction of area,
the sequential and the combinational area have been decreased with the same
percentage.

Related to design time, we can not make a fair comparison in this block because
we started developing it in a non-efficient way.

5.2.2 HEVC Controller Block

This block has been developed to get more reliable results of design’s quality with
Catapult. This block has been developed with the knowledge coming from the
work we have done with the simple blocks and also with DBL SAO. This has
been an advantage because we have saved time in comparison with the DBL SAO
because we have not needed the same learning process. In contrast, the RTL
generation of the HEVC Controller Block takes a long time, therefore we have
spent a lot of time in the improvement process.

It has been developed directly as a flat design without hierarchical blocks. We
have tried to avoid the use of channels in this design as well as in DBL SAO, but
it is not possible because it needs to read the inputs from two FIFO pipes. We

Results 71

think that this is one of the points which have complicated the development and
refinement of this block.

The HEVC controller block has not a constant latency (it depends on the input
signals), because for each block it has different number of inputs, therefore it can
not be pipelined.

The start point of this block was very similar to the DBL SAO block, it started
with a big area score and after some improvements we get a better area score with
the same performance and functionality as the original RTL.

The final result in terms of area of each sub-block in the HEVC Controller
Block are presented in Table 5.4

Table 5.4: Relation of area in each sub-block.

Sub-block % of original design

PU parameters block 98%

TU parameters block 180%

Boundary strength block 100%

Edge QP parameters block 87%

The Table 5.5 shows how the area score have progressed each time we have
improved the design.

Table 5.5: Progress of the HEVC Controller block area from the
first design until the last design.

Comparisson % of original design

First solution (without improvements) 230%

First improvement (in the controller) 214%

Second improvement (in PU parameters parser) 200%

Third improvement (in controller) 150%

Fourth design (in Boundary Strength) 131%

Final solution (improvements in controller) 119%

The Table 5.5 shows that each time we improved one of the sub-blocks, writing
a code suitable for HLS, the area score was substantially reduced. The coding style
when HLS is going to be used is very important, because the way the tool under-
stands the code, the operations and the signals makes the scheduling process to

72 Results

place the operation in different clock cycles generating different RTL descriptions
although they have the same functionality.

Figure 5.3 shows how the area score has been reduced showing also the com-
binational and sequential area.

Figure 5.3: Graph where the area progress in the HEVC Controller
block is shown in bars.

Related to design time, we have saved some designing time in comparison with
the usual hardware design process. We have spent three weeks full time dedicated
in developing and improving this block until we reached the final solution presented
in this section. We have to stress that our start point is with the C model already
written in ARM. ARM estimates that to develop the C model has spent 6 weeks
to develop all the RTL.

Although the comparison is not as fair as desired because we were two persons
developing the system in 3 weeks, we think Catapult saves approximately half of
the time.

Chapter6
Conclusion

At the end of this Master’s Thesis we are satisfied with the work done during the
months we have developed this work. We have obtained valid results to compare
and reach a conclusion of HLS.

During the development of the thesis we have seen some advantages and some
disadvantages of developing blocks for High Level Synthesis.

6.1 Advantages

There are some advantages when the design process is done in HLS.

• A programming language as C can be understood and developed by many
users: one of the advantages of using C code is that it does not need many
detailed description of the functionality, for example the user does not have
to generate registers, or implement some operations (for example the divi-
sion), therefore it is easier than usual Hardware Description Level languages,
where all the operations not supported by VHDL or Verilog have to be coded
by the user.
Another of the advantages of using C is that it is an untimed programming
language. This means that the user does not need to think about scheduling,
or how many clock cycles a specific operation needs to finish. Because C is
untimed the user does not need to implement a FSM in the code, HLS tool
the one that is responsible for this.

• Verification of the code: HLS tools have included in the software a useful
way to verify the code. Only with one testbench the user can verify the
written C code and also the generated RTL description. This is a huge
advantage, because the functionality is tested fast in C and the user only
needs to develop the testbench in C, and the tool is responsible to generate
the necessary files to use it for the RTL simulation.

• All the advantages described before are resumed in one, saving time. With
HLS the user can save time if the user knows how to use the tool properly.

73

74 Conclusion

The user only has to write a C model, with the HLS rules and describing all
the hardware blocks, check the functionality of C code, and then the user
can generate RTL very fast.

6.2 Disadvantages

Although HLS gives a very important advantage (saves time) it has also some
disadvantages or problems that should be mentioned in this report.

• Lack of control during the design process: writing RTL in C can be a very
big advantage, but also brings some disadvantages. The HLS C code does
not have as much detail as the RTL description, therefore the control of
the design is not as precise as in an RTL description. This means that the
user only writes the functionality, but if the user needs some operation in
a specific clock cycle or implement an operation in a specific way is not
possible with HLS, because the tool used is the one responsible to schedule
and implement the functionality in RTL. Although the tool always try to
reach the best solution in terms of area, latency and throughput, not always
the desired design is the one obtained.

• Problems in the communication between blocks: with the results of this
thesis, we think that HLS does not work very efficient when it needs to
communicate between different blocks. During the development of the sim-
ple blocks, we have always obtained better results than the original RTL, but
when these blocks are used in bigger blocks like for example the DBL SAO
filter or the HEVC Controller Block, it increases in area. This means that
HLS generates more logic than the necessary between the communication
with blocks than the one needed.

• Very detailed C code: although the user writes in C, it can not be written
like a standard C program. The HLS C code needs many details and also
includes the non-software modules. This means that a normal C model
where only is described the functionality is not always valid for HLS because
there are some missing blocks.

• In complex blocks it is difficult to reach same characteristics: each time the
block designed increases the complexity, HLS has more problems to reach
the same area result than the RTL.

6.3 Final conclusion

During the development of this thesis we have had a very big advantage because
we have had the possibility to compare the generated RTL by Catapult with the
original RTL developed at ARM. This is a big advantage because we knew how
the original design is in terms of area and latency. Therefore we could improve the

Conclusion 75

code until we have reached the best result. Without we would maybe have been
content with a worse design result.

HLS is not as efficient as desired in some situations. When there are channels
implemented in a block is always more difficult to get good area results, because
channels generate some extra logic. Other situation where HLS does not obtain
good results is when there is a long feedback implementation. If there is a feedback
path in the design, the tool is not implementing efficiently the architecture.

With the results of this work, we see that HLS tools (in our case Catapult)
can be a very useful tool during the hardware development. It can be part of the
process, generating a first RTL description after the model is described, obtaining
a really fast design prototype and improving the area results after in the RTL
development. Obtaining different designs for different performance goals and ar-
chitectures with HLS is also very easy, the user only needs to modify the tool’s
constraints.

Another application is to design the sub-blocks of a system with HLS, because
it works better for simple blocks, and afterwards implement the communications
between the sub-blocks with a hardware description language or SystemC. The
communication between the sub-blocks is not efficiently implemented in HLS tools
because of its complexity.

We think, HLS tools have not yet reached the results to be a real alternative
over traditional hardware design.

A good way to add Catapult in the hardware design flow can be at the begin-
ning of the design process. After generating the C model, it can be run in Catapult
to obtain a first estimation of the area, latency and throughput, and also show the
customer the behavior of the design for example in an FPGA.

For this purpose, the C model must be written in an efficient way with the
coding rules for HLS, using bit-accurate types, defining the non-software modules
and implementing the access to memory.

76 Conclusion

Bibliography

[1] Philippe Coussy and Adam Morawiec High-Level Synthesis From Algorithm to
Digital Circuit, 2008.

[2] Mentor Graphics Corporation High Level Synthesis Blue Book., 2010.

[3] Mentor Graphics Corporation Catapult C Synthesis C++ to Hardware Con-
cepts., 2010.

[4] Calypto website, http://calypto.com/en/products/catapult/overview, 2015.

[5] Xilinx website, http://www.xilinx.com/products/design-
tools/vivado/integration/esl-design.html, 2015.

[6] Bluespec website, http://www.bluespec.com/high-level-synthesis-tools.html,
2015.

[7] Cadence website, http://www.cadence.com/products/sd/silicon_compiler/
pages/default.aspx, 2015.

[8] Cadence website, http://www.cadence.com/products/sd/cynthesizer/pages/
default.aspx, 2015.

[9] Synopsys website, http://www.synopsys.com/Tools/Implementation/FPGA
Implementation/Pages/synphony-hls-demos.aspx, 2015.

[10] Mentor website, http://www.mentor.com/products/fv/modelsim, 2015.

[11] Synopsys website, http://www.synopsys.com/Tools/Implementation/RTL
Synthesis/DCGraphical/Pages/default.aspx, 2015.

[12] http://en.wikipedia.org/wiki/Deblocking_filter

[13] Weiwei Shen, Qing Shang, Sha Shen, Yibo Fan, Xiaoyang Zeng
A High-Throughput VLSI Architecture for Deblocking Filter in HEVC,
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6571936&tag=1, 2013.

[14] Kang Runlong, Zhou Wei, Huang Xiaodong ,Dong
BingChao An Efficient Deblocking Filter Algorithm for HEVC,
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6889268, 2014.

77

78 Bibliography

[15] Jiayi Zhu, Dajiang Zhou, Gang He, Satoshi Goto A combined
SAO and de-blocking filter architecture for HEVC video decoder,
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6738405, 2013.

[16] Seungyong Park, Kwangki Ryoo The Hard-
ware Design of Effective SAO for HEVC Decoder,
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6664837, 2013.

[17] G.J. Sullivan; J.-R. Ohm; W.-J. Han; T. Wiegand Overview
of the High Efficiency Video Coding (HEVC) Standard,
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6316136, 2012.

[18] Chih-Ming Fu; Elena Alshina; Alexander Alshin; Yu-Wen Huang; Ching-
Yeh Chen; Chia-Yang Tsai; Chih-Wei Hsu; Shaw-Min Lei; Jeong-
Hoon Park; Woo-Jin Han Sample adaptive offset in the HEVC standard,
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6324411, 2013.

H
ig

h
 Leve

l Sy
n

th
e

sis fo
r D

e
sig

n
 o

f V
id

e
o

 P
ro

ce
ssin

g
 B

lo
ck

s

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, March 2015.

High Level Synthesis for Design
of Video Processing Blocks

Ayla Chabouk
Carlos Gómez

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2015-435

http://www.eit.lth.se

A
.C

h
ab

o
u

k &
 C

.G
ó

m
ez

Master’s Thesis

