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Abstract

With todays increased use of smartphones and other wireless devices, the demands
on the wireless networks have increased dramatically. This has prompted the re-
search and development of new types of wireless systems using multiple antennas
at both the transmitter and the receiver, known as MIMO. Since wireless systems
are very susceptible to interference and to changes in the environment, it is im-
portant to know how the wireless channel behaves in the environment that the
wireless system is intended to operate in. This is done by sounding the channel,
e.g. where a signal is transmitted from the transmitter and processed on the re-
ceiver in order to obtain the impulse response of the channel. When performing
channel sounding on a MIMO system it is important that the signals transmitted
from the antennas interfere with each other as little as possible so as to get a good
estimation for how the channel behaves. In this thesis we implement a 2 by 2
MIMO channel sounder using m-sequences and Zadoff Chu-sequences, both with
good autocorrelation properties. The major part of the implementation is done
on an FPGA in order to be able to perform the sounding in real time.

i



ii



Acknowledgements

We would like to express our our gratitude to our supervisors Fredrik Tufvesson
and Joao Vieira for their support and guidance during our thesis work and for
making this thesis possible. We would also like to show our appreciation to Bertil
Lindvall and Josef Wajnblom for their help with installing software and hardware
needed for our work.

iii



iv



Table of Contents

1 Introduction 3
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Thesis purpose and aim . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Wireless channels and channel sounding 5
2.1 Wireless channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Channel properties and parameters 5
2.1.2 Multipath propagation 6

2.2 System models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 SISO - Single Input Single Output 8
2.2.2 MIMO - Multiple Input Multiple Output 8

2.3 Channel sounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Impulse sounder 10
2.3.2 Correlative sounder 10
2.3.3 MIMO channel sounding 11

2.4 Sounding sequences . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.1 The Zadoff-Chu sequence 11
2.4.2 m-sequences 12

2.5 Estimating the impulse responses . . . . . . . . . . . . . . . . . . . 15

3 Tools overview 19
3.1 USRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Programming environment . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 LabVIEW 21

4 Proposed implementation 25
4.1 General approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 LabVIEW implementation . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Correlator loops 28
4.2.2 Resource utilization and scaling 32

5 Validation of the implementation 35
5.1 2-path channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

v



5.2 2x2 MIMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Conclusion 41
6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Issues encountered . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

vi



Abbreviations

Abbreviations

ACF Auto-Correlation Function
ASIC Application Specific Integrated Circuit
AWGN Additive White Gaussian Noise
FPGA Field-Programmable Gate Array
GF Galois field
HDL Hardware Description Language
IC Integrated Circuit
IO Interacting Object
LFSR Linear Feedback Shift Register
LOS Line Of Sight
LUT LookUp Table
MIMO Multiple Input Multiple Output
MPC Multi Path Component
NI National Instruments
SCTL Single Cycle Timed Loop
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Chapter 1
Introduction

1.1 Background

In the past 10 years, technology has taken huge steps forward in the fields of mo-
bile communication. With the introduction of smart phones, tablets and wearable
devices there are more wireless signals than ever before. The current development
indicates that this trend will continue in the future with an increasing number
of wireless devices. This trend of smart equipment and communication is now
starting to affect other parts of society, for example the car industry, where a lot
of development is already being put into the development of self-driving cars and
smart car systems [1]. Future cars could communicate with each other and be able
to warn each other of lane shifting, sudden brakes and fast emergency vehicles be-
hind low sight corners, to lower the risk for accidents or to avoid them entirely [2].
When advanced communication systems as this one becomes standard equipment
for vehicles, a robust communication system will be needed between the vehicles
to ensure the safety and reliability of the systems.

The performance of a wireless system relies heavily on the environment it oper-
ates in, i.e. the wireless channel. Objects in the surrounding area usually interact
with the wireless signal between the transmitter and the receiver. These inter-
actions all contributes to the version of the signal that the receiver sees. When
designing a wireless system, these and other factors need to be considered, so an
understanding for how the channel behaves in different scenarios is crucial. This
is where channel sounding proves useful. Channel sounding is the process of mea-
suring properties of the channel (e.g. the impulse response), which can be done
in a variety of ways [3, p. 150]. One possible technique is to transmit a signal
from the transmitter to the receiver and letting the original signal be known to
the receiver. This way the receiver is able to estimate how the channel affected
the signal, which in turn could be used to model the channels behaviour.

In order to perform channel sounding and other signal processing operations,
software defined radios, or SDRs, are becoming increasingly popular as the perfor-
mance of the devices increases. SDRs offer a flexible and relatively fast alternative
to hardware implementations, since much of the functionality is implemented in
software.

3



4 Introduction

1.2 Thesis purpose and aim

The purpose of this thesis is to implement and evaluate a 2x2 MIMO channel
sounder on software defined radio devices with onboard FPGA:s. The design
should support the use of different sounding sequences. The performance of the
channel sounder framework will be evaluated when sounding with either Zadoff-
Chu sequences or m-sequences. As for future applications, the sounder could act as
foundation for larger and more advanced channel sounders. The evaluation of the
sounding sequences could also give an indication of which of the sequences could be
the better one to use for different sounding scenarios. The possibilities to further
improve and scale the sounder will be discussed, as well as future applications of
the sounder.

1.3 Thesis outline

This report is structured as follows. In chapter 2, the theoretical background. The
concept of a wireless channel is explained, different channel models are presented,
and a theoretical model for MIMO systems is described. A more thorough explana-
tion of channel sounding is provided, and different methods of channel sounding are
presented. Two sequences, namely m-sequences and Zadoff-Chu sequences, suit-
able for channel sounding are also described. In chapter 3 the sounding equipment
used is presented, including many aspects of the SDRs and their programming
environment. In chapter 4, we propose an FPGA implementation of the cross-
correlation algorithm that processes the received signals for the channel sounding
purposes. We also address the details of our particular implementaion, which was
performed using the programming language of the SDRs.



Chapter 2
Wireless channels and channel sounding

2.1 Wireless channels

In wireless communications systems there are many factors that influence the
performance. Some examples of these are path loss between the transmitter and
the receiver, interference from other wireless systems, or objects in the terrain
between the transmitter and the receiver. The transmitted signal might travel
through buildings and terrain, be reflected by obstacles in the environment etc.
All of these things contribute to the distortion of the transmitted signal, and they
collectively make up the wireless channel.

2.1.1 Channel properties and parameters

One property that affects a wireless signal is path loss, that is, the median loss
of power the signal experiences when travelling between the transmitter and the
receiver. In the most basic scenario, with no obstacles in the way, the power
received at the receiver is given by Friis law [3, p. 48]

PRX(d) = PTXGTXGRX

(
λ

4πd

)2

, (2.1)

where GRX and GTX are the antenna gains for the receiving and transmitting
antennas, respectively, λ is the wavelength and d is the distance between the
transmitter and the receiver.

Generally, wireless systems are not deployed in areas free from obstacles, but
rather in densely populated areas, where there are many buildings, cars etc. Thus,
the simple model for the received power is not enough to fully describe the wireless
channel. As the signal travels it will interact with the obstacles in its paths (so
called interacting objects, or IOs). Two of the ways a signal can interact with IOs
are reflection and transmission. Reflection occurs when a electromagnetic signal
hits a smooth surface, and is reflected off it [3, p. 69]. When the surface is rough
the signal a will scatter against the surface, and the power of the reflected signal
will be dispersed in many directions.

5



6 Wireless channels and channel sounding

Electromagnetic waves can also be subject to transmission, which means that
the wave passes through an object. How much power the electromagnetic signal
retains depends on the material of the object and the wavelength of the signal. It
is this phenomenon that allows cellphones and other wireless devices to be used
inside buildings, where there is no direct path to the base station.

If either the transmitter or the receiver is moving, the signal is subjected to the
Doppler effect, which means that the frequency increases or decreases depending
on if the transmitter and the receiver moves towards or away from each other.
This results in a frequency shift of the received signal, given by [3, p. 73]

ν = −fc
v

c
cosα, (2.2)

where fc is the carrier frequency, v is the relative speed of the receiver in relation
to the transmitter, c is the propagation speed of the signal and α is the incident
angle.

2.1.2 Multipath propagation

Due to the interactions with IOs, the transmitted signal can take multiple paths
as it travels between the transmitter and the receiver. This causes multiple copies
of the transmitted signal to arrive at the receiver, and these copies are called mul-
tipath components (MPCs). The MPCs will have different attenuation and phase
depending on their individual paths, and they will also arrive at slightly differ-
ent times since the length of each propagation path typically is different. This is
known as a time-dispersive channel, and transferred into the frequency domain,
it makes the channel frequency selective, that is, different frequencies will have
different amplitudes [4, p. 11].

Since the receiver may not able to differentiate between different MPCs, they
will interfere with each other. The interference can be constructive, ie. the crests
of multiple MPCs align, which will increase the amplitude of the received signal
at a specific time and frequency. They can also be misaligned, in that case they
will cancel each other out, ie. interfere destructively [3, p. 28].

Due to different MPCs having different delays, the channel impulse response
will not be a single Delta function [3, p. 27]. Instead it will consist of several peaks,
each corresponding to one MPC. This phenomena is referred to as time dispersion.
A way of modelling time dispersion is the tapped delay line model [3, pp. 31,128]

h(t, τ) = a0δ(τ − τ0) +

N∑
i=1

ci(t)δ(τ − τi), (2.3)

where a0 is the amplitude of the first component, ci typically is the zero-mean
complex Gaussian distributed random process with a mean power following the so
called power delay profile and τi is the delay for each MPC.
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Figure 2.1: Example of a two-path model [5].

A simple case of the tapped delay line model is the two-path channel, visualized
in Figure 2.1. The channel consists of two components, the LOS component, and
the component reflected off the ground. Figure 2.2 shows an example of a possible
impulse response for a two-path channel where the amplitude of the first MPC is
normalized.

Figure 2.2: Example of an impulse response for a two-path channel.
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2.2 System models

In many areas of engineering, it is useful to make a mathematical model of a real
life scenario to be able to gain an understanding of how the real world scenario
behaves. In this chapter, system models that offer a mathematical explanation for
how wireless communications system, both single antenna and multiple antenna
systems, behaves is presented.

2.2.1 SISO - Single Input Single Output

To be able to understand multiple antenna systems, it is essential to first under-
stand the basic single antenna (SISO) systems as it lays some ground principles
that the multiple antenna system models build upon. With one transmitter, one
receiver and a time-invariant channel, such as a wire, the relationship between the
transmitted signal s(t) and the received signal r(t) can be expressed as

r(t) = h(t) ∗ s(t) + n(t), (2.4)

where h(t) is the channel impulse response, s(t) is the transmitted signal, n(t) is
the random process modelling the noise and ∗ denotes convolution.

In wireless systems the channel can often not be seen as time-invariant since
the channel will change as the propagation environment changes. Because of this,
the impulse response of the channel becomes time-variant [6, p. 11]

y(t) =

∫ ∞
−∞

x(t− τ)h(t, τ)dτ (2.5)

The channel h(t, τ) is referred to as a time-variant channel where τ denotes the
delay.

2.2.2 MIMO - Multiple Input Multiple Output

In the 2000s, the use of wireless devices has increased dramatically [7] and in order
for the wireless systems to be able to cope with the increased demands it has be-
come necessary to develop new techniques to make more efficient use of the radio
spectrum and to increase the bit rate of the system [8, p. 6]. One way of achieving
this is to introduce the concept of MIMO, in which there are multiple antennas at
the receiver and the transmitter [3, p. 465]. One of the advantages of MIMO is that
beamforming can be used, in which the transmitted energy is focused in a certain
direction which increases the received SNR in that direction. Another advantage
is spatial multiplexing, where the data is transmitted on different antennas at the
same time. The receiver can then recover each part by the use of signal processing.
Another advantage is that MIMO introduces spatial diversity [8, p. 6]. Since the
receive- and transmit antennas are separated in space the channel will affect the
signal arriving at the different antennas differently, and by combining the signals
received at each antenna a high SNR can be achieved even though the received
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signal strength may be low on some of the antennas.

A time-varying MIMO channel is described by the channel matrix

H(t, τ) =

 h11(t, τ) . . . h1MRX
(t, τ)

...
. . .

...
hMTX1(t, τ) . . . hMTXMRX(t,τ)

 , (2.6)

where hij(t, τ) is the impulse response between transmit antenna i and receive
antenna j, and MTX and MRX is the number of transmit and receive antennas
respectively.

The relationship between the transmitted signals and the received signals in a
MIMO system can be described as

r(t) = H(t, τ) ? s(t) + n(t) =

∫ ∞
−∞

H(t, τ)s(t− τ) + n(t)dτ , (2.7)

where r is the vector of received signals, s is the vector of transmitted signals and

n(t) is the noise. For a 2x2 MIMO system, r =

[
r1(t)
r2(t)

]
is the received signals at

antenna 1 and 2, s =

[
s1(t)
s2(t)

]
is the transmitted signal from antenna 1 and 2, and

H is the 2x2 channel matrix.

From this it can be seen that r1(t) and r2(t) can be written as [8, p. 34]

r1(t) =

∫ ∞
−∞

s1(t− τ)h11(t, τ) + n(t)dτ +

∫ ∞
−∞

s2(t− τ)h21(t, τ) + n(t)dτ (2.8a)

r2(t) =

∫ ∞
−∞

s1(t− τ)h12(t, τ) + n(t)dτ +

∫ ∞
−∞

s2(t− τ)h22(t, τ) + n(t)dτ (2.8b)

2.3 Channel sounding

When developing channel models for different types of wireless systems it is nec-
essary to know how the wireless channel behaves. Early measurements conducted
in the 1960s only measured the received signal strength [3, p. 145], but as seen in
section 2.1, the received signal strength is just one of the properties of a wireless
channel.

The principle of a channel sounder is quite simple. The transmitter transmits
a sequence, the signal travels through the wireless channel to the receiver, which
by knowing the original transmitted sequence, can estimate the channels impulse
response. In order for the channel sounder to be efficient, the transmitted signal
needs to fulfill a few criteria. The bandwidth of the signal should be sufficiently
large so that the delay resolution becomes high enough, since the bandwidth is
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proportional to the inverse of the delay resolution [3, p. 146]. The length of the
sequence should be short enough so that the channel stays constant for one period
of the signal, so that the channel can be seen as time-invariant for the duration
of one sequence. The frequency response of the signal should be flat, so that
the entire frequency spectrum of the signal can be estimated with equal quality
[3, p. 146]. In this chapter we will describe two time domain channel sounding
principles. We will also introduce the concept of MIMO channel sounding, as well
as present two types of signals possible to use as sounding signals.

2.3.1 Impulse sounder

One type of sounder is the impulse sounder, in which the transmitter transmits a
short pulse every T seconds. The receiver simply interprets the received signal as
the channel impulse response [8, p. 118]. In order to sound over large bandwidth,
the pulses transmitted should be narrow in time with high amplitude in order
for the frequency response of the signal to be as flat as possible. Due to the
properties of antennas, amplifiers, mixers etc, the type of pulse needed can be
difficult to generate. Also, because to the shape of the pulse, the sounder can cause
a significant amount of interference in frequency [9, p. 171], since the transmitted
pulse gives a wide frequency response because of its similarity to a Dirac delta-
function.

2.3.2 Correlative sounder

Instead of transmitting short pulses, a correlative sounder transmits a sequence
with good autocorrelation properties. The receiver then takes the received signal
r(t) and correlates it with the transmitted signal s(t). A simple noise free, time-
invariant system can be expressed as

r(t) = h(t) ∗ s(t). (2.9)

If the continuous autocorrelation function for s(t)

Rs,s(τ) =

∫
s(t)s∗(t− τ)dt, (2.10)

is equal to the Dirac’s delta function

δ(t) =

{
1 t =∞
0 k 6= 0

, (2.11)

or if the discrete autocorrelation function

Rs,s[k] =
∑
n∈Z

s[k]s∗[n− k], (2.12)

equal to the Kronecker delta

δ[k] =

{
1 k = 0
0 k 6= 0

, (2.13)
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the channel impulse response h(t) can be reliably estimated by cross-correlating
r(t) with s(t) [3, p. 151]

r(t) ~ s(t) = h(t) ∗ s(t) ~ s(t) =⇒ h(t) = r(t) ~ s(t), (2.14)

where the ~ denotes discrete cross-correlation.

One issue with correlative sounder is that the hardware in the transmitter and
the receiver also contribute to the distortion of the transmitted signal, so (2.9)
doesn’t suffice when describing the entire system. A more accurate description is
instead

r(t) = hTX(t) ∗ h(t) ∗ hRX(t) ∗ s(t), (2.15)
where hTX(t) impulse response for the transmitter, and hRX(t) is the impulse
response from the receiver. Because of this, simply cross correlating r(t) with
s(t) is not enough, as it is required to remove hTX(t) and hRX(t) as well [10,
p. 1467]. In a practical system, this can be done by connecting the transmitter to
the receiver with a cable, and estimating the impulse response of the system. The
saved impulse response is then removed from the impulse response obtained when
sounding the channel by deconvolving the total estimated impulse response with
that of the system.

2.3.3 MIMO channel sounding

The challenge that arises when performing channel sounding in a MIMO system is
that the received signals at each receive antenna will be a combination of all of the
transmitted signals, as described in subsection 2.2.2. This makes it necessary to
differentiate between the signals transmitted from each antenna. In this project the
differentiation is made by transmitting different signals with good cross correlation
properties from each antenna in order to minimize the interference between them,
so that the channels between all antenna pairs can be estimated. In other words

Rs1,s2(τ) =

∫ ∞
−∞

s1(t)s∗2(t− τ)dt, (2.16)

should be as low as possible, where s1 and s2 are the sequences transmitted from
the two antennas.

2.4 Sounding sequences

When performing correlative channel sounding, there are a number types of se-
quences that can be used. Two of them are the Zadoff-Chu- and m-sequences,
which both will be presented below.

2.4.1 The Zadoff-Chu sequence

The Zadoff-Chu-sequence is a complex-valued discrete time sequence where the
elements in the sequence are defined as

ui[k] = (−1)ike
jπi2k
N , 0 ≤ i ≤ N − 1, (2.17)
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where N , the length of the sequence, is an odd, positive integer, 0 < k < N ,
gcd(k,N) = 1.

The reason why Zadoff-Chu sequences are suitable for channel sounding is due
to its lack of variation in amplitude, and its autocorrelation-(2.18) and cross cor-
relation(2.19) properties which can be seen in Figure 2.3 [see 11, pp. 151, 152]

Rs(τ) =
{N for τ ≡ 0

0 otherwise
mod N

, (2.18)

Rsk1 ,sk2 (τ) =
√
N, for τ ≡ 0 mod N , (2.19)

if gcd(|k1 − k2|, N) = 1 where k1 and k2 are the value of k in Equation 2.17 for
the respective Zadoff-Chu sequence.

Figure 2.3: The autocorrelation of a Zadoff-Chu sequence, and a
cross correlation between two Zadoff-Chu sequences with k1 =
25 and k2 = 29.

It is their cross correlation properties makes them particularly interesting in
MIMO channel sounding, since two Zadoff-Chu-sequences transmitted from two
antennas interfere with each other with a factor of 1√

N
. Another reason that

Zadoff-Chu-sequences are suitable for channel sounding is its flat frequency re-
sponse. This means that fluctuations in the received power will be equally visible
over the entire frequency spectrum.

2.4.2 m-sequences

A binary m-sequence is a sequence consisting of or 1s and -1s, with the length
N = 2n − 1, where n is a positive integer. In order for a binary sequence to be
considered an m-sequence, they need to fulfill a number of conditions [11, p. 119].
They need to be balanced, ie. the number of 1s must not differ from the number
of −1s more than one. A subsequence of 1s or -1s is called a run, and 1/2 of all
runs in the sequence must be of length 1, 1/4 of all runs must be of length 2, 1/8
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of all runs must be of length 3 etc. The last condition is that the autocorrelation
function for the sequence must be

Rs(τ) =
{ N
−1

for τ ≡ 0 mod N

otherwise
. (2.20)

The frequency response of an m-sequence can be seen in Figure 2.4.

Figure 2.4: Frequency spectrum of an arbitrary m-sequence.

One way of performing MIMO sounding with m-sequences, is to delay the m-
sequence transmitted from one of the antennas by N/2 samples in relation to the
sequence transmitted from the other antenna, so the result of the cross correlation
at the receiver shows two peaks, one at 0 and one at N

2 samples as shown in Fig-
ure 2.5, assuming a noise free one path channel. This limits the maximum delay
that can be unambiguously detected to N

2 samples. If the sequences are transmit-
ted continuously, the receiver has no way of knowing which peak corresponds to
which transmitted sequences. This could possibly be solved by for example not
transmitting continuously, but leaving a small window between each transmitted
sequence so that the receiver can discern which peak corresponds to which trans-
mit antenna.
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Figure 2.5: Cross correlation of two m-sequences shifted N
2 samples.

2.4.2.1 Construction of m-sequences

m-sequences are constructed using a Linear Feedback Shift Register (LFSR) of
length k, where the feedback function of the LFSR must be a primitive polyno-
mial in the Galois field GF (2k), for an m-sequence of length N = 2k− 1 [12, p. 3].

Feedback shift registers are made up by a series of elements, forming a queue.
For each clock cycle, the queue is pushed one step forward and a new value for the
first step is created from some or all of the queue values from the last iteration.
The value pushed out of the queue is the output for each iteration. This produces
a binary sequence with the values 1 and 0, and the 0:s are replaced with −1:s.

out

Figure 2.6: Example of a 7-bit shift register.

The feedback function of an LFSR describes what positions that are used when
computing the new element. It is often represented in the form of a polynomial
[13]

p(x) = xk + xk−1 + . . .+ x+ 1, (2.21)

where kn denotes which position in the shift register that is added. As an example,
the LFSR in Figure 2.6 has 7 bits and the feedback function

p(x) = x7 + x4 + x+ 1 (2.22)

indicates that new elements are calculated by modulo-2 adding the first, last and
the third element of the LFSR [14, p. 17].
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2.5 Estimating the impulse responses

Although wireless channels generally are time-variant, for this application it is
assumed that the channel is time-invariant for the entire length of one sequence.

Since the equipment used for measuring the channel also have its own impulse
response, it has to be taken into account as well. From (2.7) we get the new
equation for the received signal at antenna i

ri(t) =

MTX∑
j=1

sj(t) ∗ hTXj (t) ∗ hij(t) ∗ hRXi (t) + n(t), (2.23)

where n(t) is the additive noise process, hTXj(t) is the impulse response of the
j:th transmitter chain, hRXi(t) is the impulse response of the i:th receiver chain,
sj(t) is the signal transmitted from the j:th transmit port, and hij(t) is the im-
pulse response from the j:th transmit port to the i:th receiver port. Using the
commutative property of the convolution operator, (2.23) can be rewritten as

rj(t) =

MTX∑
i=1

si(t) ∗ hdij(t) ∗ hij(t) + n(t), (2.24)

where hdij(t) = hTXi (t) ∗ hRXj (t). (2.25)

The two transmitted signals are removed from the received signal by cross
correlation.

ĥtotij =

MTX∑
i=1

rj(t) ~ si(t) + n(t), j = 1 . . .MRX . (2.26)

If the cascade of the hardware responses hdij(t) are known, one way of removing
the measurement system from the channel measurement is by deconvolution, which
in the frequency domain can be done by

ĥij(t) = F−1
[F [ĥtotij (t)]

F [hdij(t)]

]
, (2.27)

where F is the Fourier transform.

As can be seen below, if ĥtotij (t) and hdij(t) closely resembles Dirac delta func-
tions, cross correlation may be used to remove the systems inpulse response hdij
from the total impulse response ĥtotij

ĥij(t) = ĥtotij (t) ~ hdij(t). (2.28)

As a sequence approaches a Dirac delta function, the result of cross correlation
approaches the result of a deconvolution. Figure 2.7b and Figure 2.7c shows the
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deconvolution and cross correlation respectively of a sequence of 50 random num-
bers used as an example sequence Figure 2.7a. As can be seen there is quite a
large difference between the two, the deconvolution is a normalized Dirac delta
function, while the cross correlation average is around 0.8, apart from the spike
at 50 lag where it’s equal to 1. If we instead look at Figure 2.8 we can see that
the cross correlation more closely resembles the deconvolution when the peak is
significantly higher than the rest.
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(a) Original sequence

(b) Deconvolution

(c) Cross correlation

Figure 2.7: Deconvolution and cross correlation done for an example
sequence of 50 random normalised values.
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(a) Original sequence

(b) Deconvolution

(c) Cross correlation

Figure 2.8: Deconvolution and cross correlation done for an example
sequence of 50 random normalised values, with a Dirac delta
function.



Chapter 3
Tools overview

3.1 USRP

Software Defined Radio (SDR) is a concept in the area of radio devices, in which
tasks (such as baseband processing algorithms) that have traditionally been done
with hardware components are implemented in either software or reprogrammable
hardware such as an FPGA. This makes SDR platforms more versatile when it
comes to experimenting with wireless systems and technologies, making it a useful
tool in for example prototyping new wireless systems [15].

The advantage of implementing the processing on a computer is that higher
level programming languages can be used, while the FPGA is available to do pro-
cessing at a much higher rate than a computer but at the cost of being more
complex and restricting to do the implementation on.

One example of SDR devices are the USRPs, which is a series of devices man-
ufactured by Ettus Research and National Instruments. The device used in this
project is the NI-USRP 2953R. It can tune its center frequency from 1.2 to 6 GHz,
with a bandwidth of 40 MHz. It is equipped with two RF chains (RF0 and RF1)
with 2 antenna ports each, one transmit antenna (TX1) and one receive antenna
(RX2) [16]. The transmit antenna can be used for both transmitting and receiv-
ing, though not at the same time. The USRP is equipped with a Kintex 7410T
FPGA from Xilinx. A list of few of the specifications can be seen in Table 3.1,
and a more exhaustive list can be found in [17].

In Figure 3.1 a block diagram of the NI USRP-2953R is shown, which shows
a basic view of the components used between the antennas and the host computer
controlling the USRP. The data to be transmitted is generated by the FPGA,
either directly or it is sent to the FPGA from the host computer. It is sent to the
digital upconverter, which re-samples the signal to work with the digital-analog
converter, all done on the onboard FPGA. Then, outside the FPGA, a low pass
filter cleans up the signal from high frequency components and noise before a mixer
upconverts the signal to the selected frequency. The signal is then amplified and
transmitted from the antenna. The receiver part of the USRP works in the same
way, but all operations are reversed except the amplifying, as can be seen in the
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diagram.

Figure 3.1: NI USRP-2953R block diagram [18], the functionality
inside the square is implemented on the FPGA.

Logic cells 406 720
DSP slices 1540
Block memory 28 620 Kb

Table 3.1: Kintex 7 410T specifications

The FPGA can be used to process the data on the USRP instead of on the
host computer, reducing the number of calculations needing to be performed by
the host computer. By using lookup tables, which are able to store and retrieve
bits, depending on the input to the table, logic blocks can be created. These blocks
can, depending on the values stored, behave like any logic gate like AND or OR,
etc. Logic blocks can be grouped together to perform multiplications or simultane-
ously perform several additions [19], and these groups are referred to as DSP slices.

By putting many such logic blocks on the FPGA and redirectable paths be-
tween them, different implementations can be created by changing the values
stored in the lookup tables and by changing the paths between the blocks. If
needed, the logic blocks can be used as RAM memory along with the dedicated
block memory that is built into the FPGAs. A very important purpose of the
FPGA is to give the flexibility of being able to compile an application in just a
couple of hours and still get the benefits of an integrated circuit, like being able to
do single cycle timed loops, which are loops where all operations are able to run
in a single clock cycle. An FPGA also have I/O ports, which allows it to receive
input values from external data sources.
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Figure 3.2: An example of a small FPGA.

3.2 Programming environment

3.2.1 LabVIEW

LabVIEW is a graphical programming platform developed by National Instru-
ments. A LabVIEW program (referred to as a Virtual Instrument, or VI) consists
of two parts, the block diagram and the front panel. The front panel contains the
user interface and the block diagram contains the program logic. Elements on the
Front panel are referred to as controls or indicators, where controls can be used
for input and indicators for output [20]. Figure 3.3 is an example of a LabVIEW
VI that calculates

∑N−1
i=0 i, where N equals 10, as defined in the "Max" control,

and outputs it to the "Result" indicator.

(a) Block diagram (b) Front panel

Figure 3.3: A simple LabVIEW example showing addition, a loop,
shift registers and the front panel.
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Block are connected using wire. The colors of the wires differ depending on
what datatype the wire is, and the thickness of them denotes whether it is a scalar
value, an array or a matrix [21].

3.2.1.1 LabVIEW FPGA

In order to program the FPGA, the LabVIEW FPGA module is used. Lab-
VIEW FPGA programming interface is similar to usual LabVIEW programming,
although there are some differences. The more notable difference in regards to
this project is the lack of floating point numbers, no complex numbers, no divi-
sion and no modulus operator [22] in LabVIEW FPGA. One central component
in LabVIEW FPGA is the Single Cycle Timed Loop (SCTL). It’s guaranteed to
execute one loop iteration in one clock cycle, compared to a normal while loop
which will take 3 clock cycles to execute one loop iteration [23].

In order to run an FPGA VI, is it first compiled to a bitfile, which loaded
onto the FPGA from a VI running on a host computer. In this project, the host
computer is connected to the USRP via a PCIe-cable as illustrated in Figure 3.4.

USRP
Host
computer

PCI Express
connection

Antennas

Figure 3.4: The hardware setup used

3.2.1.2 Communication between host computer and FPGA

Data can be transported between the host computer and the FPGA in two ways,
either by using front panel controls and indicator on the FPGA VI, and write
to/read from these on the host, or to use DMA FIFOs. There are three types of
FIFOs:

• Host-to-target, used to stream data from the host computer to the FPGA

• Target-to-host, used to stream data from the FPGA to the host computer

• Target-scoped, used to stream data inside the FPGA, eg. between two
parallel running loops

Figure 3.6 shows an example where data is read from the host and written to a
target-scoped FIFO in the upper SCTL, and is read from a FIFO and written to
the host using a target-to-host FIFO in the lower SCTL. One of the features of
target-scoped FIFOs is that they can transport data between SCTLs with different
clock rates [24].



Tools overview 23

Figure 3.5: Example showing the use of FIFOs

3.2.1.3 Storing and accessing data inside the FPGA VI

For data that needs to be accessed from a sequence arbitrarily and not in a se-
quential manner, the preferred method is to use memories. Memories can either
be implemented in block memory or by using the LUTs, depending on size of the
memory and whether the memory needs to be accessed from different clock do-
mains [25]. If the memory is implemented in block memory, it takes a minimum
of one iteration to read from the memory whereas memory implemented in LUT
doesn’t have this latency. Below is an example of an FPGA VI where data is read
from a memory from the indices 0 . . . 9 and written to a target-scoped FIFO.

Figure 3.6: Example of reading from a memory in LabVIEW FPGA
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Chapter 4
Proposed implementation

In this chapter the FPGA implementation of the cross-correlator at the receiver,
for both Zadoff-Chu sequences and m-sequences, as in (2.26) is described. Since
the sequences are transmitted continuously from the transmitter, the cross corre-
lation in this application is equal to circular cross correlation.

4.1 General approach

One important constraint of FPGA development is that the FPGA has limited
space for programming logic, meaning that the number of operations that can be
performed in parallel on the FPGA is limited. In order to be able to handle long
sequences, the circular cross-correlation needs to take up a small amount of the
available resources, even when the sequence length N is large.

Thus, if we want to be able to perform circular cross-correlation for sequences
of arbitrary lengths, we need to implement it in such a way that the number of
operations needed to be performed in parallel does not increase as the sequence
length, N , increases. The algorithm for achieving this is described the example
below.

If we take, for example, the m-sequence x1 = x2 = (1 −1 1) the circular
cross-correlation equals

x1(3)× x2(1) + x1(2)× x2(2) + x1(1)× x2(3) = 1× 1 + (−1)× (−1) + 1× 1 = 3
(4.1)

x1(3)× x2(3) + x1(2)× x2(1) + x1(1)× x2(2) = 1× 1 + (−1)× 1 + 1× (−1) = −1
(4.2)

x1(3)× x2(2) + x1(2)× x2(3) + x1(1)× x2(1) = 1× (−1) + (−1)× 1 + 1× 1 = −1
(4.3)

If we imagine a scenario in which the transmitter transmits x1 repeatedly, and
that x1 is known at the receiver as x̂ and the receiver receives exactly the same, dis-
crete values that are transmitted, the received values will be . . . 1 −1 1 1 −1 1 . . ..
This scenario could obviously never occur, as explained in chapter 2, but it will
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do as a model for describing our implementation.

Let the received samples be r = 1 −1 1 1 −1 1 1 −1 . . . and x̂ = (1 −1 1).
N = 3 denotes the length of x̂. τ denotes the number of samples x̂ is shifted,
sum−1 = 0 and i = k + τ mod N . For the first iteration τ = k = 0 and k is
incremented by 1 after each processed sample. In order to calculate the circular
cross-correlation for one period, the following steps are executed.

The following is done in order to calculate (4.1).
For the first received sample r0 = 3, take sum0 = sum−1 + r0× x̂i = 0 + 1× 1 = 1.
For the second received sample r1 = 2, sum1 = sum0 + r1× x̂i = 1 +−1×−1 = 2.
For the third received sample r2 = 1, sum2 = sum1 + r2 × x̂i = 2 + 1× 1 = 3.

In order to calculate (4.2), τ is incremented in order to induce the shift in x̂.
τ = 1 and k is reset to 0.
For the fourth received sample r4 = 3, take sum0 = sum−1+r0× x̂i = 0+1×−1 =
−1.
For the fifth received sample r5 = 2, sum1 = sum0 + r1 × x̂i = −1 +−1× 1 = −2.
For the sixth received sample r6 = 1, sum2 = sum1+r2×x̂i = −2+1×1 = −1 = -1.

The calculations are done in the same manner for (4.3), where τ = 2 and
k = 0.
For the seventh received sample r7 = 3, take sum0 = sum−1+r0×x̂i = 0+1×1 = 1.
For the eighth received sample r8 = 2, sum1 = sum0 + r1 × x̂i = 1 +−1× 1 = 0.
For the ninth received sample r9 = 1, sum2 = sum1 + r2 × x̂i = 0 + 1×−1 = -1.

This concludes Rx1,x2
(τ) for 0 ≤ τ ≤ N − 1. In our implementation, the

algorithm then starts over from τ = 0 as we continuously perform circular cross-
correlation of the received signal.
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4.2 LabVIEW implementation

The LabVIEW implementation of the algorithm is based on the "NI-USRP Stream-
ing" example project that is bundled with LabVIEW, and the FPGA portion is
heavily based on the "Streaming (Xcvr)" VI, which in its original state configures
the USRP for receiving and transmitting on a specified center frequency, and the
received samples are passed on directly to the host computer using two target-to-
host FIFOs.

Our implementation is based on this VI, and the received samples are sampled
from the radio interfaces at RF0 and RF1 inside a SCTL, and written to two
target-scoped FIFOs instead, as seen in Figure 4.1, for further processing on the
FPGA. The I- and Q-components are quantized by 16 bits, and merged into one
32-bit integer with the I-component in the lower bits and the Q-component in the
higher.

Figure 4.1: Samples being written to FIFOs from a SCTL loop where
the blue wire is a 2x1 array containing one sample from RF0
and one from RF1

For the correlator SCTLs to begin executing, it requires knowledge of a few
values, the type of sequence, the length of the sequences and the sequences them-
selves. Thus, before the correlator SCTLs start executing, these values are supplied
to the FPGA from the host. The type of sequence and the sequence length is writ-
ten to the FPGA from the host using Front panel indicators on the LabVIEW
FPGA VI and the sequences are written to the FPGA from the host using two
host-to-target FIFOs.

On the FPGA VI, the Front panel indicators storing the sequence length and
type of sequence, both have a default value of 0. Before the SCTLs performing
the circular cross-correlation is executed, the FPGA application waits for these
values to be defined, as seen in Figure 4.2. The loop will exit when the values in
the indicators are no longer 0.
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Figure 4.2: The loop that waits for the type of sequence and se-
quence length to be specified from the host

After Figure 4.2 have exited, the contents of the FIFOs storing s0 and s1 are
written to two memories each, one to be used in the SCTL performing the circular
cross-correlation for the samples from RF0, and one to be used in the SCTL for
the samples from RF1.

The samples in the sequences are represented by one unsigned 64-bit integer.
In the case of the Zadoff-Chu sequence the real and imaginary part of each element
is represented as 32-bit integers and merged into a unsigned 64-bit integer with the
real component in the higher bits and the imaginary component in the lower. In the
case of the m-sequence, each element of the m-sequence is represented as a 32-bit
integer and written to both the higher and lower part of a 64-bit unsigned integer.
After the sequences are taken from from the FIFOs and stored in the memories,
the SCTLs that performs the circular cross-correlation starts executing.

4.2.1 Correlator loops

The circular cross-correlation is performed in two SCTL, one for the samples at
RF0 and one for the samples at RF1. The implementation of the two SCTLs are
nearly identical, they only differ in which FIFO they read the received samples
from. Each of the SCTLs circularly cross-correlates the received samples with
both of the transmitted sequences, s0 and s1, and they functions as follows.

For every iteration, one element from the FIFO containing the received samples
is read as a 32-bit unsigned integer. As mentioned in section 4.1, the I- and
Q-components are represented by one 16-bit integer respectively, so the integer
from the FIFO is split up into I- and Q-components as 16-bit integers. These
are multiplied with the corresponding element in s0 and s1. The way that the
multiplication is done differs depending on whether the sequence used is an m-
sequence or a Zadoff-Chu sequence. In the case of an m-sequence the I- and
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Q-component is simply multiplied with the corresponding element in s0 and s1
as seen in Figure 4.3a. In the case of the Zadoff-Chu sequence the I- and Q-
component are treated as the real and imaginary part of a complex number, which
is multiplied with the conjugate of the corresponding element in s0 and s1 as can
be seen in Figure 4.3a.

(a) Multiplication for Zadoff-Chu sequence

(b) Multiplication for m-sequence

Figure 4.3: The multiplication for different sequence types

The resulting I-component is added to the sums of I-components from the
previous iteration, as described in section 4.1 and the resulting Q-component is
added to the sums of Q-components in the same manner. If the calculations for
one value of τ is completed, the sums for the I- and Q-components are merged
into a 64-bit integer and written to the host using a host-to-target FIFO, and set
to zero for the next loop iteration. A flow chart of the implementation of circular
cross-correlation with one sequence s can be seen in Figure 4.4. Each correlator
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loop implements Figure 4.4 for both sequences s0 and s1 in parallel.
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Figure 4.4: A flow chart describing the loops performing circular
cross-correlation, where s is the sequence stored on the FPGA
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4.2.2 Resource utilization and scaling

Figure 4.5a shows the device utilization for the original "Streaming (Xcvr)" VI,
and Figure 4.5b show the device utilization with our additional processing. As can
be seen, the device utilization has increased slightly, but lack of device resources
is no issue.

Figure 4.5

(a) Device utilization of the original "Streaming Xcvr (FPGA)" VI

(b) Estimated device utilization after the correlation were added

One of the most notable increase is from 11.2% to 16.9% for LUTs (Lookup ta-
bles). The reason for this is that the memories that is used to store the sequences
s0 and s1 on the FPGA are implemented in Lookup tables, meaning that they
also consume resources that could be used for programming logic[25]. This could
pose a problem since an increase in the number of sequences used also leads to an
increase in the number of memories needed by one memory block per correlator
loop. It could also be a problem if the sequence lengths increases dramatcially,
since that would require larger memories. One way to remedy this is to implement
the memories in block memory instead of Lookup tables, since block memory does
not use programming logic for storage[25].

Since every correlator loop implements Figure 4.4 once per transmitted se-
quence, the number of performed operations, Figure 4.3b and Figure 4.3a, between
the received sample and the corresponding elements in the stored sequences si will
increase with linearly with an increased number of transmitted sequences. This
will cause problems as the number of sequences used increases, as the number
of DSP slices used for operations such as multiplication and addition (listed as
"DSP48s" in Figure 4.5) is limited.

The issue of storing the sequences on the FPGA could possibly be circumvented
by letting the FPGA itself generate the elements of the sequences. The generation
of m-sequences is well suited for implementing on an FPGA, since the operations
required are quite simple. It might prove more difficult to generate a Zadoff-Chu
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sequence, since the there are no floating point numbers and no exponential function
ex available in LabVIEW FPGA.
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Chapter 5
Validation of the implementation

5.1 2-path channel

In order to verify that the implementation is correct, a simulated 2-path channel is
created. This is done using two USRP:s, one as transmitter and one as a receiver.
First, the devices transfer function is calculated and stored, then one of the trans-
mit ports on the transmitting USRP is connected to a power splitter, and from
the power splitter, a 0.5 m cable is connected to a power combiner, and between
the remaining ports on the power splitter and power combiner, a approximately
30 m long cable is connected. The power combiner is then connected to the receiv-
ing USRP, and an m-sequence is transmitted. The 2-path channel is sounded by
cross-correlating the received signal with transmitted m-sequence, on the FPGA,
and the result is saved to the hard drive, after the device transfer function has
been removed from the result.

USRP 1 USRP 2

30 m

0.5 m

Figure 5.1: The simulated 2-path channel setup

The sequence transmitted is an m-sequence of length 1023, the sample rate is
20 MHz, and the carrier frequency is 1.5 GHz. The result of the sounding can be
seen in Figure 5.2, and as can be seen there are two peaks. The first, and taller,
one is from the short path and the weaker, second one is from the longer path.
The reason why the second peak is weaker is due to the fact that the longer cable
attenuates the signal approximately 13 dB as can be seen from Figure 5.2. The
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(a) Normalized amplitude (b) Normalized amplitude (dB)

Figure 5.2: Snapshot of the estimated impulse response for a 2-path
channel, using a m-sequence of period 1023

difference in length between the cables, l, can be approximated by

l = vp ×
k

fs
(5.1)

where vp is the propagation speed of the signal in the cable, fs is the sample rate,
and k is the number of samples the second peak is delayed in relation to the first
peak. The propagation velocity vp is between 69 percent and 80 percent of the
speed of light depending on the material in the cable [26].

By looking at Figure 5.2 we can see that k = 4. This means that the difference
in length of the cables can be approximated to

l = 0.69× c× 4

20× 106
≈ 41m (5.2)

If we take into account the delay resolution ∆τ = 1
BW , the ambiguity of (5.2)

becomes
∆l =

1

BW
vp =

1

20× 106
× 0.69c = 10.34 m (5.3)

5.2 2x2 MIMO

In this example, a practical example of the MIMO channel sounding described in
section 2.5 is performed for the 2x2 MIMO case. The setup is using two USRPs,
one for transmitting and one for receiving. The sounding process is as follows, and
visualized in Figure 5.3

1. Cables are connected from RF0 and RF1 on the transmitter, to RF0 and
RF0 on the receiver, respectively. The sequence s1 is transmitted from
RF0, and s2 is transmitted from RF1. The receiver performs circular cross-
correlation on each received signal with the transmitted sequence, obtaining
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USRP 1 USRP 2

s1

s2

(a) Step 1

USRP 1 USRP 2

s1

s2

(b) Step 2

USRP 1 USRP 2

s1

s2

(c) Step 3

Figure 5.3: Visualization of the MIMO channel sounding process

hd11(t) and hd22(t) as described in section 2.5 and the results are saved to
the hard drive of the host computer.

2. The connected cables are crossed, so that RF0 is connected to RF1, and RF1
is connected to RF0. s1 and s2 is the transmitted, and the receiver performs
circular cross-correlation as previously, obtaining hd12(t) and hd21(t).

3. The cables are disconnected from one end, and antennas are connected on
the loose ends of the cables, and the antenna ports. s1 and s2 is transmitted
from RF0 and RF1, respectively, and the receiver performs circular cross-
correlation on the FPGA, for each received signal with both s1 and s2 as
described in (2.26).

In these three stages, it is important that the USRPs is not power cycled be-
tween the steps, which would result in the transfer function of the system changing.
To counter this, the sounder was implemented to be able to do multiple soundings
without needing a restart.

Measurements are made using both Zadoff-Chu sequences and m-sequences. In
the case of Zadoff-Chu sequences the sequence parameters is k1 = 23, N1 = 1023,
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k2 = 37, and N2 = 1023. For the m-sequences the length N = 1023 is used, and
s2 is shifted 511 samples in relation to s1. In each case, N × 5 = 5115 samples are
saved.

In Figure 5.4a and Figure 5.5a the estimated channel impulse response ĥchan11 (t, τ)
is presented, and it is obtained in the following way. The first 1023 samples
from the systems impulse response hd11(t) is removed from the impulse response
htot11 (t, τ) obtained in step 3 in Figure 5.3 by deconvolution according to

ĥchan11 (t, τ) = F−1
[
F [htot11 (t, τ)]

F [hd11(t)]

]
. (5.4)

The following 4 ∗ 1023 samples are treated in the same way, creating the graphs
seen in Figure 5.4a and Figure 5.5a.

For the m-sequences, as explained in subsection 2.4.2, the expected results
are two peaks for each N = 1023 number of received samples with one peak 511
samples after the first peak. This is due to the sequence transmitted from the
second antenna is delayed 511 samples in relation to that transmitted from the
first antenna, as well as the cross-correlation properties of m-sequences explained in
subsection 2.4.2. Our estimated channel impulse response when using m-sequences
can be seen in Figure 5.4a, where there are two peaks per N samples. Since we
capture 5 × N = 5115 samples, the plot shows 10 peaks. By analyzing the plots
in MATLAB we are able to see that the peaks are 511 samples apart.

For the Zadoff-Chu sequences the expected result is one peak per N samples,
since the transmitted sequences are two different Zadoff-Chu sequences. The peak-
to-average ratio of the cross-correlation of two different Zadoff-Chu sequences is
1√
N

as seen in subsection 2.4.1. As seen, our estimated channel impulse response
when using Zadoff-Chu sequences presented in Figure 5.5a matches the expected
result of one peak per N samples, as we capture N ∗ 5 = 5115 samples.

Figure 5.4b and Figure 5.5b shows the estimated channel impulse response
ĥchan11 obtained by circularly cross-correlating the systems estimated impulse re-
sponse with the estimated total impulse response. As described in section 2.5,
deconvolution and circular cross-correlation yields the same result when the se-
quence is a Kronecker delta. Since our channel is subjected to noise and interfer-
ence between the transmitted sequence, the estimated channel impulse response in
Figure 5.4b and Figure 5.5b will not be of the same quality as when deconvolution
is used. When the channel impulse response is estimated using m-sequences, the
result matches the result obtained from the deconvolution fairly well. We attribute
this to the fact that the interference between the two m-sequences is zero at all
points except for 511 samples after the initial peak. For Zadoff-Chu sequences,
the interference between the two transmitted sequences is constant at a ratio of
1√
N
, making the channel impulse response that is estimated using circular cross-

correlation look quite from that estimated using deconvolution. As can be seen
from Figure 5.5b and Figure 5.5a, while Figure 5.5b do contain the expected 5
spikes it also contains e.g. one unexplained −30 dB component.
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(a) The estimated channel impulse response with the systems impulse response re-
moved by deconvolution

(b) The estimated channel impulse response with the systems impulse response re-
moved by cross-correlation

Figure 5.4: MIMO sounding using a m-sequence of period 1023
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(a) The estimated channel impulse response with the systems impulse response re-
moved by deconvolution

(b) The estimated channel impulse response with the systems impulse response re-
moved by cross-correlation

Figure 5.5: MIMO sounding using a Zadoff-Chu sequence with N =
1023, k1 = 23, k2 = 37



Chapter 6
Conclusion

In this thesis, a 2x2 MIMO channel sounder implemented in LabVIEW FPGA
have been proposed and evaluated. A few different approaches were tried dur-
ing the development, in order to make the FPGA implementation possible. The
channel sounder was implemented for two different types of sequences, Zadoff-Chu
sequences and m-sequences. This was useful both for evaluating the sounder it-
self and also to evaluate and compare the sequences themselves, and their channel
sounding properties, but required a more advanced implementation to work on the
USRP. In the end, the sounder produced a consistent result, using deconvolution,
for both Zadoff-Chu and m-sequences as can be seen in Figure 5.5a and Figure 5.4a
respectively.

Overall, both sequences resembles the expected results, the floor of the Zadoff-
Chu sequence in Figure 5.5a is slightly higher than that of the m-sequence in
Figure 5.4a and this can most likely be attributed to that in addition to the
noise, the Zadoff-Chu sequence transmitted from one antenna also suffers from
interference from the Zadoff-Chu sequence transmitted from the other antenna
with a factor of 1√

N
as mentioned in subsection 2.4.1. With the throughput and

accuracy of the sounder, along with the implementation of both sequences, the
goals stated in section 1.2 were eventually reached.

6.1 Future work

This thesis implements a relatively basic MIMO channel sounding and has room
for improvement and expansion. Currently, few antennas and few sequences are
used and an interesting continuation would be to significantly increase the num-
ber of transmit antennas and the number of different sequences, especially with
regards to Zadoff-Chu sequences. Both to see how the FPGA implementation
handles the increased demands, and also how the Zadoff-Chu sequences performs
as the number of sequences increases. Adding the capability of cycling between
transmitting and receiving automatically would make for a more flexible channel
sounder. In addition, GPS could be used to synchronize the local oscillators of
multiple USRP:s, as well for deciding when one USRP should transmit and receive.
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In terms of sequences used for the sounding, there are more than the m- and
Zadoff-Chu sequences that was not used at all in this thesis. Gold codes and
Kasami sequences could have been evaluated and compared as well. As for the
hardware, the sounding in this thesis was carried out over short range and with
stationary USRPs. The sounding could be also performed over longer distances
with stronger antennas and the USRPs placed on moving vehicles. Further, the
FPGA application could be extended to remove the system transfer function from
the total transfer function, something which is currently done on the host com-
puter.

6.2 Issues encountered

A Zadoff-Chu sequence consist of complex numbers where the real and imaginary
components are floating point numbers are bounded by [−1, 1]. Since LabVIEW
FPGA doesn’t support floating point number, one need to be careful when con-
verting the Zadoff-Chu sequence to integers, so that no precision is lost, as that
will influence the auto- and cross-correlation properties of the sequence. It is un-
clear if the conversion really is the source of the errors we experienced, since the
error should be very low for that conversion, so it is a possibility that the problems
were due to a bug in our implementation.

Our initial LabVIEW FPGA implementation had some issue. The sequences
was written to the FPGA in the same way as in chapter 4, and the received sam-
ples were written to FIFOs. These FIFOs were read from in another SCTL. In
the SCTL, the received samples were buffered in an N -length array. In every
iteration, the buffered array and the sequence were multiplied element wise, and
the elements in the resulting array were added. In the next iteration, the ele-
ment from the receiver was pushed onto the buffered array, and the last element
discarded. There are several issues with this approach, which ultimately lead us
in a different direction which resulted in the implementation described in chap-
ter 4. Since LabVIEW FPGA doesn’t support variable length arrays, the length
of the sequence had to be hardcoded into the VI meaning that for each sequence
length one individual bitfile would be needed. It is also troublesome for LabVIEW
FPGA to handle large arrays. While the implementation worked for sequences of
shorter length (eg. 63), it became problematic when moving to longer sequences,
as in the synthesis step of the compilation the FPGA would run out of DSP-slices
from performing all of the multiplications. The compile process also took quite a
long time (a few hours). This, combined with our lack of experience with FPGA
programming and LabVIEW FPGA, made for quite a slow development process.
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