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Abstract  
 

This report describes a solution to manage distributed resources (audio, 

video, metadata etc.) in a camera surveillance system. Based on the 

problem definition, a set of requirements was defined. These will lead the 

search for a network solution to handle the storage and communication 

autonomously by the participating nodes. Different network solutions were 

investigated and compared to the requirements, and one was selected to 

further study. To meet the requirements, the protocol was improved by 

various overlays. Finally, a test to confirm the fault tolerance of the system 

was done in a virtual environment.  
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CHAPTER 1 
 

 

1 Introduction 

Axis Communications AB is an IT company that specializes in developing 

and producing network cameras and network video surveillance solutions. 

The usages and demands of the surveillance cameras are growing rapidly 

year by year. There were already 5.9 million closed-circuit television 

cameras in England in 2011. IP cameras are widely used in schools, 

shopping malls, and museums [1]. In the studied network solution, the 

cameras are storing resources in one or several central servers. Any failures 

in the servers may prevent the user to retrieve the resources. Hence, a 

smarter solution is needed.  

 

The design of our thesis is based on a decentralized network, where 

resources are divided and distributed over the network. We need to find a 

solution to store and efficiently retrieve resources in a secure environment.   

 

1.1 Outline 

 

The thesis will begin with an introduction to the area, and a problem 

description, followed by a set of requirements. Then the approach will be 

described, together with all necessary theory. We will then continue to 

describe our system choices and how we designed the solution by following 

the requirements. The testing of the system and the result of this will 

conclude our project, together with a discussion of the result.  
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CHAPTER 2 
 

 

2 Description 

2.1 Problem Definition 

 

The surveillance system studied consists of a network of nodes (IP cameras, 

servers, and clients). Every node has a unique id, the NodeID, to 

communicate over the network. Resources in the network are audio, video, 

and metadata files. These could be stored in different locations, as 

described in Figure 1.  

 

 
 

Figure 1. The resources could be distributed in many locations. 
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In the existing system, the resources are stored either locally on a camera 

and/or centrally on a server or NAS. If a node leaves the system or if the 

server connection is lost, some information will be unreachable. A possible 

scenario could be when a camera is located on a moving vehicle, for 

example on a bus, and the network signal is lost. A camera that usually 

stores resources on a server can now not reach the network, resulting in 

resources instead to be stored locally on the camera. The video will now be 

stored in different locations, causing video fragmentation. The fragments of 

the video need to be found and assembled in an efficient way. 

 

The goal is to find a way to keep track of the distributed resources in the 

network, without the need of a central server. The proposed solution should 

include efficient search methods for resources in the network, and efficient 

retrieval of these when needed. All resources in the network should be 

available, and should be searchable in an efficient way. Since data could be 

fragmented, it should be possible to assemble the data throughout the 

network. The event of communication failure and/or data loss should be 

considered. The choice of method should meet the security aspects, as well 

as the synchronization requirements. Other aspects to consider are lifetime 

management and resource conflict resolution.  
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2.2 Use Cases 

 

1. A user should be able to stream video from any chosen camera. 

2. A user should be able to search for data (audio, video, metadata) in 

the network efficiently (           or better). 

3. A user should be able to retrieve data (audio, video, metadata) in the 

network efficiently (           or better). 

4. A user should be able to search for data without any knowledge 

about the underlying structure. 

5. A user should be able to find data by knowing either the camera’s 

name or location, and the desired time frame. 

6. A camera should be able to record video and save information to 

another node. A user searching for the data can then connect to 

either of the nodes, to acquire the data.  

7. A user should be able to find data even if a node crashes.  

8. Two users should not be able to change the same file 

simultaneously. 
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2.3 System requirements 

 

The following requirements of the system are specified based on the use-

cases and on the background and goal of the thesis. 

 

1. Storage management: Should be possible to handle all resources 

(audio, video and metadata) in the system. 

2. Availability: Resources should be available. 

3. Autonomous: The nodes should handle the communication and 

network organization themselves, without the need of a central 

communication point.  

4. Efficient search of distributed resources. 

5. Efficient retrieval of distributed resources. 

6. Fragmentation: Fragmented resources should be possible to 

assemble. 

7. Scalability: The solution should work for both small and large 

networks. 

8. Load balancing: Preventing bottlenecks in the system 

9. Reliability & Fault resiliency: The system should be able to handle 

node crashes and communications failures.  

10. Lifetime management: Files should be removed after a beforehand 

specified time. 

11. Resource conflict resolution: Handle simultaneous user access to 

files. 

12. Security: Prevention of attacks and security flaws in the system. 
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CHAPTER 3 
 

 

3 Approach 

The project started with an investigation of an existing system, and research 

in the area of data storage and network solutions. The studied surveillance 

system consists of IP cameras, servers, and clients connected in a network. 

These could communicate over LAN, WAN or over the Internet, and videos 

can be streamed directly from a browser. To manage the recordings, a 

Video Management Software (VMS) is used. Depending on the demands of 

the user and on the size of the network, different VMS:s could be installed. 

Axis has three VMS solutions; AXIS Camera Companion (ACC), AXIS 

Camera Station (ACS), and Hosted video (cloud services). ACC is designed 

for small networks of 10 cameras or less, and stores resources either locally 

on the cameras SD cards or centrally on a NAS. ACS stores on an on-site 

server, and is made for networks with 50 cameras or less, and the hosted 

video solution is based on cloud storage. [2] 

 

The local storage solution on a camera's SD card, also known as the edge 

storage solution, works as a backup system if the normal storage solution is 

not available. It can record temporarily, and when the storage on server is 

available again it can switch back. The videos can later be retrieved and 

merged together. This is the normal procedure when cameras are remotely 

located, or intermittently connected to a network. [3] 

 

Since resources could be spread out in several locations depending on the 

network conditions and the storage solution chosen, we will assume 

henceforth that the data is arbitrarily distributed on the network. This is not 

always the case, but our solution should also be able to handle the worst 

case scenario. In our approach, we chose to divide the project into three 

sections; storage solution, resource management and security. However, 

this is not a strict division and the different sections will overlap over time. 

We begin by investigating existing network structures, and compare these 

to the requirements on the intended system. 
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3.1 Cloud 

 

The first possible solution we investigated is cloud computing. Many 

companies offer different cloud services for various needs (see Figure 2). 

In the Infrastructure as a Service (IaaS) model, service providers, e.g. 

Amazon Elastic Compute Cloud, offer physical or virtual machines for 

server, storage, and networks solutions. In the Platform as a Service (PaaS) 

model, users can develop and run their own software on the existing 

platform. The operation system, database, and server are handled by a 

service provider, e.g., Google App Engine. The Software as a Service 

(SaaS) model delivers services that include management of the computer 

infrastructure and platform. Users can simply install applications on their 

own computers and get access to the service.  

 

 
Figure 2. Cloud services on different layers 

 

Cloud computing can handle all resources in the system. The customer can 

get access to the service anytime and everywhere as long as there is an 

internet connection. On the other hand, this is also a limitation. If the 

internet connection is down, we will lose connection to the previous saved 

resources, and live streaming will be unavailable. Hence, this will have the 

same limitation as in the server solution. Cloud computing is very scalable, 

and supports on-demand services. Resources are available when customers 

need it, and customers always pay for the capacity that they are actually 

using.  In other words, customers get “unlimited” storage. Compared to the 
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system requirement, cloud is still a very suitable solution. Another 

advantage is that cloud computing replicates the data to reduce the 

possibility of data loss. However, there are security considerations, for 

example if we can trust a third party. There could be sensitive information 

that is stored in the system; therefore privacy is a very important issue. 

There is a central communication point on the service provider, but not at 

the customer’s location. If the service provider’s central communication 

point is under attack, the software and all the data can be lost. In our case, 

cloud computing can be used as a backup solution. [4] 

 

3.2 Peer-to-peer (P2P) networks 

 

In a peer-to-peer (P2P) system, the participating nodes are responsible for 

all network operations. Instead of a central communication point, the nodes 

acts as both server and client, communicating directly to each other. This 

increases the performance on the network. All nodes have knowledge of a 

subset of other nodes, connected to the network over logical links. This 

creates a P2P network topology, built on top of the physical layer. Two 

main typology types exist; unstructured and structured. Structured networks 

have, in contrast to unstructured networks, an underlying topology to 

organize the nodes. [5] 

 

3.3 Ad-Hoc 

 

The ad-hoc network is based on P2P communication using WiFi 

technology without an access point. In another word, all devices can 

communicate directly with each other. It does not need any infrastructure 

therefore the network can be deployed simply. One device can quickly join 

the ad-hoc network which is located in its range with the condition that the 

device fulfills the security requirements. Nodes in the network work as 

routers and terminals. Sometimes it is impossible to connect to the 

destination directly; therefore traversing multiple links to reach the 

destination is needed, see Figure 3. If device A wants to communicate with 

device B and the channel between A and B is not available, then device A 

should go through device C to B, that is A→C→B. There are many routing 

protocols for the ad-hoc network and all of them rely on the forwarding 

paradigm, e.g. if a node receives a packet that is not belonging to it, it will 

forward the packet according to the routing protocol. [6] 



 14 

 
 

Figure 3. A simple Ad-Hoc network. 

 

 

One variant of ad-hoc network is Mobile ad-hoc network (MANET). 

MANET is a self-forming and self-healing network. All nodes in the 

network are allowed to move around freely inside the network range. Thus, 

MANET needs an efficient routing algorithm, since the topology changes 

every moment. [7] 

 

Nodes in an ad-hoc network are autonomous and this solution works for 

both small and large networks. However, the bit rate is limited. In a 

surveillance system which handles large amount of data, this is a major 

drawback. Also, due to that devices can join and leave an ad-hoc network 

relatively easy, the network is vulnerable if an attacker is inside the network 

range. Possible attacks are for example Denial of Service, signaling attacks, 

and flooding attacks. 
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3.4 WirelessHART 

 

WirelessHART is a sensor network that is a wireless version of the 

“Highway Addressable Remote Transducer” (HART) protocol. It is a mesh 

architecture, where the nodes are self-organizing and act as routers for other 

nodes. It is easy to add and remove nodes, and messages can be forwarded 

as long as the devices are within range of other nodes. Often several 

different routing paths exist, and if one path fails another one can be chosen 

instead. [8] 

 

This fits well to our requirements, since it is an autonomous architecture 

with self-healing properties. But it also has some drawbacks. 

WirelessHART operates on the 2.4 GHz radio band, the same as WLAN 

and Bluetooth. This could sometimes cause interference problems, resulting 

in increased packet loss if not configured properly. It also uses Direct 

Sequence Spread Spectrum (DSSS) and Offset-Quadrature Phase Shift 

Keying (OQPSK) modulation techniques, allowing a bit rate of 250 kbit/s. 

This is a very low bit rate, considering video streaming. WirelessHART is 

also vulnerable to denial-of-service (DoS) attacks. [9] 

 

Hence, WirelessHART does not suit the requirements defined of our 

system. We therefore chose to look for other solutions.  

 

3.5 DHT 

 

A Distributed Hash Table (DHT) is a structured overlay network which 

provides efficient lookup services for participating nodes. In contrary to an 

unstructured network, the DHT structures the nodes in an organized 

topology where each member receives a unique NodeID. A structured 

solution has good scalability. No central server is needed, since all the 

nodes handle the network organization autonomously (self-organizing). 

Every node in the network is responsible for certain keys, which maps to 

values. When a file is requested, the lookup service maps the file to a node 

by a key. A key is a hash value of information about the file; the name, 

location, description and/or other data to identify the file. If the key is not 

present within the node itself, the request is forwarded to a node closer to 

the destination. If a node on the path fails, the lookup should still be 

possible using a different route or another node where the data is replicated. 

http://en.wikipedia.org/wiki/Highway_Addressable_Remote_Transducer_Protocol
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DHT:s provide efficient searching, and has high scalability. It also provides 

a natural load balance when using a fair hash function. [10] 

 

A DHT design can be divided into two general parts; routing-level and 

system-level design. On the routing-level, the routing behavior of the 

system is defined. Neighbors and routes are selected to form a routing table, 

based on latency (proximity) or other criteria such as hop count or 

geographical location. The flexibility in this selection is based on the 

underlying structure and the routing algorithm. All other higher design 

decisions are defined on system-level. [11] 

 

Various routing algorithms can be chosen when creating a DHT-system. 

Each with a routing behaviour that often could be interpreted geometrically. 

Rings, tree-like structures and hypercubes are all examples of geometries 

used in DHT-systems. Hybrids of these structures are also common. In a 

ring, the nodes are distributed in a one-dimensional circular network. Chord 

is an example applying this structure. In a tree-based structure, each node 

represents a leaf in a binary tree. The distance between two nodes is the 

same as the number of bits where the identifiers differ, and each hop will 

correct one bit at a time. In a hypercube, every node “owns” a certain zone 

in the network. The distance between each node is similar to the tree, but 

each bit in the identifier will be corrected in any order. Depending on the 

choice of underlying geometry, the flexibility and routing performance will 

differ. [11]  

 

In the following section, different DHT protocols will be discussed in more 

detail.  

 

3.5.1 Chord 

 

Chord is a protocol for a DHT network. It was developed by MIT and 

presented in 2001. Chord uses a ring structure which makes it easy to set 

up, and the search algorithm is efficient. Like other DHT protocols, Chord 

has no central node, and the system work load is distributed among the 

nodes. The latency in a chord network is scalable; lookup cost is always log 

of the number of nodes. In an N-node system, the lookup cost is in average 

         . Chord uses consistent hashing, with the base hash function 

SHA-1. Consistent hashing ensures that each node only handles a limited 

part of the network, and provides load balance to the network using a fair 
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hash function. Keys and values are stored in their associated nodes, and are 

distributed over the network. A key’s identifier is the hash value of the key 

itself. Chord has flexible naming, so the name of the key can include much 

information like location name, date, company name etc. A nodes identifier 

is the hash value of the IP-address. All nodes and keys are placed in an 

identifier circle. SHA-1 gives a 160-bit identifier space which allows the 

network to have      nodes.  Every node only has knowledge about a 

limited part of the network, so the request will be forwarded until it reaches 

the certain node. The routing table is called finger table and the size of the 

finger table is defined by the user. Each node has one or several 

predecessors and successors. The predecessor is the previous node and the 

successor is the immediately succeeding node in the identifier circle. In a 3-

node system, node_1, node_2 and node_3 are placed clockwise. Node_1 is 

the predecessor of node_2, the node_3 is the successor of node_2, node_3 

is the predecessor of node_1 etc. Successors in Chord are also sequential 

neighbors, because of the underlying unidirectional structure. Sequential 

neighbors secure that the message is sent to a node that is nearer to the 

destination. This increases the static resilience of the system, but it can lead 

to higher latency due to longer path ways. Thus, it is up to the user to 

decide what is more important. Is it more important to have more sequential 

neighbors to reach a higher resilience to path failures, or to have less 

sequential neighbors to get lower latency? [12] 

 

3.5.2 Kademlia 

 

Kademlia is a DHT protocol based on XOR (bitwise exclusive or) 

geometry. It uses the XOR metric to calculate the distance between keys, 

making it a symmetric communication between the nodes. 

 

               (1) 

 

The distance from node A to node B will then be the same as from B to A. 

Kademlia can then choose the best path by selecting the preferable route 

based on e.g. latency. Every node in the network keeps a list (called k-

bucket) with information about nodes of distance between    and      from 

itself. It is sorted by recency, with the most recent contacted nodes at the 

end. The k-bucket will be updated every time a new message is received. 

One property of the k-bucket is that the nodes on the top have been alive 

the longest, and will have higher probability to remain alive. The list is also 
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limited in size and only inserts new nodes when old ones leave the system, 

preventing malicious attackers from flooding the system with new nodes 

(making it resistant to certain DoS-attacks).  

 

Kademlia uses four commands; FIND_NODE, FIND_VALUE, PING and 

STORE. FIND_NODE is used to find the location of the node responsible 

for a certain NodeID. FIND_VALUE behaves like FIND_NODE, but 

returns the value if this is stored on the location. PING is used to verify that 

a node is still alive, and STORE saves a <key, value> pair on a node. Each 

command includes a random value to connect a response to a request.  

 

To find a node, Kademlia sends parallel and asynchronous FIND_NODE 

requests to selected nodes in the k-bucket. It continues to send requests to 

known nodes until a specific number of nodes closest to the destination 

have responded. Kademlia can then choose a route among these to forward 

a request to. To keep the k-bucket updated, node searches are sent 

periodically to idle nodes. [13] 

 

3.5.3 CAN 

 

A Content-Addressable Network (CAN) is a DHT protocol with d-

dimensional coordinate space, similar to a hypercube, where each node is 

responsible for “zone” in the network. A zone is a part of the network 

containing a certain range of keys which are assigned to the node. Every 

node holds information about the neighboring zones, and messages are 

routed zone by zone until the destination node is encountered (see Figure 

4).  

 
Figure 4. A simple CAN network with d = 2. 
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The distance between two nodes is the same as the number of bits by which 

their NodeID differ. If a node with NodeID 1205 sends a request to NodeID 

1306, the distance between these would be 2.  Each hop on the routing path 

corrects one bit in the identifier, until it matches the destination. This could 

be done in any order, making it possible to find another path even if some 

nodes on the way fail. A CAN thus has high flexibility in route selection. 

The average routing path length of a CAN is    
 

 
   

 

  , where d is the 

dimension and N is the number of zones. Every node maintains    

neighbors, which means that the number of nodes can grow without 

increasing per node state.  

 

As seen in Figure 4, some zones are divided into smaller sections. When a 

new node joins, an existing zone will be divided and assigned to this new 

node. The neighbors of this zone will then be notified of the network 

change. If a node instead leaves, its zone will either be merged to create a 

valid single zone or handed over to the smallest neighbor. To keep 

information on the current network state up to date, every node periodically 

sends update messages to their neighbors. [14][15] 

 

3.5.4 Pastry 

 

Pastry is one of the DHT protocols that are based on a prefix-based 

tree/ring topology. Its network structure is a combination of tree and ring, 

also called a hybrid. Pastry uses SHA-1 as its hash algorithm. Each node 

has a NodeID which consists of 128 bits. Thus, the network can contain the 

maximum of      nodes. Similar to other DHT protocols, <key, value> 

pairs are stored in the nodes. Each node maintains a tree structured routing 

table, called a neighbor map, which leads a request to a destination digit by 

digit. Nodes forward the request to the node that has 1 or   bits more 

common prefix than the current node. A routing example is shown in 

Figure 5, where node_1234 sends a request to node_2443. 
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Figure 5. A routing example in Pastry. 

 

The routing table size has           rows and      columns, where   

is the number of nodes that is contained in the system. Leaf set stores 

NodeID and IP-address that is   nodes above and   nodes below. To reach 

the destination node, one need to route           hops in average. 

 

Pastry has the following Application Programming Interfaces (API):  

 

 NodeID = pastryInit(Credentials, Application): Used to join or start 

a network.  

 Route(msg,key): Routes the message to the given key.  

 Deliver(msg, key): Called when a message has arrived to the node 

responsible for the key.  

 Forward(msg, key, nextId): Called before the message is forwarded 

to the next node.  

 NewLeafs(leafSet): Changes the node’s leaf set. [16] 

 

3.5.5 Comparison 

 

After the investigation of existing network structures, some comparison and 

conclusions needed to be made. Which advantages and disadvantages are 

there in using a certain structure, and how does it fit with the defined 

requirements of our intended system? Is there an existing structure we can 

use, or take inspiration from, when creating our own?  

 

First of all, we looked at a cloud based solution. This is a very convenient 

solution with almost unlimited storage capacity, where it is possible to 

choose the service level needed. However, the user will pay for each 

amount of storage used, and will have to trust in a third party for keeping 
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the resources secure. It could still be a suitable solution, but because of our 

security requirements we chose to look for other possibilities. 

 

Next we investigated different peer-to-peer networks. These exist in two 

categories, unstructured (ad-hoc, WirelessHART, MANET) and structured 

(DHT). Every node act as both client and server for the other nodes, and all 

communication are handled by the nodes autonomously. It is a flexible and 

decentralized solution that fits well with our requirements. The structured 

solution also offers scalability, higher bit rates, load balance, and efficient 

lookup; which is exactly what we are looking for. The key benefits of using 

a DHT-system in our storage solution are:  

 

 Autonomous and decentralized system 

 Possible to manage audio, video and metadata   

 Efficient search 

 Efficient retrieval 

 Fault tolerant and reliable 

 Natural load-balance (keys are evenly distributed assuming a fair 

hash function) 

 High scalability 
 

Because of this, our next step was to take a deeper look at the DHT 

solutions. The different protocols, using various algorithms and geometries, 

were compared to find the most preferable one. Table 1 shows the result 

from the comparison, where   is the number of nodes/zones,   is the 

number of dimensions, and   is a small constant.  
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TABLE 1: COMPARISON OF THE DIFFERENT DHT PROTOCOLS. [10][17] 

 

 
Chord Kademlia CAN Pastry 

Architecture  Unidirectional 

circular network 

Network with 

XOR distance 

calculation 

One or several 

d-dimensional 

coordinate 

space(s) 

Plaxton-style 

global mesh 

network 

Geometries Ring XOR Hypercube Hybrid = 

Tree + Ring 

 

Flexibility FNS+FRS FNS+FRS (but 

with different 

path lengths) 

FRS FNS+ FRS 

(subtle) 

Natural 

support for 

sequential 

neighbours  

Yes No No Default routing: 

No 

Fallback routing: 

Yes 

Routing 

performance 
                    

   
   

 

 
    

 
 
   

           
 

Routing state                              
          

Lookup 

protocol 

Retrieves the 

value of key 

directly or a 

node closer to 

the destination. 

Matches key 

with NodeID. 

Retrieves the 

value of key 

directly or a 

node closer to 

the destination. 

Matches key 

with NodeID. 

A {key, value} 

pair matching a 

point in the 

coordinate 

space using 

uniform 

hashing. 

Matches key and 

prefix in NodeID 

with a node. 

Fault 

tolerance 

Failure in nodes 

will not cause 

network wide 

failure. Data 

replication 

consecutive 

among nodes 

provides 

redundancy. 

Application 

retries on 

failures. 

Failure in 

nodes will not 

cause network 

wide failure. 

Data 

replication on 

multiple nodes 

provides 

redundancy. 

Application 

retries on 

failures. 

Failure in nodes 

will not cause 

network wide 

failure. Data 

replication and 

responsibility 

among nodes 

provides 

redundancy. 

Application 

retries on 

failures. 

Failure in nodes 

will not cause 

network wide 

failure. Data 

replication on 

multiple nodes 

provides 

redundancy. 

Keeps track of 

different routes 

to each peer. 

Static 

resilience 

Best Good Better Good 
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The table shows the comparison of the different geometries and algorithms, 

but also the flexibility, performance and fault tolerance of the protocols. 

Flexibility is important, since it impacts the static resilience (i.e. the ability 

to route around failures) and latency of the system. A system could have 

flexibility in route selection (FRS) and in neighbor selection (FNS), 

depending on the average number of next-hop choices and the number of 

neighbor choices. A high FRS gives a better static resiliency, but a high 

FNS is more important for the latency. According to the table, the ring 

geometry has the best flexibility in both aspects. [17] 

 

Chord and the leaf set in Pastry naturally support sequential neighbors. This 

guarantees that a hop on a routing path makes progress towards all 

destinations. The ability to have sequential neighbors plays a crucial role in 

recovery algorithms, and it improves proximity and resilience. A higher 

number of sequential neighbors increases the ability to handle path failures, 

but at the cost of increased path stretch. [17] 

 

When looking at the routing performance, every DHT protocol studied is 

capable of an average path length of          . This is under the 

precondition that          in CAN. [18] 

 

All protocols are resilient to failures, and a node crash in the network will 

not cause network wide failure. Data replication is supported, adding 

redundancy to the system. When comparing the static resilience of the 

different protocols in [17], the ring network Chord showed the highest 

performance.  
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CHAPTER 4 
 

 

4 Structure and system design 

Based on the requirements, Table 1 and the comparison of the different 

protocols, the DHT Chord protocol was chosen for further investigation 

since it suits the requirements well. It is a simple structure with very high 

flexibility that is easy to build on top of. It has natural support for 

sequential neighbors, good routing performance, is scalable and has the best 

static resilience of the studied protocols. [17] 

 

4.1 Resource management  

 

According to the requirements, the system should be able to handle all 

resources; audio, video, and metadata. This should be done in an 

autonomous and decentralized manner. Chord provides this, with 

<key,value> pairs distributed among the self-organizing nodes. When used 

with a fair hash function which evenly distributes the keys, this will also 

provide a natural load balance. We choose to use SHA-256 hashing instead 

of SHA-1 that was originally used, since it provides a fair distribution of 

the resources and better collision resistance [26]. A key is allocated by 

hashing the value of the key itself, and is placed in the identifier circle. 

Since Chord has flexible naming, the key could be set to anything. In our 

solution, a reasonable key would be the camera name or location, and the 

time of which the video was recorded. 
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4.2 Consistent hashing 

 

Chord is based on consistent hashing, which makes it highly scalable. The 

consistent hashing utilizes a hash function that assigns keys and nodes. By 

using a good hash function, the keys will be evenly spread among the 

nodes. This also gives the network a natural load balancing. When  :th 

nodes join or leave the network, only        part of the keys need to be 

replaced. Each node only has knowledge of a limited part of the network, 

making node changes more manageable. Due to only the successors and 

predecessors of the altered node state is affected, only these will have to be 

notified of the change. This makes it possible for the protocol to be used in 

both small and large networks, with thousands of nodes. The ability to 

handle node changes also benefits the fault tolerance of the system, since a 

failure in a node will not cause network wide failure.  

 

4.3 Booting 

 

To start up a Chord system the following procedure is done: 

 

The boot peer gets a NodeID and 

the network is started. 
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1. The joining peer queries a 

JOIN request to the boot peer 

 

2. The boot peer sends a NodeID 

to the joining peer, in this case, 

the joining peer’s NodeID is 5 

 

3. The joining peer joins the 

identifier circle 

 

4. The joining peer sends a COPY 

ROUTING TABLE request to the 

boot peer 

 

5. The boot peer sends its finger 

table to the joining peer and 

updates its finger table 

 

6. The joining peer creates a 

finger table 

 

 

Since nodes have the same 

functionalities, node_10 and 

node_15 could query their 

requests to an arbitrary existing 

node. After that, nodes will finish 

joining process by following 

previous steps.  

 
 

[12] 
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4.4 Searching 

 

Searching in a Chord network is efficient, with the lookup cost of 

         . A request returns either the key value immediately, or a 

NodeID nearer to the destination. The client can pick up a node randomly 

and do the lookup process. When a node gets a request, it will first check its 

finger table (see Figure 6). If the routing information of the destination 

node could not be found in the finger table, the node will find the closest 

node to the destination and query the request to that node. If the closest peer 

is the same as the last contacted peer, the lookup has failed. [12] 

 
 

Figure 6. The Chord lookup process 
 

For example, a client asks node_1 where the file belonging to key_14 is 

(see Figure 7). Node_1 checks its finger table and wants to send a request 

to the node closest to the key, in this case node_8. But since node_8 does 

not exist, it will send the request to the node responsible for node_8 which 

is node_10. Node_10 finds that node_15 in its finger table is responsible for 

key_14, and will then answer node_1 with node_15’s routing information. 

File is found. 

 



 28 

 
 

Figure 7. Searching for a file. 
 

 

4.5 Retrieval 

 

When a node is found, the resources will be sent to the requester. To make 

this more efficient, it is possible to retrieve data from several sources at the 

same time. Parallel retrieval of data is used for example in Pseudo-DHT 

[19]. Pseudo-DHT also has support for proactive switching, which prepares 

the next node before a switch occurs. This is useful when resources are 

spread out in different locations, and makes it possible for continuous 

switch between retrievals. Another property in Pseudo-DHT is the use of 

buffers. Every node stores the most recently captured video in the buffer, to 

be streamed live to connected nodes. This prevents jitter and network 

variations [19].   
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4.6 Routing 

 

The route decision could be based on e.g. number of hops, geographic 

location, or proximity. Proximity routing makes a decision based on both 

the path length, and on the latency [20]. In our case, this will be the best 

choice considering the latency. When used in routing decisions and 

initiating the finger table, it is known as Proximity Neighbor Selection. 

Chord does not consider proximity at all, but this can be improved. An 

example of a Chord system based on proximity is PChord [23], which uses 

a proximity list together with the original finger table to find the best path.  

 

4.7 Caching 

 

Chord is based on unidirectional routing, with the property that all routing 

paths converge towards the destination regardless of the originating sender. 

This is an advantage considering caching frequent queries. If the 

converging node caches the resource, it will be more available and the other 

nodes will have better access to it. It also reduces routing “hot spots” in the 

network. And because of the consistent hashing property in Chord, the 

number of caches in the network will always be limited. [10][21] 

 

4.8 Static resilience 

 

The sequential neighbors in Chord ensure that every message always routes 

closer towards the destination. This increases the static resilience, but can 

also lead to longer path ways. Static resilience is the ability to route around 

failures in the network, and is a very important property in our system. 

Latency is also an essential variable to consider, since the network will be 

used for live video streaming. Hence, a tradeoff has to be made between a 

more fault tolerant system and a shorter response time. Another 

contributing factor to the static resilience and latency, as earlier mentioned, 

is the flexibility of the system. Chord has high flexibility in both route 

selection and neighbor selection, which is a great advantage. 
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4.9 Redundancy 

 

Chord also provides redundancy through data replication. The data is 

replicated consecutively among nodes, and the number of replications is 

defined by the user. If one of the nodes leaves, there will still be other 

nodes to route to. The leaving node’s resources will then instead be handled 

by the successor, which will replicate the resources to keep the number of 

replications constant. Because of the redundancy, the system will be able to 

repair itself even under a massive crash, as long as only one node with the 

specific resource remains in the ring. Update messages of the node states 

will be sent periodically between neighbors, to keep the finger tables up-to-

date. 

 

4.10  Leaving node 

 

The following procedure happens when a node leaves the network: 

 

Node_15 sends a LEAVE 

message to all nodes (in this case, 

node_1, node_5, and node_10) in 

its finger table and then leaves the 

network. [12] 

 

 

Node_1, node_5, and node_10 

update their finger tables. The 

resources of node_15 will now be 

handled by node_1, which will 

then replicate the resources to 

keep the number of replications 

constant. [12] 
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4.11 Fragmentation 

 

If a network failure occurs, the sender will retry sending the message. But if 

the network connection is down, we will need some automatic failover 

solution. Like with the example with the bus (in section 2.1, Problem 

Definition), there will not be so many choices. The camera node will save 

resources locally on the SD card. Then, when the connection is 

reestablished, the videos can continue to stream to the network. This will 

cause video fragmentation, which is not desirable. If the video is divided 

into too many parts, the video management will be harder. Each fragment 

will have a separate segment identifier to keep track of the different parts, 

resulting in new keys and a higher spread. The fault tolerance will decrease, 

since the probability of losing data in a node crash will increase. Hence, we 

aim on having as few segments as possible, and only fragment the video 

when it is absolutely necessary. To reduce the number of fragments further, 

it should also be possible to assemble the video parts together. We have 

chosen to give each segment a unique consecutive id, and have a metadata 

file to keep track of the number of segments. The metadata file should also 

give information about time of creation, time-to-live (TTL), file size, etc. 

When assembling a video, the metadata file is first consulted. If the video is 

fragmented, it informs the stitching application and the assemblage can 

begin. The full implementation of this application is considered to be future 

work. 

 

4.12  Lifetime management 

 

The time of creation and TTL in the metadata-file is used when considering 

lifetime management. A resource or video should in some cases have 

limited lifetime, determined by law. The file should then be erased. We 

have chosen to let each node handle the lifetime management of its 

assigned resources.  
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4.13  Resource conflict resolution 

 

When two or more users want to access and modify a resource at the same 

time, a conflict will occur and several versions of the file may end up being 

stored. The resource conflict resolution will determine which version to 

keep, based on some application specific requirements. In Bayou [22], each 

write or modification to a file needs an accept-stamp by the server. This 

could be applied to our solution by requiring an accept-stamp from the 

node. This accept-stamp should also be accepted by all replicated nodes 

before the write, to provide consistency of the file. Otherwise, the 

modification will be discarded.  

 

4.14  Security 

4.14.1 Routing attacks 

 

In a structured peer to peer network, each node plays a very important role. 

The knowledge of other nodes is limited because the routing table only 

contains a part of the whole network.  If a node receives a request, and is 

not the final destination, it will always forward the request to a node that is 

closer to the destination. A “bad” routing performance will lead to 

communication failure; therefore it is important to ensure that the route is 

correct. Sometimes, it is difficult to detect malicious nodes in the system 

because they behave like all the other nodes. The way to defend against a 

routing attack is to detect an ongoing attack. [24] 

 

4.14.2 Incorrect Lookup Routing 

 

Incorrect lookup routing means that a malicious node queries a request to 

an incorrect node, or responds with a wrong result. In a 16 node network, 

node_0 wants to initiate a request to node_15, see Figure 8 and Table 2. 

The correct route should be node_0 → node_8 → node_12 → node_14 and 

then node_15. Suppose node_12 is the malicious node, then this node could 

forward the request to node_7 instead, which leads to a failed lookup.  
  



 33 

TABLE 2: FINGER TABLES FOR THE NODES, WHERE NODE_12 IS THE MALICIOUS NODE. 

 
 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2
0 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 

2
1 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 

2
2 

4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 

2
3 

8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 

Figure 8. Incorrect Lookup Routing 

 

 

To identify the malicious node, the query requester can monitor the lookup 

process. The query requester should control all the steps when a request is 

approaching the destination. Like we mentioned before, the chord is a 

unidirectional ring structured network. The distance between node_6 and 

node_7 is not equal to the distance between node_7 and node_6. All finger 

tables need to be visible during the backtrack control. In this case, node_12 

queries the request to node_7. The query requester will then check 

node_12’s finger table and find out that node_7 is not forwarding closer to 

the destination and can thus be identified as a malicious node. After the 

malicious node is discovered, the query requester can backtrack the routing 

to the latest “good” node and ask for an alternative way. Node_0 can send a 

request to node_8 instead, and take node_10 as a second choice. [25] 
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4.14.3 Incorrect Routing Updates 

 

Since each node’s finger table has limited space, nodes must update their 

finger tables when something happens in the network, e.g. a join, or leave, 

etc. A malicious node could provide incorrect updates to other nodes. This 

attack can mislead the request to a node that does not exist, or make the 

routing path longer leading to a higher latency. The solution to this attack is 

to let nodes try to reach the remote node; if the remote node is reachable 

then perform the update. [25] 

 

4.14.4 Incorrect Routing Network Partition 

 

One set of malicious nodes builds a parallel chord network that just behaves 

like a legitimate network, where one or several of the malicious nodes also 

participate in the real network. In the previous section, we described how a 

node joins a Chord network. The node must query a join request and 

bootstrap via an existing node. It is possible that an existing node is a 

malicious node, thus, the new node is hijacked by the malicious node. The 

new node is now partied from the real network, and joins the malicious 

network. In that way, the malicious network can now get the resources from 

the new node and track the metadata. 

 

To prevent this attack, first of all, the network needs a trusted node to 

handle the join request. If one node joins the network initially, then it 

bootstraps only via the trusted node. Nodes within the network create their 

own lists of trusted nodes that they know from the past. When the node 

joins the network again, it contacts one of the nodes in the list. [25] 

 

4.14.5 Storage and Retrieval Attacks 

 

Storage and retrieval attacks occur in a network that contains malicious 

nodes. Unlike a routing attack, malicious nodes could reject all the data that 

should be stored there, and it could also receive the data first and then 

delete it. Moreover, even if the malicious node stores the data it receives 

and is responsible for, it may also deny all the requests from a client or 

serve a client with modified data. These attacks can be prevented by 

replicating data, and avoiding single point responsibility. Therefore, in our 

case, the data is replicated in 3 copies and stored in 3 successors. If one 
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node is down, a client could still request replications from successors. In 

other words, there is no single point of failure. To make sure that the data is 

correct, a client should request copies from two other nodes and compare 

the result. [25] 

 

4.14.6 Denial-of-service attacks 

 

The key of the Denial-of-Service attack (DoS attack) is to make the victim 

node unreachable. The malicious node sends a certain amount of requests to 

the victim node, causing the victim to be overloaded by requests and 

preventing it to get the real requests. In the Chord network, resources are 

divided and distributed over the network. Since resources are replicated, 

and because of the fault tolerance in Chord, the network can still work even 

if there is just a small amount of nodes left after a crash with possibly 

longer latency. There is a method to minimize the effects of a DoS attack, 

where each node accepts only a certain amount of requests from each client. 

The request load will then be balanced in the system. [25] 

 

4.14.7 Rapid joins and leaves attack 

 

When a node joins or leaves the network, the existing interrelated nodes 

update their finger tables. When a finger table is updated, a new node 

should take over all the responsibilities belonging to its identifier, e.g. 

stored resources replicated from its predecessors, take over the data that it is 

responsible for, etc. A node can join the network and then leave 

immediately. When the attack takes place, the malicious node would repeat 

this action to overload the network. To prevent this kind of attack, a node 

that connected to the network recently should not query any requests from 

other nodes. To do this, the system sets a fixed timer for the new node, so 

that it can not work properly as other existing nodes until the timer expires. 

[24] 

 

4.14.8 The Sybil attack 

 

Since P2P is a decentralized network, when two nodes connect to each 

other without any physical connection, it is difficult to authenticate each 

other's real identity. In a DHT network, nodes can look up each other’s 
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NodeID.  The malicious nodes could use this to forge multiple identities 

[27]. Chord networks are vulnerable, a malicious node could combine the 

Sybil attack with other attacks that we mentioned before and create huge 

amounts of identities, do rapid join/leave attacks or send the incorrect 

routing update to fill other nodes' finger tables etc. Sybils can then not give 

any response to all requests or queries from other Sybils, and will fail the 

routing procedure. The network can not perform the correct routing when 

the Sybils exceed 25% [28]. To prevent this attack, the network should 

limit the joining of new nodes. When a node gets a request, it should reply 

with all its finger tables instead of just the best routing solution. [28] 
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CHAPTER 5 
 

 

5 Testing 

The testing of the system was done by the use of the open source project 

OpenChord [29]. A better simulation would be to do this in a real IP camera 

environment, but this would not be feasible considering the number of 

cameras that would be needed and the time to set up such a system. We 

wanted to simulate how well a large Chord network can handle massive 

crashes, and how much data loss this would cause. By inserting fragmented 

texts into the network, we could test the searching, retrieval, fault tolerance 

and stability of the system. We simulated this with 500 virtual nodes, using 

two different texts: Shakespeare’s Sonnet 18 and TCP Joke. We refer to 

these as Poem and Joke. 

 

 
SHAKESPEARE’S SONNET 18 

Shall I compare thee to a summer's day? 

Thou art more lovely and more temperate: 

Rough winds do shake the darling buds of May, 

And summer's lease hath all too short a date: 

Sometime too hot the eye of heaven shines, 

And often is his gold complexion dimm'd; 

And every fair from fair sometime declines, 

By chance, or nature's changing course, untrimm'd; 

But thy eternal summer shall not fade 

Nor lose possession of that fair thou ow'st; 

Nor shall Death brag thou wander'st in his shade, 

When in eternal lines to time thou grow'st; 

So long as men can breathe or eyes can see, 

So long lives this, and this gives life to thee. 
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TCP JOKE 

"Hi, I’d like to hear a TCP joke." 

"Hello, would you like to hear a TCP joke?" 

"Yes, I’d like to hear a TCP joke." 

"OK, I’ll tell you a TCP joke." 

"Ok, I will hear a TCP joke." 

"Are you ready to hear a TCP joke?" 

"Yes, I am ready to hear a TCP joke." 

"Ok, I am about to send the TCP joke. It will last 10 seconds, it has two 

characters, it does not have a setting, it ends with a punchline." 

"Ok, I am ready to get your TCP joke that will last 10 seconds, has two 

characters, does not have an explicit setting, and ends with a punchline." 

"I’m sorry, your connection has timed out. Hello, would you like to hear a 

TCP joke?" 

 

 

Both of these texts need to be fully retrieved after the crash for the test to be 

considered a success. In the first test, for each node, we used 3 replications 

distributed on 3 successors. The texts are divided on respectively 2 keys, 

which is to be considered as a fragmentation. All crashes are done 

simultaneously and randomly, hence every test will be unique and not be 

affected by one another. We will repeat every test 50 times, to get reliable 

results. The result from the test will be shown in the following section.  
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CHAPTER 6 
 

 

6 Results 

Here is the result from the tests. 

 

 = All resources were retrieved after the crash. 

P = All resources exist, but some resource(s) could not be retrieved.  

 = Failure, some or all resources are lost.  

 

Test 1.1: Crashing 10 % of the network, e.g. 50 nodes simultaneously. 

Number of tests: 50 

 
     

     

 

Comment: Works well, system recovers.  

 

Test 1.2: Crashing 20 % of the network, e.g. 100 nodes simultaneously. 

Number of tests: 50 

 
     

    P 

 

Comment: Works well, system recovers.  

 

Test 1.3: Crashing 30 % of the network, e.g. 150 nodes simultaneously. 

Number of tests: 50 

 
     

P    P 

 

Comment: Works well, system recovers 
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Test 1.4: Crashing 40 % of the network, e.g. 200 nodes simultaneously. 

Number of tests: 50 

 
P P    

P PP   PP 

 

Comment: Mostly works, but some ring partitioning has occurred.  

 

Test 1.5: Crashing 50 % of the network, e.g. 250 nodes simultaneously. 

Number of tests: 50 

 
P    PP 

P PP P  PPPP PPP 

 

Comment: Mostly works, but some ring partitioning has occurred.  

 

Test 1.6: Crashing 60 % of the network, e.g. 300 nodes simultaneously. 

Number of tests: 50 

 
 P P P PPP 

P PP PPP P PPPPP 

 

Comment: System struggles, more partitioning and failures.  

 

Test 1.7: Crashing 70 % of the network, e.g. 350 nodes simultaneously. 

Number of tests: 50 

 
   PPPP PPPP 

PP PP PPP PP PP 

 

Comment: Most failures, but with some succeeding retrieval. 
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The testing could be summarized into the following table and graph. A test 

will be considered a “Success” if all resources were retrieved after the 

crash. Sometimes resources exist in the system, but could not be retrieved. 

This is marked as “Partitioned”. When some or all resources are lost, it is 

considered a “Failure”. 

 
TABLE 3: RESULTS FROM THE TEST. 

 

 Success Partitioned Failure 

Test 1.1 50 0 0 

Test 1.2 49 1 0 

Test 1.3 48 2 0 

Test 1.4 39 9 2 

Test 1.5 26 19 5 

Test 1.6 12 18 20 

Test 1.7 2 19 29 

 

 
Figure 9. Percent of times system recovered after crashes. 
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CHAPTER 7 
 

 

7 Conclusion 

According to the test, Chord is in most cases capable of handling massive 

node crashes and still recovers to full capacity (see Figure 9). Not until the 

60 percent system crash, Chord begins to show some struggle. This is a 

very good result, considering 300 randomly chosen nodes out of 500 

crashed at the same time. And if compared to an ordinary server-client 

solution, with a single-point-of-failure, this provides a much better 

resiliency. 

 

However, one thing we did not realize before the testing was the ring 

partitioning problem [30]. Sometimes, during massive node crashes, a part 

of the ring could separate to an own entity. The new entity nodes do not 

realize that a partitioning has occurred, and will continue to route to their 

only known neighbors. This is probably why we sometimes could not 

retrieve the resources from the calling node, even when it existed in the 

network.  

 

Otherwise, the Chord network is a good solution considering the 

requirements. 

 

1. It provides a storage management system capable of handling all 

resources in the network.  

2. The decentralized autonomous structure lets the nodes handle all 

communication and network organization themselves.  

3. Resources are very available to the network through high fault 

tolerance and redundancy.  

4. Chord provides efficient search and retrieval of distributed 

resources, with an average lookup performance of          .  

5. Chord is highly scalable, and will work for both small networks to 

larger networks.  

6. Chord has a natural load balance when using a fair hash function. 

We chose to use the better hash SHA-256 instead of SHA-1. 
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7. The system handles node crashes and communications failures well. 

The protocol has high fault tolerance and the best static resilience of 

the studied protocols. It also provides redundancy by data 

replication.  

 

To fulfill the other requirements and to improve it even further, the 

following additions to the protocol have been proposed: 

 

1. The system is capable of storing fragmented resources, but an 

additional overlay with gathering of video parts and a assemble 

application is needed to fulfill the requirement of fragmentation.  

2. Proactive switching and parallel retrieval can be used for a more 

efficient retrieval. 

3. Files are removed after a beforehand specified time, or TTL, 

specified in the metadata file. The nodes are responsible of this 

removal. 

4. The Resource conflict resolution will determine which file to keep 

by an accept-stamp admitted by all replicated nodes.  

5. Buffers will prevent jitter and network variations, improving 

latency, and make it possible for live streaming.   

6. Proximity routing is used to decrease latency. 

7. Caching at a converging node will prevent routing “hot spots”. 

8. Security aspects have been considered and preventions to the attacks 

have been proposed. 

 

Other DHT protocols were also considered during the research, some of 

which were also well suited to our requirements. But since Chord compared 

better to the others, this protocol was our first choice. 
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CHAPTER 8 
 

 

8 Future Work 

Many aspects have been taking into consideration during the project, and 

limitations were necessary to narrow it down to a reasonable scope. We 

have taken all requirements into consideration during research, system 

development and testing. But it was not possible, because of the timespan, 

to develop a complete functioning system of this size on actual cameras. 

Then our testing could also have included other aspects, such as latency, 

which were not considered in our virtual test environment. The described 

system is only a proposal, and can be seen as a reference for further 

development.  

 

To take this project further, a complete system with test environment on 

actual cameras needs to be developed. This together with a solution to the 

ring partitioning problem we encountered during testing.  

 

A video assemblage software is needed to decrease the number of 

fragments in the system. A lower amount of fragments will make the 

searching more efficient, and the system less complex.  

 

The security preventions need to be embedded in the system. Also other 

security aspects need to be considered, such as authentication and 

permission to data etc. A user without permission should not be able to get 

access to sensitive information.  
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