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Abstract

The usage and potential usage of unmanned aerial vehicles (UAV) in our society
grows rapidly and therefore an interest of how to design such a craft was sparked.
The ability of an autonomous flight is valuable in many applications and requires
that the craft is equipped with a GPS-module. If the connection is lost the UAV’s
itinerary may differ from the predetermined one. Because of this an alternative
navigation technique would be interesting. By measuring the inertia of an object
it is possible to derive the location in relation to the starting point.

In this thesis report a comprehensive description of how a quadrotor helicopter is
designed and constructed will be given. Furthermore, inertial navigation imple-
mented by miniaturized mechanical and electro-mechanical elements will also be
treated in this report.
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Popular science article

As unmanned aerial vehicles (UAV) are widely used both in the private sec-
tor and in commercial businesses as tools for a variety of purposes, it would
be interesting to take a closer look at both the construction and the ability to
navigate such a craft autonomously without GPS. The vehicle which was built
from scratch during this thesis is a helicopter with four motors / propellers,
a so called a quadrotor helicopter, and the navigation technology is based on
measuring the vehicles acceleration as a function of time, i.e., inertial naviga-
tion.

Quadrotor Helicopter

A quadrotor helicopter is, as most people know, a craft with four motors and
propellers. With these it is possible to control the vehicle in any direction and
the position about its vertical axis. These maneuvers are carried out by pairwise
changing the rotation speed of the motors, which give rise to a force difference
that will affect the angular position of the helicopter. If the craft is not parallel to
the horizontal plane it will move in the same direction it leans towards.

The angles θ, φ and ψ, see Fig. 1 , are used to define the state of the helicopter.
The signals that describes the angles were created by complementing the sig-
nals from three gyroscopes with two accelerometers and one, for the purpose
designed, compass comprised of two hall effect sensors. The sensor algorithms
were done with analog electronics.
As there are no external forces that bring the craft back to its initial position when
it is subjected to an involuntary change in angle there is a need of control algo-
rithms in order to gain stability. A control algorithm have a target value (the
desired angular position for the helicopter) and a reference value (the measured
angular position of the helicopter) as inputs and the output is the control signals
for the motors, which corrects potential errors in the angular inclination. In this
project the stability control was implemented by three cascade control structures,
one for each axis, and were executed by a dual-core microcontroller on board the
helicopter. The signals that describe the angles were sampled several hundred
times per second and the control algorithms were executed with the same fre-
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Fig 1: Quadrotor helicopter reference.

quency.

To change the angular inclination of helicopter the user adjusts the corresponding
target values via a radio link. To send these values from a safe distance a remote
controller is needed. The controller must have appropriate interfaces to set the
desired angles θ, φ and ψ and the altitude of the craft. A remote controller for a
game console meets these requirements. The casing and the joysticks of such a
device was used while the remaining content was replaced with suitable compo-
nents (processor unit, radio link, etc), see Fig 2.

Fig 2: Modyfied remote controller .

Inertial navigation

The basic principle of inertial navigation is to measure the acceleration vector
(acceleration and direction) that an object is exposed to, if this is known the exact
position can be determined with a few mathematical operations. It is thus com-
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pletely independent of external references. This technique has long been used by
both military and in commercial applications. This has been done with the help
of mechanical contraptions that are as expensive as advanced. Another problem
is that they are often relatively large and therefore not suited to be carried on
board a small remote-controlled helicopter.

Today the development of small and reliable sensors with low power consump-
tion and high accuracy is done at breakneck speed and is used in variety of appli-
cations. It would therefore be interesting to investigate the sensors of the appro-
priate type with inertial navigation in mind. This requires a processor unit that
can collect the measured values and perform the necessary calculations. Imper-
fections of the sensors and the processing unit’s analog-to-digital converter of the
processor unit yielded a flawed result of the positions. This error sometimes grew
with time and thus limited the usability. On the other hand the technique showed
good repeat accuracy of different lengths and accelerations, but for shorter time
intervals.

An example of a test run is shown in Fig 3 where the calculated distance was
0.76 m and the actual distance was 0.75 m. Another calculation showed a normal
flight of 100 m normally gave an error of less than 1 m.
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Fig 3: Examples of measured data and calculated position.
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Chapter1
Introduction

We live in an age where drones are becoming abundant and have the ability to
perform numerous tasks in a variety of fields such as, parcel delivery, surveil-
lance, inspections and so on. In the majority of this applications it is required that
the drones position is known and they are therefore equipped with devices that
enables GPS-navigation. This type of positioning system has its limitations, such
as latency and accuracy and poses one definitive demand that the craft is located
outside of regions in radio shadow. If the crafts desired itinerary does enter such
a region the knowledge of its position is lost. At this moment the question of
what might replace or supplement such a system in a drone arises. A feasible
solution is inertial navigation which is fully self contained and does not rely on
any external references, it is only based on measuring the acceleration vector as
a function of time. If this vector is known at all times it is possible to determine
the location of the craft. This technique has long been used by the military but
the construction is relatively large, heavy and expensive due to its mechanical
complexity.

In today’s market there are many and increasingly affordable MEMs (Microelec-
tromechanical systems) sensors which makes it possible to measure the described
vector. These sensors suffers from imperfections, that is for example, the zero
reading drift, which is sufficiently large to reduce the usability when the sen-
sor is incorporated in a navigation system. There are also enormous amounts
of inexpensive microcontrollers, with good computational performance. By this
fact another question arises, namely, to what extent is it possible to determine a
drones position implemented by relatively simple means?

By designing the the drone platform from scratch, the authors will have the desir-
able freedom to manage and control all the necessary behavioural and functional
properties of the craft. Desirable properties and behaviour to control would be

• weight

• flight characteristics

• driving system

1



2 Introduction

• traction force

• flight time

• ease of replacing parts

• ease of improving parts and functions.

Thus the main goal of this thesis can be concluded to the following two parts.
First the authors will create a drone platform, including a remote controller, that
could be equipped with an inertial navigation system. The platform had to be
created by relatively simple means and with a restricted budget. The second part
will be to investigate to what extent a inertial navigation system can be used on a
quadrotor platform. An initial goal of the desirable precision regarding the navi-
gation was set to one percent, i.e. how far is it possible to move without exceeding
the given tolerance.

1.1 Quadrator platform – Funda-
mental description

A quad rotor helicopter is an aerial vehicle that consists of four motors placed on
a cross frame.

The angles θ and φ, which corresponds to the pitch and roll axis, are controlled
by an individual motor pair, m1 and m3 for θ and m2 and m4 for φ, see Fig 1.1.
When a difference between the generated thrust of the motors in a pair is present,
the craft is subjected to an angular acceleration since the thrust is a force which is
applied away from the center of gravity.

Every motor produces a reactive torque, q1, q2, q3 and q4, see Fig 1.2 below. To
prevent the vehicle from drifting about its vertical yaw axis, which corresponds
to the angle ψ, each motor pair is set to rotate in opposite directions.

Basic manoeuvring
The platform is in its equilibrium state, i.e hovering, while the pitch and roll axis
are in parallel with the horizontal plane and the craft is not spinning about its ver-
tical yaw axis. Under these circumstances θ and φ are equal to zero, ψ is constant
and the sum of the thrust t1, t2, t3 and t4 is equal and opposite to the gravitational
pull on the craft.

While θ or φ is not equal to zero the craft will perform a lateral movement. In
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Fig 1.1: Quadrotor platform reference.

order for the craft to maintain the altitude while varying the θ or φ the sum of the
generated vertical thrust component has to be constant. By increasing the angu-
lar velocity of one, and only one, motor pair the craft will spin around the yaw
axis in the opposite direction of the blade travel, this due the reactive torque. See
Fig 1.2. And again, the sum of the vertical thrust component contributed by each
motor has to be constant while performing this manoeuvre if the vehicle has to
remain at the same altitude.

Equations for the motor control signals
The control signal for the motors can now be deducted and are shown below.

ym1 = xthrust + xpitch + xyaw (1.1)

ym3 = xthrust − xpitch + xyaw (1.2)

ym2 = xthrust − xroll − xyaw (1.3)

ym4 = xthrust + xroll − xyaw (1.4)

Where xthrust denotes the contribution from the operator and xpitch, xroll and xyaw
is proportional to the desired angles θ, φ and ψ.

In order to subject the platform to a lateral movement one of the following pair
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Direction of blade travel Direction of reactive torque

q1

q2

q3

q4

Fig 1.2: Top view of the quadrotor platform.

wise inequalities has to be true.

xpitch < 0⇒ a forward movement

xpitch > 0⇒ a backwards movement

xroll < 0⇒ a movement to the left

xroll > 0⇒ a movement to the right

Stability of the platform
A system is stable if it produces a finite output while it is subjected to a bounded
input. This is the case as the poles of the systems closed loop transfer function
resides in the left-half s-plane. A more practical approach of defining stability is
to say that stability is a measure of the tendency of a system’s response to return
to zero after a perturbation.

By considering the following two different systems one can visualize the con-
cept of stability. The first system is a damped harmonic oscillator, see Fig 1.3. If
this system is subjected to a bounded disturbance it will in all cases return to its
initial position. Hence it is stable.
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Fig 1.3: A damped harmonic oscillator.

The second system is an inverted pendulum. It is possible to find a position
where the pendulum is at rest in an equilibrium. In this position even the small-
est perturbation will make the pendulum fall and it will never return to its initial
position, for a graphical reference see Fig 1.4. If the goal is to keep the pendu-
lum in the equilibrium position one has to make the system stable with an active
control. This can be realized with a control algorithm, sensors and actuators.

Fig 1.4: Inverted pendulum.

Now it is easier to understand that quadrotor platform is inherently unstable be-
cause of the fact that there are no external forces (except the gravity, and this force
could yield a disastrous result) that will compel the vehicle to a stationary state
while it is in the air. Imagine a situation where all four motors generate an equal
amount of thrust and the sum is equal and opposite to the gravitational pull. The
craft will of course be aloft but even the slightest perturbation in θ and/or φ will
change its angular state and never again return to the initial angles. Thus one can
conclude that this is a system in need of an active control.
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Since the three axis, pitch, roll and yaw are orthogonal, each axis can be treated as
a separate process with no correlation to each other. Therefore three one-variable
controller schemes can be utilized to gain stability while the quadrotor platform
is aloft.

1.2 Inertial Navigation
As previously described, an Inertial Navigation System (INS) is a system that
navigates solely by measuring the inertia and it is fully self-contained. If one
knows the acceleration vector and elapsed time since departure, the position is
fully determined. The sensors utilized to carry out these measurements are ac-
celerometers and gyroscopes.

Two different approaches
There are two main approaches to construct a navigation system of this kind, Sta-
ble Platform Systems and Strapdown Systems.

Fig 1.5: A stable platform.

In a stable platform system the sensor array of the moving craft, i.e the navigation
systems frame is in parallel with the global reference frame at every point in time.
This is done by using gyroscopic elements, i.e. utilizing the preserving effect of
the torque of spinning objects. By measuring the moving crafts deviation from
the stable platform the heading can be determined. See Fig 1.5.
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In a strapdown system one has not the luxury of having a three-dimensional
"compass" at your disposal. The navigation system’s frame is not aligned with
the global reference frame. This kind of navigation system has one advantage
over the previous, which is that it is not mechanically advanced. The main dis-
advantage is that it is much more computational demanding.

1.3 Sensors
The sensors used to determine the angular inclination and position of the quadro-
tor platform will be based upon the MEMS technology. Below follows a brief de-
scription of this technology.

Fig 1.6: Differential MEMS accelerometer.

A MEMS sensor is comprised of miniaturized mechanical and electro-mechanical
elements. The actual size of the micromachined elements varies but can be as
small as one micron and below. The MEMs technology has be proven cost effec-
tive because it utilizes parts of the same fabrication process as integrated circuits
which is well established in today’s industry. The microstructures are mainly cre-
ated by etching patterns in a silicon wafer. See Fig 1.6.

When it comes to performance, the micro-scale sensors has in plenty of cases
surpassed the macro-scale counterparts whilst the typical per-device power con-
sumption is smaller. Furthermore it has shown good reliability. These benefits
make this sensor technology a much compelling choice, especially in mobile ap-
plications. This is why the authors have chosen to utilize and investigate this
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sensor type. The sensors that will be used both for the stability control of the
platform and the navigation system are gyroscopes and accelerometers. Further-
more it will be shown that a magnetometer is required. This sensor will not be of
the MEMs technology.



Chapter2
Quadrotor platform

In this chapter the required main components of the quadrotor platform, such
as the remote controller, motors, sensors radio link, processing units and cross
frame will be discussed and in some cases examined more closely. The imple-
mentation of the software for the platform controller and the quadrotor will be
described. Furthermore the stability control algorithm and some necessary digi-
tal signal processing will also be addressed here.

2.1 Remote controller
The quadrotor platform needs to be operated, this will be done via a remote con-
troller. The controller should be able to steer the craft in three dimensions. A
controller intended for a gaming console would meet the criteria for the sup-
posed purpose since they usually consists of two joysticks and several buttons.
The two joysticks is ideal for controlling the thrust and the lateral movements,
the buttons would be good to incorporate for extra functionality such as entering
different modes (calibration etc).

The authors acquired a Playstation 3 (PS3) controller and emptied it, copied the
dimensions of the original two circuit boards, one for the tactile buttons and one
for the processing unit and joysticks. The joysticks used here are simply two po-
tentiometers (per stick), one register the push/pull movement and one for the
left/right. Besides of giving the quadrotor platform commands it would be ben-
eficial to receive some information. As it turns out the PS3 controller has the
capability of producing a haptic feedback via two DC motors. One of those was
kept. The controller is also capable of giving a visual feedback via LEDs. This
feature was also desirable and kept in mind. Further more the battery was also
saved (3.7 V Li-Ion with a capacity of 1000 mAh).

Processing Unit
The tasks to be performed by the controller’s processing unit is not comprehen-
sive as it only involves converting the analog voltage from the joystick poten-

9
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tiometers into the digital domain and polling the buttons and pass along the
information to the radio transceiver via UART. Aside from this it also needs to
control the motor and LEDs, preferably by a pulse width modulation (PWM) pe-
ripheral.

A 8-bit AVR from Atmel, the ATmega128, has all of the above mentioned fea-
tures and was therefore chosen. See Fig 2.3 for a block overview.

Before the remote controller software is described it is convenient to explain the
data transfer protocol.

Motor

Power

Radio

ATmega128

Fig 2.1: Block overview of the quadrotor platform controller.

UDQPP - Ultra Dense Quadrotor Platform
Protocol
The protocol was designed with the intention to receive/send a complete com-
mand for the platform in one byte. The 3 most significant bits of the byte is the
header and the 5 remaining bits are the payload. This allows for 8 unique packets
and a payload value range from 0 to 31. The headers were assigned as showed:
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000 = Thrust
001 = Counter-Clock-Wise Yaw
010 = Clock-Wise Yaw
011 = Forward Pitch
100 = Backward Pitch
101 = Left Roll
110 = Right Roll
111 = Buttons

By utilizing this protocol the platform operator has a resolution of 0.63◦ when the
platform is limited to a maximum inclination of 20◦. This translates to that any
lateral acceleration smaller than 0.11 m/s2 can not be compensated manually, this
is worth to keep in mind. The equations used to approximate the acceleration will
be showed in the following chapter.

Software

Start next ADC

joystick/10 

Package data 

Shift ADC multiplexer

ADC �ag = 1?No

Yes

Initialize (ATmega128 and peripherals)

ADC �ag = 1

joystick += ADC

count++Poll button pins 

Update button packet

Yes

Nocount++ Start next ADC

Send the 5 data packets

Fig 2.2: Flowchart for the quadrotor platform controller.

The processing unit performs its tasks in the following way. The ADC is initial-
ized so that an interrupt service routine (ISR) is invoked after every completed
conversion. The ISR accumulates the result (8-bits) in a variable, increment a
counter and starts the next conversion. When 10 samples are done a flag is set
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to 1 and no more conversions are done. The main loop polls the button pins and
updates a variable with the button status. After this the previously mentioned
flag is checked, if it is 1 the accumulated ADC value is divided by 10 and shifted
3 bits to the right so that the data fits in 5 bits and then put in the appropriate
data packet. When this is done the ADC multiplexer is shifted and a new series
of data conversions are carried out.

A timer is initialized to generate an interrupt at every timer overflow. Every
time the timer ISR is triggered it sends 5 data packets to the radio transceiver. (It
is only necessary to send 5 packets every time, one for each action, namely thrust,
pitch, yaw, roll and buttons).

Please view the software flowchart in Fig 2.2 for a graphical reference.

Construction
The interior of the platform controller consist two PCB. On one PCB two step-
up/step-down voltage regulators, 5 V and 3.3 V, a MOSFet motor driver, 16 MHz
crystal, HDMI mini connector (used to connect to the computer via a program-
mer) and four LEDs resides. The second PCB houses the tactile buttons and but-
ton debounce filters. The authors used the Computer numeric controlled (CNC)
milling machine in order to drill all holes and to cut the PCB into the desired
shapes before etching them. After the etching procedure was done a solder mask
of epoxy was applied to protect the PCB before mounting the components. The
result can be viewed below.

Fig 2.3: Platform controller semi assembled.

As seen in Fig 2.4. An extra compartment was added. Within this box the radio
transceiver resides, far away from any metallic objects to ensure as good perfor-
mance as possible.

2.2 Motors
To keep the platform aloft four motors motor/propeller pairs are used. There
are many different motor technologies available. For this application there are
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Fig 2.4: Complete controller with a mysterious extra compartment.

two different varieties of electric motors to consider, namely permanent magnet
synchronous motor (PMSM) and brushed DC motors. A brushless motor have
several advantages over the brushed DC motor. See the list below.

Advantages:

• The stator and rotor is galvanically isolated, i.e no brushes.
- Longer life span.
- Greater reliability.
- Reduced electromagnetic interference.

• Greater torque to mass ratio.
- More torque yields a faster response time for the craft.

• Better efficiency.
- Increases the time of flight.

But there are of course some disadvantages as well.

Disadvantages:

• The electronics to control the motor is more complex.
- More components, more weight.
- Higher cost.

A PMSM, three different propellers and the motor control unit was therefore pur-
chased and evaluated. The small amount of data the manufacturer provided is
showed in Tab 2.1.
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Tab 2.1: Motor characteristics
Model 2210N 1000Kv Brushless Motor
Weight [kg] 0.045
Max Current [A] 11.2
Max Voltage [V] 11

Two of the propellers were 3-bladed and one was two-bladed but all differed
in diameter and pitch. The pitch describes the distance, in inches, the propeller
would traverse through a soft solid during one revolution. .

Fig 2.5: Motor and propeller test rig.

In order to set the RPM of the motor a control unit is utilized. The unit pro-
duces a three-phase AC output from a DC power supply where the frequency is
proportional to the input control signal, which in this case is a PWM signal. By
increasing the pulse width the unit increases the frequency, and if necessary the
output power. The motors, propellers and the control units were all bought at a
hobby store.
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Fig 2.6: Motor and propeller measurement, where Vmotor is constant at
14 V.

A test rig was constructed in which a motor and propeller attached to a wooden
stud that could be hanged up side down via dynamometer, see Fig 2.5 below.

Each propeller underwent the same evaluation procedure, which was measuring
the input power to the motor control unit and the generated thrust of the motor
between 0%-100% of throttle, see Fig 2.6.

As seen in the plot the obvious choice is the three-bladed propeller with the di-
ameter and pitch equal to 9 respectively 4.5 inch as it generates the most amount
of thrust at any given input power.

Fig 2.7: The motor and chosen propeller (three-bladed 9x4.5).
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One can also draw the conclusion that if four of these propeller/motor pair is
combined the maximum sum of the generated thrust, Fmax, is equal to 24 N. This
gives an indication of the maximum allowed mass the craft can posses. As an ini-
tial goal this is set to 1.2 kg, which will grant 12 N of an excess of force to reduce
the vehicles response time. The motor with the most optimal propeller (Hobbyk-
ing 3-Blade Propeller 9x4.5) can be viewed in Fig 2.7.

If the mass is indeed 1.2 kg the current consumption at the crafts equilibrium
state can be estimated to:

30 W
14 V

· 4 ≈ 8.6 A (2.1)

This will be useful while choosing a suitable power supply for the craft.

2.3 Sensors - Pitch and roll
As previously described the angles θ and φ is imperative to be estimate with
sufficient accuracy, in order to reach stability and perform basic maneuvering in
the horizontal plane. There are, to the authors current knowledge, two obvious
categories of sensors that could be utilized to estimate this quantity, a gyroscope
or an accelerometer. The authors decided that the following requirements has do
be met whilst choosing the sensors:

• give a sufficiently accurate estimation of the desired physical quantity,

• small form factor and

• relatively budget-friendly.

As discussed earlier the MEMS senors meet these criteria.

MEMS Gyroscope
A gyroscope, LY33ALH, from ST Microelectronics was chosen. The working prin-
cipal of this particular sensor is outside of the scope of this thesis. The reader
should regard the gyroscope as a "black box" with the following properties:

Tab 2.2: Gyroscope characteristics
Parameter Value Unit
Measurement range ±300 degree/s
Sensitivity 3.75 mV/degree/s
Zero-rate level 1.5 V
Rate noise density 0.014 degree/s/

√
Hz

Bandwidth 140 Hz
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Measurment range

If the craft performs a change in its angular inclination at the maximum
angular velocity of ± 300◦/s means that a movement of 45◦ is performed
in 150 ms. A movement faster than this will not be in the linear range of
the sensor. Angular velocities of this magnitude is presumed to not happen
during a flight.

Sensitivity

A movement of 45◦ in 1 second seems as an good target. The output signal
will have a peak value of 168.75 mV. This is acceptable.

Zero-rate level

The zero-rate level is the quiescent point for the sensor, e.g Vout when the
angular velocity is equal to zero. For convenience, it would be satisfactory
if this level is placed in the vicinity of the center point at the range of the
ADC.

Rate noise density

The noise density ratio sets the least detectable signal at any given band-
width. By decreasing the bandwidth one is able to detect a smaller signal.
This is one reason why analog sensors were chosen. Furthermore, for this
particular sensor the noise density is relatively low compared to other sen-
sors.

Bandwidth

Angular movement with a period shorter than 7.14 ms is not likely to be a
problem due to the mass and size of the quadrotor.

Quiescent Supply Current

The sensor consumes 4.2 mA. This can be neglected when compared to the
four motors that consumes over 2000 times more at the crafts theoretical
equilibrium state.

As shown in Tab 2.2 above the output of the sensor is directly proportional to the
angular velocity, which is not ideal and imposes that a mathematical process, a
quadrature, has to be performed to get an estimation of the crafts angular incli-
nation. This introduces both some demand on the processing unit and a problem
regarding long term drifting which is caused by a couple of imperfections.
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First, the sensors zero-rate-bias has to be eliminated before the quadrature can
take place. The bias elimination can be implemented in various manners, for in-
stance, with a high-pass filter with an very low corner frequency, but this is of
course at a cost of losing some information of angular movement at the lower
part of frequency spectrum. Another approach is to simply subtract a constant
equal to the bias from the signal. This method is highly dependent on a totally
static bias, even the slightest change in sensors bias will yield an angular drift
without any rotational movement. It is known that this type of sensors suffers
from what is referred to as angular random walk (ARW) which is exactly a small
change of the sensor bias. And secondly, in practice, a quadrature can never be
performed completely loss-less since it’s not analytically. Which can translate
into a small accumulating error. A third aggravating circumstance is that there
are no perfect data converters, the offset error drift of an analog-to-digital con-
verter may very well contribute to what seems like ARW. To explore to what
extent the above mentioned imperfections pollutes the estimation of the angular
inclination performed by a gyroscope a microcontroller were used. The authors
sampled and accumulated 100 samples from the gyroscope with a resolution of
12-bits at a zero rate level. The mean value of the samples was then calculated and
subtracted from every new AD-conversion before the quadrature was performed.

The data was logged by a computer and the result can be viewed in Fig. 3.1.
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Fig 2.8: Angular drift, 1 hour and 40 minutes.
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The quadrature performed was based upon the Trapezoidal rule, please see (2.2).∫ t+h

t
f (t)dt ≈ h f (t) + h

f (t + h)− f (t)
2

=
h
2
( f (t) + f (t + h)) (2.2)

(The above is of course only one slice of the integral.)

As seen in Fig. 2.8 the angular drift is substantial and it is useless if it would
be implemented on a flying vehicle as part of the feedback network for the stabil-
ity control.

The plot of the signal in the frequency domain clearly shows which angular ve-
locities that will get lost due to a poor Signal-to-Noise Ratio (SNR). One has to be
aware of the fact that even the smallest deviation from the equilibrium state will
make the quadrotor move, hence even the lower part of the frequency spectrum
is of importance.

The result can not be explained only by a mismatch of the bias elimination term
due to the fact that the derivative of the curve in the top graph in Fig 2.8 is chang-
ing sign. For example, if the sensor bias change over time in such a way that the
signal corresponds to the one depicted in Fig 2.9 the result of the quadrature will
be a close match to the what is shown in Fig 2.8. Furthermore the ADC offset
error drift could also explain this.

Sampled signal
Bias subtractor

Fig 2.9: Sensor bias change.

The careful reader will most likely have noticed that the time elapsed during the
measurement is 1 hour and 40 minutes which is well beyond the vehicles time of
flight (TOF), but after only 3 minutes, which is well within the TOF, it has drifted
almost 10 ◦. See Fig 2.10.

After this examination one can draw the conclusion that the gyroscope is not an
optimal sensor for this application since it will only be able to provide informa-
tion that lies outside of the contaminated frequency interval. The other option is
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Fig 2.10: Angular drift, 3 minutes.

to use an accelerometer. This will be discussed in the following section.

MEMS Accelerometer
As one uses a accelerometer to estimate the angular inclination it is necessary to
utilize the gravitational field as a reference. While the sensor is place perpendic-
ular to the field lines, and not moving, the acceleration component that is parallel
with the horizontal plane is zero but as it the sensor is rotated it is not, see Fig
2.11.

The output voltage from the sensor can therefore be described by (2.3)

Vout = sin(φ) · S (2.3)

Where S is the sensor sensitivity ([V/g]).

But it is possible to make a drastic simplification by considering the Taylor se-
ries of sin(x).

sin(x) =
∞

∑
k=0

(−1)kx1+2k

(1 + 2k)!
=≈ x− x3

3!
+

x5

5!
+ ... (2.4)
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X-axis
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X-axis ˙̂
φ

Fig 2.11: Accelerometer and inclination sensing.

By looking at the expression above (more particularly the terms exponents) one
can come to the conclusion that

sin(φ) ≈ φ for small φ (2.5)

and (2.3) can be simplified to

φ ≈ Vout

S
(2.6)

This heavily reduces (2.3) and makes computational effort negligible (trigono-
metric functions are demanding to evaluate, especially in a microcontroller and
cumbersome to implement with analog circuits).

The error of the approximation is sin(φ) − x and is shown in Fig 2.12 and is
roughly 2% at 20◦ which is an acceptable error at this point. Furthermore 20◦

will be set to the maximum allowed angular inclination of the platform. An ap-
proximation of the resulting acceleration as a function of the angular inclination
will be given in the section regarding the inertial navigation.

Two accelerometers, ADXL335 and ADXL203CE, were chosen to be further in-
vestigated. The working principle of these particular sensors will be proven to be
a useful knowledge for the reader later on so a brief description will be given.

As seen in Fig 2.13 the sensor essentially consists of a seismic mass held by a
system of springs-like structures. On the mass a conductive plate is positioned
and fitted in between two other conductive plates which are fixed to the casing.
Together the plates forms two capacitors. While the mass is not subjected to an
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Fig 2.12: The absolut error of the angle approximation.

acceleration the capacitance of the two capacitors is equal, but as soon as it is
exposed to an acceleration, there will be a difference.

Mass

Spring

Fixed Outer 
plates

Mass
Spring

Fixed Outer 
plates

Applied Acceleration

Fig 2.13: Mems Acceleometer

The difference in capacitance is then translated into a voltage. In the case of the
accelerometers here chosen, the output voltage is in direct proportion to the ap-
plied acceleration.

In Tab 3.2 and 3.3 some of the interesting characteristics of the accelerometers
could be found.

Tab 2.3: ADXL203CE characteristics @ 5 V



Quadrotor platform 23

Parameter Value Unit
Measurement Range ± 1.7 g
Sensitivity at Xout, Yout 1000 mV/g
0 g Voltage at Xout, Yout 2.5 V
Noise Density 110 µg/

√
Hz

Sensor Resonant Frequency 5.5 kHz
Operating Voltage Range 3-6 V
Quiescent Supply Current 0.7 mA

Tab 2.4: ADXL335 characteristics @ 3.6 V
Parameter Value Unit
Measurement Range ± 3 g
Sensitivity at Xout, Yout, Zout 300 mV/g
0 g Voltage at Xout, Yout, Zout 1.5 V
Noise Density Xout, Yout 150 µg/

√
Hz

Noise Density at Zout 300 µg/
√

Hz
Bandwidth Xout, Yout 1600 Hz
Bandwidth Zout 550 Hz
Sensor Resonant Frequency 5.5 kHz
Operating Voltage Range 1.8-3.6 V
Quiescent Supply Current 350 µA

The ADXL203CE seems particularly promising due to the its high sensitivity and
low noise density, this is of course reflected in it’s price. One should also be aware
of that the output signal is ratiometric, i.e. the output is directly proportional to
the supply voltage.

Measurment range

In order to approximate the angle from 0◦-90◦ the needed measurement
range has to be 1 g. Thus both of the sensor will be acceptable.

Sensitivity

The higher sensitivity option is, by natural reasons, the most desirable.

Zero g Voltage

The zero-rate level is the quiescent point for the sensor, i.e Vout when the
acceleration is equal to zero. As for the gyroscope, it would be convenient
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if this level is placed in the vicinity of the center point at the input range of
the ADC, which in both case are true.

Noise Density

The ADXL203CE is superior since the noise density is lower than for the
ADXL335.

Bandwidth

The expected accelerations is estimated to be within both sensors band-
width.

Sensor Resonant Frequency

This could pose a problem due to the fact that the the motors revolutions
per minute range spans over the sensor resonance frequency. The highest
RPM of a motor/propeller pair was measured to 6700.

Operating Voltage Range

Since the sensors are of the ratiometric type it is very important that the
operating voltage is fixed. Voltage regulators with sufficiently good line
regulation and ripple rejections has to be used.

Quiescent Supply Current

The sensor consumes 0.35 mA, which is, as for the gyroscope, negligible
compared to the motors.

While measuring the objects angular inclination with an accelerometer the sensor
will never measure an acceleration that exceeds 1 g. However, this presupposes
that the the vehicle is not subjected to any other accelerations in the sensors sen-
sitive direction. The acceleration measured at the maximum angle is equivalent
to 0.34 g. By choosing the ADXL203CE, which has a measurement range of ± 1.7
g one is granted the best available resolution while still having a margin.

To evaluate the accelerometer, it was soldered on a small "break-out"-PCB and
mounted on a breadboard, an external power supply connected to a voltage reg-
ulator (LM317) which supplied the power to the sensor. In the digital domain
the signal was divided by the sensor sensitivity and then inverse sine value was
computed in order to calculate the breadboards angular inclination.

Unfortunately there was no time to build a proper automated test rig for the sen-
sors so the authors had to improvise. The breadboard was tilted back and forth
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between 0◦-45◦ by hand and the result can be viewed in Fig 2.14 below.
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Fig 2.14: Sampled with an oscilloscope with a sampling frequency of
12.5 kHz. The small angle approximation was not used.

As seen the sensors suffers form an undesirable traits which yields a noisy out-
put. At rest the peak-to-peak value of the noise is more than 15◦, this of course
poses a problem. An acceleration that gives a signal below the noise floor can sim-
ply not be measured accurately. This problem can be prevented by reducing the
bandwidth of the sensor which will improve the SNR. By using the manufacturer
provided data and equation (2.7) below one can calculate the least detectable ac-
celeration.

aleast = n ·
√

B (2.7)

Where n is the noise density ratio and B is the signal bandwidth.

An analog low pass filter was therefore introduced and the signal was sampled
( fs = 12.5 kHz) before and after the filter. The result can be seen in Fig 2.15. Ac-
cording to (2.7) it should now be possible to detect a signal that corresponds to 82
µg. One may think that the reduction of the bandwidth is too drastic but there is
in fact another reason for restricting the bandwidth while using the accelerometer
to estimate the angular inclination of a moving object like a quadrotor platform.
Whilst the craft is manoeuvring and the movement perpendicular with the sensi-
tive axis of the sensor, that movement will give rise to an acceleration that will be
measured and interpreted as if the craft was tilted. This is of course an unwanted
side effect and has to be suppressed as much as possible. One way to achieve
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this is to drastically decrease the bandwidth of the output from the accelerome-
ter. After a series of trial based experiments a suitable bandwidth of the signal
was determined to be around 0.3 Hz.
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Fig 2.15: Filtered and unfiltered accelerometer data, Sampled with an
oscilloscope with a sampling frequency of 12.5 kHz. The corner
frequency for the low pass filter is 0.3 Hz. The small angle ap-
proximation was not used.

A hard truth is that every improvement comes with a sacrifice, which in this
case is that by reducing the bandwidth the dynamic range of the sensor will be
limited. Angular change with frequencies higher than 0.3 Hz will be suppressed
and delayed. This renders the sensor useless for the upper part of the frequency
spectrum.

Solution
The previously described sensors suffers from unwanted characteristics but at
different parts of the frequency spectrum. A possible solution would be to high
pass filter the gyroscope signal to eliminate the bias drifting, before computing
the integral, and to low pass filter the accelerometer signal to suppress noise and
acceleration readings that arises from fast lateral movement of the platform. In
this way the sensor signals will complement each other and if both filters are
matched the circuit should have a flat (flat enough for the application) frequency
response. See Fig (2.16) for a graphical reference.
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∫
f(t)dt

∑ (1)

1

α (1)

1

Acc

Gyro 1
s

Fig 2.16: A summation of the accelerometer and the integral of the gy-
roscope signal.

2.4 Sensors - Yaw axis
In the case of estimating the angular position about the yaw axis it is not possible
to rely on an accelerometer for the lower part of the frequency spectrum. Because
of this reason a sensor that utilizes a different external reference is needed. The
earth’s geomagnetic field’s horizontal component is selected as reference and a
sensor with sufficient sensitivity is required for this. The field strength of the hor-
izontal component Bh, which is to be measured, has a size of about 25 µT. The
relationship between the direction of the field and the output is described by a
sinusoidal signal.

A gyro sensor, the same type as for the θ or φ angles, a hall effect sensor of ratio-
metric type and a complementary filter, as for the roll and yaw-axis, was selected
for the purpose.

Hall effect sensor
Every value of the output signal from the hall effect sensor corresponding to two
angular positions during a revolution, 360◦. By combining the two sensors with
a mutual offset of 90◦, the direction can be explicitly determined by the unique
two-dimensional output signal see Fig 2.17.

To increase the resolution of the measurement ranges and to linearize the rela-
tionship with an error of less than 4% as in Fig 2.18,
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Fig 2.18: Error of the non-linearity.

the authors used selected parts of the output curves, namely those located in the
area of ± 1/

√
2 of the signal amplitude, see Fig 2.19.

By means of the described curve sections, a continuous signal could be created,
linearly proportional to the angle φ according to the following

A : if curve 1 > V1 with the value of va, (2.8)
B : if curve 2 < V2 with the value of vb, (2.9)
C : if curve 1 < V2 with the value of vc, (2.10)
D : if curve 2 > V1 with the value of vd, (2.11)

where the integer index of v denotes the signal (Fig 2.17) and V1 and V2 is the
upper and lower voltage limits, see Fig 2.20.
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Fig 2.19: Selected portions of the output signal.
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The compass output signal can now be constructed as

VC =V1 − va,
V1 − vb + (V1 −V2),
−V2 + vc + 2 · (V1 −V2),
−V2 + vd + 3 · (V1 −V2)

for each interval, A, B, C and D.

Due to the fact that the amplitude of signal 1 and 2 are not exactly equal, V1
had to be decreased and V2 slightly raised. As a bi-product an overlap was cre-
ated. Inside the overlap a mean value of the two selected curves was created.
New reference values were made where

V1 → Va

V2 → Vb

V3 → Vc

V4 → Vd

which also were made adjustable so that the curve portions could be matched in
the joints. V1 and V2 thus became references for selecting the usable part of the
curve Va, Vb, Vc and Vd became the basis for the outputs and gave VC.

Furthermore, this module will be referred to as the compass, by obvious reasons,
in the forthcoming chapters.
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2.5 Communication link
A communication link between the operator and the quadrotor platform is re-
quired. Via this link flight instructions will be sent. For this purpose a XBee PRO
S1 was used.

The XBee is an RF module that employs the IEEE 802.15.4 network protocol which
allows the device to conduct peer-to-peer, point-to-point and point-to-multipoint
communication at a reasonably high transfer rate, namely 250 kbit/s. The mod-
ule is designed for applications where low power consumption and low latency
is requested. The output power is 63 mW which yields an indoor range of 90 me-
ters and for outdoor and in line-of-sight up to 1.6 km. The device is interfaced via
the de facto serial communication standard UART (Universal Asynchronous Re-
ceiver/Transmitter) and supports an interface data rate equivalent to up to 115.2
kbit/s. This meets the requirements of the authors supposed application. The
module can be configured in numerous ways but it was decided to minimize the
complexity. There were only few changes made from the provided settings. The
device was initialized in such a way that the latency was minimized, this was
partly achieved by not allowing it re-send lost data packets and to not wait for
packet acknowledges.

2.6 Power Supply
A truly vital part of a the quadrotor is the power supply. A four cell lithium
polymer battery with the capacity of 4000 mAh and rated to be able to delivery a
constant discharge current of 100 A was chosen for this purpose. As concluded
earlier the current consumption at the crafts equilibrium state is approximatively
8.6 A which will yield 30 minuets if hovering time.

2.7 Quadrotor Processing Unit
The quadrotor is an intricate construction mainly consisting of four motors and
one motor control unit for each one of them, 2 sensor per axis and radio link.
All of these peripheral units needs constant maintenance and surveillance. A
central hub to gather and process sensor data and give appropriate commands
to actuators is therefore needed. Below follows a short list of required peripheral
units.

Timer/Counter

A timer/counter for creating PWM-signals will be necessary. It will be used
to interface the motor control unit.
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Universal Asynchronous Receiver/Transmitter

As previously described, the radio transceiver is interfaced via UART

Data conversion

The chosen sensors has an analog output. Therefore it is needed to convert
the signal into the digital domain. A more detailed specification of the re-
quired resolution will follow in the next section.

Analog-to-Digital conversion - Pitch, roll and yaw
To determine what resolution is needed for the data conversion it is important
to get a sense of what angular precision that is required to maintain in the equi-
librium state. If a resolution of 12-bit is chosen the least significant bit would be
equivalent 0.81 mV or 0.0079 m/s2 and this would yield angular resolution of
0.05◦ (if the signal from the complementary filter is not amplified) and a lateral
drift of 0.2 m in 10 s. This is more than enough, but this is of course entirely the-
oretical.

The compass has a theoretical resolution of 7 mV/◦ which corresponds to roughly
8.7 qu/◦ (qu - quantization unit, the value of the LSB) at a resolution of 12-bits.
This is acceptable due to the fact that the yaw direction is of less importance re-
lated to the angles θ and φ.

Computational cost
The motor control unit can be updated with a maximum frequency at 400 Hz
which implies that all of the control algorithms has to be computed within 2.5
ms. This has to be kept in mind while choosing the processing unit.

Processing Unit - Chosen
After careful considerations a microcontroller (TMS320F2806F28069 - Piccolo) man-
ufactured by Texas Instrument was selected, and our friends at the local office
were kind enough to sponsor the project and supplied the authors with two de-
velopment kits. The development kit consisted of the microcontroller, a develop-
ment board and JTAG (programming and debugging interface).

The microcontroller has two cores, the main core is a 32-bit CPU with a clock fre-
quency of 90 MHz. Some of the peripheral units that are available and that will
be partly used here are the following:
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16 PWM channels, each with an independent timer
- Four of them will be used to control the motor unit.

Three 32-bit CPU timers
- One of them will be used to trigger the ADC, for the control algorithms
and for a possible inertial navigation system.

Two serial communication interfaces (UART)
- One is utilized to send and receive command via the radio link to the
remote controller.

16 12-bit ADC channels
- 3 channels are occupied by the complementary filter and some of the re-
maining will be allocated by accelerometers dedicated for the inertial nav-
igation system.

One floating-point unit
- Speed up calculations with a need of more accuracy.

54 multiplexed general purpose input/output pins
- LED’s and miscellaneous.

100KB RAM and 256 KB Flash
- It is always good with some memory.

The above is not the only reason that made the authors chose this particular mi-
crocontroller. The Piccolo MCU have a another compelling feature and that is the
other core, the Control Law Accelerator, which will be described in the subse-
quent section.

Control Law Accelerator
The Control Law Accelerator (CLA) is a 32-bit floating-point math accelerator
which operates independently of the MCU’s main CPU. It has an independent
register set, memory, bus structure and processing unit. The CLA has direct ac-
cess to the PWM-module and the ADC result register. It is possible for the CLA
to read the ADC result registers in the same cycle as it updates which reduces the
sample-to-output delay.
The CLA has 8 programmable tasks, which essentially are simplified interrupt
services routines. They can be triggered by a PWM-interrupt (at the end of the
PWM period) or when an ADC conversion is completed and from software. The
tasks are prioritized, task 1 has the highest priority while task 8 has the lowest.
This means that if two task are called at once the task with the highest priority is
executed first. There is no possibility to perform any type of nested tasks, i.e. a
task can not call another task. There are neither any conventional interrupt ser-
vice routines available, which shortens the response time when a task is invoked
since a task is always is completed before another is executed.
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The Control Law Accelerator has its own assembly instruction set but Texas In-
struments is also providing a C compiler, but the manufacturer highly recom-
mends to use the assembly instruction set and the authors acted upon that advice,
since it will be more convenient in regards to keep track of the tasks execution
time.

The CLA and the main CPU can pass data between each other via a message
RAM block. The block is divided into two parts, writes from the CPU and reads
from the CLA is allowed for one and writes from the CLA and reads from the
CPU in the other.

The CLA is fully compatible with the IEEE 32-bit floating-point format (single
precision floating-point). All basic operations such as add, subtract, multiply,
1/x, move, logic operations, read, store etc is executed in one clock cycle. The
mathematical operations is done with full accuracy except for the inverse of x,
this is a reciprocal approximation and the result is only accurate to 8-bits. To
increase the accuracy to 32-bits the Newton-Raphson algorithm has to be per-
formed twice.

Because of the above the CLA will be used to unload the main CPU by perform-
ing the heavier computations, such as the algorithms for the stability control and
the inertial navigation. The main cores primary assignments are therefore main-
tenances related, i.e initializing peripherals and respond to interrupts from UART
module and relay the commands to the CLA.

Estimation of execution time

Now it is possible to estimate the execution time for the control algorithms. The
clock frequency of the CLA is 90 Mhz thus the available number of clock cycles
are 225 000 (because of the motor control units bandwidth) hence it is safe to say
that there is a significant margin. The number of mathematical operations a sim-
ple PID controller has to perform is 9, which is equal to the number of needed
clock cycles the execute them, if divisions is avoided and replaced with multipli-
cations.
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Fig 2.21: Piccolo, simplified core structure.

2.8 Software
As explained before the main CPU is mostly utilized to perform maintenance re-
lated task. It will handle the initialization of peripheral units such (serial commu-
nication interface, the PWM unit, the analog-to-digital converter and the control
law accelerator).

After the initialization sequence is performed the CPU’s main duty will be to re-
ceive commands from the remote controller and send them via the message RAM
to CLA as target values for the control algorithms. It will also handle the trim-
ming process (which is invoked and carried out by the operator) of some variable
values in order to reach the crafts equilibrium state, i.e. hovering.

A more detailed description of the control algorithm the CLA performs will be
given in the next section.

Stability control
As previously described the platform is inherently unstable and is in need of a
stability control system. The chosen control structure is based on the work of G.
Szafranski, R. Czyba. Different Approaches of PID Control UAV Type Quadrotor [5]
The system closed loop transfer function in block form is showed in Fig 2.22. As
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Fig 2.22: System transfer function in block form.

seen in the figure a cascaded control loop used. The inner loop will handle the
higher frequency dynamics and attenuates the plants non-linearities while the
outer loop controller produces the target value for the inner.

The anglular velocity is used as a reference value for the inner controller since it
will give information about the system faster than the signal that estimates the
angle (derivative of angle = angular velocity). As one may remember the signal
from the gyroscope is biased and this is of course a problem. The bias has to be
eliminated before it can be used as an input signal to a control. The elimination
procedure could be realized by a high pass filter. This is possible since the inner
loop only handles the faster dynamics of the plant and the information loss at
frequencies close to zero is of less importance.

An infinite impulse response (IIR) filter is the best choice in this particular case
due to its simplicity. The frequency response of this type of filters can be de-
scribed as the product of the distance from each pole to ejω divided the product
of the distance from each zero to ejω in the z-plane, see equation (2.12) and Fig
2.23. ∣∣ H(ejω)

∣∣ = ∏m
k=0
∣∣ejω − zm

∣∣
∏n

k=0
∣∣ejω − pn

∣∣ (2.12)
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Fig 2.23: Filter output and the relationship between the poles and ze-
roes.

Thus the conclusion can be summarized to that zeros attenuate and poles amplify.
By placing the pole and zero in accordance with Fig 2.24 the desired response is
obtained.

Im

Re

Zero 1
Pole 1

Fig 2.24: Placement of the poles and zeros.

The transfer function is given by (2.13).

H(z) =
1− z−1

1− α · z−1 (2.13)

Which yields the following expression,
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Y(z) · (1− α · z−1) = X(z) · (1− z−1) (2.14)

and in the sampled time domain equation 2.15 can be described with the differ-
ence equation below.

yn = xn − xn−1 + α · yn−1 (2.15)
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Fig 2.25: Frequency response, sampled gyro as input and the resulted
output.

This will be executed every time the CLA is invoked. For a frequency response
and a sampled gyroscope signal filtered and un-filterd see Fig 2.25.

Furthermore, all the samples from the ADC were low pass filtered. This was
done with a finite impulse response (FIR) filter. Such a filter can be derived from
the inverse Fourier transform of the ideal frequency response, see equation (2.16)
and Fig 2.26.

h(n) =
1

2π

∫ π

−π
H(ejω)ejωndω (2.16)

ωcωc- ωc

Fig 2.26: Ideal frequency response of a low pass filter.

The ideal filter can thus be described by (2.17) below
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H(ejω) =

{
1, −ωc ≤ ω ≤ ωc

0, Otherwise
(2.17)

which will make the transform easier to solve. See below.

h(n) =
1

2π

∫ π

−π
H(ejω)ejωndω =

1
2π

1
jn

[
ejωn

]ωc

−ωc
=

sin(ωcn)
πn

(2.18)

The given unit sample response is non-causal and has an infinite duration, thus
it must be made causal and the duration has to be finite before it can be imple-
mented. The first problem can be solved by shifting h(n) into positive time and
the second by truncating it. The truncation is equivalent to multiplying the re-
sponse with a window function like the one in (2.19) below,

w(ω) =

{
1, for n = 0 to M-1
0, Otherwise

(2.19)

where M is the length of the filter.

A rectangular window like (2.19) has a frequency response given by the Fourier
transform of w(ω), see below.

W(ω) = e−jω(M-1/2) · sin(ωM/2)
sin(ω/2)

(2.20)

By performing this action one introduces unwanted characteristics. It will cause
ripples in the stopband, further more the roll-off will be less steep. The rip-
ples originates from the discontinuity of the window but they can be suppressed
by using a "more" continuous window. But as in majority of cases, a improve-
ment comes with a trade off, by better the stopband attenuation the filter roll-off
worsen. See Fig 2.27.

The filter above is of the 24th order, the sampling frequency is 400 Hz. In this
case the authors opted for the filter with the better stopband attenuation. The
output of the filter can be represented by the non-recursive difference equation
which is a linear combination of M-1 individually weighted previous inputs and
the current weighted value. See (2.21). In this representation the filter is easily
implemented in assembly code.

y(n) =
M−1

∑
n=0

h(n) · x(k− n) (2.21)
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Fig 2.27: Rectangular window vs Blackman.

With the signals in order one can move on to the next topic which is the control
algorithm, but before implementing the previously described controller it is good
to be aware of two of potential caveats. One has its origin in the derivative path
and is known as the derivative kick and the other in the integral path and is called
integral wind-up.

Derivative kick
The contribution from the derivative path is shown in equation (2.22) below. This
is the derivative of the error signal which is the difference between the target
value and the process value.

d
dt

e(t) =
d
dt

r(t)− d
dt

y(t) (2.22)

If there were to be a momentaneous change of the target value the derivative
of the error would be a spike. This could have unwanted side effects (for this
application it will make the motor change its angular velocity very fast which
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could produce vibration) but it is easily prevented. The derivative of the setpoint
is most of the time zero, in relation to the evaluation period of the algorithm.
Because of this fact it can be omitted and equation (2.22) can be re-written as in
(2.23). This is also visible 2.22.

d
dt

e(t) = − d
dt

y(t) (2.23)

Integral wind up

Delay

ytarget

uactuator

Saturation Limitu

Fig 2.28: Wind up.

A wind up occurs when the actuators becomes fully saturated while the out-
put from the control algorithm still increases. This could happen if the system
is forced into a state where the target value is not reached, i.e an error will be
present. The integral part will thus continue to grow well past the actuators satu-
ration limit until the error signal change sign. The situation described will intro-
duce an unwanted delay where the system seems unresponsive and shows non
linear traits. Please see Fig 2.28 for a graphical.

The way the authors chose to prevent this phenomena was simply to never allow
the absolute value of the integral part to exceed a predefined maximum limit.
The same clamping procedure was also applied on the overall output of the PID
controller.

Implementation of the control algorithm
As stated before the control algorithms is carried out by the CLA. The CLA is
set to be triggered every time a data conversion is completed, Fs = 400 Hz. By
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executing the control algorithm at a frequency of 400 Hz one yields a refresh of
the motor control signal every 2.5 ms, this is within the specified bandwidth of
the control unit. The execution time for all of the CLA’s instructions is roughly
10.6 us, which grants some elbow room.

Before the CLA starts evaluating the control algorithm it is set to accumulate
1000 samples from all three complementary filters (individually) and then the
mean value is calculated. The mean value is used to eliminate the sensor "zero
value" output at each task call. A code execution flowchart is showed in Fig 2.29.
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Fig 2.29: Flow chart of the control algorithm.
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2.9 Cross frame
As stated in chapter 1.1 a cross frame is needed to keep the essential parts of a
quadrotor platform (motors, motor control units, sensors, the processing unit etc)
together. When it came to the electronics, the authors decided to strive to achieve
a as modular design as possible by compartmentalize the platforms essential
functionalities into replaceable blocks in form of smaller PCBs. These PCBs will
be connected together on a larger. By doing this the complexity is reduced and
broken parts can easily be replaced. The larger board, niftily called the mother-
board, will also be a part of the cross frame construction. The connector between
the function blocks and the motherboard are of the DIM100 type. The connector
has 100 pins/poles, this is more than enough and grants some elbow room for
future improvements.

Fig 2.30: DIM100 connector.

Fig 2.31: Quadrotor platform frame.

The cross frame was purchased at a radio electronics hobby store. It is made
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of carbon fiber, see Fig 2.31, which ensures a rigid construction and a relatively
small mass. The construction weighs 240 g.
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Chapter3
Inertial navigation

As discussed in the introduction the task was to find suitable sensors to perform
measurement of a vehicles accelerations vector in order to calculate the current
position, primarily in the horizontal plane. The lateral movement will be limited
to one axis at a time. As before, the sensors had to be readily available, reasonable
in price and suitable for the application on board a quadrotor with a movement
pattern containing accelerations up to 2 m/s2 and speeds of up to 8 m/s.

The movement in the horizontal plane, sh, is calculated as the integral of the inte-
gral of the acceleration with respect to time, i.e

vh =
∫

ahdt (3.1)

sh =
∫

vhdt (3.2)

where ah is acceleration and vh is velocity in the horizontal plane.

Since the accelerometer is fixed to the vehicle, one must compensate for the sen-
sors possible angular deviation from the horizontal plane, described by the angle
α, in conjunction with adjustments for acceleration readings contributed by the
gravity, which also is related to α. With this in mind and by the means if a simple
vector analysis the measured acceleration, am, can be described as in equation
(3.3).

am = ah · cos(α) + ag (3.3)

where ag = sin(α)· g, ah denotes the horizontal acceleration, g is equal to 9.81
m/s2 and the angle α is given by the strapped down sensor. Do note that (3.3) is
for the simplified case when the craft is fixed in such a manner that no movement
in the perpendicular directions are allowed.

The acceleration, ah, can be approximated by the equations (3.4) and (3.5) when
the lateral movement of the craft starts from the equilibrium state.

47
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Fh = sin(α) · Fv (3.4)

ah =
Fh
m

m/s2 (3.5)

Where Fv is the vertical thrust, Fh and ah is the horizontal force and acceleration.
Do note Fv = m · g while the craft is in its equilibrium state.

As an example, if the quadrotor is in the equilibrium state and the lateral move-
ment will be conducted through moderate pitch or roll movements by α = 10◦

instantaneous change of the attitude with a duration of 2 s, an acceleration of 1.7
m/s2 will be obtained. This can be calculated by using the equations above, if one
allows to neglect the change in Fv during the change of the angular inclination,
which will be insignificant for small α.

An acceleration of 1.7 m/s2 for 2 s yields a velocity of 3.4 m/s. This speed is
to great to start performing the navigation with (for safety reasons). A more suit-
able case would be if one commands the platform to have a angular inclination
of α = 3◦ it will accelerate with 0.5 m/s2, if the acceleration has a duration of 2 s
the velocity will be 1 m/s2. After 100 s a horizontal movement of 100 m will have
taken place. A good result would be to achieve an accuracy of 1 m or in other
words 1% error.

If the gyroscope signal is high pass filtered with an appropriate cut-off frequency,
so that attenuation of the 2 s signal is made negligible while the typical slow bias
drift, see the previous description regarding this subject, is suppressed, the atti-
tude for the speed control can be measured and controlled with the help of the
gyroscope sensor.

For the purpose the authors selected the previously used accelerometer, namely
the ADXL203 (± 1.7 g) and a gyroscope type LY330ALH (300 ◦/s).

3.1 Estimations of the measurement
accuracy

With the 12-bit analog-to-digital converter of the Piccolo MCU and a span of 3.3
V, the value of 1 qu is 0.8 mV. By assuming that the maximum error is 1 qu, the
error of the acceleration becomes as shown in (3.6)

0.8 ·mV · 9.81 · m/s2

V
≈ 8 mm/s2 (3.6)

(The sensitivity of the ADXL203CE is 1 V/g).

If the desired acceleration is 0.5 m/s2 and the actual acceleration is 0.508 m/s2
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for a duration of 2 s, the distance travelled during 100 s then becomes 101.6 m
instead of 100 meters. This in accordance with the equations below.

v = a · t
s = v · t

A control algorithm is meant to keep the desired velocity during the flight with
the help of the described pulses of attitude change. Potential errors are neglected
for now because of their stochastic nature.

Another source of error is the drift of the offset (denoted by oe) in the AD-converter,
which is presumed to be in the range of 2-20 ppm and is described by equation
(3.7)

Verr = oe ·Vre f ≈ 6.6 to 66uV (3.7)

The expected error corresponds to 65 to 650 um/s2 which yields an error of 0.3 to
3 meters during 100 s.

If the output from the accelerometer is low pass filtered with a cut-off frequency
of 100 Hz the smallest theoretically detectable acceleration can be calculated by
the equation (3.8) which is provided by the manufacturer.

amin = 110 · ug√
Hz
≈ 11mm/s2 (3.8)

The result of equation (3.8) is on par with the bit error mentioned above.

If one provides a low pass filter, fc = 100 Hz, for the gyroscope the least de-
tectable angular velocity will be 0.14◦/s. This is calculated with the manufacturer
provided data, see equation (3.9) below.

wmin =
0.014◦/s√

(Hz
(3.9)

The authors chose a sampling frequency of 1 kHz. This because the fact that
the acceleration readings has to be described in relatively high detail in order to
approximate the position accurately.



50 Inertial navigation

3.2 Computational cost
As described above, the horizontal acceleration, ah, measured whilst the quadro-
tor is accelerating horizontally is described by (3.10)

ah =
am − ag

cos(α)
(3.10)

where
ag = sin(α) · 9.81m/s2 (3.11)

The evaluation of sin(α) and cos(α) often comes with a high cost for a process-
ing unit (without dedicated hardware support). The beloved Taylor expansions
for sin(α) and cos(α) can be utilized to approximate the given trigonometric func-
tions. The number of terms is chosen by considering the required accuracy. With
three terms included the error is guaranteed to be less than 3·10−6 for cos(α) and
1.4·10−6 for sin(α) while |α| ≤ 20◦. For this level of accuracy 6 multiplications
and 2 summations are needed to approximate sin(α) if it is calculated as showed
in the pseudo code below.

1 x2 = x∗x ;
2 s i n = x ∗ ( a0 − x2 ∗ ( a3 + x2∗a5 ) ) ;
3 //a0 , a3 and a5 i s previously c a l c u l a t e d

This since the Taylor expansion of sin(α) is as showed in (3.12) beneath.

sin(x) ≈ x− x3

3!
+

x5

5!
(3.12)

In a similar manner it can be determined that cos(α) will need 4 multiplications
and 2 subtractions, see the pseudo code below.

1 x2 = x∗x ;
2 cos = 1 − x2 ∗ ( a2 + x2∗a4 ) ) ;
3 //a2 and a4 i s previously c a l c u l a t e d

The number of multiplications thus far are 9 (since it is only necessary to compute
x2 once) and the required amount of summations are 4. After performing three
additional operations, namely one multiplication, one division and one summa-
tion ah is obtained.

As mentioned before, a numeric quadrature has to be performed twice to deter-
mine the the position of the craft. This will add 4 multiplications and 2 sum-
mations. Note that the division by two is replaced with a multiplication of 0.5
because of the fact that divisions has a higher cost. Hence 14 multiplications, 7
summations and 1 division is necessary. All of these computations are for one
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axis and the purposed navigation will take place in the horizontal plane which
adds another axis. The resulting number of computations is thus equal to 28 mul-
tiplications, 14 summations and 2 divisions.

3.3 Estimation of execution time
It is important to understand how long the execution time will be for the CLA
tasks so that a task call will not be missed.
Since there is a division present in INS computations, one has to use the provided
instruction that gives a reciprocal approximation of x. As mentioned before there
is a necessity to perform an iterative algorithm to achieve full single precision.
This algorithm has to be examined in order to determine the execution time. This
is done with the code snippet below.

1 MEINVF32 MR1, MR2 ; MR1 = Rec iproca l approx . of 1/x
2 MMPYF32 MR3, MR1, MR2 ; MR1 = (1/ x ) ∗ x
3 MSUBF32 MR3, 2 . 0 , MR3 ; MR3 = 2 . 0 − (1/ x ) ∗ x
4 MMPYF32 MR1, MR1, MR3 ; MR1 = (1/ x ) ∗ ( 2 . 0 − 1/x ∗ x )
5 MMPYF32 MR3, MR1, MR2 ; MR1 = (1/ x ) ∗ x
6 MSUBF32 MR3, 2 . 0 , MR3 ; MR3 = 2 . 0 − (1/ x ) ∗ x
7 MMPYF32 MR1, MR1, MR3 ; MR1 = (1/ x ) ∗ ( 2 . 0 − 1/x ∗ x )

Listing 3.1: Clock cycle count for the inverse of x.

The above implies that it will take 7 clock cycle to perform the the inverse of x and
hence 8 cycles to compute a division y/x (memory reads are not included). With
this in mind it it possible to determine the execution time of the INS algorithm.
See Tab 3.1.

Tab 3.1: Summation of execution time for the INS algorithm.

Operation Count Cycle/Op Total Time

Multiplication 28 1 311.08 ns

Division 2 8 177.76 ns

Summation 14 1 155.54 ns

Sum 58 644.44 ns
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Chapter4
Results and performance

In this chapter the measurement results of the sensor filters, the mechanical con-
struction and performance of the quadrotor platform will be addressed. The
measurements regarding inertial navigation will also be displayed and discussed.
Furthermore possible improvements will also be suggested along with a presen-
tation of future work.

4.1 Quadrotor Platform
Sensor - Pitch and roll
The sensor filter was designed with classical operational amplifiers and discrete
components, the schematic can be found in Fig A.2 in the appendix. Of course
there had to be made some modifications to the simplified version seen in Fig
2.16 that was presented earlier. The low pass filter in the path of the accelerom-
eter was made so that it easily can be configured to a second, third, fourth or
fifth order filter (to better suppress acceleration readings originating from lateral
movements with frequencies higher than fc). The DC bias from the accelerometer
had to be eliminated, this was accomplished by a summator. The summator was
equipped with a variable resistor in the feedback loop which made it possible to
match the two sensors amplitude.

There were also changes in the path for the gyroscope. The integrator has a resis-
tor in parallel with the feedback capacitor (τ relatively large). This to assure that
the operational amplifier will not be saturated. Furthermore a first order high
pass filter (τ relatively small) was also put after the integrator to compensate for
it’s internal offset (which also gets integrated).

In Fig 4.1 one can see the output from the low pass filtered accelerometer and the
integral of the output from the gyroscope and the resulting signal from the sensor
filter.
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Fig 4.1: Sensor filter plot

As seen the response time is significantly improved compared to the accelerome-
ter signal and it shows no drift tendency at all.

Due to the design of the filter, on start up, when the power is switched on, the
signal moves asymptotically to the stationary value. See Fig 4.2.
The result is the combined step response from both the gyroscope and accelerom-
eter path. As seen it takes approximately 100 s before the signal reaches the "zero
value". Thus initialization sequence of the control algorithm has to be done after
the signal stationary value.

In Fig 4.3, the PCB module is showed. Two sensor filters, one on the front and
one on the back, are mounted on a larger PCB which will be inserted onto the
motherboard.

A couple of extra features were added on the larger PCB. The first addition was
an amplification, since the craft is restricted to only change the angles φ and θ to
± 20◦ it is convenient if this movement utilizes the entire span of the ADC. The
need for the second addition arises whilst introducing the first. The maximum
output from the sensor filter can now exceed the limits of the AD-converter and
thus the ADC must be protected from this. And lastly, since the signal bias from
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Fig 4.2: Sensor filter stabilizing time.

Fig 4.3: Two sensor filters (one on back) positioned on PCB which will
be inserted on to the motherboard

the sensor filter is 0 V the bias has to be adjusted so that the signal is placed in the
center of the ADC span, this was previously done on the motherboard and is for
that reason missing in the sensor filter schematic.
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Fig 4.5: The front of the compass module.

Sensors - Yaw axis
The compass was realized with analog electronics and could relatively easily be
tuned to an estimated accuracy of less than one percent of error which corre-
sponds to ±3◦. The resolution of the compass is 6.4 mV/◦. For the schematic,
please refer to Fig A.1 in the appendix.

As for the sensor filter made for the angles φ and θ the improvement in the re-
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Fig 4.6: The back of the compass module.

sponse time is significant and is visualized in Fig 4.4. The combined signal from
the gyroscope and the compass is at least 300 ms faster than the signal from the
compass. In Fig 4.5 and 4.6, one can see the actual compass.

Power distribution
A topic that was not mentioned previously is the quadrotor power distribution.
The average battery voltage during a charge cycle of a 4 cell is 14.8 V (3.7 V /
cell). This voltage has to be converted to ± 15 V, +12 V, ± 5 V and +3.3 V as basic
supplying voltages for the electronics. This was done in two steps, first via two
opto isolated DC/DC converters, one with the output voltage of ± 15 V and one
with +12 V. After this stage low drop-out regulators were used. For more details
see Fig 4.7 and 4.8.

In a similar fashion as before (CNC mill combined with etching) the PCB below
produced.
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Fig 4.7: Front side of the power distribution PCB.

Fig 4.8: The power distribution PCB, backside.
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Cross frame
As described before the frame consists of two carbon fiber tubes held together
by the motherboard which was designed and created in the usual fashion. The
result can be seen below. As a reminder, the top architecture of the motherboard
is shown in Fig 4.9.

MCU

INS

Power Radio

Acc Gyro
Comp Gyro

C-Filter

Acc Gyro

Motor

Motor

Motor

Motor

C-Filter C-Filter

MCU

Fig 4.9: Motherboard top architecture.
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Fig 4.10: Motherboard PCB.

There were some fatal flaws in the first design of the motherboard and some
modifications of the mechanical construction had to be made. The authors did
not foresee the impact of the vibrations that arose from the motors and propellers.
The amplitude of the vibration was severe enough to destroyed a couple of ac-
celerometers. The author’s hypothesis is that the moving conducting plate inside
the sensor broke after hitting the surrounding plates repeatedly at frequencies
near the sensor resonant frequency. The problem was partly solved by mount-
ing the motors on rubber dampers see Fig 4.12. The achieved attenuation was
not sufficient so the motherboard had to be reconstructed. It was modified so
that it could be suspended in air by silicon dampers. With these precautions in
conjunction with placing two smaller weights on the board the vibrations were
suppressed to a satisfying level. The accelerometer was also replaced to the
ADXL335 which has larger measurement span and is able to withstand higher
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impact forces, 10000 g instead of 3500 g.

Fig 4.11: Motherboard suspension.

Fig 4.12: Modified frame including motor rubber suspension and moth-
erboard silicon dampeners.

As seen above a propeller fence was created by the help of the CNC mill, alu-
minum plates and a plastic bucket. This also attenuated the vibrations. The com-
pleted quadrotor platform can be seen in the Fig 4.12.
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Stability control
With the previously described control structure implemented the authors were
able to reach stability in all the desired cases, yaw, pitch and roll. For a system
step response please refer to Fig 4.13 for roll, 4.14 for pitch and 4.16 for yaw.
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Fig 4.13: Step response, roll axis.
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Fig 4.14: Step response, pitch axis.

The roll and pitch controllers were tested separately. The quadrotor was hanged
on a string in the same test rig used for evaluating the motors. See Fig 4.15.
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Fig 4.15: The quadrotor platform test rig.
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Fig 4.16: Step response, yaw axis.

The controllers were manually tuned. The main differences in the step response
of the pitch and roll controllers can most likely be attributed to the sensor filters.
As known, they were constructed by discrete components and thus hard to con-
figure so that they behaved in the exact same manner.
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As a curiosity, it can also be added that the implemented FIR filter made a tremen-
dous difference regarding platform vibrations. Even though the analog signals
was low pass filtered by a 2nd order filter with the cut-off frequency of 20 Hz be-
fore the conversion into the digital domain. See Fig 4.17 and Fig 4.18.
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Fig 4.17: Comparison between the contribution from the derivative part
when the input is filtered and unfiltered.
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In Fig 4.19 the reader can see the platform while hovering.
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Fig 4.19: The quadrotor platform in the air.

The craft is not easily controlled by the operator though, reaching the equilibrium
state is near impossible. The reasons for this will be discussed the next section.

Conclusion and possible improvements

The altitude is cumbersome to set due to the fact that the stick range goes from
zero to full throttle. In other words it is to sensitive and the slightest change have
great impact. If Fv + Fg 6= 0 (Fv denotes the force generated by the motors and Fg
the force imposed by the gravitational field) the craft will either accelerate up- or
downwards. Since the platform protocol only provides a 5-bit resolution of the
thrust it is likely that Fv + Fg = 0 never occurs.

The pitch and roll sensor filters "zero value" that is subtracted from the signal
before evaluating the control algorithm needs to be spot on, e.i. it has to be the
value corresponding to an angular inclination of 0◦ and this is not always the
case. If it is not the craft will drift in the horizontal plane. To eliminate the lat-
eral movement the remote controller stick need to be set at the position so that it
counteracts the drift. And as for the thrust, the stick resolution was to low. These
two major flaws is what made the quadrotor hard to control.

Furthermore the motor/propeller vibrations made it hard to have sensors with
higher accuracy on board, which is needed for the inertial navigation system. By
building a custom made frame for the quadrotor with the vibration problem in
mind it would be easier to more efficiently suppress them.
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4.2 Inertial Navigation
To verify the characteristics and capabilities of a inertial navigation system based
on the MEMs sensors numerous experiments and measurements were carried
out, of which the following interesting results were selected to be reported.

A evaluation PCB was designed and created, with the combination of a CNC
mill and etching. On the PCB four accelerometers were placed. Each signal was
low pass filtered by a second order RC filter.

Measurement A - Sensor stationary drift
During the first measurement four sensors were connected to four different ADC-
channels. The evaluation PCB was not moved during the measurement and had
a duration of 100 s. Please see Fig 4.20.
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Fig 4.20: Measurment A, stationary drift.
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In the graph three measurements are displayed, Trial 1, 2, and 3. For each trial
the drift from each sensor and the mean of all four can be seen. Furthermore the
individual absolute sum from each trial is showed as five three-part bar graphs.

Measurement B - ADC stationary drift
In order to gain more information about the ADC’s drift the authors replaced
the sensors in the measurement above with jumpers to GND, i.e. a guaranteed
"zero value". As before, the PCB was not moved during the measurement. The
obtained result can be viewed in Fig 4.21.
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Fig 4.21: Measurment B, ADC zero valued signal drift.
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Measurement C - One accelerometer to four
channels
To investigate the possible differences whilst utilizing one ADXL to four ADC
inputs and four ADXL to the respective inputs as per A above, an additional
measurement was performed with this configuration, see Fig 4.22. The measure-
ments was done without moving the PCB.
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Fig 4.22: Measurment C, one sensor to four ADC channels.

Measurement D - Movement, Four accelerom-
eters
To carry out measurements while the INS PCB was moving the authors created
a controlled environment by using a motorized sled on an 1.8 m long track. See
Fig 4.23 for a graphical reference. A motor controller based on an ATmega16 was
designed and created. Three potentiometers were used to set the acceleration,
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maximum speed and time for constant speed. The repeat accuracy of the motor-
ized sled was satisfactory, the error was smaller than 0.5% between repeated runs
with the same acceleration, speed and time.

Fig 4.23: Evaluation setup - Evaluation PCB, motor controller and mo-
torized rig.

A suitable distance and acceleration were set, where the distance was chosen to
1.30 m. A run with the measured distance of 1.29 meters was carried out, with
results showed in Fig 4.24.

The result of the same distance traveled but with different accelerations and ve-
locities were also conducted and showed the same results.

All of the above was repeated five times and differed no more than 1.3% between
the each trial.

A new distance, 0.75 meters, with the same acceleration as above, was set via the
motor controller and carried out, with measured distance of 0.76 meters. See Fig
4.25
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Fig 4.24: Movement measurment D.1, result 1.29 meters.
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Measurement technique
The measurements were carried out with the help of the aforementioned circuit
board, see appendix for schematic, and the microcontroller. Before each mea-
surement was performed an internal ADC calibration routine was executed, sub-
sequently, a number of dummy conversions were made and lastly, 1000 samples
when the system was at rest were accumulated during 10 s. The mean of the accu-
mulated samples was used as a zero g bias elimination constant for the continued
measurements and calculations. By creating the mean out of a large number of
12-bit values which were then processed in 32-bit floating point format a high cal-
culation precision could be achieved. The sampling frequency was 1 kHz. This
may seem large but it is required to get an accurate representation of the accel-
eration in the digital domain. Initial measurements with 100 Hz was performed
but the result had a maximum error of 30%. Higher frequencies than 1kHz did
not improve the result significantly.

Conclusion and possible improvements
Measurement B shows that the drift, ranging from 0 and 3 meters per 100 s re-
mained when the accelerometers were replaced with "zero valued signals". Be-
cause of this one can safely draw the conclusion that the drift phenomenon is
mainly due to the microcontroller’s AD-converter.

Measurement C shows that with respect to the drift one obtains close to the same
results with one sensor versus the mean of four sensors, which confirm that the
drift can be attributed to the AD-converter of the microcontroller.

Measurement D.1 and D.9 show a good capability of the system to calculate the
position in a shorter time span. One can also see that the sensor signal is not al-
ways returned to the value it had before moving the sled, i.e. the sensors showed
signs of a hysteresis phenomena, see Fig 4.26.

As a conclusion of the carried out measurements it is safe to say that the micro-
controllers converter is the main limitation of the projected results due to its drift
characteristics.

Furthermore the measured drift yields that a movement of 100 m can be carried
out with an error no larger than a couple of percent. If the hysteresis is assumed
to stay within reasonable values, it is however possible that it is evened out dur-
ing a movement with varied acceleration. The results indicates that the method
could in fact be used as a short term navigation technique on board a quadrotor
platform with the here described restrictions.

An improvement regarding the AD-converters offset could be to have one sen-
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Fig 4.26: Sensor hysteresis.

sor connected to one ADC-channel while the remaining channels are connected
to ground. All channels are processed equally, i.e integrated twice with respect
to time. The result from the "zero valued" channels could then be used as an
estimation of the drift attributed to the AD-converters offset error. The estima-
tion can then subtracted from the position value. Furthermore it could also be
of value to use better AD-converter with a smaller offset error. If the described
drift is eliminated it might also be useful to use several accelerometers in order to
reduce errors originating from the sensor hysteresis.

Another potential solution to the hysteresis of the accelerometer could be to sub-
ject the sensors to a constant vibration at a suitable frequency and with a rela-
tively small amplitude. By doing this the moving conducting plate of the sensor
will most likely oscillate around its "zero value" level.

4.3 Future Work
Quadrotor Platform
One of the authors has already constructed a new iteration of the quadrotor plat-
form. This time the platform protocol is extended and allows a 10-bit resolution
of the remote controller’s joystick position. All of the joysticks data is packeted
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in a 12 byte long flight control frame. The platform remote controller sends the
flight control frame once every 50 ms but in this version the quadrotor initiates
the transmission by sending one byte with the value of 0xFF. This is done to make
sure that the Piccolo’s main CPU, which handles the communication, is in a "low
activity" state before the remote sends data. The frame consists of a two byte
header, 8 byte payload and a two byte tail. See Fig 4.29.

Fig 4.27: A flight control frame in the improved platform protocol.

The thrust is controlled by a stick in conjunction with a rotary encoder. The rotary
encoder is used for coarse adjustment of the thrust while the stick is utilized for
fine tuning the level. This is a great improvement. The control algorithm gains
can be changed in flight via the new remote controller’s encoder and buttons.
This was an appreciated feature which made the system easier to tune. The new
remote also incorporated a LCD-display where useful data is displayed such as
the thrust, target angles, control algorithm gain etc. A graphical user interface
(GUI) was also written which allows a computer to control the quadrotor. See
Fig 4.29.

For the new quadrotor another sensor was used to determine the angles θ, φ and
ψ. The sensor consists of three accelerometers and three gyroscopes. An inter-
nal processor computes the orientation quaternions (a mathematical invention to
determine an objects rotation relative to a reference coordinate system) and send
the data via I2C (instructions for how to use the sensor was not available at the
time the authors of the thesis started building their quadrotor, the sensor needs
to be initialized properly on every start up). Three analog gyroscopes are still uti-
lized for controlling the faster dynamic. The new motherboard now houses two
serial-USB-converters which can be connected to a computer. This feature makes
it possible to perform better data logging than the IDE that Texas Instrument pro-
vides. This feature also comes in handy while debugging the platform protocol
as every frame can be bounced back to the computer.
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Fig 4.28: Improved remote controller.
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Fig 4.29: Quadrotor version two, the new motherboard.

The frame was designed and manufactured by the before mentioned author and
with the intention to minimize the vibration that arises from the motors/pro-
pellers. All motors are suspended by silicone rubber strings, see Fig. 4.30.

The result was yet again an improvement. The vibrations were suppressed enough
for allowing the craft to carrying sensors with higher precision (ADXL203).
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Fig 4.30: Motor suspension system.

With the above adjustment a much more controllable quadrotor was created. See
Fig. 4.31.

Fig 4.31: Quadrotor platform in air.
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Inertial Navigation
The work done regarding the inertial navigation shows, as stated before that it
has potential as a short term navigation system. One of the authors is working
on implementing a velocity control algorithm for the new iteration of the quadro-
tor platform. The same author is also working on a new INS evaluation module
where the previously described offset estimation technique and the constant vi-
bration of the sensor is implemented.
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AppendixA
Appendix - Schematics

In the appendix the reader will find all of the schematics which was made during
and presented in this thesis report. The authors strongly recommend to viewed
in a digital format since the size of the schematic sheet does match the paper size
of this report.
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Fig A.1: Schematic of the compass.
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A.2 Complemntary filter
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Fig A.2: The complementary filter schematic.
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Fig A.3: Schematic of the motherBoard.
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Fig A.4: Schematic of the complementary filter amplitude protection.
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Fig A.5: Top architecture of the INS evaluation.
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Fig A.6: The AccAmp block.
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Fig A.7: Amp (Amp - amplification) block. Do note that the ampli-
fication stage was bypassed during the measurements previously
documented in the report.
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Fig A.8: MCU block.
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