
A
n

a
lysis o

f D
efe

n
se

s a
g

a
in

st R
e

tu
rn

 O
rie

n
te

d
 P

ro
g

ra
m

m
in

g

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, June 2014.

Analysis of Defenses against
Return Oriented Programming

Patrik Billgren

http://www.eit.lth.se

Pa
trik B

illg
re

n

Master’s Thesis

Analysis of Defenses against
Return Oriented Programming

Patrik Billgren
ada09pbi@student.lu.se

Department of Electrical and Information Technology
Lund University

Advisor: Martin Hell

June 25, 2014

Printed in Sweden
E-huset, Lund, 2014

Abstract

Return Oriented Programming is a security exploit technique which builds on
code-reuse from program libraries.

Over seventeen different protections against this attack are available, which
are in need of being analyzed, categorized and compared.

The protections are thoroughly compared, a couple of them are implemented
and tested, and new design ideas are explored.

A new protection design ORPScan is presented, which combines the strengths
of two different techniques, In Place Randomization and Input Scanning. ORP-
Scan can be used to detect Return Oriented Programming attacks without any
false positives.

i

ii

Acknowledgements

I want to thank my supervisor Christopher Jämthagen for being available for
discussions every week and for helping me out of hard situations. I want to thank
my examiner Martin Hell for giving me the ideas to start this work, and for giving
me great advice throughout the work. I also want to thank Erik Nylander for all
interesting discussions about the x86 instruction sets and running unaligned code.

Finally I want to thank Young Ik Eom who provided me with information
about the Zero-sum Defender protection.

iii

iv

Contents

1 Introduction 1
1.1 Problem Introduction . 1
1.2 Goals of the Thesis . 1
1.3 Results of the Thesis . 2
1.4 Report Outline . 2

2 Background 3
2.1 Introduction . 3
2.2 Buffer Overflow . 3
2.3 Return-into-libc . 4
2.4 Return Oriented Programming . 5
2.5 Jump-Oriented Programming . 12
2.6 Early Protections . 13
2.7 ROP-Protections . 15

3 ROP-Protections 19
3.1 Control Flow Integrity . 19
3.2 DROP: Detecting Return-Oriented Programming Malicious Code . . 21
3.3 G-Free - Gadget Free Binaries . 23
3.4 Return-less Kernels . 26
3.5 ROPDefender . 28
3.6 Control-Flow Locking . 30
3.7 ROPScan . 33
3.8 Binary Stirring . 35
3.9 Instruction Location Randomization 38
3.10 In Place Randomization . 40
3.11 kBouncer . 44
3.12 ROPGuard . 47
3.13 Marlin . 50
3.14 Control Flow Integrity and Randomization for Binary Executables . . 51
3.15 Control Flow Integrity for COTS libraries 53
3.16 ROPecker . 57
3.17 Zero-sum Defender . 60
3.18 Summary . 61

v

4 Detailed Analysis of ROPDefender and Zero-sum Defender 65
4.1 Introduction . 65
4.2 Implementing ROPDefender . 65
4.3 Implementing Zero Sum Defender 67
4.4 Experimental Results . 70

5 ORPScan: Combining Techniques for Improved Performance 73
5.1 Introduction . 73
5.2 Background . 73
5.3 Motivation . 74
5.4 ORP . 74
5.5 ROP payload . 77
5.6 ORPScan Design . 77
5.7 Experimental Evaluation . 78
5.8 Security Evaluation . 79
5.9 Results and Discussion . 81
5.10 Future Implementations . 83

6 Conclusions 85

Bibliography 89

A Appendix 93

vi

List of Figures

2.1 Illustration of the stack content before a buffer overflow attack. . . . 4
2.2 Illustration of the stack content after a buffer overflow has been ex-

ploited to initiate a Return-into libc (RILC) attack. 5
2.3 Illustration of the stack content after a buffer overflow has been ex-

ploited to initiate an Return-Oriented Programming (ROP) attack. . 7
2.4 Illustration of the stack during a real ROP attack. The gadgets are

illustrated to the right in the figure. 11

vii

viii

List of Tables

3.1 Overview of the protections. ROP-gadget types, requires source code
and rewrites binary files. 62

3.2 Comparison of the overheads of the protections. 62
3.3 Comparison of the efficiency of the protections. 63

4.1 Performance evaluation of the protection ROPdefender. The perfor-
mance overhead is given in percentage. 71

4.2 Performance evaluation of the protection ZeroSum. The performance
overhead is given in percentage. 72

4.3 Binary size evaluation of the protection ZeroSum. The sizes are given
in KB and the binary size overhead is given in percentage. 72

5.1 Description of the different binaries used in the experimental evalua-
tion of ORPScan . 79

5.2 Sizes of the different input data used in the experiments. 79
5.3 The number of gadgets from the binaries in the top, found in the input

files to the left. 80
5.4 The minimum distance between the gadgets from the binaries in the

top, found in the input files to the left. 80
5.5 The average distance between the gadgets from the binaries in the

top, found in the input files to the left. 80
5.6 The number of gadgets found and the maximum and average distance

between them, for the different ROP-payloads. 80

A.1 Sizes and descriptions of the different input data used in the experiments. 94

ix

x

Chapter1
Introduction

1.1 Problem Introduction

Return-Oriented Programming (ROP) is a computer security exploit technique
which since 2007 [28] has been publicly known and used to attack vulnerable sys-
tems. Many different protections against ROP-based attacks have been developed
and released. The protections all have different properties, different application
areas and varying efficiency. Some protections work as compiler extensions, to
be used once during compilation, and others work as program monitors, which
monitors the execution of a program live.

The department of Electrical and Information Technology is working with
research in the fields of computer and web security. Protections against ROP is
one of the subjects of the research, and the department is working with evaluating
their own protection.

From the department at Lund University’s side, and from other departments
in this scientific field’s side, there is a need of classifying and analyzing the avail-
able protections. The protections need to be thoroughly analyzed and compared
against each other. There is also a need of looking further into the ability to ex-
tend the functionality of the existing protections. By combining parts of different
protections a more complete, or a more efficient protection may be developed.

1.2 Goals of the Thesis

The goals with the thesis are the following:

• To study and analyze different known protection techniques against ROP
with focus on efficiency.

• To explore the possibility of combining parts of different techniques to find
new approaches to protect against ROP.

• To implement, test and evaluate different known protection techniques.

• To implement, test and evaluate a new protection design.

1

2 Introduction

1.3 Results of the Thesis

The following are the results of the thesis:

• A background description of ROP and its history.

• A summarizing description of every known protections.

• A comparison of all the known protections with focus on efficiency.

• An implementation and a description of a couple of known protections.

• An implementation and a description of a newly designed protection.

• Test results of the evaluation of the different implemented protections.

1.4 Report Outline

The report will start with a chapter with a background description, chapter 2.
This chapter will describe the early techniques that led to the developing of the
ROP technique. It will describe the ROP technique thoroughly, and will end with
a classification of the different protection techniques.

Chapter 3 presents the summarizing description of the currently most known
ROP protections. This chapter ends in a detailed comparison of the protections.

Chapter 4 presents a deeper study of two different known ROP protections. It
describes the implementation in greater details, and also contains an experimental
evaluation.

Chapter 5 contains a description of the newly designed protection ORPScan,
together with a background, design description and an evaluation.

Chapter2
Background

2.1 Introduction

In this chapter Return-Oriented Programming (ROP) and its history will be pre-
sented. First the buffer overflow vulnerability will be described, which is often used
to initiate an ROP-attack. That will be followed by the Return-into libc (RILC),
which is a predecessor to ROP. A thorough description of ROP and Jump-Oriented
Programming (JOP) will be given, which will be succeeded by a presentation of
early protections against those kind of attacks.

All the techniques will be described assuming a 32-bit x86 architecture. The
techniques described are not limited to this environment though, as they can also
be used on e.g. a SPARC architecture.

2.2 Buffer Overflow

A buffer overflow means that an allocated data buffer in the memory is written with
data that overflows the boundaries of the buffer. Buffer overflow is a programming
error that can result out of bugs in the program or by adversaries that misuses the
program in a way that was not intended. Buffer overflows can occur in dynamically
or statically allocated data. Statically allocated data is placed in the stack memory
region of the process, to which a buffer overflow would open up possibilites to
change the program flow.

If a buffer on the stack is overflown, other variables on the stack following the
buffer can be overwritten. After the local variables follows the return address for
the current frame, which also can be overwritten with a sufficiently long overflow.
If an adversary sends a sufficiently long data string in a buffer that is vulnerable
to buffer overflow, he might be able to overwrite the return address to control the
program flow. This kind of buffer overflow can be used to start the ROP-attack.

Figure 2.1 shows an illustration of the stack content before a buffer overflow
attack is done. On top of the stack lies a buffer, which is a local variable allocated
on the stack, with size of 4 bytes. The five top portions of the stack belongs to
the current executing function’s frame. If a memory sequence longer than 4 bytes
is copied to the buffer, it will overwrite the other local variables. If the memory
sequence is even longer it may also overwrite the saved frame pointer, the return
address, the function arguments and finally the preceding function’s stack frame.

3

4 Background

Memory addresses
grows downwards

Top of stack

buffer[4]

other local variables

saved frame pointer

return address

function arguments

Stack Pointer

Figure 2.1: Illustration of the stack content before a buffer overflow
attack.

2.3 Return-into-libc

Being able to subvert the control flow of a program, an adversary is able to run any
code of his choice. By injecting new code into the memory space of a program, an
adversary is able to run any code he wants. Injected code is often called shellcode.

To protect against executing injected code a new protection mechanism was
invented, W ⊕X. W ⊕X means that every memory location in a program can be
either Writable or Executable, but not both. This means that if the adversary is
able to inject code, he will not be able to execute it. This defense was implemented
in hardware as well as in software.

Solar Designer came up with a new attack that did not involve running injected
shellcode. He called it Return-into libc (RILC), which name alludes to its tech-
nique of returning into the library libc. libc is a library in Linux which is loaded
in almost every program. By moving program flow into the library, he was able to
run shellcode to start a new shell without injecting any new code. Solar Designer
demonstrated the attack, which searched through the library to find an address
of the function system(). He also searched the library to find an address to the
string "/bin/sh/". The intentions of the attack was to call system() function
with that particular string, in order to start a new process with a new shell.

To perform the attack he exploited a buffer overflow vulnerability to overwrite
the return address of the current function. By overwriting the return address
with the address of the system() function, he was able to branch into the library
instead of the original return point, when the current function returned. To imitate

Background 5

Memory addresses
grows downwards

buffer[4]

junk data

junk data

address of system()

return addr. of system()

address of "/bin/sh"

Top of stack

Stack Pointer

Figure 2.2: Illustration of the stack content after a buffer overflow
has been exploited to initiate a RILC attack.

a normal function call, he also overwrote the words behind the return address to
place the return address of the system() function and the argument to it. The
argument was simply the address to the "/bin/sh/" string.

Figure 2.2 illustrates the stack right after the buffer overflow is exploited.
Compare with figure 2.1 and notice how the return address has been overwritten
with the address of the library function. The junk data is data that is not relevant
for the attack, and can thus be overwritten with any bytes 1. Also notice that the
saved frame pointer, and parts of the preceding function’s frame are overwritten.
This can safely be done since the program will not return to normal control flow
after the attack.

2.4 Return Oriented Programming

ROP is, similarly to RILC, a subversion of the execution flow into a library with
known location. ROP is a generalization of RILC because it allows returning
anywhere in a library.

The building blocks of RILC are functions in a library. In ROP the building
blocks are instead snippets of code ending in a return instruction. These snippets of
code are called gadgets and can consist of two or more instructions. By executing

1As long as it does not make the program to crash, throw an exception or terminate
in any other way without returning from the current executing function.

6 Background

the gadgets after each other arbitrary code can be executed. The idea behind
ROP is that in a sufficiently large program or library there are enough gadgets
to undertake arbitrary computation. In [28] it is proven that in the commonly
used library libc in Linux there are enough gadgets to create Turing-complete
ROP-attacks.

To understand how gadgets can be executed sequentially the return instruction
has to be explained. The return instruction does two things:

%eip = %esp; // Move execution to %esp
%esp = %esp + 4; // Pop the stack

It moves execution to the address that the stack pointer points to, i.e. the top
of the stack. It then pops the stack by adding 4 bytes to the stack pointer. This
corresponds to an unconditional branch to the address at the top of the stack,
and a stack pop. ROP abuses this principle by placing many gadget-addresses
sequentially on the stack, and letting the program flow branch to them by executing
return instructions.

To start the ROP-gadget execution a similar technique as in RILC is used.
A buffer overflow vulnerability is exploited to overwrite the stack memory. The
first gadget that is to be executed is placed on the return address of the currently
executing function. The addresses of the following gadgets are then placed se-
quentially further down the stack. Since every gadget ends in a return instruction,
the execution will jump to the start of the next gadget when a gadget ends. If a
gadget needs arguments or data on the stack, that can be put between the gadget
addresses.

Figure 2.3 illustrates the stack content after a buffer overflow has been ex-
ploited to start an ROP attack. Just as in the RILC attack in figure 2.2, the
original return address has been overwritten with the address of the location of
where the execution should branch to, i.e. the first gadget. After the first gad-
get address, the rest of the gadget addresses are put sequentially in the order they
should be executed. The list of gadget addresses can be as long as the stack allows.

2.4.1 Return-Oriented Programming gadgets

ROP gadgets consists of a sequence of instructions ending in a return instruction.

Unaligned gadgets

The x86 architecture is of Complex Instruction Set Computing (CISC) form and
has variable instruction length. Since the instructions have variable length they are
only aligned to whole words. This means that one combination of instructions can
form a different combination of instructions if they are interpreted from a different
starting byte. The new combination of instructions are unaligned compared to the
original instructions. This property can be exploited in ROP by finding addresses
of and jumping to unaligned gadgets.

The following byte sequence is disassembled as x86 assembly instructions. The
left side shows the byte sequence and the right side shows the disassembled in-
structions.

Background 7

Memory addresses
grows downwards

buffer[4]

junk data

junk data

address of gadget1

address of gadget2

address of gadget3

Top of stack

Stack Pointer

address of gadget ...

Figure 2.3: Illustration of the stack content after a buffer overflow
has been exploited to initiate an ROP attack.

8 Background

3c 24 cmp al, 0x24
24 c3 and al, 0xc3

On the right side we can see that the byte sequence is interpreted as a cmp in-
struction, followed by an and instruction. If we instead start the disassembling at
the second byte in the sequence, we will get the following.

24 24 and al, 0x24
c3 ret

On the right side we can see a typical ROP gadget that ends in a return instruction.
This shows how unexpected instruction sequences, that can be used as gadgets,
can reside unaligned in other instructions.

Load- /Store gadgets

Load- and Store gadgets are gadgets that loads data to or stores data from regis-
ters. They can load a constant to a register, memory content to a register or store
a register to a memory location.

Constants Constants can be attached to an attack by putting the constant be-
tween the gadget addresses in the ROP payload. To load the constant, the
address of a gadget for loading the constant from the stack will be put in
front of the constant. A gadget of that kind could have the following instruc-
tions pop %edx; ret. When the gadget starts executing, the stack pointer
will point to the next word on the stack, i.e. the constant. pop %edx will
put the word pointed to by the stack pointer in the register %edx and then
move the stack pointer to the next word, which will be the address of the
next gadget.

Memory content To load from and store to memory, gadgets with move-instructions
can be used. movl (%eax), %edx ; ret is a gadget which will move the
word that is located at the location pointed to by %eax into %edx. To load
data from a constant address a constant-loading gadget can be used to first
load a constant into %eax.

Similarly a store-gadget could consist of movl %eax, (%edx); ret to store
the content of %eax into the memory location pointed to by %edx.

Arithmetic and logical gadgets

Arithmetic and logical gadgets are gadgets that computes addition, subtraction,
exclusive-or, and, or, not, shifts and rotates. All binary operations have simple
instruction sequences as gadgets. They take two registers as parameters, where
both registers contains the values or alternatively one of the registers point to a
memory location with the value. Immediate binary instructions can do operations
with constant values, without loading them into a register. E.g. addl %eax,
%(edx); ret adds the value of %eax with the value pointed to by %edx and puts
the result in the second operand.

Background 9

Branching gadgets

Branches can be divided into unconditional branches and conditional branches,
where conditional branches are the hardest to implement in ROP.

Unconditional branches Branching in ROP is very different from normal ex-
ecution. In normal execution the instruction pointer %eip is manipulated
to do branching e.g. in loops. To implement a loop of several gadgets in
ROP, the %esp has to be manipulated instead, since it always points to the
next gadget that is to be executed. To do an absolute branch the absolute
address can be put on the stack in the same way as a constant. To load it
into %esp a gadget that looks like pop %esp; ret could be used.

Relative branches can be implemented as a subtraction or addition on the
%esp, for doing a backward jump or a forward jump. When doing a sub-
traction caution has to be taken if the values above the stack have been
changed.

Conditional branches There are many different ways to implement conditional
branches. [28] and [26] both proposes solutions that uses an instruction that
sets the carry flag and uses the carry flag to perturb the %esp. The carry
flag can be used to set a word to either 0xFF FF FF FF or 0x00 00 00 00
depending on if it is true or false. This word can be and-ed with the the
relative value that is to be added to %esp.

E.g. to test if a value is zero, the neg instruction can be used. The neg
instruction sets the carry flag if the value is non-zero, since it uses two’s-
complement to negate the value. To test whether two values are equal, they
can be subtracted and then negated. If the subtraction results in non-zero,
the values are not equal and the carry flag will be set. To test if a value is
smaller than another one can be subtracted from the other, which will set
the carry flag if the right-hand side is larger than the left-hand side.

The carry flag can be extended into a word of all ones using a combination of
different gadgets. The instruction sbb %esi, %esi can be used if %esi is set
to zero. The instruction subtracts %esi plus the carry flag from %esi and
saves the result in %esi. This means that if the carry flag is true, %esi will
become 0xFF FF FF FF and else it will become 0x00 00 00 00. A constant
can now be loaded and and-ed with %esi and then added or subtracted to
%esp in order to implement a conditional branch.

Call gadgets

ROP-attacks are often used to execute injected code, or to start a new process
such as a shell. In order to do that gadgets that call functions are used. Since
calling a function and returning from it during a ROP-attack does not disturb the
attack directly, it simply could contain a call instruction, e.g. call %esi; ret.

There are however a couple of things to consider.

• If old gadget addresses above the stack pointer needs to be kept, care has
to be taken when calling a function. Because the return address and the

10 Background

local variables of the function will be allocated on the stack, the old gadget
addresses need to be saved elsewhere.

• Caller-saved registers are register that the calling function must save if they
cannot be changed during the function call. In Linux these registers are
%eax, %ecx and %edx.

Adapting gadgets

When looking for gadgets in a library it can be hard to find gadgets that have the
exact desired properties. Memory references could have different offsets, arithmetic
operations can have different operands or gadgets can contain unwanted instruc-
tions. Often these differences can be accounted for when crafting a ROP-attack,
and the unwanted side-effects can be removed.

If a memory reference contains an unwanted immediate offset such as movl
32(%eax), %edx; ret, the value in %eax has to be the desired address minus
32. To accomplish this, a constant could be adjusted in the ROP-payload or an
arithmetic gadget could be used to subtract 32 of the register.

Null-bytes

There are limitations on the addresses of the gadgets, that together with the
constants, will most often be inserted in the exploited application as strings or
streams of data. Since string and stream manipulation will consider a null-byte
(0x00) as an end of string or end of stream, there cannot be any null-bytes in the
payload. This puts limitations on gadget addresses, to not choose gadgets with
addresses containing null-bytes. Constants will need to be manipulated before
using them in the program. E.g. if the constant 0x10 00 00 00 is needed, a bit-
wise inversion gadget can be used on the loaded constant 0xEF FF FF FF which
does not contain any null-bytes.

Gadgets with side-effects

If a gadget contains instructions that creates unwanted side-effects, other gadgets
may have to be executed to restore the desired state.

E.g. if an addition-gadget contains the following instruction addl (%edx);
%eax, push %edi; ret, the push %edi instruction is not part of the addition and
will change the state of the stack. To be able to use this gadget as an addition
gadget this has to be accounted for in the following ways. Since the content of
%edi will be put on the top of the stack, which is where the execution will branch
on the return of this gadget, the content of %edi has to be an executable memory
address. This can be achieved by using a load constant technique, with a valid
memory address as a constant. In order to not execute code that will have more
unwanted side-effects, the address to a return instruction can be passed. A gadget
that only consists of a return instruction is the ROP version of a No Operation
Instruction (NOP).

Background 11

address of gadget1

address of gadget2

address of gadget3

constant

address of gadget4

Top of stack

inc %ebx
ret

mv %eax, 0x10
ret

pop %edx
ret

addl %eax,(%edx)
ret

Stack Pointer

Figure 2.4: Illustration of the stack during a real ROP attack. The
gadgets are illustrated to the right in the figure.

12 Background

2.4.2 Example

Figure 2.4 shows an illustration of a real ROP attack in action. The stack pointer
points to the top of the stack, and the gadget next to be executed. For every
gadget that is executed the stack pointer will be increased and point to the next
gadget. Gadget number three is a constant loading gadget, that loads the constant
succeeding the gadget address on the stack to the %edx register. After the pop
instruction the stack pointer will be increased to point to the fourth gadget.

2.5 Jump-Oriented Programming

In this section the Jump-Oriented Programming (JOP) will be described. Simi-
larly to ROP, JOP uses a series of gadgets that are chosen to run after each other.
The gadgets are put in a dispatch table which is then called by the dispatcher.

Two main differences between JOP and ROP is that JOP does not rely on the
%esp-register to point to gadgets, and the control flow is not controlled by return
instructions. In JOP any register can be used to point to the next gadget, and the
control flow is controlled by a dispatcher gadget, which moves control flow from
one gadget to the next within a dispatch table.

2.5.1 Dispatch table

The dispatch table is the equivalent of the stack in a ROP-attack where the gad-
get addresses and additional data is loaded. The dispatch table can be located
anywhere in the memory and does not need to be executable. The purpose of the
dispatch table is to locate all the gadgets that are to be executed in the attack,
and to provide them with data.

2.5.2 Gadgets

In JOP there are two different types of gadgets, dispatcher gadgets and functional
gadgets. The dispatcher gadget is used to govern the control flow. The functional
gadgets are the gadgets that perform the arithmetic that is the purpose of the
attack.

Dispatcher Gadget

The dispatcher gadget is responsible for controlling the control flow. It is the
equivalent to the return instruction in ROP. To do this it has a virtual program
counter which points to memory addresses in the dispatcher table. The dispatcher
gadget increments the program counter with a constant and then jumps to it. By
using this same dispatcher gadget, the attack will be able to run all functional
gadgets in the dispatcher table sequentially.

The way the dispatcher gadget modifies the program counter is not limited to
a specific constant. The dispatch table can be laid out in memory with larger gaps
between the addresses. It can also work like a linked list where the dispatcher
gadget dereferences the program counter each time.

Background 13

Here is an example of a dispatcher gadget which uses the ecx register as
program counter:

ecx = ecx + 8;
jump [ecx];

Functional Gadgets

The functional gadgets are similar to the gadgets in ROP. They contain a sequence
of useful instructions and ends in a branch instruction. Instead of ending in a re-
turn instruction, they should end in a jump- or call instruction that branches to
the dispatcher gadget, or another gadget that does. The different branch instruc-
tions available are indirect jumps or calls. Calls can be used because the side effect
of pushing a return address on the stack will not affect the attack.

Functional gadgets can perform the same as ROP-gadgets with a couple ex-
ceptions. Since the virtual program counter is in a register at all times, it can be
altered to simulate branching gadgets. Unconditional branching can be achieved
by changing the program counter. Conditional branching can be achieved by
changing the program counter’s value with a conditionally calculated value, or by
using the conditional move instruction that is available on the x86.

The other exception is that data cannot be loaded on the stack when starting
the JOP-attack. Functional gadgets will then have to use a pointer to where the
data is loaded at. To load data from a pointer and increment it, there are a
few different string loading and loop sequence instructions to use. The stack can
although be used to push and pop data to and from, since the stack is not used to
control the control flow.

2.5.3 Initializing

To initialize the attack, just as in ROP, the stack has to be overwritten or a
functional pointer has to be overwritten. Another approach is to overwrite the
setjmp buffers, which is a description of a Central Processing Unit (CPU) state,
that can be restored by executing the instruction longjmp. The dispatch table
has to be injected in the memory, and then an initializing gadget is called. The
initializing gadget sets all registers to a specific start state, and then redirects
control flow to the dispatcher gadget.

2.6 Early Protections

This section presents the early protections which were not directly focused on
prevention of ROP-attacks. The next section presents the different techniques
preventing ROP-attacks.

The first protections against buffer overflow attacks, and the attacks based
on them were compiler- and operating system based. The first vulnerabilities
that was protected was the buffer overflow and code injection attacks. Later were
protections against code-reuse attacks developed which were also operating system
dependent.

14 Background

2.6.1 Buffer overflow and code injection

Protections against buffer-overflow attacks on the stack have been present since
1998 in StackGuard [8]. StackGuard is a compiler extension that offers protection
against buffer-overflow attacks. StackGuard places a canary word on the stack,
before the return address of the active frame. This effectively forces an adversary
who wants to overwrite the return address to also overwrite the canary word.
The canary word is compared with the original to see whether that is the case.
The canary word is randomly chosen, to make guesses impossible. Other similar
protections are ProPolice [11] and StackGhost [12] for the Sun Microsystem’s Sparc
processor architecture.

As mentioned earlier, the W ⊕X-protection was introduced in the OpenBSD
operating system. The W ⊕X enforces every memory page in the process’ address
space to be either writable or executable. This enforcement made simple code
injection techniques impossible. If arbitrary code is written by an adversary on a
memory page, it will never be able to execute. Also, if a memory page is executable,
the adversary will never be able to write code to that page.

Similar techniques were implemented in hardware in processors. Intel and
AMD implemented the feature as one bit per memory area, that represents if
the memory area is executable or not. The solutions were called eXecute Disable
(XD) and eXecute Never (XN) respectively. In software, the W ⊕X is called Data
Execution Prevention (DEP) and was implemented in Linux in kernel 2.6.8 (2004),
Windows in XP SP 2 (2004) and in MacOSX during their transition to x86 (2006).

2.6.2 Code-reuse attacks

Address Space Layout Randomization (ASLR) is a protection against code-reuse
attacks and was introduced by the Linux PaX project in 2001. The idea of ASLR
is to randomize the layout of the memory image each time an application is loaded
into memory. The base address of the stack, heap and loaded libraries will be
randomized, which makes it hard to guess the location of where injected code is
located and where library code is located. ASLR makes it very hard to perform
code-reuse attacks, and in combination with DEP it creates a very solid protection
against most buffer-overflow based attacks.

In Linux kernel version 2.6.12 (2005) ASLR was enabled as default. Linux
also implemented Position Independent Code (PIC), which randomizes the base
address of the main executable, in 2003. Microsoft introduced ASLR in 2007 with
Windows Vista, and have included it in all newer version. It is only enforced
as a default option for core operating system binaries. Applications require a
special linker flag to enforce ASLR. MacOSX introduced ASLR in 2007 for system
libraries. In 2012 the entire MacOSX system including applications is protected
by ASLR.

2.6.3 Circumventions

Despite all these protections, there are still buffer-overflow and other similar vul-
nerabilities in modern software. Bulba and Kil3r presented in 2000 [5], different

Background 15

methods of circumventing the StackGuard and StackShield protections. Stack-
Shield is similar to StackGuard a stack protection, by saving the original return
address in a special table, making it impossible to overwrite. Bulba and Kil3r’s
solution originates in alterations of pointers that are not the return address, e.g.
function pointers and longjmp buffers.

Shacham et.al. presented the weaknesses of ASLR in [29]. They showed that
32-bit architectures has too narrow limits in entropy and used a derandomizing
technique to find the location of ASLR-protected libraries. Their solutions also
worked on systems with DEP enabled. Other ASLR-circumvention techniques are
partial address overwrites [10] and information disclosure [3].

2.7 ROP-Protections

For a system using both W ⊕ X and ASLR there is still a need for protections
against ROP-attacks. There are many different kinds of ROP-protection, from
which almost every known is present in this analysis.

The different protections presented in this analysis have been categorized into
five different main categories; Control Flow Integrity, Instruction Monitoring, In-
put Scanning, Instruction Rewriting and Memory Randomization. This catego-
rization is a part of the results of the thesis work, and is done to generalize the
protections to better understand them. This categorization divides the protections
in fairly even groups, except for Input Scanning, which only has one member.

The categories will be described here.

2.7.1 Control Flow Integrity

Control Flow Integrity (CFI) is a low-level protection against code-reuse attacks.
In a code-reuse attack, the adversary manipulates the program flow into non-
intended execution paths. The idea of CFI is to force the control flow of a program
to the execution paths that are intended by the programmer. This can be done at
different levels of granularity.

In [37], a computable metric is proposed, that can be used to compare the effi-
ciency of different CFI techniques. Average Indirect target Recordeduction (AIR)
is a value that describes the Control Flow protection a technique can provide. The
value is a fraction of the amount of indirect branch-targets that are eliminated by
the technique. In an ideal CFI-technique the AIR value would be 1. There are a
few different kinds of CFI-techniques.

Instruction-CFI This technique removes all unaligned branch-targets by re-
stricting CFI to instruction boundaries.

Bundle-CFI Puts instructions into 16- or 32 byte bundles and forces CFI to
these bundles.

Reloc-CFI Relies on relocation information in binaries and forces all indirect
branches to target only these locations. Return branches are forced to loca-
tions directly after call-instructions.

16 Background

Strict-CFI Has the same enforcements as reloc-CFI but does not need the relo-
cation information.

Bin-CFI This technique can handle branches in more complex binaries that con-
tain e.g. returns used as jumps, returns to caller function without return
address (C++ exceptions), jumps to return addresses (longjump), runtime
generation of new Indirect Control Flow (ICF) targets and indirect jumps
using arithmetic operations.

CFI-based techniques covered in the analysis:

CFI Section 3.1

Control Flow Locking Section 3.6

G-Free Section 3.3

Control Flow Integrity and Randomization for Binary Executables Section
3.14

Control Flow Integrity for COTS libraries Section 3.15

2.7.2 Instruction Monitoring

Instruction Monitoring is a technique where certain instructions are monitored by
connecting them to certain events. Instruction Monitoring is based on assumptions
about the state of an application during the execution of different instructions.
By monitoring the application, and checking the state of it during the connected
events, possible ROP-attacks can be detected.

A simple example of an instruction monitoring based technique is the ROPDe-
fender. ROPDefender assumes that every function in an application will always
return to the address that succeeds the address that it was called from. By mon-
itoring each call- and return instruction in an application, this state can be vali-
dated during execution.

Monitoring instructions can be done in different ways. It can be done statically
during compilation by inserting calls to functions after the specific instructions.
It can also be done dynamically by running the application in a Virtual Machine
(VM) or by instrumenting it with a framework like PIN.

Instruction monitoring techniques covered in the analysis:

DROP Section 3.2

ROPDefender Section 3.5

kBouncer Section 3.11

ROPGuard Section 3.12

ROPecker Section 3.16

Zero-sum Defender Section 3.17

Background 17

2.7.3 Input Scanning

Input Scanners, as the name suggests, scan input data in order to detect ROP-
attacks. A ROP-attack is similar to a code injection attack in the way that it
injects data that manipulates the control flow of the program. There are many
input scanners that detects code injection attacks, by looking for instructions in
the data. The data, or the payload, in a ROP-attack differs from the payload in a
code-injection attack by consisting of addresses to gadgets instead of instructions.
A more detailed description of input scanners is given in section 5.2.

There is only one known input scanner in this analysis, ROPScan. ROPScan
scans the input data for potential gadget addresses, and emulates them in an
emulation environment to determine if they are actual gadgets.

Input Scanning techniques covered in this analysis:

ROPScan 3.7

2.7.4 Instruction Rewriting

Instruction Rewriting is a technique that removes the possibility of performing
an ROP-attack by rewriting the instructions of the protected application. The
instructions can be rewritten to completely remove usable gadgets. Instructions
can also be rewritten during the loading of an application, making existing ROP-
gadgets useless. Instructions can be rewritten as assembly instructions before
assembling the application, or directly in the binary file as assembled instructions.

A simple example of instruction rewriting is the Return-less Kernel. The
Return-less Kernel rewrites the assembly instructions of a kernel to remove all
opcodes that represent the return instruction. By removing every return opcode
available in the memory image this technique removes the possibility to perform
any ROP-attack.

Other types of instruction rewriting techniques can e.g. change the order of
certain instructions and change the use of registers and memory addresses.

Instruction Rewriting techniques covered in this analysis:

Return-less Kernels Section 3.4

G-Free Section 3.3. This is combination of Instruction rewriting and CFI.

In Place Randomization Section 3.10

2.7.5 Memory Randomization

Memory Randomization is a technique where the location of executable code is
randomized in the memory space for every running instance of the application.
Memory randomization is a similar protection to ASLR. In ASLR the location of
whole libraries are randomized, while in these techniques the granularity is smaller.
An application that is protected with memory randomization is very hard to attack
with ROP, since the addresses of the gadgets are not known before running the
application. The addresses of the gadgets are also new every time the application
is run.

18 Background

In Binary Stirring the location of basic blocks are randomized, Marlin random-
izes locations of functions and Instruction Location Randomization randomizes
locations of instructions.

Memory Randomization techniques covered in the analysis:

Binary Stirring Section 3.8

Instruction Location Randomization Section 3.9

Marlin Section 3.13

Chapter3
ROP-Protections

A result of this thesis work is an analysis of the most known ROP-defenses. In
this chapter the analysis will be presented. The different ROP-defenses will be
presented in chronological order, in the same manner. Each presentation consists
of a short introduction, a description of the general design, a description of the
implementation details and finally of an analysis.

3.1 Control Flow Integrity

Control Flow Integrity [2] is a simple CFI-technique that is based on binary rewrit-
ing to enforce all control flow transfers to follow the original Control Flow Graph
(CFG). To do this, all ICF targets are checked dynamically.

3.1.1 Main Features

First the binary is analyzed to determine its CFG. The CFG is the base of the
program flow that CFI enforces. The computed CFG is conservative in the call
flows, as it allows any call to target any function entry. To restrict the program
flow of the CFG an analysis of the relocation entries in the binary is done.

To enforce the computed CFG the binary is instrumented to perform ICF
validations. The instrumentation is based on giving each procedure a 32 bit iden-
tification. Before each ICF the branching function assumes the target has an
identification and verifies that it is a valid identification for this branch.

Identification Insertion Identifications can be inserted with the side-effect free
instruction prefetchnta with the identification as an immediate, which
prefetches data into caches. This instruction is inserted at the address of
each ICF target.

Identification Validation Identifications are verified with a compare-instruction,
that compares the inserted identification at the target address, and the
identification which is a hard-coded immediate operand. The inserted iden-
tification is positioned 4 bytes into the target, because of the opcode of
prefetchnta. If the compare is not equal it is assumed that the branch
is invalid and a jump is done to an error procedure. Otherwise a jump is

19

20 ROP-Protections

performed into the destination as normal. Return branches will be changed
to jump-instructions.
There are a few properties of the identifications that must hold in order for
this technique to be effective against ROP-attacks.

• The identification bit sequences have to be unique and not present any-
where in the memory except for in the identification and the identification
validation.

• The identification bit sequences must reside in non-writable code, to make
it impossible for the adversary to change the identifications. This holds true
for most systems, that prevent a program to write to its code segment.

• The identification bit sequences must not be executable, to make it impos-
sible to craft new instructions from the middle of the sequence.
An alternative to this property is to make the sequences random for each
loading of the program. It is then possible to use the sequences as immediate
operands in the code, but the adversary cannot craft gadgets in beforehand.

3.1.2 Implementation details

The CFG is computed with Vulcan [31], which is an instrumentation system for
x86 binaries that only requires the binary. When instructions are added to the
binary, most address references in the code must be changed.

3.1.3 Analysis

Strengths

• Has a simple, easy and verifiable implementation.

Weaknesses

• Has not been tested against ROP-attacks.

• Has high run-time overhead compared to other protections.

Other thoughts

All aligned return instructions are removed. The rest of the branch instructions
are all protected with validation code. However, all unaligned branch instructions
are still left in the program, which means that they could still be used. Also some
gadgets could be constructed from the identification bits in combination with the
jump succeeding it, if not care is taken to not choose identifications that have
opcodes in it.

ROP-Protections 21

3.2 DROP: Detecting Return-Oriented Programming Mali-
cious Code

DROP [6] is one of the first known protections against ROP. It is based on dynamic
runtime instruction instrumentation to recognize ROP-attack patterns.

3.2.1 Main features

DROP specifies two important criterions, Gsize and Slength. Gsize is the number
of instructions in a gadget and Slength is the number of gadgets in a row within
the same library/binary memory space. The measured Gsize and Slength can be
used to decide if a sequence of executed instructions is an ROP-attack or not.

DROP specifies thresholds T0 and T1 respectively for both these criterions in
order to detect ROP-attacks. If Gsize for an instruction sequence is below T0 the
sequence is considered to be a gadget and if it is above it is not. If Slength is above
T1 the gadget-sequence is considered to be an ROP-gadget sequence and if it is
below it is not.

At every return instruction that is executed an ROP-detection check is done.
The exact detection algorithm is as follows: DROP recognizes the return instruc-
tion and records the target address. If the address is within the library that is
checked against and the number of instructions is below T0 it then records the
gadget as a candidate gadget. The number of contiguous candidate gadgets (gad-
gets that are run after each other in the same memory space) is then calculated
and if it is bigger than T1, an ROP-attack is detected.

Chen et. al. have performed experimentation to determine the most optimal
values of T0 and T1. They have tested DROP on hundreds of applications with
sizes between 10KB and 100MB. According to their analysis the most optimal
values for T0 and T1 is 5 and 3 respectively. With these values there are no false
positives or false negatives encountered.

3.2.2 Implementation details

DROP would need to be implemented as part of a dynamic binary instrumentation
tool such as Valgrind [20]. The algorithm is fairly easy to implement. Alterna-
tively it could be implemented in PIN, which would be faster than Valgrind.
Valgrind translates the binary code into VEX intermediate language.

3.2.3 Analysis

Strengths

• A simple algorithm that has no false positives.

Weaknesses

• Slows down the program execution significantly (on average 5.3x).

• Only detects return-gadgets, but not gadget that ends in jump instructions.

22 ROP-Protections

• Cannot detect ROP-attacks with gadgets in different libraries.

• Cannot detect ROP-attacks with gadgets that consist of less than three
instructions.

ROP-Protections 23

3.3 G-Free - Gadget Free Binaries

G-Free [21] is a combination of CFI and Instruction rewriting. It removes all
possible gadgets in the binary by forcing execution of functions from start to
finish and rewriting instructions.

3.3.1 Main features

Eliminates all possible sources of reusable instructions. By combining a few dif-
ferent techniques it is possible to eliminate almost all gadgets in the binary. It
forces execution to be done from start to finish in each function which means it
de-generalizes any potential ROP-attack into a RILC attack. Running arbitrary
code is therefore impossible and Turing-completeness is removed.

The following techniques are used in G-free:

Alignment Sleds

Creating a NOP-sled before critical code to avoid it being run unaligned. Even
if execution has jumped into an instruction unaligned it will be forced to align
when it reaches the NOP-sled. A maximum of 9 NOP’s is needed in all cases. The
NOP-sled can be prepended with a jump to the end of the sled, to skip it under
normal execution.

Return Address Protection

Adding a header and a footer to each function that ends in a return instruction.
The header encrypts the saved return address and the footer decrypts it. If the
function would get jumped to in the middle, the return address will become invalid
before returning. The encryption consists of a simple x-or with a random key.

Frame Cookies

All functions that contain a jump or a call get a header that computes and pushes
a function-specific and run-time random cookie that is validated before doing the
jump/call. If the validation goes wrong execution is stopped. A footer is inserted
that removes the cookie from the frame. This modification changes the stack
layout which will require further changes on memory offsets and references.

Code Rewriting

This is done to eliminate unintended free-branch instructions. This can be done
instead of using the alignment sled. There are a few different code rewriting
techniques.

Register Reallocation Unintended return instructions can appear if certain
combinations of registers are used as operands in different instructions. To
avoid this, the register allocation performed during compilation is manip-
ulated. Either the registers can be swapped with other registers, or the
allocation algorithm can be run again.

24 ROP-Protections

Unintended return instructions can also appear in immediate floating point
instructions. They cannot be removed easily so an alignment sled has to be
put in front of it.

Instruction Transformation There are a couple of instructions that contain the
opcode for return. These can be removed by simply switching them with one
or a couple of instructions that have the same effect. E.g. movnti (0x0f 0xc3)
can be replaced by a regular mov.

Jump Offset Adjustments If a relative jump offset contains the opcode for re-
turn it has to be changed. If the opcode is present in the least significant
bytes there can simply be some NOP’s inserted to move the jump destina-
tion. If the opcode is present in the more significant bytes it needs 256, 64K
and lastly 12M nops.

According to the authors even situations with the opcode in the second least
significant byte is not very common, because it would correspond to a jump
of 12MB. If it was discovered anyway it would be possible to relocate the
functions or code chunks addressed by the jump.

Immediate and Displacement Reconstruction Immediate values of instruc-
tions can contain the opcode for free-branch instructions. To remove state-
ments like that they can be switched with several other statements that
constructs the same value. For example if an immediate value is loaded,
that value minus one can be loaded instead, and then increased. Memory
accesses can also have unintended opcode in it, and have to be rewritten.

Inter-Instruction Barriers Some instructions after each other will create new
unaligned jump or call instructions. To avoid this a barrier of NOP’s can be
placed between them. In some cases NOP’s are not enough, because they
can also create a new such instruction. If the last byte of an instruction, e.g.
is 0xFF, this will become a jmp together with 0x90 (nop). An instruction
that has no effect, e.g. mov %eax,%eax, can then be chosen instead.

3.3.2 Implementation details

G-free is implemented as a pre-processor for the GNU Assembler, which is the
backend of GCC.

The assembly code that is generated by the GCC assembler cc1 is intercepted.
The modifications are then done to remove all possible gadgets. The new assembly
code is then handed over to the gas assembler. The compiler or assembler are
neither modified in this implementation.

One problem is that real numeric values of immediate values and memory
displacements at this point in compilation cannot be seen, which means this has
to be done as a two-step process. In the first step the different locations where
immediate values resides will be tagged. In the post-processing step the binary
file is checked whether the tagged locations need to be modified. This produces a
log file, which will be fed to the pre-processor again for a second time compilation.
This time it can modify the values that need to be modified.

ROP-Protections 25

If NOP’s are inserted many memory references may get their value changed,
which means that new unintended code might show up. The compilation may
therefore be run again until all such opcodes have disappeared.

3.3.3 Analysis

Strengths

• G-free has low overhead. Tested on different applications with 3.1% over-
head and in the Phoronix Test Suite with 1% overhead.

Weaknesses

• It creates large binaries (+30%).

• There are still a few gadgets left.

• It is hard to implement since there is much handwritten code in libc.

26 ROP-Protections

3.4 Return-less Kernels

Return-less Kernels [19] is a compiler-level instruction rewriting protection. It uses
three different techniques to completely remove all four different types of intended
and unintended return instructions from code.

3.4.1 Main features

Three different techniques are implemented during the compilation of applications;
Return Indirection, Register Allocation and Peephole Optimization.

Return indirection

This technique removes all return opcodes that are within normal return instruc-
tions. Normal execution flow consists of call - return pairs. When exploited by
ROP however, the execution flow will consist of many returns without any calls.

In Return Indirection the call and return instructions are modified. The call
instruction will push a return index on the stack instead of a return address. The
return index corresponds to a return address which lies in a return address table.
When the return instruction is executed it pops the return index and looks up the
corresponding return address in the return address table.

The new call is implemented as push $index, jmp dst. The new return is
implemented as pop %reg, jmp *RetAddrBase(%reg). The return address table
will be protected from modification with the help of DEP. The table can be gen-
erated offline, since all the return addresses of a call will be the instruction after
the call.

Register Allocator

This technique removes return opcodes that are part of an instruction operand
as a register. For example the instruction mov %rax, %rbx has the machine code
48 89 c3 which contains a return instruction (c3). There are only two sets of reg-
isters that need to be replaced; %rbx and %rdx combined with certain instructions
(mostly mov).

In the Return-less Kernel prototype this is implemented as a linear scan regis-
ter allocation with additional support to remove return opcodes that are considered
unsafe due to return opcodes. During the algorithm, if an unsafe register is used
the algorithm is run again without the unsafe register.

Peephole Optimization

This technique removes return opcodes that are contained in the opcode of non-
return instructions or in the immediate part of different instructions.

In the first case, all unsafe instruction can be searched for offline and replaced
by other instructions with the same purpose. The analysis in the paper shows that
only one such instruction is present in the FreeBSD kernel: movnti mem32/64,
reg32/64. It can be replaced with a simple mov.

ROP-Protections 27

For immediate operands there are two general scenarios: If the operand is an
immediate constant or if the operand is a relative offset in a jump instruction. In
the former the instruction can be replaced with some multiple steps to acquire
the same results. For example if a register is to be compared with a constant, it
can be replaced with code for loading the constant minus one into a register. The
register can then be increased before comparing the two registers.

In the latter case, NOP-instructions can be inserted to make the offset larger.
This works if the return opcode is in the first or second byte positions (1 − 255
NOP’s). If the return opcode is in a higher-order byte than that we will need at
least 64K of NOP’s, and the link script will instead be changed to relocate the
target function.

3.4.2 Implementation details

LLVM is a compiler framework which provides program analysis and transformations
at different phases such as compiler-, link- and runtime. All features in the Return-
less Kernel are implemented in the back-end of LLVM which provides a high-quality
code generator.

The return indirection is implemented at the end of the prologue/epilogue
code insertion phase, the register allocation is merged into the current register
allocation phase and the peephole optimization is implemented in the late machine
code optimization phase.

3.4.3 Analysis

Strengths

• Removes all return instructions in the code which simply removes any pos-
sible ROP-attack.

Weaknesses

• Return-less Kernels will not remove the possibility of RILC attacks, since
calls of libc-functions are still in the return-address table.

• Since it is a compiler-based approach the source code of the kernel is needed.
This makes it impossible to support e.g. Windows.

• Does not protect against JOP-attacks

Other thoughts

This technique does not handle iret-instructions, which there are only three of in
the FreeBSD kernel. If implemented in Linux this instruction has to be analyzed
as well.

The peephole optimization for instructions that unintentionally contains return-
instruction will have to be extended when used for other libraries and applications
than the FreeBSD kernel.

28 ROP-Protections

3.5 ROPDefender

ROPDefender [9] is a Just In Time (JIT)-monitoring of code at runtime that
detects ROP-attacks by examining call-return pairs.

3.5.1 Main features

The main idea is to detect ROP-characteristics regarding call and return pairs.
In a normal program flow every call will be followed by a return that returns to
the same address that was pushed in the call. This general rule is broken during
an ROP-attack and that is what this defense detects. There are also some other
exceptions to this general rule that has to be taken into account.

Shadow stack

To control the call-return pairs a shadow stack is used. Every time a call is
executed the return address is pushed onto the shadow stack. Every time a return
is executed the top of the stack is compared with the top of the shadow stack. If
they do not match an ROP-attack is detected.

ROPDefender consists of two components: a detection unit and a binary in-
strumentation engine. The detection unit inspects the current instruction, calls
appropriate routines and handles the shadow stack. ROPDefender can successfully
intercept unintended code since it is always evaluates the same instruction that is
being interpreted by the instruction pointer.

All components of ROPDefender are parts of the Trusted Computing Base
(TCB), which means the adversary cannot attack it. Since every instruction exe-
cuted is under the control of the VM it should be completely protected.

Exceptions to the call-return rule

The system calls setjmp and longjmp allow functions to bypass multiple stack
frames. These system calls can be used for non-local jumps and are usually used
in exception handling to unroll a stack. The first call saves the current execution
state of the process and the second restores the saved execution state.

To address this ROPDefender simply pops the shadow stack until a match
is found or until it is empty. If a match is not found during the popping, an
ROP-attack is detected.

3.5.2 Implementation details

ROPDefender is built upon the binary instrumentation framework PIN. The de-
tection unit is written in C++ in about 80 Lines of Code (LOC).

PIN, that consists of a VM with a JIT compiler and an emulation unit, can
be configured via Pintools. ROPDefender is written as a Pintool in which the
instrumentation code is specified. PIN loads both the Pintool and the target
process, and then starts to compile the instructions into instrumentation code.
There are specific functions in the PIN Application Programming Interface (API)
that can determine if an instruction is a call or a return. If these functions return

ROP-Protections 29

true, the analysis routines are called. The analysis routines will then be run before
the actual instruction.

A more detailed description of the implementation is given in section 4.2.

3.5.3 Analysis

Strengths

• Simple implementation, written in only 80 lines of code.

Weaknesses

• Does not protect against gadgets ending in jump instructions.

• High run-time overhead

• The security depends on the security of the TCB. If the adversary can attack
through the TCB, this system is not secure.

30 ROP-Protections

3.6 Control-Flow Locking

Control-Flow Locking [4] is an assembly and binary rewriting technique based on
CFI. It uses locks, that are placed before all indirect calls.

3.6.1 Main features

The authors describe three kinds of control-flow operations that need to be pro-
tected: instructions that unintendedly happen to implement call, jump or return;
return instructions; and indirect call and jump instructions. The first category is
protected by aligning code as in Instruction-CFI (see section 2.7.1).

The other two categories are protected as follows: Control-Flow Locking uses
the Control Flow Graph (CFG) to determine all indirect calls to functions. When
an indirect call is made a lock is set in the memory - which will be unlocked when
the function’s return is executed. This extra code is inserted at compile- and link
time. A key k is located somewhere in the memory which is used to check what
state the lock is in. k can have four different values:

• k = 0 means unlocked.

• k = 1 means indirect call or jump.

• k > 1 means return from non-indirectable function.

• k < 0 means return from indirectable function.

The value of k will be computed at link time as follows: The list of direct call
instructions which refer to this function will be hashed to a value d. Then it
is determined whether this function may be called indirectly. To do this the
function’s symbol can be looked for in data declarations or as operands to a non-
control flow instruction. If this is true the boolean indir is true, otherwise false.
The following formula is used to compute the value of k:

(indir ? : 0x8000 0000 : 0) | (0x7FFF FFFF & d). If indir is true this
will result in a negative value and otherwise a positive value. This will allow the
comparison code to be written in the fewest x86 instructions possible.

Lock/Unlock operations

Here comes a description of the different lock and unlock operations inserted in
the protected application. At direct calls the key will remain unlocked (k = $0).
After the call has returned the key will be compared to the specific k value for
that function. This will ensure that it was the same function that returned as was
called.

At indirect calls the key will be locked (k = $1). After the call has returned
the key will be checked if it is less than zero, otherwise it violates CFG. This means
that the function it was returned from must be an indirectly callable function.

At indirectly callable function targets there are unlock operations directly after
the label. The unlock code will do an unsigned compare with the value $1. If k
is larger than $1 it violates the CFG. This ensures that only indirect calls ($1) or
direct calls ($0) will be able to execute further.

The following is the code inserted after labels to indirectly callable functions:

ROP-Protections 31

indir_callable:
cmpl $1, k
ja violation
movl $0, k

Before return instructions a lock-code will be inserted that first checks that k
is unlocked ($0) and then locks k with the function’s specific k value.

To protect against system calls, a verification code can be inserted before each
such call. The verification code will verify that k = $0, which means the lock is
unlocked.

The value of k has to be protected from an adversary. It is important that
it can only be changed in the lock- and unlock operations. This can be achieved
by using registers that are originally meant for memory segmentation on the x86
architecture.

An application can have multiple memory segmentations with mappings be-
tween them. Bletsch et. al. claims that memory segmentations are not used in
modern applications, which means that the segment registers (%es, %fs, %gs) can
instead be used for storing k. For this to be secure there has to be no intended
or unintended instructions in the applications that reads from or writes to the
segment registers.

3.6.2 Implementation details

Control Flow Locking is directly implemented in libc via diet libc. diet libc
is a smaller version of libc which was simpler for this implementation. A Control-
Flow Locking enabled variant of libgcc was also produced wich is included as a
static library by gcc.

The Control-Flow Locking system is implemented in two phases during com-
pilation and linking. The first one rewrites the assembly code. It will align in-
structions and function entry points on 32-byte boundaries and restrict control
flow instructions to 32-byte boundaries according to Instruction-CFI. It inserts
lock and unlock operations asserting that no symbols will be called indirectly.

Information about the code symbols, symbol references, lock and unlock op-
erations are noted in the Executable and Linkable Format (Linux) (ELF)-binary
under the .lockinfo section. This information is then used in the post-link phase
to determine all indirect calls and jumps where it will insert additional unlock oper-
ations. The second phase will use the information in .lockinfo to construct a call
graph and identify all the lock and unlock operations. It will use this information
to patch the binary with the calculated k-values for each function.

Strengths

• Low run-time overhead

Weaknesses

• There is a lot of manually written code in libc which does not have to
comply with the compiler-standards for assembly code. For example the

32 ROP-Protections

difference between functions and ordinary labels are usually differentiated
with a .L in the beginning of the label. This convention is not always used
by manual programmers.

• Can only be applied to applications that does not use memory segmentation.

Other Thoughts

The protection is only as good as the call-graph that is generated by the tool. This
call-graph could be improved if the programmer at a higher level would precise
how indirect calls would be made.

Bletsch et.al suggests [4] that this technique could be combined with G-free.
G-free could be used to remove unintended gadgets, by rewriting the code, instead
of using alignments as in this solution. This could potentially give performance
benefits

ROP-Protections 33

3.7 ROPScan

ROPScan [25] is an input scanner with a CPU emulator that detects shellcode in
input data from network or memory buffers.

3.7.1 Main features

ROPScan is monitoring a process at run-time and emulates code each time input
data has entered the process as if it was an ROP-payload. The emulator has a
snapshot of the process image and the virtual memory that belong to the process.

Scan input data

Input data is scanned for ROP-payloads by trying to treat each 4 byte as a pointer
to the available gadget space. ROPScan needs to search from all possible starting
points in the data, since it is not known where in the data a potential ROP-gadget
sequence may start. This is done with a sliding window technique that slides one
byte for each interpretation try.

If a valid address is found the emulator starts executing from that point to see
whether it is the start of a gadget chain. The emulator has a complete snapshot of
the process image including the registers and the stack, to be able to do the same
computations as in the real execution. It will continue to execute until an invalid
address is encountered, an invalid or privileged instruction is encountered or if it
hits either the gadget length threshold or the total instruction threshold.

ROP-detection

In order to distinguish incidental gadget chains from intended ROP-gadget chains
there is a need to do further checks on the emulated instructions. An ROP-gadget
must end in an indirect branch that uses the input data to calculate the branch
target. One example is if the gadget ends with the instruction jmp %eax, and
the value in %eax has not been loaded from the input data, the gadget is most
probably not a ROP-gadget. Another example is when the gadget ends with a
return instruction and the value in the stack pointer is not provided by the input
data.

Experiments

Polychronakis et. al. have performed experiments with ROPScan in order to
decide upon good thresholds when an ROP-gadget chain should be considered to be
found. They have tested in total about 1.86TB of data of varying kinds, including
random binary, random ASCII, network streams and PDF memory buffers. They
also tested real ROP-payloads in order to determine the minimum gadget-length
in a real ROP-payload.

According to their experimentations the threshold for determining if a gadget
chain is an ROP-gadget chain should be six valid gadgets.

34 ROP-Protections

3.7.2 Implementation details

ROPScan is implemented on top of Nemu [24], which is a scanner and a CPU emula-
tor that detects exploiting shellcode in input buffers or network traffic. The authors
suggests to implement ROPScan in a shellcode detection system like ShellOS [30]
instead, to get higher throughputs.

3.7.3 Analysis

Strengths

• ROPScan has accurate detection of ROP attacks, due to its precise detection
techniques.

Weaknesses

• The complexity of the algorithm is very high since it relies on emulation of
the whole process.

• Cannot scan input data without access to the whole memory image of the
protected application.

Other thoughts

Polychonakis et. al. suggests that instead of executing every valid address found
in the gadget space, the addresses could be compared to a precomputed list of
gadget addresses. The addresses could be precomputed with help of existing gadget
discovery tools and save them in a hash table.

ROP-Protections 35

3.8 Binary Stirring

Binary Stirring [35] is a binary rewriting technique that randomizes the location
of basic blocks.

3.8.1 Main features

Commercial Off The Shelf (COTS)-binaries are stirred with a program that pro-
duces a new binary where each basic block has a new random location. It requires
no source code or other information than the binary. A wrapper randomizes the
binary each time it is loaded. This means that gadgets that are computed on one
instance of the binary will not be useful at another running instance of the binary.

The whole process is based on two phases: Static Rewriting Phase and Load-
Time Stirring Phase.

Static Rewriting Phase

The Static Rewriting Phase copies the code and data into two copies where the
original is treated as data and new as code. The old version is set as non-executable
and all bytes are preserved. The old version can therefore be used as data source
without the risk of having the code executed. The new version is disassembled
into code blocks, which can be randomly stirred in the memory space every time
the program starts.

The basic blocks are code-sections which has one entry point and ends with
an unconditional jump. Basic blocks can also be divided into smaller blocks by
inserting jmp 0 which is a semantic no-op.

The new version keeps the data references to the old, and need thus not to
be recomputed. The data in the new version becomes unreachable garbage code
between the executable code and there is no need to detect or remove it.

Load-Time Stirring Phase

In this phase all the basic blocks that were disassembled in the last phase are
randomly reordered in the new code section.

After reordering the basic blocks some of the code-pointers will have to be
repointed (e.g. those that points to a method dispatch table). Since these repoint-
ings will be done very frequently they have to be efficient.

To do this the jump targets in the old version of the code will have their
addresses updated to the new version during the first phase, which creates a
lookup-table for the new version. Two instructions are then inserted before each
jump address to patch the address at run-time with the help of the lookup-
table in the old code. These instructions are cmp byte ptr [%eax], F4h and
cmovz %eax, [%eax+1] where %eax is the register which holds the address. This
code checks if the address starts with the tag byte 0xF4 which is inserted in the
first phase to indicate that the pointer is old and needs to be updated.

36 ROP-Protections

Position Independent Code

PIC is instructions that computes their own location in the code at run-time
and performs pointer arithmetic to compute locations of other instructions and
data tables. These computations may be disturbed during stirring and has to be
accounted for by the stirring module. The kind of PIC that the prototype handles
are ones that pushes the Stack Pointer (SP) on the stack via a call instruction
to the next instruction, and then pops it into a register to effectively get its own
address. The PIC adds or subtracts a constant to the register to point it to a
global offset table and then loads the target address from there.

This PIC is identified by the call instruction that calls the next address in
memory. The computation instructions are then replaced by instructions that
instead calculates the address after stirring. The new sequence may have to be
padded with NOP’s to get the same length.

There may be other forms of PIC but the authors have not encountered any
in their testing of the prototype.

Statically Computed Returns

In this prototype all return addresses are assumed to be valid since they are pushed
on the stacks by call instructions. This means there are no pointer checks before
executing a return instruction.

There are a few special cases in the initializer code generated by GNU Com-
pilers where three operands are pushed on the stack to be jumped to by return
instructions. The prototype handles this as a special case and inserts jump tar-
get checks before performing those returns. The system could also be built with
always having return-checks with a performance penalty.

Short functions

If two jump targets are nearby it is generally assumed that they are 5 bytes apart
from each other, since 5 byte tagged pointers are used in the lookup-table. In
some rare cases there exists targets that are less than 5 byte apart. The rewriter
then has to strategically locate the two basic blocks in memory so that the tagged
pointers can overlap with the 0xF4 tag being part of one of the target addresses.

For example if the new version section starts at address 0x4000 0000, the
encoding F4 00 F4 00 04 00 04 can encode two overlapping tagged pointer at
addresses 0x0400 F400 and 0x0400 0400 respectively. This strategy can effec-
tively support at least 135 two-pointer collisions and 9 three-pointer collisions.

3.8.2 Implementation details

The disassembler is written as an IDAPython script together with IDAPro.
The Load-Time Stirring Phase is written as a static library to the target

program. It takes place at load-time and needs to be executed before the target
code starts executing. This is done by loading the static linked libraries in the
right order.

ROP-Protections 37

On Windows this is achieved by the system load order which says that static
linked libraries are loaded before modules that link them. On Linux the object is
compiled as a shared object (.so) and injected using the LD_PRELOAD environment
variable in the address space of the target process.

3.8.3 Analysis

Strengths

• Low run-time overhead (1.6%)

• Can randomize modules that cannot be randomized by ASLR because of
missing relocation information.

• Removes up to 99.99% of all ROP and JOP gadgets.

Weaknesses

• Can only randomize code that is available at run-time and not e.g. obfus-
cated code that unpacks during execution or JIT-compiled code.

• Some of the debugging decisions cannot be made by the disassembler alone
and requires an expert’s guidance.

• File sizes become in average 73% larger.

38 ROP-Protections

3.9 Instruction Location Randomization

Instruction Location Randomization [16] randomizes the location of all instructions
post-deployment, to make it impossible to craft gadgets. It requires a Per Process
Virtual Machine (PVM) that runs the code via a fall-through table.

3.9.1 Main features

A fall-through table is generated offline which maps addresses to instructions or
references. The address that the Instruction Pointer (IP) points to will be looked
up in the table. If an address maps to an instruction, that instruction should be
executed and the IP increased as normal. If it maps to a reference, the IP should
jump to that address.

In the offline analysis all the instructions are placed randomly in the memory.
The program is then run on a PVM which uses the fallthrough map to guide
through the executable.

Offline Analysis

The offline analysis has three responsibilities: locating instructions, locating in-
direct branch targets and identifying call sites. This phase uses a few different
tools.

At first a recursive descent disassembler (IDA Pro) and a linear scan disas-
sembler (objdump) are used to locate all functions and instructions. Direct and
fall-through are put into an instruction database which is validated by the Disas-
sembly Validator. The functions are noted as sets of instructions and are put in
the database.

The indirect branch analysis finds all places in the code that are possible
targets for indirect branches. It is hard to find all the Indirect Branch Target
(IBT)’s in the program and the prototype for this technique does not cover all of
them. A linear scan of the data is done to find all pointer-sized constants that
could possibly be an IBT. This works most of the time, but e.g. when C++ uses
exception handling this can lead to faults. Sometimes the addresses of IBT’s have
to remain non-randomized.

Call Site Analysis

The Call Site Analysis looks at all call instructions to see whether the return
address can be randomized. This is done because there may be non-randomized
instructions left. If a function follows the normal semantics call-return, if it has
only standard function exits using the return instruction, if it has only entrances
via the function’s entry point and if it is not modifying the return value then the
return address can be randomized. This works for most of the times, but not for
C++ exception handling routines.

After these processing steps the reassembly takes over. Its purpose is to cre-
ate the rewrite rules to make the program randomized. It goes through all the
instructions in the database and creates rewrite rules for them.

ROP-Protections 39

3.9.2 Implementation details

The PVM is a per-process virtual machine which uses the rewrite rules to instruct
the PC where to go next. It has a cache memory to make it more efficient. It is
written as an extension to an existing PVM (Strata) and contains around 1 Kilo
Lines of Code (KLOC).

A Postgres database is used during the offline analysis.

3.9.3 Analysis

Strengths

• Impossible to guess where instructions are (it has high entropy). 31 bits of
entropy on a 32-bit machine and 63 bits of entropy on a 64-bit machine.

Weaknesses

• Indirect branches cannot be randomized.

• The PVM has an average overhead of 8% and total overhead is at lowest
13%.

Other Thoughts

The prototype does not support randomization within shared libraries. It could
easily be extended to do so, but if it is possible it would be better to provide the
randomization within the library instead.

On Linux this could be done by using a randomized compiler since the source
code is known.

On Windows Instruction Location Randomization (ILR) can be used where
the PVM could watch for dynamic library loadings and randomize them at loading
time.

40 ROP-Protections

3.10 In Place Randomization

In In Place Randomization [22], binaries are rewritten by changing instructions
randomly to remove the usability of in advance computed gadgets.

3.10.1 Main features

The binary rewriting is done before running the binary, which makes the program
random for every running instance. After rewriting, the program will have exactly
the same length, same functions and same basic blocks - but it will not have the
same instructions.

This protection is written for x86 which is a very extensive instruction set
which makes it possible to replace instructions with a high probability. There are
three kinds of rewrite rules used in this implementation which will be described
here.

Atomic Instruction Substitution

Gadgets can consist of both intended and unintended instructions. Unintended
instructions occur on x86 assembly instructions since they have different lengths
and are not aligned. When an unintended instruction-based gadget is found, one
or many of the instructions that constitutes the gadget will be replaced. Replace-
ments can be done with instructions that has the same semantic meaning in the
program.

For example the instructions add r/m32, r32 and add r32, r/m32 have dif-
ferent op-codes, but will have the exact same meaning when both operands are
registers. Another example is to change the order of operands in an instruction.
cmp a1, b1 and cmp b1, a1 will have different op-codes but the same meaning.

Instruction Reordering

Reordering instructions can be done if the order of the instructions is not important
or has no meaning semantically. This rewriting technique can break an adversary’s
assumption of both intended and unintended gadgets’ impacts.

Dependencies The order of instructions in a program is decided by the compiler,
and is often a combination of many factors like instruction cycle cost and
optimization techniques. Instructions can often be re-ordered with the same
semantic meaning, but at the cost of these factors. To reorder instructions in
a basic block much information has to be calculated about the dependencies
between the instructions.
A dependence graph is constructed for each basic block. Each instruction
is derived two sets which contains the registers that are used respectively
defined by the instruction. E.g. two instructions will have a dependency if
one of them defines a register that the other uses, if one of them writes to
memory and the other reads from memory or if one of them writes a flag
which the other one reads. The memory dependency rule is very conservative
because it is hard to statically analyze relative memory addresses. In this

ROP-Protections 41

prototype no effort is done to compute if they are actually writing to the
same memory location.

Callee-saved Registers Callee-saved registers on the x86-architecture are reg-
isters that the function-callee has the responsibility to preserve after the
function call. Normally these registers are needed by the function callee,
and the normal course of action is to push the register-values on the stack
in the beginning of the function and to pop them in the end of the function.
Depending on the platform and the compiler there may be around four dif-
ferent callee-saved registers. The compiler chooses the order to push and
pop them in an arbitrary way, which makes it an easy target for In Place
Randomization (IPR) to reorder. As long as the registers are pushed and
popped in the reverse orders IPR can reorder them freely.
There are some special cases where the push- and pop-sequences can occur
multiple times in a function, which needs to be taken care of as well. If
a function has many exit points there will be pop-sequences at every exit
point. A function can have pop- and push-sequences in other places than
at the start and end if the registers only need to be preserved for a certain
execution path.
This technique will destroy the assumption of many gadgets that only con-
tains one or a couple of register pops from the stack and end in a return
which are fairly common.

Register Reassignment

Different registers can be switched randomly if it is possible to interchange them
for a certain path.

Live Ranges To determine if registers can be switched IPR has to calculate every
register’s live range. A live range for a register is the set of program points
in the CFG of the program where the register is live. The register r is live
at a program point p if and only if there is a path from p to a use of r that
does not go through a definition of r. To calculate the live ranges for each
register a live-variable analysis algorithm is performed.
A register will have many disjoint live ranges during program, and the dif-
ferent registers will have overlapping live ranges. To determine if two can be
interchanged for a certain execution path the live ranges must match or the
shorter register’s live range must be extendable to match the other register’s
live range. For a live range to be extendable it must not overlap another of
its own live ranges. If a register can match its live range with two or more
registers they can all be interchangeable during the live range.

Non-interchangable Registers In some cases the registers cannot be inter-
changed, e.g. the one-byte instruction mov always uses two specific registers,
and there is no corresponding one-byte instruction that can replace it with
other registers. If a compiler is not following the standard calling conven-
tions for a private or static function it may use registers in other ways than
expected. To detect this the IDAPro uses an algorithm to thoroughly go
through every function in the program and the calls to the functions.

42 ROP-Protections

This technique will break the assumption gadgets have on the registers they
are trying to manipulate. It will also destroy contingent unintended gadgets.
The reason why this technique cannot randomize all gadgets can be the
following: the gadget is part of data that is used by the program, the gadget
is part of code that could not be disassembled or the gadget was not affected
by the transformations used.

3.10.2 Implementation details

IDAPro is used to disassemble the Portable Executable (PE)-files to extract in-
structions that are used. Functions and basic blocks are extracted from the code
which are accurately assembled. For extracted code with low accuracy no as-
sumptions on functions or basic blocks are made in order to prevent destructive
modifications on code that is misidentified.

Instructions are then converted to a new internal representation that holds
more information about the instruction, such as which registers are used implic-
itly and which registers and flags are read by the instructions. The instruction
sequences that could potentially be used as gadgets, both intentionally and unin-
tentionally, are searched for - and rewritten according to the rewriting rules. If
instructions that have to be moved from their original location includes an abso-
lute address, the corresponding entry in the .reloc-section has to be changed
accordingly.

Pappas et.al. suggest that the randomization phase is made offline, because
it has high complexity (in the order of minutes). A pool of different randomized
instances of the program can be shipped with the program together with a loader
that loads a new one each time the program is loaded.

3.10.3 Analysis

Strengths

• Lightweight at run-time (almost no overhead).

Weaknesses

• Only about 80% of gadgets are removed with this technique.

• The randomization algorithm has high complexity.

• File size overheads become big when a big pool of program instances is
attached.

Other Thoughts

The authors suggest that this technique could be combined with other defense-
techniques since it is so lightweight. It could be combined with other techniques
that rewrites the binary files before running other randomization techniques.

The authors of Binary Stirring criticises this technique because it is hard to
deploy - each randomized copy has to be separately distributed. A distributed copy

ROP-Protections 43

could although come with a pool of different randomized version and a loader then
picks different versions each time the program is loaded.

44 ROP-Protections

3.11 kBouncer

kBouncer [23] detects ROP-characteristics at run time by monitoring the hardware-
featured Last Branch Record (LBR)-stack via a kernel module.

3.11.1 Main features

kBouncer does LBR-verifications each time the Windows API is called.

LBR-stack

The LBR-stack is a hardware feature that saves the branch and target addresses
of the 16 latest executed branches1. Saving the branches in LBR gives only a
small overhead since it is implemented in the hardware. The downside with LBR-
registers is that monitoring them can be done only from kernel-level code.

LBR-verification

LBR-verification includes examining the LBR-stack for ROP- and JOP-characteristics.
kBouncer does LBR-verification each time a Windows API function is called. Win-
dows API functions are almost always used in ROP-attacks to in their turn do
system calls to change the current system’s properties. E.g. ROP-attacks can
try to change the current memory page into executable memory. It is necessary
to verify the LBR-stack at the time the Windows API function is called and not
when the actual system call is done, because between those points almost the
whole LBR-stack is overwritten with preparations for the system call.

To prevent ROP-attacks from doing the system call directly instead of going
via the Windows API functions, kBouncer has implemented a scheme to force it
to. When a Windows API function is called the kernel module is notified to do
an LBR-verification. At the same time the kernel module also writes a checkpoint
that confirms that the code has passed through the API function. When a system
call is invoked the checkpoint is verified by the kernel module, and if it is valid, it
is deleted from memory.

The kernel module then passes execution to the system call. If the checkpoint
is not valid, a violation is reported. This enforcement scheme will always work
on legitimate code because the native system call API is not exposed to user-level
programs, and has to be done via the Windows API.

Keeping the LBR-verifications to the minimum needed to detect a ROP-attack
is important for this defense, since the overhead would be too large otherwise.

Characteristics

The two characteristics that are verified in an LBR-verification are non-call Pre-
ceded Gadgets and Gadget Chaining.

Non-call preceded Gadgets kBouncer takes advantage of call-return pairs. The
general rule is that for every call instruction there will be a return instruction

1Note that this number is CPU-dependent

ROP-Protections 45

that moves the execution to the address right after the corresponding call.
If a return branches to an address that is not preceding a call instruction
kBouncer detects a possible ROP-attack. The LBR-verification checks that
each return branch in LBR is preceded with a call instruction. If kBouncer
detects such a return-branch then a violation is reported and the program
is stopped. kBouncer does not check that the pair of call and return are
right, it only checks if there is any call-instruction.

Gadget Chaining kBouncer also looks for gadget chaining when doing an LBR-
verification. A gadget chaining is a chain of ROP and/or JOP gadgets which
each consists of a specified number of instructions or less. The gadgets
are all chained via indirect branches. In this implementation gadgets can
also be fragmented through branches, as long as they are shorter than 20
instructions in a sequence.

Pappas et. al. show in experiments that in this implementation there is almost no
risk that normal execution will be detected as gadgets, even if the LBR-verifications
would be done much more frequently. Their experiments show that after running
seven different popular programs on Windows and doing over 97 million LBR-
verifications - the maximum length of a gadget-like chain is nine, which is far from
16 which is their maximum limit.

3.11.2 Implementation details

kBouncer consists of three different components:

Offline Gadget Extraction and Analysis Toolkit

This component does a disassembling analysis of the binary to calculate the offsets
of every call-preceded gadget and all other gadgets. These offsets are saved in two
different hash tables.

A User-Space Thin Interposition Layer

This interposition layer is implemented on top of the Detours framework, which
provides capabilities of intercepting library calls on the Windows platform. When
the target program is loaded this component calls the kBouncer kernel module
to enable the LBR feature on the CPU. It then registers hooks to the selected
Windows API functions which will invoke the LBR-verification each time those
functions are called.

When the LBR-verification is invoked this component notifies the kernel mod-
ule in order to do the verification. This component is communicating with the
Kernel Module via control messages over a pseudo-device that is exported by the
kernel module (available via the DeviceIoControl API function).

Kernel Module

The Kernel Module is responsible for enabling and disabling the LBR functionality,
the LBR-verification and writing and verifying checkpoints before letting a system

46 ROP-Protections

call executing. To enable and disable LBR the instructions rdmsr and wrmsr are
available.

Identifying non-call preceded gadgets is done by looking at the branch target
of the last branches to check whether they are preceding a call instruction. The
number of consecutive targets that point to gadgets are counted backwards from
the most recent branch to identify gadget chaining. Return-targets are looked up
in the call-preceded hash table and any other branch-target is looked up in both
hash tables.

The API-call verification has not been implemented in the prototype since it
is not possible to do changes to certain critical data structures such as the System
Service Descriptor Table in 64-bit Windows 7. It would be easy to implement in
e.g. Linux.

Pappas et. al. proposes a list of 52 different Windows API functions that
should be protected in the kBouncer implementation. Extending the list is not
needed because of the extra overhead for no extra security.

3.11.3 Analysis

Strengths

• Low performance overhead (1.00%).

Weaknesses

• Does not capture call-preceded gadgets (intended or unintended).

• Requires a kernel module.

• For processors with a small LBR-stack an adversary could ensure that the
last branches looks valid, or are call-preceded.

ROP-Protections 47

3.12 ROPGuard

ROPGuard [13] provides run-time detection against six different ROP-characteristics.
These checks are done only before sensitive system calls are made, which makes it
very lightweight and easy.

3.12.1 Main features

Fratric defines critical functions as functions that are used in ROP-attacks that can
e.g. change the properties of memory or creating a new process. These functions
are often used to open up possibilities to run arbitrary code in the target process
and they are called via the ROP-gadgets. By doing ROP-verifications only at times
when critical functions are invoked the protection will become very lightweight.
The different checks implemented in ROPGuard include the following:

• Checking the stack pointer if it is inside the boundaries of the current thread.

In ROP-attacks the adversary can control the stack and in particular the
stack pointer. To check whether the stack pointer is manipulated the Thread
Information Block (TIB) in Windows can be examined to get information
about the current function’s stack frame. The TIB is undocumented which
makes it not a 100% reliable. If the stack pointer is not inside the boundaries
of the stack frame there is suspicion of an ROP-attack.

• Looking for the address of critical function on the stack to see if it was
entered via a return rather than a jump or call.

Gadgets that ends in returns, will leave the address of the return target just
above the stack pointer when entering the return target. To check whether a
critical function was entered via a return-branch, the bytes above the stack
pointer are saved from being modified, and then a check is run to see if they
are the same. If a return N instruction is used in the gadget the address
will be (N +1)∗4 bytes above the stack pointer. If the critical function was
entered via a return-branch an ROP-attack can be suspected.

• Checking the return address to see that it is executable and that it is pre-
ceded by a call.

At the start of a critical function its return address can be checked for
different properties.

1. It has to return to an executable code section. If it does not return
into an executable code section it can be suspected that the critical
function’s purpose is to change the property on the code section to
become executable.

2. It has to be a call-preceded return target. If it is not a call-preceded
return target we can suspect that the critical function was targeted
via a return branch.

3. Further verification on the call can done. If the return is call-preceded
we can check that the call is actually referring to this critical function.

48 ROP-Protections

E.g. if the call is of the type call [eax] - the address in the %eax
register is compared to the address of the critical function.
This verification can be unreliable e.g. if the call was followed by a
jump to the critical function. It is possible to detect most of these
cases - but not all.

• Checking the stack frame pointer.
The stack frame pointer can be used to check the return addresses of the
functions that called the critical function, in a similar way as described in
the last check. The stack frame pointer can also be checked to actually be
on the stack and that it is below the stack pointer.
This verification works only if the program is compiled to use the %ebp, or
any other consistent register, as a stack frame pointer. This check is not
enabled by default, but ROPGuard can be extended with a white-list of
programs that are known to be compiled with the stack frame pointers.

• Simulating the execution flow.
The code execution after a critical function can be simulated in ROPGuard.
The instructions that changes the stack pointers are simulated and the rest
are ignored. When a return instruction is encountered the same checks as
before can be applied on this return statement; that the return target is
executable and that it is call-preceded. The simulation proceeds until it has
reached a specified limit or until it encounters a non-return branch instruc-
tion. This simulation makes it possible to detect if the critical function is
part of a longer gadget chain.
The simulation could be extended to also follow indirect call- and jump
instructions to detect gadgets that are not only return-based.

• Function specific checks.
For some critical functions specific checks can be done for calls that will
potentially harm the system. Fratric proposes two different specific checks,
and more can be added.

VirtualProtect VirtualProtect can be used by an adversary to change
the memory properties of the stack to be executable. This is a common
way to do an ROP-attack and is detected by checking the parameters
of the function. The parameter lpAddress tells what address the pages
start at that are going to be changed, and flNewProtect tells what
kind of property the memory will have after the call.

LoadLibrary Loading a library over SMB can be prevented by checking
the parameters of the function LoadLibrary. There are also similar
functions that loads libraries.

3.12.2 Implementation details

ROPGuard is implemented as a library (.dll) and a starter process. It can be
started with already running processes and with newly started processes. When

ROP-Protections 49

ROPGuard is started it starts to parse a configuration file which defines which
checks should be enabled. It then injects the library into the process and inline-
patches all critical functions with validation code. The validation checks uses the
library to execute the validations.

The starter executable starts the process in a suspended state, injects the
library and then resumes the process. On Windows XP and earlier versions the
starter process instead patches the newly created processes with an infinite loop.
During execution of the infinite loop the starter process injects the library and
then removes the loop.

3.12.3 Analysis

Strengths

• Lightweight implementation with minimum amount of detection code as
possible.

• Low performance overhead (0.48%).

Weaknesses

• Prototype only detects return-based, and not jump-based attacks.

• Does not detect attacks which are not using system calls.

Other thoughts

The prototype only detects return based attacks. A future version may include
ability to detect jump based attacks, with gadgets ending with and containing
jump instructions.

50 ROP-Protections

3.13 Marlin

Marlin [15] is a memory randomization technique. All functions in a program are
randomly distributed in memory when the program is loaded.

3.13.1 Main features

The process of Marlin is divided in two phases; Swapping phase and Jump-patching
phase. Marlin has a high entropy. If a program contains n different functions, the
number of different permutations of the binary is n!. Every time an application is
loaded by the program loader the memory space is randomized.

Swapping phase

A function is identified by its symbol. A simple swapping phase is done, where all
symbols in the binary are iterated. For every symbol a random other symbol is
chosen, and the functions succeeding are replaced with each other.

Jump-patching phase

After the swapping phase a jump-patching phase is done. This phase patches all
relative and absolute branches that have been changed due to the swapping, to
point to their new locations in memory.

3.13.2 Implementation details

Marlin is implemented as a customized program loader. The mmap system call
is issued by the loader to map a binary to its process’ memory space. Marlin
permutes the order of which the system calls are made for different symbols in the
binary.

3.13.3 Analysis

Strengths

• Marlin is based on a simple algorithm.

• The only performance overhead is during the loading of the program (4
seconds).

• Has high entropy to make it hard to brute-force.

Weaknesses

• If the symbols are stripped from the binary, randomization has to take place
at another granularity (e.g. at basic block level, as in Binary Stirring).

• There are many difficulties with this approach that has not been mentioned
in the paper: e.g. data references and Position Independent Code.

ROP-Protections 51

3.14 Control Flow Integrity and Randomization for Binary Ex-
ecutables

Control Flow Integrity and Randomization for Binary Executables [36], called
CCFIR, is a CFI implementation that enforces integrity via springboard code
section.

3.14.1 Main features

CCFIR analyzes and rewrites binary files via their relocation table. Each module
in the program gets a springboard which encodes target restrictions via code align-
ment. It locates all indirect control transfer instructions, indirect jump, indirect
calls and returns, and ensures that their targets are legal by rewriting them. A
check is performed in the springboard before each such transfer to see that they
are valid.

The relocation table in a binary is a list of pointers created by the compiler
and assembler. Each entry in the list is a pointer to an address that needs to be
changed when the loader relocates the program. The relocation table is not always
present, but if the binary is compiled with ASLR it has to, because the program
will always get run in a new random place in memory each time it is loaded.

Springboard

Springboard memory areas are enforced to have the address’ 27th bit set to 0. The
memory is divided in pieces of 128MB, with data in the odd sections and their
respective springboards in the even section. This policy makes it easy to check if
an address belongs to a springboard.

The springboard contains stubs that the original code will jump to. For every
valid indirect jump in the original code there is a stub in the springboard, which
contains a direct jump to the original target. The indirect jump in the original
code is replaced with a direct jump to the springboard-stub.

The springboard is divided into different regions which makes the valid targets
distinguishable. There are three different regions which contains different kinds of
stubs - indirect jumps to function pointers, return addresses into normal functions
and return addresses into sensitive library functions (e.g. system() in libc).
Depending on which region the stub lies in the type of indirect transfer target can
be determined.

The springboard is aligned according to SFI, which is a technique to enforce
control flow integrity. There are three main properties of the control flow integrity:

1. Indirect call and jump instructions are enforced to only jump to function
pointer stubs in the springboard. They can only jump to targets that are
8-byte aligned but not 16-byte aligned. The alignment makes sure that no
unintended instructions are executed, but only the ones intended. There are
no function pointer stubs that directs to sensitive functions in the spring-
board, which makes it impossible to do an indirect call or jump to a sensitive
function.

52 ROP-Protections

2. Return instructions in normal functions cannot jump to sensitive return
address stubs. They must be 16-byte aligned with their 26th bit set to 0.
This enforcement makes RILC and ROP very limited because they often
rely on returning into system functions.

3. Return instructions in sensitive functions can jump into any return stub in
the springboards, but must be 16-byte aligned. Since all return instructions
must be 16-byte aligned many ROP-gadgets are removed that rely on jump-
ing into the middle of a function. All these properties are ensured by placing
code that checks this before every indirect jump/call and return instruction.

4. Lastly the entries in the springboard are also randomized at load-time to
make it harder to guess the addresses of function pointers and return address
stubs.

3.14.2 Implementation details

Implemented in three major modules; BitCover, BitRewrite and BitVerify.

BitCover Dissasembles the PE-file and identifies all indirect call, jump or return
instructions and potential indirect control transfer targets.

BitRewrite Inserts springboards, redirects pointers to the new boards, infers
checks of the validity of branches and randomizes the springboard.

BitVerify Verifies that the binary conforms to the security policies.

CCFIR is written in C++. BitCover is built upon Udis86 which is an open source
disassembler library.

3.14.3 Analysis

Strengths

• Low average overhead (3.6%).

• Most of the gadgets are removed and 100% of the gadgets are invalid due
to the CFI.

Weaknesses

• File sizes increase about 30%.

ROP-Protections 53

3.15 Control Flow Integrity for COTS libraries

Control Flow Integrity for COTS libraries (CFICOTS) [37] is an implementation
of CFI. CFICOTS disassembles binaries to rewrite them and to insert a new copy
of the code segments that enforces the CFG.

Disassembly

CFICOTS uses two different disassembling techniques, linear and recursive. The
linear disassembly starts at a code segment, looks at instructions one by one and
decodes them. It does not take account for different blocks or gaps in the program
and may therefore give erroneous results.

The recursive disassembling technique takes the program’s CFG into account,
and performs a depth-first search in it. Recursive disassembly will disassemble
more code than linear since it will follow all control transfers, and disassemble from
each possible entry point. It will not disassemble code that are only reachable via
ICF targets, which is why more information is needed. The relocation information
in a binary will provide some of the information, if present.

CFICOTS starts by doing a linear assembly on the whole binary. It then
corrects all potential errors by doing a recursive disassembly followed by an error
correction. To correct errors it has to find disassembled code that is actually a gap.
To do that it will look for three different properties: invalid opcode, direct control
transfers outside the current module and direct control transfer to the middle of
an instruction.

When one of these properties are found it is sure to have found a gap, and
starts looking for the start and the end of the gap. To find the start, it simply
walks backwards to the first unconditional control flow transfer. To find the end
it walks forward to find the first ICF target. All ICF targets are found during the
static analysis.

Static analysis

A static analysis is done to find all possible ICF targets. Zhang et. al. defines five
different categories that ICF targets may fall in.

1. Code pointer constants are code addresses that are computed at compile-
time. It is hard to distinguish a code pointer constant and other types of
constants in code. There are two constraints that can be applied, and if
they are true the constant is considered a code pointer constant.
If the pointer falls within the range of the code addresses in the current
module and if it points to an instruction in the disassembled code (i.e. it
does not fall in the middle of an instruction). If it is a shared library being
disassembled, the constant will represent a memory offset. In that case the
offset is checked to be valid from the base of the code segment.

2. Computed code addresses are code addresses that are computed at run-time.
Computing code addresses by doing arbitrary arithmetic on the pointer is
very uncommon in the code Zhang et. al. has studied. The only cases where

54 ROP-Protections

they have found such are in jump tables and C++ exception handling. To
find jump tables a three step process is done:
The first step is to find function boundaries, since most jump tables are intra-
procedural and all the ICF transfers are done within the same function. To
find the function boundaries a conservative method is done, where exported
function symbols are treated as function boundaries.
The second step is to find all data dependencies that computes the jump
target in the jump table. To do that it walks backwards using the CFG
from the indirect jumps.
The third step is to enumerate all possible values of the jump target. If an
enumeration falls in the current region a computed code address is found.

3. Exception handling addresses are code addresses that are used to han-
dle exceptions. These addresses are listed in ELF-binaries in the sections
.eh_frame and .gcc_except_table.

4. Exported symbol addresses are exported function addresses. These ad-
dresses are listed in ELF-binaries in the section .dynamic, which is the
dynamic symbol table.

5. Return addresses are code addresses following a call instruction. They are
easily found during the disassembly.

Instrumentation and regeneration of binary

The CFI-instrumentation of the code is done in the disassembled assembly form.
After instrumentation the code will be assembled into a new binary using the Gnu
Assembler (gas).

The new binary’s code will be extracted and injected into the old binary under
a new section. This new section will be the code-section, and the old code-section
will be set to non-executable. This ensures that the new code will be able to read
data from the old code. The ELF header, relocation information and dynamic
symbol section need to be updated as well.

The instrumentation consists of a few different code modifications which are
described here.

Address Translation The new code will need to have its addresses updated to
point to the new code. Since all code address constants cannot be distin-
guished from other constants, they cannot be changed directly. An address
translation table, called Module Translation Table (MTT), is used which
consists of pairs between original addresses and labels in the new code. E.g.
the original address 0105 will be represented by the label L_0105 in the new
code. All direct branches in the new code can be translated to a direct call
to the right label. All indirect branches will instead jump to a trampoline
code, which will translate the destination to the right label.
All valid ICF targets that have been calculated in the disassembly will be
put in a hash table which maps original addresses to code that transfers
control to the right label. If the address is not found in the hash table the
address is not a valid ICF target, and the process will stop executing.

ROP-Protections 55

To be able to translate ICF transfers between different modules two tables
are needed. To locate the right module a Global Translation Table (GTT) is
used, which maps ICF targets to the address translation routine in the right
module. Since any two modules on a 32-bit Linux system must be apart by
at least 4KB, only the 20 leading bits needs to be used. This means that
the table can be implemented as an array with only 1M entries.

Linker and loader modification To keep the GTT up to date during dynamic
linking, when modules are loaded and unloaded, the dynamic linker needs
to be modified. Zhang et. al. have modified ld.so, which is the standard
dynamic linker/loader in Linux systems. When a module is dynamically
loaded that is referenced by the program, or when the application uses
the system calls dlopen and dlclose, the loader will also insert the right
information in the GTT.

When a binary is rewritten in CFICOTS the entry point of the binary may
change. ld.so makes use of the entry point when it is invoked to load a
program. The loader needs to be modified to compensate for the change in
the entry point.

ld.so is also changed in a third way, because it uses a return instruction
for lazy symbol resolving. That means it computes a target address of a
symbol, pushes it on the stack and performs a return instruction to jump
there. CFI does not allow return branches to exported symbols, and this
will therefore need to be changed to a jump instruction.

Signals Signals need to be handled separately since they will still specify loca-
tions in the old code segment when doing a branch. To do this CFICOTS
intercepts sigaction and signal system calls and stores the address of the
signal handlers that are supposed to handle this signal. The signal handler
argument to the system call is then changed so that the signal handler in
the new code section will be invoked.

Optimizations Some optimizations are implemented in order to make the over-
head lower. Branch predictions can be optimized by writing the address
translation code for calls and returns so that the processor can predict re-
turn branches by changing the return address that lies on the stack.

In some cases the address translation can be avoided:

• Jump tables can be rewritten to use a jump table with the new ad-
dresses, instead of translating the addresses each time.

• PIC includes calls to get_pc_thunk, which has the responsibility to
load the Program Counter (PC) into a general use register. This can
be replaced with a call/pop-pair to remove the address translation for
that function.

• Return targets can be profiled in order to see which are used most. To
remove the address translation on those places a comparison can be
done with the known return targets. If they are equal, the return can
be replaced with a direct branch.

56 ROP-Protections

Normally the translation code needs to save the e-flags and registers
to not disrupt the normal execution. If the instrumentation detects
that there is no instruction that uses or defines the e-flags or some
registers, this can be skipped.

3.15.1 Implementation details

CFICOTS is written for 32-bit Linux systems which use the ELF-binary type. The
linear disassembly is written on top of objdump. Gas is used as the assembler to
generate the new binary file. Objcopy is used to inject the new sections to the
binary ELF-file.

Strengths

• Eliminates up to 95% of all gadgets.

• Low performance overhead (4.29%).

Weaknesses

• Large binary overhead (139%).

• Cannot reliably disassemble dynamically changing or obfuscated code due
to its static disassemble method.

ROP-Protections 57

3.16 ROPecker

ROPecker [7] is a run-time ROP-detection which monitors instructions and ana-
lyzes the latest branches taken by examining the LBR-stack.

3.16.1 Main features

ROPecker is divided into two parts; an offline phase where the binary and its
libraries are put in a pre-processor for statical analysis and a run-time phase which
detects the ROP-attack at runtime.

The offline phase analyzes the binary and its libraries and creates a database
with all the possible gadgets. It starts from the first byte and disassembles a given
number of instructions, (for example six). If the sequence ends with an indirect
branch instruction and does not contain a direct branch it can be seen as a possible
gadget.

It then analyzes all the instructions prior to the branch instruction to deter-
mine what impact it can have on the stack and registers. This analysis is very
alike the analysis done by programs that are creating gadgets from a given binary
or library.

The run-time phase analyzes the execution in a kernel module and stops the
execution if an ROP-attack is found. It will start an ROP-check based on two
different triggers which will be described:

Sliding Window A page window is set and all code outside this window is set as
non-executable. If code outside the window is tried to be executed a page
fault exception will occur, which will trigger the ROP-detection check. If
the check does not fault it will slide the window to include the new page. A
page size of between 8KB and 16KB is recommended by the authors.

Risky System Calls Risky system calls are those system calls that let the user
disable the non-executable property outside the window, (e.g mprotect and
mmap2). To protect against this a trigger to the ROP-protection will be
placed before every such system call. The system call table is modified to
insert calls to the detection code.

ROP-detection

The ROP-detection check first checks the LBR-stack to see which branches has
been taken recently. The LBR contains the source- and target addresses for the
last branches taken. To detect a gadget chain in the LBR it starts with the most
recent branch. It checks whether it is an indirect branch and if its target address
targets a possible gadget. Both of these information are found in the database
created in the offline phase. When one of the two conditions fails it records the
number of gadgets found.

It then checks the predicted future branches. For return-based branches the
pre-processor can calculate what the branch target will be by following the stack
and the stack pointer. This information will be stored in the database which the
kernel module can look up at runtime.

58 ROP-Protections

For jump-branches the branch targets have to calculated at runtime. To do
this an emulator environment is loaded in which a snapshot of the current process’
memory is copied. The instructions preceding the jump instruction is emulated in
this environment to calculate the branch target. If the number of gadgets in the
LBR-analysis and the future branches analysis combined is higher than a specified
threshold ROPecker will detect the ROP-attack and abort execution.

3.16.2 Implementation details

The preprocessor is a very simple disassembler and can thus be implemented using
an existing linear-sweeping disassembler such as objdump or diStorm. The runtime
analyzer part is implemented as a kernel module for x86 32-bit Ubuntu 12.04 with
kernel 3.2.0-29-general-pae.

A kernel module is needed to be able to read the LBR.
To intercept page fault exceptions, that are used in the sliding window, and

risky system calls the kernel module inserts hooks in the Interrupt Descriptor
Table (IDT). For the sliding window technique the memory outside of the window
is set as Never eXecute (NX), that is a memory table permission. When a memory
address with the NX-bit set is executed a page fault exception is thrown.

The exception will be caught by the ROPecker kernel module which will check
where the exception was thrown. If the exception was thrown outside the window
but in otherwise valid memory location the ROP-detection will be started. If the
detection turns out negative the window will slide to its new location and execution
will continue.

The emulator is used when ROPecker is calculating jump-branch targets. To
make the emulation more space- and time-efficient, a technique called read-on-
write is used. In this technique the virtual address space of the process is used
by the emulator and set as read only. The emulator can freely read the virtual
address space. When the emulator needs to write to the address space, it will
instead create a mapping table to another place in the memory and place the new
values there. Every time a read or write is done the emulator will first check the
table mapping.

3.16.3 Analysis

Strengths

• Lightweight implementation which has low performance overhead (2.6%).

Weaknesses

• Cannot protect against Gadget Gluing Attacks. Gadget Gluing Attack is
where two gadgets are chained together via a direct branch instruction.
Since the gadget chain detection stops when encountering a direct branch
instruction, it will not detect these kinds of gadgets.

• If only long gadgets are used in a ROP-attack it will be hard for ROPecker
to detect it. Since there is a number of gadget instructions threshold that
must be met for it to be counted as a gadget.

ROP-Protections 59

If ROPecker would be combined with the gadget-removal tool G-free, the slid-
ing window could be significantly larger and the overhead even smaller.

60 ROP-Protections

3.17 Zero-sum Defender

Zero-sum Defender [17] is a simple instruction monitoring technique, which inserts
code to count all call - return pairs in a program during compilation time.

3.17.1 Main features

Zero-sum Defender takes advantage of the assumption that in normal program
flow all call instructions will be followed by a return instruction. In a ROP-attack
the number of return instructions executed will be higher than the number of call
instructions. To check that this assumption is correct, Zero-sum Defender counts
every executed call instruction and compares it with the number of executed return
instructions.

To do this a, counter is used, that is incremented at every call and decremented
at every return. After each decrementation the counter is tested for being negative.
If the counter is negative, there has been more returns than calls, and a ROP-attack
is detected.

3.17.2 Implementation details

Zero-sum Defender is implemented as a transformation pass in the LLVM compiler
infrastructure. In the middle-end of the compiler, the assembler code is rewritten
by inserting the detections at the start and end of all functions. In total five
instructions are added to each function. The counter can be placed in an array
with a run-time random index. The longer array that is used, the larger entropy
is gained. The index can be initialized randomly in the start of the program.

There is a problem with multiple threads that uses the same counter, which
will make the value of the counter incorrect. To deal with this the counter has to
be made thread-local. If an array is used, the whole array has to be thread-local.

A more detailed description of the implementation is given in section 4.3.

3.17.3 Analysis

Strengths

• Lightweight implementation with low performance overhead (1.67%) and
low binary overhead (4.5%).

Weaknesses

• The authors have not mentioned special cases like non-local gotos which are
common in C++ exception handling.

• Does not detect the use of unaligned gadgets.

Other

The authors claim this protection can defend against JOP-attacks, but they do
not specify how.

ROP-Protections 61

3.18 Summary

All the protections presented in this chapter have been summarized in three dif-
ferent tables.

Table 3.1 gives a general presentation of the protections. The first column
presents what kinds of ROP-gadgets it can protect against. Ret-based means that
it only protects against ROP-attacks with gadgets ending in a return instruction,
and All means all possible gadgets. The second column tells if the protection
requires the source code of the protected application. The third column tells if the
protection needs to rewrite the binary of the application.

Table 3.2 presents the overheads the protection gives on the original applica-
tion. The first column presents the binary overhead. This is the size increase of the
binary files that are generated by the protection. If the protection does not make
changes to the binary files, this figure is missing. The second column presents the
run-time overhead. This is the extra time a protected application takes to run,
compared to the original application.

Table 3.3 presents the effectiveness of the protection. Its only column shows
how many percent of the gadgets are removed and/or detected by the protection.

All the information presented in these tables are taken from the protections’
authors and are their own results. The information has to be interpreted with
that in mind. Not all the authors have presented experimental results, which is
why some figures are missing in the tables.

2Scans input data with a speed of 120Mbit/s.
3Average of the SPEC CPU 2006 benchmark.
4From 0% and up. If a pool of different binaries is used, up to a several hundred

percent.
54.29% for C programs, 8.54% for C++ programs (due to exceptions-handling).
6All ROP-attacks were detected.
7Of which 9.5% is eliminated and 67.4% is semantically broken.
8One ROP-attack is tested which is detected in four different ways.
9All ROP-attacks were detected.

10Only one attack is tested, which is detected.

62 ROP-Protections

ROP Types Source Code Binary Rewriting
CFI Ret-based no yes
DROP Ret-based no yes
G-Free All yes no
Return-less Kernel Ret-based yes no
ROPDefender Ret-based no yes
CFLocking All yes no
ROPScan All no yes
Binary Stirring All no yes
ILR All no yes
IPR All no yes
KBouncer All no yes
Marlin All no yes
ROPGuard Ret-based no yes
CCFIR All no yes
CFI for COTS All no yes
ROPecker All no no
Zero-sum Defender Ret-based yes no

Table 3.1: Overview of the protections. ROP-gadget types, requires
source code and rewrites binary files.

Binary overhead (avg) Run-time overhead (avg)
CFI 8.00% 16.00%
DROP - 530.00%
G-Free 25.90% 3.10%
Return-less Kernel 9.40% 15.15%
ROPDefender 0.00% 217.00%
CFLocking - 4.60%
ROPScan - Depends on input 2

Binary Stirring 73.00% 1.60%
ILR 104MB 3 16%
IPR Depends on usage4 0.00%
KBouncer - 1.00%
Marlin - ~4 seconds
ROPGuard - 0.48%
CCFIR 30.00% 3.60%
CFI for COTS 139.00% 4.29% 5

ROPecker 19MB 2.60%
Zero-sum Defender 4.50% 1.67%

Table 3.2: Comparison of the overheads of the protections.

ROP-Protections 63

Gadgets Removed/Detected
CFI 100.00% of ROP
DROP 100.00% of ROP
G-Free 100.00%
Return-less Kernel 100.00% of ROP
ROPDefender 100.00% of ROP
CFLocking 100.00%
ROPScan - 6

Binary Stirring 99.99%
ILR 96.00%
IPR 76.90% 7

KBouncer 93.60%
Marlin -
ROPGuard -8

CCFIR 100.00%
CFI for COTS 92.68%
ROPecker - 9

Zero-sum Defender - 10

Table 3.3: Comparison of the efficiency of the protections.

64 ROP-Protections

Chapter4
Detailed Analysis of ROPDefender and

Zero-sum Defender

4.1 Introduction

A part of the results of this thesis is a deeper analysis and implementation of
a couple of known protections. This chapter will present a deeper study of the
ROPdefender (presented in section 3.5) and ZeroSum (presented in section 3.17)
protections.

The motivation of doing a detailed study of existing protections was to under-
stand them better, do experimental tests to compare the results, and to become
inspired for new ideas. These two protections are chosen partly because of their
ROP-detection techniques and partly because of the frameworks they build upon.
They are both relying on fundamental properties of computer programs, which
they use in order to detect abnormalities. These properties are very easy to ex-
amine, which makes them interesting for using in other protections.

The frameworks they build upon, PIN and LLVM, are both very open and
extendable frameworks. These frameworks can be used to implement other pro-
tections involving instruction monitoring or CFI, which makes them interesting to
look into and test.

The first two sections in this chapter, 4.2 and 4.3 describe the implementation
of the ROPdefender and ZeroSum respectively.

Section 4.4 presents an experimental evaluation of the two implementations.

4.2 Implementing ROPDefender

ROPDefender is implemented as a Pintool for the dynamic binary instrumentation
tool PIN by Intel. Pintools are written in C++. PIN can be used to instrument
and analyze programs during run-time. PIN loads a compiled program binary into
memory and runs the code with a JIT-recompilation. When the code is recompiled
it can insert new instructions that are described in a Pintool. Callback routines
can be specified in a Pintool, that will be called when certain events occur.

ROPDefender is a Pintool that will intercept call instructions and return in-
structions. The callback routines that are defined in ROPDefender are

65

66 Detailed Analysis of ROPDefender and Zero-sum Defender

push_ret_address(VOID *r_ip)

and

check_ret_address(VOID *r_ip)

The first one will be called when a call instruction is executed, and the second
when a return instruction is executed.

4.2.1 Registering callbacks

First the callback routines are registered in the Pintool.

VOID instrument_instruction(INS ins, VOID *v)
{

if (INS_IsCall(ins)) {
INS_InsertCall(ins, IPOINT_TAKEN_BRANCH, (AFUNPTR)
push_ret_address, IARG_RETURN_IP, IARG_END);

} else if (INS_IsRet(ins)) {
INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)
check_ret_address, IARG_BRANCH_TARGET_ADDR, IARG_END);

}
}

The PIN API offers functions to determine if an instruction is a call instruction
or a return instruction.

The callbacks are inserted with the function:

INS_InsertCall (INS ins, IPOINT action, AFUNPTR funptr,...)

The callback routine for the call instruction is inserted with the parameter:

IARG_RETURN_IP,

which means that the return address of the function call will be given as a pa-
rameter to the callback routine. The other callback routine is inserted with the
parameter:

IARG_BRANCH_TARGET_ADDR,

which will give the branch target address as parameter to the callback routine.

4.2.2 Callback routines

ROPDefender holds a global variable retstack which is an Standard Template
Library (C++) (STL)-stack that holds instruction addresses ADDRINT. In the first
callback routine the address of the call instruction will simply be pushed on the
top of the stack.

Detailed Analysis of ROPDefender and Zero-sum Defender 67

VOID push_ret_address(VOID *r_ip)
{

ADDRINT *address = (ADDRINT*)r_ip;
retstack.push(*address);

}

In the second callback routine the top address on the stack is compared to the
target address of the return instruction. If the addresses do not match, the next
will be popped until there is a match or until the stack is empty. If the stack gets
empty an ROP-attack is found.

VOID check_ret_address(VOID *r_ip)
{

ADDRINT *addrp = (ADDRINT*)r_ip;
BOOL equal;
do {

ADDRINT addr = retstack.top();
retstack.pop();
equal = *addrp == addr;

} while (!equal && !retstack.empty());
if (!equal){

ROPDetected = 1;
cout << "ROP DETECTED!!!" << endl;

}
}

The reason that the stack is popped until it is empty is because of potential
longjumps, which disobey the normal call-return pairs.

4.3 Implementing Zero Sum Defender

Zero Sum Defender is implemented as an LLVM transformation pass. LLVM
is a collection of compilers for different languages such as C and C++. LLVM
provides a framework for writing transformation passes for the intermediate code
used in the compiler. A transformation pass suits very well for the implementation
of this technique since the modifications done are not architecture specific. The
modifications can be done on the intermediate code, which in turn can be compiled
into assembly code for different architectures. The framework is written in C++.

4.3.1 LLVM Intermediate language

A program in the LLVM intermediate language is represented as a Module, which
consists of one or many Functions. A Function consists of one or many Basic Blocks,
which consists of one or many Instructions. There are many different kinds of
Instructions which represent assembly instructions, e.g branch instructions, bi-
nary instructions and call instructions. A Basic Block must end in a terminating
instruction, and may only contain one terminating instruction. A terminating
instruction is e.g. a return instruction.

68 Detailed Analysis of ROPDefender and Zero-sum Defender

There are several different types of transformation passes in LLVM, which
operate on different parts of the code. The different transformation passes operates
on different parts of the program. Zero Sum Defender is written as a FunctionPass
since it operates on functions. The FunctionPass offers the possibility to modify
every function in the program. Everything that is contained in the function can be
modified, but not anything around the function. At first, an initializing method
is run to set up the environment, with a reference to the program’s module. A
functionPass method is then run on every function in the program, with a reference
to that function.

4.3.2 Variables

Zero-sum Defender uses a global variable that is used as a counter. The global
variable is incremented at the start of each function and decremented before the
return instruction. After the decrementation the counter is compared with a con-
stant zero. If the counter is less than zero, an ROP-attack is detected and an
exit-function is called.

To initialize the global variable, the doInitialization method is implemented.

virtual bool doInitialization(Module &M)

The initialization method creates a random variable name, which is used to ref-
erence the global variable throughout the pass. It generates a new name for the
variable until a unique name is found. When the GlobalVariable is created it
will be inserted into the supplied Module, and will be referencable via the Module
later in the pass using the random string, counterRef, that was generated.

IntegerType *intType = IntegerType::get(M.getContext(), 32);
ConstantInt * zero = ConstantInt::get(intType, 0);
new GlobalVariable(M, intType, false, GlobalVariable::ExternalLinkage, zero,
counterRef, NULL, GlobalVariable::LocalExecTLSModel);

The variable is created with an integer type of 32 bits, and initialized with the
constant zero. The variable has LocalThreadMode, which means that the variable
will be unique for every thread in the program.

A global string variable will also be created in this function, that is initialized
as a message that will be displayed when an ROP-attack is detected. This global
string will be printed in the exit-block.

4.3.3 Putting it Together

The runOnFunction method will be implemented to do the modifications on every
function in the program.

virtual bool runOnFunction(Function &F)

The global counter is fetched from the Module that is referenced using the
getParent() method. In the intermediate language a load instruction is created
to load the global variable. An add instruction is then created, with the load

Detailed Analysis of ROPDefender and Zero-sum Defender 69

instruction as one parameter and a constant, one, as the other parameter. A store
instruction is then created to store the value at the global variable.

These three instructions are created after the first instruction in the function.
All instructions are created with the class IRBuilder that is initialized with a
pointer to the instruction the newly created instructions will supersede.

ConstantInt *one = builder.getInt32(1); // Create constant = 1
Value *load = builder.CreateLoad(counter); // Load counter
Value* add = builder.CreateAdd(load, one); // counter = counter + constant (1)
builder.CreateStore(add, counter); // Store counter

At the end of the function the same instruction sequence is created, but with a
subtracting instruction instead of an adding instruction. A compare instruction is
then created that compares the global counter with the constant zero.

load = builder2.CreateLoad(counter); // Load counter
Value* sub = builder2.CreateSub(load, one); // counter = counter - constant (1)
builder2.CreateStore(sub, counter); // Store counter
ConstantInt * zero = builder2.getInt32(0); // Create constant = 0
Value * cmp = builder2.CreateICmpSLT(sub, zero); // Signed Less Than Compare
// counter with constant (0)

A conditional branch is then created that will jump to either an exit-block or
a return-block. The branch will jump to the exit-block if the counter is less than
zero. The return-block will be jumped to otherwise.

Instruction *branch = builder2.CreateCondBr(cmp, exitBlock, returnBlock);
// Conditional branch. If true -> exitBlock else -> returnBlock

Both the exit-block and the return-block are newly created basic blocks, which
are inserted at the end of the function. The exit-block gets two instructions in-
serted; a call instruction that will call the system call exit, and an unreachable
instruction.

BasicBlock *exitBlock = BasicBlock::Create(context, "Exit-block");
ConstantInt* exitArg = exitBuilder.getInt32(1);
exitBuilder.CreateCall(printf, errorMsg);
exitBuilder.CreateCall(exitFunction, exitArg);
exitBuilder.CreateUnreachable();

The unreachable instruction is a terminating instruction that is known to never
be reached. Since every basic block needs to end with a terminating instruction,
this will be used. The return-block will only contain a copy of the function’s
original return instruction.

BasicBlock *returnBlock = BasicBlock::Create(context, "Ret-block");
Instruction * retInst = lastInstr->clone();
returnBlock->getInstList().push_back(retInst);

70 Detailed Analysis of ROPDefender and Zero-sum Defender

4.4 Experimental Results

4.4.1 Performance Results

The ROP protections implemented in this chapter were tested in the performance
benchmark suite UnixBench. The performance results of ROPdefender is presented
in table 4.1 and ZeroSum in table 4.2. The scores presented in the first and second
column represent how many iterations the test program ran in a given period
of time. The iterations are then weighted with an index, but are still directly
comparable for calculating the performance overhead. The performance overhead
is given in percentage.

4.4.2 Binary Results

For ROPdefender the binary overheads for the protected applications are zero,
since the binaries are not modified from the original. In order to run PIN, though,
248,760KB is needed.

For ZeroSum, the average binary overhead compared to the original gcc com-
piled binaries is negative, −1.44%. The binaries were also compiled with clang
without the ZeroSum transformation pass. The average binary overhead compared
to these binaries was also negative, −1.92%. The binary size results can be seen
in table 4.3.

4.4.3 Analysis

ROPdefender

For the ROPdefender analysis, the different test programs were run under the in-
strumentation of PIN, together with the implemented ROPdefender Pintool. The
results shows us that it is very slow to run an application under the instrumen-
tation of PIN. Compared to original execution, the applications take five times as
long to run in average. This is much larger than the performance overhead given
by the authors, Davi et.al., which was only up to two times in average. This shows
that the impact of PIN varies for different systems.

The performance overhead is ROPdefender’s biggest weakness, and is what
makes it impossible to use for most applications today.

ZeroSum

For the ZeroSum analysis, the different programs had to be compiled with clang,
using the implemented ZeroSum transformation pass. The tests used for the Ze-
roSum evaluation differ from the first, because of compability issues. Some tests
were not possible to transform in LLVM bitcode format, because of their incon-
sistent CFG. This shows a great weakness of ZeroSum, which has to rely on the
LLVM optimizer to be able to traverse the CFG of the protected program.

The binary overhead for the ZeroSum binaries is very interesting. According
to the authors, Jeehong et.al., the binary overhead should be around 4.5%. The

Detailed Analysis of ROPDefender and Zero-sum Defender 71

Test Original ROPdefender Performance overhead
Whetstone-double 4,627.9 405.468 1,041.37%

dhry2reg 435,253,593 82,042,026 430.52%
hanoi 36,370,733 6,967,711 421.99%
spawn 255,222 2,070 12,229.57% 1

pipe 20,754,844 1,383,758 14.00%
double 81,683,469 63,684,875 28.26%
int 116,194,150 107,515,273 8.07%
long 35,158,200 34,775,398 1.10%
short 110,993,421 108,165,493 2.61%

average 416.73%

Table 4.1: Performance evaluation of the protection ROPdefender.
The performance overhead is given in percentage.

negative overhead compared to the gcc-compiled binaries can be motivated by
that clang is a more efficient compiler than gcc.

The negative overhead compared to the clang-compiled binaries is harder to
explain. In order to run the ZeroSum transformation pass an LLVM application
opt is run. opt is an optimizer and analyzer, which can run different transforma-
tion and analysis passes depending on the input parameters. The invokation of
opt, together with the input parameters for running the ZeroSum transformation
pass, is the only difference between the two binary versions. This means that opt
performs optimizations that affect the binary sizes, even if it is not given as an
input parameter.

1The high output is due to extra calls to printf. This is not included in the average.

72 Detailed Analysis of ROPDefender and Zero-sum Defender

Test Original ZeroSum Performance overhead
Whetstone-double 4,627.9 4,449 4.02%

dhry2reg 435,253,593 393,011,264 10.75%
execl 2,804 2,844 -1.41%

copy1024/2000 1,182,547.5 1,101,264 7.38%
copy256/500 325,073.9 299,290 8.62%
copy4096/8000 2,690,116.6 2,601,921 3.39%
pipe throughput 2271896.3 2,202,871 3.13%

pipe contextswitch 128,077.9 136,941 -6.47%
process creation 8,393.4 9,040 -7.15%

average 2.47%

Table 4.2: Performance evaluation of the protection ZeroSum. The
performance overhead is given in percentage.

Binary gcc clang clang with ZeroSum
arithoh 8,882 8,792 8,315
context1 10,856 10,766 10,766
dhry2 11,552 11,536 11,536

dhry2reg 11,560 1,1536 11,536
double 9,010 8,888 8,474
execl 18,754 20,685 25,154
float 9,010 8,856 8,473
fstime 14,514 14,451 16,708
gfx-x11 26,411 26,411 26,411
int 8,946 8,792 8,311
long 8,946 8,792 8,312
looper 10,750 10,676 4,656
register 8,946 8,792 8,316
short 8,946 8,792 8,313
syscall 10,890 10,816 10,205

whetstone-double 15,153 16,085 20,966
average binary overhead -1.44% -1.92%

Table 4.3: Binary size evaluation of the protection ZeroSum. The
sizes are given in KB and the binary size overhead is given in
percentage.

Chapter5
ORPScan: Combining Techniques for

Improved Performance

5.1 Introduction

ROP almost always originate in vulnerabilities in the handling of input data of
a program. The payload of an ROP-attack is often inserted into a program’s
memory via different inputs such as network streams or file streams. The idea of
ORPscan is to detect ROP attacks before they enter the targeted program. To do
this, ORPScan scans input data and differentiates ROP payload data from normal
data, for the target application.

Since an application or library binary contains a large amount of gadgets,
ORPScan uses the ORP (section 3.10) technique in order to make it more memory
efficient. ORP is a technique that removes up to 80% of a binary’s gadgets, which
makes it good in combination with ORPScan.

In this chapter the ORPScan technique will be thoroughly described. The ROP
payload structure will be described, followed by a description of the techniques
ORPScan uses to first remove gadgets, and then detect them.

5.2 Background

There are many different data scanners present that detect code-injection attacks.
Code-injection can be done through many different data inputs, network traffic,
process buffers or memory dumps. Scanners can have a static or dynamic code
analyze method. Static code analyzing scanners are scanners that look for at-
tributes in remotely injected shellcode, e.g. [32] that looks for NOP-sleds or sledges
and [18,34] that looks for other attributes in the shellcode. Dynamic code analyz-
ing scanners, e.g. [24], uses emulation and is able to detect obfuscated shellcode
that is self-modifying or uses polymorphism.

ROPScan [25], described in section 3.7 on page 33, is a dynamic code analyzing
scanner which emulates possible addresses in order to find ROP-gadgets. ROPScan
which uses a CPU emulator to emulate possible shellcode attacks. It creates a copy
of the process’ memory space with registers and memory segments. Every memory
address found in the input data, that is within the process’ executable memory
space, is treated as if it was going to be executed as a potential ROP-gadget. If the

73

74 ORPScan: Combining Techniques for Improved Performance

execution ends in a return-instruction within a certain number of instructions, the
address is a potential gadget-address. ROPScan uses a sliding window technique to
read the input data. The window slides 8 bits over the input data, and interprets
the following 32 bits as an address.

ROPScan is a very effective technique of scanning input data, with speeds of
120Mbit/s in average. The part of ROPScan that is the most CPU-intensive, and
thus slows down the scanning process the most, is the emulated execution of the
code. This is the part that ORPScan tries to remove.

ORP is an In Place Randomization technique described in section 3.10 on
page 40. In Place Randomization refers to making changes in a binary which does
not remove the functionality of the program, but removes the functionality of the
ROP-gadgets. The changes can be done in many different ways, and are chosen
randomly, in order to create a unique copy of the original binary file.

ORP offers many different In Place Randomization techniques, such as atomic
instruction substitution, instruction reordering and register reassignment. Accord-
ing to [22], ORP is able to remove the functionality of up to 80% of the gadgets in
a binary. It has also very low performance overheads, since the changes made to
the binary are not causing any significant changes on the application’s execution.

ORP can be used as an ROP-protection by itself, either by randomizing bina-
ries before distribution, or before running.

5.3 Motivation

One of the goals of this thesis work is to design a new protection technique, e.g.
by combining parts of different techniques to create a better solution. ORPScan
has been designed by combining the technique In Place Randomization with an
Input Scanner. The In Place Randomization part has been used as it is, with some
modifications.

The Input Scanner is inspired by ROPScan, but with a more efficient gadget
lookup method. The idea is that by rewriting and removing gadgets from the
target program, the gadget lookup will be more efficient.

A more detailed description of the design and security is given in the end of
this chapter.

5.4 ORP

The source code of ORP has been used in the implementation of orpscan. In this
section ORP and the relevant parts of the source code that have been used will be
described.

ORP is an application that implements the ideas of In Place Randomization.
It is written in Python and depends on the Python libraries Pygraph, PEfile, the
external library Libdasm and the binary disassembler IDA Pro. ORP is written
for 32-bit Windows and requires the .NET Framework.
Here is a list of the different components of ORP.

Main file

ORPScan: Combining Techniques for Improved Performance 75

orp.py - Main executable which can be called to randomize a library and gen-
erate coverage and exploit evaluation.

Class files

insn.py - Contains the classes Operand and Instruction.

gadget.py - Contains the classes SimpleGadget and Gadget.

bbl.py - Contains the class BasicBlock.

func.py - Contains the class Function.

Algorithm files

equiv.py - Responsible for switching equivalent instructions with each other.

preserv.py - Responsible for reordering the pushing and popping of callee-saved
registers.

swap.py - Responsible for doing live analysis on registers and to swap registers.

reorder.py - Responsible for computing the dependency graph for the basic
blocks and to reorder instructions within them.

Test files

test.py - Contains tests for the different classes.

Other files

inp.py - Responsible for computing relocation information of the randomized
version and to write randomized changes to the copy of the binary.

inp_dump.py - Responsible for dumping debug information.

inp_ida.py - Interacts with IDAPro.

5.4.1 Main execution

orp.py can be run directly and takes different options for doing randomization,
coverage- and payload evaluations and dumping the CFG of the binary to a file.
Along with the option it takes a filename to the binary that is being randomized
or analyzed. orp.py in its turn invokes the appropriate method from the different
components depending on which option is passed.

5.4.2 Randomization

Orp gets all the functions in the binary from inp.py and classifies, analyzes and
iterates over them. The classification is done to resolve the call relationships and
will give every function a level value depending on what call-level it is on. The
function analysis does analysis that will be used in the randomizations. It analyzes
the function’s register-arguments, register return values, preserved registers and
the pairs of pops and pushes that preserves them.

The functions are then iterated to be randomized them one by one. The
different randomization algorithms in the files swap.py, preserv.py, equiv.py

76 ORPScan: Combining Techniques for Improved Performance

and reorder.py are called to analyze and create new variations of the functions
in the way described earlier. All variations are stored in a vector for each function,
from which one is randomly chosen to be used and put in a global diff-vector. To
patch the original binary, inp.py is called with the global diff-vector as parameter.
inp.py creates a new binary which is a copy of the original one being processed
and writes the random changes to it.

5.4.3 Coverage evaluation

The coverage evaluation does the same as randomization, but instead of creating
a new binary it gathers information about the possible gadgets in the binary and
which gadgets that have been eliminated or broken in any way. orp.py calls
the module eval.py to do the evaluation. eval.py gets, analyzes, classifies and
randomizes the functions as before. Every type of change is stored in a different
vector, and every change is saved for every function. It then calls gadget.py in
order to find all possible gadgets in the binary.

All gadgets are then iterated over to count which were possible to change.
The ratios of changed over total gadgets are printed to the screen. Note that these
statistics show every possible change that can be done to every function. When
the randomization is done, only one change is done per function.

5.4.4 ORP usage in ORPScan

Since ORP eliminates a large part of the gadgets of a binary with a very low
cost, it suits well to be used in combination with other methods that have a
complexity based on the number of gadgets. ORP is used in orpscan by using in-
place-randomization of a binary and then recording which gadgets are still left that
needs to be protected against. ORP has functionality to do in-place-randomization
and exact analysis of gadget elimination, which makes it easy to use for these
purposes.

Different solutions have to be considered depending on how ORP is used. ORP
can mainly be used in two ways. Either the copies of an application or library are
pre-randomized per distribution, or they are randomized at loading time. If they
are pre-randomized, a list of vulnerable gadgets could be distributed together with
the binary. The list will be a complete list of gadgets that the binary always is
vulnerable to.

If the binary is randomized at load time, to get an exact list of remaining
gadgets the list has to be generated at load time. A second alternative is to
distribute a list with gadgets that are guaranteed not to be randomized during
load time. This means that at different run times there will be different gadgets
that are still left to use, but not on the list. It should be impossible for an adversary
to know which these gadgets are. Entropy could also be taken into account by
recording gadgets under a certain entropy level.

ORPScan: Combining Techniques for Improved Performance 77

5.5 ROP payload

An ROP payload consists of a mixture of gadget addresses, data that is supposed
to be loaded in the attack and dummy data. Dummy data can have different
purposes, e.g. as data that is popped from the stack as a side effect of a gadget.

A ROP payload may also include shellcode that is supposed to be run in the
attack. Gadget addresses are addresses to ROP-gadgets that belongs to the target
application or a library that is loaded by it. The addresses must be present in the
running application’s address space.

In order to detect an ROP-payload among other data these three things can
be looked for; gadget addresses, attack data and dummy data. Attack data and
dummy data will continuously be called payload data. A gadget address will be
directly followed by another gadget address or payload data. It is hard to identify
payload data, since they can contain any value and be of different lengths. Most
often the length of the data is multiples of the length of a memory address. The
length of the data is most often also limited in size. By performing statistical
calculations on known ROP-payloads a limit can be determined for the size of the
payload data.

By combining what is known about gadget addresses and payload data, a
couple of rules can be defined for classifying ROP-payloads.

• The data must contain ming of gadget addresses.

• The gadget addresses must be separated by at most maxd bytes of data.

ming and maxd are integers which can be determined by doing statistical
analysis of existing ROP-attack payloads and comparing with non-payload data.
An example of this will be described later in this chapter, with results that show
that these values can be determined with high accuracy.

5.6 ORPScan Design

ORPScan is divided into two major phases; the randomization phase and the
scanning phase. The randomization phase is done offline, and can be done either
before distributing the application or before every run of the application.

The scanning phase takes place before every time data is being read by or
imported in the application. An application that opens files during startup will
use the scanner only at startup, while e.g. a web-server will use the scanner
frequently for every request that arrives.

5.6.1 Randomization phase

The randomization phase is built on top of ORP. Several different binary rewriting
techniques are used in order to shuffle the instructions and registers used, with-
out changing the result of the execution. The design of ORP and it’s rewriting
techniques are described in section 3.10 and in [22]. The randomization phase
creates a copy of the original binary file, which can directly replace the original.
The new binary file has up to 80% of the gadgets destroyed, which means that an

78 ORPScan: Combining Techniques for Improved Performance

ROP-attack with a payload written for the original binary will not work for the
rewritten binary.

The randomization phase starts by statically analyzing the binary to extract
its functions and CFG. This is done with the statically analyzing disassembler
IDA Pro. Using the disassembled information about the binary, the binary rewrit-
ing is performed. During the rewriting of the binary, the possible ROP-gadgets
of the binary are also determined. In particular, the ROP-gadgets that are not
affected by the rewriting are noted. The addresses of these gadgets are written to
a file, later to be used by the scanner.

5.6.2 Scanning phase

The design of ORPScan’s scanner originates in the design of ROPScan. ORPScan
uses the same scanning technique as ROPScan, i.e. a sliding window. Every 32
bits the window slides over is interpreted as an address.

When ORPScan is initialized it reads the gadget-file produced during the ran-
domization phase. The gadget-file contains all the addresses to the ROP-gadgets
that are still present in the binary. These gadgets-addresses are saved in a map
in memory. Each time the scanner slides over a 32-bit value in the input data,
it performs a lookup in the gadget map to check whether it is a gadget address
present in this binary.

While scanning, ORPScan keeps count of the number of gadgets found, with
the maximum distance maxd between them. If ORPScan finds ming gadgets with
this property, an ROP attack has been found, and the target application will be
notified.

5.7 Experimental Evaluation

In order to evaluate ORPScan the scanning has been tested on many different data.
ORPScan is used as an input scanner for different data inputs, such as .pdf-files
or network streams. ORPScan has been tested with arbitrary data of these kinds,
in order to evaluate ORPScans efficiency and ability to detect ROP-payloads.

Two different attributes have been measured during the evaluations; number
of gadget addresses found and the distance between the addresses in bytes. The
goal of the experiments are to determine the optimal values for those parameters
when tuning the scanner. The experiment results will show if it possible to choose
parameters that will distinguish ROP-payloads from arbitrary data, and if so, what
the parameters optimal values are. A description of the different binaries, with
their corresponding ROP-payload, used in the experiments is given in table 5.2.

The scanner was first evaluated for arbitrary data. This arbitrary data con-
sisted of .pdf-files and random generated data, as can be seen in the leftmost
column of table 5.3. The different data were evaluated on a few different libraries,
as can be seen in the top row of the same table. For the experiments with arbitrary
data, the total number of gadgets and the minimum and average distance between
the gadgets were recorded.

The scanner was then evaluated against real ROP-payloads. At first a payload
was created that used gadgets from all the possible gadgets in the binary. Most of

ORPScan: Combining Techniques for Improved Performance 79

File Description
MSRMFilter03.dll Is shipped with the application Mini-stream

RM-MP3 ConverterTM [1]. ROP-attack from
[14].

msvcr71.dll Is shipped with Java JRE 1.6 for Windows.
ROP-attacks from [33].

hxds.dll Is shipped with Microsoft Office 2010 Windows.
ROP-attack from [33].

Table 5.1: Description of the different binaries used in the experi-
mental evaluation of ORPScan

File Size
IntelManual.pdf 2,473KB
Geology.pdf 3,513KB
Bible.pdf 9,158KB
IKEA.pdf 19,044KB
rand100MB 100MB
rand1GB 1GB

Table 5.2: Sizes of the different input data used in the experiments.

these gadgets will be removed during the randomization phase of ORPScan, and
the payload will not work the same way. The payload was then translated into
using only the new, smaller gadget space. The payloads were only rewritten to use
the new gadget-addresses, but to keep the payload structure the same. This was
done to imitate a ROP-payload written to attack an already randomized binary.

The new payload was then evaluated against the different libraries. For these
evaluations the total number of gadgets found and the maximum and average
distance between them were recorded.

The performance experiments are done on a Windows 8.1 Pro with Intel Core
i5 3.40Ghz, with 8Gb RAM.

5.8 Security Evaluation

ORPScan is using a combined security of ORP during the randomization phase
and an input scanner during the scanning phase. The combination of the two
systems does not only create a more effective system, but a system with multiple
levels of security.

As mentioned before, the randomization phase can be performed at different
times in the lifetime of a binary file. The distributor may randomize the binary
before every distribution. The user of a binary may randomize the binary once,
when receiving the binary, or frequently, e.g. each time it is started or once a
week. Each time the binary is randomized, all earlier crafted ROP-payloads will

80 ORPScan: Combining Techniques for Improved Performance

File MSRMFilter03.dll msvcr71.dll hxds.dll
IntelManual.pdf 6 5 16
Geology.pdf 37 8 19
Bible.pdf 25 11 73
IKEA.pdf 44 17 110
rand100MB 275 175 850
rand1GB 1,792 1,536 5,120

Table 5.3: The number of gadgets from the binaries in the top,
found in the input files to the left.

File MSRMFilter03.dll msvcr71.dll hxds.dll
IntelManual.pdf 143,718 33,830 23,191
Geology.pdf 752 28,188 37,770
Bible.pdf 1,457 216,226 569
IKEA.pdf 3,409 7,415 38
rand100MB 29,172 73,325 4,224
rand1GB 157,555 174,985 9,344

Table 5.4: The minimum distance between the gadgets from the
binaries in the top, found in the input files to the left.

File MSRMFilter03.dll msvcr71.dll hxds.dll
IntelManual.pdf 290,898 300,029 120,744
Geology.pdf 91,159 237,985 162,901
Bible.pdf 338,247 718,643 117,291
IKEA.pdf 391,610 890,958 168,424
rand100MB 340,023 581,339 120,056
rand1GB 371,873 681,426 204,804

Table 5.5: The average distance between the gadgets from the bi-
naries in the top, found in the input files to the left.

Attack # of gadgets max. distance betw. Avg. distance betw.
MSRMFilter03.dll 22 28 3.8888
msvcr71.dll (1) 16 7 5.1875
msvcr71.dll (2) 13 8 5.1539

hxds.dll 18 8 4.3889

Table 5.6: The number of gadgets found and the maximum and
average distance between them, for the different ROP-payloads.

ORPScan: Combining Techniques for Improved Performance 81

be obsolete. It is often only necessary to break one gadget in a payload to remove
the functionality of the whole payload.

The next level of protection is the scanning phase. This phase will detect
every payload that is customly crafted for the running randomized instance of
the binary. Since the scanning phase only looks for payloads that are targeted
specifically against the randomized binary, the scanning will add an extra layer of
protection. This will protect against any attacks where the randomized version
has been compromised.

5.9 Results and Discussion

When the scanner was evaluated with arbitrary data, the total number of gadgets
found and the minimum and average distance between them were recorded. The
number of gadgets can be seen in table 5.3, the minimum distance can be seen in
table 5.4 and the average distance can be seen in table 5.5.

For the ROP-payload experiments the total number of gadgets found and the
maximum and average distance between them were recorded. The results from
these experiments can be seen in table 5.6.

5.9.1 Scanning Speed

During the scanning part, the scanning speed was measured. The result was in
average 80.1 Mbit/s.

The resulting scanning speed is close to the scanning speed of ROPScan, which
has a scanning speed of 120Mbit/s in average. This result is promising but not
satisfying, since the motivation of ORPScan was to find a scanner with a better
scanning speed. The difference is hard to explain, since ORPScan should be faster
in theory.

The scanning part can be divided into two parts, iteration and ROP-detection.
The iteration of the input data is done in the same way in both techniques. A

sliding window is used, which slides one byte at a time to find 4 byte addresses.
The iteration speed of ORPScan was also measured, in order to see how much
time was spent on actually iterating the input data.

The ROP-detection part is differing in the two techniques. In ROPScan every
address is compared to an interval. If the address is contained in the interval, it is
emulated in an emulation environment. The first part is constant, and the second
part is an extra constant overhead. In ORPScan every address is looked up in a
hash table, to find a match. This is always constant.

Based on this analysis, the iteration part should be the same speed for both
techniques. The ROP-detecton part should be equal or faster for ORPScan. The
iteration speed for ORPScan is 94.90Mbit/s in average, which is 25Mbit/s less than
the total scanning speed of ROPScan. This suggests that ROPScan is implemented
in a more efficient way and in a more efficient environment.

Hopefully ORPScan can be implemented in a more efficient manner in the
future.

82 ORPScan: Combining Techniques for Improved Performance

5.9.2 Number of Gadgets

The results from the experiments show that the number of gadgets in arbitrary
data varies by a large amount. A quick overview of the figures indicates that the
number of gadgets found in an input data is not enough to determine if it contains
an ROP-payload. For instance, the second ROP-attack on msvcr71.dll contains
only 13 gadgets, while the IKEA catalogue contains 3409 gadgets.

5.9.3 Distance between Gadgets

The distance between the gadgets gives a better indicator of a ROP payload. The
maximum distance between gadgets in the payloads can be compared with the
minimum distance between gadgets in the arbitrary data.

The largest distance among the payloads is 28 bytes (MSRMFilter03.dll) and
the smallest distance among the arbitrary data is 38 bytes (IKEA). This means
that a definite limit can be chosen, to separate all the payloads from the arbitrary
data.

E.g. if we had chosen a limit of 32 bytes, we could say that all data with max-
imum distance below 32 bytes are payloads, and all data with minimum distance
over 32 bytes are not payloads.

5.9.4 Average distance between Gadgets

The minimum distances between gadgets varies a great deal. For many input data
the minimum distance is from one KB, up to a hundred KB. This suggests that the
average distance between the gadgets may be an even better indication of a ROP
payload. For all the arbitrary input data, the average distance between gadgets is
between 100 KB and 1 MB.

When only relying on the average distance between gadgets there may be a
problem if a payload is hidden in data much larger than the payload. For a large
size arbitrary data there resides many gadgets, which means that average distance
for the surrounding data will not be affected much by the smaller payload. E.g.
if the hxds-attack is hidden inside the Geology.pdf, the total average distance
will be 83,654.00.

A different strategy can be used to find payloads hidden in arbitrary data.
Instead of calculating the total average distance between all gadgets in the input
data, the average distance between the n last encountered gadgets can be calcu-
lated. The ROP attacks tested in this analysis contains in average 17 gadgets. An
n smaller than that works well for the payload examples in this analysis.

Looking at the same example as before, the hxds-attack hidden inside the
Geology.pdf, with an n of 10. The average distance for the last ten gadgets
would be 162,901 in average before encountering the payload. When the payload
is encountered, and the first ten gadgets are scanned, the average distance would
drop to around 4.

ORPScan: Combining Techniques for Improved Performance 83

5.10 Future Implementations

There are a number of features that will need to be implemented in order to make
ORPScan efficient for use.

5.10.1 Multiple libraries

The prototype version of ORPScan works only on one library per application. In
real scenarios there are often many libraries in the application’s memory space
that are vulnerable to ROP-attacks. A future version of ORPScan could have the
possibility to find all non-ASLR libraries for an application and randomize them.
When all the libraries are randomized, all the gadgets can be combined into one
file. When scanning for ROP-payloads, all the gadgets in the file can be taken into
account.

5.10.2 ROP-NOP

A ROP-NOP is the ROP-version of a no-operation instruction. It is simply a
gadget consisting of only a return instruction. The only thing this gadget does is
to decrease the stack pointer, to point to the next gadget. A sequence of ROP-
NOP’s in a payload can be used as a landing pad, if it is hard to predict exactly
where execution will start in the beginning of the attack. The execution can start
anywhere on the landing pad, and it will always lead to the first gadget after the
pad. ROP-NOP’s can also be used as dummy data to be loaded as a side effect of
certain gadgets.

ROP-NOP’s can make it harder for the scanner to detect the payload. There
is a solution to this problem. During the randomization phase, the address of
every return instruction in the binary can be recorded and saved in the same list
as the regular ROP-gadgets.

This was tested on the payload for MSRMFilter03.dll in table 5.6. This attack
payload contained six ROP-NOP’s in the middle of the payload. After saving the
address of this return-instruction, the maximum distance between gadgets became
8 instead of 28, and the number of gadgets became 28 instead of 22. For a payload
with a large amount of ROP-NOP’s, this technique could be necessary in order to
be able to detect it.

5.10.3 Gadget detection

The gadget detection during the randomization phase needs to be fine-tuned. At
the moment the gadget detection has a hard limit on the number of instructions
that can be part of a gadget. The gadget detection also needs to be able to find
gadgets which are separated in parts by branches other than return.

There is much work done in this field, e.g. Q [27]. Q is a ROP-compiler which
can create payloads for given binaries. Q can produce working payloads for 80% of
Linux /usr/bin programs larger than 20KB. The advanced techniques of finding
ROP-gadgets used in Q could also be adopted in ORPScan, to be used in the
randomization phase.

84 ORPScan: Combining Techniques for Improved Performance

Chapter6
Conclusions

The goals of this thesis work were to study and analyze different known protections
against Return-Oriented Programming (ROP), to implement and test different
known protections, to explore the possibility of designing a new protection by
combining parts of different protections and finally to implement this new design.

In the first part the background of ROP was presented. The buffer overflow
exploit lead to code-injection attacks by injecting code on the stack. The execution
of the stack was prevented, which lead to code-reuse attacks. First they were in
the form of Return-into libc (RILC), and in 2007 ROP was introduced.

Seventeen different ROP protections are presented in the second part. A com-
parison of performance and binary overhead is given in the end of this part. It can
be concluded from this comparison that all the protections have different strengths
and weaknesses. Different protections have different application areas. If perfor-
mance is important, a faster but less covering protection such as ROPGuard can be
chosen. If performance is not an issue, and a robust and reliable security solution
is required a protection based on Control Flow Integrity (CFI) can be chosen.

In the third part, the implementations of ROPDefender and Zero-sum De-
fender were presented, together with experimental tests. This part has given more
insight in how the implementations are done, and have also given the opportunity
to examine the performance results, which were .

In the last part of this work the protection ORPScan was presented. ORPScan
is a result of combining parts of different techniques to create a more efficient
protection technique. Unfortunately the resulting speed was not satisfying, which
may have to do with implementation issues. The detection rate was very satisfying
with no false negatives and no false positives.

85

86 Conclusions

Acronyms

AIR Average Indirect target Recordeduction. 15
API Application Programming Interface. 28, 44–46
ASLR Address Space Layout Randomization. 14, 15, 17,

37, 51, 83

CFG Control Flow Graph. 19, 20, 30, 41, 53, 70, 75, 78
CFI Control Flow Integrity. 15–17, 19, 23, 30, 31, 51–

55, 65, 85
CISC Complex Instruction Set Computing. 6
COTS Commercial Off The Shelf. 35
CPU Central Processing Unit. 13, 33, 34, 44, 45

DEP Data Execution Prevention. 14, 15, 26

ELF Executable and Linkable Format (Linux). 31, 54,
56

GTT Global Translation Table. 55

IBT Indirect Branch Target. 38
ICF Indirect Control Flow. 16, 19, 53–55
IDT Interrupt Descriptor Table. 58
ILR Instruction Location Randomization. 39
IP Instruction Pointer. 38
IPR In Place Randomization. 41

JIT Just In Time. 28, 37, 65
JOP Jump-Oriented Programming. 3, 12, 13, 27, 37,

44, 45, 60

KLOC Kilo Lines of Code. 39

LBR Last Branch Record. 44–46, 57, 58
LOC Lines of Code. 28

87

88 Acronyms

MTT Module Translation Table. 54

NOP No Operation Instruction. 10, 23–25, 27, 36
NX Never eXecute. 58

PC Program Counter. 55
PE Portable Executable. 42
PIC Position Independent Code. 14, 36, 55
PVM Per Process Virtual Machine. 38, 39

RILC Return-into libc. vii, 3–6, 23, 27, 52, 85
ROP Return-Oriented Programming. vii, ix, 1–3, 5–13,

15–17, 19–23, 26–28, 33, 34, 37, 44, 45, 47, 52, 57,
58, 60–62, 65, 67, 68, 70, 73, 74, 77–83, 85

SP Stack Pointer. 36
STL Standard Template Library (C++). 66

TCB Trusted Computing Base. 28, 29
TIB Thread Information Block. 47

VM Virtual Machine. 16, 28

XD eXecute Disable. 14
XN eXecute Never. 14

Bibliography

[1] http://www.mini-stream.net/rm-to-mp3-converter.

[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrity
principles, implementations, and applications. ACM Trans. Inf. Syst. Secur.,
2009.

[3] D. Blazakis. Interpreter exploitation. In Proceedings of the 4th USENIX Con-
ference on Offensive Technologies, WOOT’10. USENIX Association, 2010.

[4] T. Bletsch, X. Jiang, and V. Freeh. Mitigating code-reuse attacks with
control-flow locking. In Proceedings of the 27th Annual Computer Security
Applications Conference, ACSAC ’11. ACM, 2011.

[5] Bulba and Kil3r. Bypassing stackguard and stackshield. PHRACK MAGA-
ZINE, Volume 0xa Issue 0x38, 2000.

[6] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie. Drop: Detecting
return-oriented programming malicious code. In Information Systems Se-
curity, volume 5905 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2009.

[7] Y. Cheng, Z. Zhou, Y. Miao, X. Ding, and H. R. DENG. Ropecker: A generic
and practical approach for defending against rop attack. Research Collection
School Of Information Systems, 2014.

[8] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang. Stackguard: Automatic adaptive detection
and prevention of buffer-overflow attacks. In Proceedings of the 7th Conference
on USENIX Security Symposium - Volume 7, SSYM’98. USENIX Association,
1998.

[9] L. Davi, A.-R. Sadeghi, and M. Winandy. Ropdefender: A detection tool to
defend against return-oriented programming attacks. In Proceedings of the 6th
ACM Symposium on Information, Computer and Communications Security,
ASIACCS ’11, 2011.

[10] T. Durden. Bypassing pax aslr protection. PHRACK MAGAZINE, Volume
0x0b, Issue 0x3b, 2002.

89

90 Bibliography

[11] H. Etoh and K. Yoda. Propolice: Improved stacksmashing attack detect on.
In IPSJ SIGNotes Computer SECurity 014, 2001.

[12] M. Frantzen and M. Shuey. Stackghost: Hardware facilitated stack protection.
In Proceedings of the 10th Conference on USENIX Security Symposium -
Volume 10, SSYM’01. USENIX Association, 2001.

[13] I. Fratric. Runtime prevention of return-oriented programming attacks, 2012.

[14] FuzzySecurity. Part 7: Return oriented programming.
http://www.fuzzysecurity.com/tutorials/expDev/7.html, may 2014.

[15] A. Gupta, S. Kerr, M. S. Kirkpatrick, and E. Bertino. Marlin: Making it
harder to fish for gadgets. In Proceedings of the 2012 ACM Conference on
Computer and Communications Security, CCS ’12. ACM, 2012.

[16] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. Davidson. Ilr: Where’d
my gadgets go? In Security and Privacy (SP), 2012 IEEE Symposium on,
2012.

[17] K. Jeehong, K. Inhyeok, M. Changwoo, and E. Young Ik. Zero-sum de-
fender: Fast and space-efficient defense against return-oriented programming
attacks. In IEICE TRANSACTIONS on Fundamentals of Electronics, Com-
munications and Computer Sciences, 2014.

[18] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Polymorphic
worm detection using structural information of executables. In Recent Ad-
vances in Intrusion Detection, volume 3858 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2006.

[19] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram. Defeating return-oriented
rootkits with "return-less" kernels. In Proceedings of the 5th European Con-
ference on Computer Systems, EuroSys ’10. ACM, 2010.

[20] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight dy-
namic binary instrumentation. In Proceedings of the 2007 ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’07,
New York, NY, USA, 2007. ACM.

[21] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda. G-free: Defeat-
ing return-oriented programming through gadget-less binaries. In Proceedings
of the 26th Annual Computer Security Applications Conference, ACSAC ’10.
ACM, 2010.

[22] V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing the gadgets:
Hindering return-oriented programming using in-place code randomization.
In IEEE Symposium on Security and Privacy. IEEE Computer Society, 2012.

[23] V. Pappas, M. Polychronakis, and A. D. Keromytis. Transparent rop exploit
mitigation using indirect branch tracing. In Presented as part of the 22nd
USENIX Security Symposium (USENIX Security 13). USENIX, 2013.

[24] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos. Comprehensive
shellcode detection using runtime heuristics. In Proceedings of the 26th Annual
Computer Security Applications Conference, ACSAC ’10. ACM, 2010.

Bibliography 91

[25] M. Polychronakis and A. D. Keromytis. Rop payload detection using specula-
tive code execution. In Proceedings of the 2011 6th International Conference
on Malicious and Unwanted Software, MALWARE ’11. IEEE Computer So-
ciety, 2011.

[26] R. Roemer, E. Buchanan, H. Shacham, and S. Savage. Return-oriented pro-
gramming: Systems, languages, and applications. ACM Trans. Inf. Syst.
Secur., 15(1), Mar. 2012.

[27] E. J. Schwartz, T. Avgerinos, and D. Brumley. Q: Exploit hardening made
easy. In Proceedings of the USENIX Security Symposium, 2011.

[28] H. Shacham. The geometry of innocent flesh on the bone: Return-into-libc
without function calls (on the x86). In Proceedings of the 14th ACM Confer-
ence on Computer and Communications Security, CCS ’07. ACM, 2007.

[29] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh.
On the effectiveness of address-space randomization. In Proceedings of the
11th ACM Conference on Computer and Communications Security, CCS ’04.
ACM, 2004.

[30] K. Snow, S. Krishnan, F. Monrose, and N. Provos. Shellos: Enabling fast
detection and forensic analysis of code injection attacks. In USENIX Security
Symposium, 2011.

[31] A. Srivastava, A. Edwards, and H. Vo. Vulcan: Binary transformation in a
distributed environment. Technical report, 2001.

[32] T. Toth and C. Kruegel. Accurate buffer overflow detection via abstract pay
load execution. In A. Wespi, G. Vigna, and L. Deri, editors, Recent Advances
in Intrusion Detection, Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2002.

[33] P. Van Eeckhoutte. Corelan ropdb. https://www.corelan.be/index.php/security/corelan-
ropdb/, may 2014.

[34] X. Wang, C.-C. Pan, P. Liu, and S. Zhu. Sigfree: A signature-free buffer over-
flow attack blocker. Dependable and Secure Computing, IEEE Transactions
on, 2010.

[35] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary stirring: Self-
randomizing instruction addresses of legacy x86 binary code. In Proceedings
of the 2012 ACM Conference on Computer and Communications Security,
CCS ’12, 2012.

[36] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song,
and W. Zou. Practical control flow integrity and randomization for binary
executables. In Proceedings of the 2013 IEEE Symposium on Security and
Privacy, SP ’13. IEEE Computer Society, 2013.

[37] M. Zhang and R. Sekar. Control flow integrity for cots binaries. In Proceedings
of the 22Nd USENIX Conference on Security, SEC’13. USENIX Association,
2013.

92 Bibliography

AppendixA
Appendix

93

94 Appendix

File Size Description
IntelManual.pdf 2,473KB Intel 64 and IA32 Archi-

tectures Software Developer’s
Manual Volume 1

Geology.pdf 3,513KB Geology of Umnak and Bo-
goslof Islands Aleutian Islands
Alaska, by F.M. Byers, JR.
Investigations of Alaskan Vol-
canos, 1959

Bible.pdf 9,158KB The Holy Bible, Kim James
Version, 1611, Containing the
Old and New Testaments

IKEA.pdf 19,044KB IKEA Catalogue, 2014, USA
rand100MB 100MB Random data.
rand1GB 1GB Random data.

Table A.1: Sizes and descriptions of the different input data used in
the experiments.

A
n

a
lysis o

f D
efe

n
se

s a
g

a
in

st R
e

tu
rn

 O
rie

n
te

d
 P

ro
g

ra
m

m
in

g

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, June 2014.

Analysis of Defenses against
Return Oriented Programming

Patrik Billgren

http://www.eit.lth.se

Pa
trik B

illg
re

n

Master’s Thesis

