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Abstract

To satisfy the needs of the highly competitive and customer oriented automotive
market most manufacturers target the specific needs of their prospective customers
by creating a highly flexible product line. Over the past two decades the complexity
of automotive vehicles has grown rapidly [1]. As vehicle functionality has increased,
so has the amount of possible configurations that a vehicle can have. This is
handled by introducing variation points in the embedded software in order to adapt
its use to the different configurations. However this introduction is often given
incidental treatment by developers which leads the system architecture becoming
increasingly inconsistent and highly complex over time. As a consequence of this
the impact of a vehicle configuration becomes extremely time-consuming and hard
to evaluate. To be able to meet the increasing demands on functional safety in the
automotive embedded systems the impact of this variability must be known and
evaluated.

This thesis aims to explore the possibility of recovering a model which de-
scribes the software variability within Scania’s embedded systems. The method
that is used involves the definition of a model through using the information and
data that is retrieved from the process of architecture recovery. This results in a
model that provides an architectural overview of where the vehicle configuration
choices affect the software of the embedded systems within Scania. The conclusion
is that although the recovered model provides information about the variability
there are large limitations when recovering variability from legacy systems through
architecture recovery.

Keywords: ISO26262, Variability, Architecture recovery, EAST-ADL, Embed-
ded systems.
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Chapter 1
Introduction

1.1 About Scania
Scania CV AB is situated in Södertälje, Sweden, and was founded in 1891 [2].
From the very beginning Scania have concentrated their development efforts in
the heavy transport segment. Today Scania is one of the worlds foremost manu-
facturers of bulk transport vehicles and has production units in multiple locations
across the globe.
Approximately 3 300 people, representing 9% of the total workforce of Scania,
work within research and development (R&D). Within Scania there is a holistic
approach to R&D where they focus more on methods rather than results. They
emphasize the importance of lessons learned within the organization. As is illus-
trated in 1.1, the R&D process follows four main branches; research and advanced
engineering, concept development, product development and product follow up.
The whole process of developing a new product starts in the research and ad-
vanced engineering branches where state of the art concepts are researched and
tried. If the results of the research are deemed to be promising the concepts are
developed as a part of the yellow arrow branch. This is effectively product pre-
development. If this stage shows results the product is moved to the green line of
development where it is subsequently released to customers.
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Figure 1.1: The development cycle within Scania

The research and development processes that exist within the yellow arrow
process are divided between three main departments, the N department which
focuses on power train development, the Y department which focuses on vehicle
definition, continuous improvement and product quality and the R department
which focuses on truck, bus and cab development [3]. This thesis was conducted
under the R department, in the REPA group which focuses on Advanced Driver
Assistance Systems and product pre-development.

Scania introduced the concept of modularity in their vehicles during the 1940s
to increase customer choice and satisfaction. The current modular system is di-
vided into four main parts; cabs, engines, transmissions and chassis [4]. Customers
are able to combine modules from the different parts in order to build a vehicle
that suites their needs.
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1.2 Motivation
Over the past two decades the complexity of automotive vehicles has grown rapidly
[1]. This is driven by the significant increase in the number of computer based
functions that are embedded in vehicles. These functions aim to improve passenger
comfort, safety and economy [5]. The introduction of more functionality has led to
an increase in the amount of possible configurations that a vehicle can have. When
ordering a vehicle from Scania the customer must make around 200 different choices
in order to fully define the desired functionality of the vehicle. These choices create
in excess of 10 000 different vehicle variants. Managing the resulting differences
between the vehicle variants, referred to as product variability, is a key success
factor of the modern automotive business [1].

As it is not feasible to create a completely new embedded system for each
possible vehicle variant there is a need for enabling the reuse and adaptation of
common system components. This is frequently done by creating software product
lines. The philosophy is to exploit the commonalities between software products
while at the same time preserving the ability to vary the functionality between
the products [6]. In other words software product lines are groups of applications
that come from the combination and configuration of generic system components.

One way of achieving the efficient derivation of system variants is by delay-
ing customization details to a late stage of the production process. This can be
achieved through the introduction of variability in the software of the embedded
systems. Variability describes the ability of an artifact or of a system to be used in
different contexts by changing or customizing some characteristic or aspect of it.
The changeable characteristics are located somewhere in the system artifacts and
are realized with what is commonly called variation points. Variation points iden-
tify all places where members of a product line may differ from each other. The
difference may be in the existence of a certain software module or the difference
in parameter values. Thus they are used to alter the systems behavior depending
on the desired configuration of functions later in the production process [7]. The
whole collection of variation points within a embedded system is typically referred
to as the embedded systems variability.

High variant complexity can often be found in the development of automotive
embedded systems. These systems often control safety critical functions with hard
runtime constraints. In parallel to the increasing system complexity the funcional
safety in vehicles is becoming more and more important. This is exemplified by the
introduction of stricter safety constraints by the ISO 26262 standard. The overall
aim of the standard is to address possible hazards caused by the malfunctioning
behavior of electronic embedded systems within automotive vehicles. The standard
requires that each configuration of a vehicle is to be verified in order to produce
convincing arguments of its functional safety [8]. In order to provide this the
impact of each different vehicle configuration on the embedded system needs to be
identified.

This is a problem at Scania as the introduction of variability in a system
is often given incidental treatment by its developers. This leads to a variation
point often being introduced based on heuristics or expert knowledge [5] where no
defined architectural model is followed. As a result of this the system architecture

3



becomes increasingly inconsistent and highly complex over time. As a consequence
the impact of a vehicle configuration is extremely time-consuming and hard to
evaluate. The evaluation requires the ability to reason about the software on an
architectural level, presently within Scania this is not possible. The ability to
do this is however widely recognized as having potential to further and improve
many aspects of the software development processes ranging from the detection
of errors and inconsistencies to the better evolution, reuse and understanding of a
system [9]. Due to these factors a representation of the system variability on the
architectural level is considered as a necessity by Scania.

An approach at creating this representation is to migrate to a top-down, model
based, development process. The product line variability is then explicitly defined
on multiple levels of abstraction. However this solution is currently unfeasible for
large legacy systems such as are found in Scania as it is both time consuming, costly
and can face objections within the organization. Another solution, that is not as
obvious, is to take a bottom up approach and recover information about variability
within Scania’s product line by using existing data sources. The aim of this is to
produce a well defined architectural model of the variability on different levels of
abstraction. This approach is commonly referred to as architecture recovery.

1.3 Goal and problem statement
The overall purpose of this thesis study is to analyze variability across the develop-
ment life-cycle of the automotive embedded systems within Scania. The analysis
should result in the recovery of a variability model that can be used to further
the knowledge of the embedded systems and their architecture. The model should
support important notions about variability that are to be identified by analyz-
ing common variability concepts and current architecture description languages.
The possibilities to automate the task of populating the recovered model shall be
demonstrated. The thesis documents a case study at Scania CV AB.

With this in mind the following questions will be addressed in this thesis:

• What is the possibility of recovering a model which describes the software
variability within Scania’s embedded systems?

– How to identify the variation points that are used to configure the
variability?

– How to represent the variation points in the model?
– What are the levels of abstraction needed?
– How can the concepts of a theoretical architecture description language

(ADL) be applied to the recovered model of variability within Scania?
– To what extent can the model assist developers in fulfilling aspects of

the ISO26262 standard?

• What is the possibility of populating the recovered model?

– How to determine and retrieve the data needed to populate the vari-
ability model?

4



– What is the possibility of automating the population of the model from
the existing data structure at Scania?

1.4 Delimitations
As the scope of this thesis is large certain constraints have been placed on the
present analysis.

• The case study within Scania will be carried out on only two embedded
systems, the coordinator and the engine management system. However as
these two embedded systems are developed within different departments
they are very different from each other and should provide a good general
picture of the viability of the solution.

• The variability within the order production system is assumed to be known.
Therefor the vehicle specification (V-spec) is used as a starting point of
abstraction. This is due to the limited access that is given to these preceding
systems within Scania.

• The study of architecture recovery is done on the application layer of Sca-
nia’s embedded systems. This is due to the vehicle features being imple-
mented in the software components in the AUTOSAR standard, which re-
side in the application layer.

• Only static analysis is done in order to extract information from the source
code.

• Given that the thesis was performed in Scania it is natural to perform the
variability study for this case only. As Scania is an established and promi-
nent company that uses proven standards and development methods it is
expected that the general concepts and results can be carried over to other
scenarios.
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Chapter 2
Background

The ability to reason about software on an architectural level is widely recognized
as having potential to further and improve many aspects of the software devel-
opment processes, from the detection of errors and inconsistencies to the better
evolution, reuse and system understanding [9]. Since the 1960s cost, quality and
time to market have been the main concerns in software engineering [6]. These con-
cerns are addressed by exploiting the similarities in a set of products and building
very flexible product lines. The flexibility creates a need to be able to easily tweak
a product and allow it to vary depending on the specific usage. This introduces
variability into the product and thus a need to represent this on an architectural
level arises. The main problem lies in the fact that this representation seldom ex-
ists or is up to date and has to be recovered directly from the systems implemented
artifacts - a demanding process commonly referred to as architecture recovery [10].
This case study aims to demonstrate an approach at retrieving information about
software product line variability from real life embedded systems in a way that
can provide the information needed to facilitate the high-level representation of
the systems and their related variability.

2.1 Related work
In [11] the challenges of ISO26262 are shown. The paper discusses on a very ab-
stract level what has to be done in order to bring product lines and functional
safety together. The conclusion that is drawn is: Tool support is essential and
the representation of features and where they impact artifacts within the system
is a powerful way to provide sophisticated guidance to safety engineers. Further
the concept of architecture recovery is widely researched and discussed in many
papers. In a paper by J.Garcia et.al. [12] a comparative analysis of software ar-
chitecture recovery techniques is made. It is disclosed that many of the techniques
use patterns as a common way of identifying and extracting the relevant informa-
tion. In a paper by A. Lozano [13] a comprehensive study is conducted in order to
provide an overview of techniques used for the detection of software variability in
source code. The paper concludes that although there exists literature describing
how to implement variability in source code very few approaches for the recovery
of variation points exist. The one that was identified involved analyzing applica-
tions that extend the same object oriented framework and using the results to find

7



possible variation points. This approach is however not applicable to Scania. Lit-
erature regarding mining for variants, which implies assigning a high-level concept
to the product variability, in order to trace the implemented variation points to
their configuring feature was not found at all. In an article by Mengi et.al. [14]
the concept of developing a variability model that represents the implementation
in source code is researched. The approach identifies the need of a connection
between the feature model and the implementation in source code, however they
only recognize preprocessor directives as a way of implementing variation points
in source code and rely on a top down approach at handling variability. The ex-
traction of preprocessor based variability is examined by Sincero et.al [15] where
they define a method of detecting inconsistencies in the usage of the preprocessor
directives. This approach does not use information from multiple levels of abstrac-
tion, however a conclusion is that the extraction of variability information can be
used in a variety of ways to improve software product line development.

2.2 ISO 26262
The ISO26262[8] standard is a recently introduced functional safety standard that
is aimed for use in the automotive industry. The standard is an adaptation of
the IEC 61508 standard to comply with the application domain requirements of
electronic/embedded (E/E) systems in road vehicles. The standard is aimed at
encompassing all aspects of development during the safety life cycle of systems
comprised of electrical, electronic and software components. The standard defines
functional safety as the absence of unreasonable risk due to hazards caused by
malfunctioning behavior of E/E systems [16]. The main goal of functional safety
is thus to make sure that installed electronics and software does not fail in a
dangerous way.

The challenges the standard attempts to address are comprised of the following
[17]:

• The safety of new E/E software functionality in vehicles.
• The trend of increasing complexity, software content, and mechatronics im-

plementation.
• The safety risk from both systematic failure and random hardware failure.
These challenges are handled in the ISO standard by providing appropriate

development and verification processes in order to achieve system safety. The in-
troduction of the standard suggests an increase in the regulation and control of
the safety requirements within the automotive industry as a whole. The main
consequence of the standard is that all individual components of each produced
vehicle variant shall be statically verified for their safety. The interaction and
dependencies between components shall also be verified in the same manner. The
safety activities in ISO start with a hazard analysis. This analysis is based on the
intended use of the system. At this point the use can already differ between differ-
ent system variants. The scope of the hazard analysis should cover all possible use
cases in all possible variants [8]. The standard recognizes two main ways of config-
uring the software of an E/E system to allow for variability within a vehicle. These
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are the use of C preprocessor directives such as #if, #ifdef to enable conditional
compilation of the ECU source code as well as the use of configuration/calibration
data to parameterize a system [18].

The specific relevant clauses regarding variability that were identified as be-
ing of importance for this thesis are 5.4.7, C.4.6 and C.4.7. Clause 5.4.7 in part
6 discusses the choice of implementation language and coding style. The Mirsa
C language standard [19], which Scania has as a policy to follow, is explicitly
mentioned as an example of a good coding standard. The main points of recom-
mendation that are to be followed in the software development are:

• Enforcement of low code and structural complexity

• The use of established design principles

• The use of an unambiguous graphical representation

In part 6 - product development at the software level clause 5.4.3 states that
”...if developing configurable software annex C should be applied”. This annex
encompasses system variability and the verification that is required [18]. Clause
C.4.6 discusses configuration data and its specification. It states that the config-
uration data associated with software components shall be specified to ensure the
correct operation and expected performance of the configured software. This shall
include:

• the valid values of the configuration data

• the intent and usage of the configuration data

• the range, scaling, units, if applicable with their dependence on the operat-
ing state

• the known interdependencies between different elements of the configuration
data

• the known interdependencies between configuration data and configuration
data

Clause C.4.7 states that verification should be performed in order to ensure
that:

• the use of configuration values within their specified range.

• the compatibility with other configuration data.

The standard further specified that the verification of configuration data can
be performed with application specific software verification. Verification of con-
figuration data can include checking the value ranges of the configuration data or
the interdependencies between configuration data.

As of today Scania is not affected by the standard as it does not apply to
vehicles in the weight class in which they manufacture (>3500 kg) [8]. Despite
this Scania believe that the standard will eventually be extended to encompass
vehicles which they produce. This assumption is supported in a research report
by VDC research where they indicate that adherence to ISO 26262 is expected to
increase significantly in the near future [20].
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2.3 Architecture recovery
The process of architecture recovery aims at reconstructing viable views of a soft-
ware’s architectural composition [21]. It is a technique that uses development
artifacts such as source-code and documentation to enable the reconstruction of
the software architecture. Architecture recovery can be used for many different
purposes, and its usage in order to understand architectural dependencies in em-
bedded software is also identified by the Software Engineering Institute of Carnegie
Mellon (SEI) [22]. In their technical report on architecture reconstruction guide-
lines they identify five phases of software reconstruction, in the present thesis the
guidelines for two of the phases are used.

• Information Extraction: This phase involves analyzing the different existing
development artifacts and constructing a model that captures the elements
of interest and the relations between them. In order to do fact extraction
from source code they identify the usage of parsers and abstract syntax tree
(AST) analyzers. The AST-analyzers can be used to parse the code and
build an explicit tree representation of the captured information. The tree
structure can then be traversed in order to identify and extract select pieces
of architecturally relevant information. When implementing the information
extraction phase they recommend using the ”least effort” extraction method.

• Database Construction: This phase is aimed at persistently storing the ex-
tracted architectural information in a way that reflects the actual architec-
ture of the system. The recommendations that are given are to consider the
database design carefully.

These two phases were identified due to the scope of this thesis being the mod-
elling and extraction of currently existing variability.
The other phases involved creating applications/views that use the populated
model, which is not encompassed in this scope.

2.4 Software product lines
To satisfy the needs of the highly competitive and customer oriented automotive
market most manufacturers target the specific needs of their prospective customers
by creating a highly flexible product line. This enables the mass production of vehi-
cles that are built in accordance to customer wishes. A product line is a collection
of closely related products that exhibit variations in their supported features [23].
In the automotive industry, where embedded systems are almost exclusively used
to enable these features this diversity in the products presents a serious problem.
The problem is related to the development of software to enable a flexible prod-
uct line. This type of development is a lot more complex and demanding then
the development of traditional single purpose systems. The complexity can be at-
tributed to multiple factors such as often occurring intertwined products, features
and production deadlines.

To solve this problem software product lines are used in companies as a way
to provide a set of reusable assets for the related groups of software assets in a
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product line [23]. The main difference between software product line engineering
and conventional software engineering is the presence of variation in the software
assets. The variation is introduced during the development stages of the software
product lines life-cycle by implementing variation points. These represent options
on how the software will behave during execution. The introduction of these
variation points thus provides mechanisms to provide delayed design decisions.
These decisions are then made at some later point during the production process
in order to define the desired behavior of the finished product. The behavior of
the software is thus altered through specifying the variation points behavior. The
time at which the configuration decision for a variation point is made is referred
to as the binding time, after this point in time the variation point is considered to
be bound.

2.4.1 Features
Features are used to describe the differences in products that are created from the
same product line. They give a highly abstract overview of the variability between
the products [23]. Each feature represents some functionality that is enabled
through software. The features of a product are normally visualized in a feature
diagram, as can be seen in fig. 2.1. The general principal is that a single feature
at a specific level of abstraction can be specialized through the decomposition
into groups of less abstract features at a lower level [24]. For example the engine
feature in fig. 2.1 can be decomposed into what type of engine it is. A distinction
is also made between features that are mandatory and optional [13]. Mandatory
features represent functionality that is always required to be present in some way
while optional features represent functionality that may or may not be present. In
figure 2.1 the mandatory features are the transmission and engine systems while
the extra functionality represent optional features.

2.4.2 Variants
Variants are the result of allowing for product flexibility through delayed design
decisions. The configuration of the variable features results in the derivation of a
product variant [24].

The mandatory features can be decomposed into alternative features. The
alternative features implement the mandatory feature in different ways depending
on the configuration of the system. In fig 2.1 the alternative features are the
features that are present at the abstraction level below the mandatory features.
The alternative features can in their turn have variability dependencies on other
features. These dependencies can be that they require or exclude other features.
In fig. 2.1 the selection of a automatic transmission excludes the selection of a
gas engine. The alternative features can also be mutually exclusive or inclusive,
in fig. 2.1 the automatic and manual decomposition of the Transmission feature
are mutually exclusive, thus only one of them can be included in a vehicle variant.
The features that are mutually inclusive can all be selected at once, and don’t
have dependencies on each other. For example the cruise control feature can have
both the predictive and adaptive features selected as extras in a vehicle.
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Figure 2.1: The features related to a vehicle.

2.4.3 Variation points
Variation points represent the mechanisms needed in order to realize the imple-
mentation of delayed design decisions in a product line. The optional and variable
features are thus explicitly represented in the software implementation through the
usage of variation points. To sum it up variation points describe where variations
occur between different variants of a product. They describe what the choices are
and how they are related to each other.

Techniques for realizing variation points in software product lines
There exists a multitude of ways for realizing the explicit representation of variabil-
ity in software product lines. The realization can be done during different stages
of the development process. An example of two different development stages and
a subset of the identified realization techniques as identified in [7], are presented
below :

• Compilation:

– Condition on Constant: The intent of this realization technique is
to support several ways to perform an operation, where only one of
these ways will be present in the bound software system. This is done
through the conditional statements that are a part of the C prepro-
cessor directives. The directives can be used to alter the architecture
of the system by opting to include one file over another or using an-
other class or component. The consequences of using the preprocessor
directives to realize variability can lead to an explosion of potential
execution paths making the software maintenance and bug fixing an
arduous task.

• Runtime:

12



– Condition on variable The intent of this realization technique is to
support several ways to perform an operation, where only one of these
ways will be present in the bound software system, however the condi-
tion can be re-bound post compilation. This is enabled by providing
the functionality to assign a value to a variable post compile time. This
technique uses pure programming constructs to change the behavior of
the system. The consequences with this technique is the possibility for
the programming constructs that are used to control a specific feature
to be spread over a large amount of source files. This leads to it being
hard to get an overview of the variability.

– Variant component implementations The intent of this realization tech-
nique is to support several coexisting component implementations of
the same architectural element where only one of the component im-
plementations will be present in the bound software system. This is
enabled by implementing several component implementations that ad-
here to the same component interface but provide different behavior.
The decision of what component implementation to use can be done at
startup, where the decision is made by specifying a startup parameter
to the system.

2.4.4 Variability
Variability is the ability to change the behavior of a system through customiza-
tion. The concept of variability can thus be thought of as defining the required
features/characteristics that the system is to support and in what variants these
can be configured [25]. The concept of improving variability within a system im-
plies making it easier to do certain kinds of changes to the vehicle configuration.
Early in development all possible systems can be built. Through each step of the
product life-cycle the variability within the system is constrained. This is done
through the binding of variation points until finally at runtime there is exactly
one system.

In an article by Bosch et.al [26] they highlight several problems with handling
the introduced variability within software product lines, these are:

• Knowledge gap: when large scale systems are to be designed and imple-
mented there is often a gap in the knowledge between the domain expert
and the engineers that implement the system. This gap between high level
design and low level implementation can result in an error prone and incon-
sistent implementation. The knowledge gap also makes the introduction of
new variation points an arduous task to perform.

• Traceability: The traceability, which is the ability to trace the artifacts
of the high level design down to the implementation level, is often lacking
within a system architecture. This in its turn leads to few people having a
full understanding of the system variability.

• Scattered variation points: A feature in the system at the requirements
level can often lead to multiple variation points that reside in different mod-
ules in the final implementation. There can also be modules that contain

13



variation points which are affected by multiple features. As a result the
identification of all code that is dependent on a feature, which is a necessity
for maintenance, is hard to realize.

2.5 Variability within Scania
At Scania the product line variability is handled with functional product charac-
teristic (FPC)-codes. These codes describe a products functional characteristics
and encompass all aspects of a vehicle on all granularity levels. An FPC code has
different executions that can be chosen. The whole collection of executions make
up the FPC:s variants. The concept of this can be seen in figure 2.2 where a FPC
code is decomposed in to its mutually exclusive variants. If a product specification
contains the FPC-1 in variant A we know that the product is a truck. This also
means that FPC1-B or FPC1-C cannot be present in the specification if it is to
be correct.

Figure 2.2: FPC decomposition into its variants

2.5.1 From order to vehicle specification
When a vehicle is ordered from Scania the customer has 200 different configuration
choices to make. These choices are necessary in order to fully configure the vehicle
and its features, adapting it to the customer needs. The configuration choices
that are made are used as a basic input for the generation of the corresponding
set of FPC-codes and their variants. The initial set of FPC codes describe what
features that were chosen by the customer. These are used as the input to an
application called SMOFS (Scania Manufacturing and Order Feature System).
The SMOFS application generates a larger set of FPC codes dependent on the
feature constraints, where an example can be seen in fig. 2.3. In the figure it can
be seen that the selection of FPC1-B also prescribes the selection of FPC4-B.
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Figure 2.3: Feature constraints between FPCs

The set of FPC codes are output from the SMOFS application specify the
vehicle and all of its features, taking into account the feature constraints that are
not configurable by the customer. These FPC codes make up what is known as
a chassi-specification (C-spec) [27]. The chassi-specification that is produced does
not consider the dependencies that exist between the selected features and their
required hardware. As the FPCs are used also for the specification of the vehicle
hardware, on a lower level of abstraction then the features, these need to be gen-
erated. For example a truck(FPC1-A) with a diesel engine (FPC2-B) also needs
a diesel particulate filter attached(FPC33-D). The dependencies between features
and hardware components are handled by the translation control register (TCR)
that generates all of the FPCs needed to build the vehicle. The output is then sent
to the variant control register (VCR) which validates the data. After this stage in
the production the result is a VCR-controlled specification, commonly known as
a vehicle-specification (V-spec).
As the V-spec only contains abstract descriptions of the hardware that is required
for a vehicle there is a need to convert these FPC descriptions into actual compo-
nent codes. The Mainframe application IBM-MONA is used in order to convert
the V-spec into a component specification. The V-spec is also run through the
construction structure (KS) part of Spectra in order to add information about the
necessary cable lists that are needed. These define how the components are to be
connected in a vehicle. The resultant vehicle definition contains all information
that is needed in order to build the specific vehicle. The whole process can be seen
in figure 2.4.
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Figure 2.4: FPC and component generation process within Scania

2.5.2 SOPS file
For each vehicle that is built within Scania a configuration file is generated, this
file is called the Scania Onboard Specification (SOPS) file [28]. It is used as a
specification for the vehicle variant and its features. It contains different blocks
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that are used to specify the necessary configuration items that are needed in order
to reproduce the vehicles E/E system configuration. The blocks that are contained
in the SOPS are:

• FPC block: This block contains a comprehensive list of FPC-codes and
their variants. Further it contains all of the FPC variants that are needed
to fully parameterize a vehicles electrical system.

• XPC block : This block contains converted numerical values of the FPC
codes. These values are to be used in e.g. vehicle parameter adjustment.

• Cablelist block : This block specifies the used cable harnesses in a vehicle,
their connection ends and attached hardware component-codes.

• ECU block : The ECU block contains information of the connected ECUS
in the vehicles electrical network.

2.5.3 Electrical system within Scania vehicles
The electrical systems within Scanias vehicles are mainly driven by Electronic
Control Units (ECUs). The ECUs are embedded systems that control one or
more of the electrical system or subsystems in the vehicle. They are responsible
for enabling the vehicle features that are to be supported as well as reading the
sensors and actuators that are connected to them.

More than 30 different ECU families exist within Scania, these ECUs are dis-
tributed over three controller area network buses (CAN-buses) of different criti-
cality. Each ECU in the system has different responsibilities and handles different
vehicle functionality, thus not all ECUs will be present in a vehicle. The main
ECU:s in a Scania vehicle that are always present are the Engine management
system (EMS), Gearbox management system (GMS) and the Coordinator system
(COO). The Coordinator system has the role of coordination of the different buses
of the vehicle CAN network and thus acts as a message gateway as seen in fig 2.5.
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Figure 2.5: The ECU network where the COO ECUs role can be
seen

Each ECU can be configured to support a various range of features. They are
built as monolithic systems. This means that all of the source code is present in all
variants of the configured ECU, independent of what features it is to support. In
order to configure the ECUs and enable their re-usability and adaptability they are
subject to parametrization during the vehicle construction phase. The parameters
that are set during this phase determine what features the specific ECU should
support. This determines the vehicle variant.
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2.5.4 Variability within Scania’s electrical systems
Within Scania an ECU can provide a large range of different features as can be
seen in fig. 2.6 [29].

Figure 2.6: Functionality provided by the COO7 (Not complete).

The features and their functionality are implemented in the software of the
ECU. When an ECU is used in a vehicle not all of the features that it supports
will necessarily be enabled. The features will not always behave in the same way
either. For example there can be a cruise control feature that an ECU is to enable.
This feature can be enabled/disabled depending on the customers decision when
ordering. The features behavior can also be configured by what market the vehicle
is sold to. In USA the feature may require the usage of a radar to determine its
speed while in the EU it may use the GPS. This variability in what features are
to be supported and in what way motivates the introduction of delayed design
decisions in Scania’s embedded software.

As Scania’s ECUs act like monolithic systems, the delayed design decisions are
introduced as variation points directly in the systems source code. What subset
of features a specific ECU supports is determined by the later parameterization of
the ECU software, this binds the variation points and creates exactly one system.
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Parameterization within Scanias ECU:s
The parameterization process is complex and the mapping between the features
that are to be supported and their corresponding effect on the variation points
within the architecture is not well documented within Scania. When analyzing the
parameterization process a distinction is made between off-board and on-board pa-
rameters, which can be seen from figure 2.7. The off board parameters can be seen
as configuration placeholders that are used to to configure the on board parame-
ters of a vehicle. The on board parameters in Scanias ECUs are bound during the
parameterization process that happens pre-runtime. The on-board parameters are
mapped to variables that reside in the sourcecode of the ECUs. In the parameter-
ization process the memory locations where the variables are stored are assigned
a value. This is done through the use of external tools to access the memory. As
far as the compiler is concerned the variables are in fact variable. However, as
the memory locations where they are stored can only be written externally they
are in fact constant after the parameterization process. The product line variabil-
ity is achieved through using the parameterized variables to alter the behavior of
the ECUs software components. This is done by controlling the programs execu-
tion flow through common programming constructs. An example of this could be
an if-statement where the outcome of evaluating the conditional expression has a
dependency on the parameterized variable [27].

Figure 2.7: On-board and Off-board parameters.

As can be seen from the figure the on-board parameters are referred to as
ECU-parameters within Scania [30]. The term ECU parameter is used as an
umbrella term to describe all parameters that are utilized within an ECU to effect
the software behaviour [31]. ECU parameters can be divided into two different
subcategories [31]: Exclusively FPC-regulated Parameters (EFP) and changeable
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parameters. EFP are parameters that obtain their associated value exclusively
through the specified FPC codes in a vehicles SOPS file. As they are bound
prior to runtime, through the parameterization process, they are what affect a
vehicles embedded systems feature-dependent behavior. As the EFP values are
bound through the specification of the vehicles FPCs they do not change during
the vehicle lifetime. An EFP value represents a vehicle feature in software. The
FPCs that specify the configuration of an EFP are of a more specified nature than
the feature that the EFPs describe, thus there is no top down process of specifying
and configuring variability within Scania.

The second category of ECU-parameters, the changeable parameters, all have
the property that they can be changed during runtime. This can be done for
example through the signals that a system recieves from sensors and actuators.
As they are not bound prior to runtime they do not have a direct affect on a
systems feature-dependent behavior.

The process of parameterizing an ECU to obtain different software variants
can be seen in fig. 2.8. One physical ECU can be associated with many different
variants of the software depending on what features that are selected. The pa-
rameters with parameter ids (PIDs) that are set by the specification of functions
through FPCs are the parameters which contribute to the software product line
variability within Scania products.
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Figure 2.8: Simple configuration model of the embedded software
within ECUs
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2.6 Theoretical variability modeling approaches
Within theory there are many approaches at modeling variability in software prod-
uct lines. The approaches are part of what is commonly referred to as Architec-
ture Description Languages (ADLs). After analyzing the ADLs evaluated by Sin-
nema and Deelstra [6] along with the Electronics Architecture Software Technology
(EAST) -ADL [32] and Architecture Analysis and Design Language (AADL) [33]
models a decision was made to investigate the EAST-ADL variability model and
its application to the domain of Scanias software product line variability. The
decision was motivated by the fact that the EAST-ADL model is both developed
for application within the automotive industry and is backed by many of the large
companies within this domain such as Volvo, AUDI, BMW etc. As the model is
developed through case studies within the domain of automotive engineering it
was deemed more interesting to Scania than other languages. The later versions
of the model are also aligned with the ISO26262 standard [32].

2.6.1 EAST-ADL
The East-ADL language is aimed at describing automotive electrical and systems
in a comprehensive way and with sufficient detail to allow modeling for analysis,
documentation, synthesis and design of complex embedded systems [32]. This aim
is realized through the utilization of an information model that captures engineer-
ing information in a form that contains all aspects of a vehicle represented in a
standardized way. The different components of the language are shown in fig. 2.9
[34].

Figure 2.9: The different elements of the EAST-ADL model

The language introduces abstraction levels to allow for the reasoning about
product line features on each level. The abstraction levels are however only concep-
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tual; the modeling elements used are organized according to the system artifacts,
which may span one or more layers [32]. A feature is a concept that is highly
abstract. To see how the feature effects a system it needs to be decomposed into
the artifacts that it has an effect on. In figure 2.10 one can see the concept of
abstraction where the complexity increases when the abstraction decreases.

Figure 2.10: Abstraction levels and their decomposition.
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The four abstraction levels covered by EAST-ADL are the vehicle, analysis,
design and implementation levels. The abstraction layers that are present on a
lower level than the vehicle level are commonly grouped into the artifact-level.

• Vehicle level - This layer represents the characterization of a vehicle by a
means of its features. It contains feature models which describe the decom-
position of system characteristics [32], in these models each vehicle feature
denotes a functional characteristic of the vehicle. This level of abstraction
thus states what features the vehicle consists of, however it does not repre-
sent how these features are realized and what effect they have on the lower
levels of abstraction.

• Arifact layer - This layer is decomposed in many sub-layers describing the
different artifacts of the system.

– The analysis level gives an abstract functional description of the E/E
system. This level realizes the vehicle functionality based on the vehi-
cle features and requirements, independent of implementation details,
thus this layer defines the embedded system from a functional point
of view [35]

– The design level describes the concrete functional definition of the
vehicle. This encompasses the functional definition of the application
software and their behavioral description however it excludes software
implementation constraints [32].

– The implementation level contains the software based implementation
of the system where the system elements defined by the AUTOSAR
standard are used used for the representation of the low-level software
architecture. Traceability is supported from the implementation level
artifacts to the vehicle level elements of the model.

Variability model
The EAST-ADL model has an extension to manage variability. This model origi-
nates at the vehicle level where the vehicle features and their variability are rep-
resented. A variability in this sense is a part of the complete vehicle system that
changes in the different variants of the complete system. The vehicle level of the
model is aimed at providing a highly abstract overview of the variability in the
defined system together with the dependencies between these variabilities [35].

An example of this is: The speed may or may not be controlled by the use
of the cruise-control feature. At this level the impact that this variability has on
the system is not defined, however the fact that this variability exists within the
system is defined through the introduction of an optional feature called e.g.C̈ruise
Control.̈ From this the following definitions are made [32]: Variability - an aspect
of the system which changes between variants. Abstract Feature - show that the
system has such a variability but not how/where the variability affects the system.

Feature models in EAST-ADL are used in order to define the systems com-
monalities and/or variabilities. On the vehicle level the Core Technical Feature
Model (CTFM) is used to define the complete systems global variability from a
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technical perspective. In addition to this there can be multiple Product Feature
Models (PFM) that are used to define subsets of the CTFM. These are used to
create a particular viewpoint of the system. This can be seen in fig. 2.11 where
the CTFM is present along with a PFM that contains the features that are to be
configured by the customers.

Figure 2.11: The CTFM and the Customer feature model

Feature models within the EAST-ADL language are also used on the artifact
layers of the model, where they obtain a much more concrete meaning [35].

The details of how a variability affects and is realized in a system is of more
focus when managing variability in other areas of the system development process.
It is important to know how and where a vehicle feature affects the other system
development artifacts. It is thus not sufficient to only describe that a variability
exists within the feature model of a vehicle, it is also important to describe in
what way a variation in the feature model affects and modifies the corresponding
lower-level artifacts. An important aspect of the EAST-ADL language is that
it promotes vehicle safety in general through enabling traceability between the
different abstraction layers of a system. This is realized through the usage of
”realizes” relationships in the model [32].

The main components of the variability model are thus the feature models, the
low-level artifact variation points and the corresponding realizes relations between
these levels.

Configuration decision modeling
Within the variability model of the EAST-ADL language the concept of con-
figuration decision modeling is introduced. In this modeling the configuration
(selection/de-selection) of features that are contained in a feature model F1 is
defined as the result from the configuration of another feature model F2. The con-
figuration decision model is the link from F2 to F1 which enables the derivation
of the model F1s configuration from the specified configuration of model F2 [35].
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The concept of configuration decision models can be seen in figure 2.12. Here we
can see that the configuration of the CTFM is derived from the user configuration
of the User Feature Model. The configuration decisions are made by the configu-
ration decision model that is related to the two models. The configuration models
can also be used to drive the configuration of a feature model on a lower level of
abstraction, as is also seen in fig 2.12.
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Figure 2.12: The usage of Configuration Decision Models

Configuration decision models are thus used to define how a high level feature
configuration affects the binding of the variability in the lower-level components
that implement the feature. This means that the variability management on the
implementation/artifact level, which is done by the definition of variability points,
is driven by the variability that is defined on a higher level of abstraction. The main
driver for the binding of the implementation level variability is the configuration
that is captured on the highest level of abstraction, namely the vehicle-level.

2.7 AUTOSAR
The Automotive Open System Architecture (AUTOSAR) is a defacto standard
within automotive software system development. The standard is the result from
the cooperation between the major entities within vehicle manufacturing [36].

The principal aim of the standard is to master the growing complexity of au-
tomotive electronic architectures [37]. The need to build a common architecture
became compelling for a number of reasons such as defining a common under-
standing of how ECUs co-operate on same functions. The common architecture is
aimed at separating the software from the underlying hardware in order to allow
an increase software reuse between vendors and within systems.

The idea is to make Software Components (SW-C) re-usable and to standardize
their interfaces so that they are independent of the external usage context such
as what the underlying hardware is. This idea should result in a system that is
flexible and easily scalable since the addition, removal and relocation of software
components does not require any modification to the underlying HW system [38].
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With this being the case it will be possible to reuse stable and well-tested SW-
Cs. This will further a systems safety and result in more reliable vehicle systems.
Another goal is to reach the point where enough software and hardware suppliers
abide to the standard so that it becomes possible to mix software and hardware
solutions from these suppliers seamlessly. The resulting infrastructure should be
aimed mainly at facilitating the SW-C allocation and not their optimization.

Within the autosar standard their are three layers defined:

• Basic software layer

• Real time environment

• Application layer: The application layer consists of software components
that realize vehicle functionality. All of the component re-usability that the
AUTOSAR standard aims for is found in this layer.

Software components according to the autosar standard are comprised of:

• Application - is an atomic SW-C which realizes part of or all of a vehicle
function.

• Composed

• Sensor-actuator

• Calibration - provides other SW-Cs with calibration data to configure them.
Within this SW-C the parameter interface is found and is used by one or
multiple SW-Cs to calibrate their internal logic.

• Service component

• ECU abstraction component

• Complex device driver component

2.8 Software control flow
The control flow of a program generally refers to the order in which the statements
of a program are executed or evaluated. A control flow statement is a programming
construct that results in a choice being made as to which of two or more paths
should be followed in the program execution [39]. The choice of path results in
the behavior of the system being altered.

The statements that depend on the evaluation outcome of a control flow state-
ment are said to have a control dependence to the control flow statement. As an
example the statements that are executed inside the block scope of an if statement
are dependent on the conditional statement of the if statement. In the same way
the statements inside the block scope of a switch statement are dependent on the
evaluation of the case within the switch statement.
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2.9 Graph databases
Graph databases2.13 are unlike relational databases as they are based on the
concept of graph-theory. In this context a graph is a collection of vertices’s and
edges, which may more simply be referred to as nodes and relationships. The
graph structures that are represented use nodes to represent the objects that one
wants to keep track of. The relationships are what connect nodes to each other.
By building graphs from these two components meaningful data structures may
be represented in a natural way which allow for easy traversal. The properties
linked with the property graph model are:

• Nodes contain properties (key-value pairs)

• Relationships are named and directed, and always have a start and end node

• Relationships can also contain properties

The figure 2.13 shows a representation of the components in the graph model
and how they transform to real life data structures.

Figure 2.13: The concept of nodes and edges building a graph

As can be seen from figure 2.13 graph databases are a powerful tool to model
data structures in a natural way. The graph structure also enables graph-like
queries, for example computing paths between nodes and evaluating relationships
between nodes. Through the assembling of nodes and relationships into connected
structures, graph databases enable the construction of models which map closely
to the problem domain. These resulting models are both simpler and and more
expressive than the models produced when using traditional relational databases
[40].
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Chapter 3
Method

The method that is used investigates the possibility of recovering a model which
describes the software variability within Scania’s embedded systems through the
use of architecture recovery. In order to derive an accurate model which can also
be automatically populated an iterative approach at building the model is taken.
This approach involves defining the model based on the information extracted
during the architecture recovery process. As the theoretical models that were
investigated all demand a top down development process, where the variability
information is modeled before implementation, only the general concepts that are
identified will be incorporated in Scania’s model.

3.1 Variability model goals
3.1.1 EAST-ADL - defining concepts for modeling
As a means of constructing a variability model at Scania EAST-ADL and its
variability model was used as a reference for gathering modeling concepts [32].
As the EAST-ADL model has been developed through case-studies at multiple
large automotive companies the concepts are identified to be of importance also
for Scania.

It was identified that the goal of the EAST-ADL model is to create an overview
of feature-level variability in a production line and how/where it affects develop-
ment artifacts within the software product line. From the analysis of the EAST-
ADL model that was done as a part of the background study three concepts were
identified as being important to model in order to fulfill this goal.

• Abstraction levels: As the vehicle configuration is done on a different ab-
straction level than the software configuration it is important to represent
both of these levels. This representation will give an architectural overview
of the variability in the implementation and also its relation to the variability
in product configuration.

• Traceability: This is what enables a system to be represented in a coherent
way on different levels of architectural abstraction. Traceability is thus
important to have in a variability model that is to represent different levels
of abstraction and their dependencies.
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• Configuration decision modeling: When a vehicle configuration is made on
an abstract feature level the configuration decisions are affected by con-
straints between features. These constraints are important to include in a
variability model as they convey information about the resulting constraints
in the software configuration. The concept can be seen in fig. 3.1 [41].

Figure 3.1: EAST-ADL variability

The evaluation of the EAST-ADL modeling framework resulted in two goals
being defined for the variability model at Scania: The first goal is that the model
should represent the configuration decision model that is used on the FPC level
and in what way it impacts the implemented variation points. The second goal is
that the implementation level variation points are to be modeled. The modeling
of dependency between FPC level elements and the effect on the implementation
level variation points is to be realized as fig 3.2 [42] shows.

Figure 3.2: The model shall represent both artifacts from feature
modeling and their connection to implementation level variation
points
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3.1.2 ISO26262
From the ISO26262 standard [18] it was identified that to enable the hazard anal-
ysis the possible effect of different configurations on a system must be represented.
Thus an exact representation of the influence of different variants needs to be de-
termined. In order to do this the model must help in the determination of where
the configuration choices affect the system variation points. This means that the
configuration on the FPC level of abstraction must be traceable down to the vari-
ation point which they affect. The model should also help in the verification of
the correct usage of the configuration data, thus the model should represent how
the configuration data is used in the variation points.

3.2 General tool chain for architecture recovery of vari-
ability

Figure 3.3: The tool chain that is used in the solution concept

The approach for extracting information regarding variability that was developed
is shown in fig. 3.3. The approach is aimed at enabling architecture reconstruction
of information regarding the variability within parameterized embedded systems
at Scania. The means of the proposed approach is to make it possible to describe
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at what locations in the implementation configuration dependent variability exists
and under what configurations the variations can be applied.

The steps of the tool chain were developed using the information and rec-
ommendations in the technical report on architecture recovery by SEI [22]. The
information is extracted from both source code and external data sources. This
is done in order to create traceability between the different levels of variability
abstractions that are present within Scania’s software product line. To enable
the extraction of information about the variability on the implementation level
certain extraction patterns must be defined by the user. Extraction patterns are
commonly used in architecture recovery approaches [12] as they can convey infor-
mation about the system that cannot be captured in fully automated approaches.
By using these patterns the tool will extract information regarding the variability
within the source code. The information is then combined with the externally
retrieved information in order to populate the variability model of the software
product line. The populated model is to be used as a means of providing an
architectural overview of the variability within Scanias software product line.

3.2.1 Inputs
• The inputs into the extractor are user-defined extraction patterns for iden-

tifying how the system handles the retrieval of the parameterized variables
within the ECUs.

3.2.2 Tool chain components
Software extraction tool
The information that is extracted from the implemented software is to give an
architectural overview of the FPC dependent variability of the source code. This is
where the configuration of an FPC affects the software implementation. Following
this a definition of exactly what needs to be extracted is made.

During the process of identifying the information to extract interviews were
held with developers from Scania. These interviews as well as the analysis of the
ECU source code resulted in identification of the realization technique that is used
to enable software variability in Scania’s parameterized E/E systems. This is done
by implementing explicit variation points in the source code of the ECUs. The
variation points alter the runtime execution flow of the system. The behavior
of the variation points that realize the ECU systems variability is determined by
variables that are bound to a value during the parameterization process. We call
these parameterized variables. A parameterized variable is defined as a variable
that is associated with a constant value pre-runtime through the parameterization
process of the ECU. This means that these variables receive a constant value post
compile-time but pre-runtime. The parameterized variables have a 1-1 mapping
with the exclusively FPC regulated parameters that are used in the parameteri-
zation process. The EFP parameters, which are external parameters, can thus be
coupled to the concept of a feature as they configure and describe a functionality
that is implemented in software.
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The variation points that are related to the ECU systems variability within
Scania are also defined. As the variation points in parameterized systems are to
affect the behavior of the system, the concept of control flow within a program was
first analyzed. Within the C programming language the control flow statements
were categorized by the effect that they have on the execution of the program [43]:

• unconditional branch or jump - Continuation of execution at a different
statement within the program.

• conditional branch - The execution of a set of statements only if some con-
dition is fulfilled.

• loop - The execution of a set of statements zero or more times, until some
condition is fulfilled.

• subroutines, coroutines and continuations - The execution of a set of distant
statements, after which the flow of control usually returns.

• unconditional halt - The termination of the program execution.

From the said interviews with developers as well as information obtained through
internal documents, source code and external information [7] the conditional branch
statements of the C programming language were identified as the implemented
variation points that are used to change the systems control flow. The use of these
was attributed largely to these types of control-flow statements being explicit in
their representation of an alternative path of execution.

Conditional dependency for the conditional branch control flow statements is
defined in the following way:

• If a variable is used in a conditional expression, the consequent blocks that
are dependent on this conditional expression have a conditional dependency
on this variable. The conditional branch statement itself is also dependent
on this variable.

In the C programming language the conditional branch statements are made up
of the if and switch programming statements [43]. For these statements conditional
dependency is defined as follows, this is depicted in fig. 3.4:
if statements:

• the if block depends on the condition in the if statement.

• the else if block depends on the if condition, any preceding else if conditions
and the current else if condition.

• the else block statements depend on all preceding if/else conditions.
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Figure 3.4: The decomposition of if-cases

switch statements:
Can be modeled as multiple if statements where the default expression is the else
for all of the resulting if statements. Switch statements without breaks after a case
are banned by multiple coding standards such as MISRA(15.2), thus this case is
not considered.

With this in mind the following definition is made: The conditional branch
statements of interest to extract are those that are conditionally dependent on a
parameterized variable. The control flow of these statements will be configured
during the parameterization process. The conditional branch statements are split
into two categories:

• Fully bound: If the evaluation outcome of the conditional branch statement
only has dependencies on parameterized variables or constants the statement
is considered to be bound during the parameterization process. In this case
the control flow of the program at this point can be fully derived. We call
this type of variation point a fully bound variation point. Further all of the
control flow statements that are bound prior to runtime define a vehicles
static variant.

• Partially bound: If the conditional branch statement depends on the com-
parison of a parameterized variable with some variable that is not a pa-
rameterized variable or a constant the variation point is only deemed to be
partially bound. The information gathered from this type of variation point
is that the control flow of the execution has a dependence on the param-
eterized variable. We call this type of variability point a partially bound
variation point. As this type of control flow statement is not bound prior
to runtime it does not contribute to a vehicles static variant.
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From the previous definition of variation points a categorization of the ex-
tracted information about the variation points was made:

• Binds - The variation point is fully bound. This type of variation point
is used to create the vehicles static variant. The variation point can be
fully modeled and the usage of the configuration data can be extracted for
evaluation.

• Affects - The variation point is partially bound, thus the evaluation of the
variation point can only deduce that the the parameterized variable has an
affect on the program behavior. The usage of the configuration data can
not be evaluated through static means of extraction.

From this evaluation it was defined that the software extraction tool is to
extract the conditional branch statements that have a conditional dependency on
a parameterized variable. These variation points are defined to be parameterized
variation points.

As the parameterized variation points may not have a direct dependence on
a parameterized variable the concept of data dependence between variables must
also be considered. This is as the value contained in the parameterized variable
can be assigned to a different variable before being used in a conditional branch
statement. When this is the case the variation point has a data dependence to the
parameterized variable, thus it is a parameterized variation point.

The following concepts about data dependence between variables within a pro-
gram were used in this thesis [43]: In the case that a variable is defined all variables
that read from that variable, through assignment, have a data dependence to that
variable. As the C language execution is linear one can follow the data flow in
a top down manner, this assumption is based on the goto statements that exist
within C not being used. This assumption is made after considering the rules
defined in the MIRSA-C (Point 14.4) programming standard [19].

Variables to the left of an assignment operator have a data-flow to them from
every variable on the right hand side. In the context of C, this could be phrased
like: The lvalue of an assignment expression is dependent on the rvalues of that
expression.

As C allows pointer arithmetic this was also considered and evaluated. Pointer
arithmetic within C-programs is difficult to analyze by static means. This is due
to their global nature. This allows them to operate outside of language construct
boundaries such as scope1 [43].

This is handled by the extractor by the definition of the following rules: When
a pointer is defined in a local function scope and is initialized through a call to one
of the extraction patterns that are recognized by the extractor the data-flow can be
handled in an analogous way to when the value is assigned to a local variable. This
assumption is made because the parameterized variable that is pointed to retains
its constant value throughout the systems operational lifetime. When the pointer
in used in a local function scope the extractor can detect if it is re-assigned. If
the reassignment is not to another parameterized variable it looses its association

1Scope is a region of the program where a defined variable can have its existence and
beyond that the variable can not be accessed.
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with a parameterized variable and is no longer of interest to the extractor. The
pointer is only considered to be a data-bearer for the value of which it points to,
therefore it only realizes this value when dereferenced.

If we follow this flow of data within a certain function scope we can trace the
variables used in a conditional branch statement to their initial value assignment.
If this initial assignment is to the value of a parameterized variable, the variable
has a data-dependence on the parameterized variable. The conditional branch
statement is then recognized as a parameterized variation point. With these def-
initions one can determine where the parameterized variation points within the
implemented source code are. These can then be extracted.

External extraction tool
The external extraction tool shall use the development data sources that are con-
sidered to hold relevant information for the variability model. The sources that are
used will thus be sources that hold information about the variability on the FPC
level. The sources that are used should enable a FPC level configuration decision
model to be constructed. The resulting model should enable the evaluation of how
different FPC configurations impact the system.

Evaluating relevant data sources within Scania
The data sources that are identified in this step are to be used in order to derive
information about the variability in the software product line.
The technical regulation for product data management within Scania [44] states ”
...to fully parameterize a vehicle’s ECUs, only the FPC codes which are present in
the vehicle SOPS file are needed”. The data sources that are used must therefore
contain information about these FPC codes and their mapping to the external
parameters. These parameters are mapped to the parameterized variables within
an ECU.

Through interviews that were conducted with developers from different de-
partments within Scania as well as the extraction of data from multiple sources
the PSM database was identified to be the relevant source of information to used
as input to the extractor. The PSM database is a XML document database con-
taining information about the external variability of the systems within Scania,
including FPC codes and external parameters.

Information matcher
The information matcher is used to relate the parameterized variation points from
the source code to the information that is extracted from the external data sources.
The matcher is aimed at creating realization links between the different abstrac-
tion levels. This is to enable the traceability and configuration decision modeling
between the abstraction levels.
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3.3 Tool chain for architecture recovery and modeling of
variability

3.3.1 Technology used
The ECU source code is parsed with the open source parser srcML [45]. The
XML files that are output from the srcML parser are used as the input to the
source code extractor. The extractor uses the XML addressing language XPath to
extract information about the systems variability [46]. The variability information
that is extracted is stored in a Neo4J [47] graph database where it can be queried
and visualized. By using a graph-database for persistent storage the variability
model that is developed can be represented in an explicit way. This is as the
structure and derived model of the variability in the different abstraction levels
can be represented in a natural way. This way of representing the data is intuitive
and serves the purpose of creating a comprehensible variability model. Using
srcML in combination with XPath allows for the structured querying of the source
code in order to extract the data needed to represent the variability. The usage
of srcML allows for an AST tree to be used for fact extraction from the source
code, as recognized in the technical report by SEI [22]. A short description of the
technologies is made in appendix C.

3.3.2 Software extraction tool
Inputs

• The files that are output from the srcML parser are used as input to the
extractor. These files contain the abstract syntax tree of the corresponding
source code file in XML format.

• The extraction patterns that are used in as input to the tool are the identified
processes of retrieving the parameterized variables within the source code
modules that the application layer consists of.

Process
When extracting information about variation points within the implementation of
the embedded systems a challenge is how to handle the variation in implementation
style between the different ECUs.

The COO- and EMS- ECUs are developed within two different departments.
The development guidelines and methods are very different between these depart-
ments. This leads to their system architectures and implementation style also be-
ing very different. Within the COO and the EMS the parameterized variables and
their representation/usage in the implementation are handled in different ways.
The solution to the problem of differing implementations was utilizing user-defined
patterns of what the accessing methods of these variables are within the specific
ECU implementation. These patterns are used as input to the extractor in order
to create starting point for the extractor to traverse from.
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• COO: Within the COO the parameterized variables are contained in the
Real Time Data Base (RTDB) layer of the software. This layer serves as a
common data storage layer for global variables within the COO. The usage
of the parameterized variables within the COO follows a distinct pattern.
In this pattern they are used in a function call to a function which extracts
the boolean value of the variable. The extractor identifies the function call
and the corresponding parameter which is the parameterized variable. The
boolean values data flow is then traced to determine whether it is used in a
control flow statement.
Each parameterized variable in the COO is related to an unique ID, which is
used in the parameterization process to identify the variable. The variables
and their unique IDs are stored in a source code file that contains two C
type arrays, as seen below.

/* List of IDs for objects. Should be sorted in ascending
order */

static const tU16 kwdb_id_comId_aU16[] =
{

((tU16) 0x0070), /* RTDB_IMMO_WORKSHOP_CODE_E */
((tU16) 0x0071), /* RTDB_IMMO_ACCESS_DATE_E */

}

/* List of definition for ID-objects. Sorted according to
list of IDs */

static const tKWDB_OBJDEF_STR kwdb_od_comId_astr[]=
{

{
KWDB_DB_BAR_OBJECT_E, /* objectType_E */
(tU32) RTDB_IMMO_WORKSHOP_CODE_E, /* ix_object_U32 */
SESS_BF_ALL_SESSION_STATES_U32, /* bf_rdSession_U32

*/
(tU32) 0, /* bf_orSession_U32

*/
SESS_BF_UNLOCKED_IS_U32, /* bf_prSession_U32

*/
KWPC_NO_FINGERPRINT_E /* fingerprint_E */

},
{

KWDB_DB_BAR_OBJECT_E, /* objectType_E */
(tU32) RTDB_IMMO_ACCESS_DATE_E, /* ix_object_U32 */
SESS_BF_ALL_SESSION_STATES_U32, /* bf_rdSession_U32

*/
(tU32) 0, /* bf_orSession_U32

*/
SESS_BF_UNLOCKED_IS_U32, /* bf_prSession_U32

*/
KWPC_NO_FINGERPRINT_E /* fingerprint_E */
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}
}

The first list defines the unique ID of each parameterized variable. This id is
used in the parameterization process to link an external parameter with its
corresponding internal parameterized variable. The second list contains a
C-type struct that defines each parameters properties. The property which
is of interest in the name of the parameterized variable that is related to the
unique ID.
This style of implementation is very structured and ultimately leads to the
code being more simple to extract information from. As the IDs that are
used in the programming of the variables are explicitly defined in the source
code the mapping between the parameterized variables and the external
parameters that are used for parameterization can later be made. Thus
from the extracted information from the COO the variation points that
are dependent on a parameterized variable can be extracted and used to
populate the variability model.

• EMS : The EMS ECU does not utilize the RTDB layer for storing the
parameterized variables. Instead it has a simple implementation of a file
system. This consists of C-type structs which are used as the containers
for the variables. To retrieve a parameterized variable a utility function is
used. This function obtains a leash that points to the base of the C-struct
that contains the variables. This leash is then used to retrieve the desired
parameterized variables in the struct, as shown below:

void Fuel_50ms(void)
{
/* Inputs: */
const tFILE_EOLPARAM_STR* const e2EolData_pstr =

File_rdEolParam_pstr();

/* Locals: */
tFILE_FUEL_TYPE_E engineFuel;

/* Get Eol fuel parameter */
engineFuel = e2EolData_pstr->s_EngineFuel_E;

}

The function call that is used in order to retrieve the leash is used as a
pattern to determine where a parameterized variable and its corresponding
value is retrieved. In the EMS implementation of the parameterized vari-
ables the variables are not explicitly linked to unique IDs. The variables are
linked to specific addresses within memory through defining what is known
as pragma expressions in C. Pragma expressions give the compiler/linker
special instructions for the compilation of the file in which they appear.
These expressions within the EMS determine where the memory needed to
store the parameterized variables is allocated. This information is thus con-
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tained in the linker directives. These directives were not possible to retrieve
and use for this theses. Therefore the names of the variables were used as
IDs. The struct which contains the externally programmable variables can
be seen below:

/* PRQA S 639 QAC_BLOCK */
/*!@brief End of line configuration parameters stored in E2 */
typedef struct
{

tFILE_COOL_LEVEL_E s_coolLevelEnable_E; //!< Coolant
level sensor.

tFILE_CYL_BALANCING_E s_cylinderBalancingCtrl_E; //!<
Cylinder balancing control.

tFILE_FAN_TYPE_E s_fanControl_E; //!< Fan
control 0=Mecanical 1=Electric Behr 2=Elect BorgWarner
3=Hydr

tFILE_GEARBOX_TYPE_E s_gearboxType_E; //!< Type of
gearbox. OPTICRUISEWITHOUTCLS_E=0

tFILE_VEHICLE_TYPE_E s_vehicleType_E; //!< Type of
vehicle.

tFILE_DISPLAY_TYPE_E s_ccDisplayType_E; //!< Show the
cruise control reference speed in the ICL display

tFILE_DISPLAY_TYPE_E s_EngineFuel_E; //!<The fuel
type which is to be used in this vehicle

}

From the defined patterns of how to identify a parameterized variable within
the ECUs the extractor follows the data flow of the parameterized variables value
and extracts the variation points which depend on this value. The whole param-
eterized variation point is extracted, where all of the variables or constants that
are evaluated in the conditional expression and their corresponding evaluators are
modeled.

The concept of identifying a parameterized variation points can be seen below
for a simple case in the EMS:

void Fuel_50ms(void)
{

#define FILE_FUEL_FAME_E 0;

/* Inputs: */
const tFILE_EOLPARAM_STR* const e2EolData_pstr =

File_rdEolParam_pstr(); //Get the leash.

/* Locals: */
tFILE_FUEL_TYPE_E engineFuel; //Local variable.

/* Get Eol fuel parameter */
engineFuel = e2EolData_pstr->s_EngineFuel_E; //Assignment of
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parameterized variable value to a local variable.

/* If COP mode, use diesel values even if Fame is selected in
Eol */

if ( (engineFuel == FILE_FUEL_FAME_E) ) //parameterized
variation point, dependant on the value of the
parameterized variable.

{
engineFuel = FILE_FUEL_DIESEL_E;

}
}

Here it can be seen that the local variable engineFuel has a data dependence on
the parameterized variable s_EngineFuel_E. The value of the engineFuel variable
is then used in a variation point where it is compared against the constant value
of the FILE_FUEL_FAME_E. As all of the variables used in this parameterized
variation point are constant. The variation point is thus determined to be fully
bound.

Output
The extraction tool creates a clean abstract representation of the parameterized
variation points. The information obtained through the architecture recovery from
source code results in a representation of the variation points that are dependent
on one or more parameterized variables. The variation point and its conditional
constraints is also parsed in order to deduce whether the variation point is fully
bound or partially bound. The different levels of information that is extracted can
be seen in fig. 3.5.
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Figure 3.5: The different levels of extracted information from the
source code.

From the information obtained by the architecture recovery performed in this
stage a model of the parameterized variation points in the implementation was
derived. The meta model is shown in fig. 3.6.
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Figure 3.6: The meta model of the implementation level variation
points.

The different nodes of the meta model are:

• sw_eol: This node represents the parameterized variable within the source
code.

• variant_point: This node represents the parameterized variation point in
the software implementation.

• predicate: this node represents a complete predicate that is used to deter-
mine the behavior of a variation point. The has_clause relationship repre-

45



sents the individual clauses of the predicate. If all of the clauses are evaluate
to true the predicate evaluates to true and thus the variability point eval-
uates to true. In C-speak the has_predicate relationship represents the ||
relationship(s) in a conditional statement and the has_predicate relation-
ship(s) represent the &&. An example of this can be seen in fig. 3.7 where
the conditional in the variant_point node is modeled.

Figure 3.7: An example of the modeled variation points.

• value: this node contains a value, it can be a parameterized value, which then
has the relationship is_sw_eol to a sw_eol node. It can also be a constant
value or a placeholder for a dynamic variable. The operator relationship
contains the boolean operator used to evaluate the conditions between two
values.

The resulting populated model is shown in fig. 3.8.
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Figure 3.8: The internal variability that is extracted.

In fig. 3.8 one can see that the whole variation point and its location in
the system architecture is modeled. Thus the location of the variation point is
captured by the model. The conditional evaluation is also modeled where the
variation points parameterized variable(s) is linked to a general representation
of the parameterized variable node through the is_SW_eol relationship. This
enables the architectural overview of all variation points that are dependent on
the parameterized variable as seen in fig 3.9. The evaluation relationship has an
attribute that is the relational operator e.g. ==,<=. The value nodes that have
a constant value, such as the node denoted as ”True” in fig. 3.8 also have their
related constant value e.g. 1 as an property in the node. The representation of the
conditional in the variation point is done to enable an analysis of the way that the
parameterized variable (configuration data) is used in the implementation. For
example if a conditional is dependent on the evaluation of ”par_var == 4” where
the variable par_var is a parameterized variable the validity of the evaluation
can be analyzed by looking at all possible values that par_var can obtain through
parameterization. If par_var can only ever be set to the value 1 or 0 the expressions
that have a conditional dependency on par_var are in fact dead code.
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Figure 3.9: Multiple software modules that are dependent on the
same parameterized variable.

3.3.3 External extractor
Inputs
The extractor used the PSM database as its input.

Process
The information contained in the PSM database was extracted. Through the de-
velopment of algorithms to analyze the data a configuration decision model for
each external parameter was constructed. The configuration decision model can
be used to derive the configuration of the external parameters from the config-
uration of FPCs. The logic that is required to build the configuration decision
model turned out to be very complex. Through generating the algorithms nec-
essary to build a configuration decision model it became evident that variability
within the software product line is handled in a implicit way within Scania. The
external parameters that are mapped to the parameterized variables had a one-
to-one mapping with vehicle features. However the FPC codes that are used to
specify the configuration of the parameters are not allocated to only one level of
abstraction. This conclusion was drawn after observing that there was sometimes
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a one-to-one mapping between an FPC and external parameter, however there
could also be a n-to-one mapping between FPCs and a external parameter.

There could also be multiple configuration decision models that were used to
configure an external parameter. This result of the representation and configu-
ration of variability made it clear that Scania does not use an explicit model for
representing a feature configuration, this is instead done in an implicit fashion
that relies heavily on the domain expertise of each developer. The way that con-
figuration decisions are handled within Scania is a result of the implicit way that
variability is handled. This is also what makes it hard to deduce how FPC config-
urations affect the parameterized variables. An example of how the combination
of multiple FPCs affect an individual feature is exemplified in fig. 3.10.

Figure 3.10: Multiple FPCs defining the configuration of one vehicle
feature.

Fig. 3.10 shows that in the COO there is a feature of a ”power take out”, repre-
sented by the node “HP_PTO_2”, that can be present or not. This is configured
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by the customer. In the configuration decision model for the related external pa-
rameter its existence is specified by three different FPC codes: 3077, 3145 and
4782. One describes the total amount of PTOs, one describes the body work sys-
tem and one describes the bodywork communication interface. The configuration
of the PTO feature is dependent on the configuration of all three FPC codes. This
is different to having an explicit FPC that describes the existence of a PTO, as
would have been the case in a theoretical feature model, such as EAST-ADL.
From the information about the external parameters and their dependencies to
FPCs the meta-model in fig. 3.11 was constructed.

Figure 3.11: The meta-model for the external variability.

The different nodes of the meta-model and their relationships are:

• fpc: Contains the top-level FPC and a description of it. An FPC-execution
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is created by following the has_variant relationship to the fpc_variant node.

• fpc_variant: This node contains an FPC-variant. This node represents the
configuration of an FPC.

• value_setter: This node defines a configuration decision for the external_parameter
node that is related to. The external_parameter that has a relationship with
the value_setter obtains the value that is defined in the node only if all of
the FPC-executions that are related to the value_setter node are selected in
the current configuration. In fig. 3.10 the HP_PTO_2 external parameter
will only receive the value 0 if the chosen configuration contains FPC3877Z,
FPC3145Z, FPC4782A. Thus there is an ”and” relationship between be-
tween FPC-executions that are related to the same value_setter node.

• value_collection_node: This node serves to collect all value_setter nodes
that result in the parameterized variable obtaining the same value.

• external_parameter: This node represents the external parameter that is
related to an internal parameterized variable. The parameter can be related
to many value_setter nodes, where only one of them can be active at once.
Thus there is an “or” relationship between the value_setter nodes related
to one external_parameter as these are mutually exclusive. As the value
of the external parameter is configured by FPCs this node represents the
result of a configuration decision.

The resulting populated model can be seen in fig. 3.12.

Figure 3.12: The external variability that is mined.

Here it can be seen that even though the FPC executions are mutually exclusive
they can lead to a external parameter having the same value, eg. If FPC3088 is
selected in the variants A or B the external parameter HP_CC_MANAGER_2
is set to 1.
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Outputs
The output from the external extractor is the external parameters and their value-
dependencies on FPC codes. The logic of how a parameter obtains a value from the
configuration of the FPCs is also extracted. This information is enough to model
the FPC level variability of the software systems and the configuration decision
models that exist between the FPCs and external parameters.

3.3.4 Matching algorithm
The information about the internal variability points and the parameterized vari-
ables that they depend on needs to be combined with the information about the
external variability that was extracted. This stage creates the realization links that
are specified in the EAST-ADL variability model and that lead to traceability of
variability through the different levels of abstraction.

Inputs
The inputs of the matching algorithm are the information models of the variation
points and the FPC to external parameter dependencies.

Process
As the embedded systems within Scania are parameterized through the program-
ming of static memory within the ECUs the programmer must write values to
addresses within the memory. If the information about what addresses the exter-
nal parameters are written to and what addresses the parameterized variables are
linked to is available, the information can be fused by creating links using the ad-
dresses. This method of creating the links ensures the correctness of the mapping
between the external parameters and their realization in the internal parameter-
ized variables. If the information is missing, as is the case with the EMS ECU, a
fuzzy string matching algorithm based on the Levenshtein distance algorithm [48]
is used. This maps the external parameters name with the internal parameterized
variable name. This matching through utilizing naming conventions is not as re-
liable as the mapping of addresses, and only works in the case that the external
and internal parameters follow the same naming conventions.

Outputs
The output from the matcher is the recovered model of variability within the soft-
ware product line. This model of variability enables the configuration decision
modeling and traceability of FPC-codes to the parameterized variables. These
variables are then used to determine where the FPC configurations effect the be-
havior of the ECUs. As the FPCs are a result of feature configuration this result
proved very good. In fig. 3.13 the dashed line shows the separation of the exter-
nally and internally extracted information. The realized_as relationship is thus
the equivalent of the realization links that were previously identified as being of
importance for the variability traceability. This type of link maps the external

52



parameter to its corresponding parameterized variable in the source code. Thus
the configuration decision model for the parameterized variable is known and rep-
resented. The parameterized variables dependency on FPC(s) is also represented.

Figure 3.13: The combination of the internal and external extracted
information.
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Chapter 4
Results

This thesis resulted in a method of recovering and modeling variability within pa-
rameterized embedded systems at Scania. It defines the identification of relevant
variation points and their subsequent modeling. The tool chain that was imple-
mented provides the necessary steps needed in order to recover information about
the variability on multiple abstraction levels within the software product line at
Scania. The resultant model, which can be seen in appendix B.1, can be used in
order to improve software product line development. This is done through creating
an architectural representation of variability on different abstraction levels. The
model represents where FPC configuration decisions impact the variation points
of the ECUs. From Scanias point of view the result was very satisfactory and the
populated model is already being used in different development projects.

The variation points in the parameterized ECUs were identified as being con-
ditional branch statements that have a conditional dependence on one or more
parameterized variables. Further the identification of fully and partially bound
variation points was made. Through this identification a concrete meaning was
given to the variation points within Scanias software product line. Each variation
point is represented explicitly as a node in the model. This node has a relation
to the statically set variable(s) that affects it and is also related to the function
and subsequently the software module where it resides within the source code.
This representation is due to Scanias use of parameterization, where the variation
points affect only a part of the software module where they are implemented. This
representation enables the traceability of where a parameterized variable affects
the ECU behavior through the parameterized variation points having a conditional
dependency to the parameterized variable. The variation points conditional state-
ment is also modeled. This representation is aimed at enabling the verification of
how the configuration data is used in the variation points.

The abstraction levels that are needed in the model are:

• The level where a vehicle configuration is specified, this was identified as
the FPC level within Scania.

• The level that represents the impact that the configuration decisions have
on the system, this was identified as the the implementation level within
Scania.

By representing these two levels in the model the configuration decisions that are
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made on the FPC level can be traced to where they impact the ECUs behavior on
the implementation level.

The concepts that were identified from EAST-ADL model are represented in
the developed variability model for Scania in the following way:

• Abstraction levels:
The model represents two levels of abstraction. The FPC level and the
implementation level.

• Traceability:
The traceability between abstraction levels is enabled in the model by the re-
alized_as relationship between the external_parameter node and the sw_eol
node. This traceability is what makes the architectural representation use-
ful for the reasoning about the system on different levels of abstraction.
Through enabling the traceability the model gives a good overview of the
FPC related dependencies between the software modules. This information
provides an understanding of the systems complexity due to the implemen-
tation of variability. To enable the traceability between the abstraction
levels the need for a method to match the data that is recovered from the
different levels of abstraction was identified.

• Configuration decision modeling:
The model of variability represents the configuration decision models on the
FPC level of abstraction. This representation shows how the configuration
of a parameterized variable is dependent on the configuration of FPCs. By
enabling this the correct usage of the configuration data in the variation
points can be evaluated. The dependency between parameterized variables
can also be analyzed through analyzing the FPC dependencies. For example
two parameterized variables that are dependent on two different executions
of the same FPC are mutually exclusive.

The model enables the representation of all three concepts that were identified
as being important in the EAST-ADL model. As the EAST-ADL model and its
use has been investigated through case studies in numerous automotive companies
the resulting variability model at Scania is considered satisfactory.
The model succeeds in enabling the determination of where the configuration
choices affect the systems variation points. This representation was identified
as being important when hazard analysis of different system variants is to be
conducted as specified in the ISO 26262 standard. Further the model assists de-
velopers in fulfilling the clauses regarding the verification of configuration data in
the following way:

• The use of configuration values within their specified range:
By modeling the variation points and their conditional evaluation in the
database this verification can be made on all of the bound variation points.
This limitation is due to the nature of static parsing of the source code, where
dynamic variables that obtain a value during runtime can not be determined.
In fig. 4.1 one can see the possible values that a parameterized variable can
have. These are represented as the nodes “s_vsrType2_E” with values 1, 2
and 3. Though knowing the possible values that the parameterized variable

56



s_vsrType2_E can obtain through configuration the conditional clause can
be analyzed. If for example the value of s_vsrType_E could only be set
to 3, the statements with a conditional dependency on the variation point
would have been dead code.

Figure 4.1: The verification of the correct usage of the configuration
data

• The compatibility with other configuration data:
Through the realization links between the FPC and implementation level one
can evaluate the FPC-constraints between different parameterized variables
and their value. This representation of information provides the developer
with an overview of the constraints that can be used in the subsequent
evaluation of the feature compatibility.

The population of the model was automated. The data that was needed to
populate the model was data about the identified variation points in source code
and the related FPC level information. This resulted in the tool chain using the
source code of the ECU systems as well as a database containing information
about FPC level variability. With the populated model the traceability of FPC
configurations and the impact on the system can be analyzed as seen in fig 4.2.
This figure shows where the configuration of FPC3088 has an affect on the system
behavior. The configuration affects the variation point on line 306 in the function
apmg_create in the software module apmg.
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Figure 4.2: The traceability from FPC to internal variation point

The full configuration decision model of the HP_LDW parameter can be seen
in fig 4.3. The configuration outcome of the model will affect the variation point on
line 177 in the software module ldws. By analyzing the model one can determine
that the only time where the variation point will be active is when the Scania lane
departure warning and the Forward looking camera are both present, as seen in
figure 4.4. Thus the lane departure warning feature requires both that the feature
is active and also that there is a Forward looking camera present. The LDW
feature has a “requires” dependency on the forward looking camera.
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Figure 4.3: The configuration decision model for the ”HP_LDW”
feature.
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Figure 4.4: The result from analysis of the ”HP_LDW” feature.
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This type of tracing and analysis helps solve the problems that were identified
in the report by Bosch [26] [7]. Through the architectural representation of the
system variability that the model provides the knowledge gap that is discussed in
the article by Bosch is minimized. This is done by creating an intuitive feeling for
how the variability in the product line affects the embedded system ECUs. The
usage of a graph-database enables the explicit representation of the model also
when populated. As an example an overview of all FPCs that affect the behavior
of the ECU can be seen in fig. 4.5.

Figure 4.5: All of the FPCs that affect a certain ECU

Further the scattering and tangling of feature dependencies throughout differ-
ent source code modules can be identified. This is seen in fig.4.6. Here one can see
that the configuration of the parameterized variable RTDB_HP_CC_MANAGER_E
affects the behavior of four different source code modules: apmg, ecoc, ccdi and
aicc. Thus the analysis of the impact that the feature configuration has on the
system can greatly be simplified.
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Figure 4.6: Database information about the scattering of a feature
in different software modules
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Chapter 5
Discussion and future recommendations

In order to retrieve a model that describes the software product line variability
in Scania a qualitative study was made of how variability is handled in the de-
velopment of the product line. The study was conducted by gathering relevant
information and performing architecture recovery in order to confirm the valid-
ity of the information. The result of this study has been used in order to create
a model of the variability in Scanias software product line. The model can be
used to give developers and product stakeholders an architectural overview of the
software and in how it is currently affected by the product line variability. The
model can be used as a powerful tool to help developers and test engineers in
their understanding and analysis of how variability is implemented and handled
in Scania’s development process.

5.1 Evaluation
5.1.1 Method evaluation
The method that was used to build a model of the variability relied heavily on an
iterative approach at development. The information and data that was recovered
during the architecture recovery process was used to build the model of variability
in parallel to the recovery. This method produced a populated model that is used
to solve actual problems within Scania. A drawback with using this method is
that the model is very influenced by the actual data that was discovered during
the process of architecture recovery. The model may thus have been more complete
if it had been developed to encompass the theoretical usage of variability within
Scania. However the usability of the model could have been affected if this was
the case. This is the problem that has been identified with other theoretical
models that need a large amount of structured information about variability to
be useful in their representation. Research related to the architecture recovery
of variability proved to be pretty much nonexistent to date. This led to the
identification of the important recovery stages being hard. As a result of this -
existent knowledge about and theoretical models of - variability was researched and
evaluated during the initial development process. The process identified important
concepts to include in Scania’s variability model. These concepts along with the
information obtained by analyzing the ISO26262 standard provided a concrete way
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of evaluating the model in every iteration of development. The iterative method
where architecture recovery and variability modeling were done in parallel proved
necessary. This was due to the deep understanding of variability that is needed
in order to construct a functioning model that can to be applied in real life. By
constantly being able to update and evaluate the model after current knowledge
the result proved to be satisfying, both in the subjective eyes of Scania and through
the evaluation of the objective concepts that were defined in the initial development
process.

5.1.2 Model evaluation
The model that was developed represents where FPC configurations affect the
system software modules. It has succeeded in furthering the comprehension and
potential analysis of where product variability affects the embedded system ECUs.
The model is thus sufficient for the current basic needs that the model is aiming to
address. As the process of configuring the FPCs from the customer configuration
is not modeled there is a risk that the model will have to be extended in the future.
Also the representation of the variation points and their conditionals is very basic.
Further the analysis of the usage of configuration data that can be made based
the represented information in the model is limited. As the model was developed
based on the recovered data within Scania this was the largest limitation to its
scope. Despite these limitations the model can be used as a powerful tool for
supporting the verification of requirements in the ISO26262 standard, however it
is not sufficient to fully automate this verification.

5.1.3 Tool chain evaluation
Scalability
The tool chain that is implemented is mostly limited by the usage of patterns
to deduce the static variables. This approach is feasible where there are strict
coding regulations of how to handle the parameterized variables, such as in Scania.
However, in a case where the static variables are not retrieved with the usage of
utility functions the extraction approach will have to be a lot more comprehensive.

Reliability
After the application of the tool chain on two complex ECUs and manual verifi-
cation of the results, the reliability of the tool chain proved to be good. As the
intended application area is to provide additional information to engineers and to
create an architectural abstraction of the systems, the reliability is not as critical
as that of a tool used for formal verification.

Validity
The validity of the tool chain has been manually investigated. Although unit tests
on the tool chain have been implemented, due to the limited time of the thesis a
full system test and validation was not done. The manual investigation of validity
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was instead conducted for a number of cases and within the results there was
no discrepancies between the information that was manually extracted and the
information that was automatically extracted.

Risks
Since the source code being analyzed is manually written there are a lot of discrep-
ancies in the style of implementation. Since the amount of source code files being
analyzed is vast these problems have been overcome by the extraction tool utiliz-
ing targeted extraction. This targeted extraction reduces the overall amount of
code being evaluated for extraction. This minimizes the risks with the extraction
as the amount of analyzed code is dramatically decreased.

5.2 Recommendation to Scania
The extraction of this variability data from the source code enables the following
conclusions to be drawn about the variability within the implementation level of
Scanias ECUs: The separation of FPC dependent variability into different soft-
ware modules is followed in the COO, however in the EMS there are many cases
of variability tangling. This is where one source code module and its control flow
is dependent on more than one parameterized variable. This way of implemen-
tation is contradictory to the AUTOSAR method where there is a n-1 mapping
between SW-Cs and features. Also feature scattering was identified in both the
COO and EMS implementations. This entails that a feature can create depen-
dencies in many different software modules which leads to a more complex system
architecture. The differing implementations and handling of variability through-
out different development departments makes it hard to construct one model of
the variability. Thus a recommendation is to define guidelines on how variability
is to be handled and specified within the software product line in Scania. The use
of FPCs to determine the existence of features is very implicit and the developers
should be given integrated tool support when determining this. In the future a
recommendation is to either replace the FPC system or create an explicit feature
model of these. This model will make it easier for both developers and prod-
uct stakeholders to use the FPCs in a consistent way over all phases of product
development.

5.3 Future work
The future work within the field of variability in Scania can consist of investigation
into a more explicit way of representing variability throughout the whole develop-
ment chain. The usage of FPC codes needs to be investigated and guidelines on
their usage in different scenarios need to be improved. To complete the architec-
ture recovery chain and enable the representation of customer choices the process
leading up to the the vehicle specification (V-spec) needs to be investigated and
integrated into the existing model.
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5.4 Conclusion
This thesis demonstrates the use of architecture recovery to model variability
within large legacy product lines. It shows how the traceability between differ-
ent levels of abstraction can be reconstructed and the expressiveness of a model
that contains this information. Throughout this thesis it became more and more
evident that variability within software product lines is a very complex and large
topic where there is a lot of future work to be made. The increasing complexity of
a system and its architecture as a result of introducing variability is a fact. This
can be seen by looking at the retrieved model and the evaluation of its contents.
Often however this is not recognized by developers or system architects. This lack
of acknowledgement leads to a rapid increase in a systems complexity and thus a
degradation of the overall system quality. Further the ability to perform system
verification is greatly hampered by this. Even though the variability model that
was the result of this thesis only contains a small subset of the total variability
within Scania, the information is enough to have a direct impact on the future
quality of Scania’s products. Hopefully it can result in increased system safety.
This result must surely be motivation enough to treat the future introduction of
variability in systems as a first class concern of modern software development and
system safety.

5.5 Example of model usage
The information that the model contains proved to be useful in many different
applications. For example the data is currently used for examining what config-
urations affect what source code modules. In fig. 5.1 one can see the application
components in the COO. All of the dashed nodes can be configured to be active
or not depending on the vehicle configuration.
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Figure 5.1: The variability in a unconfigured system

When a vehicle configuration file (SOPS) is specified the variability in the
system can be reduced to the figure 5.2.
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Figure 5.2: The verification of the correct usage of the configuration
data

In fig. 5.2 the two dashed nodes are still variable. This means that either
the configuration data that was used as input is incomplete or the actual use
of configuration data within the software modules is wrong. By providing this
type of sophisticated guidance and visualization support to the safety engineer
the artifacts that are not relevant for the performance of safety verification can
be identified. As many of the functional safety analysis activities that are de-
fined in ISO26262 are hardly automatable this type of guidance is a key aspect of
supporting tools and models.
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Appendix A
Abbreviations

• AADL - Architecture Analysis and Design Language

• ADL - Architecture Description Language

• AST - Abstract Syntax Tree

• AUTOSAR - Automotive Open System Architecture

• C-spec - Chassi Specification

• COO - Coordinator ECU

• CTFM - Core Technical Feature Model

• EAST - Electronics Architecture Software Technology

• ECU - Electronic Control Units

• EFP - Exclusively FPC-regulated Parameters

• EMS - Engine Mangagement System ECU

• E/E - electronic/embedded

• FPC - Functional Product Characteristic

• PID - Parameter ID

• PFM - Product Feature Model

• SMOFS - Scania Manufacturing and Order Feature System

• SOPS - Scania Onboard Specification

• TCR - Translation Control Register

• VCR - Variant Control Register

• V-Spec - Vehicle Specification
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Appendix B
Figures

The complete variability model B.1.

Figure B.1: The full meta model.
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The architecture browsers representation of software modules when no config-
uration data is specified B.2.
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Figure B.2: The variability in a unconfigured system
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The architecture browsers representation of the software modules when con-
figuration data is specifie B.3.
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Figure B.3: The verification of the correct usage of the configuration
data
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Appendix C
Used technologies

• srcML: srcML is a markup language that displays a document oriented XML
representation of the source code input. As the plain-text representation of
source code is limited in addressing and providing context to locations within
source code the srcML tool attempts to solve this by providing an enhanced
XML view of the source code which allows access to all levels of information
in the source code i.e. lexical, structural, semantic and documentary.[49]
The source code is wrapped with information from the abstract syntax tree
while retaining all of the original text in the input file. This approach
enables querying access to the source code and its corresponding syntactic
structure.

• XML: The Extensible markup language is a textual markup language that
provides a document markup format that is both human and machine
readable.[50] The language is documented and described in numerous pub-
lications and specifications by the World Wide Web Consortium (W3C).
The overall design goals with the XML markup is simplicity, generality and
usability.

• Neo4J: Neo4j is a graph-database which is ”embedded, disk-based, fully
transactional Java persistence engine that stores data structured in graphs
rather than in tables” [47]. The database provides fast querying and travers-
ing of nodes and their corresponding relationships. Further it is opens source
and easy to scale up in a horizontal fashion.
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