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ABSTRACT 
Accurate positioning and tracking system for mobile devices has become very popular 
in recent years, both in research and practice. In indoor environments, one of the 
promising approaches is fingerprinting localization technique which is based on 
received Wi-Fi signal strengths. The objective of this master thesis is to construct an 
indoor positioning and tracking system with fingerprinting. 

The first part of the thesis considers a suitable hardware arrangement based on low cost 
Raspberry Pis. In a specific indoor environment, five arranged Raspberry Pis are 
utilized to collect fingerprints – the Wi-Fi signal strengths which are broadcasted from 
surrounding mobile devices.  

The second part introduces how to establish a fingerprint database. Statistical analyses 
for signal strengths distribution in experiment environment have been discussed. 
Moreover, since collected data are truncated due to the noise floor, the Expectation 
Maximization (EM) algorithm has been applied to estimate the mean signal strength at 
each reference point. 

On the positioning and tracking phase, the authors present two different approaches for 
data processing. The received signal strengths are matched to coordinates on the map of 
experiment environment by fingerprinting. Furthermore, a self-designed Kalman filter 
has been applied to increase the tracking accuracy.  

Finally, two types of indoor environment tracking systems are implemented. Tracking 
error analysis for both systems and performance comparisons are presented as well. 
Analyses of accuracy influence factors such as target movement speed and shadowing 
are given at the end of the thesis together with possible methods against these factors. 

 

Index terms: Indoor environment tracking, Fingerprinting technique, Raspberry Pi, 
Kalman filter, EM algorithm for truncated data, Evil Twins Attack 
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1 INTRODUCTION  

In modern society, cell phone tracking systems are demanded in many areas such as 
security and human behaviour research. Some mature technologies such as Global 
Positioning System (GPS) has been well developed. However, research about accurate 
positioning system in indoor environments is continuously being studied. In this thesis, 
we design a feasible tracking system for mobile devices in a certain indoor environment. 
The system is based on the Wi-Fi fingerprinting technique. This chapter covers 
background knowledge about mobile device positioning and tracking. Some popular 
technologies of cell phone localization are briefly introduced as well.  

1.1 Localization Techniques for Cell Phone 

1.1.1 Global Positioning System (GPS) 
GPS is the most popular technique for cell phone positioning. The GPS project was 
developed in 1973 to overcome the limitations of previous navigation systems. 
Nowadays, GPS is already embedded in most mobile devices and it can provide a good 
positioning accuracy. However, because the GPS signal will be reflected or scattered by 
walls and roofs of a building, it is not suitable for indoor environments localization 
[1][2]. Thus, it is necessary to realize an indoor environment tracking system rely on 
other kinds of radio signals or sensor data.  

1.1.2 Wireless Positioning Techniques 
For most wireless devices positioning applications, the localization methods normally 
rely on three aspects - Angle of Arrival (AOA), Received Signal Strength (RSS) and 
Propagation-time.  

Taking the receiver as the reference point, AOA is the angle from which a signal arrives. 
The target position can be estimated by the intersection of several pairs of angle 
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direction lines [3]. Figure 1.1 is an illustration of AOA based positioning. Normally, it 
requires at least two known reference points and directive antennas or antenna arrays.  

 
Figure 1.1. Illustration of AOA Based Positioning 

The RSS based localization has two types of applications. The first one is based on 
propagation-loss equations, which requires advanced channel models in complex 
environments. The second one is fingerprinting which is based on the distribution of 
measured signal strength and doesn't rely on any channel model.  

As for the propagation-time based localization, it can be based on either one-way 
propagation time i.e. Time of Arrival (TOA) or roundtrip time i.e. Roundtrip Time of 
Flight (RTOF). The distance between the target and the measurement equipment can be 
calculated by signal velocity and travel time. This method, especially TOA based, 
requires precise synchronization of all involved units. Figure 1.2 is an example of 
triangulation application with TOA. It uses the geometric properties of triangles to 
estimate the target location. [3] 

D1
D2

D3

 
Figure 1.2. Illustration of Propagation-time Based Positioning 

All kinds of existing wireless infrastructures, such as Bluetooth, Wi-Fi or specific 
sensors, have potentials to realize a tracking system. However, the tracking accuracy 
can be very different based on different devices and tracking algorithms. One of the 
most widely used techniques is Wi-Fi-based positioning system (WPS). As mentioned 
before, since GPS is no longer suitable for indoor environments positioning and 
wireless access points (AP) which normally exist in office, restaurant and other public 
places, it is a good choice to develop positioning technologies which rely on the Wi-Fi 
signals. The principle of WPS is based on measuring the intensity of the received signal 
- the RSS. [4] 
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1.2 What Is Fingerprinting? 
Wi-Fi fingerprinting technique is normally used in indoor environments with multiple 
APs. It does not rely on the angle or distance measurement from the transmitters, and 
the channel model may not be considered. Instead, only Wi-Fi signal strengths are 
utilized for localization. Sensors or measurement units collect the Wi-Fi RSS as 
fingerprint from surrounding mobile devices. Then, position of target can be estimated 
by comparing the RSS with a database containing field strength information of different 
positions [5].  

Typically, the fingerprinting system consists of two phases. On the first phase, called 
“Offline” phase, a “radio map” of the experiment environment must be built. The 
researchers arrange a large number of reference points, which cover the whole indoor 
area uniformly. At each reference point, a standard mobile device is used for recording 
the RSSs broadcasted from surrounding APs. A special fingerprint is a RSS vector 
including several RSS values from different APs. It is a unique identifier which 
corresponds to the coordinates of the current reference point. All the RSS vectors 
compose a fingerprint database. Works in this phase is also called “Calibration”. The 
second phase is the “Online” phase. When a mobile device enters the region of radio 
map, it starts to collect RSSs from surrounding APs somewhere. Through comparing 
the collected RSS vector with those in the established fingerprint database, the best 
matched fingerprint for the measurement point indicates the corresponding reference 
point. The coordinate of this reference point is the estimated position of the mobile 
device [6].  

 
Figure1.3. Wi-Fi Fingerprinting System 

A sketch of a typical fingerprinting system is shown in figure 1.3. The vectors of RSS at 
reference point A, B, C and D are the calibration results in database. The measurement 
point is the “Online” collected data. The distances marked by blue lines are used for 
matching the measurement point with a reference point in the calibration database. 
Obviously, the distance between reference point B and the measurement point is the 
shortest. It illustrates that point B is the best estimation of the current position.  

In our system, the fingerprinting is applied in a reverse way. Instead of using a mobile 
device to collect APs signal strengths, the APs will collect the broadcasted signal 
strength of a mobile device. So the target position will be characterized by several RSSs 
at the AP side. For a traditional fingerprinting system, the tracked target has to be 



 

13 

 

programmed to collect RSSs from APs. However, in our system, through operating APs, 
any mobile device can be tracked.  

1.3 Euclidean Distance-based Matching Algorithm 
The matching algorithm always plays an important role in fingerprinting. For most 
cases, the measured RSS vector from online phase is not identical with any vector in the 
fingerprint database. An appropriate matching algorithm is necessary for estimating the 
user’s location through compare the measurement results with the fingerprint database. 
Also the accuracy of localization can be greatly influenced by different algorithms. 

Nearest Neighbour (NN), K-Nearest Neighbours (KNN), Multi-Layer Perceptron 
Neural Network (MLP) and Generalized Radial Neural Network (GRNN) are common 
matching algorithms which are based on the Euclidean Distance. Research [7] shows 
that the KNN algorithm gives the best localization accuracy and generally applied as the 
matching algorithm of various positioning systems. Details of KNN algorithm and other 
Euclidean Distance-based Matching Algorithms will be discussed in Chapter 6.  

1.4 Problem Definition 
In order to establish a complete cell phone tracking system, there are several problems 
need to be addressed.  

First, it is important to select a suitable device to implement data measurement. Both 
measurement accuracy and equipment costs should be considered. It is obvious that 
better measurement equipment could lead to a higher accuracy of positioning. However, 
precision sensor is usually expensive and not easy to buy. The thesis objective is to 
realize a tracking system with devices which are normal in market and easy to install. 

Second, how to establish a good fingerprints database. This project is based on 
fingerprinting which gets several advantages compare to other methods. As mentioned 
before, different methods require different crucial measurement data. However, 
fingerprinting does not require complex channel modelling or precise synchronization. 
It just requires a fingerprint database to be compared with. So it is extremely important 
to establish a good fingerprint database. 

Third, select or develop appropriate data processing and matching algorithms. It is very 
common that the collected raw data need statistical analysis and processing. A 
reasonable data processing algorithm could improve the tracking accuracy significantly. 
It has been listed that there are several matching algorithm such as NN, KNN and etc. it 
is necessary to apply different matching algorithm to collected data and obtain an 
optimal selection. Furthermore, Kalman filter has been widely used in various tracking 
system, which is applied to our system as well. It has functions of predicting and 
correcting tracking results.  

The last problem is to conduct experiments in different situations. A good tracking 
system should be able to adapt to different kinds of indoor environments. Testing with 
different influence factors will greatly contribute to evaluate and improve our research. 



 

14 

 

1.5 Thesis Scope 
In this thesis project, a tracking system is implemented to realize precise localization of 
mobile device in a certain indoor environment with Wi-Fi signals. The thesis work is 
divided into five parts: 

1) In the first part, taking Snoopy Framework as reference, the system framework is 
designed and the hardware devices are installed. Five Raspberry Pis are arranged in a 
certain indoor environment and used to collect the packets broadcasted from the mobile 
devices. The Evil Twin Attack will be carried out to increase network through put and a 
rogue AP will be built according to probe requests.  

2) In the second part, the purpose is to implement the offline calibration phase of 
fingerprinting. It contains the reference point arrangement and data analysis. Meanwhile, 
The Expectation Maximization (EM) Algorithm for truncated data will be used to 
optimize the calibration results. 

3) In the third part, Kalman filter for improvement of system performance is introduced. 
The parameters of Kalman filter fit for our tracking system are measured and illustrated. 

4) In the fourth part, tracking tests will be performed with two data processing methods. 
The first method is based on the KNN Algorithm and average RSS value in each second. 
The second one is based on the NN Algorithm and instantaneous RSS value. Error 
analyses will be performed and a comparison between the tracking results with these 
two methods will be given. 

5) In the last part, factors that influence tracking accuracy such as target speed, types of 
mobile devices and shadowing will be discussed. Possible future works of this project 
will be presented as well. 

All experiments and analysis work of this project were conducted in Department of 
Electrical and Information Technology, Lund University, Sweden 
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2 SYSTEM FRAMEWORK  

In this chapter, the framework of our tracking system will be introduced. Based on 
Snoopy Framework, we design a mobile device tracking system both in hardware and 
software level. This chapter gives a brief introduction of the Snoopy Framework and 
explains some basic concepts of hacking technologies. A clear structure of our system is 
illustrated in the end of this chapter. 

2.1 Snoopy Framework 

2.1.1 Brief Introduction of Snoopy Framework 
Snoopy is a distributed tracking and profiling framework released by Glenn Wilkinson 
and Daniel Cuthbert on Dec 7th, 2012. [ 8 ] The architecture structure of Snoopy 
Framework is shown in figure 2.1. 
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Figure 2.1. Architecture of Snoopy Framework [9] 

In Snoopy Framework, there are two packets of code for the client side and the server 
side. The client side code can be run on any device with Linux operating system which 
supports for wireless monitor mode. Devices running with the client code are called 
“Snoopy Drone”. A drone is used to collect information of observed probe requests 
including MAC address, Service Set Identifier (SSID), timestamps, GPS coordinates 
and signal strengths. Collected data are uploaded to the central server of Snoopy. Then 
the profiling work will be done on the central server. In our thesis project, the client side 
consists of five Raspberry Pi single - board computers with Tenda W311M wireless 
cards. 

Snoopy achieves simple tracking of mobile devices by resolving the GPS coordinates. 
With the inspiration of Snoopy Framework, we developed our indoor tracking system 
which based on the indoor Wi-Fi signal strength and fingerprinting technique as a 
complement to it. Taking Snoopy as a reference, we established direct link with cable 
between the drones and the server. The Shell scripts of Snoopy in Linux system also 
helped us to complete network configuration on both server and client sides. Following 
sections give brief introduction of software packages which are used in both Snoopy 
and our system. 
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2.1.2 Aircrack-ng [10] 
Aircrack-ng is an 802.11 Wired Equivalent Privacy (WEP) and Wi-Fi Protected Access 
- Pre-shared Key (WPA-PSK) * keys cracking program used by Snoopy Framework. 
Aircrack-ng has several suites to realize various functions. The main usage of this 
program is to monitor network activities and establish rouge APs. A rogue AP is a 
wireless access point which has been installed on a secured network without explicit 
authorization from a local network administrator. A list of scripts in Aircrack-ng suites 
which have been used in this project are shown below. 

1) Airmon-ng 

This script is used to enable the monitor mode on the wireless interfaces. 

2) Airodump-ng 

Airodump-ng is used to capture raw 802.11 frames. It is able to generate several files, 
including the detail information of all surrounding APs, clients and the connections 
between them. It is a significant and convenient tool to monitor the network activities in 
real time. It also enables us to get the instant display of targets MAC addresses, 
channels, connections, probe requests and signal strengths.  

3) Airebase-ng 

Airbase-ng is a multi-purpose tool which aimed at attacking the clients as opposed to 
the AP itself. Since this script enable the client act as a full AP, it is used for creating 
rouge AP with user’s familiar SSID and MAC address which they have connected 
before. It also encourages the mobile devices to associate with the rouge AP. 

2.1.3 Tshark [11] 
Tshark is a terminal version of Wireshark, which designed for capturing and displaying 
packets. It is well known that the Wireshark is the world's foremost network protocol 
analyser and Tshark supports the same options as Wireshark. In Snoopy Framework, 
Tshark is used to collect probe request packets with information of MAC addresses, 
SSIDs, timestamps and RSSs. Tshark makes it possible to capture packet data from a 
live network, or read packets from a previously saved capture file, either printing a 
decoded form of those packets to the standard output* [12] or writing the packets to a 
file. Without an instant display of the network activity, Tshark is used for collecting 
packets and writing them into a capture file. 

                                                        

* WEP and WPA-PSK: two types of a security algorithm for IEEE 802.11 wireless networks. Now 
WPA2 has replaced WPA as a new version. 

* Standard output: sometimes abbreviated stdout, refers to the standardized streams of data that 
are produced by command line programs (i.e., all-text mode programs) in Linux and other Unix-like 
operating systems. 
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2.2 Wi-Fi Probe Request 
The Wi-Fi probe request service is a critical element of the IEEE 802.11 standard 
family. It allows a mobile device with wireless internet access to detect the known APs 
within its scanning region at regular intervals, only if the mobile users turn on the Wi-Fi 
function [13]. It is called active discovery. Moreover, the modern smartphone also 
broadcasts probe requests regularly even when it has already connected to an AP [14].  

A broadcast probe request packet contains information of MAC address, operation 
channel, Encryption Mode (EncryMode) and plaintext SSID of AP which has been 
connected previously (the other kind of probe request packet does not contain previous 
connected SSID information). Through capturing the probe requests with 
users' private information (the information in probe request is not encrypted), hacker 
realizes the network attacks. In this project, the Wi-Fi Probe request packets have been 
captured as the measurement data which will be used in fingerprinting. It has special 
features which are extremely important in synchronization. Details will be presented in 
the following chapters. 

2.3 Evil Twin Attack [15] 
Evil Twin Attack is a usual hacking attack. The first type of Evil Twin Attack is aimed 
at established connection. In order to connect with the wireless AP, a device with Wi-Fi 
function on keeps broadcasting probe requests for scanning the available APs within a 
certain region. Even when a connection has been established, the probe requests will be 
keep broadcasting. If the attacker set up a rouge AP with the same SSID and MAC 
address as the original AP which has been connected and provides a stronger signal 
level, the device will connect to the rogue AP instead of the original one.  

Another type of Evil Twin Attack is based on the Wi-Fi probe requests with information 
of previous connected APs. As we have mentioned, the mobile device keeps trying to 
connect to the AP which has been connected before. According to the probe request, the 
attacker is able to build rogue APs with user’s familiar SSIDs and MAC addresses. The 
rouge AP has exactly the same special SSID and MAC address in user’s home or office. 
Thus, the user’s mobile device will connect to it automatically without any notification. 
In this situation of Evil Twin Attack, the user may aware something happened and 
wondering why he connected to the AP at home in a totally strange place. 

In fact, these two types of Evil Twin Attack are only applicable for the AP with no 
password protection or weak WEP EncryMode. A hacker has to crack the security 
password when he tries to implement the Evil Twin Attack towards a network with 
WPA/WPA2 EncryMode. By comparison, the network with WPA/WPA2 EncryMode is 
effectively resistance to Evil Twin Attack and is more secure than the network with no 
password protection or weak WEP EncryMode. 

Through Evil Twin Attack, the attacker is able to implement many attacks, such as Man 
in the Middle, Domain Name System (DNS) Spoofing, Address Resolution Protocol 
(ARP) spoofing, and etc. The victims’ private information such as passwords, friend list, 
credit card information and family address will be easy to obtain by the attacker. [16] 

The process of Evil Twin Attack is shown in figure 2.2 
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Figure 2.2. Process of Evil Twin Attack 

Since the probe request packets are broadcasted regularly with several seconds (7 
seconds approximately) pause, limited quantity of RSSs will not meet the demands of a 
time continues tracking system. The Evil Twin Attack will be used to provide a stable 
connection between rouge AP and mobile device, which increases the network traffic 
and ensures that Tshark can capture sufficient packets for continuous tracking. If 
allowed, it can be used to provide the Internet service and monitor users’ internet-based 
communication.  

2.4 System Framework 
Snoopy Framework is only interested in information such as SSIDs and Internet cookies. 
However, the RSS information of the sniffed packets has been totally ignored. The RSS 
values are exactly the information that we consider as the fingerprints in our tracking 
system. Units in our system include five Raspberry Pis with Tenda W311M Wireless 
N150 Nano Adapter, two laptops, one router, one switch, and several patch cables. 
Details about devices parameters will be introduced in chapter 3. Five Raspberry Pis, 
we call them “sniffers”, act as the Snoopy drones to sniff Wi-Fi probe requests and 
normal data packets from target devices. One of these Raspberry Pis is responsible for 
creating rouge AP to realize Evil Twin Attack. All units are connected by patch cables 
and a switch. The network configuration is conducted through the router. Two laptops 
act as the central server of our system. We remotely control Raspberry Pis through the 
server and data processing work is carried out in these laptops as well. A schematic 
diagram of system framework is shown in figure 2.3. More details about how the 
system works will be given in the following chapters.  

 
Figure 2.3. Schematic Diagram of System Framework 
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3 DESIGN AND OPERATION 

In this chapter, an introduction to all the hardware devices and software of our indoor 
tracking system will be given. Furthermore, this chapter describes the operation of 
setting up sniffers and rogue AP in details. The processing of local time synchronization 
is illustrated as well.  

3.1 Preparation 

1) Raspberry Pi 

Raspberry Pi is a low cost, credit-card-sized computer (Shown in figure 3.1). It was 
developed in UK by Raspberry Pi foundation with the intention of simulating the 
teaching of basic computer science in schools [ 17 ]. In this thesis, five model B 
Raspberry Pis are configured as sniffers and rogue AP. They are marked form #1 to #5. 

 
Figure 3.1. Model B Raspberry Pi 
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2) Tenda W311M Wireless N150 Nano Adapter 

The Tenda W311M Wireless N150 Nano Adapter is a kind of network adapter which 
plugs into a computer through USB port. It is used for supplying the wireless 
connectivity to computer. The Tenda W311M wireless adapter with chipset Ralink 
rt2870/3070 supports wireless monitor mode and packet injection, which is important to 
sniff the RSS and increase network throughput.  

3) Router and Switch 

In this project, a Dlink-DIR100 4-Port Router and a Netgear GS308 8-Port Switch are 
used to set up an internal network. It assigns IP addresses to sniffers and allows the 
Raspberry Pis to access to the Internet for installation purposes. All units of the system 
are in the same local network through the configuration of the router. 

4) Laptop 

Two Laptops are used to remote control the Raspberry Pi and act as the central server, 
which collect measurement data from all sniffers and execute the data analysis. 

5) SD Card and Patch Cable 

Five 8 GB SD cards are used together with the Raspberry Pis as hard drives. The patch 
cables are used for connecting the switch with the Raspberry Pis and Laptops. 

6) Software 

The Raspberry Pis are running Raspbian, version 3.10, which is a Debian-based 
GNU/Linux operating system specifically tailored for use with the Raspberry Pi. 

Through Oracle VM Virtualbox, the Laptops are running Ubuntu-12.04 LTS, which is a 
Debian-based Linux operating system. Oracle VM Virtualbox is a free virtualization 
software package for Intel 64-based computers. 

Remote control of the sniffers is achieved by PuTTY-0.59, which is a free 
implementation of SSH* [18] for Windows and UNIX platforms. 

Tshark and Aircrack-ng suite are two main programs for tracking. Tshark is a free, 
terminal-based and open-source packet analyser. Aircrack-ng suite is a set of tools for 
auditing wireless networks, which creates an interface on monitor mode from the 
wireless adapter. It observes the connection status of surrounding mobile devices, 
implements the packets injection work and creates the rogue AP. 

                                                        
* SSH: Abbreviation of Secure Shell, which is a cryptographic network protocol for secure data 
communication. It is utilized to realize secure network services between two networked computers 
e.g. remote command-line login and remote command execution. 
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3.2 Operation Procedure 
Since there are five Raspberry Pis in use, one of them which is located in the middle of 
the experiment environment should be configured as the rogue AP. Meanwhile, all five 
Raspberry Pis work as sniffers to collect RSSs from surrounding mobile devices. 

3.2.1 Local Time Synchronization 
Before we start the whole system, the first issue that has to be confronted is the local 
time synchronization. The Raspberry Pi is designed to be an ultra-low cost computer. 
Lots of hardware units on a normal computer, such as Real Time Clock (RTC), have 
been left out. In our tracking system, at each time point, five RSSs are collected by each 
Raspberry Pi and composed into a fingerprint. Through matching the fingerprint with a 
database, the position of the tracking target can be estimated. However, the precondition 
is that all five Raspberry Pis must share the same local time.  

RTC is able to keep system clock working even when the power is off. Without it, the 
local time of Raspberry Pi will be reset to the factory settings when it turns off. So it is 
necessary to rely on a software clock to realize synchronization. Network Time Protocol 
(NTP) is widely used to synchronize a computer to Internet time servers or other 
sources, such as a radio or satellite receiver or telephone modem service. It can also be 
used as a server for dependent clients [19]. Since the Internet service may not available, 
Raspberry Pis cannot update the local time automatically from the global Network Time 
Protocol directly. It is necessary to synchronize the local time form a time server which 
is established manually.  

First of all, NTP was utilized to establish a time server on one of five Raspberry Pis. 
Here, the Raspberry Pi #5 was chosen as the local timeserver. Then, the other four 
updated their respective local time from the timeserver. Packets ntp and ntpdate should 
be installed on each Raspberry Pi ahead. Details about how to configure an NTP time 
server and NTP time clients are introduced below. 

1) Time Server Side 
The commands below should be added into /etc/ntp.conf for time server 
configuration on the Raspberry Pi #5. 

  restrict  127.0.0.1 

  restrict  192.168.0.0 mask 255.255.255.0 nomodify notrap 

  server  127.127.1.0  

  fudge  127.127.1.0 stratum 10 

where  
restrict 127.0.0.1  gives full control to the local host. 
nomodify notrap the access control rules, makes all workstations in the 
internal private network to be able to query time information from this 
server.  
server 127.127.1.0  specifies that a time server is running on the host (own 
local time). 
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fudge transfers additional information to the clock driver. 
Save and exit the file. Then, restart the NTP service to make sure that the 
configuration of time server has been applied. 
 

2) Client side 
The commands below should be added into /etc/ntp.conf on the other four 
Raspberry Pis for time client side configuration. 

  server 192.168.0.105 

  restrict default ignore 

  restrict 127.0.0.1 

  restrict 192.168.0.105 mask 255.255.255.255 nomodify notrap 

  noquery 

where 192.168.0.105 is the IP address of the time server.  
Then disable all server setting in this file. Save and exit the file.  
Stop the NTP server on each client and use the following commands to 
query time information from the established time server directly. 

sudo ntpdate 192.168.0.105 

After executing this command on each client Raspberry Pi, local time synchronization is 
completed and all clients share the local time with the central time server.  

NTP is able to synchronize all participating computers to within a few milliseconds [20]. 
Normally, it will meet the requirement of our tracking system. However, some matching 
algorithms require a more precise synchronization. So another method to achieve high 
precision synchronization will be introduced in Chapter 7. 

3.2.2 Rouge AP and Sniffer Setup 
In order to increase the network traffic and guarantee that there are sufficient packets for 
continuous tracking, Evil Twin Attack was performed by establishing a rouge AP 
according to the probe requests broadcasted from a specific mobile device or the SSID 
of AP. Details about how to configure a Rouge AP and setup a sniffer are introduced 
below. 

1) First of all, on each Raspberry Pi, we created an interface operating in monitor 
mode with airmon-ng from our wireless adapter, which is named wlan0. The 
command is 

sudo airmon-ng start wlan0 

After activated the monitor mode on wlan0, a new interface named mon0 was 
available for both the Evil Twin Attack and packets collection. 
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2) The connection status of surrounding mobile devices on all the channels was 
monitored by the command 

sudo airodump-ng mon0 --ignore-negative-one 

Sometimes airodump-ng might fix on channel -1. Adding --ignore-negative-one can 
simply fix this problem.  

Figure 3.2 is an example that shows all the surrounding active APs with SSIDs, 
authentication methods, channels, MAC addresses and signal power. Airbase-ng 
can help us to build a rogue AP according to these information.   

Moreover, all mobile devices with connection status and MAC address were 
scanned as well. airodump-ng was helpful to decide which channel is suitable to 
create a rouge AP. 

 
Figure 3.2. An Example of Scanning Result 

3) Evil Twin Attack was implemented on Raspberry Pi #5. In order to avoid the 
others connecting to our rouge AP, our rouge AP for experiment was named as 
“Test Only” with the command below.  

sudo airbase-ng -c 1 -P -v -e "Test Only" mon0 

where  
-c 1 represents all APs are running on channel 1 
-P responds to all probes, even when specifying SSIDs 
-v represents verbose, show more massages 
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-e “Test Only” specifies a single SSID AP called “Test Only”. This AP will be 
utilized to perform the calibration and tracking test. 

All other rouge APs will be automatically created by this command. It creates rouge 
APs automatically according to every SSID in probe requests from different mobile 
devices. On the other hand, if airbase-ng received a probe request without SSID, a 
rouge AP cannot be established automatically. 

 
4) In order to keep the link between our rogue AP and clients stable, it is 

necessary to provide Internet service for the clients who connects to our rouge 
AP. Here, we simply utilized the bridge mode to implement the Internet service. 
These commands were executed to deploy a bridge type Internet service. 

    sudo su 

    brctl addbr br0 

    brctl addif br0 eth0 

    ifconfig br0 up 

brctl tool is required before executing these commands.  
 

5) So far, we have finished the configuration of rouge AP. Then Tshark was started 
to collect the packets with Wi-Fi RSSs. Command below was executed on each 
Raspberry Pi.  

sudo tshark -S -l -i mon0 -R "wlan.sa == 00:00:00:00:00:00" -T fields -e 
wlan.sa -e wlan_mgt.ssid -e radiotap.dbm_antsignal -e frame.time -E 
separator=, -E quote=d  >> file_name.txt  

where 

-S set the line separator to be printed between packets. 

-l flush the standard output after collected data for each packet is printed  

-R "wlan.sa == 00:00:00:00:00:00" represents a filter, Tshark only collects data from 
the mobile device with specific MAC address. 

-T fields the values of fields specified with the -e option, in a form specified by the -E 
option.  

-e option  -e wlan.sa  the source MAC address 

 -e wlan_mgt.ssid  specific SSID 

 -e radiotap.dbm_antsignal set the signal strength in dBm 

 -e frame.time record the time when packet is captured. 

-E option -E separator=, -E quote=d generates comma-separated values (CSV) file 
which is suitable for importing into spreadsheet program. 
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>> file_name.txt  the data will be wrote into file_name.txt 

 
Figure 3.3. Example of Data Frame 

Figure 3.3 illustrates the structure of the collected data by Tshark. The command above 
is only suitable for calibration of offline phase. During the online tracking phase, there 
is no need to set a filter. Sniffers will automatically collect all wireless network 
activities including information about MAC addresses, RSSs, probe requests and time 
stamps. 

3.3 Limitation 

At present, it seems impossible to host a rouge AP with WPA/WPA2 type of wireless 
network encryption. The mobile users cannot be forced to connect with a rogue AP 
automatically when the broadcasted SSID belongs to an AP with network protected by 
WPA/WPA2. The packets injection will also be denied when a connection exists 
between mobile user and legal AP. It makes the tracking more difficult, since the 
captured RSS signals are not sufficient and continuous. Therefore, the user has to be 
required to connect to the rouge AP manually for increasing the network traffic. 

The accuracy of measurement data can influence tracking results significantly. For 
example, Tenda W311M Wireless N150 Nano Adapter drops packets with RSS below    
-92 dBm and can just give integer signal strengths. Expectation Maximization (EM) 
algorithm for truncated data can be used to fix the measurement results. Following 
Chapter 4 will discuss details of this EM algorithm.   
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4 OFFLINE PHASE OF 
FINGERPRINTING 
LOCALIZATION 

The main purpose of “Offline” phase of fingerprinting is to complete the felid strength 
measurement at each reference point and to establish an original fingerprint database. In 
this chapter, a detailed description about how to allocate reference points in the 
experiment environment will be given. The operations of fingerprinting calibration on 
offline phase will be described as well. Finally, EM Algorithm for truncated data 
processing will be introduced to optimize the calibration results. 

4.1 Reference Points Allocation 
The “Offline” phase was performed in the entrance hall of E-huset, which belongs to the 
Department of Electrical and Information Technology, Lund University, Sweden. The 
scale of the entrance hall is 10 meters in width and 60 meters in length. The entrance 
hall also includes a sub-corridor with 3 meters width and several obstructions such as 
desks, chairs and bonsai. A map of this entrance hall is shown in figure 4.1. 

The grid spacing between two reference points significantly affects the performance of 
the whole system. Generally, larger grid spacing leads to lower localization accuracy 
[21]. A report [22] shows that the recommended grids spacing is 1-3 meters in indoor 
environment. Therefore, 210 reference points are allocated in the entrance hall 
uniformly with a grid about 1.5 meters.  

The floor plan with distribution of the reference points (small blue dots) is shown on the 
map as well. Five Raspberry Pis are configured as sniffers and marked from one to five. 
The positions of five Raspberry Pis are also marked on the figure 4.1. 
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4.2 Position of Sniffers  
The positions of sniffers should be considered to covering the whole area of the 
experiment environment and selected at place without too many obstructions. In order 
to reduce the influence of human body obstructions, the height of sniffers should higher 
than normal height of people. Moreover, the place should be safe and suitable 
(untouchable by surrounding people and easy to hung Raspberry Pis). Considering the 
complexity of the environment, (the roofs with different heights and construction of 
walls), two examples of placing the sniffers are shown below in figure 4.2 

     
Figure 4.2. Positions of Sniffers 

Raspberry Pi #1, #3 and #5 were placed at a height of 3 meters as the figure on the left 
indicates. Raspberry Pi #2 and Raspberry Pi #4 were placed at a height of 2.5 meters in 
the sub-corridor.  

4.3 Calibration 
The calibration work on offline phase is to collect RSS data as fingerprints at each 
arranged reference point and save them into a database. This is the most important 
phase of fingerprinting. A good result of calibration can significantly benefit to the 
tracking accuracy. It is necessary to conduct this work during a few or non-people time 
period. After the data collecting work, the raw data is approached with appropriate 
statistical methods and the fingerprint database will be established. 

4.3.1 Fingerprint Database Structure 
The structure of our fingerprint database is a table, shown in figure 4.3, contains 210 
rows and 5 columns. Each row represents for RSS values at each reference point and 5 
columns represent for data collected from 5 sniffers. Each number in this table is a RSS 
value and we consider one row with five RSS values as a RSS vector – one single 
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fingerprint. In order to obtain each number in this table, the sniffer will run for 40 
seconds to collect a group of raw data. After statistical analysing and data processing of 
these groups of the raw data, a complete database will be established. 

 
Figure 4.3. An Example of Fingerprint Database 

4.3.2 Data Collecting Operation 
An iPad mini was utilized as our standard equipment to conduct the calibration work. 
First of all, in the entrance hall with few artificial effects, one tester held an iPad mini 
horizontally at the height of 1.2 meters, in the direction pointing to the Raspberry Pi #5. 
After turning on the Wi-Fi function, the iPad connected to the rogue AP “Test Only” 
automatically (the standard device has connected with this AP before.). Here, the name 
of rogue AP was set as “Test Only” manually but not according to the probe requests 
from surrounding device. Meanwhile, the other tester controlled the Raspberry Pis and 
used Tshark tool to sniff packets broadcasted from the iPad. The sniffed packets contain 
information with RSSs, MAC addresses, SSIDs of probe requests and timestamps. Data 
was collected for 40 seconds at each reference point and the raw data was saved into a 
text file.  

Consequently, RSS data at all 210 reference points was collected. For each reference 
point, there were five raw capture files from five different Raspberry Pis. And the RSS 
values in these files were needed to be processed before saved into the fingerprint 
database.  

4.3.3 Estimation of Signal Strength  
Generally, at each reference point, there are five groups of RSSs caught by five sniffers 
respectively. The quantity of captured packets in one group is around three hundreds to 
five hundreds generally. A screenshot of captured data structure is shown in figure 4.4. 
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Figure 4.4. Structure of Raw Calibration Data 

After the data collecting work, it is necessary to analyse the raw signal strengths from 
every Raspberry Pi at each reference point, and then establish the fingerprint database.  

4.3.3.1 Histogram Estimation 

In order to obtain the accurate numerical estimation of the RSS value at each reference 
point, it is necessary to analyse the probability distribution of the raw signal strengths. 
Histogram estimation is one of the most commonly used algorithms to deal with this 
kind of problem [23]. According to research [24] and analysis of our experimental data, 
the RSSs obeys log-normal distribution. With hist* function and dfittool* [ 25 ] in 
MATLAB, we fitted the signal strengths at each reference point into a normal 
distribution, because the data were collected in dBm scales. After checking the 
probability distribution, it is easy to utilize the mean value of such distribution to 
represent a group of data. With this algorithm, the RSS value of each reference point 
can be calculated. Here, in figure 4.5, is the probability distribution for a group of 
collected data on one Raspberry Pi at a reference point. 

                                                        
* hist is a function in MATLAB which is able to create a histogram bar chart. hist(x,nbins) was used 
here, which sorts x into the number of bins specified by the scalar nbins. 

* dfittool is a command to open Distribution Fitting app which can fit distributions to the data form 
the workspace and display the fitted distribution over plots of the empirical distributions. 
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Figure 4.5. An Example for Signal Strength Distribution by Histogram 

According to the normal distribution, the mean value of each group of RSSs was 
calculated as the calibration result at each reference point. The following five figures of 
figure 4.6 are given to illustrate the RSSs distribution for each Raspberry Pi in the 
experiment environment. 
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Figure 4.6. Original Measured RSS Distribution with Histogram Estimation 

The red area indicates high signal strength level and the blue area indicates low RSS 
region. These figures show that the closer target gets to the sniffer, the stronger field 
strength is.  

However, influenced by the effect of noise floor, fading, packet loss and some other 
interference, at some of the reference points, the distribution of collected RSSs is not a 
complete normal distribution. In another word, the histogram estimation according to 
the normal distribution only fits for a group of data with a large number of samples with 
signal strength above the noise floor. Tenda W311M Wireless N150 Nano Adapter 
drops packets with RSS below  actively, which makes the data truncate. 
Therefore, an advanced estimation algorithm for truncated data is needed. 

4.3.3.2 Expectation maximization (EM) algorithm for truncated data 

Generally, the larger distance between device and sniffer, the fewer packets could be 
collected. Sometimes a sniffer even cannot capture any packet from the reference points 
far from it. With such a huge number of missing data, the histogram estimation no 
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longer fit for estimating the true RSS value at each reference point. Thus, Expectation 
maximization (EM) algorithm should be applied for solving the truncated data.  

Expectation maximization (EM) algorithm is a good choice to estimate the mean and 
standard deviation of data with a known number of missing samples [26]. With the 
calibration data analysing, it can be found that the sniffers did not collect any packets 
with RSS below -92 dBm and it is reasonable to consider that the noise floor is -92 dBm. 
If the signal level lower than this value, the packets will be regarded as noise and 
dropped by the sniffer actively. For each sniffer, since the raw signal strengths are in 
dBm scales and follow the normal distribution, the probability distribution with missing 
data points is regarded as the truncated normal distribution.  

Suppose a group of RSSs follows such a normal distribution 

 

where is the true mean.  

 is the standard deviation. 

As the data is truncated, these two values cannot be calculated. For the reason of the 
noise floor, data points lie within the interval ( , )X a , where a is the truncation 
point. The value of a should be set as -92dBm which is the noise floor. Since all packets 
with RSSs below the truncation point are missing, collected data with a number of 
missing data points obey the left truncated normal distribution.  

During the calibration, since all five Raspberry Pis sniffed packets broadcasted from the 
same mobile device, the number of packets collected by different sniffers should be the 
same and equal to the number of broadcasted packets ideally. However, through 
observation of the raw data, the numbers of data collected from different sniffers were 
significantly different within the same length of time. We assumed that the sniffer with 
the largest number of data points is not truncated. Then, it is easy to calculate how many 
data points were missing. 

Assume that a complete distribution has k samples, and l  samples have been truncated. 
All known data points are 1 2, , , k lx x x, k lx, k , and the missing data points are

( ) 1 ( ) 2, , ,k l k l kx x xk, xk, . In our case, since we arrange the sniffers uniformly, not all the 
sniffers have the collected data below the truncation point. After we get five groups of 
data from one reference point, we assume the largest length of the group to be k . It 
means that the sniffer which got most data points is not missing any data. Then it is easy 
to calculate how many points have been truncated for other sniffers. From the known 
data, the mean 0 and standard deviation 0 for truncated data can be estimated through 
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For this left truncated type distribution, we can give  

0 0
( )( | )
( )

E X X a
 

and 
2

2
0

( ) ( )( | ) [1 ]
( ) ( )

Var X X a
 

where 0 0( ) /a . 

( ) is probability density function for standard normal distribution. 

( ) is its cumulative distribution function (CDF). 

As the number of missing data points has been known, the iterative EM-algorithm can 
be utilized to further improve the estimation. [27] The initial and can be calculated 
by collected data. And at j+1 times of iteration, the new estimation of and  can be 
calculated by 
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j

x Var x x a

k . 

The value of 1ˆ j  will be used as the fixed RSS value.  

Finally, for each reference point, we got five means of the RSSs from five different 
sniffers. Consequently, to establish the fingerprint calibration database, every reference 
point has a unique identifier RSS vector ( )is which corresponds to the coordinates of the 
reference point,  

( ) ( ) ( ) ( ) ( ) ( )
1 2 3 4 5( , , , , )i i i i i is s s s ss . 

Where i  is the number of reference point and (1,210)i , since there are 210 reference 
points have been arranged. The table of vectors ( )is  composes the necessary calibration 
database. 

For some special cases, our sniffer cannot capture any packet from the mobile device. It 
means that the RSS at these reference points is extremely weak. It is most likely that the 
true mean of such points is lower than the RSS on all the other reference points.  
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Therefore, we give -156 dBm to these reference points, which is the minimum value of 
all the estimate results with the EM-algorithm. The following figure 4.7 shows the RSS 
distribution for each Raspberry Pi with iterative EM-algorithm in the entrance hall of E-
huset. 

 

 

 

 

 
Figure 4.7. RSS Distribution with EM Algorithm 

Compared with the Figure 4.6, the RSS distribution has been optimized by the EM-
algorithm. And the estimate result is the complete fingerprint database we need in our 
tracking system. 
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5 KALMAN FILTER DESIGN 

The Kalman filter was originally implemented by R.E. Kalman, who published his 
famous paper describing a recursive solution to the discrete-data linear filtering problem. 
It is a set of mathematical equations, providing an efficient recursive mean to estimate 
the state of a process [28]. It minimizes the mean of the squared error and improves the 
positioning accuracy on tracking problems. In this chapter, a Kalman filter will be 
designed according to our indoor tracking environment for optimizing the tracking 
results. It plays an important role in missing data point prediction and measurement 
error mitigation.  Some experiments in this chapter are involving algorithms which will 
be introduced in following Chapter 6 and 7, however we would like to bring them out 
earlier to present a complete explanation of the Kalman filter. 

5.1 Discrete Kalman Filter 
The Kalman filter model assumes the true state at time k is evolved from the state at 
time (k-1) according to the linear stochastic difference equation. 

 

where  is the current state,  is the previous state. 

           A is the state transition matrix, which relates the previous state at time k-1 to the 
current state at time k. 

           B is the control-input matrix, which relates the optional control input to the 
state . 

            is the control vector. 

            is the process noise which is assumed to be drawn from a zero mean 
multivariate normal distribution with covariance Q.  
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At time k, there also is  

 

where  is the current observation result. 

           H is the observation matrix, which relates the state to the measurement . 

            is the observation noise which is assumed to be zero mean Gaussian white 
noise with covariance R.  

 

The two random vectors  and  are uncorrelated. [29] 

5.2 Two Phases of Kalman Filter 
The Kalman filter estimation is a process that is using a form of feedback control. The 
filter predicts the process state at some time and then obtains feedback in the form of 
(noisy) measurements. Regularly, the operation of the Kalman filter is divided into two 
distinct phases - Prediction and Correction. 

(1) During the prediction phase, the Kalman filter uses the previous optimal state 
estimate to produce a new estimate of the current state. That is known as discrete 
Kalman filter time update equations. 

 

 

where  is the predicted state using the pervious optimal state estimate.  

 is the previous optimal state estimate. 

 is the current control vector. 

  and  are error covariances corresponding to   
 and  respectively.  

A, B and Q have been explained in section 5.1. 

(2) During the correction phase, the Kalman filter corrects the estimate which is 
obtained during the prediction phase by comparing it with the measurement result. 
That is known as the discrete Kalman filter measurement update equation. 

 

 

 

where  is current optimal state estimate. 

 is current Kalman gain. 
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 is the previously predicted state estimate. 

 is the error covariance corresponding to . 

 is the covariance corresponding to . 

I is the identity matrix. 

H,  and R have been explained in section 5.1. 

A complete illustration of the operation of the Kalman filter is shown in figure 5.1. 

 
Figure 5.1. Operation of Kalman filter  

In each time of iteration, the Kalman filter is replacing the current optimal state estimate 
 as the previous optimal state estimate  and the  as 

the . The recursive nature is one of the appealing features of Kalman 
filter. The filter only needs to know the recursive result of the previous state.  

In some special cases, there is no observation result  with the current state. It happens 
in tracking system two which will be introduced in Chapter 7. The previous optimal 
state estimate  is regarded as the observation result  to continue the 
iteration. Also, the Kalman gain should be set to zero. 

 

 

5.3 Kalman Filter Implementation [30] 
In our self-designed tracking system, the Kalman filter is used to improve the 
positioning accuracy. It is also used to predict the target position when there is no 
measurement data. Since the tracking system is in x-y coordinate, the Kalman filter is 
applied with the x coordinates and the y coordinates separately. In the design of our 
Kalman filter, there is no control vector which means that the control vector  =0. 

During the prediction phase, the following operations are performed, 

 

 

where  and   corresponds to .  

Prediction Phase 
(1) : state estimate using 

the optimal estimate of previous 
state 

(2) : error covariance 
corresponds to  

Correction Phase 
(1) Calculate the Kalman gain . 
(2)  : correct the estimate using the 

measurement data. 
(3)  : error covariance corresponds to 
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   and  are the estimated coordinates in the current position. 

   and  are the estimate velocities in the current position. 

  is used as the update time which is the time difference between two 
contiguous time points (section 7.3)  

The state does not change from step to step.   

So,                                     

The noisy measurement is taken directly from the state, there is 

 

 

where  and  corresponds to . 

          and  are measured coordinates of   and  at the current position. 

          and  are measured velocities of   and  at the current position. 

So,                                        

The Kalman filter needs the initial values of  and  to 
start the system during the prediction phase and calculate the  and 

. Assume the initial value is 

. 

The initial value of  is used for both x and y dimensions. The initial value of the 
Kalman filter is not critical with sufficient measurement data. It is fine to choose almost 
any  , and the filter will eventually converge. However, if there are not 
enough observation values for the Kalman filter to correct the estimates, the initial value 
can influence the tracking accuracy significantly. In our tracking systems, the 
coordinates of the first estimate position are regarded as the initial value of  and 

. As for the initial values of velocities, since we assume the target is moving with 
a constant speed, the mean velocity is regarded as the initial values. So,  
  

 

 

The method of how to determine an accurate position of the start point will be discussed 
in section 6.3. 
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5.3.1 Process Noise Q 
The covariance matrix of process noise Q should be a two by two matrix. 

Assume that 

 

The value of q is different for x dimension and y dimension separately. q should be 
determined by the most standard movement pattern of the tracking object, which is 
usually uncertain and we do not have the ability to calculate the process noise directly. 
Therefore, for most cases, Q is obtained by exhaustive search. 

5.3.2 Observation Noise R 
The covariance matrix of observation noise R should be a  matrix. 

 

where  is the covariance between the coordinate of matching result and the 
coordinate of true position.  is the covariance between the measured velocity and the 
true velocity. 

The function to calculate covariance is  

. 

 stands for the true value and   stands for the observation value. 

First of all, we set a known path and perform the tracking with this route. At each time 
point, we subtract the coordinates of the true position from the coordinates of the 
matching result on x-axis and y-axis separately (in units of centimetres). An identical 
operation is carried out between the true and the matching velocities. 

After that, two vectors for the differences on x-axis and two vectors for the differences 
on y-axis are built. A covariance calculation is performed with the difference vectors on 
x-axis and y-axis separately. Then the values of measurement noise Rx and Ry are 
obtained.  

 

 

where  is the covariance of coordinate difference vector on x-axis 

            is the covariance of coordinate difference vector on y-axis 

            is the covariance of velocity difference vector on x-axis 

            is the covariance of velocity difference vector on y-axis 
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With a tracking approach as introduced in Chapter 6, several tracking results along 
known paths are shown below. The purpose of following experiments is to find an 
optimal R value which can be applied with all patterns of movement, because the R 
value for different kinds of movement can be very different. In order to calculate the 
measurement noise, it is necessary to apply a matching algorithm, the K-Nearest-
Neighbours (KNN) Algorithm, which we will introduce in following section 6.2.1. This 
algorithm is utilized to calculate the estimation error between the true position and 
matched result (observation result). The error is measured in units of centimetres (cm).  

1) The tracking result with known path along the x-axis 

 
Figure 5.2. Tracking Result with Kalman filter along x-axis 

On the figure 5.2, the green line represents the true path of tester walking and the blue 
line represents the tracking result with Kalman filter. The green point on the figure is 
the true start point and the red point represents the end point. The red “*” represents the 
measurement matching result. Marks and lines in following figure 5.3, 5.4, 5.5 have the 
same meaning in figure 5.2. According to the measurement data, it can be calculated 
that  

 

2) The tracking result with known path along the y-axis 

 
Figure 5.3. Tracking Result with Kalman filter along y-axis 

Rx and Ry in this case is 

 

3) The tracking result with known path along the diagonal 
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Figure 5.4. Tracking Result with Kalman filter along the diagonal 

In this case, the measurement noise is calculated as 

 

According to calculations above, the values of measurement noise for different 
movement patterns are quite different. Applying a certain value of R with other patterns 
of movement, it can be found that if R is too large and the tracking result will be 
estimated as a straight path, and details of the tracking route such as turning will be 
ignored.  

Therefore, when a target moves along a circle or square, the measurement noise must be 
optimized to get a reliable tracking result. As one paper [25] states, often times superior 
filter performance (statistically speaking) can be obtained by tuning the filter 
parameters Q and R. To improve the accuracy through applying different Q and R to 
the Kalman filter, we measured R for several movement patterns and obtained an 
optimal value of R which can be applied in all movement patterns. 

5.3.3 Optimal Values of Q and R 

1) Move along a straight line 

In order to obtain the optimal R values for pattern of moving along a straight line, we 
took the average of R from several experiments which a tester walks along straight lines 
in different directions. Since there are two types of tracking system has been designed, 
it is necessary to calculate R for them separately. Generally, in tracking system one 
which will be introduced in Chapter 6, the optimized values of R are  

. 

As for tracking system two which will be introduced in Chapter 7, through applying the 
mean value of R with different walking patterns, we found that it cannot give a satisfied 
result. This problem can be solved by multiply a coefficient to the mean value. The 
optimized values were approximately  of the measurement values, which 

. 

Changing the process noise does not affect the tracking result significantly. So, in both 
systems, we took the Q value as following. 

       . 

2) Move along a circle or a square (natural movement pattern) 

For the natural movement pattern, in tracking system one, the optimized R values are 
approximately  of the mean of measurement values. The values of process noise Q 
which obtained by exhaustive search were given as well. 
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Generally, in tracking system two, the optimal values of R are approximately   of the 
measurement values. The final R and Q are shown below. 

   

          

5.4 Filtered Tracking Result 
This experiment was designed to indicate the improvement of tracking result with the 
Kalman filter. We took the coordinates of matching point which is calculated by KNN 
Algorithm (section 6.2.1) as the observation result  of the Kalman filter.  

A comparison between the filtered tracking result and the original tracking result is 
shown below. 

 
Figure 5.5. Tracking Result with Kalman filter 

On figure 5.5, the green line represents the true path of tester walking, the red line 
represents the estimated route without Kalman filter and the blue line represents the 
tracking result with Kalman filter. The green point on the figure is the start point and the 
red point is the end point.  

Compared with the true route on the map, there is a significant improvement on the 
tracking result with the Kalman filter. The filtered result is very close to the true route. 
The distance between two neighbour reference points is about 1.5 meters. The RMS 
error, details will be introduced in section 6.3, with the Kalman filter is 1.7 meters. 
Compare with the grid of 1.5 meters, the RMS error of 1.7 meters is satisfactory. 
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6 TRACKING SYSTEM ONE 

In this chapter, a tracking system based on the average RSS in each second is 
introduced and tested. The tracking experiment conducted in this way: a tester held an 
iPad with Wi-Fi function on and walked through the entrance hall of E-huset. The 
device connected to the rogue AP automatically and all the sniffers were activated to 
collect packets broadcasted from the iPad. In the first place, a detailed description of the 
measurement data processing will be given. Then, with the KNN matching Algorithm, 
the processed data are matched with the fingerprint database. After applying Kalman 
filter with optimal parameters, the estimated tracking route will be given in the end.  

6.1 Rules of Data Processing 
During the tracking experiment, when a tester hold an iPad with turned on Wi-Fi 
function, the Evil Twin Attack is activated. Then a rogue AP is built according to the 
broadcasted probe request from this iPad. Since a stable wireless connection can 
increase the network traffic between the AP and the mobile device, this hacking action 
guarantees sufficient packets with RSS information for tracking and these packets are 
captured in continuous time. Although mobile devices keep broadcasting probe requests 
without a stable connection with a rouge AP, there is a few seconds pause between two 
probe requests. In tracking system one, the captured packets must be formed by a 
continuous time, which means that there should be at least one RSS value in each 
second. Thus, Evil Twin Attack is necessary to our tracking system. After the tracking 
data measurement, data processing will be performed on the server side with MATLAB. 

According to the collected data on the server side, an example of the data structure is 
shown in following figure 6.1. 
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Figure 6.1. Structure of Measurement Data from One Sniffer 

This figure illustrates that the measurement data includes five types of information - 
MAC address, probe request, RSS, date and time stamp. RSSs and time stamps are two 
required information in our tracking system. Through analysing the time information of 
the captured packets, the collected data is divided into small groups by one second time 
slot. As we known, the normal speed of human is about 1.4 meters per second, and the 
distance between two adjacent reference points is 1.5 meters. It means that the distance 
of target has moved within one second is approximate equals to the separation of two 
reference points. Then, in an ideal situation, every second the target can be matched to a 
new reference point. Thus, it is reasonable to divide the data with a time slot of one 
second. According to the measurement data, it can be observed that, in general, there are 
approximately 20 records within a time slot. Sometimes, the number of samples in one 
second can be up to 50.  

In order to match the measurement data with the fingerprint database, it is necessary to 
find a certain value of RSS in each time slot as a fingerprint. The first method to obtain 
this value is to calculate the mean of all RSSs within each time slot. However, as 
mentioned in calibration data processing (Chapter 4), sniffers drop packets with RSS 
below  actively. Therefore, simply matching the mean of RSSs with database 
could lead a large error distance.  

The Expectation Maximization (EM) Algorithm for the truncated data can be used to 
estimate the true mean value of the RSSs within a time slot. This algorithm has been 
introduced in section 4.3.3.2. In a special case, within one second, the sniffer doesn’t 
collect any packet. As we did in calibration, it will be given a value of , 
which is the minimum fixed RSS value with the EM Algorithm. The structure of the 
processed data is shown in figure 6.2. 
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Figure 6.2. Structure of the Processed Data 

In this figure, the RSS is in dBm scales. The “TIME” column represents the time stamps 
e.g. the “TIME” column data in row one can be expressed as “13:17:47”.  

6.2 Matching Phase 
On the matching phase, the processed data is matched with the fingerprint database. In 
this section, matching algorithms in tracking system one are introduced, including the 
K-Nearest-Neighbours (KNN) matching algorithm and a method to give initial values of 
the Kalman filter. 

6.2.1 Nearest-Neighbour (NN) Algorithm 
Although the Nearest Neighbour (NN) matching algorithm is not used in tracking 
system one, a simple introduction to NN Algorithm is present here. In our database, as 
mentioned before, each reference point is characterized by a RSS vector with five RSS 
values and expressed as ( ) ( ) ( ) ( ) ( ) ( )

1 2 3 4 5( , , , , )i i i i i is s s s ss ,1 210i . At each time slot, a 
vector of measurement signal strengths is represented by ( ) ( ) ( ) ( ) ( ) ( )

1 2 3 4 5( , , , , )j j j j j jt t t t tt . 
Then, the Euclidean signal distance between the vector ( )jt  and all the reference points 
in database can be calculated. For example, the Euclidean signal distance between time 
point one and all reference points can be calculated by 

( ) (1) 2 ( ) (1) 2 ( ) (1) 2 ( ) (1) 2 ( ) (1) 2
1 1 2 2 3 3 4 4 5 5( ) ( ) ( ) ( ) ( )i i i i i

il s t s t s t s t s t . 

Find the minimum il , the value of i  indicates which is the nearest reference point. Then 
the position of the mobile device at time point one can be estimated as the reference 
point number i . 

6.2.2 K-Nearest-Neighbours (KNN) Algorithm 
As mentioned before, KNN is a popular location estimation algorithm which has been 
widely used in fingerprint technique to increase tracking accuracy. It is also suitable for 
our tracking system. Based on the NN Algorithm, after il  calculation, k nearest 
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neighbours are selected with k minimum values of il . Then the average coordinates of 
these matching reference points is calculated as the estimate of the target position. In 
our system, we choose k equals to 4, which means that the number of nearest 
neighbours is four and the nearest reference points with minimum four Euclidean signal 
distances will be selected. The matching position can be calculated by [31] 

 

where  is an extremely small constant number to avoid dividing by zero.  is the 
coordinates of the selected nearest reference points.  

6.2.3 The Initial Value of the Kalman Filter 
An accurate initial value of the Kalman filter can significantly improve the tracking 
accuracy. In our system, the initial values contain coordinates of the initial position and 
the initial velocity. In terms of the initial position, using the first measurement data 
point as the initial value always leads to a large error, because the first estimate position 
may have a large error distance. In spite of the Kalman filter has the function of 
correction, since the collected samples are limited, it may not correct the estimate result 
in time. In order to solve this problem, a method is developed to decide the true position 
of the start point which is applied as the initial value of the Kalman filter.  

The entrance hall of our experiment environment contains four entrance doors. Every 
person who comes into this entrance hall has to go through one of them. Thus, the start 
point must be the coordinates of one of these doors. The map of the entrance hall is 
divided into four zones and if the matching result falls in a zone, the accurate position 
should be the door in this zone. An experiment was conducted to find the matching 
position when a tester stands at each door. Also, the optimal boundaries to divide the 
corridor can be determined according to this experiment.   

Since the purpose of this method is to make the matched point falling in a certain zone 
instead of finding the correct position, we found that a larger number of nearest 
neighbours (k) can help increasing the probability of the results falling in the right zone. 
After multiple experiments, it was proved that the boundaries perform at their best when 
k equals to 9. Therefore, applying this method to the measurement data within the first 
second, then an accurate initial position can be inferred.  

 

 
Figure 6.3. Division of the Corridor Map 
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In figure 6.3, the blue line represents the boundaries of different zones, the black points 
are the matching results when the tester stands at Door 1, the red points are the 
matching results when the tester stands at Door 2, the green points are the matching 
results when the tester stands at Door 3, and the pink points are the matching results 
when the tester stands at Door 4. 

Sometimes, the first measurement point can be matched into a wrong zone, which 
causes an unacceptable tracking result. A large number of experiments results provide 
the probabilities of position matched correctly in each zone are 

. 

With this method, for example, if the first measurement point is matched in zone one, 
the start point should be at Door 1, and the coordinates of Door 1 will be set as the 
position initial value of the Kalman filter.  

As for the initial values of velocity, the average velocities on x-axis and y-axis during 
the whole experiment are applied as the initial values. 

6.3 Error Analysis 
In our tracking system, the root-mean-square (RMS) error is utilized to evaluate the 
tracking accuracy. The RMS error represents the sample standard deviation of the 
differences between the filtered result and the true position. We assume that the tracking 
target is moving with a constant velocity. Within each time slot, one estimated position 
is obtained. So according to the total number of time slots, the estimated walking route 
can be divided into several points uniformly and the true route is divided as well. Then, 
each estimated point corresponds to a true position. With the formula below, the RMS 
error distance rmsD can be calculated.  
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where, ,rms xD is the error distance in x dimension. ix is the x  coordinate of true position. 
ˆix is the x coordinate of estimated position. ,rms yD is the error distance in y dimension. 

iy is the y  coordinate of true position. ˆiy is the y coordinate of estimated position. n  is 
the total number of time slots. 
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6.4 Tracking Results and Evaluation 
In this part, two tracking experiments results are presented. The first experiment is a 
constant-speed-walking test from door to door. The second one is an experiment of 
walking along a large square with constant velocity. 

Applying the tracking system one as described before, data of target movement is 
processed with EM algorithm. The start point is decided as the initial value of Kalman 
filter. Then, the estimated coordinates are taken as the observation values of Kalman 
filter. Optimal R and Q have been loaded to Kalman filter as well. The experiment 
conducted in a few people environment and the tracking results are shown below. 

1) Walking from door to door 

In the first experiment, a tester walked along the green line which shows in figure 6.4 
with a constant speed (approximately equals to 1.3 m/s). The start point and the end 
point are two doors of this entrance hall.  

 
Figure 6.4. Tracking Result with EM Algorithm from Door to Door 

In figure 6.4, the red “*” represent the matching results with KNN. The green line 
represents the true walking route and the blue line represents the tracking result with 
Kalman filter. The green point on the figure is the start point and the red point 
represents the end point. Marks and lines in all following figures of tracking results 
have the same meaning as this figure. The RMS error is 1.58 meters. It can be seen that 
the tracking result is relatively close to the true walking route.  

2) Walking along a square 

In this experiment, as the figure shows below, a tester walked along a large square 
which presents by the green line, with a constant speed. In the square, the shadowing 
part presents a brick wall. So, in a relatively complicated environment the direction of 
walking has changed three times. This experiment is used to evaluate the performance 
of our tracking system when the tracking target walks in a nature pattern. The tracking 
result is shown in figure 6.5. 

 
Figure 6.5. Tracking Result with EM Algorithm along the Square 
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The RMS error is 4.88 meters in this experiment. The tendency of the movement can be 
reflected by the tracking result. However, the turning points are not matched clearly.  

In conclusion, this tracking system works well with a straight-line walking pattern. The 
result of the first experiment gives an approving RMS error distance. However, if the 
target direction changes frequently, the tracking result may not reflect the true route 
accurately. Since the RMS error in the second experiment is about 5 meters, it seems 
unreliable to use this system to track a square or circle route with small radius. An 
advantage of this tracking system is that there is no strict requirement on 
synchronization. NTP can provide a satisfactory synchronization among all units. 
However, a limitation of this tracking system is that it is hard to track a short time 
movement. Since we only get one estimated result within each second, a movement 
with short duration cannot provide sufficient observation values for the Kalman filter. 
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7 TRACKING SYSTEM TWO 

In chapter 6, through the application of expectation maximization (EM) algorithm, a 
tracking system based on the average RSS within one second is introduced. In this 
chapter, another tracking system is implemented by utilizing the instantaneous value of 
RSS. This system involves new methods of time axis adjustment and synchronization, 
as well as a new matching algorithm. In the end, comparison between the tracking 
results from our two tracking systems will be presented. 

7.1 Time Axis Synchronization 
A simple idea to realize a tracking system by instantaneous value of RSS is to match the 
captured packets one by one. Since a single fingerprint consists of five RSSs from five 
sniffers, high precision time synchronization among five sniffers is a precondition to 
implement the tracking system two. As described before, when a packet transmits 
between the mobile device and the AP, all five sniffers attempt to capture this packet. 
However, according to our captured packets (captured information includes the RSS, 
MAC address, probe request and exact time of the received packet), there is no identity 
information such as packet number. In a good data transmission condition, there will be 
up to 50 packets collected by a sniffer in one second. It is difficult to distinguish which 
five RSSs from five sniffers corresponding to a certain transmitted packet. Furthermore, 
not all transmitted packets will be captured by the sniffers, since every sniffer has a 
packet loss mechanism and the ability of capturing the Wi-Fi data packets is limited by 
the wireless card. Also, received packets with weak signal strength are identified 
as interference noise which will be dropped by sniffer. Therefore, according to the order 
of packets received, the one-to-one correspondence between different sniffers is 
unreliable. 

Another problem is that the same packet collected by different sniffers could be saved in 
a different time slot. Although the NTP has been utilized to establish a time server and 
synchronize the local time between each sniffer (section 3.2.1), due to the packet traffic 
time and duration of packet processing, the arrival time of a packet in different sniffers 
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are not exactly the same. Thus, the synchronization by NTP is no longer fulfilling the 
tracking system two and the time axis adjustment is necessary for the collected data. It 
mainly aims at establishing accurate one-to-one correspondence between time slot and 
broadcast packet. 

In a word, instead of using the EM Algorithm to estimate RSS in one second, the 
tracking system two requires a new algorithm to realize the calculation of time 
difference and the adjustment of time axis. With this system, the movement details in 
one second can be illustrated. 

7.1.1 Measurement Data Analysis 
In order to distinguish which five RSSs belong to the same transmitted packet, special 
identification information must be determined. We found that the probe requests with 
specific SSID can be used as the packet identification. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

Figure 7.1. Structures of Measurement Data from Five Sniffers Separately 

In figure 7.1, (a) to (e) illustrate parts of measurement data collected by Raspberry Pi #1 
to #5. Since mobile device has connected to the AP with SSID “Test Only”, we call the 
captured packets with probe request “Test Only” the ID packets. A mobile device 
broadcasts this kind of packet every seven seconds. And during each time of 
broadcasting, it repeats sending the ID packet 4 times. So, if ID packets appear 4 times 
in all five sniffers within the same time period of one second, we can find a one-to-one 
corresponding relationship among these captured packets. And with this relationship, 
the time differences between time axes of different sniffers can be determined and data 
from different sniffers will be able to be synchronized.   
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7.1.2 Method of Data Processing 
In most case, there are more than one group of ID packets are recorded. The time 
differences between different sniffers can be obtained by subtracting the time stamps of 
ID packets. Therefore, the average value of time differences will be calculated by 
several groups of ID packets, and it will be utilized to adjust the time axis. The time axis 
of Raspberry Pi #5 is regarded as the standard time axis, since it’s in the middle of the 
indoor environment and the NTP time server is settled on it. After the time axis 
adjustment, there is still a tiny time difference in hundred-microsecond level (  
second) between sniffed time of the same packet. In other word, the precision of 
synchronization is in second level now.  

Next, the duration of time slot should be determined. Generally, the time difference 
between different sniffers is in hundred-microsecond level ( ), and the minimum 
time difference between two received packets is in microsecond level ( ). Thus, the 
new time slot should be set as the maximum value of the time differences between 
sniffers. In a special case, if there is no ID packet for the time axis adjustment has been 
captured, the time slot will be set to 0.1 second. 

After that, the time axis will be evenly divided by the new time slot. Within one slot, the 
records are regarded as broadcasted from the same packet. The new structure of 
measurement data is shown below. 

 
Figure 7.2. Structure of Measurement Data after adjustment 

In figure 7.2, five RSS values in one row constitute a RSS vector corresponds to a time 
slot. The duration of time slot will also be used as the update time for the Kalman filter. 
To be noticed, the “0” in measurement data does not stand for the value of signal 
strength, it means no data has been collected. 

Since not all five RSS values are known in one RSS vector, the matching algorithm we 
used in Chapter 6 has to be abandoned. A new matching algorithm should be discussed 
to deal with those partly known RSS vectors.  

7.2 Matching Phase 
Because of the noise floor, a broadcasted packet may not be captured by all sniffers. In 
an ideal situation, one packet is captured by all five sniffers. Then we can directly match 
this point with our fingerprint database by calculating the Euclidean distance and select 
the minimum one (the NN Algorithm), as we discussed in section 6.2.1. The most 
likelihood reference point can be selected as the current position of the tracking target.  
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In another situation, within a time slot, a broadcasted packet is captured by four of five 
sniffers. It is reasonable to utilize these four RSSs to calculate and select the nearest 
reference point. The matching result will still be reliable.  

However, if a packet is captured by three or two or even one sniffer, a new strategy 
should be applied to help selecting the matching point. For example, a packet was 
captured by Raspberry Pi #1 and Raspberry Pi #2. Then the fingerprint can be recorded 
in form of 1 2 3 4 5( , , , , )t t x x x , where 1 2,t t  are the captured RSSs, and 3 4 5, ,x x x  are 
unknown. First, calculate the Euclidean distance between the 1 2,t t  and the fingerprint 
database by  

( ) 2 ( ) 2
1 1 2 2( ) ( )i i

id s t s t  
where 1 210i . Second, the reference point with the minimum Euclidean distance

minid is selected.  However, since only two of the five RSS are known, this selected 
reference point may not reliable. In one case, there are several reference points with the 
same minid  are selected through this way. In the other case, the id  of the true reference 
position cannot be selected since it is not the true minid  if 3 4 5, ,x x x are known to us. In 
order to solve these two special cases, a value of is set as a threshold which helps to 
select all the possible matching points with id  close to minid .  The reference points with 

mini id d are selected as the potential matching points. In the fingerprint database, 
the rest three values of the potential matching points are known. Since the reason of 
missing data in most case is that the RSSs are too weak to be sniffed, we calculate the 
sum of the rest three values of the potential matching points by ( ) ( ) ( ) ( )

3 4 5
i i i i

hs s s s . 

Then the most likelihood result should be the matching point with the weakest ( )i
hs . 

Finally, the potential matching points with the minimum ( )i
hs  will be regarded as the 

final matching point.  

As for the situation of no sniffer or only one sniffer captures a certain packet within a 
time slot, the prediction of the Kalman filter from the previous stage should be regarded 
as the current position of the tracking target. 

7.3 Matching Results and Evaluation 
In this section, the raw experiment data in section 6.4 are processed with the algorithms 
we have introduced in this chapter. Evaluation of tracking system two is presented. We 
also make a comparison between the results we obtained by tracking system one and 
two. 

1) Walking from door to door 

Because of the time slot is larger than the minimum time difference between packets, 
there may be several records within one time slot. Two methods are discussed here to 
solve this problem. 
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a) Method One for Solving Several Records in One Time slot 

The first method is taking the first record of each time slot. Generally, the normal 
walking speed of a human being is 3 to 4 miles per hour, which is around 1.34 to 1.8 
meters per second. Assuming that the time slot is 0.18 second, it means that in this time 
slot, the approximate walking distance is around 0.32 meter. Then, we can make 
a reasonable assumption that the RSS in a single time slot does not change a lot with in 
a time slot, since the tracking target almost keeps its position within a (  duration. 
Therefore, we take the first recorded RSS value within each time slot as the observation 
value of the Kalman filter. With this method, the tracking result is shown in figure 7.3. 

 
Figure 7.3. Tracking Result with Method One from Door to Door 

In this case the RMS error is calculated as 2.17 meters. 

 

b) Method Two for Solving Several Records in One Time slot 

The second method is taking the mean value of all RSSs within each time slot. In 
method one, the data processing is based on the assumption that the RSS is stabile 
within each time slot. However, if the assumption is not correct, method one can result 
in great error. Thus, in method two, all RSSs within one time slot are averaged as the 
corresponding RSS vector for each time slot. With the same Kalman filter in method 
one, the tracking result is shown in figure 7.4. 

 
Figure 7.4. Tracking Result with Method Two from Door to Door 

The RMS error is 2.11 meters in this situation. Comparing the tracking results with the 
method one, the method two has a better tracking performance because it has a smaller 
RMS error. Therefore, in the following tracking test along the square, we only estimate 
the route with the second method. 
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2) Walking along the square 

 
Figure 7.5. Tracking Result with Method Two Along the Square 

The RMS error distance is 6.59 meters in this experiment with tracking system two. 
Comparing with the tracking result of tracking system one, the RMS error is 1.71 
meters larger. However, the tracked result seems fixed well to the true route square. 
Admittedly, the RMS error is a significant evaluation standard, sometimes a good-
looking tracking route may give a higher error distance. 

In conclusion, the RMS error distance of walking pattern of door-to-door is acceptable 
but not as good as the result obtained by system one. The RMS error calculated in 
experiment two is larger than system one as well. However, the good-looking tracking 
route shows that it has better performance when the movement and environment is 
complicated. Furthermore, since the time slot is much smaller than one second, we can 
have sufficient observation values for Kalman filter even if the tracking time is short. 
Thus, the tracking system two has potential to track a short time movement. 
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8 INFLUENCE FACTORS 

In order to investigate how the influence factors affect the tracking accuracy, three main 
aspects involves target speed, shadowing and type of mobile device are discussed in this 
chapter. The movement pattern of a tester holding an iPad mini walking along a known 
straight line in x-axis direction with a speed of 1.3 m/s was considered as the standard 
walking pattern. Three control experiments are designed to investigate how these three 
influence factors affect our tracking systems. Tracking results of experiments for 
different influence factors are presented from section 8.1 to section 8.3. Then details of 
performance evaluation with comparisons of all factors will be given in section 8.4. 
Section 8.5 gives a suggestion against the factor of target speed.   

8.1 Speed of Target 
In order to compare with the standard walking pattern, a tester with an iPad mini walked 
along the known path with a higher speed. The standard speed was 1.3 m/s and the 
higher speed was 2.5 m/s (both speeds were calculated after the experiment). For this 
group of control experiment, the same raw data were applied with two different tracking 
systems which were introduced in Chapter 6 and Chapter 7. In this way, we can clearly 
analyse how serious will the speed factor affect our systems and which system has a 
better performance.  
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1) With tracking system one 

 
(a) 

 
(b) 

Figure 8.1. Tracking Result with Tracking System One with Normal Speed 1.3m/s (a) and High 
Speed 2.5m/s (b) 

These two figures in figure 8.1indicate the tracking results with tracking system one 
with different speeds. The RMS error for (a) is 1.26 meters and for (b) is 2.35 meters. 

2) With tracking system two 

 
(a) 

 
(b) 

Figure 8.2. Tracking Result with Tracking System Two with Normal Speed 1.3m/s (a) and High 
Speed 2.5m/s (b) 

Figure 8.2 indicates the tracking results with tracking system two with different speeds. 
The RMS error for (a) is 2.46 meters and for (b) is 3.83 meters. 

8.2 Shadowing 
As mentioned before, another experiment was designed and performed to indicate the 
effect of shadowing. A tester put the iPad mini in his pocket and walked along the 
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known path with a normal speed (approximately equals to 1.3 m/s). Compared with the 
standard walking pattern, the tracking results from different systems are shown in figure 
8.3 and 8.4. 

1) With tracking system one 

 
(a) 

 
(b) 

Figure 8.3. Tracking Result with Tracking System One with Device in hand (a) and in Pocket (b) 

Figure 8.3 (a) is the result of standard pattern with tracking system one, which is 
the same as the figure 8.1 (a). Figure 8.3 (b) is the result of the situation which the 
tester put the iPad in pocket and the RMS error is 1.3 meters. 

2) With tracking system two 

 
(a) 

 
(b) 

Figure 8.4. Tracking Result with Tracking System Two with Device in hand (a) and in Pocket (b) 

Figure 8.4 (a) is the result of standard pattern with tracking system one, which is 
the same as the figure 8.2 (a). Result in figure 8.4 (b) has a RMS error of 3.08 
meters. 
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8.3 Type of Mobile Device 
In order to figure out whether different types of mobile devices affect the tracking 
accuracy, we performed an experiment with an iPhone 4s. A tester held an iPhone 4s in 
hand walked along the known path with a normal speed (approximately equals to 1.3 
m/s). The tracking results from different systems are shown in figure 8.5 and figure 8.6.  

1) With tracking system one 

 
(a) 

 
(b) 

Figure 8.5. Tracking Result with Tracking System One with Device iPad mini (a) and iPhone 4s (b) 

Figure 8.5 (a) is the same as figure 8.1 (a). The iPhone 4s tracking result with 
tracking system one has a RMS error of 1.5 meters. 

2) With tracking system two 

 
(a) 

 
(b) 

Figure 8.6. Tracking Result with Tracking System Two with Device iPad mini (a) and iPhone 4s (b) 

Figure 8.6 (a) is the same as figure 8.2 (a). The tracking result in figure 8.6 (b) has 
a RMS error of 2.14 meters. 
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8.4 Comparison and Error Distribution 
The table 8.1 is given to present the comparisons of RMS error distances with different 
influence factors. The accuracy changes in percentile compared with the standard 
walking pattern are also presented in this table.  

 

Tracking System One Tracking System Two 

RMS error Accuracy 
change RMS error Accuracy 

change 

Standard 1.26 meters  2.46 meters  

High Speed 2.35 meters -86% 3.83 meters -56% 

Shadowing 1.30 meters -3.2% 3.08 meters -25% 

Different Type 1.50 meters -19% 2.14 meters +13% 
 

Table 8.1 RMS Errors and Accuracy Change with Different Influence Factors 

According to the table, we can conclude that both speed and shadowing factors decrease 
the tracking accuracy. For tracking system one, it can be seen that it is sensitive to high 
speed, where the accuracy decreases by 86%. However, it can resist the influence of 
shadowing very well. The tracking result of iPhone 4s states an accuracy decrease of 
19%. As for the tracking system two, it can be found that the ability of resist high speed 
(-56%) is better than tracking system one. Shadowing factor leads a 25% decrease in 
accuracy. However, the accuracy for iPhone 4s has increased 13%. Thus, it is hard to 
conclude how the types of mobile devices affect our tracking systems.  

In order to analyse the effects of different factors in details, the CDF of error 
distribution is given in the following figure 8.7. 
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(a) 

 
(b) 

Figure 8.7. CDF of Error Distance with Tracking System One (a) and Two (b) 

Diagrams in figure 8.7 indicate the error distributions with tracking system one and two, 
where the blue line represents the distribution of standard walking pattern. The green 
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line is obtained from the test when the tester put the mobile device in pocket, and the 
red line corresponds to the case when the tester is running instead of walking in the 
corridor. The yellow line stands for the distribution of using iPhone 4s as the tracking 
target. 

The comparison shows that, all these three influence factors impact the system 
performance. Speed is the most significant factor, which leads to larger RMS errors in 
both tracking systems. The shadowing factor reduces the accuracy not serious but still 
makes the maximum error distance larger. As for different types of mobile devices, it 
does have some effects on the tracking results. However, in tracking system two, using 
iPhone 4s instead of the original iPad mini improves the accuracy. Since we do not have 
enough knowledge of the transmit power and types of antenna of different devices, it 
makes the influences with different devices uncertain. In general, the tracking system 
one is more stable and reliable and has a better performance against most kinds of 
influence factors.  

8.5 Improvement 
As mentioned before, the speed of target is a major influence factor which reduces the 
tracking accuracy significantly. In order to improve the tracking result, we adjusted the 
process noise Q in tracking system two.  As [23] states, we might reduce the magnitude 
of  if the user seems to be moving slowly, and increase the magnitude if the dynamics 
start changing rapidly. 

       , 

where the original values of  

. 

In order to study how process noise influence the performance of Kalman filter, we 
multiplied a coefficient K to the process noise 

. 

Keep changing the coefficient from 1 to 2000, a curve of error distance is plotted to 
indicate which K is the optimal value to this high speed movement.  
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Figure 8.8. Error Distance with Coefficient K 

From the figure 8.8, when K equals to 700, we can get the minimum RMS error which 
is 2.53 meters. The fixed process noise is 

        

The error distance analysis with coefficient K shows that we can improve the system 
performance through changing the values of process noise when the speed of target is 
different. Thus, design a dynamic Kalman filter against the influence of speed could be 
a good idea. And this could be a good topic to study in the future. 
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9 CONCLUSIONS AND FUTURE 
WORKS 

In this thesis, a Wi-Fi based tracking system of cell phone in a certain indoor 
environment has been implemented. Any mobile device with Wi-Fi function on can be 
tracked by this system. Through the self-designed tracking system and the Kalman filter, 
the target tracking accuracy is about 2 meters when the target moves in one direction. 
And when the target moves along a square or in a natural pattern, the RMS error is 
within 5 meters. The accuracy of the system meets our expectation for this thesis 

Snoopy Framework supports the data collection part with five configured Raspberry Pis. 
The Evil Twin Attack is used to build the rogue AP and increase the network traffic 
which promises a continuous tracking. In order to solve the packets dropping problem 
when the RSS below the noise floor , the Expectation Maximization (EM) 
Algorithm for truncated data has been applied. Finally, an adaptive Kalman filter is used 
to improve the tracking accuracy. 

9.1 Contributions 
In this thesis, an indoor tracking system which based on the indoor fingerprinting 
technique was designed and implemented.  

Compared with traditional fingerprinting system, our system is able to track any mobile 
device in a target unknown condition. Although it was realized in a hacking way, none 
of private information and law was violated. 

In order to improve the tracking accuracy, we applied two data processing methods and 
compared the tracking results with error analysis. One method utilized the average of 
RSS values with KNN Algorithm, and the other method utilized the 
instantaneous value of RSS with NN Algorithm.   
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We configured the Raspberry Pi on Linux operating system for collecting data from the 
mobile device. Evil Twin Attack was implemented by establishing a rogue AP, which 
can be used to increase the network traffic in wireless connection and realize the 
continuous tracking. 

9.2 Drawbacks 
It’s regrettable that, limited by the equipment, our indoor tracking system cannot 
achieve high-accuracy localization in crowed environments. It only can be used in 
indoor environments with fewer people, because of the complexity of environment and 
the Wi-Fi signal strength is easily influenced by shadowing, speed and other factors. 
The sharply turning and variable motion also lead to large error distance. 

9.3 Future Work 
In this thesis, the indoor environment was a two dimensional model, which means we 
could not locate target in 3D, e.g., we cannot differentiate between a target on the stair 
case and another target right under it on the ground level. 

When the target is out of the region of the experiment environment, the tracking system 
still estimate the target position based on the existing fingerprint database, which would 
lead to huge tracking error. A new algorithm to judge whether the target is out of region 
should be developed in the future. 

Currently the sniffers use the arrival time of the broadcasted packet to realize the time 
axis synchronization. However, the adjustment of time difference is not ideal. If the 
departure time of the packet is available, the system performance can be improved 
further.  
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