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Abstract
The popularity of the continuous time ∆Σ A/D converter has increased dra-
matically in recent years. A major limitation in resolution in such a struc-
ture is unit element component mismatches during chip fabrication in the first
feedback DAC. Such mismatches cause the DAC to become non-linear, which
degrade the signal to noise ratio of the whole ∆Σ modulator. In this work, a
4-bit, third order, single-loop, continuous-time ∆Σ converter with digital back-
ground correction of component mismatch in the first DAC has been designed,
simulated and fabricated in a 65nm CMOS process. The modulator is clocked
at 144 MHz with an oversampling ratio of only 8. The mismatches found in
the first feedback DAC is digitally estimated based on cross-correlation and
correction can be done using derived correction factors thereafter. In the ana-
log modulator, low-power loop filter with excess loop delay compensation is
implemented. The feedback loop is formed by resistive current mode DAC.
The SNDR is 67.5dB within 9MHz bandwidth. The digital correction runs in
background.
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Chapter 1

Introduction

1.1 Motivation

∆Σ AD converters have increased in popularity in recent years. To gain higher
SNR in the overall system, designers are willing to use a higher order structure
with a multi-bit quantizer. Thus multi-bit feedback DACs are required which
causes a problem. The multi-leveled DACs are not perfectly linear, and may
result in a severe performance degradation. The nonlinearity in the outer most
DAC placed at the input impairs the SNR the most because any mismatch in
it will be directly feeded into the system in parallel with the input signal. The
more errors that occur, the lower the SNR becomes for the system.

In this work, we implemented a digital correction circuit [1] to compensate
for the mismatch found in the first DAC to regain the SNR. The system’s output
value is the subtraction of the converted digital output signal and the small
correction value. Therefore, the ideal SNR can be mostly recovered. Figure 1
is the System block diagram. The analog part is the classical CIFB continuous
time Delta-Sigma converter and the digital part is the digital correction.

This ADC targets to the cellular standard LTE which has a 9MHz band-
width. So that the input bandwidth is also 9MHz in our system. We chose
an OSR value equals 8, which comparing with the state of art is quite small.
Thus, the sample frequency of our system is 144MHz. Designed ideal SNDR is
70dB.

1.2 Advantages of CT structure

In the analog part, continuous time CIFB (Cascade of Integrators with dis-
tributed FeedBack) loop filter topology is chosen. The advantages of the CT
∆Σ ADC are all based on the displacement of the sampler inside the modulator
loop [2], thus:

• Allowing the filters to be implemented as continuous-time circuits, con-
sequently reducing the speed requirements of the filters

1
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1.3 Mismatches in the system 3

• Providing an implicit antialiasing filter

• Not requiring a precise input sample and hold circuit

More over, continuous-time(CT) loop filters have speed advantages over their
discrete-time(DT) counterparts, enabling a higher clock rate or a lower power
consumption. [3] Thus it has been a good choice in our project design.

The starting point of designing a CT loop filter is by looking at an equivalent
DT CIFB modulator. ‘The Delta-Sigma Toolbox’ for Matlab is oulined in the
book Understanding Delta-Sigma Data Converters [4] is a traditional way to
implement a DT structure. After that, we conduct the DT-CT conversion
using the impulse invariant transform to generate the equivalent CT structure.
Finally, the CT modulator is found by doing some mathematical conversions
and compensation for excess loop delay(ELD). Details on this part will be
covered in chapter 2.

1.3 Mismatches in the system

When designing a chip, there is a spread in component value due to the non-
ideal fabrication process, misalignment of the mask, gradients in the wafer
and temperature variations introduce mismatches between components. There
are ways to compensate these mismatches so that the fabrication phase does
not degrade the performance of our design. For example, common-centroid
arrangement in the layout can multigate process gradients. However, even
with help of modern technology, small mismatches from random variations still
exist and would affect the performance. These mismatches are what we mainly
focus on in this work and should be corrected by other means than layout.

In the structure shown in figure 1, mismatch inside the outer-most DAC
DAC1 could be regarded as an additional input source to the system. If this
mismatch component is large enough, it impairs SNDR a lot. Therefore, we
introduced a digital correction block placed at the output of the analog modu-
lator to solve this problem. It calculates the mismatch in each unit element in
DAC1, represented by the correction coefficients cc.The corrected output yt(n)
is the subtraction of original digital output yd(n) and the calculated mismatch
value yc(n). If the correction factors could successfully represent all the mis-
matches, there will be no mismatch component at the final output V(n) after
subtraction of the injected test signal e(t).

1.4 Organization of this work

Following this introduction, chapter 2 discusses the analog part, especially loop
filter design. Some mathematical derivation of the coefficients and simulation
result are included. Next chapter, chapter 3 deals with the digital correction
mechanism, which mainly covers cross-correlation based mismatch coefficients
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generation. Chapter 4 presents the system level simulation in Matlab. It
demonstrates how efficient our system could eliminate mismatch produced in
outer-most DAC. Chapter 5 and chapter 6 present circuit level implementation
of both analog and digital part. Finally, chapter 7 contains a conclusion of this
work.



Chapter 2

Continuous-time ∆Σ modulator design

This chapter illustrates the design of the analog part in the system–the ∆Σ
modulator. It contains three major parts:

• Loop filter (LF) design

• 4-bit quantizer design

• Feedback DAC design

2.1 Introduction

An ADC is a device that converts a continuous physical quantity (usually volt-
age) to a digital number that represents the quantity’s amplitude [5]. The
ADC acts as a ‘bridge’ that connects the sensor’s analog output to the digital
processor. For example, everything we record in a microphone, or the temper-
ature sensed by a temperature sensor can be processed by the processor. A
simple ADC consists of two major parts: a sample-hold(S/H) block (Sampler)
used for uniform sampling in time, and a quantizer to quantize the signal in
amplitude. According to Nyquist theorem, the original baseband spectrum can
be reconstructed when:

fS ≥ 2fB = fN (1)

where fN is the Nyquist frequency, fS is the Sampling frequency and fB is the
Bandwidth. As already mentioned in [6], an antialiasing filter is a must in the
Nyquist-Rate ADC design, so that higher frequencies beyond the bandwidth
does not alias with the in-band signal after periodical sampling. Because this
filter is placed at the input stage of the system, it’s quality influences the
ADC performance. Thus a high quality S/H block is necessary. The operation
principle of an ADC is illustrated in figure 2.

Nyquist rate ADCs do not have any feedback loop. Thus, there is no
memory of previous samples, and there exists an one-to-one correspondence
between the input and output samples. Each input sample is seperately pro-
cessed, regardless of the earlier input samples [4]. The complete quantization

5



6 Chapter 2: Continuous-time ∆Σ modulator design

fs/2

Sample/Hold
y(n)u(n)ua(t)u(t)

Antialiasing

Filter
Quantizer

Figure 2: Operation principle of an ADC

noise uniformly lies in the frequency band of interest. When high resolution
is demanded, the matching of internal analog components become very im-
portant. Therefore to achieve high ENOB, it is wise to choose oversampled
Noise-Shaping converters–∆Σ ADCs. Such structure can ‘push’ the quantiza-
tion noise from in-band to out-band, which is usually called Noise Shaping. It
is capable to gain high SNR with only a small number of output bits at rea-
sonably high conversion speed. Figure 3 is the FFT of a Nyquist rate ADC’s
output and figure 4 is the result from a 3rd order 4-bit DT ∆Σ ADC output.
In each figure, red line indicates the upper edge of the bandwidth. The noise
shaping effect can be clearly seen for the ∆Σ ADC.

0 0.2 0.4 0.6 0.8 1
−120

−100

−80

−60

−40

−20
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Figure 3: A Nyquist ADC: BW:9MHz, fS :18MHz,12bit quantizer
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Figure 4: An oversampled ADC: BW:9MHz, fS :144MHz, 4bit quantizer,
order:3

2.2 Discrete-Time(DT) modulator design

To begin with, a 3rd order CIFB DT modulator is chosen as reference. That is
because large numbers of existing topologies are based on Discrete-Time struc-
ture, and DT simulation is faster. Figure 5 is the corresponding block diagram
of the structure. It contains a cascade of three delaying integrators, with the
feedback signal along with the input signal feeding into the input terminals
of each integrator by multiplying corresponding weight factors a1,2,3 and b1.
The feedback path -g1 together with two latter integrators form a resonator
used to move the NTF zero from DC to somewhere in-band to improve SNR.
Besides, the Delta-Sigma toolbox in [4] provides a variety of useful functions,
which could ease the design phase.

Firstly we use the function ‘synthesizeNTF’ in the toolbox to synthesize a
noise transfer function (NTF) for our delta-sigma modulator with out-of-band
gain Hinf=6:

NTF =
(z − 1)(z2 − 1.908z + 1)

(z − 0.1808)(z2 − 0.02173z + 0.08153)
(2)

Computed CIFB coefficients are listed in table 1. Toolbox function ‘simulat-
eDSM’ then simulates the generated DT modulator by providing NTF and the
input signal. Figure 4 shows the result.

To evaluate the maximum achievable SNR and its corresponding input sig-
nal amplitude, tool ‘simulateSNR’ is used. As shown in figure 6, maximum
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SNR of this DT modulator is 72.2dB at -2dB input amplitude, which meets
our specification of 70 dB. For a full scale input, the modulator will be unstable
and the SNR drops dramatically.

Figure 5: 3rd order DT CIFB structure

Table 1: DT coefficients

Coefficient Value
a1 0.8682
a2 2.5907
a3 2.7975
b1 0.8682
c1, c2, c3 1
g1 0.0897

2.3 DT-CT conversion

The next step in modulator design is doing a DT to CT conversion. A lot
of methods can be found to achieve this conversion, such as The modified Z-
transformation and The impulse-invariant transformation. [3] We chose the
latter one and the derivation process as follow (The local feedback g1 is tem-
porarily ignored):

• According to the basic theory of Z-Transform, the impulse response of
1st, 2nd and 3rd order DT integration is illustrated in table 2:

Table 2: The impulse response of 1st, 2nd and 3rd order DT integration

Z-domain Impulse response
a3,DT
z−1 a3,DT
a2,DT
z−12 a2,DT (n− 1)

a1,DT
z−13 a1,DT (n

2

2 − 3
2n+ 1)
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Figure 6: Input amplitude vs. output SNR curve

• Sampled impulse response for 1st, 2nd and 3rd order CT integration is
shown below in table 3, where α and β are the starting and the ending
point of the feedback DAC pulse (see figure 7):

t/Ts

DAC(t)

1

α β1

Figure 7: The starting and the ending point of a feedback DAC pulse

Table 3: The impulse response of 1st, 2nd and 3rd order CT integration

S-domain Impulse Response
[ 1s (e−sα3T − e−sβ3T )]· a3,CTs a3,CT (β3 − α3)

[ 1s (e−sα2T − e−sβ2T )]· a2,CTs2 a2,CT [(β2 − α2)n+
α2

2−β
2
2

2 ]

[ 1s (e−sα1T − e−sβ1T )]· a1,CTs3
a1,CT

2 [(β1 − α1)n2 + (α2
1 − β2

1)n+
β3
1−α

3
1

3
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• Sampled CT impulse response should match DT impulse response, as
equation 3 shows. Thus, the conversion demonstrated in table 4 is con-
ducted. When the feedback DAC waveform(RZ or NRZ) and it’s starting
point α and ending point β are given, CT coefficients can be calculated
from their DT equivalent. A new parameter is introduced in the equa-
tion: γi = min(βi, 1). [3]

a3,DT+a2,DT (n− 1) + a1,DT (
n2

2
− 3

2
n+ 1) =

a3,CT (β3 − α3) + a2,CT [(β2 − α2)n+
α2
2 − β2

2

2
]+

a1,CT
2

[(β1 − α1)n2 + (α2
1 − β2

1)n+
β3
1 − α3

1

3
]

(3)

Table 4: CT coefficients vs. DT coefficients

CT DT
a1,CT

a1,DT
β1−α1

a2,CT
a2,DT+

a1,DT
2 (α1+β1−3)
β2−α2

a3,CT
a3,DT+a2,DT [

1
2 (α2+β2)−1]+a1,DT [1− 1

6 (α
2
1+α1β1+β

2
1)+

1
4 (α2+β2)(α1+β1−3)]

β3−α3

a4,CT
2a3,DT−2a3,CT (γ3−α3)−a2,CT [2(γ2−α2)+α

2
2−γ

2
2 ]−a1,CT [(γ1−α1)+(α2

1−γ
2
1)+

γ31−α3
1

3 ]

2

2.4 Excess Loop Delay (ELD) in CT modulator

Due to the finite respond time of the DACs and the required decision time in the
quantizer, feedback pulse from DACs could not start exactly at the quantization
time. This delay is called Excess Loop Delay(ELD) and can lead to instability
and changes in the NTF. In this design, a fixed 50% delay between feedback
DACs and quantizer is added so that quantizer has sufficient decision time.
Such a delay is implemented by injecting inverting clock signals. Without ELD
compensation, the system will not work as intended. The basic idea is to realize
a fast feedback loop around the quantizer (-aPI path in figure 8) [7–9]. However
in this way, one more DAC around the quantizer is required to satisfy such
implementation which consumes extra chip area. In this work, a feed-forward
proportional path through the third integrator which is called PI-integrator is
implemented (Gain block KPI and the last integrator in figure 1). It was first
proposed in [10] and used in [11]. Only an additional resistor is required instead
of a DAC in the schematic. The KPI coefficient is calculated by comparing
this structure with the direct feedback path structure shown in figure 8.
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Figure 8: Direct feedback path ELD compensation

2.5 Other nonidealities and optimization

Table 5: CT coefficients

Coefficient Value
aCT1 0.8682
aCT3 0.7292
b1 0.8682
c1 0.2500
c2 1.6667
c3 2.4000
g1 0.0538
k2 0.7143
kP I 0.9497

In the loop filter implementation, other non-idealities still exist. For ex-
ample, OP-amplifiers in the continuous-time integrators are not ideal. The
finite Gain-Bandwidth(GBW) and the additional gain error(GE) influence the
performance of the loop-filter. As mentioned in paper [1], the real integrator
can be modeled by an ideal integrator with additional delay and gain error
(figure 9). In circuit level simulation, we broke the feedback loop and check the
step-respond of each DAC. The phase shift τA1,2 and τA3 to corresponding inte-
grator’s output is measured. Only the delay in the third integrator dominates in
this work. To ease calculation, delays in the first and the second integrator have
been ignored. Thus the total additional delay is τD = (0.18 + 0.5)Ts = 0.68Ts,
where Ts is the sample period. Putting α = 0.68 and β = 1.68 into the equa-
tion in table 4, new CT coefficients could be derived. Further more, the full
scale in circuit level quantizer (533mV) is much lower than the input signal’s full
scale(1.2V), thus scaling factors c1,c2 and c3 should be modified to meet the dy-
namic range of the quantizer. We set c3 = 2.4, so that the maximum input volt-
age to the quantizer will not above the full scale. Then c1, c2, aCT3, k2 and g1
should be modified accordingly. Finally, to further save chip area and decrease
power consumption, second feedback DAC is replaced by a feed-forward gain
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path (K2) from the first integrator’s output to the third integrator’s input.
This path has the same effect comparing with using a DAC feedback loop.
Final loop-filter structure is the Loop Filter part in figure 1 and derived CT
coefficients are illustrated in table 5.

τA1,2 t

Ideal

Finite GBW

Model

τA3 t

Figure 9: Modeling of finite GBW induced delay and gain-error



Chapter 3

Digital calibration unit

This chapter demonstrates the implementation of the digital part in our system.
It contains three major parts:

• Division

• Crosscorrelator

• Mismatch coefficient generation

3.1 Introduction

Error shaping and error correction technique are the two major techniques for
linearization ∆Σ modulator architectures. Error shaping techniques also known
as dynamic element matching work very reliable, but they do not support low
OSRs. Error correction techniques can be implemented in either analog or
in digital domain. When we compensate errors in the digital domain, the
mismatch error to be corrected should be determined in advance.

The method of determining unit element gain errors used in our implemen-
tation is employing the correction techniques as presented in [1]. The function
is outlined as follow.

As shown in figure 1, DAC on the feedback loop of the ∆Σ modulator is
extended by one additional unit element t and a multiplexer. This extension
allows the insertion of test signal Et into the modulator through a selected unit
element in the DAC. In the digital domain, the same multiplexer is used for
background correction. The correlation based error estimation is realized by
the remaining part of the digital domain in figure 1.

First, the gain mismatches of the unit elements in the DAC need to be
estimated. Therefore, a digital test signal Et is inserted through a selected unit
element in the DAC, which appears again at the output of the ∆Σ modulator.
A characteristic value of individual gain k1 bi, where i is the number of the unit
element under test, can be calculated through the crosscorrelation between test
signal Et and output signal from the modulator. With the multiplexer, the test
signal Et is switched rotationally into any unit element i as shown in figure 15.

13



14 Chapter 3: Digital calibration unit

A 4-bit select signal named sel does the selection of the unit element under
test. The inserted test DAC unit element becomes a part of the system and be
used on the fly for background calibration.

There are three requirements on the inserted test signal Et. First the test
signal should be single-bit, because it will be switched into the unit element
of the DAC which is single-bit. Secondly, the test signal is feedback into the
∆Σ modulator along with the actual input signal U(t). Thus, the test signal
must be uncorrelated with the input signal so that the crosscorrelation is only
dependent on the test signal and the gain of the selected unit element under
test. Finally, there is also frequency requirement on the test signal. The error
estimation is using the ∆Σ modulator to convert analog signal from the DAC
with test signal inserted to digital output signal, which is used to compute the
characteristic value for the selected test unit element by the crosscorrelation.
However, the reliable frequency range for A/D conversion of a non-ideal modu-
lator is at low frequencies (in band) of the modulator, where the STF is almost
ideally flat, frequency independent and independent of parameter variations
in the analog filter. Thus, the test signal Et is limited to the inband of the
modulator by inserting it at a fraction of the sampling frequency.

According to the requirements listed above, the test signal we choose is a
pseudo random signal at 1/8192 of the sampling frequency, which leads to 32
changes of the test signal during one sample length. Because the sample length
is L = 218, the logic of test signal changes every 8192 samples. And the actual
test signal changes according to sequence S, as equation 4:

S = [1 −1 −1 1 1 −1 1 −1 1 −1 1
1 1 1 −1 −1 1 1 −1 1 −1 −1
1 −1 −1 −1 1 1 −1 −1 1 −1]

(4)

This sequence has an average of 0. The test signal is input to the system from
FPGA in the hardware implementation. With this test signal, the following
crosscorrelation can be computed.

3.2 Crosscorrelator and mismatch correction factor gen-
eration

With the test signal and output from the modulator Yt, the crosscorrelation
CCF is:

CCFi =

L∑
n=1

et(n)yt(n) ≈ k1bis
2
et (5)

Where CCFi is the crosscorrelation for unit element i, L is the number of
samples for computing the crosscorrelation, k1bi is the individual gain of the
unit element under test,and s2et is the variance of the inserted test signal. The
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crosscorrelation values CCFi contains the mismatches of each unit element of
the DAC. Thus, relating CCFi to a reference CCFref as equation 6 reveal the
correction factor ci:

ci = k1b
( CCFi
CCFref

− 1
)

(6)

where ci is the correction factor for unit element i in DAC, k1b is the ideal gain
factor of DAC, and CCFref is chosen as the CCF value of the extra test unit
element, which in the following part of this thesis called as CCFt. Deduction
of this equation is presented as [12].

In the implemented system, the sample length L is 218. The accuracy of
ci is set to be 16 bits for high accuracy. The difference between real and ideal
correction factor will be illustrated later in figure 18.

In the calculation of ci, division is a very important part, the realization of
an efficient divisor is introduced in next section.

3.3 Division

During the calculation of ci division is needed for CCFi
CCFref

. There are differ-

ent methods to calculate division. The way we used here is Newton-Raphson
method [13] [14].

Newton-Raphson division is a division method using functional iteration.
Division can be written as the product of the dividend and the reciprocal

of the divisor. In this algorithm, a priming function is chosen, which has a root
at the reciprocal. By efficiently computing the reciprocal of the divisor, the
quotient can be easily computed.

Q =
N

D
= N × 1

D
(7)

The widely used target root is the divisor reciprocal 1
D , whose priming function

is:

f(x) =
1

X
−D (8)

Where the root of X is 1
D . The well-known Newton-Raphson equation which

converges quadratically is given by:

Xi+1 = Xi −
f(Xi)

f ′(Xi)
(9)

Apply equation 9 to equation 8, this iteration can be used to find an approxi-
mation to the reciprocal:

Xi+1 = Xi −
f(Xi)

f ′(Xi)
= Xi +

1
Xi

−D
1
X2
i

= Xi × (2 −D ×Xi) (10)

The error in the reciprocal decreases quadratically after each iteration.
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3.4 Correction of the mismatch

With the computed correction factors, the correction value Yc can be computed.
Each correction factor ci is multiplied with the single bit of Yd that is feed into
the corresponding ith unit element in the DAC. Then by summing up the
multiplication result, the correction value Yc is computed, also as shown in
equation 11.

Yc =

15∑
i=0

Yd(i) × ci (11)

In this implementation, Yc is a 17 bits binary signal. The first 5 bits repre-
sent the integer part with first bit as sign, while the following 12 bits contain
the fraction part. In the following part of this article, the format of the value
will be present in [a, b] form, where a indicates the integer part, and b indicates
the fraction part. i.e. Yc is in [5, 12] format.

Before continue the calculation, Yc should pass through an Error Trans-
fer Function (ETF ) which in our case can be simplified to its low frequency
equivalent test signal transfer function TTF = −1 as the frequency of Et lies
in well below the bandwidth. The minus sign in the TTF or ETF is because
the signal coming from DAC1 will be reversed when subtracted by the input
before entering the system.

The correction then could be done by subtracting the reformed output signal
from the modulator Yd bin, which is also in [5, 12] format, by the correction value
Yc:

Yt = Yd bin–Yc (12)

where Yt is the corrected signal which is used for the following crosscorre-
lation. For the first 16 sets of samples, which is in total 16× 218 samples, Yt is
equal to Yd as Yc is 0. As the correction is in background mode, the corrected
signal is continuously closing to the ideal value every time it is calculated.
However, because the accuracy of Yc can only be 12 bits in fraction part, this
iterated correction will never reach the ideal value.

As signal Yt contains the inserted test signal, the final output signal Yout
can be easily computed:

Yout = Yt–Et × TTF (13)

where Et also passes a TTF which is simplified to a low frequency equiv-
alent, TTF = −1. In a real implementation, both ETF and TTF become a
delay in the circuit.



Chapter 4

System level simulation in MATLAB

Before implementing the system in circuit level, we start by running simulations
in Matlab. First, a Simulink Model is constructed. Then mismatches in the
feedback DAC are introduced to test the digital dorrection technique. Finally,
system level simulation will be performed.

4.1 Simulink module construction

Simulink is a block diagram environment for multi-domain simulation and
Model-Based design. Compared with using MATLAB script-based simula-
tion,Simulink further eases the design process, since it provides many useful
construction blocks, which present the identical functionality of real circuit
blocks. Further more, it’s graphical view makes the structure much more clear
to understand. Figure 10 plots system level model of this work. In the figure,
the white part is the analog modulator, the red part is the digital correction
block and the blue part is pseudo random test signal injection path.

4.1.1 Loop filter design

Based on previous discussion in chapter 2, we have derived the CT loop filter
coefficients. Now corresponding blocks need to be placed in Simulink Graphical
Editor and properties be properly set. The loop filter is demonstrated in figure
11. fs

S represents a continuous time integrator, where fs stands for sampling
frequency. t(1−3) are the transport delay and GE(1−3) are gain blocks. They
are used to model the finite GBW in the real integrators, whose gain is finite
and have limited bandwidth, as previously mentioned. When GE(1−3)=1 and
t(1−3)=0, all three integrators in LF are ideal, which means they all have infinite
GBW.

4.1.2 Quantizer

The 4-bit internal quantizer circuit is realized by a mid-rise flash ADC and it’s
Simulink block diagram is shown in figure 12. The terminology mid-rise stands

17
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Figure 11: LF model in Simulink

for that when input is at zero, the output is half the step size. Full scale (-1 1)
is divided by 15 comparators into 16 levels. So that the thresholds are:

Threshold = −1 +
1

2
× ∆ + ∆ × i, i is [1, 2, ..., 15],∆ =

2

16
(14)

The digital output is 15-bit thermometer code. When input analog level is
above any of the thresholds, all comparators below it including that threshold
comparator output ‘1’, while the others output ‘-1’. All ‘-1’ stands for minimum
value and all ‘1’ is the maximum. By counting the number of ‘1’s, the quantized
input value is derived. In the circuit, however, a ‘0’ is represented by ‘-1’ and ‘1’
remains the same. This conversion, of course, has no influence to the following
digital operation and output result.

It is also worth to mention that because the quantizer lies inside the feed-
back loop, small non-idealities are suppressed by the loop and thus make no
difference to the resulting SNDR [6]. Therefore, this flash ADC structure is
ideally constructed in Simulink and mismatch and delay are not taken into
account.

4.1.3 Feed back DAC

The most important part in the ∆Σ AD converter design is the feedback DAC,
especially the outer-most one. As it’s output directly feeds into the system in
parallel with input signal, any internal DAC unit element mismatch could be
regarded as an additional input source. This mismatch component is highly rel-
evant to it’s digital input pattern that should be treated seriously. In Simulink,
the DAC design is a summation of all the digital bits with a multiplication
of a fixed gain gnorm. Thus, the analog output swings from -1 to 1 as ex-
pected. When dealing with the first DAC, however, additional mismatches can
be added, which simulates real circuit situation. Those mismatches are what
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Figure 12: Quantizer model in Simulink

we would like to correct. One more unit element is included which acts as an
additional signal path for test signal routing. Thus, in total 15+1 unit elements
are used. Figure 13 plots the Simulink model of first DAC. Each individual
gain (gain(i)) is set in the MATLAB script. When the mismatch components
are added, small offsets are added to the original DAC levels, which will be
directly seen at the output, due to flat signal transfer function (STF) of the
modulator.

4.1.4 Mux

Figure 15 is a Simulink model of the MUX block. To do digital correlation, a
single bit test signal should be injected through the first DAC to the system.
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Thus a MUX component is designed to switch digital signal injection pattern
and to control test signal path. It is located between the quantizer output
and the first DAC input. A conceptual functionality figure is illustrated in
figure 14. Four-bit selection signal sel is used to control the signal routing.
When sel=0000, signal routing doesn’t change. Otherwise test input will inject
to corresponding DAC unit element whose mismatch is under measurement.
Normal AD conversion is not interrupted because the digital feedback path
still exists using the additional Test Element in figure 13. After 16 iterations,
all unit elements have been tested and a mismatch estimation can be done. In
simulink model, the path is controlled according to a look-up table.
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Figure 14: Conceptual functionality of MUX block

4.2 Analog part simulation

This section discusses simulation in MATLAB. We start from explaining ideal
condition. Key parameters are illustrated in table 6. Test input frequency
stands for the pseudo random test signal’s frequency, which in our case is
well below input frequency so that it runs in background without interrupting
normal operation. The detail of this part has been illustrated in section 3.1.
The input frequency is low to make sure higher order harmonic distortion lies
inside of the bandwidth.

Table 6: Simulation parameters

Parameter Value
Bandwidth 9MHz
Sample frequency(Fs) 144MHz
Input frequency(Fin) 1.4766MHz
Amplitude in dB -2.5dB
Test input frequency 17.578KHz

4.2.1 Without non-idealities

To estimate the resulting model performance, we first run an ideal simulation.
Figure 16a is the ideal case simulation between CT Simulink model and the
original DT model with same specifications. Generally speaking, two plots
don’t show large differences. The small mismatch components in CT model’s
result is because of the accuracy of Simulink. Any conversion or transition
mismatch in the model will result in SNDR deterioration. By doing simulation
at different input amplitude, we found out that -2.5dB input amplitude could
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Figure 15: Simulink model: MUX block

result in highest SNDR 70.4dB. This is a starting point to test the whole
system.

4.2.2 With non-idealities

In the real circuit, mismatch in the first DAC influence modulator’s perfor-
mance the most. So that we added some arbitrary small gain errors ge(i)
inside each gain component gain(i) in first DAC, as equation shown below:

gain(i) = gnorm× (1 + ge(i)) (15)

Where gnorm is a gain 1
15 used to normalize the DAC output full scale range.

These gain errors gain(i) could be seen from DAC’s output because in Simulink
model (figure 13), DAC analog output is a summation of input word times
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corresponding gain factors. It follows signal route and will be directly seen in
digital output Yd in figure 10. Figure 16b proves that such mismatch influence
can be clearly seen. SNDR degrades a lot compared with the ideal case result
in figure 16a. This mismatch component is what we mainly focus on in this
work, which can be efficiently corrected by a digital block.

4.3 System level simulation

System level simulation will be discussed in this section. In the following, we
have combined the previously mentioned blocks. We ran a L× 16 samples sim-
ulation, where ‘L’ stands for the sample length of one cross-correlation length.
A relatively large ‘L’ of 218 is chosen, so that the correction coefficients calcula-
tion becomes more accurate. Test signal length is the same as ‘L’ and dynamic
range is influenced by one LSB due to test signal injection. Thus input ampli-
tude should be reduced by the same amount to meet the dynamic range in the
system. After running 16 cross-correlations, the mismatch can be estimated,
as explained in chapter 3. To do the SNR calculation, the FFT length is set
to a smaller number of 2048, and averaging is used to provide a smoother FFT
result.

The complete simulation result is plotted in figure 17. There are 6 subplots
in the figure. The first one is the output without correction. Up to 5th order
harmonic distortion could be clearly seen and the SNDR is heavily degraded.
The second to the fourth plots show results from three iterations of digital
calibration process. The correction coefficients cc(i) is derived from each cross-
correlation between digital output Yt and the pseudo random test signal Et.
Figure 18 plots real vs. ideal correction coefficients in these three iterations. To
enable VHDL digital implementation, we limited the resulting cc(i) resolution
to 16-bit, so the maximum absolute difference between real and ideal coefficients
is around 1.025 × 10−4.

After three iterations, the fifth plot is the result of simulation using cor-
rection factors calculated previously, and the test input is disabled. Compared
with the correction result using ideal correction factors shown in the last plot,
designed ideal SNDR could be almost recovered. In ideal case, correction fac-
tors cc(i) have full resolution. However, the reason for the remaining mismatch
existence is the non-ideal ETF setting. In our estimation, STF should be flat
in the signal band. So that mismatches in first DAC are directly shown in the
result which stands for ETF=‘-1’. However in real case, STF is not exactly
1 due to e.g. DT-CT conversion accuracy, ETF=‘-1’ is not a accurate repre-
sentation of the error transfer path. We rerun the simulation, changed ETF
from ‘-1’ to ‘-0.9’, and the distortion increased while ideal case SNDR dropped
from 70.2dB to 68.8dB. Thus we can conclude that the ETF will influence the
correction accuracy and will make the DAC internal mismatches been hardly
full canceled. This is the limitation of our correction system.
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Finally, in the simulation result, there is 13.4dB SNDR and 21.4dB SFDR
improvement. It is based on the 2% mismatch estimation. In the real circuit,
there could be only small mismatches in the resistive feedback DAC, so that
2% mismatch may be a little bit exaggeration. However in the simulation,
even this large mismatch can be efficiently corrected and a satisfied result is
achieved. We can conclude that in real case, mismatch correction system in
this work should work fine.
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Figure 18: Three iterations in a single run



Chapter 5

Circuit level considerations (Analog)

This chapter presents circuit level implementation of the analog part in
Cadence. This design is based on ST-65nm technology. Analog part and digital
part are designed separately and manually connected in the top level.

5.1 Analog part overview

To begin with, we first have a look at the top level schematic of the analog mod-
ulator. As seen in figure 19, the arrangement is quite similar to the Simulink
model mentioned in chapter 4. Two DACs, dac1 and dac3, are placed in the
feedback loop and the MUX block is implemented in front of the outer most
DAC, dac1. There are two additional blocks, compared with the Simulink
model: A thermometer to binary converter therm2bin to directly output un-
corrected 4-bit binary signal and one DeltaSigma InSW block that controls a
4-bit selection signal sel input either from on-chip digital block or from outside
world. The reason of introducing such a precaution is that even if there are
bugs in the digital block which cause malfunction of the circuit later on, we
still have the ability to do the digital calibration using an external FPGA.

5.2 OP-Amplifier design

In the loop filter schematic(figure 20), high performance continuous time inte-
grators are very important. The OP-AMP, the most critical component in a
integrator, should be carefully designed. In the third order loop filter, the first
and the third amplifiers both need to drive high capacitance load, the limita-
tions for the first amplifier are due to its input referred linearity requirements,
while the third amplifier is limited due to loop stability reasons because of the
chosen PI-based ELD compensation. [1] Thus higher performance amplifiers
are designed in them. In contrast, the second one doesn’t have speed require-
ment, and any nonlinearity it introduces is suppressed by the loop. So high
GBW is not that necessary. There are many specifications used to judge one
amplifier’s performance. In this design, the following items are of our interest:

29
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• DC gain and gain bandwidth(GBW)

• Phase margin(PM) and stability

• Step response

5.2.1 Schematic

Figure 21 is the schematic of the OPAMPs. All three amplifiers have the
same structure but various bias currents. The first and the third amplifiers,
OPAMP1 and OPAMP3, are identical, while the second amplifier OPAMP2 is
running at low power, which result in a relatively weaker performance.

The amplifier’s structure is a two-stage class AB output fully differential
OP amplifier. [3] An additional Common Mode Feed Back(CMFB) circuit is
added to provide stable common mode bias point. It only controls part of
the active load to limit the CMFB loop gain to prevent stability problem.
Further more, in parallel with the first input stage differential transistors, two
additional transistors are added to solve a start-up problem. For example, if
the input and output are too low, CMFB circuit could not pull input node back
to a proper bias voltage thus leads to start-up failure. This can happen when
the amplifier is connected as an integrator. With the help of these start-up
transistors, however, input bias voltage will always be stay in a proper range.
Taking advantage of using low Vth transistors in 65nm CMOS technology, tail
current source in the design are cascode configured for better current mirror
matching without decreasing Vgs of the input stage transistor.

5.2.2 Layout

Based on schematic, a layout view is drawn as shown in figure 22. It occu-
pies approximately 80um × 90um chip size. To reduce mismatch, we used
common-centroid technique, which means matched transistors are in ‘ABBA’
arrangement, where A is one transistor and B is another. As discussed in [15],
using this technique could suppress the fabrication gradient problem. In the
layout, input stage is placed on the left and the class AB output stage on the
right. The middle part is tail current source, a large area is used due to cascode
configuration.

5.2.3 Simulation

To test the performance of the amplifiers, a testbench is done by connecting
each amplifier to proper load. A stability test is then ran to measure GBW
and phase margin for amplifiers in all three integrators. Additional 200fF load
capacitor is connected to all the output nodes. From the result in table 7, a
large GBW difference can be seen between the first and the third integrator.
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Figure 22: OPAMP layout view
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Although the internal amplifiers are the same, different integrator R and C
values could lead to performance variation.

Table 7: OPAMP performance

Integrator GBW PM Slew Rate Power
1st 981.75MHz 82◦ 676V/us 1192.78µW
2nd 493.02MHz 65◦ 300V/us 616.40µW
3rd 383.89MHz 53◦ 676V/us 1192.78µW

5.3 Quantizer

Quantizer design will be discussed in this section. In ∆Σ system, a simple flash
ADC is good enough. It is fast, accurate, and doesn’t require large chip area.
Furthermore, it finishes the conversion within one clock cycle, contrary to e.g.
SAR or pipelined converters.

5.3.1 Comparator in flash ADC

The basic building block in an ADC unit is a comparator, whose schematic [3]
is plotted in figure 23. The left part is a fully differential input stage, which
pre-amplifies the input signal. In the middle it is a clocked core circuit. As
mentioned earlier in chapter 1.2, a CT modulator has internal sample and hold
functionality. The clock core together with a SR latch keep track of input signal
during clkb high and hold the value in another half cycle. This is the idea of
how sample and hold works.

5.3.2 Resistor ladder

To provide stable and accurate reference levels to the comparators , a carefully
designed resistor ladder is made. From the schematic in figure 24, instead of
only using a series of resistors to divide power supply, an additional voltage
buffer is used. [3] Any disturbance in power or reference voltage should not
affect output reference voltages. In our design, 15 reference levels are divided
by 14 uniform steps from 366mV to 834mV.

5.4 Resistive DAC

The feedback DACs are critical components, since their linearity dominates
the ∆Σ modulator’s performance. In recent years, many DAC structures have
been developed, such as current steering DAC, R-2R ladder DAC, Successive-
Approximation DAC, etc. The working principle is that it senses all the input
line’s value using internal unit elements, and outputs a corresponding analog
value, either in voltage or in current. In this work, a resistive current mode
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VCM=600mV

V7N=366mV

V7P=834mV

Resistor Ladder

Voltage BufferBias Current Source

Dummy

Figure 24: Resistor ladder
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DAC structure is chosen. It represents that resistors are used in the unit
elements to generate a proper current value. It can also be done using current
sources however. The reason we chose resistors is that during chip fabrication,
process mismatch in implementing a resistor is much smaller than implementing
a current source. More importantly, the resistive DAC has less thermal noise
than the current steering DAC. [3]

5.4.1 Unit element

Figure 25a illustrates the schematic of a single unit element in a feedback DAC.
It consists of two major parts: A D-Flip-Flop that receives one sample at rising
clock edge and a resistor to transform reference voltage into plus or minus unit
current out. The D-Flip-Flop block, shown in schematic view below in figure
25b, is a traditional DFF design. During clock low, gate in blue (Dashed) box
is opened and signal flows following blue (Dashed) arrow line. When the clock
is high, input path is blocked and transmission gate in red (Solid) box starts to
work. Previous value at point A flows through transmission gate and when the
clock is low, this value is stored in the right most loop. In short, input can be
captured and saved only at clock’s rising edge. During any other time, input
value would not disturb output result.

5.4.2 DAC

By putting all DAC unit elements in parallel and connecting their outputs
together, a DAC block is constructed as demonstrated in concept figure 26a.
The purple (Dashed) part is one additional unit in the first DAC used to inject
test bit. Output current from all unit elements will be summed together, and
the magnitude of the output current is the analog representation of the input
digital word. Figure 26b shows the corresponding layout view. As can be clearly
seen, unit elements are placed next to each other to reduce the mismatch. Top
parts are the resistors and the DFFs are placed below. Analog part and digital
block are well separated, so that digital switching noise influence is further
reduced.

5.5 MUX

In this section, the MUX circuit placed before the first DAC will be discussed.
It is a purely digital block which means that pre-designed standard cells can
be used. Standard cells have equal height, and IOs are mostly placed at cell’s
boundary. Thus comparing with analog block design, the place and route effort
can be reduced and the layout is less error prone. In principle, to match the
Simulink model, a MUX block should contain three blocks:

• A ROM, generates a LUT to control each switch
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(a) Schematic

A

 Transmission Gate

Clock High Path

Clock Low Path

(b) DAC D-Flip-Flop

Figure 25: DAC unit element
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(b) DAC layout view

Figure 26: DAC
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Figure 27: MUX

• Switch logic, the main part of MUX

• 4-bit binary input to 16-bit One-Hot code

Figure 27 is our MUX schematic. The 4-bit binary selection signal coming
externally or from digital part is first converted to 16-bit one hot code. Then
corresponding control word stored in the ROM is selected which controls signal
routing in switching logic block. Detail discussion is performed in the following
sub-sections.

5.5.1 ROM

Figure 28 shows the ROM schematic. There is nothing special in the structure,
it only contains a MOS transistor matrix. The transistor existing on the junc-
tion or not determines corresponding word line(WL) value. For example when
the bottom bit line(BL15) is ‘1’, all transistors controlled by it will be on. Thus
the corresponding WL will be pulled down and represents a ‘0’, while the re-
maining is still ‘1’. So the result should be “010101010101010101010101010100”.

5.5.2 Switching logic

The main composition of the MUX is a switch logic. By changing signal routing
according to control signals from ROM, test input signal would be injected into
each unit element, as have already been illustrated in section 4.1.4. Figure 29
is schematic view. The internal 3-1 selector selects input signal injection either
to A, B or C output depending on the value of control signal c(i+1),c(i).
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5.6 Bias circuits

The final part in this chapter is about the bias circuit that supplying stable
current used in all the on-chip circuits. In the OP-AMPs, Iin = 16µA bias cur-
rent is required to provide proper current for the other branches in the circuit.
In the quantizer circuit, all the comparators require Iin = 15µA bias current
mirrored from an external current mirror, which also should be provided by this
bias circuit. In the schematic shown in figure 30, a voltage follower is added
to stabilize VGS of the current mirror. It makes it so the NMOS transistor’s
gate voltage is precisely equal to the input reference voltage, regardless of the
mirror’s load. The current mirror generates a constant 10µA reference current
and by mirroring this reference current using PMOS current mirrors, all the
required current can be derived.



5.6 Bias circuits 43

Figure 29: Switch logic schematic
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Chapter 6

Circuit level considerations (Digital)

This chapter describes the implementation of the background digital calibration
module from front end VHDL implementation to back end place and route flow.

6.1 VHDL implementation

The behavioral model is implemented in VHDL and simulated with Questa
Sim from Mentor Graphics. Matlab modeling simplifies VHDL modeling and
offers a trustable reference for the behavior as well. The behavioral simulation
results are shown in this section.

6.1.1 Design overview

As introduced in chapter 3, the digital calibration system focuses on three
modules: division, cross correlation function and mismatch coefficient genera-
tion. In addition to those three modules for calculating mismatch coefficients,
there is also a module using the mismatch coefficients to calibrate the system.
Furthermore, some surrounding logics, such as look up table for data format
transformation, also exist in the system.

As previously shown in figure 1, the gray block on the right side illustrates
the detailed block diagram of the digital calibration system. A more detailed
diagram is shown in figure 31. At the beginning of the datapath, input signal
Yd is generated from the quantizer. It goes through a look up table in order to
transfer a 15-bit thermometer code to a 5-bit signed number, which represent
values from -15 to +15 with a step of 2. At the same time, the input test signal
Et is mapped from ‘0’ or ‘1’ to ‘-1’ or ‘1’ by adding a multiplexer when it is
used. The reason for this transformation is that:

• Yd is an unsigned signal of 16 possibilities representing integer value from
0 to 15 while Et is 0 or 1. As the input is not symmetric around 0, cal-
culation with these values would introduce an offset in the result of cross
correlation function and lead to malfunction of the following calculation.

45
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• On the other hand, calculation in Matlab model is done with signed value
which is symmetric around zero. In order to match with Matlab model
which can offer a reliable reference, Yd is mapped from [0, 15] to [−15, 15]
with an interval of 2 instead of 1, while Et is mapped from ‘0’ or ‘1’ to
‘-1’ or ‘1’.

After encoding the input signal Yd to Yd bin, it is subtracted by the cor-
rection signal Yc, generated by the feedback loop, results in Yt. Yt is the
superposition of the calibrated signal and the test signal.

On the feedback path, Yt is feed to the cross correlation function module
named CrosCorrFunc to calculate the cross correlation with Et d3 which is
Et delayed for 3 clock cycles. Details about this calculation process will be
discussed in the cross correlation function Finite State Machine section.

In the following, a set of data refers to 218 samples.

Figure 31: Digital system block diagram

Cross correlation function module outputs the value CCFt and CCFi se-
quentially. The first set of data of Yt is used for calculation of CCFt, and the
following sets of data are for CCFi.

The next module is cal cc module, which calculates the correction factor
ci. There is another four bits output signal sw cnt from this module indicating
in which DAC element the test signal should be inserted. This signal will be
feedback to the DAC as control signal on test signal insertion. Details about
correction factor calculation will be discussed in section 6.1.4.

After correction factors are outputted from cal cc, they are taken into
output Y c module which is the utilization of the correction factor. In this
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Table 8: Config signal truth table

config(1 downto 0) input signal output signal
00 Yd V
01 Ybin V
11 Ybin c
10 Yd c

module, the correction signal for Yd which is named Yc is calculated. In sec-
tion 6.1.5, there are more discussions on this module. Then Yd can be simply
corrected by subtracting Yc from Yd, as equation 13.

From now on, Yt is a corrected signal but combined with the injected test
signal. Subtract the test signal Et from Yt is the last step for getting the final
output signal V . In order to have more observation on the implemented system,
the mismatch correction factors ci can be outputted by setting a config signal
properly. Setting for config signal is show in the follow table 8. Yd is the signal
output from the ADC modulator, Ybin is 4-bit signal from external source, c is
the calculated correction factor. At the same time, the correction system can
be bypassed by setting corr en signal to ‘0’, and vice versa.

6.1.2 Cross correlation function Finite State Machine

The implementation of cross correlation datapath is demonstrated as figure 32.

Figure 32: Cross correlation datapath

Figure 33 illustrates the FSM of cross correlation function module.
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Figure 33: Cross correlation FSM

Because the ∆Σ modulator is using a 3-stage architecture which will intro-
duce 3 clock cycles of delay on Yt, test signal Et also need to be delayed by 3
clock cycles to fit Yd. Et d is the delayed test signal.

The implementation of equation 5 is done in two steps: the multiplica-
tion and then the accumulation. In the multiplication, the multiplicand Et d
is either ‘0’ or ‘1’ which is mapped to (-1,1). Thus, the signal Yt will only
change sign accordingly. Therefore the accumulation and the multiplication in
equation 5 can be performed with equation 16. And it is implemented with a
multiplexer with Et d as select signal.

TTnext =

{
TT + Yt Et d = ‘1′

TT − Yt Et d = ‘0′
(16)

In equation 5, TT is the result of accumulation, TTnext is the registered value
of TT . After accumulating for a set of data Yt, the result TT then becomes
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the CCF value of that specific set of data. And this CCF value is outputed
for futher computation.

6.1.3 Division Finite State Machine

In this section, the implementation of divisor is introduced.
The division module is built according to Newton-Raphson algorithm as

introduced in section 3.3. It estimates the reciprocal of CCFt which is the
crosscorrelation function used as CCFref . CCFt is calculated with the first set
of data, and will remain constant for the remaining 15 sets of data to compute
CCFi
CCFt

in equation6 . Therefore, division only need to be calculated once every
16 sets of data.

Figure 34: Division datapath

Before starting the first estimation of 1
CCFt

, CCFt is shifted to format [1,34],
and denshift cnt records the number of shifts. CCFi is shown as signal den and
signalD in the datapath of division figure 34. The look up table (LUT) contains
the precalculated mapping from 7 bits divisor to 7 bits reciprocal of the divisor.
The first estimation is done by that look up table with CCFt(33 downto 27) as
input. The output of the LUT is signal X in figure 34. Finally, the iteration is
used for a second estimation. In order to simplify the implementation, only one
iteration is implemented. That’s because iteration may significantly increase
the output word length due to division. The FSM of this iteration is illustrated
in figure 35. In this implementation, the output word length from the division
after one time iteration becomes 49 bits wide. By multiply with the 35 bits
wide nominator, the result for CCFi

CCFt
is in total 85 bits wide. As different shifts

are done and recorded by denshift cnt, this 85 bits result need to be restored
with those shifts. On the other hand, 85 bits signal is too wide for the following
computation. Therefore, another look up table is used to select the validate
bits to be outputted. In this look up table, the mapping from different shifts
to the selected 15 out of 85 bits division result is conducted. Finally, 15 bits of



50 Chapter 6: Circuit level considerations (Digital)

the 85 bits signal in format [1,14] is outputted as a result of the division.

Figure 35: Newton Raphson iteration FSM

6.1.4 Mismatch coefficient generation Finite State Machine

In this section, the generation of the correction factor is introduced.
According to equation 6, CCFi and CCFt should be determinated place in

order to compute the correction factor ci. There is a counter cnt in module
cal cc to demonstrate the sequence of all the CCFs. The first CCF computed
by CrossCorrFunc is taken as CCFt, and this CCFt is then streamed to the
division module for computing 1

CCFt
. The following CCFs are regarded as

CCFi. Then CCFi
CCFt

in equation 6 can be easily computed by multiply CCFi
and 1

CCFt
. The subtraction in equation 6 requires format transformation of

the subtrahend ”1”. This subtrahend should be in format [2,14], thus it is
transformed into “0100000000000000”. Then, the multiplication with the ideal
gain factor k1b of the DAC, is straight forward. Therefore, correction factor ci
is calculated, and it in format [2,14].
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Figure 36: Mismatch coefficient generation datapath
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The counter swcnt counts which unit element in the DAC is the correc-
tion factor ci is corresponding to. This swcnt is then outputed to control the
sequence of test signal insertion in the DAC. The datapath of this module is
illustrated in figure 36, and the FSM is illustrated in figure 37.

Figure 37: Mismatch coefficient generation FSM

6.1.5 Mismatch coefficient utilization Finite State Machine

As shown in figure 1. There are in total 16 unit elements in the DAC, 15 orginal
DAC1 elements and 1 test DAC1 element. ci is the correction factor for the
ith unit element in the DAC correspondingly. The next step is to implement
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equation 6, it seems straight forward. However, the test signal inserted in
DAC1 propagats throught the modulator, carries the mismatch error of the unit
element it is feed into, and affects signal Yd. The mismatch error generated with
the test signal also need to be corrected. Therefore, the test signal should also
engage the calculation of the correction value Yc. For example, when test signal
is inserted in to the ith element in DAC1, it should be corrected with correction
factor ci during computation of Yc. This procedure is implemented with the
MUX mentioned in section 5.5 for switching test signal into the DAC1. Signal
swcnt determines which unit element is inserted with test signal. Therefore, Yd
becomes Yd tmp by inserting test signal into it before entering the correction
unit.

Hardware implementation of this module is more complex than implement-
ing equation 6 itself. The datapath of it is shown in figure 38. Firstly, the
correction factors are calculated on the fly, one by one while we expect to used
it in the equation in parallel. Thus, a FIFO-like memory is implemented for
temporarily store the correction factors. The memory is structured with two
stages of registers. First stage stores the correction facter ci into dedicated
registers, the finish signal ccfin is used as write enable signal in this stage. Sec-
ond stage outputs all 16 ci in parallel when they are calculated, signal ccall fin
controls the output of this stage. Actually, from calcc module, ccfin signal
is triggered only for 15 times. Because the first two set of data outputs one
ci while each of the following set of data leads to one ci. The extra ci not
calculated is the correction factor of the reference unit element also known as
test unit element. This correction factor ct equals 0, as it is considering relat-
ing CCFref with itself. Or in another word, it is taking CCFref as CCFi in
equation 6.

Then, the MUX, or switch in the figure, mensioned above is implemented.
Afterwards, signal Yd tmp is used in the multiplication bit by bit, thus we
simplify the multiplication to a multiplexer with each bit of Yd tmp as select
signal. As shown in equation 17.

cY r =

{
ci Yd tmp = ‘1′

−ci Yd tmp = ‘0′
(17)

where cY r is the internal signal represent the multiplication result of Yd tmp(i)
and ci.

Finally, the remaining part of equation 11 is the summation of 16 products.

6.1.6 Behavioral simulation results. Matlab and VHDL simulation
match.

The testbench for behavioral simulation is build only for the digital calibra-
tion, the ∆Σ ADC is not modeled. The 15-bit thermocode input signal Yd for
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Figure 38: Mismatch coefficient utilization datapath

Figure 39: Clock gating structure
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the simulation is generated Matlab simulink model. And the behavior is also
compared with the result from Matlab simulink model.

The FFT of output signal V from both Matlab model and VHDL behavioral
simulations are plotted in figure 40. When the first set of data is input in
to the system, the mismatch correction factor is under calculation. So that,
the output, as plotted in figure 40a is not corrected for mismatches in the
DAC. Figure 40b illustrates the FFT after the first iteration, when correction
is introduced. SNR, SNDR and SFDR rises compared with figure 40a. Figure
40c presents the result after the second iteration. The mismatch correction is
becoming more accurate, but the performance is only marginally improved. It
is clear that after two iterations, the background calibration can be bypassed
as the accuracy imporvement is negligible in further iterations. With these
simulation results, we can conclude that the VHDL behavioral model performs
the same as the Matlab model.

6.2 Optimization and synthesis

6.2.1 Optimization in synthesis flow

After the behavioral check of the design, synthesis on the design is performed.
In this phase of design, the main objective is to fit timing. The first trial
synthesis with high threshold voltage (HVT) cells did not fit timing. Therefore,
two methods are tried for fitting timing:

• Change the libraries used for synthesis.

• Optimize the design with pipelining.

As cells in library with HVT is slower than the ones in standard threshold
voltage (SVT) or low threshold voltage (LVT) libraries, it is easier to fit timing
with SVT library.

There are two way to implement a pipeline. One is automatical pipelin-
ing by the tool Design Compiler (DC) with the command optimize registers.
However, this kind of optimization does not work well with feedback loop.
Feedback loop appears in our implementation: signal Yt is calculated in rela-
tion with correction factor ci while ci is computed from Yt and Et.

The failure on automatic pipelining leads to the other path of pipelining.
The top design module is tore down to small design modules and pipelined
separately.

According to the synthesis timing report without pipelining, the critical
path is along the summation for calculating Yc. Then registers are inserted at
the output of the summation. With those inserted registers, the compiler can
cut down the critical path by moving them into the summation block. This is
the mechanism of command optimize registers. Other paths can be optimized
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Figure 40: Behavioral simulation results
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in the same way. As estimated by the endpoint slack check, most of the longer
paths are related with division module. Then optimization is required on these
modules and blocks which can be implemented as mentioned before. After the
optimization, there are enough slack for timing of the design. To prevent the
tool from modifying the optimized modules in the following synthesis steps,
variable dont touch are set on those optimized blocks.

On the other hand, there are 86% of the logics in the design are sequential
logics, thus clock gating can be done to optimize the power consumption.

Clock gating is a technique generally used for saving dynamic power dis-
sipation on flip-flops by gated-off the input clocks. It is implemented with a
combination of AND gate and a latch to avoid glitches on the clocks. The
structure is illustrated in figure 39, where TE is test enable input, EN is enable
input, CLK is clock input, CLK out is the gated clock output.

In this implementation, clock gating is done by inserting intergated clock
gating cell into the module cc cal to prevent the clock ticking of some blocks
in the module. Division module is not always in use. As introduced in section
6.1.3, it is invoked once every 16 sets of data. Therefore, the clock for division
module can be turned off when it is not in use. The multiplication for CCFi

CCFref

is also not in use for most of the time. It is called once every set of data.

Besides the modules mentioned above, other registers are clock gated au-
tomatically by Design Compiler. The tool determines if the register is capable
with clock gating.

All commands for compile and synthesis are saved as scripts for replication
of the synthesis flow.

6.2.2 Post synthesis simulation results

After synthesis, post synthesis simulation is performed to check the functional-
ity of the design. The simulation is done with the same testbench environment
as the behavioral simulation in section 6.1.6. Test subject is the verilog netlist
generated by Design Compiler. The result in figure 41 shows the same perfor-
mance as the behavioral simulation. Thus, the netlist generated from synthesis
flow can be used for place and route.

6.3 Place and route flow

6.3.1 Place and route

Digital place and route is implemented with Cadence Encounter in a 65 nm
process from STMicro electronics. Standard libraries used are listed in table
10. The dimension of the die is 1000um × 1000 um. 53 pads are distributed
along the edge of the die in this implementation. Details of the distribution of
digital pads are listed in table 9.
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Figure 41: Post synthesis simulation results
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Table 9: Pads list for digital core

Pad name: Placement Description
Bottom row, left to right
Pad: VDD S S VDD south
Pad: GND S S GND south
Pad: DATAIN PAD2CORE 3 S Data input(3)
Pad: DATAIN PAD2CORE 2 S Data input(2)
Pad: DATAIN PAD2CORE 1 S Data input(1)
Pad: DATAIN PAD2CORE 0 S Data input(0)
Right bottom to top
Pad: DATAOUT CORE2PAD 15 E Data output(15)
Pad: GND DIG E E GND east
Pad: VDD DIG E E VDD east
Pad: DATAOUT CORE2PAD 14 E Data output(14)
Pad: DATAOUT CORE2PAD 13 E Data output(13)
Pad: DATAOUT CORE2PAD 12 E Data output(12)
Pad: DATAOUT CORE2PAD 11 E Data output(11)
Pad: DATAOUT CORE2PAD 10 E Data output(10)
Pad: DATAOUT CORE2PAD 9 E Data output(9)
Pad: DATAOUT CORE2PAD 8 E Data output(8)
Pad: DATAOUT CORE2PAD 7 E Data output(7)
Pad: DATAOUT CORE2PAD 6 E Data output(6)
Pad: DATAOUT CORE2PAD 5 E Data output(5)
Top row left to right
Pad: RST PAD2CORE N reset
Pad: CONFIG PAD2CORE 1 N config(0)
Pad: CONFIG PAD2CORE 0 N config(1)
Pad: EN PAD2CORE N enable
Pad: HOLD N PAD2CORE N hold not
Pad: DATAOUT CORE2PAD 0 N Data output(0)
Pad: DATAOUT CORE2PAD 1 N Data output(1)
Pad: DATAOUT CORE2PAD 2 N Data output(2)
Pad: DATAOUT CORE2PAD 3 N Data output(3)
Pad: DATAOUT CORE2PAD 4 N Data output(4)
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The digital core occupies 230.8 um × 504.4 um area, which is 116415.52
um2, leads to 57% core utility. It is placed at the south-east corner of the die.
There is a 26 um gap in the core along one power domain which decreases the
core utility to 70%.

In order to have a better investigation of the power consumption, the design
of the digital part occupies two power domains. One of the them supplies the
core and the other is for the input buffers, output multiplexer, output buffers
and the pads. The latter one is shared with the analog part as surrounding
supply. CPF file is used to setup the power domains in this implementation.

When the power planning with special routing is finished, well-taps are
added for reverse bias on nwell and pwell to avoid latchup. Well-tap cells are
picked from PRHS65 7.0.a library listed in table 10.

Then, the phycial cells are placed. Pins for communication with the analog
part are placed at the specific location. The design is optimized for fixing the
DRC violations include max capacitance violations, max fan-out violations and
hold violations. As the placement of the cells is a non-deterministic process,
the design optimization may sometimes not be able to fix all the violations. If
it happens, the optimization is repeated at this stage until all the violations
are fixed.

With the DRC violation clear, the clock tree synthesis is performed. Clock
buffers for CTS are picked from PRHS65 7.0.a library, which is listed in table
10.

Table 10: IP libraries used

Libraries:
Core and clock related: CLOCK65LPSVT

CORE65LPSVT
Fillers and well-taps: PRHS65 7.0.a

IOs and IO fillers: Pads Oct2012
(custom designed pads by Oskar Andersson)

As the digital core is placed at the south-east corner of the die, the north-
east corner is left blank for placing decoupling capacitors. There are 10 digital
pads on the north side, 6 pads on the south side and all 13 pads on the east side
are used by digital core. The north-east part of the die should not be included
for routing by the tool. Therefore, routing blockages are added.

Afterward, a routing script is invoked. Runtime for routing is much longer
than the previous procedures, as a better routing result is not achieved by
route only once. In our case, the design is routed 5 times. First route involves
basic settings with MultiCutVia disabled. While second route mainly focus on
optimize via. Third route is a detailed route with MultiCutVia enabled. Final
route optimize the route. For a better TPA (timing power and area) estimation
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result, ExtractRCMode is set with qrc scripts. Then the design is optimized
again to fix violations.

Adding fillers, generating the netlist and gds2 file are the last two steps
in place and route. Fillers are picked from the same library as clock buffers,
PRHS65 7.0.a, listed in table 10. The generated netlist is used for post lay-
out simulation. While the gds2 file is streamed in to Cadence Virtuoso for
combination with the analog circuit. The final signoff is done with Cadence
Virtuoso.

6.3.2 Post layout simulation results

Finally, the post layout simulation on the netlist generated from place and
route is performed with the same test bench environment. The result of it is
illustrated in figure 42. The same performance is achieved as the behavioral
simulation and the post synthesis simulation, which proves that the design is
implemented as desired.
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Figure 42: Post layout simulation results
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Post layout simulation and conclusion

This chapter concludes this work. First, a layout view of the chip is pre-
sented, followed by post-layout simulation. Finally, a brief introduction of
Cadence AMS simulation is covered.

7.1 Layout view of the chip

To begin with, let’s have a look at our chip layout in figure 43. The chip
occupies 1mm × 1mm space, and in total 53 pads are placed surrounding the
core. The circuits in the left red box is the analog modulator, while circuits in
the right blue box is the digital calibration part. The digital block is generated
by SoC Encounter, which is a program that place and route standard cells
automatically. Obviously, digital part’s layout density is much higher. The
analog block, on the other hand, is drawn manually. There is no such ‘standard
cell’ in the analog domain. Much more considerations are taken so that parasitic
capacitance influence is minimized. For example, the metal wire should be in
appropriate width and transistors are placed next to each other. As could be
clearly seen, in the gaps, there are a lot of square capacitors to decouple the
power supply.

7.2 Post layout simulation

In this subsection, post layout simulations in Cadence ‘Virtuoso’ is presented.
First, the analog modulator’s performance is shown. In circuit level, the non-
ideal amplifiers in the integrators cause a SNR degradation. The additional
amplifier-introduced delay could cause serious excess loop delay, which should
be compensated by optimizing coefficients as already discussed in section 2.5.
Comparing with the schematic level simulation, the layout has more parasitic
components, causing the delay and GBW of the amplifiers to change a lit-
tle bit. Thus, the coefficients we calculated based on non-idealities found in
the schematic level circuit would not perfectly compensate the parasitics in-
troduced in the layout phase. Therefore, running a post layout simulation are
important. Secondly, the AMS simulator is needed to do a co-simulation of the

63
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Figure 43: Final chip layout
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combination of the analog and the digital part. It is essential to make sure the
inter-connect wires between the two parts is correct. To do such a simulation,
the VHDL behavioral model is imported to Virtuoso as a top block and is con-
nected to analog part in the test bench. Due to the long sample length required
for correction coefficients calculation, we shorten the simulation time and only
monitor the switch signal coming from the digital part. If the switching pat-
tern is as desired, we can conclude that the digital VHDL block is working.
The correctness of the inter-connection between analog modulator and digital
correction block is also checked.

7.2.1 Analog modulator simulation in Spectre simulator
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Figure 44: Matlab simulation vs. post layout Simulation

The more accurate way of predicting the modulator’s performance is run-
ning a Spectre simulation in Cadence. Comparing with the simulation in
Matlab, however, the real non-ideal circuit has worse performance. Thus a
comparison between post layout result in Cadence and result from Matlab, is
necessary. To speed up the simulation and make full utilization of all CPU
cores, Cadence® Spectre® Accelerated Parallel Simulator (APS) is used. It
is tightly integrated with the Virtuoso custom design platform and allows us to
simulate the design faster. More than 10 times simulation time is saved with
identical simulation accuracy compared with the basic mode. Figure 44 shows
simulation result from both Simulink and Cadence model. From the figure, we
see that when the structure is implemented in a real circuit, 3dB SNDR is lost
due to all the non-ideal effects.
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7.2.2 Circuit level simulation in AMS simulator

This part mainly focus on AMS simulation. Analog circuit simulation is per-
formed in Cadence tool Virtuoso while digital VHDL model simulation is usu-
ally done in digital verification tools such as Modelsim. In our project, however,
both analog and digital circuit are integrated in one single chip, but their layout
are designed by different tools. Without a co-simulation, we could never feel
confidence that the inter-connection is correct. Running the traditional circuit
simulation in Spectre is not enough because it can not handle VHDL code.
Cadence AMS simulator, which is an ideal tool for fulfilling such requirement,
is used in our project design phase. It regards digital VHDL blocks as a black
box which can be added in analog schematic. By connecting analog part and
digital part properly, a co-simulation testbench will be constructed that makes
circuit level system simulation possible. Figure 45 is the test bench.

To start AMS simulation, first, VHDL code should be imported to Virtuoso.
The crosscorrelation length in the code is greatly shortened to speed up the
simulation. A digital top level symbol appears in the library together with all
the components used in the top-module. Then, in a new testbench, we add
the existing analog top-module and already imported digital top-module. We
finish connection between these two blocks afterwards. In figure 45, analog part
is our ∆Σ modulator which provides the signal to the digital part on the right.
An additional 4-bit DAC is used to convert the digital output signal back to the
analog domain for monitoring the output in the Wave Form window. Finally,
we launch ADE XL tool from schematic, choose simulator as AMS and set ‘Files
on irun command line’ in AMS option to the proper VHDL package path. We
start the simulation and when successfully finished, the output waveform is
checked to see if it is as expected, see figure 46. We know that switching signal
‘Internal SW (3:0)’ shifts normally and the MSB, LSB definition in digital part
is correct.

Further more, some large arbitrary selected component mismatches are
added in the first DAC, and identically in the Simulink model. The same
four-bit external selection SW signal pattern is applied in both simulations.
The result shown that the signal definition of the analog SW input is correctly
designed. It proves that the digital part can properly control the MUX (MUX
has been discussed in chapter 5.5) and the interconnection is correct. This
schematic view can be used as a guide when doing manual wire interconnec-
tion in top level layout later on.

7.3 Conclusion

This work has been implemented in 65nm process and a chip has been fab-
ricated. The analog modulator performance is similar to the result from the
ideal DT modulator Matlab simulation. ENOB of our system is 10.92, where
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Figure 46: Co-simulation result

ENOB is given by

ENOB =
SNDR− 1.76

6.02
(18)

and a SNDR=67.5dB from post-layout simulation. The power consumption is
listed in table 11:

The total power consumption is 6.861mW. Thus, Figure of Merit(FOM) is:

FOM =
P

(2ENOB × 2fB)
= 196.73fJ/conversion (19)

Table 11: Power consumption

Digital power(in quantizer and DACs) 1.914mW
Analog power(loop filter) 3.658mW

DAC reference power 0.139mW
Digital correction circuit 1.15mW

Although the FOM is not small enough comparing with the state of art, in
table 12, the concept of digital correction method is innovative and there exists
no published work that has implemented both the analog ∆Σ modulator and
the pre-seated digital correction on a single chip. Therefore, this work provides
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real data on silicon area and power consumption of the complete system. A
potential drawback of this digital correction (realized late in the design process)
is that the number of bits going to the digital decimation filters have increased
from 4 to 16, This may require more complex filters. Further work can be
done to decrease power consumption of the integration. We also found out
that the error transferfunction must be exactly unity (ETF=-1). A non unity
EFT limits the accuracy of correction factors cc(i) and the compensation will
not be that effective.

Table 12: FOM comparison

Ref. fs BW SNDR P Tech. FOM
(MHz) (MHz) (dB) (mW) (nm) (fJ/c.)

[16] 420 20 70 8.5 90 270
[17] 640 10 65 6.8 90 240
[18] 950 20 60 10.5 65 319
[19] 640 20 74 20 130 120

This work 144 9 67.5 6.861 65 196.73

During digital design, we started from using Matlab to do model building
and simulation. Then the VHDL module is constructed guided by Simulink
model. Within this procedure, the difference between high level model and
hardware level implementation is witnessed. Design of division and crosscorre-
lation is a bit challenging. After front-end behavior simulation, back-end flow
is also tricky. At the back-end phase, we realize that some changes are needed
in the VHDL coding such as adding clock gating cells. This gives us a new
vision on how to start our design at coding phase. Also we have learnt a lot
during the backend flow as many different problems have been met and solved
with the help from professors.
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