
Secu
rin

g
 teleco

m
m

u
n

icatio
n

 n
etw

o
rk n

o
d

e d
ata u

sin
g

 TPM
s

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, March 2014.

Securing telecommunication
network node data using TPMs

Jelena Mirosavljevic

http://www.eit.lth.se

Je
le

n
a M

iro
savljevic

Master’s Thesis

Securing telecommunication network node
data using TPMs

Jelena Mirosavljević

Ericsson
Lund

Advisor: Martin Hell & Ben Smeets

March 24, 2014

Printed in Sweden
E-huset, Lund, 2014

Abstract

A telecommunication network is a collection of nodes used by network operators.
The two main tasks of a node are to transmit mobile user information and to store
sensitive information of the network operator. The node is therefore required
to provide a high availability system and trusted computing functionality. The
purpose of the thesis was to evaluate how the requirements of such nodes could
be achieved by using a key protected by Trusted Platform Module, TPM. This key
is used to encrypt sensitive information and in order to provide a high availability
system, the TPM protected key is stored in multiple computational units for back
up purposes. This requires the key to be migratable or duplicatable.

The aim of this master thesis is to establish use cases for how the migration
and duplication in TPM 1.2 and 2.0, respectively, should be performed to provide
secure storage for the network operators.

i

ii

Table of Contents

1 Introduction 1
1.1 Problem definition . 2
1.2 Possible solutions . 3
1.3 Our approach . 4
1.4 Aim . 4
1.5 Outline . 4

2 Theory 5
2.1 TPM Features . 5
2.2 TPM 1.2 . 6
2.3 TPM 2.0 . 12

3 Migration 19
3.1 Overview . 19
3.2 Commands for migrating . 19
3.3 Migration alternatives . 23

4 CMK migration 25
4.1 Overview . 25
4.2 Commands for migrating with a CMK 26
4.3 CMK migration alternatives . 30

5 Duplication 33
5.1 Overview . 33
5.2 Commands for duplication . 33
5.3 Duplication alternatives . 39

6 Migration methods for TPM 1.2 in telecommunication nodes 41
6.1 MSA Setup . 42
6.2 Migration with a MSA/Server . 43
6.3 Migrating offline with a node specific MSA 49

7 Duplications methods for TPM 2.0 in telecommunication nodes 51
7.1 Duplication with an authority . 52

iii

8 Summary of Results 59
8.1 Use case overview . 60
8.2 Modification possibilities . 61

9 Uniform API 63
9.1 Case A . 63
9.2 Case B . 65
9.3 Case C . 67

References 69

A Acronyms & terminology 71

iv

List of Figures

1.1 The involved parties. 2

2.1 TPM 1.2 architectural overview . 6
2.2 Overview of the TPM key hierarchy 8
2.3 Overview of the key storage and its encryption 8
2.4 Architectural overview, TPM 2.0 . 12
2.5 Overview of the TPM key hierarchy 14

5.1 PolicyAuthorize process . 35

6.1 The involved parties. 41
6.2 Overview of key hierarchy in a generic board 42
6.3 Overview of CMK migration in Case A. 43
6.4 Overview of the preparation steps for CMK migration in Case A. . . . 44
6.5 Overview of CMK migration in Case B. 45
6.6 Overview of the preparation steps for CMK migration in Case B . . . 46
6.7 Overview of the hierarchy in Case C 47
6.8 Overview of the preparation steps for CMK migration in Case C . . . 48
6.9 Overview of CMK migration in Case A. 49
6.10 Overview of the CMK migration method in the HAS Factory 50

7.1 The involved parties. 51
7.2 Overview of duplication in Case A . 52
7.3 Overview of the preparation steps for Case A 53
7.4 Overview of duplication in Case B . 54
7.5 Overview of the preparation steps for Case B 55
7.6 Overview of the hierarchy after the customer specific key creation . . 56
7.7 Overview of the preparation steps for Case C 57

9.1 High level API for Case A . 63
9.2 API Case A . 64
9.3 High level API for Case B . 65
9.4 API Case B . 66
9.5 High level API for Case C . 67

v

9.6 API Case C . 68

vi

List of Tables

2.1 The TPM_CreateWrapKey input command 10
2.2 The TPM_CreateWrapKey output command 11

8.1 Differences in use methods in TPM 1.2 59
8.2 Differences in use methods in TPM 2.0 59

vii

viii

Chapter 1
Introduction

Today, there are more than 6 billion mobile users [1]. The modern phone is today
used for various tasks, such as phone calls, messages and internet usage. As such,
this also leads to higher demands on networks when it comes to performance and
capacity per individual user.

With the increase of usage and dependency on networks, there is no room for
downtime. The downtime is the result of any cause that the results in the sys-
tem not being able to perform the operations and tasks that it is meant for. Thus,
the telecommunication network has to be a robust system which means that it is
fault-tolerant to some extend and if failures occur, it has to recover quickly. In
addition to robustness, the system also has to be secure. The operators that own
the networks and its users have a lot of sensitive information which needs to be
protected. It also has to be stored in a secure way.

Realizing the features that allow us to implement security can be done in
software but may require hardware features if there are high security demands.
The modern approach to achieve security is to equip the system with a small
subsystem that can be realize in a trusted way with high level of assurance (the
reason for why it can be trusted). Thus, the subsystem is today often referred to
as a "trusted platform".

In this thesis I address aspects of a specific approach of creating trusted plat-
forms; namely by using Trusted Computing Group technology. I will also in-
vestigate how sensitive information in network nodes can be stored in a secure
way and also what is needed for the telecommunication network to be a robust
system.

1

2 Introduction

1.1 Problem definition

In the thesis a simplified model of the network nodes will be used and presented
in this section. To structure our treatment of the protection requirements and
solution, three components are distinguished

- High Availability System

- Computational Units

- Customer

The significant part of the telecommunication network system is built around
High Availability Systems, hereafter referred to as HAS. Each HAS is constructed
to ensure that there will be no downtime so that the users of the system are served
at any time. This is done by having multiple Computational Units, CU, that are
organized to take over each other’s tasks in case any CU is unavailable or fails.
The CUs are manufactured in a CU Factory and their main task is to protect the
sensitive information of the customers. The CUs are sent to the HAS factory for
initialization and assembly. Also, several CU’s are sent to the customer as spare
part units, as seen in Figure 1.1. This is in case the CUs that are installed in the
HAS Factory malfunction. Each HAS is manufactured for a specific customer.

..

CU factory

....

HAS factory

......

Customer

.......

Figure 1.1: The involved parties.

Note that a customer is not the same as a user. Users can be seen as the one
who owns the mobile phones and use the telecommunication network for trans-
mitting their information. The customers are the ones who own the network, and
are known as the mobile network operators. A network is in turn built on multi-
ple nodes, where the sensitive information of the customer should be stored and
protected. This protected information is referred to as a node blob. The CU is the
component that protects these node blobs and keep them private. Thus, if a CU
malfunctions, the information that is kept secret will be lost or become unreach-
able. This is why the HAS contains multiple CUs.

Introduction 3

After the creation of the CUs in the CU Factory, they are sent to the Customer.
This means that the CUs have to be constructed in a way that makes it easy for
the customer to replace the ones who have failed by new ones. Consequently, a
CU has to be generic to be able to synchronize with the system. The meaning of
a generic CU is that all CUs shall be realized in the same manner before they are
sent to the customer or the HAS Factory.

However, at the same time, the CU has to be customer specific, where only
the customer can reach certain information. That is why we also consider a case
where the CUs can be more customer specific.

1.2 Possible solutions

There are several solutions for creating a secure environment and secure storage.
Trusted Execution Environment technology, TEE [2], is a secure processing envi-
ronment that consists of processing, memory and storage capabilities. The TEE is
isolated from the "normal" environment where the device operating system and
applications run. Instead of letting the "normal" environment handle the sensi-
tive operations, the TEE takes care of it and also stores the sensitive data in its
memory. One example of this is the TrustZone technology. This technology is
developed by ARM [3]. It provides a trusted area that is protected from software
attacks. TrustZone consists of a security environment providing code isolation.
This technique creates a separation into two parallel execution worlds, the non-
secure execution environment, and a trusted certifiable secure world.

There is also virtualization [4] that functions in some sense as TrustZone. This
technique separates the virtual and the physical computing platforms via a vir-
tual machine. By creating a virtual environment, an attack by an application will
not be able to reach the real physical platform. The virtual machines isolates the
subsystems from each other, which is not suitable for embedded systems. Thus,
subsystems are not capable to cooperate with each other in this kind of environ-
ment. Virtualization also has the draw back that it requires much more memory.

An alternative approach has been developed by the Trusted Computing Group
(TCG) and relies on the use of a Trusted Platform Module [5], TPM. The TPM is a
cryptographic processor that creates cryptographic keys inside of the TPM. These
keys are also protected by the TPM and are used to encrypt the sensitive infor-
mation before storing it outside the TPM.

The TPM is a component that has been around for years without being used
to its fullest. Today, the TPM is used for Microsoft’s Bitlocker [6] system. The
Bitlocker function is based on locking the encryption key that is used to protect
data. This function provides security by hashing the summary of hardware and
software configuration. These values are then encrypted to a TPM key and stored
in the PCRs, Platform Configuration Register. The values are then checked in
BIOS mode, thus when the PC is started and the TPM only decrypts the data if
the current PCR values match what was specified when the data was encrypted.
This process provides verification that the operating system configuration has not

4 Introduction

been changed, thus not been tampered with.

1.3 Our approach

The crucial component that will be used in the CU is the TPM. The TPM is a
module that can be added to an existing architecture rather cheaply. Comparing
to other solutions, the TPM is also a component that does not demand any new
memory and can easily be switched in the HAS environment. The other solutions
are for example more sensitive to changes in the HAS.

Because the HAS should keep operational even if when replacing the CUs,
the TPMs and the information they protect have to be both changeable and reach-
able. That is why there will be two CU equipped with a TPM in a HAS, so if one
of them breaks, the other one can take its place. This is done by using the mi-
gration feature of TPM 1.2, or duplication as it is called in TPM 2.0. This feature
provides the capability of the key, which the information is encrypted with, being
transfered to the new CU/TPM that is inserted.

As indicated above, there are two versions of the TPM. The one that is being
used is the TPM version 1.2, and this is the one that is currently on CUs. However,
in a few years, the TPM version 2.0 will start to be used instead. This motivates
that within this thesis we consider a uniform API, Application Programming Inter-
face, that can be used for both versions of the TPM.

1.4 Aim

The aim with this thesis to

• provide secure storage of the sensitive information that a customer wants
to protect in the HAS

• construct a robust system by using multiple CU each with a TPM that can
take over each other’s tasks in case of failure

• provide an easy solution for the customer to switch out the TPM equipped
CUs

• create a uniform API that is suitable for both TPM 1.2 and TPM 2.0

1.5 Outline

This thesis is divided in 9 major sections. First an introduction to TPM will be
given, both for TPM version 1.2 and 2.0. In the 3rd chapter, the migration in TPM
1.2 will be introduced, which will be more developed with the CMK mechanisms
in the 4th chapter. Then, the duplication for TPM 2.0 will be described in the 5th
chapter. In chapter 6 and 7 the use cases for CMK migration in 1.2 and duplication
2.0 will be described respectively. In the 8th chapter we analyze and discuss
the use cases by comparing them with each other. Chapter 9 will introduce an
uniform API for the different use cases from chapter 6 and 7.

Chapter 2
Introduction to the TPM

In this chapter the TPM and its application area will be described in more detail.
As presented in the introduction, the main task for the TPM in this thesis is to
secure the storage of keys, which are used to protect the node blobs. The two
versions of the TPM operates with the encryption in different ways. Therefor, the
TPM features, both for the TPM 1.2 and 2.0, and their architectures are shortly
described.

2.1 TPM Features

The secure storage is provided by Shielded Locations which are areas on a TPM that
contain data that is shielded from access by any other entity outside of the TPM.
Thus, data is protected against interference from outside exposure. The data itself
can be, e.g., a TPM generated cryptographic key. When the private portion of a
key is not held in Shielded Locations on the TPM, it is encrypted. To access the
objects that are stored in shielded locations, the TPM requires use of a Protected
Capability, which is an operation that must be performed correctly. Therefore, all
information on a TPM can be seen as being stored in shielded locations.

For example, the unique identity of a TPM, which is the Endorsement Key
and the Primary Seed in TPM 1.2 and 2.0 respectively, are held in the shielded
locations.

5

6 Theory

2.2 TPM 1.2

The TPM 1.2 was introduced in October 2003 and this section will give an overview
of its components and their functions.

2.2.1 TPM 1.2 Architecture

..Cryptographic Co-Processor.

HMAC Engine

.

SHA-1 Engine

.

Opt-In

.

Non-Volatile Memory

.
I/O

.
Key Generation

.

RNG

.

Power Detection

.

Execution Engine

.

Volatile Memory

Figure 2.1: TPM 1.2 architectural overview

As mentioned, the TPM is a cryptoprocessor that performs cryptographic op-
erations, such as encryption and decryption. To be able to generate and store keys
and information, several components are involved. The components and the de-
sign of the architecture can be seen in Figure 2.1.

To start with, the TPM is a command based hardware which means that it op-
erates only on command. Towards this end, the TPM has to have an input/output
channel, I/O, that supports the communication. For the commands to be exe-
cuted, an execution engine, a CPU, is needed which has the ability to execute se-
quential operations.

The TPM has also the capability to store its main secrets. This is done in its
non-volatile memory. This is where the long term keys, the Endorsement Key and
the Storage Root Key, which will be described later on in this chapter, are held.
Their private portion will never leave the boundaries of the TPM, which means
that it will never be publicly visible. Together with the long term keys, the owner
authorization can be found. The owner authorization is a secret that is created
when a user takes ownership over a TPM. There is also a volatile memory that is
used as temporary storage for e.g., keys that have been loaded into the TPM for
usage, but is cleared when the system reboots.

Theory 7

For more special tasks, like generating a RSA1 key-pair, the cryptographic
components are used. The key generator is the main cryptographic engine and is
used for, e.g., performing the prime number validation and other RSA-specific
requirements. The RNG, Random Number Generator, is a TPM feature that pro-
duces a unique random number sequence, a bit stream, that is used for the key
creation. The RNG is also used in the creation of signatures, password phrases
and the nonce which is used as an anti-replay protection. The cryptographic co-
processor has the ability to encrypt and sign data using externally or internally
generated RSA keys.

The functionality of the HMAC Engine and SHA-1 Engine is involved in the
cryptographic operations by hashing data, producing a result defined as digest.
The HMAC engine is used for providing information about the proof of knowl-
edge when it comes to authorization, while the SHA-1 engine is used to hash the
input data and produce a "one way" 20 byte digest.

Finally, the Opt-In component provides mechanisms and protections to allow
the TPM to be turned on/off, enabled/disabled and activated/deactivated, while
the power detection manages the TPM power states in conjunction with platform
power states.

2.2.2 The key hierarchy organization

The EK is typically generated when the TPM is manufactured and is not change-
able. This is why the key is also called the root-of-trust, which means that it is
used for validating the identity of a unique TPM. Although the EK can be seen
as the identity for the TPM, its use as such is not really possible. The motivation
behind this is that from a privacy point of view, the repeated use of a single iden-
tity in all use cases is problematic. This is because of the possibility of linking
identities, which means that the observer can trace all actions of an EK back to
the owner of TPM. Therefore the TPM gives normally no access to use the EK
except for a very limited number of operations. Because of the EK not being used
during interaction with other entities, the TPM creates something called Attesta-
tion Identity Keys, AIK. An AIK is used as an alias for the EK and one EK can be
connected to several AIKs. This is mainly done to maintain anonymity between
different services.

The SRK, Storage Root Key, is one of the most important keys in the TPM. The
SRK is generated when a user takes ownership over the TPM which is done with
the TPM_TakeOwnership command and is used as the root of the key hierarchy.
Besides generating the SRK, this command also provides the user with an owner
secret that is used during authentication. Similar to the EK, the SRKs private part
never leaves the boundaries of the TPM as described in 2.2.1. The public part on
the other hand, is used to wrap new keys into the TPM. This can only be done by
the keys that are of key type storage.

1RSA is an algorithm for public key-cryptography and is based on having two keys, a
public and a private. For a more detailed description of the algorithm see ref [7].

8 Theory

..

EK

.

SRK

.

Parent Key

.

Child Key 2

.

Child Key 1

....

Figure 2.2: Overview of the TPM key hierarchy

As can be seen in Figure 2.2, both the SRK and the Parent Key are keys of
type storage, which means that the private part of the Parent Key is encrypted
with the public key of the SRK, and the private part of Child Key 1 and Child Key 2
are encrypted with the public key of the Parent Key. This creates a chain of keys,
as can be seen in Figure 2.3.

..

(SRK)

.

(Parent Keysk)SRK pk

.

(Child Key 1sk)ParentKey pk

.

(Child Key 2sk)ParentKey pk

Figure 2.3: Overview of the key storage and its encryption

If, e.g., Child Key 1 is to be loaded and used it has to be decrypted first. To
be able to decrypt Child Key 1, the private part of the Parent Key is needed,
however, this key itself is encrypted with the private part of the SRK. Since the
SRK is not allowed to leave the boundaries of the TPM and is stored inside the
TPM, the private part of the SRK is always available. The TPM then loads the
Parent Key into the TPM, decrypts it with the private key of the SRK and stores
it into the volatile memory, which is a temporary memory as described in 2.2.1.
After decryption and storage of the private part of the Parent Key, the Child Key
1 is loaded into the TPM and decrypted.

The encryption and decryption of the child keys is called wrapping and un-
wrapping.

Except for the storage key, there are six more key types. A signing key is used
for signing operations, the binding key is used for TPM binding commands, i.e.,

Theory 9

encryption, and the legacy is a key supporting both binding and signing opera-
tions. The migration key is the key created and used by an authority, which has
the ability to actually change the location, i.e., a key that can be displaced from
one TPM to another. More of this will be described in the next chapter.

The authchange and the identity key are keys that can change the authority and
also provide the identity for the TPM.

2.2.3 Communication with the TPM

As described in the previous section, the TPM is a simple hardware responding
to commands. Hence, the user drives the communication between the user and
the TPM, which is command based. The user sends a command associated with
the action it wants the TPM to perform and whether the TPM has succeeded or
not, it returns a response to the user with its output. Every command consists of
three parts, the header, the data and the authorization block, which will be further
described in section 2.2.4. The commands can also vary depending on if it is being
sent from the user, i.e. command in, or the TPM, i.e. response out. For example,
the header always consists of the authorization tag, the size and the command
code. However, when being sent from the TPM it also adds a TPM_RESULT
structure that returns a value depending on if the command execution succeed or
not2.

The main part of a command is the data section. This is a unique part for
all commands where the different structures used in these commands depends
on what the user wants the TPM to do. Thus, all the properties belonging to a
command are placed in the data section.

More on the data sections of a command and how they are used will be de-
scribed in the subsection below with an example command, the
TPM_CreateWrapKey command.

Creation of a TPM key

When creating a key, the user has to specify what kind of key is to be created
and where this key should be placed in the hierarchy. As shown in Table 2.1, the
parameters needed as input in this command to create the key are

• Input

- parent key handle: public part of its parent key

- usage secret: a secret that is needed when the key is being used

- migration secret: a secret that is needed to migrate key

- key info: information about the key to be created

2Besides this there is the notion of locality which is a hardware based signaling to the
TPM where the command comes from, this aspect is out of scope for this thesis

10 Theory

Except the input parameters, which belongs to the data section, there is also
the header and the authorization part which are the first three parameters respec-
tively the last four parameters. See Table 2.1.

Structure Name Description

TPM_TAG tag Authorization tag
UNIT32 paramSize Total number of input bytes including paramSize and tag
TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateWrapKey
TPM_KEY_HANDLE parentHandle Handle of the loaded key that can perform key wrapping
TPM_ENCAUTH dataUsageAuth Encrypted usage AuthData for the key
TPM_ENCAUTH dataMigrationAuth Encrypted migration AuthData for the key
TPM_KEY keyInfo Information about key to be created.
TPM_AUTHHANDLE authHandle Parent key authorization. Must be an OSAP session.
TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover input
TPM_NONCE nonceOdd Nonce generated by system associated with authHandle
BOOL continueAuthSession Ignored
TPM_AUTHDATA pubAuth Authorization HMAC key: parentKey.usageAuth

Table 2.1: The TPM_CreateWrapKey input command

If the key is created as a migratable key, then the key info which is the TPM_KEY
structure, should be modified. The definition of a key structure[10] is

typedef struct tdTPM_KEY12{

UINT16 fill;

TPM_KEY_USAGE keyUsage;

TPM_KEY_FLAGS keyFlags;

TPM_KEY_PARMS algorithmParms;

UINT32 PCRInfoSize;

[size is(PCRInfoSize)] BYTE* PCRInfo;

TPM_STORE_PUBKEY pubkey;

UINT32 encDataSize;

[size is(encDataSize)] BYTE* encData;

} TPM_KEY12;

The TPM_KEY12 structure contains the TPM_KEY_USAGE and the
TPM_KEY_FLAGS fields where information about the key is given. For example,
if the key is to be a storage key and migratable, then the keyUsage value is set to
0x0011 and the keyFlag value is set to 0x00000002.

This structure also contains the information regarding the algorithm for this
key, the PCR value, and the public and the private portion of the key.

Except from ordinary values as just mentioned, a structure in a command can
contain other structures. The TPM_KEY structure contains the TPM_KEY_PARMS
structure which in its turn contains the TPM_ALGORITHM_ID structure. This
creates a chain of structures which are nestled into each other, which needs to be

Theory 11

fulfilled before sending the command.

After the command has been sent to the TPM, the TPM creates the key with
the specifics the user asked for, and returns the wrapped key, which is a TPM_KEY
structure, as the data section. The output structure can be seen in Table 2.2.

• Output

- wrapped key: includes the public and the encrypted private key

Type Name Description

TPM_TAG tag Authorization tag
UNIT32 paramSize Total number of input bytes including paramSize and tag
TPM_RESULT returnCode The return code of the operation
TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateWrapKey
TPM_KEY wrappedKey The TPM_KEY structure(public and encrypted key)
TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs
TPM_NONCE nonceOdd Nonce generated by system associated with authHandle
BOOL continueAuthSession Continue use flag, fixed at FALSE

Table 2.2: The TPM_CreateWrapKey output command

2.2.4 Authorization Protocol

For the ability to send commands between the user and the TPM, an authoriza-
tion session has to be created. This authority session can be done in two ways,
either by using the Object Independent Authorization Protocol, OIAP or by us-
ing the Object Specific Authorization Protocol, OSAP. The purpose of these au-
thorization protocols is to prove to the TPM that the requestor has permission to
perform a function and use some of its objects. This is done by providing the
shared secret, which was created during the TakeOwnership process.

Both of the authorization protocols have their authorization blocks which are
attached to the command message block. The OIAP, is an authorization protocol
that is not tied to any object, or better said an entity. This means that there will
not be any authorization blocks in this message. Thus, no authorization is needed.

The OSAP is on the other hand a protocol that does tie into a single entity,
meaning that the object used demands authorization. This protocol can be seen
as a challenge-response authorization protocol and is based on the "rolling nonce"
technique [5]. For example, the TPM creates a nonce and sends it to the user.
When the user has received the nonce, it is included into the response command
with a new nonce created by the user. This is all hashed with the shared se-
cret which is only known by the TPM and the TPM owner. This technique will
prevent replay and man-in-the-middle attacks and is only needed with certain
commands.

12 Theory

2.3 TPM 2.0

The TPM 2.0 was introduced in November 2013 with its 0.99 Specification and
this section will give an overview of its components and functions.

2.3.1 TPM 2.0 Architecture

..Asymmetric Engine.

Hash Engine

.

Symmetric Engine

.

Management

.

Authorization

.

Non-Volatile Memory

.
I/O

.
Key Generation

.

RNG

.

Power Detection

.

Execution Engine

.

Volatile Memory

Figure 2.4: Architectural overview, TPM 2.0

The architecture for TPM version 2.0 [9] is rather different compared to the
architecture for TPM 1.2 but they share some commonalities. The first four ele-
ments mentioned in 2.2.1, which are the I/O channel, execution engine, non-volatile
memory and the volatile memory have the same function in TPM 2.0.

Other than the four functions that were mentioned, the TPM 2.0 also contains
elements such as the hash engine, RNG and the power detection that have the same
functions as in TPM 1.2.

One main difference between the versions is that the latter version has both
an asymmetric engine and a symmetric engine. Thus, TPM 2.0 has the capability to
create both asymmetric and symmetric keys. This also means the key generation
is slightly different from the one in TPM 1.2. The keys that are being generated
in the asymmetric and the symmetric engine respectively, are generated with the
help of a Primary Key. The primary key is derived from a seed value, which is a
secret value. More about how this works will be explained in section 2.3.2.

When asymmetric keys are being generated, the use for these are the same as
in TPM 1.2, i.e., keys for encryption and decryption. However, when the sym-
metric engine is being used it mostly generates "wrapping" keys that are used to
wrap its child keys.

Theory 13

There is also an element called authorization. The authorization feature is
called at the beginning and at the end of a command execution. This subsys-
tem checks that the correct authorization for use of the shielded locations has
been provided. The last element in the architecture, as seen in Figure 2.4, is the
management function. This feature controls the TPM operational states and the
state transitions.

2.3.2 The key hierarchy organization

The Primary Seed is a large random value that is created and permanently stored
in the TPM. Thus, this value will never leave the TPM in any form. The primary
seed is only used when generating primary objects. The method used to do this is
the key derivation function (KDF3) and the parameters the caller provides of an
object to be created.

When the primary object is generated, the TPM uses the parameters of that
object and the primary seed to generate a symmetric key to encrypt the sensitive
portion of the object, i.e., the private data and authorizations. The primary seed
is applied in three TPM key hierarchies, for the endorsement key hierarchy, for
the storage root key hierarchy and the platform firmware hierarchy. Each seed
value has a different life cycle but the way it seeds the associated hierarchies is
approximately the same.

First we have the Endorsement Primary Seed, also known as the EPS, is used
to generate EKs. The TPM creates an EPS when the TPM is powered on and there
is no existing EPS. The TPM manufactures may inject or replace an EPS, however,
in the latter all the objects in the Endorsement Hierarchy are invalid. Unlike in
TPM 1.2, TPM 2.0 can contain several EKs in the EPS hierarchy. When generating
a Primary Object in the endorsement hierarchy, authentication is required. As
seen in Figure 2.5, the EPS hierarchy is empty, this is because the SPS is seen as
the root of the key hierarchy that is used for secure storage.

The SPS, Storage Primary Seed, generates the keys that serve as Storage Root
Keys. The SRK is used for the protection of storage of keys and its hierarchy is
controlled by the platform owner.

The third hierarchy is the Platform Primary Seed, PPS. This hierarchy is used
to control the platform firmware and contains keys that are exclusively used by
platform firmware and should not be made available to user-installable software.

Similar to the TPM 1.2 hierarchy, the SPS hierarchy creates a tree of encrypted
keys. Thus, the parent keys encrypts the child keys. The difference is that in TPM
2.0, the parents encrypt the child keys with a symmetric key that is retrieved from
the parameters of the object and a seed stored in the parent.

For example, the SRK has a symmetric key that was created on the basis of
the SPS seed value and the properties of the SRK. This key is used to encrypt the

3For a more detailed description of this method and the KDF function, see ref. [9].

14 Theory

..

EPS

.

SPS

.

PPS

.

SRK

.

Parent key

.

Parent key

....

Figure 2.5: Overview of the TPM key hierarchy

Parent Key. The Parent Key in turn creates a symmetric key from its parent key’s
seed value, in this case the SRKs seed value, and the properties of the Parent Key,
and uses this to encrypt its child keys.

However, if the key is a duplicated key, which means it has been attached to
the hierarchy, then there is a special duplication symmetric key that will keep the
sensitive data of the key encrypted.

There are two different keys that can be generated in TPM 2.0. The first key
is the primary object, that is generated below the SPS, EPS and PSP. For example,
a SRK that is a child key to the SPS is a primary object. The same goes for an EK
that is a child key to EPS.

The other key is an ordinary key that is generated with the help of a random
number generator. Compared to the previous version of the TPM, there are only
two key types that are used to determine how the TPM may use an object, the
sign key and the decrypt key. The sign key uses its private part in signing pur-
poses while the decrypt key uses its private part to decrypt the entity the public
part encrypted. There is also an attribute, restricted, that is set together with one
of the selected key types and restricts the usage of the key. For example, if set
with the decrypt key then the key can only decrypt entities with a certain struc-
ture. The restricted decrypt key is also known as the storage key.

2.3.3 Communication with the TPM

The communication between a TPM 2.0 and an user is very similar to the com-
munication described in 2.2.3. The communication is still based on commands
that are divided in multiple sections. However, unlike the command structure in
TPM 1.2, the command structure in TPM 2.0 contains of two parts. The first part
is the header and the second part is the data. This can be seen in the example
command below, with the TPM2_Create command.

Creation of a TPM key

This command is used to create an object that can be loaded into a TPM using
TPM2_Load. If the command completes successfully, the TPM will create the

Theory 15

new object and return the objects creation data, its public area and its encrypted
sensitive area.

• Input

- @parent key handle: public part of the parent key

- sensitive data: a secret that is needed when the key is being used

- public template algorithm information about the key to be created

- outside info: buffer area containing algorithm ID and digest

- creation PCR: PCR that will be used in creation data

As seen above, the input parameters are very similar to the ones used for
TPM 1.2. There is a distinction with the parent key handle comparing to the one
used in the previous example and that is the "@" symbol in front of the parent
key handle. This means that an authorization session is required. More about the
authorization sessions will be described in section 2.3.4.

The sensitive data parameter defines the initial data value which is placed in
the sensitive area of a created object. However, this parameter is only used when
creating symmetric keys. If asymmetric objects are to be generated the data in the
sensitive data structure should be empty. The public template parameter declares
a structure that contains all of the fields necessary to define the new object and
the outside info parameter is used to connect the object to its parent. The last in-
put parameter, creation PCR, is connected to a PCR list that indicates which PCR
values are associated with the object being created.

Unlike the previous version of the TPM, this version has no keyFlag prop-
erty that decides if a key is duplicatable, i.e., a key that can be relocated from
one TPM to another, as described in section 2.2.3. However, there is an autho-
rization method which is designed to be used in the duplication context. There
are also two attributes, the FixedParent and the FixedTPM that are set when creat-
ing an object. The FixedParent value is set if the user wants the object to have a
fixed parent. Thus, this key cannot be duplicated. However, if the parent key is
duplicated, then all of its children, even though the fixedParent value is set, are
duplicated as well. The FixedTPM value determines that the algorithm for this
object should be the same as the algorithm that is used by its parent key.

The response to this command is slightly different from the output to the
TPM_CreateWrapKey command in TPM 1.2.

• Output

- private part: the private portion of the object

- public part: the public portion of the created object

- creation data: information about the creation environment for the object

- creation hash: hash of creation data

- creation ticket: a ticket that validates that the key was created in the TPM

16 Theory

In the output command, the private part and the public part of the created ob-
ject are separated into their own structures. Thus, when returning the generated
object, the public part and an encrypted version of the private part are returned
separately when the command has been executed. The creation data parameter
contains the information about the created object such as the parent name, the
parent algorithm and PCR digest, if used. The creation hash is a digest of the cre-
ation data. Also, a creation ticket is given in the response command. This ticket is
used to bind the creation data to the object to which it applies. It also contains a
proof that the object has been created in a TPM and belongs to a certain hierarchy.

2.3.4 Authorization Area

Unlike TPM 1.2, the latter version does not use any authorization protocols. In-
stead, the authorization is provided as authorization area in structured data that
follows the command data. There are three authorization types; password, HMAC
and policy. The authorization area is only present in a command if the authoriza-
tion tag is set to "session" and not all commands demand authorization.

• To use a password as authorization the path between the caller and the
TPM has to be trusted. This is because the password is in plaintext pro-
vided to the TPM. This kind of authorization does not require the creation
of a session, thus, a password authorization does not use nonces. When
creating an object, the authValue is set to the chosen password and it must
be provided when the object is being used.

• The HMAC authorization type is similar to the OSAP authorization in TPM
1.2, described in section 2.3.4. This is a session based authorization which
are indicated by the TPM2_StartAuthSession command. When executed,
the caller indicates, among other things, the size nonce to be used and an
initial nonce value. An HMAC is a form of symmetric signature over some
data which provides assurance that the protected data was not modified
and that it came from an entity with access to the key value. To have use-
fulness in protecting data, the key value needs to be a secret or a shared
secret. For more information about how this secret key is computed, see ref
[9].

• The third and the last authorization type is the policy session. This type
of authorization is, e.g., used during duplication. In a policy session, the
authPolicy entity is used instead of the authValue as in password autho-
rization. A policy is a restriction for an object. For example, a policy may
not allow the use of the object after a specific time or unless some PCRs
have a specific value. There are several different policies that can be used
in different situations.

When a policy session is created, the policyDigest always starts at zero and
increases as the different policy assertions are chosen. A combination of
one or multiple assertions are used to construct the authorization policy.
These are then given in a specific sequence to the TPM which modifies the

Theory 17

policyDigest, i.e., updates it after each given policy. At the end, the pol-
icyDigest will have a specific value which is then used as the authPolicy
which in turn will be included in an object that is to be created. Thus, if
this object is to be used later on, then the same policy sequence has to be
executed as an authorization.

For example, when creating an object, the user selects three assertions, pol-
icy A, policy B and policy C. The digest of these three policies, e.g. abc, will
become the authPolicy in the created object. When the production of the
object is completed and is to be used, the order of the policies has to be
executed once again. If the given digest is abc, then the authorization was
achieved. However, if the digest has a different value, the authorization
will be denied.
A policy may also be expressed in an equation as a set of assertions that
must be satisfied before a policy can be valid. There are two equation types,
the Policy AND and the Policy OR.
Policy AND requires that all three assertions should be true, this could be
written as

A&B&C

Policy OR, however, requires that one of three assertions should be true.
This could be written as

A|B|C

More details about how policies are being used during duplication will be given
in Chapter 5.

18 Theory

Chapter 3
Migration in TPM 1.2

The CU entities protect the node blobs that exist in the HAS entities. The TPM in
the CU has keys that play a role in this protection and when a CU malfunctions
its keys will become unavailable. An approach to have several CU cooperate on
the protection of a node blob is to have the same key present in the respective
TPMs. One approach to achieve this is called migration in TPM 1.2

In this chapter the migration between TPMs will be described.

3.1 Overview

Key migration can be done in two ways, directly between two TPMs or with the
help of a Migration Authority, MA.

The MA is an authority that has the ability to perform as an intermediary
between two TPMs. This is done with a key that is created with keyUsage set to
MIGRATE.

3.2 Commands for migrating

To be able to succeed with the migration of a key from one TPM to another, a
chain of commands has to be executed.

In this section, the commands regarding a key migration[12] will be described.

3.2.1 TPM_CreateWrapKey

• Input

- parent key handle

- owner Secret

- migration secret

- key info

• Output

- wrapped key

19

20 Migration

With the SRK as the parent key, which was created during the TPM initializa-
tion, the TPM_CreateWrapKey command is to be used to create its child key, the
migratable key. The creation of the migratable key has to be authorized which
is realized by providing the owner secret. Also, a migration secret is provided
which later will be used as an authentication when the key is to be migrated. The
key info among the input parameters, stands for the TPM_KEY12 structure, as de-
scribed in section 2.2.3. When creating a migratable key it is important to use the
the keyFlag field. If the customer wishes to use the migration key to store other
keys below it, then the keyUsage value has to be set to storage and the keyFlag
value has to be set to migratable. The migratable storage key can only store other
migratable keys.

However, if the key is to be used for encrypting information then the keyUsage
value can be set to binding and the keyFlag value to migrate. The structure used
for the definition of what kind of key it should be is shown in more detailed form
in section 2.2.3.

After the execution of the TPM_CreateWrapKey command the TPM sends
a wrapped key as the output, i.e., the newly generated key encrypted with its
parent key.

3.2.2 TPM_AuthorizeMigrationKey

• Input

- migrate Scheme

- public key

- owner Secret

• Output

- migrationKeyAuth

After the key has been created, the TPM has to get the authorization rights to
migrate this key which has to be done with the help of the TPM owner. Once this
command has been executed, the TPM owner allows the users to migrate without
any further involvement of the TPM owner.

This is done by creating a TPM_MIGRATIONKEYAUTH structure

typedef structure tdTPM_MIGRATIONKEYAUTH {

TPM_PUBKEY migrationKey;

TPM_MIGRATION_SCHEME migrationScheme;

TPM_DIGEST digest;

} TPM_MIGRATIONKEYAUTH;

The TPM_MIGRATIONKEYAUTH structure consists of TPM_PUBKEY that
represents the public key of the migration entity, the TPM_MIGRATION_SCHEME

Migration 21

that represents the chosen migration scheme and the TPM_DIGEST that repre-
sents a digest value of the composition of migration key, migration scheme and
the TPMProof.

There are two types of migration schemes, REWRAP and MIGRATE. The mi-
gratable key is "re-wrapped" in both schemes. The meaning of "re-wrapped" is
when the key is first decrypted with its own parent key, and then encrypted with
the parent key of the destination. The REWRAP scheme allows the destination
parent key to directly load the migratable key into the destination TPM. If the
MIGRATE scheme is chosen, the key has to be converted before it can be loaded
into the destination TPM. The latter is done by the TPM_ConvertMigrationBlob
command.

The output of this command is the migrationKeyAuth, which provides the
authentication for the migration.

3.2.3 TPM_CreateMigrationBlob

• Input

- parent key handle

- migration scheme

- migrationKeyAuth

- owner Secret

- migration Secret

• Output

- size of a random number

- random number

- out data size

- outData

TPM_CreateMigrationBlob command creates a key blob1 which is used as an
envelope with the migration key and its associated information in it during mi-
gration. This is done in the TPM and the input to this command, besides the
migrationKeyAuth given in the previous command, is the parent key, the owner
secret, migration secret and the migration scheme.

The parameters in the output of this command depends on the chosen mi-
gration scheme. If the migration scheme is set to REWRAP, then the size of the
random number is set to 0, which means that the random number is not used.
However, if the migration scheme is set to MIGRATE, then the random number
is used for XOR encryption of the key. In addition to this, the key blob is returned
and its size.

1"blob" refers here to another type of blob than the node blob discussed earlier.

22 Migration

3.2.4 TPM_ConvertMigrationBlob

• Input

- Private key of the parent

- Size of data

- inData

- Size of a random number

- Random number

• Output

- OutData Size

- OutData

After receiving the blob from the sender TPM, the destination TPM uses the
TPM_ConvertMigrationBlob command to convert the key blob to data that can be
loaded into the TPM. If the MIGRATE scheme is chosen this command removes
the envelope the user created with TPM_CreateMigrationBlob. The input param-
eters for this command is the private key of the parent, the data and the random
number. The random number is now used once again to remove the XOR encryp-
tion.

The output of this command is the data, i.e., the key that can be loaded by the
TPM_LoadKey command.

3.2.5 TPM_MigrateKey

• Input

- MA key handle

- public key

- Data size

- inData

• Output

- Out data Size

- Out data

As described in the beginning of this chapter, there are two methods for mi-
grating a key, sending it directly from a sender TPM to a destination TPM or use
a MA as an intermediary.

The TPM_MigrateKey command is executed in the latter method after the
TPM_CreateMigrationBlob command. When a key is being migrated, it is en-
crypted with the parent key of the destination. In this case the parent key will be
a migration authority key. Before the key blob can be forwarded to the destina-
tion TPM, the MA has to decrypt the key blob with its private key and encrypt it

Migration 23

with the destination TPMs public key.

The input parameters for this command is the MA key that performs the mi-
gration, the public key to which the key blob is to be migrated, i.e., destination
parent key and the key blob itself.

The output for this command is the re-encrypted blob which can now be for-
warded to the destination TPM.

3.3 Migration alternatives

A migration can be orchestrated in different ways. In this section the sequence of
the commands described in section 3.2 will be used to demonstrate the different
migration methods.

Direct migration

The direct migration, i.e., from one TPM to another, is conducted in two steps.

• The first step is made at the sender TPM where the creation and authoriza-
tion of the key is done. After successful execution of the two commands,
the key blob is created before it is sent to the destination TPM.

1. TPM_CreateWrapKey
2. TPM_AuthorizeMigrationKey
3. TPM_CreateMigrationBlob

• The last step is done at the destination TPM after receiving the key blob.
The TPM converts the blob and encrypts it into its own hierarchy. If the
key is to be used it is also loaded with the LoadKey command.

4. TPM_ConvertMigrationBlob
5. TPM_LoadKey

Migration through a MA

In this example, the migration is conducted with the help of a MA in three steps.

• This step is performed in the same manner as in the previous example.
However, the key blob is encrypted with the key of the MA before it is
sent.

1. TPM_CreateWrapKey
2. TPM_AuthorizeMigrationKey
3. TPM_CreateMigrationBlob

• When the key blob has arrived at the MA, it is decrypted with the MA
private key and encrypted with the destination TPMs public key. The com-
mand used for this is the

24 Migration

4. TPM_MigrateKey

• The third and the last step is done in the destination TPM. When the mi-
gration blob arrives at the TPM converts the blob and encrypts it in its own
hierarchy. If the key is to be used it is also loaded with the LoadKey com-
mand.

- TPM_ConvertMigrationBlob

- TPM_LoadKey

Chapter 4
CMK migration in TPM 1.2

The difference between using the method of migration described in Chapter 3 and
the method that will be presented in this chapter is the creation and migration of
Certifiable Migratable Keys, also known as CMKs. The difference between these
certifiable keys versus the ordinary keys is that these keys are by guaranty created
and protected by the TPM. This can and is verified by two of the most important
entities in this chapter, which are the MA, Migration Authority, and the MSA,
Migration Selection Authority.

• MA: Migration Authority

- performs the migration of the keys

• MSA: Migration Selection Authority

- controls migration of keys

The first one, the MA, is seen as an intermediary because this is the entity that
receives the CMK from the sender TPM before sending it further on to the desti-
nation TPM, as briefly mentioned in the previously migration case. The MSA has
a much bigger role because the MSA is the authority that approves the migration
and is responsible for auditing that the CMK is not sent to an unauthorized TPM.
The latter is done with the help of tickets. There are three types of tickets, the au-
thorization ticket, the "export" ticket and the "import" ticket. These tickets contain
information about who signed this ticket, where it is headed, where it came from,
respectively, and what is being sent. More about these tickets will be described in
section 4.1.2.

Simply said, a CMK must be a migratable key for which the destination is
restricted. During the creation of the CMK a MSA list is attached which lets the
key only migrate to one of the MSAs on the list.

4.1 Overview

In this section, some details of the tickets and the MSA will be described. These
properties are significant for the CMK migration.

25

26 CMK migration

4.1.1 MSA

During the ordinary migration as described in section 3.3, the TPM owner is in
charge of which destination TPM the migration key will be migrated to. How-
ever, this is not always a secure way of migrating a secret key. That is why the
CMK requires the use of a third part.

The third part, also known as the authority, will be the MSA which will be
involved in the migration of a CMK with the help of restrictTickets. Without
these tickets it would not be possible for the TPMs to perform the migrations
because it must be done by a trusted authority.

4.1.2 Tickets

When migrating an object, the destination has to be authorized by the MSA. The
authority audits if the sender TPM has the rights to send the object to a destina-
tion TPM. If this is the case, then the MSA creates a digest by signing the

{MSA, send.TPM, dest.TPM}

structure with its private key. The three elements stands for

- The public key of the authority

- The public key of the parent key of the sender

- The public key of the parent key of the receiver

The restrict ticket, which is the generated digest, is then sent to the TPM
which executes the TPM_CMK_CreateTicket to authorize the MA approval. This
in turn produces a signature ticket. The TPM_CMK_CreateTicket command will
be further described in section 4.2.4.

The MSA also audits if the destination TPM has the rights to receive the object
from the sender. These two types of tickets will be called export respectively
import tickets.

4.2 Commands for migrating with a CMK

This section will give a short overview of the commands needed during an exe-
cution of migrating a CMK [12]. Each command is described by input and output
parameters that are needed for a successful execution of a command.

4.2.1 TPM_CMK_ApproveMA

• Input

- Migration Authority Digest

CMK migration 27

- Owner Authentication

• Output

- Authorization Ticket

The TPM_CMK_ApproveMA command is the first command that is executed
in the migration process. This command creates an authorization ticket that al-
lows the TPM owner to specify which MSAs are approved. This also allows the
users of the TPM to create the CMK without any further involvement of the TPM
owner.

The first input parameter of this command is a digest value of the
TPM_MSA_COMPOSITE structure.

typedef struct tdTPM_MSA_COMPOSITE{

UINT32 MSAList;

TPM_DIGEST[] migAuthDigest;

} TPM_MSA_COMPOSITE;

The migAuthDigest is an arbitrary number of digest of public keys belong-
ing to Migration Selection Authorities. Thus, it specifies which MAs the TPM
approves. The second parameter in the structure is the MSAList which is the
number of the authorities approved.

In addition to the MSA_COMPOSITE structure, the owner authorization needs
to be provided.

The output of this command is the authorization ticket, which is a HMAC of
the migration authority digest using the TPMProof as the secret. This will also be
called AuthTicket and is a TPM specific value.

4.2.2 TPM_CMK_CreateKey

• Input

- Parent key

- Owner Secret

- Key info

- AuthTicket

- Migration Authority Digest

• Output

- Wrapped key

With this command, the creation of the key to be migrated is realized. The dif-
ferent inputs that are needed for executing this command, are the parent key, the
owner authorization, i.e., the owner secret, the key information, the authTicket
given in the previously command and the digest of the authTicket.

28 CMK migration

The key information has the same structure as the one described in section
2.2.3. The keyFlag however, must be set to migratable. Also, when creating this
key an audit will be performed so that the parent key of this key does NOT have
the migratable flag set. This is done to insure that this CMK is generated in the
TPM and that the private key of the generated CMK is protected by a TPM key
that cannot be migrated.

The output of this command is a wrapped key, thus, a CMK encrypted with
the parent key.

4.2.3 TPM_AuthorizeMigrationKey

This command is the same command as the one used in the regular migration
in the previously chapter, section 3.2. However, there is a difference between
these two cases. The parameters, the public key, the migration scheme and the
authHandle, are still sent to get the TPM_MIGRATIONKEYAUTH structure but
in the CMK case there are two migration scheme types that differ from those
used in the migration case. The two TPM_MIGRATE_SCHEME types that can be
chosen are either the

- TPM_MS_RESTRICT_APPROVE type

or the

- TPM_MS_RESTRICT_MIGRATE type

The first type, i.e., APPROVE, includes not only a MSAList that binds the
CMK to one or several MSA, but is also in need of tickets. These tickets are cre-
ated by the MSA that verifies and signs the destination as described in section
4.1.2. This means that a TPM can send a CMK directly to another destination
TPM, with the help of an exportTicket and an importTicket from the MSA. In ad-
dition to sending the CMK directly between the TPMs, an MA can also be used.
However, this requires two extra tickets, an import and export ticket respectively.
Which means that the CMK is first sent from the TPM to a MA, and then from
a MA to a destination TPM. Hence, the APPROVE scheme needs approval from
the MSA for a successful migration.

The MIGRATE type however, does not need any tickets at all. This scheme is
used when a CMK is sent between a TPM and a MSA, and because the MSA is
already authorized, it is a trusted part.

The output message block given with this command is the same result as
in the previous example in Chapter 3, under the TPM_MIGRATIONKEYAUTH
command description.

CMK migration 29

4.2.4 TPM_CMK_CreateTicket

• Input

- Public key
- Signature
- SignatureValue

• Output

- sigTicket

This command is used to verify that the restrictTicket given from the MSA
is trustworthy. Thus, that an authentic MSA has approven the destination of the
CMK.

By using the TPM_CMK_CreateTicket command with provided parameters;
the public key of the destination, the public key of the sender and the digital
signature of the MSA, the TPM can verify that this is really created and approved
by a MSA. This is done by comparing the digest given from the MSA, i.e., the
restrictTicket, with the digest that is given by the output of the command, i.e.,
sigTicket.

4.2.5 TPM_CMK_CreateBlob

• Input

- Parent key
- Migration scheme
- AuthTicket
- Digest of the public key
- MSA List
- restrictTicket
- sigTicket

• Output

- Random number
- OutData

In this command the user creates a CMK blob that is sent to the destination.
The input parameters needed is the parent key, the chosen migration scheme,
the authTicket that verifies that the TPM owner has authorized this migration,
the MSAList and the digest of the public key of the entity being migrated. Also,
for creating this blob, the restrictTicket and the sigTicket are needed. The re-
strictTicket is the ticket given from the MSA, and the sigTicket is the digest value
created to verify the authority. When using the MIGRATE scheme type these two
parameters will be zero.

The output of this command is the re-encrypted data which is sent to the
destination.

30 CMK migration

4.2.6 TPM_CMK_ConvertMigration

• Input

- restrictTicket

- sigTicket

- public key of the key-to-be-migrated

- MSAList

- migrationKeyAuth

- random

- randomSize

• Output

- outData

- outData size

This command is similar to the TPM_ConvertMigrationBlob command de-
scribed in section 3.2. Some of the input parameters are the public key of the
key to be migrated, the MSAList and the migrationKeyAuth, i.e., the authoriza-
tion of the migration key. Among the input parameters, the restrictTicket and the
sigTicket can also be found.

With the input parameters, this command converts the key blob created by
the CreateBlob command into a loadable key by removing the random parameter
and wrapping the key into its own hierarchy, i.e. with a parent key.

The output of this command is the CMK that can be loaded with the
TPM_LoadKey command.

4.2.7 TPM_MigrateKey

The input for this command is the blob given in the previously command and is
only used when a MA is the middle hand between two TPMs. This means that if
the migration is direct between two TPMs or if the MSA is the middle hand this
command is not used.

For more details about this command, see section 3.2.

4.3 CMK migration alternatives

In this section the various ways of migration with the commands described in
this chapter are presented.

The MSA is involved in all of these cases that will be described and is respon-
sible of ensuring that the right TPM is sending the right CMK to the right TPM
destination.

CMK migration 31

Migrating directly between TPMs

When talking about direct migration between two TPMs, the MSA and its in-
volvement can be forgotten. Even though a CMK is directly sent from a sender
TPM to a destination TPM, multiple steps involving the MSA are made to make
that possible.

• The first stage of the migration begins in the sender TPM, where the owner
has to approve the different MAs that can be used as the middle hand even
though it will not be needed in this case. On the other hand, the authTicket
that is given in the output is needed for the next step which is to create the
key. The third and last step is to authorize the migration key, that is, how
will this key be migrated and which migration scheme will be used.

1. CMK_ApproveMA

2. CMK_CreateKey

3. CMK_AuthorizeMigrationKey

After the generation of the CMK is completed, the MSA needs to approve
of the CMK migration to the destination. This is done by creating the re-
strictTickets. To approve the authority, the sigTicket is created by the TPM.
If the digest value of these two tickets match, then the CMK blob is created
before it is sent to the destination TPM.

4. CMK_CreateTicket

5. CMK_CreateBlob

• When arriving at the destination TPM, the CMK blob has to be converted.
However, to be able to do this, the destination TPM needs to be certain
that this migration is authorized by the MSA. The MSA then sends the re-
stricTicket to the destination TPM, which is once again verified by creating
the sigTicket. When this step is performed, the destination TPM wraps the
CMK with its parent key.

6. CMK_CreateTickets

7. CMK_ConvertMigration

• The CMK can now be used using the TPM_LoadKey command.

Migrating with the help of an MA

In this migration method the use of a MA will be described. Comparing this
migration alternative with the previous one, the stages are very similar to the
once just noted above with some small differences.

• This step is computed in the same way as step one in the previous example.

1. CMK_ApproveMA

32 CMK migration

2. CMK_CreateKey

3. CMK_AuthorizeMigrationKey

• After the generation of the CMK is completed, the MSA needs to approve
of the CMK migration to the destination. This is done by creating the re-
strictTickets. To approve the authority, the sigTicket is created. If the digest
value of these two tickets match, then the CMK blob is created before it is
sent to the destination.

4. CMK_CreateTickets

5. CMK_CreateBlob

• When the MA receives the CMK blob, the MA needs to re-wrap the CMK
blob by decrypting with its own private key and encrypting it with the
public key of the destination TPM. This is done by using the MigrateKey
command before the CMK blob is further sent to the TPM destination.

6. MigrateKey

• When arriving at the destination TPM, the CMK blob has to be converted.
However, to be able to do this, the destination TPM needs to be certain
that this migration is authorized by the MSA. The MSA then sends the
restricTicket to the destination TPM, which is once again verified by the
sigTicket. When this step is performed, the destination TPM wraps the
CMK with its parent key.

7. CMK_CreateTickets

8. CMK_ConvertMigration

• The CMK can now be used using the TPM_LoadKey command.

Chapter 5
Duplication in TPM 2.0

Similar to the previous chapter, this chapter will be describing the commands that
is needed to duplicate an object from one TPM to another.

5.1 Overview

The main difference between TPM 1.2 and 2.0 is that the migration is no longer
called migration, it is now called duplication. Also, the MA and the MSA are
no longer needed because in TPM 2.0 there is no CMK. To achieve restrictions
on how to handle keys, the main focus in TPM 2.0 is something called policies, as
described in section 2.3.4. However, in one of the policies that will be used during
the duplication, an authority will be needed. More about this will be described
further on in this chapter.

5.2 Commands for duplication

In this section the command sequel for a successful duplication [13]will be de-
scribed. As mentioned in section 2.3.4, the authorization method used during a
duplication of an object is the policy method. The policies that will be used in
this context are the TPM2_PolicyAuthorize and the TPM2_PolicyDuplicationSelect.

5.2.1 TPM2_CreatePrimary

• Input

- Data

- Algorithm

- AlgorithmID and Digest

- PCR

• Output

- public portion of the object

- creationData

33

34 Duplication

- creationHash

- creationTicket

- objectName

When taking ownership over a TPM 2.0 the SPS is created as described in
2.3.2. To create a child key for this hierarchy, the TPM2_CreatePrimary command
is used. It creates a primary object, a SRK, which is stored under the SPS. The
input parameters for this command is the data, which is an empty buffer if an
asymmetric object is being created, the algorithm, for what kind of object is to be
created, and PCR value, that will be used in the creation data.

The output of the command is public key of the object, the creationData which
includes e.g., the parentName and the parentAlgortihm, the hash of the creation-
Data and the name of the created object. There is one more output, which is the
creationTicket. This is to validate that the creation data was produced by the
TPM.

This command is very similar to the ordinary CreateKey command, the only
difference is that it will not return the private part of the key. This is to ensure
that the private part of a primary object never leaves the TPM. Also, as a primary
object, some attributes has to be set. For example, FixedTPM and FixedParent
attributes has to be set to 1, which means that the key has a definite parent, hence
it cannot be duplicated.

5.2.2 TPM2_PolicyAuthorize

• Input

- authPolicy1

- policyRef

- signKey

- checkTicket

• Output

- Response size

- Response code

The PolicyAuthorize command is used to change an authPolicy value with
the help of an authority. The authPolicy value is given by the digest value, as
mentioned in section 2.3.4. At the beginning of the session, this digest value is
zero.

authPolicy1 = policySession → policyDigest

Duplication 35

This command should be executed before the object is created, which means
that the digest value included into the object could be changed. However, this
command can only change the digest that is created before the PolicyAuthorize
command is executed. This means that if there are some policies that are executed
before the PolicyAuthorize command, PPA, the digest that was created during
the execution of these will be changed. As seen in Figure 5.1, the PolicyAutho-
rize command can change the digest that has been generated from P1, P2 and P3.
Thus, the policies executed after PPA, which are P4 and P5, will not be modifiable.

.. P1. P2. P3. PPA. P4. P5

Figure 5.1: PolicyAuthorize process

After the authPolicy1 has been set, the digest is added with a value called
policyRef, a policy qualifier, which is generated and used by the TPM as its own
secret.

aHash = HMAC(authPolicy1|policyRe f)

The HMAC is calculated depending on which algorithm is used within the
hierarchy and what kind of key is to be generated. With the help of the authority,
this value can be switched with the name of the sign key of the authority. This is
done by signing the aHash with the signing key. The result of this action is that
the new authPolicy (authPolicy2) will be the name of the signing key.

authPolicy2 = signKeyname = (aHash)sign

The outcome of the new authPolicy will always be the same as long as the
same authority is used for the modification.

To validate this signing process, the TPM2_VerifySignature command is used.
This will generate a ticket that will be used as the authorization. Instead of repro-
ducing the digest and its verification, the ticket is provided.

Ticket = HMAC(proo f |(TPM_ST_VERIFIED||aHash||signKey → name))

As mentioned, the PolicyAuthorize command is executed before the key is
created to be able to change the authPolicy value when having the knowledge of
which destination the key is being duplicated to.

36 Duplication

5.2.3 TPM2_Create

• Input

- Data (empty buffer for asymmetric objects)

- The algorithm for what kind of object is to be created

- AlgorithmID and Digest

- PCR that will be used in creation data

• Output

- private portion of the object

- public portion of the object

- creationData

- creationHash

- creationTicket

- objectName

The TPM2_Create command creates the duplication object. The input param-
eters for this is the data, which is an empty buffer for asymmetric objects, the
algorithm, for what kind of object is to be created, and the PRC value that will be
used in the creation data. This value is set to zero.

The output parameters is the encrypted private key, the public key, the cre-
ationData which includes e.g., the parentName and the parentAlgorithm, the
hash of the created data, the name of the created object and the creationTicket.

When the object is created, the symmetric encryption is used to encrypt the
sensitive area of the object. Hence, it is encrypted with the symmetric key which
is retrieved from the parent key and the parameters of the created object. This
command is very similar to the previous command, except as mentioned before,
in this command the private portion is returned which the previously command
does not. Even though the private portion is returned, it never leaves the TPM
decrypted.

5.2.4 TPM2_LoadExternal

• Input

- Sensitive portion of the object (optional)

- The public area

- Handle type

• Output

- Handle that refers to the object

- Name for the entity type

Duplication 37

The LoadExternal command is used to load the public area of the key to
which the newly created key is to be migrated. The input for this command is
the sensitive portion of the object, which is optional, the public key and the han-
dle type depending on which key from which hierarchy is to be loaded.

The name of the new parent key and also the handle for the loaded object is
then returned. Also, external objects are temporary objects which means that the
next time the TPM is reset, the loaded objects will be deleted.

5.2.5 TPM2_PolicyDuplicationSelect

• Input

- objectName

- newParentName

• Output

- respond size

- response code

The PolicyDuplicationSelect command affects the policy value and is used to
define a destination for the key being duplicated. Thus, the key will have a fixed
destination which will not be modifiable.

Before creating the key, the PolicyAuthorize command should be executed as
described in the previous section, 5.2.2. This will set the authPolicy to the key
name of the signing key of the authority. After a successful generation of the
object, the duplication process is started. The first thing the TPM has to do is to
execute the PolicyDuplicationSelect command.

nameHash = HMAC(ObjectName||newParentName)

policyDigestnew = HMAC(policyDigestold||
TPM_CC_PolicyDuplicationSelect||newParentName||inludeObject)

The key is set to a specific destination. When the destination is set, the Poli-
cyAuthorize command is once again used where the authority has to approve the
destination before it can sign the new authPolicy with its signing key. Thus, the
object cannot be duplicated to an unauthorized TPM. When the authority has ap-
proven the destination, the same sign key that was used during the generation of
the object has to be used. After the signing, the new authPolicy will be the name
of the sign key which means that the same digest value will be accomplished and
the duplication can be pursued.

38 Duplication

5.2.6 TPM2_Duplicate

• Input

- parent key
- inner wrapping key
- symmetric algorithm

• Output

- symmetric encryption for inner wrapper
- encrypted private area
- seed of new parent

This command performs the actual duplication of the object. For this command
to be executed, the public key of the new parent, the inner wrapping key and
the symmetric algorithm used for the inner wrapper have to be given. The inner
wrapping is optional, and can be chosen by the user or created by the TPM.

The result of the command is a new sensitive structure that is encrypted by
the new parent. The importance with this command is that it sets the command-
Code value of the policy context to TPM_CC_Duplicate, which in turn will enable
the DUP role, which is an authorization role, and the duplication can be made for
the object.

The policy is likely to include cpHash in order to restrict where the duplication
can occur.

5.2.7 TPM2_Import

• Input

- inner wrapping key
- public part of the object
- duplication object
- symmetric key
- algorithm for inner wrapping key

• Output

- out private

The import command allows the object to be encrypted using the symmetric en-
cryption values of a storage key. The input for this command is the public part of
the object, the duplication object, which is the sensitive area and the symmetric
key used to encrypt the duplication object. Also, as seen among the input fields,
the duplication object may have an inner wrapping key. However, because the
duplication is monitored by an authority, this will not be needed.

The output of this command is the encrypted sensitive data of the duplication
object.

Duplication 39

5.3 Duplication alternatives

The duplication method is based on the same basis as the migration method in
Chapter 3, where it includes only two parties, the sender TPM, which the key is
being duplicated from, and destination TPM, which the key is being duplicated
to. In this section, two duplication alternatives will be presented, the first one
involving an authority, and the latter being a direct duplication alternative.

Duplicating with the help of an authority

This duplication alternative involves an authority and the PolicyAuthorize com-
mand, which means that the destination of the duplication key can be modified.

• To be able to create a duplication key, a parent key is needed. After the
creation of the parent key, the authPolicy is to be set to the name of the
signing key of the authority. Then, the duplication key is generated. When
the destination later on is known, the public key of the new parent is loaded
into the TPM and the PolicyDuplicationSelect command is executed. Now
that the destination is set, the authority has to approve it by signing the
new digest. This is done with the same command as previously used, the
PolicyAuthorize command. The authPolicy will now be the name of the
signing key of the authority once again and the authPolicy can be updated.
The last command in this process is the Duplicate command which will
send the duplication key to the destination TPM.

1. TPM2_CreatePrimary

2. TPM2_PolicyAuthorize

3. TPM2_Create

4. TPM2_LoadExternal

5. TPM2_PolicyDuplicationSelect

6. TPM2_PolicyAuthorize

7. TPM2_Duplicate

• When arriving at the destination, the key has to be imported to be able to
be used.

9. TPM2_Import

Duplicating directly between TPMs

Comparing to previous duplication alternative, this alternative does not involve
any authority and the destination is set before the generation of the duplication
key. This means that the duplication destination can not be modified.

40 Duplication

• Similar to previous duplication alternative, the parent key needs first to be
created. The next step is to create the duplication key, however, before this
can be done, the destination of the key should be selected. This is done
with the PolicyDuplicationSelect command. The execution of this com-
mand will give an authPolicy value in return which will be used during
the generation of the duplication key. After the creation of the duplication
key, the public key of the destination is to be loaded so that the Duplicate
command can be executed and the duplication key can be duplicated.

1. TPM2_CreatePrimary

2. TPM2_PolicyDuplicationSelect

3. TPM2_Create

4. TPM2_LoadExternal

5. TPM2_Duplicate

• When arriving at the destination, the key has to be imported to be able to
be used.

6. TPM2_Import

Chapter 6
Migration methods for TPM 1.2 in

telecommunication nodes

For a successful use of the migration functions in the telecommunication nodes,
three parties are being involved. First we have the CU Factory which is also
known as the board factory. This entity is responsible for the creation of the
boards (CUs) which contain the TPMs and the first configuration of each board.
This means that the CU Factory will take ownership of each board. After the con-
figuration is done, the CU Factory sends the CUs to the HAS Factory, which is
responsible for the creation of the node and the node blob. For example, this can
be seen as being created in the base station factory. The third and last part is the
customer which receives this node blob with the TPMs installed.

As seen in Figure 6.1, the boards that are made in the CU factory are sent
both to the HAS factory and to the Customer. This is because only two boards are
being used for the first installation in the HAS factory, and the rest are sent to the
customer as spare CUs in case one or both of the CUs in the HAS break down.

The different parties will be involved in all of the use cases presented in this
chapter.

..

CU Factory

....

HAS Factory

......

Customer

.......

Figure 6.1: The involved parties.

41

42 Migration methods for TPM 1.2 in telecommunication nodes

6.1 MSA Setup

With respect to the use case of HAS and CU, the MSA is maintained by the CU
Factory. Such a MSA can also be realized as a server. The MSA is responsible for
the main parts of the migration in all the use cases and is used for several pur-
poses.

As described in section 4.1.1, the MSA is used for the creation of the re-
strictTickets. However, in the use cases that will be presented in this chapter
the MSA will be much more than just an authority that creates the tickets for
the migration. The MSA will also be involved in the configuration of each CU
containing the TPMs.

• One of the main tasks involving the MSA, is the creation of the generic
CMKs that will be migrated to each TPM board created in the CU Factory.
The two CMKs that will be created are the CMK fs and the CMK fb

. The fs
stands for a fixed storage key and the fb stands for a fixed binding key. Because
of the unique SRK for each TPM, the MSA has to "re-wrap" the key blobs
and create the tickets belonging to it. The key hierarchy, containing the
generic keys, after the involvement of the MSA can be seen in Figure 6.2.

..

SRK

.

CMK fs

.

CMK fb

....

Figure 6.2: Overview of key hierarchy in a generic board

• MSA also creates the certificate for each TPM. This is the certificate that
verifies that the TPM is a valid TPM and is used to ensure that the customer
is using the correct one. The TPM creates a sign key that will be used in the
creation of a CSR, Certificate Signing Request. This request is then sent to the
MSA, which will create the certificate and approve the TPM by adding the
SRK and the certificate to a PKI, Public Key Infrastructure tree. The PKI tree
will be used during the personalization of the TPM to verify that the TPM
is approved by the CU Factory through its MSA. Thus, the certificate has
to be given to the MSA to prove validation of the TPM.

• As mentioned, the MSA can also be realized as a server, this is because the
MSA will store the public portion of the SRK of each manufactured TPM
in the CU Factory in a database. A white list will be created for these SRKs
and checked each time the personalization of a board is to be carried out.
More details about this will be described in section 6.2.2.

Migration methods for TPM 1.2 in telecommunication nodes 43

6.2 Migration with a MSA/Server

In this subsection, three use cases will be presented. The first case, Case A, is
based on creating a generic board which can be used by all customers of the man-
ufacturer. This is done by creating two fixed CMKs, CMK fs and CMK fb

, that will
be migrated into each TPM board, as described in previous section. The second
and third case, Case B and Case C, are both based on a customer specific solution
of the board for each customer where Case A is used as foundation. This is done
by creating a customer specific key, CMKs. The difference between these two cases
will be discussed further on in this section.

6.2.1 Case A

In this case, a generic board is to be created. The first step is to initialize the TPMs
which is done in the CU Factory. By taking ownership, the SRK is created and
will later be used as the parent key for the generic key. The CU Factory will also
create a sign key that will be used in the creation of a CSR. This request is sent
together with the SRK to the MSA/Server. Hereinafter, the MSA who already
created the fixed keys, CMK fs and CMK fb

, in advance returns this to the TPM on
the CU created in the CU factory.

Aside from migrating the fixed keys to the CU, the MSA also creates a certifi-
cate from the CSR. This will declare that the TPM is created by the CU manufac-
ture and will always be checked before migration.

When the CUs have been manufactured, two boards are sent to the HAS Fac-
tory, where they are installed into the newly created node and some are sent to
the customer for backup purposes.

..

MSA/Server

......

CU Factory

..

SRK

. CMK blob, ticket

Figure 6.3: Overview of CMK migration in Case A.

Even though both of the fixed keys are in the TPM, thus both keys are avail-
able for the customer, this solution will only provide the use of one of the keys,
the CMK fb

. This generic binding key is used by the customer to store the sensi-
tive information in the node. However, this also means that all customers of the
board manufacturer that choose this solution will share the same binding key.

The properties of this solution are

- Offline

44 Migration methods for TPM 1.2 in telecommunication nodes

- Generic

The offline property means that the boards can be switched out and used
without contacting the MSA/Server, this is because all boards are generic.

The steps and the command that are executed during this solution can be seen
in Figure 6.4.

..MSA/Server.
- TPM_CMK_ApproveMA

- TPM_CMK_CreateKey

..

- TPM_AuthorizeMigrationKey

- [CMKf_blob] = TPM_CreateBlob

..CU Factory .

- SRK = TPM_TakeOwnership

..

- TPM_CMK_CreateTicket

- TPM_CMK_ConvertMigration(CMKf_blob)

- TPM_LoadKey(CMKf)

..

SRK

.

CMK fb

.

CMK fs

.....

Key hierarchy of TPM

.

generic board

.. HAS Factory..

SRK

.

CMKf_blob

.

CU

Figure 6.4: Overview of the preparation steps for CMK migration in
Case A.

6.2.2 Case B

As mentioned at the beginning of this chapter, Case B is built on a foundation
that is constructed during Case A. This means that the generic board is at first
generated in the CU Factory with the help of the MSA/Server before proceeding
with the personalization of the board which will be done in the HAS Factory. The
reason for personalizing the board in the HAS Factory and not in any of the ear-
lier steps, is because during the creation of the node blob the information about
which customer this node blob is intended to belong to, has become known.

An overview over the steps of Case B can be seen in Figure 6.5. During the
initialization, the SRK of the TPM boards created in the CU Factory are stored
in a white list in the MSA/Server’s database. When the TPMs later arrive at the
customer, at the HAS Factory to be specific, the SRKs are sent to the MSA/Server
which checks if the SRKs are in the approved SRK database, if so, the MSA/Server
creates a new CMK that will be specific, CMKs, for that node owned by the cus-
tomer.

Migration methods for TPM 1.2 in telecommunication nodes 45

..

MSA/Server

.....

CU Factory

...

Customer

.....

SRK

.

SRK

.

CMK blob, ticket

Figure 6.5: Overview of CMK migration in Case B.

After the creation of the CMKs, it is sent to the customer, encrypted with the
public key of the SRK and with the tickets that are needed for the migration.

In case one or both CU/-s break, the customer puts one of the spare CUs con-
taining a TPM into the node for installation. The customer has then once again
to contact the MSA/Server for the restrictTickets, which are as described in sec-
tion 4.1.2, needed for the migration of the key. By sending the new SRK of the
newly inserted TPM to the MSA/Server, the MSA/Server can then return the
saved CMKs for this particular node blob and the restrictTickets needed for the
import of this key.

As noticed, the fixed keys are not used in this solution. A specific key is cre-
ated for each customer with the help of the MSA/Server, thus each customer gets
a personalized board. Also, the migration of a CMK involves the endorsement of
the MSA/Server because of the tickets, and due to the need of the communica-
tion with the MSA/Server, this becomes an online solution.

The properties of this solution are

- Personalized

- Operator specific

The details of this solution can be seen in Figure 6.6.

46 Migration methods for TPM 1.2 in telecommunication nodes

..MSA/Server.
- TPM_CMK_ApproveMA

- TPM_CMK_CreateKey

..

- TPM_AuthorizeMigrationKey

- [CMKf_blob] = TPM_CMK_CreateBlob

...

- TPM_CMK_ApproveMA

- TPM_CMK_CreateKey

- TPM_AuthorizeMigrationKey

- [CMKs_blob] = TPM_CMK_CreateBlob

..CU Factory .

- SRK = TPM_TakeOwnership

..

- TPM_CMK_CreateTicket

- TPM_CMK_ConvertMigration(CMKf_blob)

- TPM_LoadKey(CMKf)

..

SRK

.

CMK fs

.

CMK fb

.....

Key hierarchy of TPM

.

generic board

.. HAS Factory....

- TPM_CMK_CreateTicket

- TPM_CMK_ConvertMigration(CMKs_blob)

- TPM_LoadKey(CMKs)

.

SRK

.

CMKs

.

CMK fs

.

CMK fb

.....

Key hierarchy of TPM

.

personalized board with a CMK key

.

SRK

.

CMKf_blob

.

CU

.

SRK

.

CMKs_blob

Figure 6.6: Overview of the preparation steps for CMK migration in
Case B

Migration methods for TPM 1.2 in telecommunication nodes 47

6.2.3 Case C

Although Case C is a very similar to Case B, there is a small difference in how
the customer configuration is made. The initialization though, is made in exactly
the same way as in the previous cases where the CU factory creates the boards,
creates a sign key and receives the CMK fs and the CMK fb

from the MSA/Server.
However, when the board arrives at the HAS Factory a new hierarchy level is
added with the help of one of the fixed keys given.

Instead of creating a customer specific CMK, as in Case B, an ordinary migra-
tion key, Kp, with

- keyUsage value as storage

- keyFlag value as migrate

- CMK fs as the parent key

is generated. Having the customer specific key as a child key, see Figure 6.7,
to the generic storage key would mean that a board can easily be switched out
when broken by just replacing it with the new one. The reason for making this
possible is because every board has the generic keys, which means that having
the parent key will instantly give access to the child key, which in this case is the
CMK fs and the customer specific key respectivly. Even though all customers have
access to the parent key, no one except the operator itself, and the board owner
which is the CU Factory, will have access to the customer specific key. Only the
ones knowing the usage secret will be able to use it.

..

SRK

.

CMK fs

.

Kp

....

Figure 6.7: Overview of the hierarchy in Case C

Also, one benefit from adding a key for each customer, is that no certifications
are needed to be checked when a board breaks and a new one is inserted, the
operator can use it instantly.

This solution is an offline solution which means that none of the three parties
are involved in case of a TPM board malfunctions. However, this also means that
the HAS Factory has to be a trustworthy party and the customers has to believe
that the HAS factory will not record the migration secret after the creation of the
key. This is to insure that the key will never be migrated to an unauthorized
authority.

48 Migration methods for TPM 1.2 in telecommunication nodes

..MSA/Server.
- TPM_CMK_ApproveMA

- TPM_CMK_CreateKey

..

- TPM_AuthorizeMigrationKey

- [CMKf_blob] = TPM_CreateBlob

..CU Factory .

- SRK = TPM_TakeOwnership

..

- TPM_CMK_CreateTicket

- TPM_CMK_ConvertMigration(CMKf_blob)

- TPM_LoadKey(CMKf)

..

SRK

.

CMK fs

.

CMK fb

.....

Key hierarchy of TPM

.

generic board

.. HAS Factory...

- Kp = TPM_CreateWrapKey

- TPM_LoadKey(Kp)

.

SRK

.

CMK fs

.

CMK fb

.

KP

.....

Key hierarchy of TPM

.

personalized board with a CMK key

.

SRK

.

CMK f _blob

.

CU

Figure 6.8: Overview of the preparation steps for CMK migration in
Case C

As seen in Figure 6.8, the steps done in the MSA/Server and the CU factory
are standard, which means that they are always done. However, the last step that
is done in the HAS factory can be chosen, depending on if the customer wants a
customer specific board with an online or an offline solution. Thus, an offline so-
lution would mean that the customer specification would take place in the HAS
Factory.

The properties of this solution are

- Operator specific

- Offline

Migration methods for TPM 1.2 in telecommunication nodes 49

6.3 Migrating offline with a node specific MSA

In this section, an other offline solution will be presented. As in previous case,
three parties are involved; the MSA/Server, CU Factory and the HAS Factory.
However, one more part will be added in this use case and it is called the Node
Specific MSA. The node specific MSA will play an important role in the HAS Fac-
tory and will be the crucial part of this solution.

To begin with, the TPMs are mounted and initialized in the CU Factory, which
will take ownership over the TPMs and create a sign key that will be used for the
creation of the certificate. The SRK and the CSR are then sent to the MSA/Server
which will create the certificate and approve the TPMs by adding the SRK and
the certificate to a PKI tree. After the initialization is done, CUs are sent to the
customer as the backup CU and to the HAS Factory for node initialization. So far,
the use case has been the same as in section 6.2.1.

In the next step, which is the node initialization in the HAS factory, the node
specific MSA is involved. The node specific MSA will be created as a software
and run in a TEE, in the node. TEE is used so that the private keys of the node
specific MSA, which will be encrypting the CMK, will be protected. In this way,
the node specific MSA can "play" the MSA/Server and perform all the steps that
are needed for a successful creation and migration of the CMK. The steps that are
being performed by the node specific MSA can be seen in Figure 6.9 under HAS
Factory.

..

MSA/Server

......

CU Factory

..

SRK

. CMK blob, ticket

Figure 6.9: Overview of CMK migration in Case A.

This means that when one or both TPM/-s break, the customer only has to
switch it out with the spare board/-s and the node will configure itself, which
contributes to being an offline solution. Another positive feature of this solution
is that each node will in a way be personalized, due to the creation of a new
CMKs in each and every node.

However, when using the node specific MSA it has to be trusted enough to
store the customer specific key.

This may be solved by letting the TPM create its own personalized CMK in
the HAS factory, which would mean that the CMKs would be encrypted with the
public key of the TPMs SRK. This key is then to be migrated so the TPM has to
create a key blob that will be encrypted with the public key of the destination
which in this case would be the node specific MSA. Before encrypting the key

50 Migration methods for TPM 1.2 in telecommunication nodes

blob with the MSA’s public key, the CMKs can be encrypted with a random r.
This r can be kept secret and only sent to the customer, which means that even
though the node specific MSA has the power to decrypt it at any time, the private
part of the key will not be revealed. So when a TPM breaks, the customer puts in
a backup TPM, receives the key blob from the node specific MSA and decrypts it
with the r. This would mean that if the inserter does not have the knowledge of
what r is, the key blob will never be decrypted and the private key will stay secret.
This also means that MSA does not have to be fully trusted, but it does mean that
the software performing these commands do and also that the customer has to
keep track on which r belongs to which node.

..MSA/Server.
- TPM_CMK_ApproveMA

- TPM_CMK_CreateKey

..

- TPM_AuthorizeMigrationKey

- [CMKf_blob] = TPM_CreateBlob

..CU Factory .

- SRK = TPM_TakeOwnership

..

- TPM_CMK_CreateTicket

- TPM_CMK_ConvertMigration(CMKf_blob)

- TPM_LoadKey(CMKf)

..

SRK

.

CMKf

.....

Key hierarchy of TPM

.

generic board

.. HAS Factory...

- TPM_CMK_ApproveMA

- TPM_CMK_CreateKey

- TPM_AuthorizeMigrationKey

- CMKs_blob = TPM_CMK_CreateBlob

- TPM_CMK_CreateTicket

- TPM_CMK_ConvertMigration(CMKs_blob)

- TPM_LoadKey(CMKs)

.

SRK

.

CMKs

.

CMKf

.....

Key hierarchy of TPM

.

personalized board with a CMK key

.

SRK

.

CMKf_blob

.

CU

Figure 6.10: Overview of the CMK migration method in the HAS
Factory

Chapter 7
Duplications methods for TPM 2.0 in

telecommunication nodes

Because of the similarities between TPM 1.2 and TPM 2.0, the use cases that were
created for TPM 1.2 in Chapter 6, will be recreated for TPM 2.0 in this chapter.
The use cases will still depend on three parties, the CU factory, the HAS factory
and the Customer, and their course of action will be the same.

..

CU Factory

....

HAS Factory

......

Customer

.......

Figure 7.1: The involved parties.

However, during the duplication there is no MSA/Server that is needed, but
there is something very similar to it. The MSA will in these cases be called an au-
thority, and instead of dealing with tickets, the authority is needed for the policies
as described in Chapter 5.

Also, because of the two cryptographic engines offered in TPM 2.0, symmetric
and asymmetric keys can be created. This means that a symmetric key can be
used for the encryption and decryption of the sensitive information, which would
increase the speed of the encryption and decryption receptively.

51

52 Duplications methods for TPM 2.0 in telecommunication nodes

7.1 Duplication with an authority

The three use cases will be presented in this subsection. The first case, Case A,
is based on creating a generic board containing a fixed storage key, K fs , and a
fixed decrypt key, K fd

, which can be used by all customers of the manufacturer,
as in section 6.2.1. Case B and Case C are then based on Case A, but are also
more developed solutions which handle personalization by creating a customer
specific key.

7.1.1 Case A

The TPM boards have to be created and initialized which is done in the CU fac-
tory. When completed, the three TPM hierarchies, which include the SPS that is
needed for this use case, are established. SPS is then used as a parent key to create
a SRK, also known as a primary object, which, in turn, is used as the parent key
for the generic keys.

Also, as in 6.2.1, a signing key is generated. Which will be used to create a
CSR, which in turn will be used as an identification of that the TPM boards is
created in the CU Factory.

The SRK and the CSR is sent to the authority, and in return the key blob is
given, see Figure 7.2.

..

Authority

......

CU Factory

..

SRK

. Key blob

Figure 7.2: Overview of duplication in Case A

The generic key creation is realized in multiple steps. First of all, when creat-
ing the key, the authPolicy has to be given which is done by the use of policies.
As described in section 2.3.4, the execution of the different policies will establish
a digest that will be used to make sure that the object will not be duplicated to
an unauthorized authority. Also, before creating the key the fixedParent value
must be set to "0", otherwise the key cannot be duplicated to another parent and
an error will occur. This initialization is done for both generic keys created, K fs
and K fd

, respectively. K fs stands for a fixed manufacture storage key and will be
an asymmetric key, while K fd

stands for a fixed manufacture decrypt key and will
be a symmetric key. After the creation of the generic keys, they are duplicated to
the each individual board. This is done by changing the authPolicy digest value,
which now includes which destination the keys are meant for, and signing them
with the key of the authority.

Duplications methods for TPM 2.0 in telecommunication nodes 53

After the TPM initialization is completed, the generic boards are sent to the
HAS factory and to the customers.

Very much alike the solution in section 6.2, a generic solution as in Case A
will be provided, see Figure 7.3.

..CU Factory .

- SRK = TPM2_CreatePrimary

..

- TPM2_Import(Kf)

..

SPS

.

SRK

.

K fs

.

K fd

.....

Key hierarchy of TPM

.

generic board

..
Authority

.
- TPM2_PolicyAuthorize

- Kf = TPM2_CreateKey

..

- TPM2_LoadExternal(SRK)

- TPM2_PolicyDuplicationSelect

- TPM2_PolicyAuthorize

- [Kf_blob] =

TPM2_Duplicate(Kf_blob, SRK)

.. HAS Factory..

SRK

.

Kf

.

CU

Figure 7.3: Overview of the preparation steps for Case A

The properties of this solution are

- Offline

- Generic

The offline and the generic properties provides simplicity for the customer in
case that a TPM board malfunctions by just changing the failed board with a new
one.

7.1.2 Case B

In Case B, the personalization will be performed when the generic boards ar-
rive at the HAS Factory. At this stage, the details of which customer the board
is meant for is known. To make it personalized, the customer has to send the
SRK to the authority, in similarity to Case B in section 6.2.2. The authority then
audits with its database to make sure the TPM has been created in the CU Factory.

When the audit is performed, the authority starts the process of generating a
symmetric decrypt key. First, the authority has to execute the policy command
PolicyAuthorize. This is because the destination of the key can vary depending

54 Duplications methods for TPM 2.0 in telecommunication nodes

..

Authority

.....

CU Factory

...

Customer

.....

SRK

.

SRK

.

Key blob

Figure 7.4: Overview of duplication in Case B

on which TPM the key is to be migrated to, which means that the authPolicy di-
gest will need to change. Also, the fixedParent value is set to "0". With this value
set, the object will not be able to be duplicated to an unauthorized authority. One
more thing worth mentioning is that the parent key of the object being created
will be the SRK, which is stored within the borders of the TPM. Thus, the SRK
cannot be duplicated, which also leads to that the object cannot in any way be
transfered in an unauthorized way.

After the key has been generated, the DuplicationSelect command is used to
decide the destination and with that the authority also has to create a new digest
and update this within the key. After the authority has signed and approved of
the new authPolicy, the personalized key is both saved at the authority side and
returned to the customer. The customer then imports it into its board.

In case the board malfunctions, the customer has to contact once again the
authority to get the personalized key. The customer sends the SRK of the new
board and the server changes the authPolicy once again as described in 5.2.2. The
key blob is then returned to the customer.

The properties of this solution are

- Personalized

- Operator specific

The steps and commands that are needed to be executed for this solution can
be seen in Figure 7.5.

Duplications methods for TPM 2.0 in telecommunication nodes 55

..CU factory .

- SRK = TPM2_CreatePrimary

..

- TPM2_Import(Kf)

..

SPS

.

SRK

.

K fs

.

K fd

.....

Key hierarchy of TPM

.

generic board

..
Authority

.
- TPM2_PolicyAuthorize

- Kf = TPM2_CreateKey

..

- TPM2_LoadExternal(SRK)

- TPM2_PolicyDuplicationSelect

- TPM2_PolicyAuthorize

- [Kf_blob] =

TPM2_Duplicate(Kf_blob, SRK)

...

- TPM2_LoadExternal(SRK)

- TPM2_PolicyDuplicationSelect

- TPM2_PolicyAuthorize

- PolicyUpdate()

- [Kp_blob] =

TPM2_Duplicate(Kp_blob, SRK)

.. Customer....

- TPM2_Import

.

SPS

.

SRK

.

K fs

.

K fd

.

Kp

.....

Key hierarchy of TPM

.

customer specific board

.

SRK

.

Kf

.

CU

.

SRK

.

Kp

Figure 7.5: Overview of the preparation steps for Case B

56 Duplications methods for TPM 2.0 in telecommunication nodes

7.1.3 Case C

Case C is a customer specific solution that is literally built on the solution of Case
A. This is because Case C will take advantage of the key hierarchy that is given
in Case A, see Figure 7.6. That is why the steps that are made in section 7.1.1 are
important to follow.

When the initialization of the TPMs is done, the boards are sent to the HAS
Factory for the creation of the node blob. This is where the operator specific key,
Ks is to be created. This key will be a symmetric key and is created with the
Create command, but first it has to be ensured that this key will not be able to be
duplicated to an unauthorized authority. This is done by setting

- the PolicyDuplicationSelect command

- the public key of K fs as the parent key

- the fixedParent value is set to "1"

- the key type value as decrypt

Implicitly, this means that the key created will not be a duplication key. How-
ever, because the parent key is a duplication key, the keys belonging to it will also
be duplicated. Thus, having access to the K fs key results in having access to the
operator specific key, Ks.

..

SPS

.

SRK

.

K fs

.

Ks

....

Figure 7.6: Overview of the hierarchy after the customer specific
key creation

As seen in Figure 7.6, the key hierarchy will be constructed of four keys,
where three of them belong to the generic TPM. With the help of this, the cus-
tomer will be able to reach their own customer specific key at anytime. If one or
both of the boards break down in the node, the failed TPMs are switched out with
new ones by the customer and these will take over their tasks. As mentioned, the
CU factory will send generics boards directly to the customer for these purposes.

Duplications methods for TPM 2.0 in telecommunication nodes 57

..CU factory .

- SRK = TPM2_CreatePrimary

..

- TPM2_Import(Kf)

..

SPS

.

SRK

.

K fs

.

K fd

.....

Key hierarchy of TPM

.

generic board

..
Authority

.
- TPM2_PolicyAuthorize

- Kf = TPM2_CreateKey

..

- TPM2_LoadExternal(SRK)

- TPM2_PolicyDuplicationSelect

- TPM2_PolicyAuthorize

- [Kf_blob] =

TPM2_Duplicate(Kf_blob, SRK)

.. HAS factory..

- TPM2_PolicyDuplicationSelect

- fixedParent = 1

- Kp = TPM2_Create

- TPM2_Import(Kp)

.

SPS

.

SRK

.

K fs

.

K fd

.

Ks

.....

Key hierarchy of TPM

.

customer specific board

.

SRK

.

Kf

.

CU

Figure 7.7: Overview of the preparation steps for Case C

As seen in Figure 7.7, this method is very much alike the method that is done
in 6.2.3. The main difference between these two solutions is that a CMK is used
in the first method, while a ordinary duplication key is used in the latter solution.

The properties of this solution are

- Offline

- Operator specific

In this case, the boards are operator specific and also provides an offline solu-
tion, which means that an authority does not have to be involved. The operator
specific key will be below the K f key which means that it will be reachable from
every generic board. However, the HAS Factory has to be trusted.

58 Duplications methods for TPM 2.0 in telecommunication nodes

Chapter 8
Summary of Results

In this chapter, the main differences between the use cases when deploying TPM
1.2 and TPM 2.0 will be discussed. Because of the many similarities between the
uses cases in version 1.2 and 2.0, the reflection in this chapter will not set these
two versions against each other. This chapter will be more of a discussion of the
differences between the use cases themselves, i.e., Case A, Case B and Case C.

The advantages and disadvantages will be mentioned and some feedback is
given on what could be changed to facilitate the migration/duplication.

With the help of Table 8.1, Table 8.2 and the properties of each solution, the
most efficient versus inefficient solution for the three involved elements will be
chosen.

Method 1 Method 2
Case A Case B Case C

Personalized 0 1 0 1
Operator specific 0 1 1 1
Offline 1 0 1 1
No HAS Factory trust 1 0 0 0

Table 8.1: Differences in use methods in TPM 1.2

Case A Case B Case C
Personalized 0 1 0
Operator specific 0 1 1
Offline 1 0 1
No HAS Factory trust 1 0 0

Table 8.2: Differences in use methods in TPM 2.0

59

60 Summary of Results

The different properties provided in Table 8.1 and Table 8.2 represents;

Personalized
a customer specific key is created with the help of an authority

Operator specific
a customer specific key is created

Offline
an offline solution is provided

No HAS Factory trust
the node factory, which is the creator of the HAS, is not needed to be trusted

8.1 Use case overview

Even though the solutions described in Chapter 6 and 7 are very similar, they
have their differences too. As seen in the tables, no method can completely fulfill
the requirements.

Method 1

• Comparing these cases, the most inefficient use case is Case A of Method 1.
Case A does not include any operator specific or personalization solution,
only a solution that provides a common fixed key. This means that all cus-
tomers will be using the same key for storing their sensitive information.
The solution is not optimal from a customers point of view. However, at
the same time it is an easy solution if a CU in a HAS fails.

• Case B is a solution that is more customer specific. That is, each customer
has its own key to encrypt their sensitive information. In addition to this,
the key will also be personalized which means that it involves an autho-
rized authority. Thus, Case B is a more secure solution from a customer’s
point of view. However, because this solution involves the MSA/Server or
an authority, this will mean that it is an online solution. This may be more
demanding from a customer’s point of view as they occasionally must con-
tact the server.

• The latter solution, Case C, is a solution that is most suitable from a cus-
tomer’s point of view. This is because the solution is both customer spe-
cific and offline. Which means that if a board fails, the customer can easily
switch it out with a new one, but still have it customer specific which will
keep its sensitive information private. The only downside with this solu-
tion is the question if the HAS Factory is to be trusted.

Summary of Results 61

Method 2

• The node specific solution provides a personalized and operator specific
key. Also, using this solution would mean that each node would have its
own key to protect the sensitive information of the node, which also would
mean a higher security, which is an advantage. It is also an offline solution
which facilitates the board switch in case a board fails. However, this solu-
tion also has its disadvantages. First, the HAS Factory has to be a trusted
part. Second, which is the major problem with this solution, is that the
customer has to assume that the TEE is capable in protecting a private key.
Then one might wonder why not use the TEE only. Thus, the customer
actually gained nothing by using a TPM.

8.1.1 Offline solution

In the offline methods, the HAS factory has a crucial role in the different use cases.
This means that the HAS factory needs to be trusted.

For example, if Case C in section 6.2.3, is used with the operator specific key,
the customers has to trust that the migration secret has been thrown away so that
the key cannot be migrated to an unreliable board. The same goes for Case C
in the duplication method in section 7.1.3. If the customers cannot trust that the
HAS factory will set the fixedParent value to 1, then this method cannot be used.

8.1.2 Online solution

In contrast to the offline solutions, the online solution is to be fully trusted. This
is because the MSA/Server, or authority, side is connected to the CU Factory.
However, the online solutions also has their disadvantages as a connection has
to be established between the MSA/Server and the Customer each time a board
fails. Also, the MSA/Server has to store the key blobs from each customer which
demands more management efforts in the MSA.

8.2 Modification possibilities

When looking at the different use cases and their properties, each use case is
missing one or another property to be completely fulfilled when it comes to both
security and making it easy for the customer. This section will view the different
modifications that could be done to increase the number of properties for some
of the cases.

TPM 1.2: Migration with a MSA

The main disadvantage with CMK migration is that it involves a MSA which
contributes to an online communication. This would mean that each time a TPM
breaks, the customer has to contact the MSA for tickets that would allow the
migration of a CMK.

62 Summary of Results

• Having a "MSA" key in each TPM hierarchy could solve the online prob-
lem. This would offer the TPMs to sign the tickets themselves. However,
at the same time the TPM should not have the power to send the CMK
to an unauthorized authority, so the certification of a TPM should still be
checked.

TPM 1.2: Node specific MSA

One setback on the use cases is that the TPMs of the customer are not being
grouped. That is, the MSA does not know which TPM belongs to which cus-
tomer. This could lead to a customer stealing another customer’s key and in that
way also the information that the key is protecting.

• Having the node specific MSA on an USB or a smart card would provide
a more secure solution but still being an offline solution. By just inserting
the USB/smart card into the node when the CU is to be changed. The
MSA/Server will start its execution and the key will be migrated to the
TPM/-s. Also, a password could be used so every time the key blob is to
be migrated to a new TPM, a password has to be given. This would ensure
that no unauthorized authority can obtain the key blob.

TPM 2.0: Case C

The disadvantage with Case C is that the HAS Factory in some cases cannot be
trusted. In the duplication case the HAS Factory has to set a fixedParent value
into the customer specific key.

• This can be solved by adding a fixedChild value. By setting this value, the
customer specific key that is being created can be set to a fixed parent as
well. This could be done by having a fixedChild value into the generic key
which will decide that its child keys cannot be duplicated. By doing this,
when the key is then added, they cannot be duplicated further.

Chapter 9
Uniform API

Today, TPM 1.2 is the version that is being used, however, in the near feature TPM
2.0 will be in the market and ready to replace the older version.

The migration and duplication steps with a TPM 1.2 and TPM 2.0 respectively
will involve a similar communication between the involved parties. Thus, with
some changes to the software, the system can, mutatis mutandis, accommodate
both TPM versions.

This chapter will describe an API which will suit both the chosen methods
from TPM 1.2 and TPM 2.0.

We characterize the API through message flow charts. The plain line rep-
resents the commands needed to be executed for TPM 1.2, while a dashed line
represents the commands needed to be executed for TPM 2.0.

9.1 Case A

As seen in Figure 9.1, which is a simplified high level API for Case A, the com-
munication flow between the three involved entities can be summed into two
steps.

..

MSA/Authority

..

CU Factory

..

HAS Factory

......

generic key

.

CU

Figure 9.1: High level API for Case A

63

64 Uniform API

1. The first step is done after the generic keys have been generated where they
are then sent from the MSA/Authority to the CU Factory

2. The second step is made after the key blob has been imported and the TPMs
have been initialized. The TPMs are now ready to be sent to the HAS Fac-
tory

More details about which commands are executed in the different steps in the
communication flow can be seen in Figure 9.2.

..
MSA/Authority

.
- TPM_CMK_ApproveMA

- CMKf = TPM_CMK_CreateKey

.

- TPM2_PolicyAuthorize

- Kf = TPM2_CreateKey

..

- TPM_AuthorizeMigrationKey

- [CMKf_blob] = TPM_CMK_CreateBlob

.

- TPM2_LoadExternal(SRK)

- TPM2_PolicyDuplicationSelect

- TPM2_PolicyAuthorize

- PolicyUpdate()

- [Kf_blob] =

TPM2_Duplicate(Kf, SRK)

..CU Factory .

- SRK = TPM_TakeOwnership

.

- SRK = TPM2_CreatePrimaryKey

..

- TPM_CMK_CreateTicket

- TPM_CMK_ConvertMigration(CMKf_blob)

- TPM_LoadKey(Kf)

.

- TPM2_Import(Kf)

... HAS Factory..

SRK

.

Key Blob

.

CU

Figure 9.2: API Case A

Uniform API 65

9.2 Case B

As seen in Figure 9.3, the communication flow between the three involved entities
are made in four steps for Case B, where the two latter steps are made to create a
customer specific key.

..

MSA/Authority

..

CU Factory

..

HAS Factory

..........

generic key

.

CU

.

request..

.

customer specific key

Figure 9.3: High level API for Case B

1. The first step is done after the generic keys have been generated where they
are sent to the CU Factory

2. The second step is made after the key blobs have been imported and the
TPM has been initialized. They are now sent to the HAS Factory

3. The third step is made when the CUs have arrived at the HAS Factory and
a request for a customer specific key is sent

4. The fourth and the last step is made when the MSA has generated a cus-
tomer specific key for a specific customer which is then returned to the
HAS Factory

More details about which commands are executed in the different steps in the
communication flow can be seen in Figure 9.4.

66 Uniform API

..CU Factory .

- SRK = TPM_TakeOwnership

.

- SRK = TPM2_CreatePrimaryKey

..

- TPM_CMK_CreateTicket

- TPM_CMK_ConvertMigration(blobf)

- TPM_LoadKey(Ef)

.

- TPM2_Import(Kf)

...MSA/Authority.
- CMKf = TPM_CMK_CreateKey

.

- TPM2_PolicyAuthorize

- Kf = TPM2_CreateKey

..

- TPM_AuthorizeMigrationKey

- [CMKf_blob] = TPM_CMK_CreateBlob

.

- TPM2_LoadExternal(SRK)

- TPM2_PolicyDuplicationSelect

- TPM2_PolicyAuthorize

- PolicyUpdate()

- [Kf_blob] =

TPM2_Duplicate(Kf, SRK)

...

- TPM_CMK_ApproveMA

- CMKs = TPM_CMK_CreateKey

- TPM_AuthorizeMigrationKey

- [CMKs_blob] = TPM_CMK_CreateBlob

.

- TPM2_LoadExternal(SRK)

- TPM2_PolicyDuplicationSelect

- TPM2_PolicyAuthorize

- PolicyUpdate()

- Kp = TPM2_CreateKey

- [Kp_blob] =

TPM2_Duplicate(Kp, SRK)

.. HAS Factory....

- TPM_CMK_CreateTicket

- TPM_CMK_ConvertMigration(blobf)

- TPM_LoadKey(Ef)

.

- TPM2_Import(Kf)

.

SRK

.

Key Blob

.

CU

.

SRK

.

Operator Specific Key Blob

Figure 9.4: API Case B

Uniform API 67

9.3 Case C

As seen in Figure 9.5, the communication flow between the three involved entities
are made in two steps. In broad terms, the communication flow is the same as in
Case A.

However, there is one more step that is needed to be done in Case C which
does not involve the communication flow itself. The third added step is made at
the HAS Factory where the customer specific key is generated.

..

MSA/Authority

..

CU Factory

..

HAS Factory

......

generic key

.

CU

Figure 9.5: High level API for Case C

1. The first step is done after the generic keys have been generated and are
sent to the CU Factory

2. The second step is made after the key blobs have been imported and the
TPMs have been initialized. The CUs are then sent to the HAS Factory

3. The third step is done when the HAS Factory have received the CUs. The
customer specific key is then generated and imported

More details about which commands are executed in the different steps in the
communication flow can be seen in Figure 9.4.

68 Uniform API

..
MSA/Authority

.
- TPM_CMK_ApproveMA

- CMKf TPM_CMK_CreateKey

.

- TPM2_PolicyAuthorize

- Kf = TPM2_CreateKey

..

- TPM_AuthorizeMigrationKey

- [CMKf_blob] = TPM_CMK_CreateBlob

.

- TPM2_LoadExternal(SRK)

- TPM2_PolicyDuplicationSelect

- TPM2_PolicyAuthorize

- PolicyUpdate()

- [Kf_blob] =

TPM2_Duplicate(Kf, SRK)

..CU Factory .

- SRK = TPM_TakeOwnership

.

- SRK = TPM2_CreatePrimaryKey

..

- TPM_CMK_CreateTicket

- TPM_CMK_ConvertMigration(CMKf_blob)

- TPM_LoadKey(Kf)

.

- TPM2_Import(Kf)

... HAS Factory..

- Kp = TPM_CreateWrapKey

- TPM_LoadKey(Kp)

.

- TPM2_PolicyDuplicationSelect

- fixedParent = 1

- Kp = TPM2_Create

- TPM2_Import(Kp)

.

SRK

.

Key Blob

.

CU

Figure 9.6: API Case C

As shown in the three different figures, the API for Case A, Case B and Case
C, the communication flow between the involved parties will be the same when
replacing the TPM version 1.2 to TPM version 2.0.

References

[1] International Telecommunication Unit, Measuring the Information Society
2012, http://www.itu.int/ITU-D/ict/publications/idi/index.html

[2] J.E. Ekberg, K. Kostiainen and N. Asokan, Trusted Execution Environment in
Mobile Devices

[3] T. Alves and D. Felton, ARM, TrustZone: Integrated Hardware and Software
Security - Enabling Trusted Computing in Embedded Systems

[4] G. Heiser, The Role of Virtualization in Embedded Systems

[5] Steven Kinney, Trusted Platform Module Basics: Using TPM in Embedded Sys-
tems

[6] S.X. Wang, Y.C. Wang and W.Z. Tian, Research on Trusted Computing Imple-
mentations in Windows, 2010

[7] R.L. Rivest, A. Shamir and L. Adleman, Method for Ob-
taining Digital Signatures and Public-Key Cryptosystems,
http://people.csail.mit.edu/rivest/Rsapaper.pdf

[8] Trusted Computing Group (TCG), Trusted Platform Module Library, Version
1.2; Part 1: Design Principles, http://www.trustedcomputinggroup.org

[9] Trusted Computing Group (TCG), Trusted Platform Module Library, Version
2.0; Part 1: Architecture, http://www.trustedcomputinggroup.org

[10] Trusted Computing Group (TCG), Trusted Platform Module Library, Version
1.2; Part 2: Structure, http://www.trustedcomputinggroup.org

[11] Trusted Computing Group (TCG), Trusted Platform Module Library, Version
2.0; Part 2: Structures, http://www.trustedcomputinggroup.org

[12] Trusted Computing Group (TCG), Trusted Platform Module Library, Version
1.2; Part 3: Commands, http://www.trustedcomputinggroup.org

[13] Trusted Computing Group (TCG), Trusted Platform Module Library, Version
2.0; Part 3: Commands, http://www.trustedcomputinggroup.org

69

70 References

Appendix A
Acronyms & terminology

authPolicy a digest value that is included into an object when being generated

authTicket a ticket providing authorization for migrating

CMK Certifiable Migratable Key

CSR Certificate Signing Request; A request for a certificate that proves that
the TPM is valid

CU Computational Unit

EK Endorsement Key; unique identity of TPM 1.2

EPS Endorsement Primary Seed; the root of EK hierarchy in TPM 2.0

exportTicket ticket that is created when an object is to be exported

HAS High Availability System

importTicket ticket that is created when an object is to be imported

key blob all information belonging to the key

keyFlag value defining the state of an object

keyUsage value defining the usage of an object

MA Migration Authority

MSA Migration Selection Authority

71

72 Acronyms & terminology

node blob all information belonging to the node

OIAP Object Independent Authorization Protocol

OSAP Object Specific Authorization Protocol

Policy an authorization type used in TPM 2.0

PPS Platform Primary Seed; the root of platform firmware hierarchy in TPM
2.0

Primary Seed unique identity of TPM 2.0

restrictTicket a ticket created to verify the TPM

Shared Secret a "password" provided when taking ownership

Shielded Location area on the TPM protected against interference from the
outside exposure

sigTicket a ticket created to verify the authority

SPS Storage Primary Seed; a storage key which is the root of the key
hierarchy

SRK Storage Root Key; the root of SRK hierarchy in TPM 2.0

unwrapping decryption of a child key

wrapping encryption of a child key

Secu
rin

g
 teleco

m
m

u
n

icatio
n

 n
etw

o
rk n

o
d

e d
ata u

sin
g

 TPM
s

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, March 2014.

Securing telecommunication
network node data using TPMs

Jelena Mirosavljevic

http://www.eit.lth.se

Je
le

n
a M

iro
savljevic

Master’s Thesis

