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Chapter 1
Abstract

Movement in vertebrates depends on neural activity in the motor regions of the
brain such as the motor cortex and basal ganglia. This master thesis demonstrates
the possibility to predict movement through computer learning. Different informa-
tion is processed in different type of neurons, of which the neuron types medium
spiny neurons (MSN) and fast spiking interneurons (FSI) from the striatum (an
input structure of the basal ganglia), and pyramidal neurons (PN) and interneu-
rons (IN) from the motor cortex have been analysed. The neural data was sorted
with the software Offline sorter. 27 MSN’s, 11 FSI’s, 50 PN’s and 7 IN’s was
classified depending on the characteristic features of the waveforms. 10 neurons
remained unidentified. Refinements of video recordings were done in Matlab
toolbox BehaviourGUI developed by Neuronano Research Center (NRC). A total
of 549 movement bouts was tracked across the video recordings.

A visual inspection of the neurons’ perievent time histograms show that 12 out
of 33 identified neurons in the striatum are clearly correlated to movement while
only 8 out of 63 were clearly correlated in the motor cortex.

The motor commands were predicted by a computer learning program which
utilises a linear model. The model has inputs of neuronal firing rates at a given
time and time lag with weighted parameters depending on how important the
neuron’s firing rate is at each lag. The neurons’ firing rate can be used to predict
when the rat moves with relatively good precision.

Significant improvements might be done by making a more advanced predic-
tion algorithm. Furthermore, better electrodes need to be used to record more
accurate neural signals, and more neural data connected with movements need
to be collected from the same vertebrate. What would also be of interest are
recordings from other areas in the basal ganglia.

i



ii



Table of Contents

1 Abstract i

Table of Contents iii

List of Tables ix

2 Prologue 1

3 Introduction 3
3.1 Neurons and Neural Signals . . . . . . . . . . . . . . . . . . . . . . 3
3.2 The Motor Cortex and Basal Ganglia . . . . . . . . . . . . . . . . . 5
3.3 Challenges of Brain Machine Interfaces . . . . . . . . . . . . . . . . 6
3.4 Ethics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Problem Description 9

5 Methods 11
5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 Multi-Electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3 Surgical Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.4 Histology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.5 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.6 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.7 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Results 29
6.1 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Discussion 43
7.1 Regarding procedures during the project . . . . . . . . . . . . . . . . 43
7.2 Pre-analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.3 Spike Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.4 Video Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

iii



7.5 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

8 Conclusions 49

9 Scientific Setting 51

10 Acknowledgements 53

11 Glossary 55

12 Acronyms 59

13 References 61

iv



List of Figures

3.1 Overview of the neuron’s structure. A: Soma, B: Axon, C: Dendrites
and its branchlets D: Myelin [Al-Chalabi et al.]. . . . . . . . . . . . . 4

3.2 Excitatory and inhibitory postsynaptic membrane potential [Purves
et al.]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.3 Simplified block diagram of how the brain controls voluntary movements. 5

5.1 The electrode layout shows where the electrodes are positioned in the
left and right hemisphere of motor cortex and striatum. Light gray
for stimulating electrodes, dark gray for reference electrodes and the
remaining, white dots, are recording electrodes. . . . . . . . . . . . . 12

5.2 The rat skull shows the bregma and the intersection of the four top
skull bones. The bregma is used as a reference point during surgery
in order to implant the electrode into the intended regions. . . . . . 13

5.3 The Nissl staining with cresyl violet dye with pictures showing (a) both
of the hemispheres and (b) a close-up of the left striatum [Integrative
Neurophysiology] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.4 Overview of the data acquisition. . . . . . . . . . . . . . . . . . . . 15

5.5 Overview of the data input/output of the different parts of the project.
The tracking uses the video data to determine when the rat starts or
stops the movement. The spike sorting has the spike data as an input
and separates actual spikes from noise, and also determines which
neurons the spikes originate from. Both tracking and neural data are
needed to do the perievent time histograms and the machine learning. 15

5.6 Features of a spike’s waveform which is measured extracellularly. . . 16

5.7 Example of how principal component analysis works. (a) The dark
and light gray lines are sampled waveforms at their respective sample
points (t1 and t2). (b) Is a vector space, with the amplitude at the
sample points as the dimensions, where waveforms is represented as
a point. (c) Is a vector space where the dimensions are orthogonal
linear combinations of (b). . . . . . . . . . . . . . . . . . . . . . . . 17

v



5.8 A typical view of spike sorting in Offline Sorter. A neuron that has been
sorted has its spikes shown in white and all unsorted spikes are in gray.
(a) Shows the waveforms of all spikes from the selected electrode. (b)
Shows the mean and standard deviation of the different groupings of
spikes (top) and the spikes’ ISI (bottom). (c) Shows each spike’s first
two principal components. . . . . . . . . . . . . . . . . . . . . . . . 18

5.9 The OpenFieldTrackingGUI (developed at NRC and implemented in
Matlab) was used to track the rat in the open field. The rat has
markings on the head, body and rear to help with the tracking. The
OpenFieldTrackingGUI highlights the markings it has found in the first
video frame (left) and the user determines which marking belongs to
what part (bottom right). The program then proceeds automatically
through the recording until it has finished all video frames or looses
track of some of the markings, in which case the user will be questioned
again. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.10 The BehaviourGUI toolbox allows data to be synchronised so several
data sets (such as a video recording and computed velocity) easily can
be analysed simultaneously. This is of great help when trying to find
when the rat is moving. . . . . . . . . . . . . . . . . . . . . . . . . 20

5.11 A perievent time histogram shows a neuron activity during a certain
type of event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.12 Flowchart for computing the perievent time histograms. . . . . . . . 22
5.13 The build-up of the X matrix. Each row represents one point in time

and its columns contain the data to predict the behavior at that time.
The data for each row is sampled in a number of bins from the time
of the observation and back. To the left it can be seen where in time
those bins could be for a certain configuration of bin size and number
of lags. The right side shows where in the X matrix the firing rate in
the bins should go. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.14 Three hypothetical ROC curves represent the precision, where the light
gray curve has the best precision of the three due to its large area
underneath the curve. The middle line has three positions marked.
Position 1 gives a stricter threshold of movement prediction (stricter
false positive rate) than position 2 and 3. . . . . . . . . . . . . . . . 26

5.15 Flowchart for using a linear model for prediction of movement. . . . . 27

6.1 Waveforms from the neuron types PN (green), IN (blue), MSN (red)
and FSI (magenta). . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2 Classification of putative neuron types for the motor cortex ((a) and
(c)) and the striatum ((b) and (d)). For the motor cortex: PN (green),
IN (blue) and UIN (gray). For the striatum: MSN (red), FSI (ma-
genta) and UIN (gray). . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.3 Position of the rat during the whole experiment B1. The dark gray
lines show where it is moving and the light gray lines show where it is
still. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.4 Threshold for when velocity is detected where (b) is a zoom in of (a). 33

vi



6.5 Velocity of the rat tracked (a) automatically and (b) with semi-manual
tracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.6 Tracked velocity (from the point marked on the head) over time of
the rat during movement bouts. The axes values have been left out
as the focus is the shape of the bouts in relation to each other. . . . 34

6.7 Tracked position (from the point marked on the head) of the rat during
movement bouts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.8 Example of a perievent time histogram of a neuron that is clearly cor-
related to movement (upon visual inspection). The histogram shows
an alignment from start (light gray line) to stop (dark gray line). . . 37

6.9 Example of a perievent time histogram of a neuron that is not corre-
lated to movement (upon visual inspection). The histogram shows an
alignment from start (light gray line) to stop (dark gray line). . . . . 38

6.10 Example of a perievent time histogram of a neuron that is discarded
(upon visual inspection). The histogram shows an alignment from
start (light gray line) to stop (dark gray line). . . . . . . . . . . . . . 39

6.11 (a) Evaluation of different configurations of lags and bin sizes in the
general linear model. 1 − FPR in the left column and TPR in the
right column. Upper row: training section, lower row: test section.
(b) Area under ROC curves for training (left column) and test section
(right column). (c) How long the general linear model extends into
the past from each observation time for each combination of bin size
and number of lags. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.12 Predicted movement (gray line) and actual movement (black line). (a)
shows the likelihood for movement according to the computer learning
while (b) shows the prediction after a threshold at 0.5 has been applied. 42

7.1 Example of why the adjacent bins are nearly identical if they are much
larger than the time between observations. . . . . . . . . . . . . . . 48

vii



viii



List of Tables

5.1 The table summarises the four outcomes when a predicted value is
true/false compared to the real value. The real and predicted values
are either positive or negative. If the predicted and real value are the
same, then the predicted value is true (true positive or true negative),
and if these values differ, then the predicted value is false (false positive
or false negative). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.1 A table of features from MSN, FSI, PN, IN and UIN in the motor
cortex and striatum. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.2 Number of neurons, with type classification depending on the wave-
form, found in respective brain region from each experiment. The
classification were made on the neuron types PN, IN, FSI and MSN.
Other neurons which could not be classified was named UIN. . . . . 31

6.3 Number of movement bouts with the mean and standard deviation of
its duration, covered distance and velocity. . . . . . . . . . . . . . . 35

6.4 Number of neurons which are correlated and uncorrelated to move-
ments and discarded. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.5 Number of correlated, uncorrelated and discarded neurons based on
neuron type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

ix



x



Chapter 2
Prologue

Working with this project has been an exciting journey. Exciting because there is
so much that remains unknown about the brain, so much knowledge waiting to be
explored. Both of us were interested in getting a deeper knowledge of neuroscience
and how the brain works. To get to examine it from an engineering perspective
was of particular interest.

In this study we have focused on getting knowledge about the regions of the
brain that control voluntary movement. New studies have been of great importance
in getting a better insight within neuroscience. Therefore, we have tried to use
the latest research, even though what is thought to be known changes quickly and
might be outdated within a few years. Apart from how the motoric region of the
brain works we have got a deeper knowledge of the techniques used to record and
process the brain’s signals.

Joel Sjöbom
Moa Svensson
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Chapter 3
Introduction

The brain is a fascinating organ and yet little is known about how it works. This
structure of one and a half kilogram allows us to think, be inspired, feel happiness
and dream. It also controls our senses such as vision, hearing and movements.

Different parts of the brain specialise in different tasks. Each part can be seen
as an island connected to other parts of the brain using bridges. Some bridges have
two-way traffic while others are solely one-way. The traffic is electro-chemical sig-
nals, and decoding these signals are of especially great interest. Gaining access and
understanding of these signals would be a momentous achievement for a multitude
of medical research. A person with no legs, for example, could get a bionic pair
of legs, controlled by the person’s own thoughts, thereby restoring full freedom of
movement. Such devices controlled directly by the brain are called neuroprosthet-
ics. Finding the signals that could control locomotion (i.e. walking) via such a
device is the ultimate goal of this project.

In the following chapter there will be a short review of how the neural system
works with focus on the regions controlling locomotion; what the challenges are
involving the creation of a communication pathway between brain and device; and
the ethics when animals are involved in experiments.

3.1 Neurons and Neural Signals

In order to interpret a neural signal, it is of great importance to know more about:
the anatomical structure of neurons; how a nerve impulse is produced and what
the impulse signal looks like.

The primary components of the neural system in the brain are two cell types:
neurons and glial cells. Neurons form and transmit signals, while glial cells protect,
stabilize, and support the neuron [Purves et al.].

A neuron consists of three important parts: axons, dendrites and soma (Figure
3.1). The axon connects to muscles or to dendrites of other neurons via synapses;
a special structure which makes it possible to electrochemically transmit signals
from a so-called presynaptic neuron to another postsynaptic neuron. Some axons
are covered with a shealth of myelin that improves the signal speed. The dendrites
receive the signals from other neurons and lead them to the soma; the neuron’s
nucleus. If the combined input signals to the soma overcome a specific threshold

3



4 Introduction

Figure 3.1: Overview of the neuron’s structure. A: Soma,
B: Axon, C: Dendrites and its branchlets D: Myelin [Al-
Chalabi et al.].

the neuron sends a signal called an action potential. The action potential travels
along the axon, and onto further neurons [Purves et al.].

In the absence of signalling, the potential difference between the inner and
outer membrane of a neuron is about 70 mV, known as the neuron’s resting poten-
tial. When a signal is received from another neuron, the cell membrane changes its
potential to a lower or higher value, depending on whether the synapse is so-called
inhibitory or excitatory [Purves et al.]. In Figure 3.2 the effect of inhibitory and
exitatory input on the neuron’s membrane potential can be seen. If the threshold
for firing an action potential is exceeded and the membrane potential sharply rises
to +20 mV. After an action potential is initiated, there is not a high probabil-
ity that a second action potential is initiated during a certain refractory period
[Purves et al.].

In more detail, inhibitory post-synaptic potentials (IPSP’s), lower or hyper-
polarize the membrane potential, which leads to a bigger gap between the current
membrane potential and the threshold for eliciting an action potential. Excitatory
post-synaptic potentials (EPSP’s) increase or depolarize the membrane potential
towards the threshold so an action potential is easier to achieve. Figure 3.2 shows
on the left a sketch when an electrode records the post-synaptic potential in the
soma of a neuron with two excitatory synapses (ES1 and ES2) and one inhibitory

Figure 3.2: Excitatory and inhibitory postsynaptic mem-
brane potential [Purves et al.].
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synapse (IS). On the right, the change of the membrane potential upon synaptic
activation is shown. An EPSP is produced by stimulation of either ES1 or ES2
(first fifth of the line in Figure 3.2). An even stronger EPSP is produced if both
are stimulated at the same time (second fifth of the line). In contrast, when IS is
activated, this will result in an IPSP (third fifth). Finally, the sum of EPSPs and
IPSP is shown in the fourth and fifth fifths of the line [Purves et al.].

3.2 The Motor Cortex and Basal Ganglia

The brain is a complex system of many interconnected components tailored to pro-
cess information from the environment. The motoric neural signals are processed
at the base of the forebrain where the motor cortex and basal ganglia are located.
Therefore these regions are the first place of investigation in order to gain insight
and understanding of voluntary motoric neural signals. The primary role of the
motor cortex is the control of the execution of movement, while the basal ganglia
play a central role in the selection of voluntary movements. The basal ganglia
consist of different parts, its input structure is called the striatum [Purves et al.].

The motor cortex and basal ganglia regions can be seen as part of a feed-back
system (Figure 3.3) where the motor cortex gives input to the basal ganglia which
in turn processes and filters the signal, before sending it to thalamus. Thalamus
gathers the information then sends the signal back to te motor cortex. The pro-
cessed and filtered signal is thereafter sent from the motor cortex to the brainstem
and into the medulla oblongata, which is located in the lower half of the brainstem.
The right hemisphere controls the left half of the body, while the left hemisphere
controls the right half of the body; the medulla oblongata is the region where the
signals cross over to the other side of the body. The neural impulses then pass
from the medulla oblongata to the spinal cord which transmits the impulses to the
muscles [Purves et al.].

Figure 3.3: Simplified block diagram of how the brain con-
trols voluntary movements.

The processing and filtering in the basal ganglia is initiated by the striatum
which sends its signals through both a direct and an indirect pathway. Due to
different combinations of exitatory and inhibitory synapses along these pathways,
activation of the direct pathway excites the thalamus while activation of the in-
direct pathway inhibits the thalamus. If the indirect pathway is not working
properly, there will be uncontrolled or involuntary movements, while there will be
a slowness in the movements if the direct pathway is not working properly. It has
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been suggested that the indirect pathway inhibits thalamus until the action has
been properly planned and prepared and is ready to be sent through the direct
pathway [Schmidt et al., 2013].

In general, all neurons in the brain have the same basic structure (see Chapter
3.1). However, there are structural and functional differences. The neurons that
are of particular interest within the region of the motor cortex are interneurons
(IN) and pyramidal neurons (PN’s) [Purves et al.]. Interneuronal axons typically
connect to neurons within the same structure. In contrast, PN’s are so-called pro-
jection neurons, with axons extending to distant regions such as the striatum. In
the striatum, 95% of the neurons are projection neurons of the type medium spiny
neurons (MSN’s). MSN’s are inhibitory neurons and the main function is to regu-
late the neurons’ activation in a region which can be outside the striatum. A recent
research study shows that MSN’s play a key role in encoding of locomotion and in
environmental recognition. The remaining 5% are interneurons, where especially
fast–spiking interneurons (FSI’s) seem to play a critical role in the locomotion
even though FSI’s only represent a small portion of striatal neurons [Yamin et al.,
2013]. The spike waveforms of different neuron types have distinct differences due
to structural differences in the neurons. This is useful in the spike sorting process
and by this, a specific neuron type can be determined (see Chapter 3.1).

3.3 Challenges of Brain Machine Interfaces

A brain machine interface (BMI) is a communication pathway between the brain
and a device. The ultimate goal in this study is to find the neural signals that
control locomotion which in the future can control such a device in real time.
Therefore, it is important to understand the challenges involved in creating a
BMI.

The first thing to consider is whether the data should be acquired via invasive
means (i.e. brain surgery), or not. The most common invasive method is to implant
one or more electrodes into the brain. The great advantage of this method is that
it can directly record the activity of single neurons. Non-invasive methods (for
instance electroencephalography (EEG) or functional magnetic resonance imaging
(fMRI)) have the advantage of not requiring surgery, but the drawback of only
being able to record the activity of large populations of neurons. As this study
uses implanted electrodes this chapter will focus on the challenges of invasive
methods.

An initial challenge is deciding where to implant the electrodes. Understanding
the function of the different regions of the brain can help when making the decision.
If the BMI receives signals from a brain region that is normally involved in the
execution of movement, theoretically it should be easier to control intuitively than
if it receives signals from a brain region that has nothing to do with movement.
Examples of suitable brain regions are the motor cortex and basal ganglia, which
have been mentioned earlier in the report (see Chapter 3.2). Much research has
gone into understanding the nature of their involvement in movement but a great
deal still remains unknown. Even after one or more regions have been chosen and
the electrode has been implanted, it is still hard to know whether the electrodes
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have been implanted correctly; they could very well miss the target. There is no
reliable way to confirm their exact anatomical position in a living subject.

Another challenge is to develop a fully biocompatible device that is not rejected
by the body, and can record neural signals with as little noise as possible. If the
body rejects the electrode, the electrode will be covered with glia cells, which
degenerate the recorded signal. With perfect biocompatibility the body would see
the electrode as a part of itself and the signal would never degenerate.

Yet another challenge is to further develop a computational algorithm suited
to process information and from the brain.

3.4 Ethics

Research using animals can give rise to strong feelings. However, the information
which would otherwise not be obtained could potentially help thousands of people.
The discussion of ethics tries to find an acceptable balance between the animals
suffering and the value of the research. The animals should be able to live as good
a life as possible. It is also imperative that animals should only be used in research
that could not be done without them, and that no more animals than necessary
are used. Animal experiments are only performed if it is approved by an ethics
committee.

A widely accepted ethical framework is the three R:s of animal research: Re-
placement, reduction and refinement. Replacement seeks to find alternative re-
search methods than experimentation using animals, like computer modelling or
imaging. Reduction aims to use fewer animals for research by improving the re-
search gained from each animal. Refinement seeks to improve the living condition
of the research animals [CODEX].
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Chapter 4
Problem Description

If a person sustains a spinal cord injury that results in complete paralysis, that
person would be totally dependent on others for mobility. Having some freedom of
movement restored would make a tremendous difference for this person’s quality
of life. What if, for example, this person was able to steer a wheelchair as if it
would be its own body part?

When a spinal chord injury prevents the signals from the brain to reach the
muscles in the body the result is paralysis. If those signals could be measured
before being stopped at the injury in the spinal chord, these could be redirected to
a wheelchair that could move forward when the brain tells the legs to walk. The
present study, performed during six months, builds a small piece of the foundation
for creating a wheelchair controlled directly by the brain.

The goal is to find the signals in the brain that control movements and teach a
computer to predict the movement in order to foretell when locomotion is intended.
The Basal ganglia and motor cortex are regions in the brain that are known to
play an important role in voluntary movement and are therefore the target regions
of this study. However, little is known about what the neural signals for movement
look like in these regions.

This study uses neural data from the motor cortex and striatum of freely
behaving rats and simultaneously recorded video data, in order to improve our
understanding of how neural signals in these regions control locomotion. The first
part of the project will focus on this while the second part of the project will
focus on using the neural signals to predict when the rat intends to move. If
the computer learns to successfully predict movement, then these results can be
used as a foundation for future research devoted to developing a brain-controlled
wheelchair.

9
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Chapter 5
Methods

Planning and implementing a research project requires a lot of work and involves
several important steps. First of all, an experimental design was developed by Neu-
ronano Research Center (NRC) and suggested and approved by the Malmö/Lund
ethics committee. Subsequently, surgery was performed on rats in order to im-
plant electrodes so their neural activity could be recorded during the experiments.
The rat’s movement during the experiments was recorded by a monochrome video
camera. After sacrificing the animal, histology (the study of brain tissue under
the microscope) has occasionally been undertaken to validate the position of the
electrodes. The recordings was then processed and analysed in the software Offline
sorter and Matlab. The neurons firing rate together with the movement data was
analysed in a perievent time histogram (see Chapter 5.7.1) to visualise neurons’
correlation of movement. The movement of the rat based on its neural activity
is predicted by computer learning. Each step of the project is explained in detail
below. The data used in this project is based on eight recordings from two adult
female Sprauge Dawley rats (four recordings from each) conducted in 2010.

5.1 Experimental Setup

The experiments were performed in an open field environment. The open field
setup consists of an enclosed square area, 75x75 cm. The rat was marked with
color on rear, body and head, which will make it easier to track the animal when
the video recording is later analysed, and placed to freely explore the environment
while the video documented its behavior in parallel with the collection of neural
data (see Chapter 5.5). Each experiment session was between six and ten hours
long, usually overnight.

5.2 Multi-Electrodes

The multi-electrodes used in this project consist of 74 electrodes in total: 64
recording electrodes, eight reference electrodes and four stimulating electrodes.
The electrodes are positioned in four equally large two-dimensional arrays in the
regions of the striatum and motor cortex in the left and right hemispheres of the
brain, which can be seen in Figure 5.1. Besides 16 recording electrodes, there

11



12 Methods

are also two reference electrodes and one stimulation electrode in each implanted
region. Each recording electrode measures the changes in electrical potential as
the neurons near the electrode fires action potentials. The recorded voltage from
the selected reference electrodes is subtracted from the voltage from each record-
ing electrodes. The function of the stimulating electrodes is to stimulate nearby
neurons. The stimulating electrodes are however, not used in this project.

Figure 5.1: The electrode layout shows where the elec-
trodes are positioned in the left and right hemisphere
of motor cortex and striatum. Light gray for stimulat-
ing electrodes, dark gray for reference electrodes and
the remaining, white dots, are recording electrodes1.

The electrodes are made of tungsten, a metal with high signal-to-noise ratio
(the average power ratio between neural signals and noise) and low impedance,
where the impedance is the voltage divided by the current. Tungsten also has a
high mechanical stiffness which makes it easier to puncture the brain tissue when
the electrode is implanted. Lastly, it provides very good extracellular recordings.
The drawback is a high noise level at low frequencies; this however, can be removed
by a high pass filter. The electrode wires have a total diameter of 33 µm including
a few µm thick polymer insulation. A small size of the electrode is desired as it
will cause minimum damage to the neurons but it still needs to be thick enough
to penetrate the tissue without bending. A smaller size of the electrode tip gives a
lower current which gives a higher electrical resistance. A low electrical resistance
is desired as it decreases thermal noise which in turn gives better signals from
neural activity. The high impedance due to the small size of the electrode can
be decreased through electroplating. This process uses an electrical current to
form a metal coating on the electrodes. This will increase the surface area, which
increases the current and therefore decreases the impedance.

To evaluate how good the electrodes are before implantation, an impedance
test is sometimes performed. Impedance measurements are done with GAMRY
Electrochemical Impedance Spectroscopy (EIS) software with a potentiostatic EIS
setting mode (where the AC voltage is constant and the current can be quanti-
fied)[Gamry].

1Unpublished electrode layout picture, with permission from NRC for use in the re-
port Decoding Motor Commands in Cortico-Basal Ganglia Circuits for the Purpose of
Controlling a Neuroprosthetic Device
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5.3 Surgical Procedures

During the surgery the rat is sedated with its breathing constantly monitored to
ensure that it is neither about to wake up, nor too deeply sedated (which could
stop its breathing). After the rat is unconscious it is placed in a stereotactic device,
which puts its head into a fixed position. This is important in order to be able to
set up a reliable frame of reference such as a bone landmark for the surgery (see
Figure 5.2). As a first step of the surgery the skull is exposed by making a straight
cut and pulling the skin to either side. Then the locations where the electrodes will
be implanted are located with the help of an anatomical map, with the bregma as
a reference point (see Figure 5.2). These locations are lightly marked with a drill.
The markings are then carefully expanded until the holes go through the bone
without penetrating the tissue below. The electrode array is positioned above the
holes in exactly the right place and angle, and lowered carefully into the brain. The
lowering is done either in small bursts (25 µm at a time) or slowly at a constant
velocity (10 µm/s).

Once the electrodes have reached their intended depth, the areas of the brain
that were exposed are covered with a protective gel. Then the electrode array is
fastened to the skull using dental cement.

The entire surgery takes about five hours. After the operation the rat is allowed
to rest for a week to fully recover.

Figure 5.2: The rat skull shows the bregma and the in-
tersection of the four top skull bones. The bregma is
used as a reference point during surgery in order to im-
plant the electrode into the intended regions [Paxinos
and Watson, 2007, 11]2.

2Reprinted from The Rat Brain in Stereotaxic Coordinates, Sixth Edition by George
Paxinos and Charles Watson, Introduction, Page 11, Copyright 1982, with permission
from Elsevier for use in the report Decoding Motor Commands in Cortico-Basal Ganglia
Circuits for the Purpose of Controlling a Neuroprosthetic Device
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5.4 Histology

Histology is the study of the microscopic anatomy of cells and tissues and is usually
done by sectioning and staining. Histology is done mainly to confirm the position
of the electrodes and to see what damage the region around the electrodes has
suffered (mainly mechanical and inflammatory). In this study, a nucleic staining
method called Nissl staining is used. Relevant regions of the brain are sectioned
into roughly 25 µm thick slices and submerged with the dye cresyl violet that stains
neurons, glia or other interesting cells. Regions such as the soma and dendrites are
colored granular purple-blue, while other regions remain almost uncolored. Figure
5.3 shows an example of Nissl staining with cresyl violet dye. (a) is a histology
with both hemispheres and (b) is a close-up of the left striatum were the two holes
from the electrodes are seen in the middle of the picture.

(a) (b)

Figure 5.3: The Nissl staining with cresyl violet dye with
pictures showing (a) both of the hemispheres and (b) a
close-up of the left striatum [Integrative Neurophysiol-
ogy]3.

5.5 Data Acquisition

Neural spiking activity is recorded using multi–electrode arrays as described in
Chapter 5.2. The signals are filtered with a bandpass filter with band width
600-9000 Hz and sampled at 32 kHz by a digital data acquisition system, Neural-
ynx, with Cheetah software version 5 (Neuralynx Inc.). The setup is presented in
Figure 5.4. The headstage transforms the impedance and reduces the noise sus-
ceptibility. The rat’s movement was recorded with a monochrome video camera
(Dalsa Genie, 25 Hz) with a resolution of 640 x 480 pixels, and saved with Com-
mon Vision Blox software (Stemmer imaging Gmbh). A Master-8 pulse generator

3Unpublished Nissl staining pictures, with permission from NRC for use in the re-
port Decoding Motor Commands in Cortico-Basal Ganglia Circuits for the Purpose of
Controlling a Neuroprosthetic Device
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(A.M.P.I. -Master-8) was connected to the camera and Neuralynx to synchronise
their sampling.

Figure 5.4: Overview of the data acquisition.

5.6 Data Preprocessing

The recorded data is preprocessed and refined for later analysis. The preprocessing
consists of two main parts: spike sorting and video tracking. The spike sorting
is where individual neurons are identified from the raw spike data containing all
putative action potentials. The video tracking seeks to find where the rat is located
in the open field at each time during the experiment and using that knowledge to
determine when it moves. See Figure 5.5 for a general overview of how the data
is processed in the project.

Figure 5.5: Overview of the data input/output of the dif-
ferent parts of the project. The tracking uses the video
data to determine when the rat starts or stops the move-
ment. The spike sorting has the spike data as an input
and separates actual spikes from noise, and also deter-
mines which neurons the spikes originate from. Both
tracking and neural data are needed to do the perievent
time histograms and the machine learning.
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5.6.1 Spike Sorting

A persistent challenge in spike sorting is the non-trivial separation of the data from
the noise: On one the hand, as much of the noise as possible should be removed, but
on the other, it is desirable to keep as many of the real spikes as possible. In order
to do this sorting each spike’s waveform is analysed. Features such as valley-, peak-
and peak-valley width and principal components (see Figure 5.6) are common when
separating spikes. To be noted is that the peak is pointing downwards and the
valley is pointing upwards. This is due to the measurements which are taking place
extracellular and not intracellular. The most useful features for spike sorting are

Figure 5.6: Features of a spike’s waveform which is mea-
sured extracellularly.

usually the principal components. Principal component analysis (PCA) builds an
n-dimensional space using the spikes waveforms, where n is the number of data
points in each waveform. As can be seen in Figure 5.7, a number of waveforms
are sampled and aligned to the start of each waveform (light gry and dark gray
lines in (a)). A vector space (b) is then constructed by using each sampled time
point (in this case t1 and t2) as a dimension. Each waveform can be represented
as a point in the new space with the potential at t1 as its first coordinate and
the potential at t2 as the second ([g1, g2] for the light gray line and [r1, r2] for
the dark gray). If the waveforms are sampled at more times the potential at each
time represents its coordinate in a dimension within the vector space. From this
a third space is created (c) where each axis is a principal component that is a
linear combination of the axes from (b). The first principal component (PC1) is
the linear combination that accounts for most of the variance between the points
in (b). The second principal component (PC2) is orthogonal to the first principal
component, and accounts for the second highest variance. In this example PC1
would be along the line that connects the two points, while PC2 would be zero for
both as all the variance has already been accunted for. The linear combination for
PC1 and PC2 would be:

PC1 =
t1 − r1

2(g1 − r1)
+

t2 − r2
2(g2 − r2)

(5.1)

PC2 =
t1 − r1

2(g1 − r1)
− t2 − r2

2(g2 − r2)
(5.2)
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(a) (b) (c)

Figure 5.7: Example of how principal component analysis
works. (a) The dark and light gray lines are sampled
waveforms at their respective sample points (t1 and t2).
(b) Is a vector space, with the amplitude at the sam-
ple points as the dimensions, where waveforms is rep-
resented as a point. (c) Is a vector space where the
dimensions are orthogonal linear combinations of (b).

The first few principal components account for the highest variances between
waveforms and are therefore, very useful when spike sorting as each neuron has
its own characteristic waveform. The different waveform types make it possible
to classify each SU from striatum and motor cortex. This classification was done
through fuzzy k-means clustering. This method calculates the probability to be-
long to the different types for each neuron based on how close their peak widths,
valley widths and peak-to-valley widths are to the known mean values for each
type. The neuron will be classified as a certain neuron type if the probability for
belonging to that type is above a given level.

The two main objectives in spike sorting are to separate the falsely detected
action potentials (noise) from the correctly detected action potentials (spikes), and
to identify the individual neurons that fired the spikes. The action potentials are
sorted, using the program Offline Sorter, into unit clusters. These clusters can
be identified to be noise or to come from one neuron, called single unit (SU), or
several neurons, called multi units (MU). In this study, the spikes have mainly
been manually sorted. An overview of the software’s functionality can be seen in
Figure 5.8. An identified unit is marked with white while the noise is gray. In
(a) each spike’s waveform is plotted with voltage on the y-axis and time on the
x-axis. What the waveform looks like depend on the neuron [Purves et al.]. In (b)
each unit’s mean waveform is plotted (top) as well as a histogram of its inter-spike
intervals (ISI) (bottom), that is the time between spikes. The percentage in red
shows the percentage of the inter-spike intervals that are shorter than 1.6 ms. This
number is chosen as no neuron is believed to have such a short refractory period.
A high inter-spike interval fraction either means there is a lot of noise or that the
grouped spikes originate from more than one neuron. If the percentage is below
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0.1% (shown in the upper areas of Figure 5.8(b)) then the unit is classified as a
SU. It is classified as a MU if the percentage is above 0.1%. It is generally good
to keep this percentage as low as possible. In (c) the spikes are plotted in the
current feature space, each dot represents a spike. When sorting one generally has
to browse through a number of features (characteristics) to find a clear separation
of a neuron’s spikes. If the signal is very good the spikes from a neuron will be
clearly separated from the noise and other neurons.

Another interesting feature of the neuron is its autocorrelation. While the ISI
is the time between two spikes, the autocorrelation takes into account the time to
all other spikes at once. It is a good way to see if the neuron has a repeating firing
pattern.

(a)

(b) (c)

Figure 5.8: A typical view of spike sorting in Offline Sorter.
A neuron that has been sorted has its spikes shown in
white and all unsorted spikes are in gray. (a) Shows the
waveforms of all spikes from the selected electrode. (b)
Shows the mean and standard deviation of the different
groupings of spikes (top) and the spikes’ ISI (bottom).
(c) Shows each spike’s first two principal components.

5.6.2 Video Tracking

The goal of video tracking is to find out at what times the animal shows a behavior
that is relevant, in this case when the rat moves.

Because it was not realistic to go through the video manually and mark when
the rat moves, the tracking had to be done automatically. First, the rat’s position



Methods 19

at each frame had to be found. This was done using the tracking toolbox Open
Field Tracking GUI, developed at NRC (see Figure 5.9). It does this by first taking
the mean of a portion of the frames in the video to find the background (because
the rat moves it will not be visible after the averaging). It then identifies a region
of interest (ROI) that contains the rat in each frame by finding the area that differs
most from the background, which in these experiments are the three markings on
rear, body and head (see Chapter 5.1).

Figure 5.9: The OpenFieldTrackingGUI (developed at
NRC and implemented in Matlab) was used to track
the rat in the open field. The rat has markings on
the head, body and rear to help with the tracking.
The OpenFieldTrackingGUI highlights the markings it
has found in the first video frame (left) and the user
determines which marking belongs to what part (bot-
tom right). The program then proceeds automatically
through the recording until it has finished all video
frames or looses track of some of the markings, in which
case the user will be questioned again.

When the rat’s position is known the velocity can be calculated by the distance
the rat moves between frames. The velocity was limited to a binary movement
on/off-vector, which was used to predict the movement bouts. Each sufficiently
long interval of movement that was preceded by a certain time of stillness was
classified as a movement bout. The threshold and length of movement/stillness
was tweaked manually to optimize the accuracy of the prediction. However, not
all bouts where captured with this method which is why a second method; fail-
safe, was implemented. The fail-safe noted each time the animal passed between
quadrants of the open field. Because the rat prefers to spend its inactive time close
to a corner the moment it passes over a middle line is almost exclusively during a
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movement bout. With these two methods the work in finding the movement bouts
was kept to a minimum, although the timing still had to be fine tuned manually.

The recorded movement bouts are checked manually using BehaviourGUI,
a Matlab toolbox developed by NRC (see Figure 5.10). BehaviourGUI allows
the synchronisation of different time periods, videos and events. It allows fast
forwarding of the video in one window to predefined event times (start and stop),
while showing the tracked velocity for the same time in a different window. Here
start and stop times are manually fine-tuned and new bouts can be added if the
first detection failed to find them.

Figure 5.10: The BehaviourGUI toolbox allows data to
be synchronised so several data sets (such as a video
recording and computed velocity) easily can be analysed
simultaneously. This is of great help when trying to find
when the rat is moving.
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5.7 Data Analysis

5.7.1 Perievent Time Histogram

Perievent time histograms represent a means to visualise whether the neurons firing
of action potentials (firing rate) systematically changes at certain re-occurring
events, for instance start and stop movements of the rat. The perievent time
histogram shows a summation of the neuron’s activity during a number of events
(see Figure 5.11). First a number of events are selected (a), in this project such
events would be movement bouts, or when the rat starts and stops moving. When
the time points for the events have been found, the neuron’s firing rate around
these times is extracted (boxes 1-6). The firing rate is calculated by dividing
the time into bins, counting the number of spikes in each bin and dividing that
number by the size of the time bin. These firing rates are aligned to the start
time of the events (b) and summed to create a perievent time histogram (c). To

Figure 5.11: A perievent time histogram shows a neuron
activity during a certain type of event.

compare the activity during the event to the normal activity of the neuron, this
sum is normalised to a baseline by subtracting the mean and dividing by the
standard deviation of the baseline. The baseline is usually a time period prior
to the event when the neuron’s activity is assumed to be normal (unaffected by
the event). If the neuron’s firing pattern changes during these times there will
be a clear modulation in the perievent time histogram. The higher the amplitude
is near an event the higher the possibility is that the peak is due to the event.
The computation of the perievent time histograms were made in Matlab and
the flowchart of the code can be seen in Figure 5.12. The neurons was split into
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Figure 5.12: Flowchart for computing the perievent time
histograms.
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three groups based on their perievent response. If the perievent shows a clear
modulation around the event times it is said to be correlated to the event. No
clear modulation is seen it is said to be uncorrelated and if there are only a few
sporadic spikes the neuron is said to be untrustworthy due to poor spike sorting.
This grouping is done by visually inspecting the perievent time histograms.

Before proceeding to the computer learning, all movement data from the video
tracking was downsampled by a factor of three, so the resulting time resolution
was 3*1/25Hz = 120 ms.

5.7.2 Computer Learning

The computer learning is the final stage of the data analysis. The goal is to predict
when the rat is moving based on its neural activity. The neurons have a specific
firing rate, which is the average number of spikes per time interval and used in the
general linear model [Carmena et al., 2003]:

Y = XA+ E, (5.3)

where Y is a binary Nx1 vector of observations at times t1, · · · , tN (in this case it
is 1 if the rat is moving and 0 if it is still), X is an NxM matrix where each column
represents the firing rate of a neuron during an interval (bin) with a certain bin
size at a specific time (lag) from the observation (see Figure 5.13). Depending on
the chosen bin size and number of lags, the model extends differently long into the
past from each observation time. M is the number of neurons multiplied by the
number of time lags plus one for a general offset. A (Mx1) represents the weight
(importance) of each column in X and E (Nx1) is the errors (difference between
the observed Y and the predicted XA).

y1
y2
...
yN

 =


x1,1 x1,2 · · · x1,M

x2,1 x2,2 · · · x2,M

...
...

. . .
...

xN,1 xN,2 · · · xN,M



a1
a2
...

aM

+


e1
e2
...
eN

 (5.4)

This model tries to make XA as close as possible to the observed values by taking
the sum of the firing rates at each row in X multiplied by a constant in A for each
column.

The computer learning is divided into two phases; training and prediction. In
the training phase the best estimation of A is found by solving the least square
regression model (Equation 5.3) for A

A = (XTX)−1XTY (5.5)

Both X and Y need to be known in this phase and the more observations there are
the better the estimated A will be, provided that the neurons in X are correlated
to the movement.

Once A is known it is possible to move on to the prediction phase. In this
phase Y is unknown and will be predicted by Y = XA. Then the prediction is
evaluated by its receiver operating characteristic (see the explanation of receiver
operating characteristic below).



24 Methods

Figure 5.13: The build-up of the X matrix. Each row
represents one point in time and its columns contain
the data to predict the behavior at that time. The data
for each row is sampled in a number of bins from the
time of the observation and back. To the left it can
be seen where in time those bins could be for a certain
configuration of bin size and number of lags. The right
side shows where in the X matrix the firing rate in the
bins should go.

Five-fold cross validation was used in this project, meaning the data was split
into five sections. Four was used for training and the last for evaluation. The
sections used for testing and training was rotated five times in order to test the
entire data set. A flowchart of the code for the machine learning is showed in
Figure 5.15 at the end of the chapter.

Receiver Operating Characteristic

When binary data is used for training it is desirable to get a binary prediction.
The easiest way to achieve this is to threshold the prediction (the rat is assumed to
move when the prediction certainty is above the threshold). To decide a suitable
threshold the Receiver Operating Characteristics (ROC) can be used.

There is seldom a threshold that gives a perfect prediction, therefore a com-
promise must be made. If it is important to predict all times when the rat is
moving (true positive) the threshold should be low, but then it will also predict
it is moving sometimes when it is actually still (false positive). If it is important
to have few false alarms or predict all times when it is still (true negative) the
threshold should be set high, but then it will sometimes predict the rat to be still
even though it is moving (false negative). In other words the, value will be true
positive if both real value and the predicted value is positive, false positive if only
the prediction is positive, true negative if both are negative and false negative if
only the predicted value is negative. The outcome false positive and true negative
can be explained with the same concept in Table 5.1 [Fawcett, 2006].
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Positive True Positive False Positive
Negative False Negative True Negative

Table 5.1: The table summarises the four outcomes when a
predicted value is true/false compared to the real value.
The real and predicted values are either positive or neg-
ative. If the predicted and real value are the same, then
the predicted value is true (true positive or true nega-
tive), and if these values differ, then the predicted value
is false (false positive or false negative).

A ROC curve can be used to get a sense of the balance between these parameters
so a suitable threshold level can be set. The ROC curve is therefore built up by
the true positive rate (TPR) as a function of the false positive rate (FPR). The
TPR denotes the number of true positives (TP ) that are predicted out of all real
positive values (P ) [Fawcett, 2006]. The real positive values can be written as a
function of TP and false negatives (FN).

TPR =
TP

P
=

TP

TP + FN
(5.6)

FPR shows how many of the negative values (N) are falsely predicted as positive,
where N can be written as a function of false positives (FP ) and TN .

FPR =
FP

N
=

FP

FP + TN
(5.7)

A larger area under the ROC curve means a better prediction which can be seen in
Figure 5.14. A ROC curve with an area of 1.0 a.u. would mean a perfect prediction
and an area of 0.5 a.u. would mean a prediction at chance level [Fawcett, 2006].
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Figure 5.14: Three hypothetical ROC curves represent the
precision, where the light gray curve has the best pre-
cision of the three due to its large area underneath the
curve. The middle line has three positions marked. Po-
sition 1 gives a stricter threshold of movement predic-
tion (stricter false positive rate) than position 2 and 3.
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Chapter 6
Results

This chapter presents the results from the data preprocessing, with spike sorting
and video tracking, data analysis with perievent time histograms and computer
learning. Four experiments each from rat A (experiments A1-A4) and rat B (ex-
periments B1-B4) have been analysed.

6.1 Data Preprocessing

6.1.1 Spike Sorting

A total of 105 neurons were sorted across the experiments of which 89 were iden-
tified as SU’s and 16 as MU’s. The neuron types were classified into four different
categories depending on the features of waveforms (seen in Figure 6.1). Some of
the structural features and functional differences of the neuron type clusters are
shown in Figure 6.2. (a) and (c) are from the motor cortex and (b) and (d) are
from the striatum. The two figures above show the peak to valley length as a
function of peak width and the two figures below show the peak to valley width as
a function of valley width. The values of specific waveform features (peak width,
valley width and peak-to-valley time) together with standard deviation are written
in Table 6.1. From these features, neuron types were classified as follows: 50 PN’s
and 7 IN’s were found in the motor cortex. 27 MSN’s and 11 FSI’s were found in
the striatum. A total of 10 neurons remain unidentified (UIN) (See Table 6.2).

Structure Cell type Peak width Valley width Peak-to-valley
(µs) (µs) time (µs)

Striatum MSN 155 ± 13 401 ± 56 299 ± 27
Striatum FSI 121 ± 23 137 ± 47 158 ± 36
Striatum UIN 159 ± 0 235 ± 0 252 ± 0
Motor cortex PN 162 ± 13 432 ± 31 316 ± 25
Motor cortex IN 143 ± 33 193 ± 77 210 ± 59
Motor cortex UIN 156 ± 11 363 ± 18 245 ± 60

Table 6.1: A table of features from MSN, FSI, PN, IN and
UIN in the motor cortex and striatum.

29



30 Results

Figure 6.1: Waveforms from the neuron types PN (green),
IN (blue), MSN (red) and FSI (magenta).

(a) (b)

(c) (d)

Figure 6.2: Classification of putative neuron types for the
motor cortex ((a) and (c)) and the striatum ((b) and
(d)). For the motor cortex: PN (green), IN (blue) and
UIN (gray). For the striatum: MSN (red), FSI (ma-
genta) and UIN (gray).
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Motor cortex Striatum
Experiment PN IN UIN MSN FSI UIN
A1 8 1 3 5 0 0
A2 9 1 2 6 1 0
A3 10 2 0 1 4 0
A4 6 0 0 0 3 1
B1 6 0 0 8 0 0
B2 2 0 2 2 0 0
B3 6 3 2 1 1 0
B4 3 0 0 4 2 0
Total 50 7 9 27 11 1

Table 6.2: Number of neurons, with type classification
depending on the waveform, found in respective brain
region from each experiment. The classification were
made on the neuron types PN, IN, FSI and MSN. Other
neurons which could not be classified was named UIN.

6.1.2 Video tracking

Tracking from video recordings of B1 shows that the rat mostly kept going near
the sides. An example of this is shown in Figure 6.3 where dark gray is where the
rat moves and light gray is where it is still. A specific threshold for when the rat
was moving was set to 1.25 pixels/frame (see Figure 6.4). The tracking could not
always decide which body part was which, jumping back and forth between them,
resulting in huge spikes in the calculated velocity (see Figure 6.5a) (a). More
accurate, semi-manual, tracking was made for experiment B1 (see Figure 6.5a(b)).
Using this tracking would require less manual fine-tuning and the fail-safe would
be unnecessary, but the semi-manual tracking is so time-consuming that the less
accurate tracking is more time effective. Tracked positions (from the marked head
point) and the respective velocity bouts from experiment B1 are shown in Figure
6.7 and 6.6. The axes for time, position, and velocity are not marked in the figures.
This information is, however, not important in these cases as these are used to
compare the different bouts to each other.
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Figure 6.3: Position of the rat during the whole experiment
B1. The dark gray lines show where it is moving and
the light gray lines show where it is still.
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(a) (b)

Figure 6.4: Threshold for when velocity is detected where
(b) is a zoom in of (a).

(a) (b)

Figure 6.5: Velocity of the rat tracked (a) automatically
and (b) with semi-manual tracking.
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Figure 6.6: Tracked velocity (from the point marked on
the head) over time of the rat during movement bouts.
The axes values have been left out as the focus is the
shape of the bouts in relation to each other.

Figure 6.7: Tracked position (from the point marked on
the head) of the rat during movement bouts.

A total of 536 movement bouts was tracked across the experiments, distributed
according to Table 6.3. Experiment B4 was excluded from the project because
only eight movement bouts was found for that experiment (not included in the
analysis).
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Experiment Bouts Duration Covered Distance Velocity
(s) (cm) (cm/s)

A1 35 2.3 ± 0.9 19.5 ± 12.8 8.5 ± 4.3
A2 38 1.9 ± 0.9 16.5 ± 12.7 8.4 ± 8.9
A3 66 1.9 ± 0.8 22.8 ± 14.0 11.9 ± 5.2
A4 48 2.1 ± 1.1 19.9 ± 12.8 9.9 ± 5.3
B1 76 3.0 ± 1.5 26.2 ± 16.8 9.1 ± 4.5
B2 113 2.5 ± 1.4 21.1 ± 14.9 8.6 ± 4.1
B3 160 2.1 ± 0.8 26.2 ± 14.8 12.6 ± 5.7

Total 536 2.3 ± 1.2 23.0 ± 14.8 10.4 ± 5.3

Table 6.3: Number of movement bouts with the mean and
standard deviation of its duration, covered distance and
velocity.

6.2 Data Analysis

6.2.1 Perievent Time Histogram

A visual inspection of the 96 perievent time histograms shows that: 20 of 96
neurons seem to be correlated to movement; 45 neurons seem to be uncorrelated
to movement; and 31 neurons were discarded because no analysis can be made of
these due to too few spikes. The neurons are distributed according to Table 6.4.
Experiment B4 is not included in the table due to too few movement bouts.

Experiment Correlated Uncorrelated Discarded
A1 5 7 5
A2 1 10 8
A3 2 12 3
A4 3 5 2
B1 4 6 4
B2 1 3 2
B3 4 2 7
Total 20 45 31

Table 6.4: Number of neurons which are correlated and
uncorrelated to movements and discarded.

There exist results from perievent time histograms of neurons that are visually
correlated and uncorrelated to movement or discarded. The histograms show an
alignment from start (light gray dashed line) to stop (dark gray dashed line). As
the perievent time histograms are aligned to both start and stop the x-axis show
the fraction start to stop rather than time. Examples of perievent time histograms
for correlated, uncorrelated and discarded neurons can be seen in Figures 6.8, 6.9
and 6.10 respectively. Information of the different boxes in the perievent figures
are explained in Chapter 5.6.1 and 5.7.1. The information box "Electrode layout"
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in the figures of perievent time histograms is not used but if it would be used then
the layout would be similar to what is shown in Figure 5.1. All perievent time
histograms can be found among the complementary pictures [Moa Svensson and
Joel Sjöbom, 2014].

When the correlation of the neurons was divided based on the neuron type,
it was found there were significantly more correlation in the striatum than motor
cortex (Z-test, p < 0.05, see Table 6.5).

Region Type Correlated Uncorrelated Discarded
Striatum MSN 9 9 5
Striatum FSI 1 5 2
Striatum UIN 2 0 0
Motor Cortex PN 5 24 15
Motor Cortex IN 0 2 6
Motor Cortex UIN 3 5 3

Table 6.5: Number of correlated, uncorrelated and dis-
carded neurons based on neuron type.
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Figure 6.8: Example of a perievent time histogram of a
neuron that is clearly correlated to movement (upon
visual inspection). The histogram shows an alignment
from start (light gray line) to stop (dark gray line).



38 Results

Figure 6.9: Example of a perievent time histogram of a
neuron that is not correlated to movement (upon visual
inspection). The histogram shows an alignment from
start (light gray line) to stop (dark gray line).
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Figure 6.10: Example of a perievent time histogram of a
neuron that is discarded (upon visual inspection). The
histogram shows an alignment from start (light gray
line) to stop (dark gray line).
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6.2.2 Computer Learning

The effect of varying the number and size of time bins used in the general linear
model has been systematically evaluated. Figures 6.11. (a)-(c) show the result
of the computer learning from experiment A3, and the other computer learning
results can be found among the complementary figures [Moa Svensson and Joel
Sjöbom, 2014]. (a) shows the predictions of 1−FPR (left column) and TPR (right
column) for the training data set (top) and test data set (bottom). (b) presents the
area under ROC curves for training (left column) and test session (right column).
In (a) and (b) the bin size is changed across the y-axis and the number of lags are
changed across the x-axis. The brightness of each square represents how good the
prediction is. (c) gives the time scale (bin size multiplied by number of lags) for
each square in (a) and (b).

Figure 6.12a shows the prediction of movement for the data set from experi-
ment A3 when the bin size is set to be 0.3 s and number of lags are five. Figures
of prediction of movement from other experiments can be found in the comple-
mentary figures [Moa Svensson and Joel Sjöbom, 2014]. The black line in Figure
6.12a is the predicted movement from the video tracking data. The prediction is
binary, were 1 indicates it is moving and 0 indicates it is not moving. The gray
line is the predicted movement trained by computer learning. The threshold for
movement is in (b) set above 0.5. The gray line is increased to a value slightly
above 0 and slightly underneath 1 to easier evaluate the prediction of movement
from both the computer learning and video tracking.
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(a)

(b)

(c)

Figure 6.11: (a) Evaluation of different configurations of lags and bin sizes
in the general linear model. 1− FPR in the left column and TPR in
the right column. Upper row: training section, lower row: test section.
(b) Area under ROC curves for training (left column) and test section
(right column). (c) How long the general linear model extends into the
past from each observation time for each combination of bin size and
number of lags.
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(a) (b)

Figure 6.12: Predicted movement (gray line) and actual
movement (black line). (a) shows the likelihood for
movement according to the computer learning while (b)
shows the prediction after a threshold at 0.5 has been
applied.
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Discussion

7.1 Regarding procedures during the project

Experiments, position tracking and spike sorting was conducted in 2010. During
this project, improvements have been done on the spike sorting and position track-
ing, and times and duration of movement bouts was determined. Perievent time
histograms were constructed; using similar histograms from another project as a
template and a computer learning program was developed from scratch.

We attended a surgery during 2013, similar to the surgeries done in 2010, to
gain insight into all procedures in the project. We have also, for the same reason,
been involved in the first steps of the electrode building.

7.2 Pre-analysis

Complications can arise following surgery due to inflammation and bleeding. For
instance, infection and tissue damage can provoke inflammation. It is therefore of
great importance to maintain a clean and sterilized surgery environment. It is also
important that the equipment used during stereotactic surgery is stabilized and
does not move unexpectedly in its positioning which would make it more difficult to
position the electrodes in the right region. Due to these difficulties, the recordings
of neural activity might not always be exactly in the right places. Consequently,
histological examination is made post mortem to evaluate were recordings are
from.

A primary aim in this research study has been to get neural data which is
mainly connected with locomotion. Not much is known about the connections
between neural signals on locomotion and other neural signals which might have
impact of locomotion. Therefore, distractions have been removed in the experi-
mental environment. The open field environment is relatively devoid of external
stimuli (such as odors, movements, sound, etc.) and most of the experiments were
made during night time, which is also the time when rats are most active. Never-
theless, neuronal activity relating to ongoing internal processes will still exist but
can usually be removed by averaging over multiple trials.

Another aim in this study has been to identify locomotion signals on the neu-
ronal level. However, in reality neuronal activity is probably different, depending
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on kinematic differences like acceleration, deceleration, turning right/left or going
upwards/downwards. The focus has mainly been on analysing the data around
start and stop of locomotion but, it would surely be interesting to also see what
is hidden in the neural information if the data is sorted after different locomo-
tion behaviors and thereafter analysed. One suggestion is to develop a labyrinth
environment were the rat can choose to move right, left or forward. This might
also make the rat more comfortable in the aspect that it prefers to be close to the
wall and not in the middle of a free space (see Figure 6.3) and maybe the rat will
be more willing to move during an experiment. This way however, we would no
longer have the additional opportunity of being able to study how the animal can
make use of distant cues in order to build a representation of space (getting to
know the area), which is a secondary goal in this set of experiments for NRC. Thus
the labyrinth might be effective for this particular experiment but would decrease
the diversity of the open field environment.

In the current design, the spontaneous movement bouts are quite few per
experiment in spite of the long experiment time. One way this could be improved
by forcing the rat to move, but then we would no longer be studying spontaneous
voluntary motor behavior. The risk of doing that might be that the signals found
might actually be correlated to whatever forsed the rat to start moving rather
than the actual movement. Another way to make the rat move more during the
experiments could be to make it more used to exercise. A common knowledge for
us humans is that the more a person is used to exercising the more they want to
move and exercise. This knowledge could perhaps also be applied to rats. A more
effective way however, would be to food deprive the animals prior to experiments,
and distribute small food pellets in the entire arena.

In the neuronal recordings, an interesting aspect would of course be to not only
measure in the regions of the striatum and motor cortex but also in other regions
involved in motor control. To obtain parallel recordings from more structures
without decreasing the number of channels per structure, poses the need to further
develop the electrodes. This is something that is currently being researched at
NRC. Also, it would be beneficial to develop electrodes which can record from
a single neuron at a time that can then be followed during several experiments.
The size of the electrodes used and noise from biological processes and movements
makes this task difficult but hopefully this will be possible in the future.

7.3 Spike Sorting

As discussed in the chapter 6, it is often the case that action potentials from more
than one neuron is recorded at the same time in a single channel. In the spike
sorting procedure neurons are separated from noise and from each other but, given
that the noise is evenly distributed it could be argued that the separation from
noise is less important for the computer learning as the model should take that
into account. However, incorporating more noise would require larger training
sets and prolong the computation time. If two neurons have very similar spikes;
these will be hard to separate, resulting in a multi-unit. If only one of the neurons
are correlated to movement this can dilute the signal, making it harder to use for



Discussion 45

prediction. If both neurons are inversely correlated they could cancel each other’s
signals. However, the different neurons might alternatively amplify and make
the signal clearer. In the following step, neuron type is assigned based on the
shape of the waveform. Classifying neuron types solely based on their waveform
is still somewhat controversial but it has been done in a couple of previous studies
and is considered an accepted practice by several researchers now. The waveform
features found for the different neuron classes in the current study are close to
what have previously been found [Halje et al., 2012]. Overall, there are almost 20
times more MSNs in the striatum than FSIs (see Table 6.2), but this difference
is not represented in the number of identified neurons in this study. This might
be because the MSNs have significantly lower firing rate than the FSIs and are
therefore, more difficult to detect. Another reason might be that the concentration
of FSIs in the striatum varies with location and is especially high in the area which
are measured from as has been suggested [Berke et al., 2010].

7.4 Video Tracking

The video tracking in the current set-up is in many ways superior to other research
departments in neuroscience, which has been an advantage in the current project
since it enables to track even minor changes in kinematics of freely moving animals.
This shows the importance of involving persons with different fields of expertise in
technically challenging experimental disciplines. In this case, in depth knowledge
in image analysis had been a prerequisite for the development of the system used.

An experimental challenge in the video tracking procedure has been the con-
stant movements of the cable connected to the rat that transmits the neural data.
The cable is often hanging in front of the camera, thus obscuring the rat and
making it impossible to track the rat. This is the reason why there exists un-
tracked position and velocity bouts in Figure 6.7 and 6.6 These two figures show
data from image points from the head. As mentioned in chapter 5.6.2 there are
three positions marked and tracked on the rat: head, body and rear. This can
be useful to eliminate missing position data due to cable movement in front of
camera but has not been employed in the current analyses. The position and
velocity in Figure 6.7 and 6.6 could be supplemented so the empty data in the
calculated velocity are estimated either using interpolation from the frames were
head position data exists or alternatively be filled in using information from the
velocity of the body/rear points. Interpolation can then be made using standard
techniques for example linear polynomials/splines. There were occasions where it
was difficult to determine if a movement bout should be split into two separate
bouts. It is not uncommon for the rat to slow or pause briefly when moving (see
Figure 6.6). Generally, such movement with a brief stop was classified as one long
bout to improve the baseline (see the discussion below about the baseline of the
perievent time histogram).

Tracking takes a lot of time, therefore, only the times around each bout was
tracked and at all other times the velocity is assumed to be zero.

In the analyses performed in this project, it was realised that it is difficult to
track the rat with only one camera (positioned above the rat). NRC is therefore,
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planning to install complementary color cameras providing a side-view of the open
field.

7.4.1 Perievent Time Histogram

Because the baseline of the histograms were calculated from the summed firing
rates during the corresponding time period in all bouts, the information about
the individual bouts are lost. The baseline might potentially be improved by
normalising the firing rate of each event before summation. Another problem is
that the rat often moves in short bouts, one shortly after another. This means
the baseline, to some degree, is contaminated by other bouts which counteract
the purpose of the baseline (separating the firing rate during the event from the
neuron’s normal firing rate). One workaround could be to recalculate the baseline
using only the bouts that is not directly preceded by another bout. The drawback
of the workaround would be that the baseline become the mean of only a few time
periods if a lot of the bouts are close to each other.

The histograms show that neurons correlated to movement can generally be
said to either increase or decrease their activity during the movement. Using this
criterion, few if any neurons were clearly correlated to only the initialisation or
termination of movement were found. There were, however, some neurons that
were active only during certain parts of the movement, and it could be interesting
to find exactly what the neurons are correlated to. For instance, if they are
correlated to movement behavior such as acceleration and retardation.

A visual inspection of the perievent time histograms indicated that 20 neurons
was correlated to movement behavior (see Table 6.4). This is quite few neurons
which could be due to several factors such as too strict spike sorting, too much
biological noise or that the electrodes did not measure in a region with a lot of
active neurons. Even though only 20 neurons was visually correlated there might
be more neurons correlated to movements if another, more trustworthy, method
would be used to find correlated and uncorrelated neurons.

An interesting result in our analyses was that there were significantly more
neurons clearly correlated to movement behavior found in the striatum than in
the motor cortex, based on the visual inspection of the perievent time histograms.
However, it is important to remember this conclusion is only true for the neurons
found in this sample. A more rigorous analysis will be needed to define appropriate
statistical criteria for what is classified as significant modulations.

7.4.2 Computer learning

The computer learning was able to predict movement with a reasonable accuracy
but choosing what configuration of bin size, number of lags and threshold to use
is not easy. When evaluating the results in Figure 6.11, there are several points
to keep in consideration. The top left of Figure 6.11 (a) shows 1 − FPR for the
training data set, which was used to set the threshold for the evaluation which is
why it is close to constant to 0.99. The 1−FPR for the test data set decreases as
the model becomes more overtrained. The TPR evaluation for the training data
set indicates that it gets better the more neural data is used (down and right in
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the figure). This is also due to overtraining and is not true for the test data set.
In (b) the area under the ROC curve is used instead of the TPR and FPR at
one point in the curve, this gives a good overview of how good the configuration
is generally. The drawback is the unclearness of how well it performs at a specific
threshold.

The model used in this project was one of the simplest possible. Thus, it
is reasonable to assume it might be possible to improve performance further by
choosing a more complex model. Another improvement of performance might be
to remove the neurons labeled as not trustworthy. They were left in the data set
as the model should be able to handle them but this added noise which might
worsen the prediction and needlessly increase the computation time.

The weights in the A-matrix should contain information about neurons corre-
lated to movement. It would be of great interest to evaluate if the model in greater
extent favors the neurons which are manually classified as correlated than those
which were manually classified as uncorrelated to movement.

The maximum allowed FPR selected in this project was extremely low. It
needs to be very low to be feasible to use in a future real world application. if
it would not be as strict, a wheelchair controlled by neural signals might start to
move on its own without the user intention.

The most time-consuming part of the computer learning algorithms a flaw in
the implementation of the model resulting in unreasonably long time periods of
neural data seemed to produce the best predictions. This caused a lot of thought as
a physiologically more plausible time frame, including only the most recent changes
in neurophysiological activity patterns preceding each event should give better
predictions. We realised, however, the reason for this counter-intuitive finding was
a type of overfitting; meaning the training is specialised for this data set which
implicate a very bad performance when confronted with new data. Normally the
cross-validation would prevent any overfitting but two combined factors made the
cross-validation less sensitive to this error. Firstly, the different cross validation
sections were drafted at random from the rows of the X and Y matrices. Thus, it
is much more likely there were a number of samples from every movement bout in
each of the sections. Secondly, given that these samples were only separated by 120
ms, the rows in the X-matrix corresponding to adjacent samples should be nearly
identical for bin sizes much larger than 120 ms (see Figure 5.13, where the opposite
case for a bin size less than 120 ms is illustrated). This means the training data
and the test data looked nearly identical (see Figure 7.1) which in turn makes it
possible to overfit the model despite of the cross validation. This is easily fixed by
not separating one movement bout into different crossvalidiation sections, and also
by making a more careful selection of reasonable bin sizes. Also, the false negative
rate should be evaluated in addition to the true positive rate when evaluating the
performance of the computer learning. It is likely that other researchers may have
fallen into the same pitfall and can be helped by this realisation. Therefore, we
recommend it should be clearly stated in future studies, with the use of the current
design, that great care must be taken when the data sets is separated into different
behavioral events. Due to the long time of the recording, there is a lot of data to
analyse in the training. So much so the computer could not handle the large matrix
operations. This led to the data being down sampled by a factor three (one frame
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Figure 7.1: Example of why the adjacent bins are nearly
identical if they are much larger than the time between
observations.

in three was used during the computer learning). Even after down sampling the
X-matrix had 260000 rows, and almost 1000 columns for the configurations with
the most lags. This pushed the computer to the limit and would have required
more than the available 8GB of RAM to compute a configuration with more lags.

7.5 Future Research

There are a lot of interesting possibilities for future research building on this
project. Some of the ideas for improvements and related work could be to include
the local field potential into the model for prediction. The LFP is the synchronous
activity of groups of neurons. It would be interesting to predict more specific
aspects of the movements, like movement direction, speed, acceleration, turning,
body angle, angular velocity and angular acceleration. Moreover, it could also
prove useful to have neural information from other regions in the brain that are
known to be involved in movement.

Most importantly, we suggest the current approach could be used to learn more
about how different neuron assemblies contribute to motor control, essentially al-
lowing for a new approach to neurophysiological research where the investigator
may use machine learning techniques to understand complicated physiological pro-
cesses.
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Conclusions

Neurons correlated to movement have been found in both the motor cortex and
striatum but there are more correlated neurons in the stratum than in the motor
cortex (p < 0.05). Although, the method for determining correlation needs to be
improved before the significance can be said to be truly trusted.

Generally, the neurons seem to be correlated to the entire movement and not
only to the initialisation or termination. There are, however, neurons whose firing
rate differs depending on where in the movement bout the rat is. More research
is needed to determine why and what it is correlated to.

During the computer learning a major pitfall was found and corrected. Hope-
fully others can benefit from this by not making the same mistake. The neurons’
firing rate can be used to predict when the rat moves with relatively good preci-
sion.
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Chapter 9
Scientific Setting

Neuronano Research Center (NRC) is an interdisciplinary research center with
the goal to develop neural interfaces that communicates with the nervous system.
NRC contains of five platforms: neural probes; biocompatibility; data aquisition,
encoding, telemetry and analysis; neuroscience research and clinical applications;
and etics. The vision is to "... improve quality of life for disabled people and
individuals with neurodegenerative disorders by listening to, understanding and
talking to the nervous system by means of a neural interface".[NRC]. Out of these
three objectives, this study falls within the secondary category of understanding
the nervous system.

Professor Jens Schouenborg is the coordinator of NRC and the research group
consists of researchers from the Faculties of Engineering, Humanities, Medicine
and Science.[NRC]

NRCs’ neuroscience research is done both in vivo and in vitro combined with
nano- and microtechnology. The research group is frequently going to neuroscience
conferences to get an updated view of the cutting-edge research of the nerve system
and the brain. We, Moa and Joel, have had the honor to be part of this research
environment, as well as participating in a five days inspirational conference held in
San Diego. The Society for Neuroscience (SfN) arranged a gathering for thousands
of neuroscientists to participate in the newest research areas, which were presented
with seminars, poster discussions, networking and workshops [SfN].
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Chapter 11
Glossary

Action Potential a depolarization of a cell membrane. It is triggered when the
critical threshold is reached. This is also called a spike.

Axon a nerve fiber which sends out electrical impulses from the neuron nucleus.

Basal Ganglia located at the base of the brain. This region is involved in the
process of voluntary movement among other tasks.

Brain Machine Interface a communication pathway between a device and the
brain.

Cell Body see soma

Cortico-Striatal Activity neural activity (signals) from the cortex to the stria-
tum.

Cortex located at the outer region of cerebral hemisphere.

Dendrite a nerve fiber of the neuron which receives electro-chemical impulses
from other neurons.

Electroencephalography can be used to do non-invasive recordings of neural
activity.

Excitatory Neuron a neuron that excites the neurons it projects to. See also
inhibitory neuron.

Fast Spiking Interneuron a type of neuron with axons projecting to local neu-
rons (in the same region). One of its characteristics is its fast firing rate.

Firing Rate the rate at which the neuron fires its action potentials (Hz).

Functional Magnetic Resonance Imaging Measures neural activity by detec-
tion of changes of blood flow.

Glial Cell has different functions depending on what type it is. For instance,
one type can regulate the internal surroundings around the neurons while
another one forms myelin and protects and stabilizes the neurons. Glial
cells can also supply oxygen and nutrition or destroy microorganisms and
clean up dead neurons.

Gray Matter consists of neuron nucleus, dendrites and unmyelinated axons.
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Inhibitory Neuron a neuron that inhibits the neurons it projects to. See also
excitatory neuron.

Interneuron a neuron which connects other neurons to each other.

Inter-Spike Interval The time between the neural firing.

Medium Spiny Neuron an inhibitory neuron which regulates the neurons’ acti-
vation. MSN exists in the striatum and is active both within the striatum
and regions connected with the striatum. The major functions of MSN
are environmental recognition and encoding of locomotion.

Medulla Oblongata connects the signals from the rest of the brain to the spinal
cord hind brain.

Multi Units clusters of action potentials which are identified to come from more
than one neuron.

Myelin covers the axons. Myelin improves the propagation speed of the action
potentials.

Neuralynx a data recording system for electrophysiology signals.

Neuron also called a nerve cell. It consists of a neuron nucleus, axons and den-
drites

Neuroprosthesis a mind-controlled prosthesis.

Nerve Cell see neuron.

Nerve Impulse neural activity.

Offline Sorter a program used to classify action potential waveforms (spikes)
which are collected from electrodes. The spikes can be seen in 2D or 3D
feature space. Different clustering techniques exist and cluster separations
can be calculated.

Postsynaptic Potential is a graded potential which is created by membrane
potential changes of the postsynaptic terminal and its function is to inhibit
or initiate action potentials.

Pyramidal Neuron exists in the cerebral cortex, hippocampus and amygdala.
A pyramidal neuron can be classified in different subclasses depending on
firing rate. Pyramidal neurons can connect their axons both within the
region but also to distant regions.

Refractory Period occurs after an action potential is generated. The refractory
period is the time interval in which a second action potential cannot be
applied until the voltage has returned to its resting state.

Single Unit clusters of action potentials which are identified to come from only
one neuron.

Soma also called cell body or a cell nucleus. This is where the protein synthesis
occurs.

Spike an action potential.
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Striatum located in basal ganglia. Voluntary motion is processed in this region.

Substantia Nigra located in basal ganglia. It plays a role in addiction, reward
and movement.

Subthalamic Nucleus located in basal ganglia. The function is unknown.

Synapse is the structure between neurons which allows chemical and electrical
signals to pass between neurons.

Synaptic Membrane Potential refers to the neurons incoming signal which is
the voltage difference between the inside and outside of a postsynaptic
neuron’s membrane. The synaptic potential can be either inhibitory or
excitatory.

Thalamus located in the forebrain. The thalamus is known to be a sensory relay
station where sensory information is processed and relayed to the motor
cortex.

Threshold Potential the critical depolarization level of the membrane potential
in order to start an action potential.

White Matter consists of glial cells and myelinated axons.
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Chapter 12
Acronyms

BMI Brain Machine Interface

EEG Electroencephalography

EPSP Excitatory Post-Synaptic Potential

IS Excitatory synapse

IN Interneuron

IS Inhibitory synapse

ISI Inter-Spike Interval

IPSP Inhibitory Post-Synaptic Potential

FPR False Positive Rate

FSI Fast Spiking Interneuron

fMRI Functional Magnetic Resonance Imaging

GPe Globus Pallidus external segment

GPi Globus Pallidus internal segment

MSN Medium Spiny Neuron

MU Multi Units

NRC Neuronano Research Center

PN Pyramidal Neuron

ROI Region Of Interest

SU Single Unit

STN Subthalamic Nucleus

TPR True Positive Rate

UIN Unidentified
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