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Abstract

A ubiquitous and accurate positioning system for mobile devices is of great im-
portance both to business and research due to the large number of applications and
services it enables. In most outdoor environments this problem was solved by the
introduction of the Global Positioning System (GPS). In indoor or suburban areas
however, the GPS signals are often too weak to enable a reliable position estimate.
Instead, other techniques must be utilized to provide accurate positioning. One of
these is trilateration based on WiFi signal strengths. This is an auspicious technol-
ogy to use partly because of the large number of access points (APs) in our everyday
environment, and partly due to the possibility of measuring signal strength with a
normal smartphone. The technique is further enabled by the move to include trans-
mitters at 2.4 as well as 5 GHz in modern APs, providing a better basis for accu-
rate position estimations. Furthermore, the motion sensors present in today’s smart-
phones are accurate enough to provide a short-time estimate of the user’s movement
with high accuracy. In this thesis, both of these technologies are used to develop an
accurate method for indoor positioning, and the contributions can be summed up
into two points.

The first contribution is an investigation of the behavior of two WiFi frequencies,
2.4 and 5 GHz, where their time dependent noise is proven to be almost uncorrelated
with each other. This is then exploited to develop a WiFi-only trilateration algorithm
by the use of a particle filter (PF), where the only restriction is that the locations of
the APs need to be known.

The second contribution is adding an accelerometer and a gyroscope to the algo-
rithm, to provide a more accurate estimation. A step counter is developed using the
accelerometer, and the gyroscope detects changes in heading while the WiFi signal
strengths give information about the position. This makes it possible to alongside
the position also estimate both heading and step length, while still keeping the only
restriction of knowing the AP locations. The resulting algorithm produces position
estimates with a mean error less than two meters for a specific use case, and around
three meters when a more lenient user behavior is allowed.
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1
Introduction

This Master’s thesis investigates possible algorithms for indoor positioning with
smartphones. The project is a cooperation between Sony Mobile Communications,
the Department of Automatic Control, Lund University, and the Department of
Electrical and Information Technology, Lund University. The major part of the work
was performed at Sony Mobile, Lund.

1.1 Background

The research area concerning techniques for positioning of handheld devices is of
great importance, both from a user and commercial standpoint. Many different ser-
vices and applications depend on, or could be improved by, a ubiquitous localization
system. In addition, the user experience of applications could be aided by including
information based on the user’s current position.

In most outdoor environments the Global Navigation Satellite System (GNSS), of
which the Global Positioning System (GPS) is a part, provides locations with an
accuracy around 15 meters. These types of systems require signal connections to
satellites to function, and in obstructed outdoor and indoor areas these signals are
often too weak to enable accurate positioning.

Fueled by the lack of accurate positioning in the indoor environment, a multitude
of techniques that solve the problem under different constraints has been developed
[Mautz, 2012]. Attempts have been made using WiFi received signal strength, iner-
tial sensors, ultrasound etc. requiring different infrastructure and properties of the
environment.

The advantages of using WiFi access points (APs) are several. The technique is well
established and APs exist in almost every indoor environment, making no further
infrastructure investments necessary. Another interesting development is the move
to include transmitters at both 2.4 and 5 GHz in modern APs, in best case result-
ing in two independent measurements from each AP. Further, there is potential for
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Chapter 1. Introduction

techniques to locate APs with reasonable accuracy, such as the one presented in e.g.
[Hansson and Tufvesson, 2011].

However, WiFi signals are fickle and for an accurate positioning aid from com-
plementary methods are needed. Here, different approaches could be used, and an
especially enticing one is inertial sensors, like accelerometers and gyroscopes. Most
modern smartphones contain both sensor types along with the possibility to mea-
sure WiFi signals at both 2.4 and 5 GHz. Additionally, the market penetration of
smartphones is large, making it a suitable platform for a large scale roll out of an
indoor positioning application.

1.2 Previous Work

Indoor positioning is a large research area, and various techniques have been pro-
posed. They range from using only one portable device, to attaching several sensors
on different parts of the user’s body [Morrison et al., 2012].

There are numerous examples where WiFi APs with known locations are used to
trilaterate the position of the user. The distance to each AP is often estimated using
the signal strength. This can also be done by measuring the time it takes for a signal
to travel between the device and an AP, see e.g [Li et al., 2007].

Another method is pedestrian dead reckoning (PDR), where sensors such as ac-
celerometer and gyroscope are used to determine the motion of the user. An exam-
ple of this is presented in [Hansson and Tufvesson, 2011]. Here, the accelerometer
was used for counting steps, and the gyroscope was used to determine the change of
heading. The step length, and the initial position and heading, were assumed to be
known. The device used was a sensor equipped smartphone. Further attempts have
been made, where the sensors are attached to certain parts of the user’s body. In
[Godha and Lachapelle, 2008], a method using a single set of foot mounted sensors
is described. This gives the advantage that, since the foot has zero velocity once ev-
ery step, the sensors can be calibrated, which mitigates drifts. This idea is extended
in [Morrison et al., 2012], where arrays of sensors are attached on various body
parts, allowing even better error mitigation.

Dead reckoning has also been combined with e.g. WiFi signals into sensor fused ap-
proaches. In [Retscher and Kealy, 2005; Retscher and Thienelt, 2004], two different
approaches to this are presented using wide ranges of sensors including accelerom-
eter, gyroscope, WiFi, magnetometer, GPS, barometer etc. Both methods are based
on an extended Kalman filter to perform the position estimation. The first technique
is developed for pedestrians, whereas the other one is geared towards vehicles. An-
other contribution to this area is presented in [Faragher and Harle, 2013]. Here, PDR
is combined with GPS for an initial position estimation, and with magnetic field and
radio signal strength fingerprinting. One important feature of this procedure is that
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1.3 Goal

the algorithm is learning the radiation environment with time, and this is used to
detect when the user returns to a previously visited area. Then, errors from the PDR
are corrected. This method is an a example of Simultaneous Localization and Map-
ping (SLAM), where a map of, in this case, the radiation environment is developed
during the positioning [Gustafsson, 2012]. The positioning is in turn aided by the
map.

1.3 Goal

The goal of this thesis is to develop, implement and evaluate an algorithm for indoor
positioning. The thesis describes the result of using both 2.4 and 5 GHz WiFi signals
together with inertial sensors.

In the first part, positioning is done using information from WiFi signals only. This
will be combined with a particle filter (PF) to estimate the true position, and this
method will be compared to the more conventional method of least squares (LS).

In the second part, the goal is to improve the performance by adding information
from the sensors, in order to receive a more accurate model of the user’s movement.

When the algorithm is developed, the aim is to implement it as an Android applica-
tion programming interface (API), for use in e.g. SonyMap, an indoor positioning
application developed by Sony Mobile.

1.4 Limitations

The positioning application developed requires the positions of the APs used to be
known. Furthermore, sufficiently good models of the indoor path loss are needed,
which in turn requires information about the power with which the APs transmit,
and how dense the environment is with obstacles such as walls and furniture.

In order to include all parts of the algorithm, it is necessary to use a device that can
receive both 2.4 and 5 GHz WiFi signals. Moreover, it is assumed to be equipped
with both accelerometer and gyroscope.

For optimal performance, the smartphone should be reasonably fixed in relation to
the user while the application is used, e.g. held in a fixed orientation or placed in
a pocket. However, the algorithm still produces fairly accurate results, even if this
condition is not met.
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Chapter 1. Introduction

1.5 Platform

In this thesis the following smartphones are used: Sony Xperia Z Ultra, Sony Xperia
Z1 and Sony Xperia LT29i. Hereafter, they are referred to as the phone if nothing
else is specified. Each of these phones are running an Android operating system
and is equipped with an accelerometer, a gyroscope and a WiFi chip capable of
communication over both 2.4 and 5 GHz.

Android
Android is an open source operating system used mostly by different handheld de-
vices. In the smartphone segment, Android is used by around 80% of the units in
use today (2013) [IDC, 2013]. The Android standard development kit contains the
necessary tools and API:s to develop applications for the Android platform using
the Java programming language. Using the standard APIs, it is possible to access the
device’s sensors, take measurements of the WiFi environment etc. All data collec-
tion performed during this thesis has been done through Java applications developed
by the authors running on the phones mentioned in Section 1.5.

1.6 Outline

This outline presents the large scale structure of this thesis.

Chapter 2 gives a brief introduction to the history of navigation and positioning,
and an overview of the coordinate systems used.

Chapter 3 describes the theory of radio signal propagation and how to obtain a
good model of the radio channel.

Chapter 4 introduces the particle filter (PF) and gives a description of its process.
Further, a brief description of the least squares (LS) estimation is given.

Chapter 5 covers some of the different technologies concerning WiFi and its uses
for positioning application. Additionally, the differences between the two sep-
arate WiFi frequency bands used are investigated.

Chapter 6 presents a method to obtain a position from WiFi RSSI measurements,
and this method is compared with the least squares estimation.

Chapter 7 discusses how the models developed in Chapter 3 could be adapted us-
ing received RSSI measurements and an estimated location.

Chapter 8 models the kinematics of walking using different sensors. These sensors
are described and a step detection algorithm is presented.

14



1.6 Outline

Chapter 9 merges the algorithm introduced in Chapter 6 with sensor data to a sen-
sor fused indoor positioning algorithm using dual band WiFi measurements.

Chapter 10 is dedicated to the Java implementation of the algorithms presented in
Chapter 6 and 9 and the specific considerations that was made.

Chapter 11 evaluates the results of the thesis and presents possible future work on
the subject.

In accordance with Lund University policy the contribution made by each author
must be clear. During the process of creating this thesis, all work has been done in
collaboration between the authors, both concerning the process of developing and
implementing the algorithms, as well as condensing the work into this report.

15



2
Background on Navigation

This chapter gives a brief introduction to the background and history of navigation.
First, there is an overview of some of the different stages that navigational technol-
ogy has conquered over the course of history. Then, an introduction to the different
coordinate systems used in this thesis will be presented and special emphasis will
be put on the system used when evaluating the positioning algorithm. In connec-
tion with this, a brief presentation of the longitude and latitude coordinate system
will be given. Further, a few sensors are presented, including the accelerometer, the
gyroscope and the magnetometer.

2.1 Brief History

Mankind has always had a need to navigate in its surroundings. At an early stage
these surroundings were fairly small and visual references to known landmarks were
good enough to find one’s way. As the distances traveled grew, so did the need for a
more well defined frame of reference, so mankind turned to celestial bodies. Using
the sun and the stars, with their relatively fixed positions in reference to the earth,
gave the ability to keep a desired heading over a long distance. This ability was
then refined over the centuries and triangulation was discovered as a mean to find
one’s position. The invention of the compass further improved the navigation. With
a known orientation, only the relative angles to two known landmarks are needed to
find the position [Hofmann-Wellenhof et al., 2003].

In the 20th century the improvements in measuring accelerations and angular ve-
locities promoted a technology called dead reckoning (DR) [Gustafsson, 2012;
Figueiras and Frattasi, 2010]. From a known position and heading, it is possible,
using an accelerometer and a gyroscope, to estimate current speed and heading to
find the current position. With occasional fixes of the position and heading, the
current position can be estimated for all times. However, the size and cost of the
devices involved make the technology suitable only for larger vehicles, like ships or
airplanes. If no heading and position fixes are available, the error grows over time.
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2.2 Coordinate Systems

Another technological leap was taken with the introduction of the Global Position-
ing System (GPS) which became fully operational in 1995 [Parkinson and Spilker,
1996]. This system uses the time difference between signals received from satel-
lites with known locations, which made it possible for almost anyone to find their
position with an accuracy of around 15 meters. Today, GPS receivers are readily
available both as standalone devices and integrated in cars or smartphones.

A problem, however, exists with the GPS system. To obtain a good position, signals
from at least three (or four, if the altitude should be determined along with the lon-
gitude and latitude) satellites must be available. Preferably these satellites should
be in line-of-sight (LOS) from the GPS receiver. Putting more satellites in orbit in-
creases the probability that enough satellites are visible, but this only partly solves
the problem. In some areas, like a suburban environment or indoors, the paths be-
tween the GPS receiver and the satellites are obstructed either by the building it is
in or buildings in its surroundings. An obstructed path results in that the GPS signal
has to travel a longer distance, i.e. by reflection, diffraction or scattering, to reach
the receiver. Because the distance is estimated by the difference in time between
when the signal was sent and received, an obstruction increases the estimated dis-
tance between receiver and satellite. Further, as the GPS signal is sent from space,
it is weak when it reaches the Earth’s surface and an obstruction may even make it
too weak to be detected by the receiver [Grimes, 2008].

Altogether, this makes GPS a good positioning technique in open outdoor areas,
but in a suburban or indoor environment other techniques must be used to obtain
accurate positioning. A multitude of techniques that aim to solve this problem with
different accuracies and constraints exists. There is no single technology that these
attempts are based on. Instead, they are spread over a wide range of areas, including
inertial sensors, signal strengths, magnetic fields, cameras etc. [Mautz, 2012].

2.2 Coordinate Systems

It should be apparent to the reader that a well defined coordinate system is of great
importance for positioning applications. Further, to be able to receive a meaningful
position, the coordinate system needs to be fixed in reference to the Earth. In the
sections below, two such coordinate systems are presented along with the coordinate
system of the phone.
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Chapter 2. Background on Navigation

Figure 2.1 World coordinate system.1

World Frame
The world frame or the global coordinate system is commonly used for navigation,
at least in a global perspective. The definition is, in accordance with Figure 2.1 as
follows:

xw: Tangential to the ground at the current location, defined as yw×zw.
Points approximately east.

yw: Tangential to the ground at the current location, pointing towards
the magnetic North Pole.

zw: Perpendicular to the ground, pointing skywards.

Noteworthy is that this system is not fixed in space, and different positions on the
Earth’s surface will result in a differently oriented coordinate systems. Further, as
the world rotates around its own axis so does the coordinate system (approximately
15◦ per hour). In the sense of indoor positioning however, both of these effects can
be neglected.

Local Frame
Using the world frame might in some cases be impractical or cumbersome for a
certain location. As an example, consider a building with most corridors oriented
with an angular offset of φ in reference to the global frame. For this location it
would be considerably more practical to orient the coordinate system so that most
movement is done in the x− and y− directions.

1 This image is reproduced from work created and shared by the Android Open Source Community
[Google, 2013] and used according to the terms described in the Creative Commons 2.5 Attribution
License [Creative Commons, 2013].
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2.2 Coordinate Systems

Figure 2.2 Phone coordinate system.2

Such a coordinate system is defined as:

xl: Located in the plane defined by xw and yw. Pointing as xw with an
angular offset of φ .

yl: Located in the plane defined by xw and yw. Pointing as yw with an
angular offset of φ .

zl: Equivalent to zw, pointing skywards.

Phone Frame
An unambiguous definition of a coordinate system with a fixed orientation in refer-
ence to the phone is crucial. Sensors report their measurements in coordinates that
are fixed in reference to the phone.

In Android, the phone coordinate system is defined in the following way (see also
Figure 2.2):

xp: Pointing out of the side of the phone, defined as yp× zp.
yp: Pointing upward through the top of the screen.
zp: Orthogonal against the phone’s screen, pointing up if the phone is

placed back down on a table.

Further, the phone’s orientation may be expressed as three angles, (φx φy φz), rep-
resenting the difference in orientation between each of the phone’s axis and those
of the world frame.

2 This image is reproduced from work created and shared by the Android Open Source Community
[Google, 2013] and used according to the terms described in the Creative Commons 2.5 Attribution
License [Creative Commons, 2013].
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Chapter 2. Background on Navigation

Coordinate System Used for Measurements
As the measurements in this thesis are taken over a limited area, the Glasgow build-
ing at Sony Mobile in Lund, a local frame is a convenient choice. The chosen coor-
dinate system is aligned with the building the measurements are taken in, allowing
most of the movement to occur parallel to either the x- or y-axis. For convenience,
a local frame with an angular offset of roughly 180◦ is used, giving the system:

xt : Pointing roughly west.

yt : Pointing roughly towards magnetic south.

zt : Equivalent to zw, pointing skywards.

In Figure A.1 in Appendix A, the chosen coordinate system used is shown along
with a floor plan of the building and the different paths used to evaluate the posi-
tioning algorithms.

2.3 Sensors

Here follows a brief description of three sensors commonly available in modern
smartphones, the accelerometer, the gyroscope and the magnetometer. A short de-
scription of their inner workings, advantages and disadvantages is given along with
a description of their use in position estimation. For a deeper description of the sen-
sors and a more extensive discussion about biases and drifts references are given in
[Bentley, 1988] and [Morris, 1996].

The Accelerometer
An accelerometer is a sensor measuring acceleration (m/s2) along one or several
axes. The accelerometer measures the acceleration the sensor is subjected to. To
exemplify, an accelerometer at rest on the Earths surface measures an acceleration
of g = 9.81m/s2 and an accelerometer in free fall in space will measure zero accel-
eration. Today, most accelerometers measure acceleration along 3 orthogonal axes,
thus giving information about the three dimensional acceleration.

The fact that every object at rest at the Earth experiences the acceleration associated
with gravity poses a problem when using the accelerometer, since the gravity always
will be present in the measurements. This needs to be managed in some fashion. The
simplest is to keep the accelerometer fixed in reference to the Earth’s coordinate
system introducing gravity as a constant bias along a certain direction, which is
easy to subtract. A more challenging case is when the accelerometer changes its
orientation compared to the Earth’s coordinate system. Here, an algorithm to keep
track of the accelerometer’s orientation is needed if the effect of gravity is going to
be deductible.
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2.3 Sensors

Another interesting aspect of gravity in relation to the accelerometer is the ability
of finding out the accelerometer’s orientation in reference to the Earth’s coordinate
system. This is possible if the accelerometer does not experience any significant
acceleration except for gravity. Then the accelerometer’s orientation may be deter-
mined by the component of gravity present on each of its axis.

In principle the accelerometer could be used to estimate a position by integrating its
output twice in respect to time. In practice, however, this is hard as the gravity needs
to be accurately subtracted from the measurements if not to introduce a large posi-
tioning error. If just 1 % of gravity is left in the measurements it will introduce an
error of 500 meters over 100 seconds. Further, the accelerometers present in today’s
smartphones suffer from biases and drifts which need to be accurately evaluated if
not to further degrade the position estimate.

The Gyroscope
A gyroscope measures the angular velocities with which it is turning around each
of its axes. Most gyroscopes use three orthogonal axes giving measurements of the
angular velocities on the form ~ω =(ωx ωy ωz). Mechanically, a gyroscope consists
of a spinning wheel or disc mounted in a gimbal, a pivoted support that allows the
disc to rotate freely about all three axes. This construction allows the disc to keep an
almost fixed position in reference to the mounting platform’s motion. However, this
is a fairly large device not well suited for modern electronic devices. These instead
rely on MEMS gyroscopes which can be fashioned into a more suitable size.

As the MEMS gyroscope measures angular velocities and, in this thesis, the abso-
lute change in angle is of interest. A method to compute the absolute change from
the velocities are needed. Given two sets of angular velocities measured with a time
difference of ∆t, the angular change, θ , may be computed using numerical integra-
tion according to the trapezoidal rule [Adams and Essex, 2010],

θ = ∆t
~ωt +~ωt+∆t

2
. (2.1)

This can, of course, be applied to each of the gyroscope’s axis, resulting in an es-
timation of how the gyroscope is turning and in extension, its orientation, in three
dimensions.

There are a few problems of using the gyroscope to determine the direction of move-
ment. As it only measures how the angles change over time, the direction at the start
of the navigation must be known and the orientation needs to be kept fixed in refer-
ence to the movement. For example, it is impossible do discern between a 90◦ turn
of the user and a mere turn of the gyroscope. Furthermore, the gyroscope suffers
from drifts and biases resulting in a growing heading error. Hence, if it is to be used
for long stretches of time, the heading needs to be calibrated.
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Chapter 2. Background on Navigation

The Magnetometer
A way around the problems of a known initial orientation is the use of a magne-
tometer, which measures the magnetic field strength in each of the phone’s three co-
ordinate directions. Using the known electromagnetic field produced by the Earth’s
core, it is possible to find the phone’s heading.

There are a multitude of ways to measure the magnetic field strength. In most mod-
ern smartphones a measurement of the resistivity of a thin strip of magnetic film
is used. The sensor contains a thin strip on permalloy (NiFe magnetic film) whose
resistance is proportional to the magnetic field strength.

In theory the magnetometer along with a known phone orientation in reference to
the Earth’s coordinate system could be used to give an accurate estimation of the
heading of the user. This is possible in environments where the electromagnetic
fields, apart from the Earth’s own, are weak, e. g. outdoors. In most indoor environ-
ments however, fields from electronic devices and structural elements (metal beams,
pipes etc.) produce their own magnetic fields. These fields are in many cases strong
enough to interfere or even overpower the Earth’s, causing the estimated heading to
be wrong.

The fingerprinting strategy for signal strengths described in Section 3.6, may also
be utilized to characterize the magnetic field strengths in an indoor environment.
These measurements can then be used to find the true heading, but this approach
lacks generality as measurements at each location are needed.
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3
Radio Signal Propagation

The performance of any wireless communication system is fundamentally limited
by the properties of the radio signals. In the simplest case, these properties and
hence the signal intensities would depend only on the distance between transmit-
ter and receiver. However, they vary greatly depending on the environment, from
a simple line-of-sight (LOS) case to a severely obstructed one, where walls, win-
dows, furniture etc. distort the signal between transmitter and receiver. Furthermore,
the signal is affected by a large number of small-scale effects. Among them are re-
flections from various surfaces, diffraction and Doppler shift due to a difference in
speed between the receiver in reference to the transmitter [Rappaport, 1996]. In this
thesis the focus is put on obtaining good models for the indoor propagation of radio
signals in the range [2.4;5] GHz for application in indoor positioning.

This chapter consists of a recapitulation of free space signal propagation and path
loss, together with different ways of modeling these. Different sources of distur-
bances and their influences are discussed.

3.1 Free Space Propagation Model

How the magnitude of radio signals decay with increasing transmitter-receiver (T-
R) separation is of interest in many applications, especially if a position is to be
obtained from the received signal strength. The free space propagation model is a
relatively simple model of the received signal power given a certain T-R separation
and a LOS path in between. This model focuses on the large-scale propagation
features, thus predicting the average signal strength received without small scale
effects taken into account. As in most propagation models a power law function
of how the signal intensity decays by distance is assumed

(
∼ 1/d2

)
[Rappaport,

1996]. The power received at a distance d from a radiating transmitter is given by
the Friis free space equation,

Pr(d) =
PtGtGrλ

2

(4π)2d2L
(3.1)
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Chapter 3. Radio Signal Propagation

where Pr(d) is the received power in dBm at a T-R separation of d meters, Pt is the
transmitted power in dBm, Gt and Gr are the gains of the transmitter and receiver
antennas respectively, L≥ 1 is the system loss factor which is not related to propa-
gation, i.e hardware losses, and λ is the wavelength of the transmitted signal. The
gains (Gt and Gr) are dimensionless constants related to the antennas’ effective-
ness of receiving and transmitting a signal which is related to their construction and
physical properties. The wavelength λ is related to the frequency of the signal by

λ =
c
f
=

2πc
ωc

, (3.2)

where f is the signal frequency in Hertz, ωc is the frequency in radians per second
and c is the speed of light in meters per second.

The Friis equation can only be used as a predictor for Pr when d is in the far-field,
or Fraunhofer region, of the transmitting antenna [Rappaport, 1996]. The far-field
region of a transmitter is defined as d > d f where d f is the Fraunhofer distance
defined as

d f =
2D2

λ
(3.3)

where D is the largest physical dimension of the transmitting antenna.

Further, to be in the far-field region

d� D and d� λ (3.4)

musty hold.

For a radio signal with frequency ranging from 2.4 to 5 GHz (WiFi) and a largest
antenna dimension D of 0.1 m, d f is in the range of [0.36,0.75] and a d > 1 m
fulfills both (3.3) and the additional requirements from (3.4).

3.2 Path Loss

The path loss is defined as the difference in dB between the transmitted and received
power and represents the signal attenuation, measured in a positive quantity of dB.
If the antennas are assumed to have unity gain, i.e they are isotropic radiators, the
path loss (PL) can be obtained from (3.1) as [Rappaport, 1996],

PL(dB) = 10log10
Pt

Pr
=−10log10

[
λ 2

(4π)2 d2

]
. (3.5)
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3.3 Basic Mechanisms of Signal Propagation

It is obvious that (3.1), and thus (3.5), does not hold for d = 0. To get around this,
large-scale fading models use a fixed distance d0 with known power [Rappaport,
1996]. At d0 the power can either be measured or estimated from (3.1). The dis-
tance d0 needs to be in the far-field region of the transmitter, as defined in (3.3).
Furthermore, if d0 is chosen to be smaller than any distance d used in the applica-
tion, the power at an arbitrary distance may be related to the received power at d0
by,

Pr(d) = Pr(do)

(
d0

d

)2

d ≥ d0 ≥ d f . (3.6)

For practical reasons, as most formulas express the power in dB, d0 is chosen to
result in a power of 10 dB. In outdoor environments a common value is 100 meters,
and in indoor environments, 1 meter is suitable. Using the latter, the power can be
expressed as

10log10 Pr(d) = 10log10 Pr(d0)−20log10 d d ≥ d0 ≥ d f , (3.7)

where Pr(d0) can be determined by a simple measurement at 1 meter from the trans-
mitter. The resulting model represents the indoor LOS path loss case.

3.3 Basic Mechanisms of Signal Propagation

In this section the three basic mechanisms for signal propagation, reflection, diffrac-
tion and scattering, are presented together with their respective impact on the prop-
agation model. The presentation is a rather brief recap of Sections 3.5 through 3.8
in [Rappaport, 1996], and interested readers are referred there for a more in-depth
description.

Reflection
When a radio wave propagating through one medium encounters a medium with a
different set of electrical properties, the wave is partially transmitted and partially
reflected. The intensities of the transmitted and reflected waves may be related to
each other through the Fresnel reflection coefficient (Γ). This coefficient is depen-
dent on the material properties, wave polarization, angle of incident and the fre-
quency of the wave [Rappaport, 1996].

The requirement of a surface to be considered as a possible source of reflection is
that its dimensions are much larger than the wavelength of the incident wave and
typical indoor sources include walls, floor, ceiling etc. The reflections cause the
signal strength to be larger in some areas of the room and smaller in others than the
free space model predicts.
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Diffraction
Diffraction is the property that allows waves to propagate around different obstruc-
tions, e.g. propagate around corners, travel beyond the horizon or behind obstruc-
tions. Huygens principle states

All points on a wavefront can be considered as point sources for the
new wavelet [Rappaport, 1996].

Diffraction is caused by the propagation of a secondary wave into a shadowed re-
gion, and it can be viewed as the wave ”bending” around the edge of objects. Be-
cause only a fraction of the wave propagates into the shadowed region, the signal
strength decays rapidly when moving further into it [Rappaport, 1996].

Scattering
Scattering occurs when a wave travels through an environment which has a large
density of objects with small dimensions compared to the wavelength. The energy
of a scattered wave is spread out in all directions from the scattering surface. Even
surfaces considered flat usually possess some roughness and thus some scattering
properties.

3.4 Indoor Propagation Models

The Friis free space equation together with the reflection, diffraction and scattering
have spawned many different models for indoor signal propagation of a wide range
of complexity.

Log-Normal Shadowing
One of the more simple models is the log-distance path loss model

log10(Pr(d)) = log10(Pr(d0))−10n log10

[
d
d0

]
+Xσ (3.8)

where n is the path loss exponent and Xσ is a zero-mean Gaussian distributed ran-
dom variable with standard deviation σ (both in dB). For some typical values of
n for different types of environments, see Table 3.1. This model allows some tun-
ing for a specific environment using different values of n. In Figure 3.1 and 3.2,
measured values of the signal strength are compared to predicted ones using the
log-normal shadowing model with n = 2 and n = 3.2 respectively, using a mea-
sured value of log10(Pr(d0)) =−30.The measurements were taken while following
the distance trajectory to the transmitting antenna shown in Figure 3.3. The envi-
ronment in which the measurements were taken is an open office space with some
obstructions.
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Figure 3.1 Measured signal strength (blue) versus signal strength modeled using the log-
normal shadowing model with n = 2 (red). The model provides good estimation of the signal
power close to the AP i.e. when it is in LOS. For greater distances to the AP, the model
predicts higher powers than the ones received. At larger distances the signal is often further
attenuated by objects in the surroundings and the model does not take that into account.

Signal environment Path loss exponent, n
Free space 2
Indoor LOS 1.6-1.8
Indoor low number of obstructions 2-3
Indoor high number of obstructions 4-6

Table 3.1 Path loss exponent n for different signal environments [Rappaport, 1996].
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Figure 3.2 Measured signal strength (blue) versus signal strength modeled using the same
log-normal shadowing model as Figure 3.1 but with n = 3.2 (red). This model performs good
when the separation between receiver and transmitter is large. However, it predicts too low
powers when the distance is short, due to the large path loss constant even when the AP is in
LOS.

It is obvious that this model has its flaws. A low value of n fails to predict an accu-
rate signal strength when the distance to the transmitter is fairly large, and the high
value does not perform satisfactory close to the transmitter. The measurement taken
is similar to a real world use-case where one moves through an office space, some-
times passing under a transmitter in LOS and sometimes far away in an obstructed
area. The flaws promote the search for a model with better performance.
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Figure 3.3 The distance to the transmitting antenna in meters used in the measurements of
the signal strength. Measurements are taken both right underneath the AP and at distances of
almost 30 meters. Further, the number of objects between the transmitter and receiver range
from none to several.

Double Slope Model
A simple extension of the log-normal shadowing model is combining different val-
ues of n for use in various intervals of the distance to the transmitter. The most
simple of these models is the double slope model where two different path loss ex-
ponents, n1 and n2, are used together with a single break distance, d1, where the
model changes from one to the other. The model then becomes,

log10(Pr(d)) = log10(Pr(d0))−10n1 log10

[
d
d0

]
+Xσ1 , 0 < d < d1 (3.9a)

log10(Pr(d)) = log10(Pr(d0))−10n2 log10

[
d
d0

]
+Xσ2 , d > d1 (3.9b)

where Xσ1 and Xσ2 are random Gaussian distributed variables with zero mean and
standard deviation σ1 and σ2 respectively.
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Figure 3.4 Signal strength measurements (blue) versus double slope model predictions
(red) with n1 = 2, n2 = 3.2 and d1 = 10 m. Here the two models from Figure 3.1 and 3.2
are combined. This gives good estimations of the power when the distance is short as well as
long, but when the switch between the models occurs a large jump is present in the estima-
tions.

In Figure 3.4, the double slope model for n1 = 2, n2 = 3.2 and d1 = 10 m is displayed
together with measurements using the distance trajectory in Figure 3.3. The value
n1 = 2, was chosen because at a short distance (0 to 5 meters) the path to an AP is
assumed to be unobstructed. The other value, n2 = 3, was obtained by performing
measurements of the received power from APs at distances ranging from 15 to 30
meters and using these measurements to find the average path loss exponent. The
distance at which the parameter is switched, d1, is then chosen as the middle point
between the distance ranges of n1 and n2.

This model combines the good traits from the two log-normal shadowing models.
However, at d = d1 the model presents an undesirable ”jump”, and the predictions
around d1 are rather poor. Furthermore, a single d1 might be hard to find for a set of
transmitters, and the different values of n may change between the transmitters.
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3.4 Indoor Propagation Models

α-Model
A third attempt to model the signal strength is to introduce a parameter α multiplied
with the distance d in the log-normal shadowing model to account for the extra
decrease in signal strength [Karlsson, 1992]. The model then becomes

log10(Pr(d)) = log10(Pr(d0))−10n log10

[
d
d0

]
−αd +Xσ . (3.10)

where Xσ is a zero-mean Gaussian distributed random variable with standard devi-
ation σ .

A typical choice of n for indoor conditions is 2 or slightly less, to account for the
LOS case when d is small, see Table 3.1. The range of α is around [0.3,1.5], de-
pending on the building.

This model possesses the desirable feature of having only one parameter, α , to tune
after the initial n is chosen. However, it tends to underestimate the signal strength
at large distances d, as αd grows linearly with d while all other parts grow as the
logarithm of d. Two simple ways to correct this easily comes to mind. Either the
model can be changed to a log-normal shadowing when d is large, or a maximum
of αd may be imposed. The first of these becomes

log10(Pr(d)) = log10(Pr(d0))−10n1 log10

[
d
d0

]
−αd +Xσ1 , d0 < d < d1 (3.11a)

log10(Pr(d)) = log10(Pr(d0))−10n2 log10

[
d
d0

]
+Xσ2 , d > d1 (3.11b)

and the second

log10(Pr(d)) = log10(Pr(d0))−10n log10

[
d
d0

]
−α ·min(d,dmax)+Xσ . (3.12)

Using one of these approaches, one loses some of the simplicity of having only one
tunable parameter. However, these choices are simpler than for the double slope
model, as there is no need to determine when the change from LOS occurs. The
predicted signal strengths for n = 2, α = 0.9 and dmax = 20 using Equation (3.12)
are shown together with measurements in Figure 3.5.

This model predicts the signal strength satisfactory both for small and large values
of d, while removing the ”jump” present in the double slope model.
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Figure 3.5 Signal strength measurements (blue) versus fixed α model predictions (red)
with n = 2, α = 0.9 and dmax = 20 m. This type of model gives satisfactory estimations for
both short and long distances. Further, it does not have the jump in predicted signal power
present in the previous method.

3.5 Small-Scale Fading

In addition to the large scale propagation effects described above, a radio signal
usually displays a phenomenon called small-scale fading. The small-scale fading
causes the signal strength to fluctuate rapidly over small distances or short time-
spans [Rappaport, 1996]. This effect is caused by different waves of the transmit-
ted signal, called multipath waves, arriving at the receiver with a phase difference
and causing interference. It can be a reflected or scattered wave arriving right af-
ter the direct wave, or reflected/scattered waves from different sources reaching the
receiver at slightly different times.

Another effect included in small-scale fading is a random frequency modulation
caused by different Doppler shifts on different multipath signals. The source of this
is a relative movement between transmitter and receiver or movement by objects in
the vicinity of the signals path.
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The description presented above is brief, and for a more complete description of
the small-scale fading phenomenon readers are referred to chapter 4 in [Rappaport,
1996].

3.6 Aspects for Positioning Applications

For a signal strength model to be practical for positioning, it needs to possess two
properties. It needs to predict the mean signal strength at a specific distance with sat-
isfactory precision, and the variance around the mean should be sufficiently small.
A few different approaches to reach this goal are available. One is to try to charac-
terize the environment where the positioning is taking place, using measurements
of the signal environment in numerous points. This is feasible only when the envi-
ronment is fairly uniform, as the resulting model is an approximation for the entire
environment.

Another approach is to create a signal strength map of the entire environment, by a
large set of measurements. This is called fingerprinting, and overcomes the problem
of having a changing environment [Taheri et al., 2004]. However, it is impractical if
used in a large area.

A third way of finding a model is to try to estimate the model parameters while the
positioning is ongoing. This requires that at some point during the positioning, the
position error is known to be small. Using this knowledge suitable model parame-
ters can be calculated. Estimating the model has the advantage of not being tied to
a specific environment and whilst staying in the same environment the model will
continue to improve. On the other hand it may not produce the best results, espe-
cially when moving between different environments or if small positioning errors
are rare or hard to distinguish.
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4
The Particle Filter

The particle filter (PF), or sequential Monte Carlo method, are sets of estimation
algorithms for estimating the posterior density of the state-space in a non-linear
filtering problem. The PF uses a set of particles distributed over the state space using
a system model, and measurements of one or several states are used to determine
each particle’s probability to represent the ”true” state of the system.

In this chapter the non-linear filtering problem will be explained along with its solu-
tion using the PF. Some computational aspects will be investigated and the PF used
in positioning briefly discussed. The chapter ends with a section about other estima-
tion techniques, where most focus is placed on the least squares (LS) estimation.

4.1 Non-Linear Filtering Problem

The non-linear filtering problem consists of estimating the states in a non-linear
non-Gaussian model on the general form

xk+1 = f (xk,uk,vk) (4.1a)
yk = h(xk,uk)+ ek (4.1b)

where f and h are arbitrary non-linear functions of the states xk, inputs uk and pro-
cess noise vk. Furthermore yk is the measurement at time k. The measurement noise
ek and process noise vk are random processes with arbitrary probability density
functions (PDFs) [Gustafsson, 2012].

There is a large collection of filtering methods solving this estimation problem in
different ways with different restrictions. One of the most common is the Kalman
filter. This method is intuitive, simple and computationally effective. On the other
hand, it suffers from requiring the functions f and h to be linear, and the PDFs of
the process vk and measurement noise ek to be zero-mean Gaussian. The extended
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4.2 The Particle Filter Process

Kalman filter solves the problem of f and h being non-linear, but still assumes vk
and ek to be zero-mean Gaussian noise. Further, both Kalman approaches require
the posterior distribution of the states to be zero mean Gaussian.

Here we will instead focus on another filtering approach, the particle filter (PF), also
called the Sequential Monte Carlo method. This is a simulation based approach for
solving the estimation problem (4.1), only requiring the PDF of ek and vk to be
known [Gustafsson, 2012; Figueiras and Frattasi, 2010].

The PF consists of a set of N particles,
{

xi
}N

i=1, which represent different samples
of states. These particles are used to create an approximation of the distribution
p(xk|y1:k) of the states xk given the set of measurements y1:k. The strength of the
PF is that the distribution p(xk|y1:k) can be arbitrary. On the other hand, to provide
the same particle density the number of particles grows by the power of the number
of states. Hence, if you have 10 particles and one state, you need 100 particles
to provide the same density for two dimensions. For three dimensions, you then
need 1000 particles. This makes the PF suitable only when the number of states is
relatively small.

4.2 The Particle Filter Process

The process of the PF consists of three separate steps [Gustafsson, 2012],

1. Weighting of particles: using the measurements, each particle is assigned a
weight, corresponding to the likelihood of its states being the true ones.

2. Re-sampling: From the existing N particles, create N new ones by a clever
choice.

3. State update: Using some trajectory of the states, update the states of each
particle.

In the following sections these steps will be explored more in-depth along with a
simple one dimensional example using N = 1000 particles. We start by distributing
the particles using a uniform distribution in the range [−10,10], using 0 as our true
state and Gaussian distributed zero-mean random variable with standard deviation 1
as the measurement noise, ek, from equation (4.1b). The initial particle distribution
is displayed in Figure 4.1
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Figure 4.1 Histogram over the initial particle distribution in the range [−10,10] using 100
bins.

Computing the Weights
Given that the measurement noise ek is known, the weighting of the particles is
a straight forward process. For each measurement yl

1:k compute the probability
pl(xi

k|yl
1:k) that the particle xi has the true set of states. Then the total probability

for each particle is,

p(xi
k|yk) =

L

∏
l=1

pl(xi
k|yl

1:k), (4.2)

where L is the number of measurements. It is also important to have the probabilities
satisfying,

N

∑
i=1

p(xi
k|yk)≡ 1 (4.3)

as to have the probabilities normalized.

In Figure 4.2 the normalized weights assigned to each particle in our example are
displayed. It comes as no surprise that the weights resemble the normally distributed
measurement noise.
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Figure 4.2 Particles versus their normalized weights. As expected this is a good estimation
of the Gaussian normal distribution.

Re-Sampling
The re-sampling step is introduced to eliminate the possibility of one or a few par-
ticles to be the only probable after a few iterations of the PF. If the re-sampling is
omitted, the computing of weight and subsequent state update could dilute the par-
ticles in the state-space until only one particle is the probable one. This could be the
case even if the most probable particle does not agree with the measurement. Thus,
the purpose of the re-sampling is to use the weights to create N new particles from
the N old ones. This can be done in many ways. One is to allow a number of the
most probable particles to spawn new particles until N particles are obtained. A sta-
tistically more stringent way is to compute a uniformly distributed random number
r between zero and one. Then, assuming the sum of all particle probabilities is one,
start adding these until the sum is greater than r. Then, let the particle that caused
the change from below to above r, spawn a new one. Using this method particles
with large weights have a larger chance of spawning a new one.
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Figure 4.3 Histogram over the particle distribution, after one iteration of the PF, in the
range [−10,10] using 100 bins. The particles tends more towards the true distribution.

After the re-sampling is done, it is crucial to give all particles the same weight, i.e
1/N, as to avoid the dilution of probability.

After the re-sampling technique described above has been applied to the particles of
our example, their distribution is displayed in Figure 4.3. The states of the particles
still existing tend more towards the true one, X = 0. The mean of the states may
now be used as an estimate of the true state.

State Update
In the state update step some model of the system behavior, f (xk,uk,vk) in equation
(4.1a), is used to update the states of each particle in each time step, k. If the system
behavior is well known, for one or all of the states, the use of an elaborate model
improves the convergence rate of the particles and thus the estimation accuracy. This
usually allows the use of fewer particles, since there is no need to move particles to
improbable states.
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Figure 4.4 Histogram over the particle distribution, after one iteration of the PF and a state
update, in the range [−10,10] using 100 bins.

However, if there is little or no knowledge of the states’ behavior, some type of
random walk update can be used, only trying to capture the variance of the state
over a time step. If the variance is large, this calls for a large number of particles to
keep the particle density for all probable states high.

In our example the ”true” state is stationary, so the state update consists only of
adding a Gaussian distributed random number with a small standard deviation (0.1)
to each particle. This corresponds to letting each particle undergo a Gaussian ran-
dom walk, and the resulting particle distribution may be viewed in Figure 4.4.

Finally, in Figure 4.5, the particle distribution after ten iterations is displayed, and
the mean of the particle states is

N

∑
i=1

xi
10
N

= 0.04. (4.4)
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Figure 4.5 Histogram over the particle distribution, after ten iterations of the PF, in range
[−10,10] using 100 bins. After this many iterations the mean of the particles are 0.04 com-
pared to the true value, 0.

4.3 Computational Aspects

The PF, like most Monte Carlo based filters, suffers from high computational com-
plexity. Especially as the number of particles necessary to keep a fixed particle
density in the state space grows as the power of the number of states. A solution to
this is proposed in [Gustafsson, 2012], where only states bearing non-linear distri-
butions are passed throughout the PF and states bearing Gaussian distributions may
be filtered by a different method. This is called the marginalized particle filter and
aims to keep the number of states passed to the PF low.

The three steps discussed in Section 4.2 pose somewhat different computational
difficulties. The weights need to be calculated for each particle and thus need to be
computed N times, giving an O(N) complexity. However, the calculation for each
weight depends of the number of measurements M giving a total complexity of
O(M ·N). In most cases however, the number of measurements is small in compari-
son to the number of particles and may be neglected. Another pleasant feature of the
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weight computation is their independence of each other, thus making parallelization
of computations simple.

For the re-sampling step, assuming the number of samples before and after is con-
stant, the algorithm described in Section 4.2 comprises two distinct steps. First the
cumulative sum of the weights is computed. This is of complexity O(N) but can,
depending on the implementation, be computed alongside the weights. Next, for
the N new particles, it is needed, for each, to determine which of the N old ones to
inherit states from. This is done by, for each new particle, computing a uniformly
distributed random number in the range [0,1]. This random number is then com-
pared to the cumulative sum of weights to find the index where the cumulative sum
for the first time is equal to or larger than the random number. This can be done
using a binary search as the cumulative sum is sorted by its nature, giving the step
complexity O(N · log2 N). Furthermore, the weights need to be computed before
the re-sampling is initialized, making it impossible to parallelize the particle filter
process from start to finish. However, when the weights have been computed, the
particles, once again, are independent.

Updating the states is done for each particle and it depends on the number of states
K along with the complexity of the state model, resulting in roughly O(N ·K) com-
plexity. During this step, the particles, once again, are entirely independent, which
makes parallelization possible.

In all, the filter has approximately a complexity of O(N · log2 N)+O(N ·M)+O(N ·
K).

4.4 Particle Filter for Positioning Applications

The PF may be successfully used in positioning applications, especially if the states
and models used possess certain features. More specific, the PF may be used with
good results if the models are non-linear and the posterior distributions are non-
Gaussian while the number of states is small [Gustafsson, 2012]. If the number of
states grows, the required number of particles makes the use of a PF infeasible.

A case where the PF is useful is the estimation of position or position and heading
in a two-dimensional space, which is the case for most indoor positioning applica-
tions. Furthermore, using signal strengths from multiple sources as a measurement
of position renders, both a non-linear model and non-Gaussian posterior distribu-
tions further promote the use of a PF. However, introducing more dynamic states,
e.g. acceleration, unmeasured velocities or trying to filter sensor biases or drifts,
introduces too many dimensions. Thus, such estimations require their own filter
[Gustafsson, 2012].
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4.5 Other Estimation Techniques

There are some different techniques for state estimation given a set of measure-
ments, the Kalman methods mentioned earlier, a couple of maximum-likelihood
based methods and the least squares estimation method [Gustafsson, 2012].

Least Squares Estimation
The method of least squares (LS) is a common estimation technique for overdeter-
mined systems, and is based on minimizing the error between an observed value
and a modeled one.

Given a series of n measurements, zi and n models fi(xk) of the m states xk, the goal
of the LS estimation is the find the minimum of

S =
n

∑
i=1

(zi− fi(xk))
2 (4.5)

for n>m. In the case of fi(xk) being linear for all i, the algorithm is called the linear
least squares and S, in this case, has only one global minimum due to convexity.
Also, an analytic solution is always present.

Generalizing the linear LS estimation to non-linear models is fairly simple. The sum
in Equation 4.5 is still to be minimized, but in the non-linear case a closed-form
analytical solution can not be found. Instead the minimum is found by numerical
approximations. As S in the non-linear case is not, in general, convex, there exist
multiple local solutions to the minimization problem. This requires a guess of the
approximate states to ”guide” the algorithm to the correct solution, and if the guess
is too far from the global minimum, a local minimum could be found instead.

The non-linear LS can be used to estimate a position in two dimensions from the
models in Chapter 3, together with measurements of signal strengths from at least
three APs.
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5
Introduction to WiFi

The WiFi Alliance defines WiFi as any ”wireless local area network (WLAN) prod-
ucts that are based on the Institute of Electrical and Electronics Engineers (IEEE)
802.11 standards”. However, since most WLAN products use the 802.11 standards,
in common tongue, WiFi and WLAN are interchangeable.

This chapter is intended to give an introduction to the WiFi technologies and why
these are of interest for indoor positioning.

5.1 The 802.11 Standard

The IEEE 802.11 standard consists of a series of techniques for over-the-air ra-
dio modulation using the same basic protocol [IEEE Computer Society, 2013].
The standard allows different products, computers, smart-phones etc. to implement
the protocol to communicate wirelessly. Historically the communication has taken
place over the frequency 2.4 GHz, however, in later years devices implementing 5
GHz communication protocol have become increasingly common [Walrand, 2010].

The standard splits each frequency range into several channels over which the com-
munication takes place. The frequency 2.4 GHz is split into 14 channels with 5 MHz
spacing. For 5 GHz the situation is more complicated and will not be explained in
detail. Local regulations affect which channels are allowed in a certain region.

Wireless technologies are evolving towards higher frequencies. The radio channel
surrounding 2.4 GHz is well populated and a move to other frequency domains is
necessary to continue the technology expansion. Further, a near to full frequency
environment promotes high noise levels and dropped connections due to interfer-
ence between devices. Another advantage with transmitting information at higher
frequencies is that the signal can contain more information per time unit, resulting
in higher bit rates.
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The MAC-Address
Most devices using the IEEE 802.11 standard have a Media Access Control (MAC)
address assigned as its network address [IEEE Computer Society, 2013]. The MAC
address is usually assigned by the manufacturer and can be considered unique in
a local area network. The address consists of twelve hexadecimal numbers. In its
human readable form it is presented as six groups of two hexadecimal numbers,
separated with either : or -, e.g. 0a:1b:2c:3d:4e:5f. The address can be used to
identify from which device a signal originates.

5.2 WiFi and Positioning

The WiFi standard provides enticing possibilities for indoor positioning, especially
in public or corporate areas. Some of the advantages compared to other positioning
techniques is that the range of typical wireless products, like WiFi APs, is limited
(∼ 30 meters), and thus they need to be placed with relatively short intervals. More-
over, WiFi infrastructure is ubiquitous and already deployed at many places, making
WiFi based positioning an attractive method. Further, more and more devices be-
come capable of communication over WiFi and platforms like Android make the
deployment of applications easy and readily available for a large amount of users.
One of the disadvantages is that indoor signal environments are often complex, pos-
ing a harder modeling task.

A few different techniques for indoor positioning are presented below.

• MAC-Address:

Receiving a signal, and thereby a MAC-address from an AP, indicates that the
receiving device is within approximately 30 meters, depending on building,
transmitted power and effectivity of the receiving antenna. This is a rather
crude positioning, but may be used to pinpoint a device to a certain area.
Furthermore, receiving signals from multiple devices will improve the po-
sitioning, if the transmitter locations are different, i.e reducing the possible
position to a subsection of the area.

• Received Signal Strength (RSS):

Measuring the signal strength from an AP puts the device not just in the vicin-
ity, but gives a rough indication of the distance to the AP. Multiple APs may
then be used to trilaterate a position, but noisy measurements give a rather
large uncertainty.
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• Time of Arrival (ToA):

If the APs and the measuring device are synchronized in time, the time differ-
ence between when a message was sent and received may be used to compute
the distances between the device and the APs. However, the time differences
involved are usually very short (∼ 3 · 10−9 seconds per meter), especially in
indoor environments, requiring the time synchronization to be precise.

• Time Difference of Arrival (TDoA):

If only the APs are synchronized, the measurement of the time difference be-
tween signals arriving from different APs can be used to determine the posi-
tion. This requires the same type of time synchronization as the ToA method.

• Round Trip Time (RTT):

A way to eliminate the requirement of synchronized APs, is to measure the
time it takes for a message to travel to the AP and back again. This time is
called the round trip time. As only one device performs the time measurement
the need for synchronization is eliminated, but instead the time from when an
AP receives a message until it sends the response has to be known.

The techniques presented here assume that the measuring device is also performing
the positioning. Similar approaches are available using the APs, to position devices
in the environment. Furthermore, the technologies above could be combined or used
together with different technologies such as Bluetooth, NFC, RFID etc [Choo et
al., 2012; Chon et al., 2005]. to increase the positioning accuracy. In this thesis,
however, the focus will be placed on the received signal strength from WiFi.

Received Signal Strength Indication
The Received Signal Strength Indication (RSSI) is a value indicating the short-time
average of the received signal power [Figueiras and Frattasi, 2010]. The RSSI is
given in an arbitrary unit, usually dBm, and there is no standard of how RSSI should
be related to the physical properties of the received signal. This means different
manufacturers are able to choose the range in which the RSSI is presented.

For the RSSI to be a meaningful measurement of the received signal strength it must
somehow be related to the physical properties of the signal. Usually, a measurement
of the RSSI at a known distance is used together with an investigation of how the
RSSI changes with the distance. The models discussed in Chapter 3 can then be
applied. Different devices may posses different parameters, thus requiring modeling
for a specific device or the use of an adaptive estimation scheme.
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RSSI Measurements in Android
An RSSI measurement on a device running the Android operating system is initiated
by an application requesting a scan of the signal environment. The operating system
performs the scan when the necessary system resources are available. Each channel
specified by the IEEE 802.11 standard and available in the current region is scanned.
When a transmitter is found, a short-time average of the received signal power is
measured and converted to an appropriate RSSI. The process is repeated until all
reachable transmitters have been measured, and the results are returned along with
information about each transmitter’s MAC-address, its transmission frequency and
a time-stamp.

To conserve battery life for the measuring device, a technique called passive scan-
ning is used. Simply explained, each AP sends a message approximately every 100
ms telling devices in the vicinity it is active, its MAC-address and some additional
information. The measuring device scans each channel for a little more than 100
ms to catch all APs on that channel, resulting in a quite long scan time (∼ 3-5 s),
depending on the number of channels to be scanned. Most commonly the chan-
nels related to 2.4 GHz will be scanned first and subsequently the 5 GHz channels.
This will generally introduce a time difference between the two different frequency
measurements from a single AP.

Which channels to scan could be specified to reduce the scan time, but some AP
data might then be lost. Another way of performing the scans is to have the measur-
ing device actively probing (”asking”) for APs in its surroundings, but this would
require almost constant sending of messages and listening for replies, thus draining
the battery.

5.3 Performance of 2.4 GHz Versus 5 GHz

The evolution of WiFi has prompted many APs to implement standards for both
2.4 and 5 GHz communications. Alongside the performance boost to devices able
to use both frequencies, this poses an enticing possibility for higher performing
indoor positioning. Different frequencies may, in the best case, provide two inde-
pendent measurements of the distance to an AP. To investigate if this is the case, the
correlation between the two frequencies must be determined.

Signal Correlation
Of course, some of the signal behavior is expected to be highly correlated. For one,
the large scale distance dependent path loss is largely the same for both signals,
and it is from this path loss the distance to the AP is determined. Nevertheless,
independence is a desirable feature for the signal noise, which includes the small
scale fading.
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Figure 5.1 Signal power, signal power together with linear trend and signal power minus
linear trend for the 2.4 and 5 GHz channels. The measurements were taken while traversing
a distance of 15 meters, moving away from the AP. The power is of course attenuated in a
similar way due to the increasing distance to the AP, but when this effect is subtracted, the
noise of the 2.4 and 5 GHz signal is not entirely correlated.

To investigate the correlation between 2.4 and 5 GHz signals, measurements were
taken, with an increasing distance, to an AP transmitting on both frequencies. After
the path loss dependent behavior was removed from the signals, the correlation of
the noise could be computed. This process is illustrated for one series of data in
Figure 5.1

The correlation coefficient r̂xy between the two can be estimated using

r̂xy =

N
∑

i=1
(xi− x̄)(yi− ȳ)

(N−1)σxσy
, (5.1)
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where N is the number of measurements, xi and yi are the 2.4 and 5 GHz mea-
surements compensated for the path loss, x̄ and ȳ their means and σx and σy their
standard deviations. These standard deviations can be estimated according to

σ̂x =

√
1

N−1

N

∑
i=1

(xi− x̄)2. (5.2)

To construct a confidence interval for the covariance some statistic processing of the
data is required. This presentation will be brief, and interested readers are referred
to [Fisher, 1915; Fisher, 1921] for a more in-depth description.

Since the distribution of r̂xy is not Gaussian, Fisher’s z-tranform

z′ =
1
2

ln
(

1+ r̂xy

1− r̂xy

)
(5.3)

is used. Under the current conditions, z′ is normally distributed with standard devi-
ation

σz′ =
1√

N−3
, (5.4)

if more than 3 measurements are taken.

The two-sided confidence interval for z′ at level α is then

Iẑ′ = ẑ′±Zα/2 ·
1√

N−3
, (5.5)

and may be transformed back to r̂xy using the inverse Fisher’s z-transform,

r̂xy =
e2z′ −1
e2z′ +1

. (5.6)

In Table 5.1 six estimates of the correlation between the noise of the 2.4 and 5 GHz
RSSI measurements are presented. Four of these are estimated from data where
the distance varies by 15 meters to the AP. Two of these are taken in line-of-sight
(LOS) and two in non-line-of-sight (NLOS), and for each case one measurement is
taken near the AP and one far from the AP. The other two sets of data are taken at
stationary positions in LOS and NLOS respectively.

The table shows that the correlations are significantly different from zero in some
cases. At the same time, they are small with high probabilities. This means that
additional information is added by using both frequencies, compared to using only
one of them. It also means that the impact of the noise from one frequency can be
reduced by using the other frequency as well.
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Signal path Estimated covariance, rxy 95 % confidence interval
LOS near AP -0.10 [−0.29;0.09]
NLOS near AP 0.26 [0.05;0.44]
LOS far from AP 0.26 [−0.09;0.55]
NLOS far from AP 0.24 [0.04;0.42]
LOS stationary -0.06 [−0.13;0.01]
NLOS stationary -0.12 [−0.18;−0.06]

Table 5.1 Estimated covariances and 95 % confidence intervals for 2.4 and 5 GHz in dif-
ferent environments. There seems to be a small correlation but the signals are not entirely
correlated, allowing for additional information to be obtained if both are used.

However, the model errors, i.e. the difference between models and measurements,
are still highly correlated between the frequencies. For example, if the user moves
from LOS with an AP to NLOS, e.g. to the other side of a wall, both signal frequen-
cies will be reduced in similar ways. Events like these are not modeled accurately,
since one can not know when they occur. The result is a large correlation between
the model errors for each frequency.

Difference in Modeling
An extensive discussion about how path loss depends on the frequency is done in
[Rappaport, 1996], the gist of which is that higher frequencies lose power faster with
distance. The difference between the behavior of 2.4 and 5 GHz is not large (a factor
∼ 2), however some extra attention is needed to model the two. To extend the models
in chapter 3 to the difference in frequency, usually different n or α , depending on
the choice of model, will be needed. Furthermore, an AP may transmit 5 GHz with
a greater power than 2.4 GHz to mitigate some of the increased path loss, requiring
information of the transmitted power for both frequencies.
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6
Indoor Positioning - RSSI
Approach

The signal propagation models described in Chapter 3 in combination with the par-
ticle filter (PF) from Chapter 4 provide a framework for indoor positioning. This
framework can be used to perform position estimation using RSSI measurements
from multiple WiFi APs.

In this chapter, the considerations about, and parameter choices for, the PF in the
context of indoor positioning are presented. The performance is then tested in a few
different environments and compared to position estimation using a least squares
(LS) algorithm. These tests then serve as a basis for an extensive error analysis, dis-
cussing the error behavior depending on different conditions. The resulting knowl-
edge is then used in the next chapter, to ascertain if and how adaptive or crowd-
sourced signal strength models may be used.

Importance of Geometry
How the APs are positioned in relation to the user (i.e. the position of interest to
estimate), highly impacts the quality of the estimation. In Figure 6.1, three different
AP geometries are shown along with the distribution of probable positions. It repre-
sents an idealized case where the noise in the measurements of the distance to each
AP is zero-mean Gaussian. However, it provides an illustrating example of how the
geometry impacts the distribution of the estimated position.

In the leftmost case in Figure 6.1 the APs are placed on a straight line, and in this
case trilateration of the true position, [0,20], is impossible if no prior information
about past positions is known. As the figure shows, APs positioned on a straight line
gives two equally probable position estimates (more red implies higher probability),
i.e. it is not possible to distinguish between a position and its mirror image in the
line formed by the APs.
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Figure 6.1 Probable positions for different AP configurations (white +). Red implies high
probability and blue low probability. The true position is [0,20]. It is easy to see that a geom-
etry like the one in the rightmost figure produces the best position estimates while it is hard
to determine the position without prior position history if the geometry is similar to the left
figure.

The second case displays a scenario where the APs are placed in the corners of an
obtuse triangle (largest angle greater than 90◦). In this case it is possible to discern
the true position as the most probable one. However, higher noise levels and/or
biased noise in the measurements will make this increasingly hard, as there are two
different positions with relatively high probabilities.

The third case represents a best-case scenario where the position to be estimated is
centered in an equilateral triangle. Here, it is easy to distinguish the most probable
position, and likewise the true position.

The PF uses information about the positions at previous time steps making it more
likely to determine the true position even if the current geometry is disadvantageous.
The LS estimation, on the other hand, uses only instantaneous measurements and
will suffer much more severely from an unfavorable environment.
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The positioning will further benefit from a larger number of APs as both the number
of measurements and the probability of having an advantageous geometry increase.
Still, a few conclusions could be drawn from further simulations, the main one
being that measurements taken inside a polygon with corners consisting of the APs
tend to provide the best information about the true position regardless of the used
estimation algorithm.

6.1 On Parameter Choices

There are four parts of the PF that can be chosen by the user to some extent. The
system model, the process noise vk, the measurement noise ek and the number of
particles N.

System Model
The system model is the most extensive choice, where both the number of states and
their respective dynamics need to be determined. Some parts of this are dependent
on available measurements and how complex the model is allowed to be. Using only
measurements of the RSSI from multiple APs, a simple model using two states x
and y, describing the position in a plane, are used. Moreover, a random walk process
is used to model the dynamics, resulting in the state update

xk+1 = xk + vx
k+1 (6.1)

yk+1 = yk + vy
k+1 (6.2)

where vx
k and vy

k are the process noise on each state.

Process Noise
The process noise is, in this case, rather straight forward to choose, as it represents
the spread of particles in between measurements. A normal distribution around a
circle with radius r is an appropriate choice,

vx
k ∼ r sinαk +N(0,σ2) (6.3)

vy
k ∼ r cosαk +N(0,σ2) (6.4)

where

αk ∼ U(0,2π), (6.5)

U(0,2π) is a uniform distribution between 0 and 2π and σ is the standard deviation
of the normal distribution. In this case r is an approximation of how far the phone
travels between two measurements and σ measures the uncertainty of this distance.
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A fair estimation is that a walking person travels between 1 and 2 meters per second,
and given an interval ∆t between measurements it holds that r ≈ 1.5 ·∆t and σ ≈
0.5 ·∆t. Thus,

vx
k ∼ 1.5∆t sinαk +N

(
0,
(

∆t
2

)2
)

(6.6)

vy
k ∼ 1.5∆t cosαk +N

(
0,
(

∆t
2

)2
)

(6.7)

(6.8)

places the new particles somewhere on a circle of radius 1.5∆t from the old one and
spreads them by a standard deviation of 0.5∆t.

This estimation could be further improved by the use of a technique for counting
steps, and this approach will be investigated in later chapters.

Measurement Noise
The measurement noise can be estimated in the following way. Take a set of RSSI
measurements from a certain AP, and vary the distance. Then model a received
RSSI at each distance and compute the noise as the difference between model and
measurement. The standard deviation of measurement noise can then be estimated
as the average of the absolute value of the noise. To estimate the noise accurately a
large set of data in different environments is required.

This has been done for a quite large number of APs, and in environments ranging
from LOS to a highly obstructed signal path. Some of these results are displayed in
Figure 6.2.

The resulting variance in the measurements ranged from 9 to 60, with a mean of 25.
The reason for the large span is that some of the APs were in LOS for most of the
measurements even though the distance to them was fairly large. Other APs were,
on the other hand, highly obstructed while at a quite short distance, and yet others
followed the models well.

During the position estimations in the rest of this chapter the mean of the variance,
25, will be used. Further, the measurement noise will be assumed to be Gaussian
with zero mean. This assumption is valid for data sets covering large distances.
However, over a short traveled distance the noise is expected to be biased in some
cases as it is highly dependent on the environment. This is somewhat mitigated by
having measurements from numerous APs, allowing positive and negative biases to
cancel.
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Figure 6.2 The difference between measurements and model for a few different APs for
different environments and distances. Here it is clearly visible that the indoor signal envi-
ronment is hard to model. Depending on the number of objects between transmitter and
receiver the received signal strength at a given separation varies substantially. Because of
this large measurement noise, the particle filter needs to take into account that the received
signal strength at a given distance has a large variance.
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Figure 6.3 Mean error in estimated position versus number of particles, N, for a two di-
mensional positioning. For a small number of particles, the mean estimation error can be
greatly improved by increasing the number of particles. However, when reaching around 100
particles, this improvement stops, and only minor differences are noticed.

Number of Particles
The number of particles required to maintain a high enough distribution over the
relevant part of the state space, is dependent on the size of the state space and the
distance traveled between filter updates. In this case, the size of the state space is
two, as the positioning is done in two dimensions. The distance between filter up-
dates, i.e. distance between consecutive RSSI measurements, changes for different
test cases. The range starts at 0.5 meters with a close to zero variance, when mea-
surements are taken every 0.5 meters around a predefined path. The other limit of
the range is around 4 meters with considerably larger variance when measurements
are taken around every third second while walking a predetermined path.
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In Figure 6.3, the mean positioning error for the same data set is shown, for differ-
ent numbers of particles, N, ranging from 1 to 10 000. The data was generated by
measurements taken with 3 meters of relative spacing along a predetermined path.
For small N, the error improves dramatically when N is increased. However, for N
larger than ∼ 40 no further improvements are noticeable and the mean estimation
error settles at ∼ 3.5 meters.

For some of the test cases used later in this chapter, the distance between measure-
ments is considerably larger than 3 meters. To keep the particle density high even
in those cases, N = 300, is chosen and used for all tests in the following sections.

6.2 On Model Choice

From Chapter 3, a model on the form

Rx(d) =C−2 ·10log10 d−αd (6.9)

is appropriate for the RSSI measurements. In this model, Rx(d) is the RSSI measure-
ment at a distance d from the transmitter, C is related to the power of the transmitter
and α models path loss related to signal path obstruction.

The models are discussed in Chapter 3 but appropriate values of the constants C and
α are yet to be determined. This may be done in a couple of fashions, two of which
will be presented here. The value of α is dependent on the environment. The value
of C is related to the power of which the WiFi APs transmit, so different types of
APs will most likely have different values.

Model Driven Approach
Given measurements at known locations, preferably with both obstructed and LOS
paths to the APs, it is possible to compute the model parameters.

The value of α from (6.9) can be calculated as

α =
C−2 ·10log10(d)−Rx(d)

d
. (6.10)

The estimation of α will improve if the paths between transmitters and receiver are
representative for the current environment.

To find the value of C, measurements of the RSSI should be performed in LOS of
the AP, at different locations and with different distances to the AP. The value can
then be calculated from

C = Rx(d)−2 ·10log10(d), (6.11)

i.e. from (6.9) with α = 0 (LOS).
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Frequency, GHz α σ(α) C σ(C)

2.4 0.332 0.319 -40.7 2.97
5.0 0.551 0.375 -32.3 4.72

Table 6.1 Estimated model parameters , α , C , and their standard deviations.

This has been done at 20 different locations with 20 measurements of the RSSI from
available APs taken at each location. The estimated values of α and C are presented
in Table 6.1.

Error Estimation Approach
The other method is more heuristic, but might produce equal or better performance.
Instead of finding the values of α and C by measurements it is possible to find
the parameters resulting in the smallest average positioning error. This is done by
taking a set of RSSI measurements at a few different known locations and use them
in the position estimation algorithm with different α and C, to find the parameters
producing the smallest mean error.

To illustrate this, the error for α ∈ [0;1] and C ∈ [−55;−25] is shown in Figure 6.4
for 2.4 and 5 GHz. The parameters yielding the smallest average positioning errors
are C =−38 and α = 0.3 for 2.4 GHz, and C =−39 and α = 0.2 for 5 GHz.

Final Parameter Choice
A few interesting observations can be made from the two methods above. The first
of these is that the range of possible values is large, indicated by the standard de-
viations obtained from the model driven method. This is somewhat to be expected
as the obstruction between transmitter and receiver is vastly different from loca-
tion to location. Thus, the obtained parameters will be an average of the different
environments, giving rise to their high standard deviation.

Further, it is noteworthy that the parameters obtained from the two approaches dif-
fer, especially for 5 GHz. One explanation for this is that the PF is able to find an
accurate position given, for example, a positive model error for 2.4 GHz and a neg-
ative error for 5 GHz from the same AP. However, the parameters found trying to
minimize the model error still produced small positioning errors when used together
with the PF.
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Figure 6.4 Average estimation error as a function of α and C for 2.4 and 5 GHz RSSI mea-
surements. Errors larger than 13 m for 2.4 GHz and 9 m for 5 GHz are capped to put emphasis
on the interesting behavior. The interesting take from this figure is that there is a large range
of parameters that provides estimates with similar properties, at least if comparing the mean
error. The values producing the best results are the ones predicting the correct received signal
power most of the time. If these values, on the other hand, are changed by a small amount in
the wrong direction, very bad estimates could be obtained. This happens when the received
power at a certain location is estimated as higher than it actually is. The overall conclusion is
that, when using a particle filter, it is considerably better to underestimate the signal power,
than to overestimate it.
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Frequency, GHz C α

2.4 -38 0.4
5 -36 0.5

Table 6.2 Model parameters for equation (6.9), to be used to model the RSSI for the fol-
lowing sections.

Looking at Figure 6.4 the PF exhibits an interesting behavior. The positioning error
is relatively small for a large range of parameters, but a change to substantial errors
happens suddenly for certain parameters. Parameter choices along the approximate
line from C =−39 and α = 0 to C =−25 and α = 0.7 need to be changed only by
a small amount to produce either good or truly poor results. A deeper investigation
shows that this line roughly translates to the models switching from estimating a too
low signal power to estimating a too high one, for a certain location. The smallest
positioning errors are obtained when the modeled and received powers are about
the same, placing them slightly below the line described earlier. However, these
parameters are sensitive if the environment changes, resulting in estimating too high
signal powers for the given location. A more robust choice is to overestimate the
signal attenuation resulting in a higher α . This choice might produce slightly larger
positioning errors, but is less sensitive to changing environments.

The conclusion of the discussion above is that it is far better to underestimate the
signal strength at a given location than to overestimate it. Taking this into account,
the values stated in Table 6.2 will be used to model the received RSSI value at a
distance, d, from the AP. These values are more restrictive concerning the signal
strength than the parameters found previously. However, these choices provide a
more robust estimation if the environmental properties change. The effect of a small
change in the true value of C, due to either variations in the power transmitted by the
AP or different properties of the receiving device, will also be somewhat mitigated
by a more restrictive choice of parameters.
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6.3 Test Setup

During the remaining sections of this chapter two different test cases will be used.

Case 1:
Measurements of the RSSI are taken at equally spaced points
with 0.5 meters spacing over a predetermined path. Only mea-
surements from APs with known positions are used. The mea-
surements are taken while the measuring phone is at rest at each
point.

Case 2:
Measurements of the RSSI are taken continuously while the user
is walking a predetermined path at a relatively constant speed.
The time between each measurement is approximately 4 seconds.
Only measurements from APs with known positions are used.

For Case 1, the distance between measurements can be changed in increments of
0.5 meters by using only a subset of the available data.

Case 2 provides a more natural use-case, where the user is moving while trying to
find the position.

The tests were performed in a building called Glasgow, one of Sony’s office build-
ings, on the 6:th floor. For different tests, different paths and different setups of APs
are used. Further, all tests are performed in the same type of open office environ-
ment, but the differences between the exact environments for each test are fairly
large. During the tests, the user held the smartphone in one hand, with the screen
pointing upwards. The smartphones used were one Xperia Z Ultra and one Xperia
Z1, both manufactured by Sony. These performed similarly except for a constant
bias on the RSSI.

For both test cases, the estimated path is generated by connection of subsequent
estimated positions.

6.4 Results

The results of the different tests performed are presented in the sections below. The
different test paths are shown on a floor plan in Figure A.1 in Appendix A.

Environment One
The methodology from Case 1 was used during this test and measurements from
seven APs along a path of approximately one hundred meters. The locations of the
APs together with the path taken may be found in Figure 6.5.
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Figure 6.5 The path (blue line) used in Environment one, along with measurement points
(blue x), start point (black x) and end point (red o).

Error / meter
2.4 and 5 GHz 2.4 GHz 5 GHz

Mean 1.7 2.6 2.9
Maximum 4.5 5.3 5.8

Table 6.3 Attributes of the absolute positioning error for Environment one. It is clear that
using 2.4 and 5 GHz WiFi in combination produces better results, both in terms of mean as
well as maximum, than using either one alone.

The estimated walked path using RSSI measurements is presented in Figure 6.6 and
the absolute position errors in Figure 6.7. Some additional data concerning the error
is presented in Table 6.3 together with the positioning errors when using only 2.4
and 5 GHz for reference. In this environment, the placement of the AP in relation
to the path walked is beneficial. During the walk, measurements from at least four
APs are available and almost always on both 2.4 and 5 GHz. Further, the geometry
of the APs is such that we always stay inside or at the border of a polygon where the
APs compose the corners. These properties contribute to the fairly small positioning
errors in Table 6.3.
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Figure 6.6 Comparison between the true (blue) and estimated (black) path for Environment
one. The mean positioning error is 1.7 meters and the estimated path follows the true one
relatively well during the entire walk.

Attribute Meter
Mean 4.0
Maximum 11.5
Median 3.2

Table 6.4 Attributes for the absolute positioning errors for Environment two.

Environment Two
The test in Environment two uses the methodology of Case 1, and the measurements
are taken over a distance of 176.5 meters.

A plot of the estimated path along with the true one is shown in Figure 6.8, and some
attributes of the absolute positioning error can be found in Table 6.4. The maximum
positioning error here is considerably worse than the maximum from Environment
one. This is largely due to an unfavorable geometry of the APs during the last part
of the path where only measurements from the three rightmost APs were available.
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Figure 6.7 The absolute errors in estimated position for Environment one.

These APs compose a quite obtuse triangle further impairing the positioning.

Environment Three
For Environment three, which was a substantially longer path of 273 meters, the
Case 2 methodology was used. Measurements were received around once every 3rd
second, resulting in the measurements being taken over a distance of around 4.5
meters, and a total of 61 different measurement points were collected.

In Figure 6.9, the true path along with estimated positions and path may be viewed.
For this test case, it is hard to give an absolute measurement of the error. However,
the measurements were taken while moving at constant speed and the time between
each measurement was more or less constant. Thus, the estimated positions should
be approximately equally spaced over the path. Estimates of the error could thus be
obtained dividing it into a number of equally spaced points according to the num-
ber of measurements taken. Then these points can be compared with the estimated
position in each scan, and the absolute difference in distance used as a measure of
the positioning error.
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Figure 6.8 The true path (blue), along with estimated path (black), start point (red o), initial
heading (black arrow) and AP (cyan o). The estimates follow the true path well for most parts
of the walk, but a part near the end stands out where the errors are large (with a maximum
of 11.5 meters). This is due to the unfavorable geometry, where only signals from the three
rightmost APs are obtained. The mean error for this estimation is 4.0 m and the maximum
error is 11.5 m.
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Figure 6.9 The true path (blue), along with estimated path (red), estimated positions (black
x), start point (red o), initial heading (black arrow) and AP (cyan o). The estimated path is
fairly close to the true one, but some of the estimated locations are around 10 meters from
the true one. The mean error is 5.5 m.

The estimated path differs from the true one at times, but the difference is, in ab-
solute terms, not large. Also, most of the estimated positions are equally spaced.
However, some of them stand out and the minimum distance between two is 0.49
m and the maximum is 8.2 m. Another interesting observation is that the mean dis-
tance between two consecutive estimated positions is 4.1 m, giving a total distance
of 250 m, which is 23 m less than the true path. This is also visible in Figure 6.9 in
that the estimated path has a tendency to cut corners.

For this environment similar results were produced both when the phone was held
in hand, placed in a front jeans pocket and carried in a bag. However, holding the
phone in a certain manner to cover the antenna, resulted in a significant worsening
of the performance. This will be investigated further in Chapter 7.
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Figure 6.10 Least squares estimation versus PF estimation for Environment one. True path
(blue), LS estimated path and position (black) and PF estimated path and position (red). It is
clearly visible that the PF outperforms the LS algorithm in every respect in this estimation.
The mean error is 1.7 meters for the PF and 5.7 meters for the LS estimation.

Least Squares - a Comparison
A common way of estimating a position from an RSSI measurement is to use an LS
estimation, for additional information see Section 4.5. Here the difference between
the estimations from a PF and from an LS algorithm will be investigated.

The comparison will be made for Environment one and two from the previous sec-
tions, but with new datasets. Further, the methodology from Case 1 will be used,
but with 3 m instead of 0.5 m sample spacing. In addition, both estimators will use
the same path loss models.

The estimated paths from both the PF and LS estimators are displayed in Figure
6.10, along with the true path for Environment one. It is clearly visible that the PF
performs considerably better compared to the LS estimator. The positioning errors
from Figure 6.11 make this even more clear and the PF has a smaller positioning
error for every sample compared to the LS estimator. The mean position error is 1.7
m for the PF, and 5.7 m for the LS estimation.
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Figure 6.11 Absolute position error for the LS (red) and PF (blue) estimators for Environ-
ment one. The PF has a smaller estimation error for each of the estimated locations, and a
considerably smaller maximum error.

For Environment two, the difference between the LS estimation and the PF are
smaller compared to Environment one, as shown by the errors in Figure 6.12. The
PF, however, does still provide the best position estimates, as the error is lower for
the PF in most of the samples. The difference in maximum error is not large, but
the mean error for the PF is 3.4 m, and for the LS estimation it is 5.1 m. The PF
produces considerably better results compared to the LS method when the envi-
ronment is favorable, i.e. when a large number of APs are available and/or their
geometry is good. When the conditions are disadvantageous both methods perform
equally, giving positions around 10 meters off.

The conclusion to be drawn from these investigations is that a PF is the better
choice for estimating positions from noisy RSSI measurements, especially if the
only sought after attribute is the smallest mean and maximum errors. The LS esti-
mation may be desirable to use if computational power is limited, or if only mea-
surements with long time separation are available.

An interesting aspect is the performance when no previous measurements are avail-
able. Then, the PF loses its advantage of using these, whereas nothing changes for
the LS. A new test was performed in Environment two, and at each measure point,
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Figure 6.12 Absolute position error for the LS (red) and PF (blue) estimators for Environ-
ment two. The particle filter has a smaller mean error, 3.4 m, compared to 5.1. However, the
PF is not better for every estimated position and the maximum error of both methods are
comparable.

the previous position was treated as completely unknown. This means that the par-
ticles had to be spread out over the whole floor before each estimation. Then, one
iteration was performed in the PF. The mean error was 5.09 meters for the PF and
5.14 meters for the LS. It is difficult to decide which method that works best in this
case.

6.5 Concluding Remarks

Using measurements of RSSI to position devices in an indoor environment can be a
satisfactory technique if the need for precision is not too large. In a fairly homoge-
nous building, with a reasonable number of APs placed in an acceptable geometry,
the positioning may be quite good. A reasonable number of APs is in this context at
least three.

The position estimation may, with satisfactory result, be computed using a PF. The
PF outperforms an LS estimation in most cases, and never produces inferior results
for a sustained timespan. The worst case errors of the two estimators are comparable
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when the environment is unfavorable, but the PF produces better estimates in a
beneficial environment and smaller mean errors in the long run.

A few restrictions for the technique must however be mentioned. First and foremost,
more or less all buildings need a specific path loss model, and the power which each
AP transmits and their locations need to be known. Also, to have a chance to ob-
tain a reasonable position estimate, measurements from at least three different APs
must be available at all times. If fewer are available, larger positioning errors are
to be expected. If only two APs are available, at least two positions will be equally
probable, and if only measurements from one are available, all points at a certain
distance may be the true position. The position history of the PF can improve the
estimation when the geometry is unfavorable if the initial position is fairly accurate
and the time spent in the environment is rather short. The LS estimation lacks this
property and will produce erroneous and/or inconsistent estimates independent of
previous positions. Further, antennas have different abilities to receive signals, thus
the behavior of the specific device must be known. How the phone is carried seems
to have small to no effect on the performance, except when the user covers the an-
tenna. When that happens, the performance deteriorates severely, and large errors
are introduced.

On the other hand, most newly constructed or renovated buildings already have nu-
merous APs, and there, this technique may provide a simple and cost effective way
of providing indoor positioning. If methods for finding APs and estimating the path
loss models in a simple way can be attained, the setup may even be quite simple. If
some of the user induced signal blockages can be registered and compensated for as
well, the technique might be useful for tracking people even when they do not carry
their device in hand. This only leaves the problem of characterizing the behavior of
the antenna for each device, but as this only needs to be done once for each type of
device, it is no overwhelming task.
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7
Adapting the Model
Parameters

In the previous chapter, the parameters α and C in the path-loss model

log10(Pr(d)) =C−10n log10(d)−α ·min(d,dmax)+Xσ . (7.1)

were assumed to be known. However, these constraints are not necessary if the
parameters can be estimated during the localization. This is useful since α depends
on the current environment, and C depends on the radiated power from each AP. The
first part of this chapter describes an algorithm for determining when the estimation
of the location is accurate, and using this to estimate the model parameters.

Another issue is that the signals reaching the phone might be attenuated consider-
ably by the user. The weaker signals would indicate that the phone is further away
from each AP than it actually is. In the second part of this chapter, an algorithm to
compensate for this is proposed and evaluated.

7.1 Estimation of Position Error

The method described in Chapter 6 has proven to perform better at a closer distance
to the nearest AP. At a certain time step, a large maximum RSSI-value indicates that
the nearest AP is close. This, in turn, indicates that the position error is relatively
small. Figure 7.1 shows this relation. The data is from the test setup Case 1 for
Environment two, defined in Section 6.3 and 6.4, respectively.

Whenever one RSSI is above a certain value, the error can be considered small.
This value depends on the model of the phone, and on C for the closest AP. In this
example, -36 dB is a suitable lower limit. If one RSSI is larger than that at a certain
time, the average error is 1.05 meters, and it is unlikely to get an error that is larger
than 4 meters. Figure 7.2 shows the error together with a one-sided, upper bounded,
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Figure 7.1 Obtained position errors versus the maximum received RSSI. There is a clear
correlation between small positioning errors and a large value of the maximum received
RSSI. The reason for this is that the RSSI values decrease faster with distance if close to the
AP, which gives a better position resolution at short distances, and in extension larger RSSI
values.

99 % prediction interval [Bickel and Doksum, 2001]. For other phone models and
different APs , the limit has to be modified by adding a constant value, in order
to get similar results. If C is not known initially, it has to be estimated in order to
determine the limit, before the adaptation can begin. This can be solved when the
user walks straight below an AP for the first time. By registering the peak RSSI, a
very first approximation of C can be computed, and a reasonable limit determined.
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Figure 7.2 Obtained position errors versus the maximum received RSSI and a 99 % confi-
dence interval for the error as a function of RSSI. Here, it is clear that the error can be deemed
small (< 3.5 meters) if the maximum received RSSI is larger than −36.

7.2 Updating the Parameters

In order to successfully determine α and C, an accurate estimation of the position is
required. The previous section describes how a maximum RSSI larger than a certain
limit indicates a low position error. Therefore, the algorithm performs a calibration
when this limit is exceeded. Expressions for each parameter can be determined by
(7.1), which yields

α =
C−10n log10(d)− log10(Pr)

min(d,dmax)
(7.2)

C = log10(Pr)+10n log10(d)+α ·min(d,dmax) (7.3)

The noise Xσ is unknown and omitted in the parameter update. Since α and C
depend on each other, they should not be updated at the same time. Instead, C is
updated for the nearest AP only, whereas α is updated using the RSSI from the
others. When C is determined, the phone is assumed to be straight below the nearest
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Figure 7.3 Environment three divided into sections. Each circle corresponds to a section
around a certain AP.

AP, so that the distance d consists only of the vertical distance dver. In this case, dver
= 2 m. Moreover, this AP is assumed to be within LOS, i.e. α=0. Hence, (7.3) can
be rewritten as

C = log10(Pr)+10n log10(dver) (7.4)

Furthermore, initial estimations of the constants are required. These have to be accu-
rate enough for the algorithm to perform a first successful parameter update. Hence,
the position estimation has to be accurate enough when an update is performed.
The value of C is specific for each frequency on each AP. Therefore, the algorithm
should store one value of C for each frequency on each AP. The parameter α can be
treated in different ways. Here follows two alternatives for this.

Alternative 1
The parameter, α , is the same for the whole building. After each determination of
αi, αave is defined as the average of all determinations, including the initial estimate.

Alternative 2
In this algorithm, each value of αi j is stored in a matrix~α . Here, αi j is the parameter
to be used in section i, for AP j. Each floor is divided into sections as follows:

Each AP corresponds to one circular section, centered at the AP and with radius rs.
These sections may overlap, and there might be areas that do not belong to any sec-
tion (see Figure 7.3). Hence, the following three cases may occur for each particle:
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Figure 7.4 Estimated path with and without parameter estimation, using the erroneous pa-
rameters, C = −25 and α = 0.3 as initial values. The mean error was 7.7 m and 18.3 m,
respectively. The algorithm performs considerably better when the adaptation is performed,
compared to when erroneous model parameter are used. However, parameters obtained after
a extensive survey of the signal environment still produces the best results.

1. Exactly one section If a certain particle is in section k only, the parameter set
from row k in alpha will be used for this particle.

2. Several sections If it is in several sections at the same time, an average of the
parameter sets for these sections will be used.

3. No section If it is outside all sections, a default value of α will be used.

Note that each particle gets its own set of parameters, and that the estimated position
of the phone is not involved in choosing this set. Both alternatives have been tested
offline using MATLAB. For the environments defined in Section 6.4, the results are
similar. The reason why there is no gain in dividing the building into areas is that
it is homogeneous enough for alternative 1 to work. In an environment where the
obstacle density changes more, alternative 2 would be more suitable.
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Initial values Values after adaptation
2.4 and 5 GHz 2.4 GHz 5 GHz
C α C α C α

-50 1.0 -37.7 0.28 -35.8 0.35
-45 0.9 -37.7 0.25 -35.8 0.34
-35 0.5 -35.6 0.35 -33.7 0.42
-25 0.3 -31.5 0.47 -29.6 0.54

Table 7.1 Parameter values before and after adaptation. If the initial parameters are chosen
far from the true ones, the adaptation manages to find parameters fairly close to the measured
ones.

In order to evaluate the parameter updates, the algorithm was given erroneous initial
parameter values. Then, the phone was carried one round in Environment three, and
after that the updated parameters were noted. During the round, 61 RSSI measure-
ments were taken by the phone, giving an approximate spatial separation of 4.5 m.
The resulting parameters are shown in Table 7.1

Implausible parameter values (e.g. C =−50 or C =−25) are more reasonable after
the adaptation. Moreover, the algorithm moves the parameter values towards the
region with relatively low position error in Figure 6.4. The bottom row in Table
7.1 was investigated in more detail, as an example of how the adaptation affects
the positioning. Figure 7.4 shows the positioning with and without the parameter
adaptation, respectively, with C =−25 and α = 0.3 as initial values.

If more data points were collected, it is probable that the estimated parameters
would converge closer to the measured parameters from 6.2.However, the WiFi sig-
nals are severely noisy and the estimated positions where the measurements were
obtained are not exact. Therefore, a complete convergence is not expected.

7.3 Compensating for Signal Blocking

The RSSI is affected by how the phone is carried by the user. If, for example, the
user blocks the signals with the hand, the RSSI will get lower, which indicates that
the phone is further away from each AP than it actually is. In this section, this effect,
and the possibility of compensating for it, will be evaluated.
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Figure 7.5 Phone in pocket. Wearing the phone in the pocket did not affect the positioning
significantly. The mean error was 5.3 m when carried in the hand, and 5.6 m when carried
in the pocket. There seems to be little difference between carrying the phone in the pocket
compared to the hand, which both the mean estimation error and the estimated path point to.
A third estimation when the phone was carried in a bag was also performed, but the behavior
was so close to the other two, it was decided to be omitted.

1. Evaluation of different use cases In the tests this far, the phone has been
held so that the signal is blocked as little as possible. In this section, three
different use cases are tested, all in Environment three.

2. Phone in pocket In this test, the phone was first carried one round in the hand.
After that, it was moved to the jeans side pocket, and then another round was
walked.

3. Blocking with hands, once Again, the phone was carried one round in the
hand. Then, the user tried to block as much of the signals with the hands as
possible during the second round.

4. Blocking with hands, repeatedly Like the previous test, but during the sec-
ond round, the signals were blocked and unblocked repeatedly.
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Figure 7.6 Blocking with hands, once. Attenuation by the hands had a severe impact on
the positioning. The mean error was 6.3 m while carrying the phone normally, and 38.5 m
while blocking. Here, a substantial block of the incoming signals was performed. A large
positioning error is present soon after the blocking was initialized.

The results are shown in Figure 7.5 , 7.6 and 7.7.

Carrying the phone in the pocket did not affect the RSSI significantly, and hence the
positioning was unaffected. However, blocking the signals with the hands lowered
the RSSI considerably, causing the positioning to be inaccurate. Hence, this use case
has to be detected and compensated for.

Compensation
The main strategy for detecting the attenuation is to note when the RSSI decreases
fast. However, moving away from the APs, or walking behind a wall, may lower
the RSSI in a similar way. In order to distinguish the signal attenuation by the user
only, the algorithm focuses on the six largest RSSI-values. If fewer than six signals
are available, every received signal is used. If the average of these decreases more
than 6 dB in one time step, this indicates a hand attenuation. Moving away from
the APs would not make the RSSI decrease that fast, and if LOS is lost to some
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Figure 7.7 Blocking with hands, repeatedly. Attenuation by the hands had a severe impact
on the positioning. The mean error was 9.3 meters. The error here is not as large as for the
case where the signals were attenuated for a long stretch of time. However, a large mean error
was obtained.

APs there is a chance that LOS is established to another. If, on the other hand, LOS
is lost to several APs without gaining LOS to other APs, e.g. by entering a room
without an AP, the compensation may be triggered. However, this is more likely
to improve than to degrade the positioning as the standard RSSI models do not
incorporate quick drops in signal level caused by walls and similar objects. If a user
enters a room without an AP, the RSSI measurements would drop significantly for
all APs, but the compensation would ideally remove this effect, allowing the walls
to be taken into account by the positioning algorithm.

When an attenuation is detected, a constant term H is added to the model, which
corresponds to how much the signals have been reduced. Hence, the new model
is given by Equation (7.5). When the phone is unblocked, this is detected in an
analogous way, and then H is set to 0.

log10(Pr(d)) =C−10n log10(d)−α ·min(d,dmax)+H +Xσ . (7.5)
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7.4 Conclusion

Test 1) and 2) were performed again, but this time with the compensating algorithm.
The results are shown in Figure 7.8 and 7.9. Compared to the results shown in Fig-
ure 7.6 and 7.7, the compensation algorithm results in a significant improvement
to the positioning. This is especially true when the signals are attenuated for a rel-
atively long time, clearly visible when comparing Figure 7.6 to 7.8. However, the
positioning is aided by the compensation algorithm even when the attenuation is
present for a short time.
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Figure 7.8 Blocking with hands, once. The algorithm compensates for the attenuation. The
mean error was 7.3 m while blocking, and 7.2 m while carrying the device normally. Com-
pared to Figure 7.6, this algorithm has a much better performance, and it is hard to discern
between the compensated and the non-blocked part of the estimation.

7.4 Conclusion

In this chapter, an algorithm that updates the model parallel to the positioning has
been suggested. The purpose is to increase the generality of the application, and to
make it improve while in a new environment. If the initial parameter values are in-
accurate, this part of the algorithm improves the positioning significantly. However,
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Figure 7.9 Blocking with hands, repeatedly. The algorithm compensates for the attenua-
tion, which supports the positioning. See Figure 7.7 for a comparison with the same use case
without compensation.

if the initial parameter values are too far from the true ones, the positioning never
gets accurate enough for the parameter update to work. Hence, the algorithm has to
start with feasible parameter values in order to make them more accurate. In order
to achieve this, C could be estimated from the peak RSSI values.

Compensating for the hand attenuation clearly improved the positioning. However,
H can not be determined exactly, due to noise and obstacles in the environment. In
addition, the hand attenuation is only detected if the phone is covered fast enough.
If it goes from uncovered to covered successively, during several time steps, this
can not be distinguished from other causes of lowered RSSI. Naturally, going from
covered to uncovered works analogously.
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8
Modeling the Kinematics

Modeling the kinematics may greatly improve the performance of a positioning sys-
tem, especially if the estimated position is noisy or biased. The kinematics may also
be used to estimate the position in between the updates from the main positioning
algorithm. The range of models stretches from simple random walk processes to a
more elaborate modeling of a walking person, including step detection and estima-
tions of the step length and heading by using an accelerometer and a gyroscope.

After a short description of random walk processes, quaternions and their use in
three-dimensional pose estimation are introduced. A section about positioning using
only sensors, named dead reckoning (DR), is presented, after which the chapter
closes by a discussion of kinematics models used in indoor positioning and their
effects on the performance.

8.1 Random Walk

The simplest way of modeling the kinematics, aside from the trivial case of choosing
not to model it at all, is to use a random walk model for each state. In a random walk
the states, x, undergo time updates according to

xk+1 = xk + vk (8.1)

where vk is a random process. Usually vk is considered independent for each state,
and depending on the distribution and standard deviation σ , different random walk
processes are obtained. How vk should be distributed is determined by the intrinsic
behavior of the states. A common choice is a normal distribution with an appro-
priate σ . Such a random walk is called a Gaussian random walk, and if σ is very
small it resembles a Brownian motion. Four series of Gaussian random walks in two
dimensions, each starting in (0 0), are displayed in Figure 8.1.
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Figure 8.1 Four Gaussian random walks using a standard deviation σ = 1 and an expecta-
tion value of 0. Each walk starts in the origin, and then 104 steps are taken. This is a simple
way of modeling the kinematics, i.e. of updating the states of the particles. It is clearly visible
that a single random walk may end up almost anywhere and that the potential distance from
zero grows with the number of steps taken. However, the mean position of many walks are
(0,0)

8.2 Quaternions

The quaternions are an extension of the complex numbers, first described in 1843
by the Irish mathematician William Rowan Hamilton. They were first used in three-
dimensional mechanics and today they are, among other applications, used to esti-
mate the pose (position and direction in relation to a fixed frame) in three dimen-
sions [Kuipers, 1998; Mannesson, 2013].

Quaternion Theory
A quaternion, q, is a set of numbers, extending the complex numbers, defined as

q = a+bi+ c j+dk, [a,b,c,d] ∈ R (8.2)

where i, j and k are new basis elements.
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8.2 Quaternions

× 1 i j k
1 1 i j k
i i −1 k − j
j j −k −1 i
k k j −i −1

Table 8.1 All possible basis multiplications for quaternions.

Further, the basis elements obey

i2 = j2 = k2 = i jk =−1 (8.3)

Thus, from (8.3) all possible basis multiplications can be formed according to Table
8.1. A quaternion is usually seen as a four-dimensional vector consisting of a scalar
q0 and a vector~q = (q1 q2 q3)

T , leading to the following notation

q =

(
q0
~q

)
=


q0
q1
q2
q3

 . (8.4)

Quaternion multiplication is denoted by ⊗ and defined as

q⊗ r =
(

q0
~q

)
⊗
(

r0
~r

)
=

(
q0r0−~q ·~r

q0~r+ r0~q+~q×~r

)
(8.5)

for two quaternions q and r, where · denotes the scalar product and × denotes the
vector product. The quaternion multiplication is non-commutative, meaning

q⊗ r 6= r⊗q (8.6)

in general. It is, however, associative

(q⊗ r)⊗ s = q⊗ (r⊗ s). (8.7)

Further, the unit quaternion is defined as

qI =


1
0
0
0

 (8.8)

and the quaternion inverse q−1 is

q−1⊗q = q⊗q−1 = qI ⇔ q−1 =
1
|q|2

(
q0
−~q

)
(8.9)

where the quaternion norm |q| is defined as

|q|=
√

q2
0 +q2

1 +q2
2 +q2

3. (8.10)
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Quaternions Interpreted as Rotations
Quaternions with the property |q|= 1 may be interpreted as rotations, although the
reason for this is beyond the scope of this thesis. Instead, here follows a recapitu-
lation of how they can be used. Readers interested in the mechanisms involved are
referred to [Kuipers, 1998] for an in-depth discussion of the background and theory
of quaternions.

Rotations are defined by two elements, the amount (angle) of rotation and around
what axis the rotation is performed. Suppose that a rotation of θ is performed around
the three-dimensional unit vector~n. The quaternion representation of this would be

q =

(
cos θ

2

~nsin θ

2

)
. (8.11)

Finding the vector~v rotated clockwise by θ around~n, noted~vr, by use of quaternions
is done as (

0
~vr

)
= q⊗

(
0
~v

)
⊗q−1. (8.12)

Many methods of computing rotations suffer from singularities when the rotations
are performed around a certain axis. This is not the case for quaternions, e.g. if
~v = (0 1 0) is rotated an angle θ around ~n = (1 0 0), vr = (0 cosθ sinθ) is
obtained as expected. For e.g. Euler angles, this may not be the case, depending on
the frame of reference [Slabaugh, 1999].

From here on, we use the naming convention

~v≡
(

0
~v

)
. (8.13)

The rotation of a vector,~v by a quaternion, q, and subsequently by p, is equivalent
to rotating~v by the corresponding quaternion product (p⊗q). This is easily proven
by multiple applications of (8.7),

(p⊗q)⊗~v⊗ (p⊗q)−1 = p⊗ (q⊗~v⊗q−1)⊗ p−1. (8.14)

When using sensors, in particular a gyroscope, to compute the rotation, it is com-
mon to end up with integrated angular velocities on the form~r = (rx ry rz)

T . Each
element in~r characterizes the rotation around an axis in an orthogonal coordinate
system, in a relatively short timespan. To describe this rotation using quaternions,
the direction around which the rotation is performed can be viewed as the direction
of ~r, and the vector norm |~r| may be considered the angle of rotation. The corre-
sponding quaternion, q, is then

q =

 cos |~r|2
~r
|~r| cos |~r|2

 (8.15)
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Figure 8.2 Acceleration during 10 seconds of a typical walk, when the phone is carried in
the hand. Here, it is hard to distinguish when a step has been taken. In order to make this
easier, the signal is first differentiated, to center it around zero (see Figure 8.3), and then
filtered (see Figure 8.4).

8.3 Characterization of Steps

Characterizing a step allows a kinematics algorithm to keep track of the approximate
distance traveled, as the length of a particular individual’s steps is relatively regular.
A way to identify whether a step has been taken, could be constructed using an
accelerometer [Ying et al., 2007]. The accelerometer gives output on the form ~a =
(ax ay az)

T , each element representing the acceleration along each of the phone’s
coordinate axis. However, the orientation of the phone during a walk affects how
each element in the acceleration vector behaves. A phone placed in a pocket or a
bag gives vastly different outputs. A more robust way is to consider the magnitude
of the acceleration, |~a|, defined similar to the vector norm as

|~a|=
√

a2
x +a2

y +a2
z , (8.16)

which is considerably more consistent between use cases.
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Figure 8.3 Differentiation of acceleration during 10 seconds of a typical walk. This signal
is low-pass filtered before the steps are detected (see Figure 8.4).

A 10 second sample of the average acceleration measured by a phone placed in the
front pocket during a typical walk is displayed in Figure 8.2. A flaw of this approach
is easily noticed. Due to gravity, the average acceleration is centered around 9.81
m/s2. A way around this is to differentiate the signal according to

∆ f (x) =
f (x+∆t)− f (x)

∆t
, (8.17)

yielding the signal depicted in Figure 8.3. This signal is centered around zero, but
possesses unnecessarily high frequency behavior. The sampling frequency of the
accelerometer is ∼ 20 Hz, giving a frequency content of the signal between 0 and
10 Hz [Proakis and Manolakis, 2007]. The normal step frequency for a person is
no larger than 3 Hz, which promotes filtering the signal. Doing this with a fourth
order Butterworth filter with a cut-of frequency of 3 Hz results in the signal shown
in Figure 8.4.
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Figure 8.4 Filtered differentiation of acceleration during 10 seconds of a typical walk with
the phone carried in hand (red), and a threshold level (blue). Here, each step is considerably
easier to distinguish than in Figure 8.2 and 8.3. When the signal goes from below to above
the threshold, this is used to indicate that a step has been taken. In this case, 17 steps were
taken and registered. This step counter works regardless of if the phone is carried in a bag, in
a pocket or in the hand.
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Chapter 8. Modeling the Kinematics

Here, the steps are clearly distinguishable and each peak corresponds to a step taken.
In Figure 8.4 a threshold for determining whether a step has been taken or not is
also present. A simple rule to count the number of steps taken could be to count
the number of times the signal passes from below to above the threshold. Using this
rule 17 steps were taken during the 10 seconds interval displayed in Figure 8.4.

An algorithm corresponding to the rule above has been implemented in Android
using Java. To test the performance of the algorithm two walks of 100 steps re-
spectively were taken, one with the phone in hand and one with the phone in the
front right jeans pocket. When the phone was carried in the hand, 101 steps were
registered and when carried in pocket, 100 steps were registered. This shows that
the simple algorithm produces satisfactory results in these common use cases. The
technique could be refined further, e.g. by identifying the step frequency or by using
more sensors.

Step Length Considerations
The step length of an individual, moving in a straight line with a constant speed, is
more or less constant. Different individuals or the same individual moving at differ-
ent speeds or performing turns have a quite large span of step lengths. In the parts of
this thesis where a fixed step length is used, the step length has been determined by
the authors walking a predetermined distance comprised of walking straight inter-
spersed with turning both left and right, at a constant speed. The average step length
is then simply computed as the distance divided the by number of steps and a value
of 0.77 m was obtained.

For real world usage however, the length of a user’s steps must be determined. This
can be done in various ways. One is to have the user estimate his/her own step length
with the same method as above. Another is to adaptively tune the step length by
using approximately known distances traveled and the number of steps taken whilst
traveling. A way of doing this is to use some sort of positioning technique (GPS,
WiFi etc.) to estimate the distance while the step counter determines the number of
steps.

An alternative method is to add a state in the PF corresponding to step length, and
spread the particles accordingly. Particles with either too long or too short step
lengths would agree badly with measured RSSI-values and thus be given small
weights. A downside of this is that increasing the number of states would require
more particles as discussed in Section 4.1, and consequently increase the computa-
tional power required to implement the filter.
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Figure 8.5 True versus, by PDR, estimated path using gyroscope and pedometer. The initial
heading is in the negative x-direction. The error gets larger with time, but is only about three
meters off after a of 110 meters walk. However, as Figure 8.6 shows, the performance only
deteriorates form here.

8.4 Dead Reckoning

Dead reckoning (DR) is the process of calculating the current position based on
a previously determined position and advancing that position based on a known
model [Beauregard and Haas, 2006]. DR has been used by ships and airplanes for a
long time, and in more recent time in networked computer games [Murphy, 2011].
However, the error is cumulative and the performance deteriorates with time. This
is shown in Figure 8.6. The distance around the rectangle is approximately 105
meters, and the error in heading and position is clearly visible.

DR estimations are subject to cumulative errors, i.e. errors are added over time
and depending on the accuracy of the DR system, the estimated position deviates
from the true one. This implies that the position and heading estimates need to be
corrected at a certain time interval to provide an accurate position. For phones, a
method which extends normal DR, called pedestrian dead reckoning (PDR) could
be used [Beauregard and Haas, 2006]. Position and direction estimation would most
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Figure 8.6 True versus, by PDR, estimated path using pedestrian dead reckoning using the
same method as in Figure 8.5 but for a longer time. The error gets larger with time and after
approximately 630 meters walked, the error is around 12 meters and the heading is almost
30◦ off.

likely include some form of step counting for distance measurement combined with
either gyroscope or a sensor fusion including the magnetometer for heading estima-
tion. As an example, the true and estimated paths using a pedometer and a gyroscope
during a walk of approximately 110 meters, are presented in Figure 8.5. The behav-
ior is fairly good but there is a heading error present soon after the start, and this
grows as the walk continues. The distance estimated by the pedometer is also larger
than the true distance traveled. Further, the estimation error grows with time, as seen
in Figure 8.6, making PDR useful only for short term estimation, if no correction of
position and direction is performed.
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Figure 8.7 Histogram over time difference between consecutive samples given a specified
sampling frequency of 20 Hz. Each interval is divided into 100 bins and the width of each
bin is 7 · 10−4, 2.5 · 10−4 and 4 · 10−5 seconds respectively. The time differences shown in
the bottom figure shows occasions when a sample has been skipped by the subsystem, which
occurs about once every 2000 samples. Due to the large number of data points these are
almost indistinguishable in the first plot.

8.5 Dealing With a Non-Constant Sampling Rate

The Android platform employs a sampling strategy called event based sampling.
An application may request sensor data with a specified time separation, e.g. 50 ms
for a sampling frequency of 20 Hz. However, the system will forward data to the
application when a new value is available in conjunction with the specified rate.
The result is sensor data sampled at slightly different time intervals. Further, if the
system is busy when the requested data is to be obtained, it may choose to skip
that sample, resulting in a de facto doubling in sample time for the next sample.
Disregarding sensor samples is more common when the system is under heavy load,
which results in more samples being skipped.
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Figure 8.7 presents a histogram over the time between consecutive samples for a
set of 12 375 accelerometer data points with a specified time between samples of
50 ms. The first figure shows that most time differences are around 50 ms, which is
to be expected. If the data is studied more closely, a small number of points is visi-
ble around a separation of 100 ms. These are generated by the system disregarding
a sample, resulting in an approximately double time difference. The two following
figures consist of the data divided into two intervals, one with time differences rang-
ing from 40.3 ms to 61.7 ms, and one with a range from 97.9 ms to 101 ms. The
first of these intervals consists of 12 311 data points, and the second of 64 points.

Only a small fraction of the samples are skipped by the system. However, these
might introduce unwanted behavior when the data is filtered. The Butterworth low
pass filter used in the step detection algorithm is designed by a cutoff frequency
being chosen as a fraction of the Nyquist frequency (half the sampling frequency).
A small difference from the desired sample time only affects the cut-off frequency
and filter behavior slightly. A missed sample, on the other hand, causes the cut-off
frequency and the behavior of the filter to change drastically.

This must be addressed for the aforementioned step detection algorithm to function
as intended. A straight forward way to do so is to use linear interpolation. Given
two data points, x0 and x1, separated in time by ∆t, a new sample in between could
be constructed as,

x1′ = x0 +
x1− x0

2
. (8.18)

The resulting sequence, x0, x1′ and x1, now has a time separation of ∆t/2 and x1′

is located in the middle of x0 and x1 on the straight line connecting the two. This
would of course not capture any of the signal’s behavior in between the two data
points, but the frequency content missed would be of the order of 1/(2 ·∆t) and
higher. Thus sampling the signal at a sufficiently high rate would allow for some
interpolation without missing the frequency behavior of interest. This simple inter-
polation scheme can easily be extended to accommodate for more samples being
introduced between x0 and x1.

There is a possibility for the system to skip several consecutive measurements. For
the step detection algorithm previously described, the frequencies of interest were
below 3 Hz, resulting, due to the Nyquist sampling theorem, in a minimum sam-
pling frequency of 6 Hz. In the algorithm, a sampling time of 50 ms is used and
to fully resolve the sought after frequencies, a sampling time of 166 ms or faster
is needed. This implies that at least three consecutive samples would need to be
skipped to corrupt the desired frequencies. From the data set illustrated in Figure
8.7, the approximate probability of missing a single sample is 64/12375 ≈ 0.005.
If the system uses the same priorities when deciding if a sample should be skipped
regardless of if the previous sample was skipped, which in itself is unlikely, the
probability of two consecutive samples being skipped is 2.5 ·10−5. Further, to skip
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8.6 Direction of Movement

three samples a collection of, on average, 8 million samples would be needed. With
a sampling frequency of 20 Hz, this would take 400 000 seconds, or a little over 4.5
days. Even a tenfold increase in the probability of skipping a sample would poten-
tially cause either a missed detection or extra step detected on average once every
7th minute, which still is acceptable.

8.6 Direction of Movement

To have a good estimation of the movement, not only the distance traveled needs to
be known. More important is the direction in which the movement takes place. In
addition, this task is more complicated than finding the distance by the number of
steps taken. Many approaches are available using a wide span of technologies.

Integrated Gyroscope
An enticing opportunity to determine the direction of movement using the gyro-
scope is, given a known initial heading, to integrate the gyroscope output using
e.g. the trapezoidal rule. This would give three angles describing the gyroscope’s
current orientation in reference to the initial one. This approach, however, has two
major flaws. The MEMS gyroscopes possess biases and drifts making the estimated
orientation drift over time. This makes the gyroscope suitable only for estimations
over short intervals of time. Further, the gyroscope only measures its own angular
velocity and in extent orientation, this makes it hard to discern between a true turn
and a turn of the gyroscope without strapping the gyroscope to the user with a fixed
orientation.

A way to get around some parts of the last problem is to use the accelerometer
to approximately determine how the device is oriented in reference to gravity. The
gyroscope may then be used to compute only the approximate angle with which the
user has turned around the direction of gravity. This is beneficial simply because
all ”normal” turns performed by a human are around the direction of gravity. This
makes the orientation of the device in reference to the user somewhat obsolete, but
false turns may still be induced by turning the device around the direction of gravity.

Sensor Fused Heading Estimation
There are different approaches for combining magnetometer, gyroscope and pos-
sibly other sensors to produce a sensor fused estimation of the heading. Most An-
droid phones implement such an algorithm, using gyroscope, magnetometer and
accelerometer to produce an estimate of how the phone is oriented in the world
coordinate system. The algorithm uses gyroscope and accelerometer to determine
when the magnetometer output is corrupted, and uses their measurements to esti-
mate the heading until the magnetometer can be trusted.
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Figure 8.8 True heading versus heading output from Android rotation vector sensor. The
true heading was due east, marked by the green dotted line. The mean of the estimated head-
ing is 89.7◦, which is satisfactory. However, it deviates from this mean as much as 15◦ and is
not accurate enough for our purpose.

In Figure 8.8 the estimated heading for such an algorithm is shown along with the
true heading. The measurement was taken while walking due east for 91.5 meters
in a corridor indoors. The difference between the mean estimated heading, 89.7◦,
and the true heading, 90◦, is minuscule, but the estimates vary around ±15◦ from
the true heading. This method of estimating the heading does not possess longterm
drifts, but, as the estimation relies on the magnetometer for longterm calibration, it
may be corrupted by different environmental factors, see Section 2.3.
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8.6 Direction of Movement

Heading as a Particle Filter State
Another method for estimating the direction of movement is to extend the PF with
a state representing the heading of each particle. A kinematics model could be

xk+1 = xk + r · cosθk

yk+1 = yk + r · sinθk (8.19)
θk+1 = θk + vk+1

where x and y represent the particle’s two dimensional position, r the approximate
distance traversed between time step k and k+1, θ the particle heading in the range
of [0,2π] radians and vk+1 the process noise at time step k + 1. During the state
update particles will be spread according to their heading and the distance traveled
since last update. Particles with correct heading and previous position will reach
the correct position and be assigned large weights. A problem arises when after a
long stretch of walking straight, the user makes a turn, as most particles at that point
have headings corresponding to the user before the turn was made. Thus, to be able
accommodate for turns, the process noise, vk, must have a sufficiently large standard
deviation.

Gyroscope measurements may be added to the kinematics model by adding them to
the θ state update rule as

θk+1 = θk +∆θk + vk+1, (8.20)

where

∆θk =
N

∑
n=1

~ωtn + ~ωtn+1

2
· (tn+1− tn) (8.21)

with N as the number of gyroscope measurements between tk and tk+1, ~ω as the
sensor measurements and tn as the time of the n:th measurement. ∆θ is a measure-
ment of the change in direction between k and k+1, allowing the kinematics model
to more accurately capture turns. Used in this sense the gyroscope is only used
to compute the angular change between two time steps. Thus, if the time between
state updates is short enough, biases and drifts of the gyroscope may be neglected.
Further, this model allows for a process noise, vk, with a much smaller standard
deviation as most of the dynamics of a turn is captured by the gyroscope.

The problem of ”false” turns, which arises when the device turns when the user does
not, is still present. However, the effect can be reduced quite substantially when
the gyroscope is used collaboratively with the PF. Each particle is an independent
entity and if a turn is detected, a portion, p ∈ [0,1], of the particles may be selected
to ignore the turn. Later, when the particles are given their weights, these particles
will, depending on whether an actual turn was made, either be given large or small
weights. Thus, if a turn was made, the portion, p, of particles that did not turn will
not be re-sampled and vice versa.
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Adding the Step Counter The kinematics model formulated in (8.19) and (8.20)
may be integrated with a step counter, like the one described previously. The revised
kinematics model then becomes,

xk+1 = xk +N · (d + rk+1) · cosθk

yk+1 = yk +N · (d + rk+1) · sinθk (8.22)
θk+1 = θk +∆θk + vk+1

where N is the number of steps taken between time step k and k+ 1, d is a prede-
termined step length and rk is a small correction factor to account for fluctuations
in step length. Further, rk and vk are Guassian random variables with zero mean and
σr and σv as standard deviations.

Given a well determined step length of the user and an accurate gyroscope, the stan-
dard deviations of both rk and vk can be kept small. The resulting kinematics model
will give a particle spread more related to the user’s actual movement. However,
inferior behavior is to be expected if the user’s step length is far from the one used
by the model. A solution to this is, as stated in Section 8.3, to include step length as
an additional particle state. The extended model becomes

xk+1 = xk +N ·dk · cosθk

yk+1 = yk +N ·dk · sinθk (8.23)
θk+1 = θk +∆θk + vk+1

dk+1 = dk + rk+1

with the same notation as previous with the exception of dk being the particle’s
step length at time step k. Particles with appropriate step lengths will agree more
with the measurements and tend to sustain and multiply. This has the advantage of
being independent of the user’s step length as the algorithm adapts for each user.
On the other hand, we now have introduced two additional filter states compared
to the simple case of only two states corresponding to x- and y-positions. Adding
states forces an increase in the number of particles which in turn leads to a more
computational and power demanding algorithm. Increasing the number of states
by a factor two requires the number of particles to increase to the power of two
to keep the same density of particles in the state space. This would result in the
need to use between 105 and 106 particles, which would be too computationally
demanding for today’s smartphones, at least without extensive optimization. But,
adding the additional states increases the knowledge of how the user has moved
between measurements, giving a much more narrow area where a true position is
probable. Further, the possible variance, especially of the step length state, is fairly
small. The step length for most persons is in the region of 0.5 to 1 meter, and when
an initial estimate has been determined, there are only a few cases where this length
changes by more than a few centimeters. Concerning the heading, particles would
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initially need to be spread in all directions. However, when an approximate heading
is obtained, the spread only needs to be enough to correct for biases and drifts
of the gyro and small heading changes caused by the user inadvertently turning
the device a small amount. Larger ”false” changes in heading will be caught by
the partial spread discussed earlier. In conjunction, this decreases the number of
particles needed from almost a million to between 3 000 and 10 000, depending on
the time between the RSSI measurements.
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9
Indoor Positioning - Sensor
Fused Approach

In this chapter, a method of how to include the information from the sensors in the
positioning algorithm will be presented. The dead reckoning presented in the previ-
ous chapter works well for short distances (see e.g. Figure 8.5), whereas information
from WiFi signals do not have the disadvantage of drifts. The main strategy is now
to combine these, in order to get the best properties from both parts.

9.1 Extension of Particle State Space

In the previous chapters, the particles consisted of two states; the coordinates of the
position. Now, we introduce the direction of movement, and the step length of the
user, as two new states.

In Section 8.6 two extensions to the state space, (8.22) and (8.23), to accommodate
for heading and for heading plus step length in congregation with a step counter are
presented. Both of these models will be used to estimate positions in later parts of
this chapter.

Two sensors will be used to aid in the positioning, an accelerometer and a gyro-
scope. The accelerometer will have two different uses. It will serve as the basis for
the step counting algorithm and to estimate the orientation of the phone in relation
to the gravity. Using this orientation, the gyroscope will be used to measure the
changes in heading.

Initially, the position of each particle is uniformly random distributed in [0,2π],
and the step length is normally random distributed around 0.75 m. When the user
takes a step, each particle moves its own step length in its own direction. Then,
particles with good estimations of the step length and direction will reach accurate
estimations of the position, and be more likely to multiply in the next step.
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Parameter Magnitude
C for 2.4 GHz -38 dB
C for 5 GHz -36 dB
α for 2.4 GHz 0.4 dB / m
α for 5 GHz 0.5 dB / m
Number of particles N 104

Table 9.1 Parameter magnitudes used in the algorithm.

Parameter Distribution
Initial direction θ U(0,2π)

Process noise vθ N(0,10−4) (m)
Initial step length r N(0.75,4 ·10−2) (m)
Process noise vr N(0,10−4) (m)
Measurement noise eRSSI N(0,25) (dB)

Table 9.2 Probability distributions used in the algorithm.

The new states offer two advantages. First, this kinematics model is more accurate
than a random walk, which means that the particles are moved to more probable
positions at each step. Secondly, the average direction and step length can be used
for PDR between the RSSI-measurements, providing a more frequent position esti-
mation output.

In order to keep the particle density in the state space high enough, the number of
particles used has to be larger for this algorithm. In order to model the noise, the
directions and step lengths are spread randomly with normal distributions around
their current values, during each state update (see Table 9.2). Standard deviations
of 0.01 meters for the step length, and 0.01 radians for the direction, seemed to be
reasonable for the models. The states are updated each time a step is taken by the
user.

9.2 Test Setup

In order to test this algorithm, one of the authors walked one round in Environment
three, at a normal walking pace, holding the smartphone with constant orientation in
relation to the body. The test path is shown on a floor plan in Figure A.1 in Appendix
A. The initial position and direction were treated as unknown. The parameter values
used in this test are listed in Table 9.1, and the probability distributions of the models
are listed in Table 9.2.
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The test was then repeated, but this time, the initial average step length was set to
0.4 m. The purpose of this was to investigate how the states adapt to the actual step
length, which was 0.83 m.

The positioning estimation error is computed by dividing the path into equidistant
points according to the number of steps taken during the walk. The position error
is then computed as the absolute distance between the estimated position and the
corresponding point on the path.

9.3 Results

This section presents the results obtained when fusing sensor data together with
WiFi measurements. First, the results obtained while a predetermined step length
was used are presented. Afterwards, the position estimates when the step length is
treated as a part of the state space is presented along with positioning from an LS
algorithm, a PF using only WiFi measurements and a PDR algorithm. This section
is followed by a presentation of findings concerning the step length estimation when
the algorithm is tested with an erroneous initial value. The last section deals with
detection and compensation of ”false” user induced turns.

Fixed Step Length
In Figure 9.1, the estimated path of a walk in Environment three is presented. The
positioning errors are shown in Figure 9.2 and have a mean of 1.3 meters and a
maximum of 6 meters. The time until an approximate initial heading is found is
clearly visible in the plot of the error, corresponding to the peak at 7 samples. A
known initial heading would of course improve on this error.

Estimated Step Length
Figure 9.3 shows the estimated path of four different positioning algorithms, LS,
PDR and PF with and without sensor data. The positioning error is, for each algo-
rithm, displayed in Figure 9.4 and to high-light some of the features of the error, the
mean, max and median values for each are available in Table 9.3. In this test, WiFi
measurements combined with information from the sensors performed best. Fur-
thermore, Figure 9.4 shows that the error from the PDR seems to grow with time,
which is a typical property of this estimation method. The error of the PF with sen-
sor data is larger when the step length is also estimated. This behavior is expected
since the estimation relies on relatively noisy RSSI measurements to estimate the
step length. However, this walk was conducted at an approximatively constant speed
by a single user, and a different user may have a quite different stride length. In such
a case, the positioning will improve if the step length is estimated. Additionally, a
user may change stride length over the course of a walk, which will be caught by
the estimation.
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Figure 9.1 Position estimates using both WiFi and pedestrian dead reckoning, along a ref-
erence path of 273 meters. This method improves the positioning significantly. The mean
error is 1.3 meters (see also Figure 9.2). The start and stop point is (109.5;10), and the initial
heading is in the negative x-direction. Here, the step length is considered as known and set to
0.83 m. See Table 9.3 and Figure 9.3 for a comparison with other methods.

Positioning algorithm Maximum error / m Average error / m Median error / m
LS - WiFi Only 11.2 4.8 4.1
PF - WiFi Only 11.6 3.5 3.1
PDR 7.7 4.2 4.8
PF - WiFi & Sensors 5.8 1.8 1.8

Table 9.3 Position error using four different algorithms utilizing sensors and/or WiFi along
the true path in Figure 9.3. Combining WiFi and PDR gave the lowest error. Plots of the error
are shown in Figure 9.4.
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Figure 9.2 Error of the position estimates using both WiFi and PDR. The step length is
set to 0.83 m. The error grows towards its maximum value during the first few steps, since
the heading is not well estimated in the beginning. The average error is 1.3 meters. See also
Figure 9.1.

Evaluation of the Step Length Estimation
Figure 9.5 shows how the average step length of the particles changes with time.
The initial estimation was intentionally set too low, in order to investigate how the
algorithm would perform. During the very first steps, the estimated value is smaller
than the true value. However, after six steps the value has passed 0.75 m, and from
this point, the situation resembles one with an initial estimation of 0.75 m.

9.4 Limit the Impact of ”False” Turns

If the orientation of the device changes severely in relation to the user, this will be
interpreted as a turn by the user in the algorithm. In worst case, this might result in
erroneous position estimates that do not recover. A way to correct this, is to detect
when the position estimate is unreasonable, and then change it to a rough estimation.
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Figure 9.3 Position estimates using four different algorithms utilizing pedestrian dead reck-
oning (PDR) and/or WiFi, together with a reference path of 273 meters. It is clearly visible
that the combination of WiFi signals and PDR gives estimates that are closest to the true
path. It also gives more frequent estimates than the methods that only use WiFi. The errors
are presented in Table 9.3 and Figure 9.4.

If the RSSI from a certain AP is high (> -42 dB), whereas the distance between the
estimate and the AP is more than 7 m, this is used as an indicator of an unacceptably
inaccurate estimate. Then, the algorithm is reinitialized around the current AP.

Moreover, when a turn is detected, 15 % of the particles keep their previous direc-
tions, in order to include the possibility that the phone merely changed orientation
in relation to the user.

This was tested in Environment three, where the phone was rotated π

2 in relation
to the user at three points along the path. The rotations were made in the same
direction, adding up to a total rotation of 3π

2 . This resulted in an average position
error of 3.4 m, and a maximum of 24.3 m. The maximum value occurred after the
third rotation, and was followed by a reinitialization. The first two rotations resulted
in much lower error peaks (6.6 m and 6.8 m).
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Figure 9.4 Position error of different algorithms. Note that the scales on both the axis are
different. Using PDR only gives an error that grows with time. Combining WiFi and PDR
gives the lowest error. See also Figure 9.3 and Table 9.3.
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Figure 9.5 Each particle was assigned with a step length as a fourth state. In order to
investigate if this could be advantageous when the step length of the user is unknown, a test
user carried the device along a path of 273 m. This plot shows the average step length of the
particles, with initial value 0.4 m, intentionally set too low. It gets considerably closer to the
true step length, which is 0.83 m in this test.

9.5 Concluding Remarks

Using information from the accelerometer and the gyroscope improved the position-
ing significantly. At the same time, this requires that the orientation of the phone in
relation to the user does not change too frequently. While these events may be de-
tected and taken into account, there are situations where it takes some time for the
algorithm to exclude a "false" turn, and if these occur too often, the position estima-
tion would always be inaccurate. Even though the sensors contribute with important
information about the movement of the user, it would not be an option to use these
for PDR only, i.e. without combining them with the WiFi measurements. The main
reasons are that the initial states would have to be known, that the expected error
grows with time, and that the orientation of the phone would always have to be fix
in relation to the user. The conclusion is that WiFi measurements could be used
without PDR, but not the other way around.
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10
Algorithm Implementation
in Android

In the previous chapters, offline computations are used to obtain the position esti-
mate. Here, a real time Java implementation of the developed algorithms will be
presented briefly. The PF is quite computationally demanding, and therefore it is
important to discern if handheld devices are capable of performing these computa-
tions sufficiently fast.

The implementation will be done in a positioning application developed by Sony
Mobile, called SonyMap. This application is intended for Android smartphones and
used to position the smartphone in Sony Mobile’s buildings around the globe.

10.1 Java Implementation

Going from offline simulations to a real time implementation naturally requires cer-
tain considerations to achieve desired performance. Further, to scale a positioning
algorithm from use in a single building and a single floor to a system that is used in
multiple sites around the globe provides additional challenges. In this section, some
of the considerations made when the algorithm was implemented are presented.

The focus of the implemented algorithm was usability and accuracy, while keeping
the strain on hardware and battery at a minimum. Because of this a few of the
techniques described in this thesis were kept outside the implemented algorithm.

Adaptation of Model Parameters
To adapt the model parameters is a good approach either if the environment is un-
known or if it is changing within the specific building. However, as stated in Chapter
7, the parameters obtained through the proposed adaptation algorithm are accurate,
but not as accurate as the ones obtained by multiple measurements at several known
locations. To obtain the best accuracy the choice was made to, instead of adapting
the parameters, allow for individual values of C and α to be set for both 2.4 and 5
GHz for each AP.
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10.1 Java Implementation

Compensation for User Induced Signal Attenuation
In Chapter 7 it was shown that most normal use cases (carrying phone in hand,
pocket or bag) did not produce sufficient signal attenuation to noticeably impact
the positioning. Enough signal attenuation for this was only produced when the
user deliberately tried to cover the antenna. Further, the algorithm to detect such an
attenuation required a fairly large number of computations and was thus decided to
be kept out of the implementation.

Step Length as a Particle Filter State
Estimating the step length proved to be a good addition to the state space, especially
when the user’s step length was different from the initial filter state or when the
step length changed during the positioning. However, to include step length as a
filter state required an increase in the number of particles from the current 2 500
to around 10 000, making it cumbersome to run. Further, to accommodate for the
possibility of the user changing orientation of the phone, the spread of the particles
was increased, removing some of the benefits of having step length as a filter state.

Finding Correct Building & Floor
One of the first obstacles encountered when trying to implement the algorithm was,
on a site with several multistory buildings, to find the correct building and floor.

To find the correct building a couple of different techniques could be used. The most
simple of these is to use the GPS output when the user enters the building. This,
however, is not a very robust way. Either the user may want to start the navigation
when inside the building or the GPS output might be inaccurate. A better estimate
can be obtained by evaluating the RSSI values of the available known WiFi APs, and
position the user in the building from where the strongest RSSI value is obtained. If
needed, this could be refined further by taking more than the AP with largest RSSI
value into account. However, as the buildings at Sony are separated by fairly large
distances, regarding only one AP is sufficient.

A more challenging task is to determine the correct floor within the correct building.
The signals are expected to get significantly attenuated when propagating between
floors [Rappaport, 1996]. Thus, the strengths of the signals from each floor are
used to determine the current one. In this case, it is insufficient to regard only the
known AP with largest RSSI value. In areas with openings between different floors,
like stairwells, in close proximity to windows or when the distances to APs on
other floors are short, it is not unlikely that the largest RSSI value comes from a
floor different from the one the user is currently on. To obtain an accurate estimate,
information from several APs needs to be used. This can be done in several different
ways and during the application implementation two of these were tested.

107



Chapter 10. Algorithm Implementation in Android

Below, a floor detection scheme based on the three APs with largest RSSI values are
presented [Marques et al., 2012]. The floor the user is currently on is determined by

• If the APs with the second and third largest RSSI values are located on the
same floor, that floor is chosen.

• If not, the floor of the AP with largest RSSI value is chosen.

This scheme mitigates the problem of having one strongly transmitting AP on the
”wrong” floor. However, if there are at least two APs from the ”wrong” floor among
the three, this floor will always be chosen. Therefore an alternative method has been
suggested by the authors.

Simply determining the mean received power from each floor suffers from the same
problems as earlier discussed. If, on the other hand, the aggregate received power
from each floor is determined, a more robust method is obtained. As RSSI values are
reported from the driver in the range of 0 to−100 dB, where 0 indicates the highest
received power, a simple addition will not suffice. Instead, the smallest received
RSSI, Rmin, is used to scale all RSSI values before adding them together. This is
done by determining how much to add to the smallest RSSI value to obtain 0 i.e.
−Rmin, and add this to all RSSI values. The set of accumulated power from each
floor can then be used to determine a probable floor according to the rules defined
in the flowchart depicted in Figure B.1 in Appendix B.

This algorithm uses some heuristic assumptions concerning the power from differ-
ent floors when estimating the current one. The assumptions are based on consecu-
tive floors being relatively similar, both in layout and AP distribution. Further, it is
expected that the antennas of the APs are designed to direct the signal downwards.
One of the assumptions is that if the signals from three consecutive floors are com-
parable, the most probable location is on the middle floor. In the implementation
two floors have been comparable if their total powers are within a factor 1.5 from
each other.

To test the performance of the algorithms, each was implemented in a version of
SonyMap whereafter the applications were installed on identical phones. A ∼30
minute walk was then taken throughout the Sony building and the number of faulty
floor estimates was noted. The scheme proposed in [Marques et al., 2012] reported
the wrong floor 10 times during the walk while the one proposed by the authors was
wrong 3 times.

If a consistent floor estimation is of more importance than a speedy change when
the user changes floor, both algorithms could be further refined. A check on the
number of times a different floor has been reported could be introduced and the
floor estimate would not be changed until the algorithm had reported the same floor
a specified number of consecutive times.
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Coordinate Conversions
In Chapter 2 the longitude/latitude coordinate system is presented. This system is
used in most large scale positioning applications as it gives each point on Earth
a unique coordinate representation. However, it is impractical to use the longi-
tude/latitude system for positioning on a local scale. This is due tothe same dif-
ference in longitude/latitude will equal a different distance in meters on different
locations, because of the Earth’s spherical surface. As all calculations, in this thesis
and in many other applications, are done in meters a conversion between the two is
needed.

In this thesis an open source solution called Jcoord is used [Stott, 2013], which is
published under the GNU General Public License (GPL)1. This solution splits the
Earth into regions within which a distance in longitude/latitude is approximately
constant converted into meters. Further, some extrapolation is done within each
region to make the conversion even more exact. To convert in the other direction,
the region needs to be known, but otherwise the same general computations are
made.

Pose Estimation
When implementing the PF, it is of interest to discern between different states or
poses that the user is in, like walking or being still. One of the reasons for this is
that the state update of the PF can be changed according to the pose. When still, no
benefit is drawn from updating the heading, step length or movement and a random
walk with a small variance is a good enough kinematics model. Another reason
is that if the user is still, there is no need to sample the sensors at a high rate,
conserving both computational power and battery. Further, as fewer filter states are
required at stationarity, the number of particles can be decreased, which in turn
decreases the needed computational power further.

In the implementation, a user has been deemed as still if no steps have been de-
tected over the course of three seconds, and deemed moving if not still. This is a
fairly crude method of distinguishing between poses, but in the current use case, the
performance is sufficient.

The Particle Filter
In Chapter 4, the PF process is described in three steps, weighting, re-sampling and
state update. Performing the operations in this order is not computationally efficient,
both concerning memory and computational power. A better way is to combine the
state update and weighting, thus when a new set of RSSI values is available for each
particle, the state is updated and then the weight computed. During this step a sorted
cumulative sum of the particle weights is also computed. Then the re-sampling is
performed along with the computation of the estimated position.

1 GNU General Public License (GPL): www.gnu.org/copyleft/gpl.html
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If a step counter is added to aid the state update, the states can be updated at each de-
tection of a step, as the time between consecutive RSSI measurements is no longer
needed to perform an accurate state update. This further decreases the amount of
computing time spent between receiving new RSSI measurements and a position
estimate is obtained. In addition, along with every registered step, a new estima-
tion of the position could be computed, allowing for faster updates than the RSSI
measurements alone.

As each particle is an independent entity during most of the computations, the pro-
cess could be greatly improved by parallel computations, either in separate threads
on a single core, distributed over several CPU cores or even over GPU cores. In
principle the computations for each particle could be run simultaneously utilizing
the same number of threads as there are particles. There are, however, one bottle
neck in the computations. The state update and weighting must, for each particle,
be done before the re-sampling can be initialized. The explanation is simply that the
re-sampling is dependent on the weights of all particles. However, the steps of state
update and weighting, and afterwards the steps of the re-sampling, can be parallel.

In the authors’ implementations a time cap of five seconds was placed on the algo-
rithm, as the RSSI measurements were received with that time interval. Each parti-
cle filter process (State update, Weighting and Re-sampling) was parallelized using
a number of threads corresponding to the available processor cores. On a device
with four cores, the Xperia Z Ultra, the algorithm was run with a time consump-
tion of between 200 and 400 milliseconds. This is significantly less than the time
between RSSI measurements, allowing other tasks to be run alongside the particle
filter algorithm. If either RSSI measurements are received at a faster pace, or more
particles are needed, further optimization might be needed.

Performance of the Implemented Algorithm
Allowing for the user to stray from the ideal use case used when the algorithm was
developed, i.e. holding the phone with a constant orientation in reference to herself,
of course impacts the performance. To test how the final algorithm performed, an
application was developed where the user was asked to walk a predefined path,
trying to be at the same place along the path at all times as a certain reference
position. The difference between this reference position and the estimated one was
recorded and the result is displayed in Table 10.1, along with the performance of a
least squares algorithm using only 2.4 GHz, and one using both 2.4 and 5 GHz Wifi.
The particle filter with sensors shows the best performance, with 37 % and 54 %
smaller mean error to each of the least squares methods. The maximum error also
decreased a fair amount. Further, it is interesting to note that adding 5 GHz WiFi
measurements to the least squares estimation, without giving any special attention
to modeling, improved the mean error by 27 %, showing that using dual band WiFi
measurements actually improves the performance of indoor positioning algorithms.
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Mean error / m Max error / m
Least Squares - 2.4 GHz only 7.0 18.2
Least Squares - 2.4 and 5 GHz 5.1 11.3
Partilce Filter plus PDR 3.2 8.0

Table 10.1 Mean and maximum error of the implemented particle filter algorithm along
with the same values for a least squares algorithm using 2.4 GHz, and both 2.4 and 5 GHz
WiFi. The particle filter shows the best results, with 1.9 and 2.8 meters smaller mean error,
compared to the two least squares estimations. Further, it is noteworthy that by adding 5 GHz
measurements to the least squares estimator, without no further modeling effort, the mean
error decreased by 27 %.
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Conclusion

In this chapter the contributions made throughout this thesis work are presented.
Further, possible extensions and improvements are described in the future work
section.

11.1 Contributions

Positioning Using Both 2.4 and 5 GHz WiFi Signals
A PF that uses both 2.4 and 5 GHz WiFi signals for positioning was developed. It
was concluded that more information was obtained by using both frequencies rather
than one of them, which improved the positioning.

The path-loss models can be improved by adapting the model parameters during the
positioning. This is done by using measurements from positions where the position
error is expected to be low, and then use this to estimate the model parameters.
Furthermore, the algorithm can compensate for signal attenuation induced by the
hand of the user.

Sensor Fused Positioning
In addition to the WiFi signals, information from the sensors was used to model
the motion of the user carrying the device. From this, an accurate positioning al-
gorithm was implemented, with the constraint that the device must be reasonably
fix in relation to the user. This algorithm performed considerably better than more
conventional techniques, and gave a mean error of 1.3 meters without the need to
know the initial position and heading.

For the case where the phone might be turned in relation to the user, a less accurate
but more robust algorithm was developed. This algorithm still produces position
estimates with an accuracy of 2-3 meters.

Both algorithms were developed and tested for commonly used smartphones, and
hence the sensors in these are accurate enough for the algorithms to work.
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Step Counter
A step counter using the accelerometer was developed, as an important part of the
algorithm. The magnitude of the acceleration was differentiated and filtered, and
when it passed a certain threshold level, this was used to indicate a step. This step
counter works regardless of whether the phone is carried in the hand, in a pocket or
in a bag.

Heading
The accelerometer was also used to give the direction of gravity as a reference of the
rotation, which was measured by the gyroscope, in order to get information about
the heading of the user. To handle different hypothesis of the direction, each particle
was given a direction as a state in the PF.

Implementation in Android
The robust version of the sensor fused positioning algorithm was implemented as
an Android API for use in SonyMap, a real time positioning application developed
by Sony Mobile.

Determine Floor
In the online implementation, a new algorithm to determine the current floor by
using WiFi signals was included. This proved to be a significant improvement com-
pared to the previous algorithm used in SonyMap.

11.2 Future Work

During the work with this thesis several possible enhancements or extensions to
the work have arisen, which have been deemed outside of the thesis scope. Some
of these points may, however, be of interest for future work on the subject and are
presented with a brief description below.

3D-Positioning
In this thesis only a two dimensional model of the space in which to navigate has
been used. Motion along the z−axis of the local frame, i.e. changing floor, has been
determined using methods other than the PF. Further, possibly beneficial signals
originating from other floors or buildings than the one the user is currently estimated
to be in are disregarded.
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A more general approach is to consider a full three dimensional model of space. For
this to be possible some extensions to the work done in this thesis must be done. A
start could be to introduce the current floors as a discrete particle state, removing the
need to have a separate algorithm to determine it. To make this possible a multi-floor
(and multi-building) model of the RSSI values from each AP, taking into account
the attenuation from floors and ceilings, needs to be developed. The 3D model could
also contain a continuous state corresponding to the altitude, making it possible to
determine both x- and y- position along with the height of the phone.

Map Data
Using a Map
The work in this thesis assumes no knowledge, apart from the locations of the APs,
concerning the layout of the building. This makes the developed system applicable
in many different environments with relative ease. However, if map data is available
this could be used in several ways to improve the positioning. One of these is to put
constraints on the path of each particle i.e. forcing the particles to enter rooms only
through doors and not to travel through furniture and walls. Another is that a user
only is able to travel between floors when in proximity of elevators or stairs.

Creating a Map
Another possibility is to use the estimated paths of a large number of users to esti-
mate where walls and furniture are located. This could then be combined to succes-
sively build a map of the building that could be used to aid future positioning.

Using More Signals and/or Sensors
To estimate a position, only RSSI measurements from WiFi APs and readings from
an accelerometer and a gyroscope were used in this thesis. However, smartphones
today contain sensors to measure a much wider array of signals and environmental
properties. Some of these have a great potential to aid in the position estimation.

A barometer is a sensor measuring the atmospheric pressure and this varies with the
height above ground. Thus, a barometer could aid in the estimation of floor, either
to be used to weight particles in a 3D model or to aid the heuristic floor estimation
algorithm.

Investigation of the magnetometer values have shown that these, in most cases, vary
too much in indoor environments to be useful for heading estimation. If, on the other
hand, the occasions when the magnetometer readings are correct could be identified,
this could be used to correct the heading.

In addition to WiFi, a smartphone has a large number of other wireless capabilities,
like LTE, 3G, GSM, Bluetooth, NFC and RF-ID. These signals could all be used to
improve the positioning, either by having a model of signal power as a function of
distance, or, in the case of NFC and RF-ID, by sheer proximity.
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Measuring the Time Difference
Instead of measuring signal strength from a transmitter an enticing possibility is to
measure the difference in time between a sent and received signal. A few different
methods of using this are given a brief explanation in Section 5.2. If the measure-
ments of time difference are made at both 2.4 and 5 GHz, as the speed of light
puts a limit on the time of flight, the frequency yielding the shortest distance of
flight is also the most accurate measure of the distance. This is due to, given perfect
time synchronization, the signal taking the shortest path between transmitter and
receiver, also yields the shortest time, and the signal can not take a shorter path than
the actual distance.

Improved Pose Estimation
When the developed algorithm was implemented only two poses were considered,
being still and walking. Furthermore, the distinction between the two was rather
crude, a user was deemed as still if no steps had been taken for a certain amount of
time, and deemed moving if not still. This is, however, a fairly good model of how
people moving on a single floor in an indoor environment behave.

There is, of course, a multitude of poses that would be of interest to discern between,
like walking, running, sitting, standing, riding an elevator or escalator etc. These
poses could aid the positioning in several ways. Discerning between sitting, walking
and running would give a more accurate particle spread and if the user is estimated
to travel up or down the floor estimation could be improved.

Improved Usability and Crowdsourcing
A positioning system for a single or a small set of buildings is in its way useful,
at least for persons visiting them frequently. A system, with which it is possible
to position in a large number of buildings, is more usable. Such a system could be
achieved in different ways, one being that APs could along with their MAC-address
also report their location and altitude. However, this would require industrial stan-
dardization and either new software for the APs or new APs altogether. Another way
is to create a system in which users can add AP locations or estimate the AP loca-
tions by trilateration. If such a system also is integrated with GPS, a truly ubiquitous
positioning system could be achieved.

Another advantage of having a large number of users is a large amount of data
generated in the system. This data could be used, as in Chapter 7, to over time
improve the propagation model for each AP or to find misplaced APs.
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Chapter 11. Conclusion

Smart WiFi Channel Choice
To obtain a total picture of the APs in the surroundings of the measuring device a
scan of each possible WiFi channel must be performed. Such a scan claims a large
amount of time (around 3.5 second). If, on the other hand, the channel/channels on
which the APs in the vicinity are transmitting are known, only these channels should
be scanned. This would drastically decrease the amount of time spent scanning, as
a single channel takes just over 100 ms to scan. If the scans could be performed at a
shorter time interval more information from the interesting APs could be obtained.
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Figure A.1 Paths and environments used during the different tests in this thesis. The floor
depicted is the top floor in the Glasgow building at Sony Mobile, Lund.
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Figure B.1 Flowchart of floor estimation algorithm. It is based on the floors from which
the largest total signal intensities are received. A large signal intensity from a certain floor is
used to indicate that the user is on/close to that floor.
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