
Larg
e scale clu

ster an
alysis w

ith
 H

ad
o

o
p

 an
d

 M
ah

o
u

t

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, February 2015.

Large scale cluster analysis
with Hadoop and Mahout

Felix Aronsson

Fe
lix A

ro
n

sso
n

Master’s Thesis

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2015-431

http://www.eit.lth.se

Large scale cluster analysis
with Hadoop and Mahout

Felix Aronsson
ada07far@student.lu.se

Tumblr, Inc.

Advisor: Yufei Pan

February 26, 2015

Printed in Sweden
E-huset, Lund, 2015

Abstract

User generated data is getting more and more common. This data often expands
in to hundreds of millions, if not billions, of data points. It is in the interest of
every company with these vast amounts of data to make sense of them in one
way or another. In machine learning, cluster analysis has been one way of trying
to categorize data without supervision. Mahout is a library which runs on top
of the Hadoop framework and tries to make cluster analysis (as well as other
machine learning algorithms) arbitrarily scalable. This thesis focuses on using
Mahout to cluster a large data set to see if the clustering algorithms in Mahout
will scale to several millions of documents and tens of millions of dimensions. I
find that while it is theoretically possible, there are several practical limitations
that influence both the ability to run cluster analysis on such data sets, and also
the results.

Acknowledgments

I would like to thank Yufei Pan at Tumblr for being my supervisor for the project,
but also for helping me get the project started by telling me who to talk to, setting
up meetings and getting me started with using the infrastructure there. Beitao Li
at Tumblr helped me out with getting already prepared tag data aggregated from
logs, for which I would like to thank him.

I also want to thank my employer, MrFriday AB, and in particular Erik Barke-
ling and Jonas Troedsson, for allowing me to work on my project as part of my
employment, but also for taking the first contact with the people at Tumblr about
the project.

Finally, I would like to thanks Anders Ardö, associate professor at the de-
partment for Electrical and Information Technology (EIT) at Lund University, for
taking the role as examiner for this project, but also for sparking an interest in
machine learning with his course Web Intelligence and Information Retrieval.

ii

Table of Contents

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Background . 1
1.2 Goals and methodology . 2
1.3 Tools, infrastructure and data sets . 3
1.4 Previous works . 5

2 Survey 7
2.1 Distance measures . 7
2.2 K-Means clustering . 10
2.3 Canopy clustering . 10
2.4 Latent dirichlet allocation . 11
2.5 K-Means variations . 11

3 Data set exploration 13
3.1 Summary . 16

4 Small scale clustering 17
4.1 Preparation . 17
4.2 Spherical K-Means . 18
4.3 Spherical K-Means with Canopy seeding 24
4.4 Latent Dirichlet Allocation . 25

5 Large scale clustering 31
5.1 Preparation . 31
5.2 Spherical K-Means . 32
5.3 Latent Dirichlet Allocation . 34

6 Conclusions 37
6.1 Scalability and performance . 37
6.2 Cluster quality . 38

iii

6.3 Future improvements and use-cases 40

References 41

Appendices 43

A Git repository of source code and data 45
A.1 Hadoop jobs . 45
A.2 R scripts . 45
A.3 Documentation and report . 45

B Full clustering outputs 47
B.1 Last.FM Spherical K-Means output 47
B.2 Last.FM LDA topic output . 48
B.3 Tumblr Spherical K-Means output . 49
B.4 Tumblr LDA topic output . 50

iv

List of Figures

3.1 Tag occurrences in the Last.FM data set plotted against the rank . . 13
3.2 Tag occurrences in the Tumblr data set plotted against the rank . . . 14
3.3 Number of tags per artist (log-log) 15
3.4 Number of tags per blog (log-log) . 15

4.1 Elbow-method applied on the Last.FM data set 19
4.2 Running time for varying values of k (95% confidence interval in gray) 20
4.3 Running time for varying percentages of data points 21
4.4 Running time for varying numbers of dimensions 21
4.5 Running time for different k using 5, 10 and 15 nodes 22
4.6 Running time for different number of topics 26
4.7 Running time for various numbers of dimensions 27
4.8 Running time for various percentages of data points 27
4.9 Running time for various amount of worker nodes 28

6.1 Histogram of ratings from external users 39

v

vi

List of Tables

4.1 Results of K-means clustering of the Last.FM data set 23
4.2 Comparing cluster assignment of similar artists 24
4.3 LDA clustering of the Last.FM data set 29

5.1 Output of K-means clustering on the Tumblr data set 33
5.2 Comparing cluster assignment of blogs in same category 34
5.3 LDA clustering of the Tumblr data set 36

vii

viii

Chapter 1
Introduction

This chapter aims to

− introduce the reader to the context of the project, and what merit it has from both
a technological point of view as well as a business point of view,

− introduce the reader to the goals of the project,

− present previous works with similar goals as this project, and

− briefly discuss the tools, technologies and infrastructure used in the project.

1.1 Background

Processing big data is getting more and more interesting from a business sense
and the rate of data generation is increasing every day as more users use services
on the internet, but also data from mechanical processes and sensors as industries
are becoming more and more digitally connected. A 2011 report by the McKinsey
Global Institute estimated that using insights from big data analysis are not nec-
essarily limited to efficiency and quality improvements in private corporations,
but also for countries and government entities. For example, they estimate that
data from the US health sector has, with creative and effective use of big data
analysis, a potential value of $300 billion every year. [1]

For social media companies (Facebook, Twitter, Tumblr, et.c.) where user-
generated content is key, being able to process the user data is of course impor-
tant. Facebook, for instance, has a 300 PB data warehouse of data. [2] To process
such vast amounts of data, the algorithms used needs to be highly parallelizable.

1.1.1 Tumblr

One of the social media companies
with a large amount of user gener-
ated data is Tumblr which this the-
sis is centered around. Tumblr (www.
tumblr.com) is a blogging platform
established in early 2007 that cur-
rently hosts 170+ million blogs with

1

www.tumblr.com
www.tumblr.com

2 Introduction

80+ billion posts and is one of the top
30 most visited web sites in the world.

Each of these 80+ billion posts can
be (optionally) tagged with one or more tags when the user submits the post. The
main data set of this project consists of the subset of blogs that have used tags in
any of their posts combined with the tags they used and how many times.

Tumblr already has an experienced search team that has developed multiple
features used in production, the most user-noticeable of course being the main
search feature. This far, unsupervised clustering has not been extensively used.

1.2 Goals and methodology

The Tumblr data set (which ultimately is the primary data set of this thesis) is
massive in terms of dimensionality (number of tags) and cardinality (number of
blogs).

When applying algorithms or processes to increasingly large amounts of data
we often talk about “scaling” them. In the past, vertical scaling has been common
where more powerful hardware (adding memory, increasing the CPU capacity)
to be able to process more data. In the age of Big Data however, the focus lies on
horizontal scaling, where we acheive higher performance by adding more servers
and distributing the task at hand between these. This, in theory, allows a perfectly
parallelizable algorithm or process to be applied to arbitrary amounts of data.

The overall goal of this thesis is to investigate the possibility and techniques
of cluster analysis in a large scale. More specifically using the Hadoop framework
and the Mahout machine learning libraries discussed later. There are a number
of interesting questions to ask, but the following are the ones focussed on in this
thesis.

• Will Mahout scale to the task?

The main idea of the project is to apply cluster analysis techniques to the data
sets using the tags to measure the “distance” between two documents. First and
foremost, the goal is to see whether or not Mahout is capable of the task of clus-
tering such high dimensional and large data sets as the Tumblr one, and in a rea-
sonable amount of time. How does Mahout and Hadoop perform when scaling
horizontally (adding data nodes1)? How do they behave when the dimensional-
ity and cardinality changes?

• What weighting schemes and algorithms are suitable for tag-based cluster
analysis?

Clustering different domains of data requires different algorithms and ap-
proaches. When clustering in a physical domain we might have metrics such as
temperature, time or pressure that can be used to compare two data points, but
how do we model relationships between documents based on their tags?

1Servers that store data in HDFS, and are also most often configured to execute MapRe-
duce / YARN tasks as well.

Introduction 3

• Can we actually get interesting information out of these vast amounts of
data?

It is one thing to actually perform a clustering job, but can we also use the re-
sults? Provided that the answer to the first question above is “Yes”, what do the
results look like? Can we map the clusters found by the algorithms into some-
thing that makes sense when considering the data set and its domain?

First, a survey and discussion of of various algorithms and techniques will be
presented after which a short investigation into the characteristics of the two data
sets will be performed. Using the information found in these tasks, the Last.FM
data set (used here as a small scale test) will be clustered and the results exam-
ined. Finally, using the lessons learned from the small scale tests, the Tumblr data
set will be clustered and the results examined in the same way.

1.3 Tools, infrastructure and data sets

1.3.1 Hadoop and Mahout

As described above, processing large amounts of data is becoming more and
more valuable for corporations. Hadoop and the MapReduce paradigm is be-
coming the de facto standard for processing large amounts of data as corporate
usage continues to increase. [3]

In 2003 and 2004 Google published two papers introducing the Google File
System (GFS) and Google MapReduce respectively. GFS is a distributed file sys-
tem intended to be run on commodity hardware scaling to petabytes of data and
Google MapReduce a framework for running computations on data in GFS. [4,5]

The Apache Hadoop project is an
open source implementation of the
techniques and ideas presented in the
Google papers. The Hadoop Dis-
tributed File System (HDFS) roughly
corresponds to GFS while Hadoop
MapReduce / YARN is a framework
to run MapReduce-based computa-
tions on data in HDFS. [6]

The MapReduce paradigm bases itself on two operations, map and reduce.
The map operation takes a series of key/value pair and performs an operation
on these. It emits zero or more key/value pairs. These pairs are sorted by key
and fed to the reduce operation which iterates through the values of a certain key
and perfoms some operation on them, again emitting zero or more new pairs.

At first glance, this seems like a very restrictive model but a lot can be ac-
complished in a MapReduce fashion. The canonical “Hello World!” example is
unique word count where the map operation breaks a line into words and emits
a pair with the word as the key. The reduce operation then counts the number of
elements for each key and emits the final count. A large text file can then be pro-

4 Introduction

cessed by breaking it up into lines and distributing the lines to servers running
the map operation in parallel.

The Apache Hadoop project envelops quite a few more related projects but
the only one used in this thesis is Apache Mahout, so the rest are out of scope.

Hadoop does not in it self have
any means for performing machine
learning tasks, this is where Ma-
hout comes in. Mahout is a Apache
Foundation project that brings fil-
tering, classification and clustering
algorithms to the Hadoop ecosys-
tem. Apache Mahout implements
a number of machine learning algo-
rithms such as recommenders, classi-
fier training and, the focus of this the-
sis, cluster analysis in a parallel manner by utilizing the MapReduce framework
and HDFS. This allows Mahout to horizontally scale to be able to process data
sets larger than a single machine would be able to handle. [7, pp. 1–6]

1.3.2 Hadoop clusters

The Hadoop framework of course runs on top of a Hadoop cluster. This thesis
project will use two clusters. The first is Amazon’s Elastic MapReduce (EMR), a
cloud service for running a Hadoop cluster on their cloud computing platform,
EC2. This allows for scaling up from a tiny one core cluster to more or less ar-
bitrary sized clusters (in reality there is a limit of 20 nodes for “unverified” ac-
counts) which will be of great use for testing the scalability of Apache Mahout.

The second Hadoop cluster that will be used is the production cluster at Tum-
blr, a cluster consisting of 1900+ cores. Since this is a production cluster I will not
be able to utilize 100% of it, but it will most certainly outperform the clusters set
up on Amazon’s EMR with a wide margin.

1.3.3 Data sets

Finally, the data to be processed consists of two data sets. One compiled from
the music database Last.FM. The data set was created in 2007 and consists of
approximately 20 000 unique artists tagged with 100 000 unique tags (the total
tag count is roughly 7.1 million). [8]

The second data set is from Tumblr and consists of a snapshot of the activity
across the site for a continuous period of time. The data set is large in both dimen-
sionality, approximately 40 million unique tags, and cardinality, approximately
12 million blogs. A total of 8 billion tags were used during the time period.

The Last.FM data set is publicly available for download [8] whereas the Tum-
blr data set is proprietary and not available to the public as it contains user-
specific data.

Introduction 5

1.4 Previous works

One example of previous works regarding the scaling ability of Mahout are Er-
icson and Pallickara of Colorado State University who used a 100 core cluster
with the Reuters-21578 data set. This data set consists of 21578 documents and
approximately 95000 bi-grams. [9]

Another is the book “Taming Text” by Ingersol et al. where the authors use a
64 core cluster to cluster a data set consisting of the Apache Software Foundation
mailing lists. [10] Both these tests are quite a bit smaller than the proposed tests
in this project, both in terms of data set size and the size of the Hadoop cluster.

6 Introduction

Chapter 2
Survey

This chapter aims to

− present a number of distance metrics used to compare vectors in a vector space,
and

− discuss a few of the clustering algorithms implemented in Mahout.

2.1 Distance measures

In common for a lot of the clustering algorithms discussed later is that a choice
of distance metric needs to be done. Distance between vectors can be measured
in numerous ways depending on the vector space and the nature of the modeled
data.

In this section a number of possible choices are described, with a focus on
those already implemented within Mahout.

2.1.1 Distances based on Lp-norms

If the norm of a vector ~u in a vector space Rn is given by

||~u||p =

(
n

∑
i=1
|ui|p

) 1
p

where p is a real number larger than or equal to 1 we say that it is called a
vector in Lp-space over Rn. The distance function between two vectors in this
space is then given by

d(~u,~v) =

(
n

∑
i=1
|ui − vi|p

) 1
p

By choosing different values for p, the distance function and its characteristics
changes. Some common values for p are presented below.

7

8 Survey

Manhattan distance

The distance between two data points computed using the Manhattan distance is
simply the sum of the absolute differences of each dimension of the vectors. The
name comes from the grid-like structure of New York’s Manhattan borough.

The distance is given by the formula

d(~u,~v) =
n

∑
i=1
|ui − vi|

This is a distance in a Lp-space, more specifically a vector space with the L1
norm.

Euclidean distance

In a n-dimensional Euclidean vector space the distance between two points is
given by

d(~v,~u) =

√
n

∑
i=1

(ui − vi)2

This is a special case of Lp-distance where p = 2.
A closely related distance metric is the squared Euclidean distance, which is

useful when distances only needs to be compared to each other, as the square root
is then not necessary, thus making it less computationally expensive.

Chebyshev distance

The Chebyshev distance defines the distance between two data points as the
greatest difference in any of their dimensions. Chebyshev distance is also known
as the L∞-metric since it is the limit of the Lp-metrics:

d(~u,~v) = max(|ui − vi|) = lim
k→∞

(
n

∑
i=1
|ui − vi|k

) 1
k

Minkowski distance

In Mahout there is also an implementation of the Minkowski distance. The Minkowski
distance is the generalization of the Lp distances and is, as seen previously, given
by

d(~u,~v) =

(
n

∑
i=1
|ui − vi|p

) 1
p

We see that for p = 1 this equates to the Manhattan distance, for p = 2 to
the Euclidean distance and when p → ∞ we have the Chebyshev distance. This
generalization allows the user to specify arbitrary values for p and for highly
dimensional data sets using a large exponent p can give more useful distances.

Survey 9

2.1.2 Cosine similarity

In the classic vector space model of Information Retrieval, each data point is mod-
eled as a vector in a vector space with each of the terms of the data set as a di-
mension. The similarity between two vectors is then determined by calculating
the angle (or rather, cosine of the angle) between them. [11]

The cosine similarity between two vectors ~u and ~v in the data set is given
by [12]

sim(~u,~v) =
~u ·~v

‖~u‖ × ‖~v‖
Calculating the cosine similarity is especially effective for very sparse data

(common in, for instance, natural language corpora) as only dimensions where
both vectors have a component larger than zero must be considered.

2.1.3 Tanimoto similarity

The Tanimoto distance is a distance between two data points with binary features.
Originally it was described in the context of classifying plants by having a binary
vector where each bit corresponded to the presence or absence of a certain trait
in that plant.

The formula for the similarity is [13]

sim(~u,~v) =
~u ·~v

|~u|2 + |~v|2 − ~u ·~v
Finally, to return a distance-like metric, where a value of 0 implies a perfect

match and a value > 0 a greater distance, the similarity is subtracted from 1.

T(~u,~v) = 1− sim(~u,~1)

2.1.4 Mahalanobis distance

Mahalanobis distance is similar to the Euclidean distance, with the addition of
taking in data correlations into the calculation. The squared Mahalanobis dis-
tance is given by [14, p. 163]

d(~u,~v) = (~u−~v)ᵀS−1(~u−~v)

where S−1 is the correlation matrix between the two vectors. The Maha-
lanobis distance is trivially derived from the squared distance:

d(~u,~v) =
√
(~u−~v)ᵀS−1(~u−~v)

This formula is also what the MahalanobisDistanceFunction class in Mahout
implements.

Due to the fact that the distance function includes the correlation matrix, the
distance measure has the advantage over the Minkowski distances by accounting

10 Survey

for correlations between the variables. This could be advantageous in data sets
which have been tokenized into uni-grams, as some words will more frequently
follow specific other words. Something that would not be taken into considera-
tion with, for instance, the euclidean distance.

2.2 K-Means clustering

K-means clustering aims to cluster all data points into one of k classes, for a fixed
value of k. Initially, k data points are chosen at random to serve as the initial
cluster centroids. All remaining data points are iterated over and assigned to
their nearest centroid, as determined by a chosen distance metric (e.g. Euclidean
distance). When all data points have been assigned to a cluster, the centroid is
recomputed. [15]

As described by [12], the recomputed centroid ~∆p for a given cluster cp is
given by

~∆p =
1
|cp| ∑

~dj∈cp

~dj

where ~dj is a certain document in the cluster cp. The algorithm iterates until
no data points change cluster assignment (or a given threshold has been achieved)
at which point the algorithm has converged.

Another version of k-means is sequential (or sometimes referred to as on-
line) k-means, in which the cluster centroid is recomputed after each data point
is assigned. This is also the original version of the algorithm, as described by
MacQueen in 1967 [16].

As one of the most popular clustering algorithms K-Means has quite a few
variations which are covered later in this section.

2.3 Canopy clustering

Canopy clustering tries to speed up the clustering of data set that are both high
dimensional and have a large cardinality by dividing the clustering process into
two subprocesses. [17]

First, the data set is divided into overlapping subsets called canopies. This is
done by choosing a distance metric and two thresholds, T1 and T2, where T1 > T2.
All data points are then added to a list and one of the points in the list is picked
at random. The remaining points in the list are iterated over and the distance to
the initial point is calculated. If the distance is within T1, the point is added to the
canopy. Further, if the distance is within T2, the point is removed from the list.
The algorithm is iterated until the list is empty. [17]

The second step of the process is to run another clustering algorithm in these
smaller canopies, often k-means with the canopies as initial centroids.

Canopy clustering can also help the user to estimate the value of k for use in
K-means. Given good threshold values for T1 and T2, canopy clustering will find

Survey 11

a suitable number of canopies. These can, as mentioned, be used as the initial
centroids in a K-means clustering.

McCallum, Nigam and Ungar (2000) also found that using canopy clustering
as an initial step can lead to significant speed-ups in the second clustering step.
[17]

2.4 Latent dirichlet allocation

Latent Dirichlet allocation, LDA, works from the assumption that each document
is generated by drawing words from a mixture of latent topics, where the mixture
is individual for the document but the topics are a fixed set. The topics are in turn
characterized by a distribution of the words in the corpus

Using this assumption, a document would be generated by choosing the
number of words in the document from a Poisson distribution, N ∼ Po(ζ) and
topic mixture from the fixed set of k topics, Θ ∼ Dirchlet(α) where α is a k-
dimensional vector of real values representing the weight of each topic.

Each of the N words, wn, are then chosen from a topic (in turn chosen from
the topic mixture of the document). wn ∼ Multnomial(β) where β is a vector of
word weights within that topic.

Using Bayesian inference and the generative modeled described, LDA back-
tracks to find the topics and mixtures that could generate the corpus. [18]

Mahout uses collapsed variational bayes inference, CVB, to implement LDA.
CVB is, according to [19], more performant and better suited for parallelization.
CVB uses techniques from both Gibbs sampling, which Mahout previously im-
plemented, and variational bayes, leading to a more efficient and accurate algo-
rithm [20].

2.5 K-Means variations

2.5.1 Spherical K-Means clustering

If instead of the Euclidean distance metric the cosine similarity is used to calculate
distance between data points the variation is usually called spherical k-means.

Each document is then represented by a vector to the unit n-sphere (hence the
name) where the similarity of two vectors is given by the angle between them.
This has the advantage of only having to consider features that are non-zero in
both vectors. This is advantageous in high-dimensional but sparse data sets. [21]

2.5.2 Fuzzy c-means

Fuzzy c-means is sometimes called fuzzy k-means due to its similarity with k-
means [22]. In fuzzy c-means, each document is assigned to a multitude of clus-
ters, each with a coefficient describing the degree of the assignment to that cluster.

Initially, like in k-means clustering, number k of clusters is chosen. Each doc-
ument is then assigned a random number representing the degree of assignment

12 Survey

to each cluster. A centroid is calculated for each cluster, where the centroid is the
mean of all documents’ assigned coefficient for that cluster.

ck =
∑x wk(x)mx
∑x wk(x)m

wk(x) gives the coefficient (or weight) of a document x in the kth cluster and
m is a parameter to the algorithm controlling the importance of the closest center
to a document in recalculating the coefficients for that document. If m is close to
1 the closest centroid will dominate other centroids.

2.5.3 K-medoids

With normal k-means clustering the mean of the points in each cluster is assigned
as the new centroid, whereas with k-medoids data points are used as the cen-
troids. k data points are chosen as initial centroids, and when choosing new cen-
troids the data point which minimizes the sum of distances to all other data points
assigned to the cluster is chosen as the new centroid.

This means that instead of a cluster centroid being defined by a vector in the
vector space, it is defined by on of the data points in the data set.

Chapter 3
Data set exploration

This chapter aims to

− investigate and present the properties of the two data sets

Before clustering, it can be useful to explore the data sets to discover their
properties. One common method is to plot the number of occurrences of the
words in the corpus against the rank (how common the word is) in a log-log plot.

Figure 3.1: Tag occurrences in the Last.FM data set plotted against
the rank

In Figure 3.1 the Last.FM data set has been plotted in this manner. A linear
regression has been fitted to the data and shows that lower ranked tags seem to
follow a Zipfian distribution. However, higher ranked tags deviate somewhat

13

14 Data set exploration

from the regression line. In a natural language corpus (i.e. not a corpus of tags as
this data set) we expect the slope, s, to be −1 as empirically determined by Zipf.
In the Last.FM data set the slope is−1.351, implying an even longer long tail than
in a “regular” natural language corpus.

Plotting the Tumblr data set in the same manner gives the scatter plot in Fig-
ure 3.2.

Figure 3.2: Tag occurrences in the Tumblr data set plotted against
the rank

In this case, the slope s is -1.152, a lot closer to to the original Zipf-distribution.
However, the data does not fit the regression line as well as the Last.FM data set.
Although the tail is long, the data is not quite as skewed as one would expect
from a Zipfian distribution.

Another interesting feature to study is what the distribution of amount of tags
per blog looks like. Hypothesizing that this approximately follows a power-law
we again construct a log-log plot, but instead we plot the amount of blogs with a
certain number of tags. The resulting plot for the Last.FM data set can be seen in
Figure 3.3 and for the Tumblr data set in Figure 3.4.

The tags user per blog in the Tumblr data set follows a power law with the
exponent -1.4775 while the Last.FM data set is less skewed in this regard with
an exponent of -0.9167. One reason for the fact that the Tumblr data set seems
to follow a power law more closely could be that it is tokenized into uni-grams,
whereas the Last.FM data set is not. This could also explain the relative infre-
quency of the most popular tags in the Last.FM data set. The most popular genres
are often divided into sub-genres. For example, “rock” has numerous sub-genres

Data set exploration 15

Figure 3.3: Number of tags per artist (log-log)

Figure 3.4: Number of tags per blog (log-log)

16 Data set exploration

such as “indie rock”, “country rock” and “hard rock”.

3.1 Summary

The data set exploration showed that our data sets does not quite follow the Zip-
fian distribution usually seen in natural language data sets. They are however
not very far from the expected distributions and are heavily skewed (to the point
where if not plotted on a log-log scale they are almost a perfect L-shape), which
suggest that techniques normally used for natural language corpora could work
well in these data sets as well.

As mentioned, the cosine similarity is extensively used for highly dimen-
sional and sparse data and k-means clustering is the most commonly used centroid-
based clustering technique. Therefore, spherical k-means will be tested in the
practical part of this project.

Model-based clustering, in this case LDA presented in the previous section,
presents and alternative approach by assuming that the documents in the corpus
share certain statistical properties, and uses this to find the values for the vari-
ables in this model. Would a model-based clustering algorithm work better for
these kinds of data sets than a centroid-based one? To answer that, LDA will also
be evaluated in the practical part of the project.

Chapter 4
Small scale clustering

This chapter aims to

− apply the algorithms and techniques discussed in section 2 to the Last.FM data set,

− briefly describe the process of generating TF and TF-IDF weighted feature vectors
from the Last.FM data set,

− investigate how the performance characteristics of those algorithms depend on di-
mensionality, cardinality and number of worker nodes, and

− present and discuss the outcome of the clustering jobs.

4.1 Preparation

Mahout uses a special Vector data structure for representing documents with fea-
ture vectors. There are a few implementations of the AbstractVector class that
can be used. Examples are DenseVector for dense data (mostly non-zero ele-
ments) and two classes for sparse vectors (few non-zero elements), SequentialAc-
cessSparseVector and RandomAccessSequentialVector. The data sets used in this
project are very sparse and to optimize the distance calculations the choice ends
up on SequentialAccessSparseVector.

The first step taken is to generate a dictionary (a map from tag to an integer
id) of unique tags. In order to do this a MapReduce job to output a list of unique
terms is run. In the map phase, the job takes a line from the input file and emits
the tuple (<tag>, 1). The reduce step takes these tuples and de-duplicates them
by again outputting (<tag>, 1). This list of unique tags is then turned into a dic-
tionary simply by iterating over each tag while incrementing an integer. This is
the only step that needs to be done sequentially, but it is fast enough to process
the Last.FM data set in a few seconds.

To calculate the weights (TF or TF-IDF in this case) two MapReduce jobs are
run. The first calculates the count of a certain tag for a certain artists (e.g. “Johnny
Cash has been tagged with country n times”). The map phase simply parses
the artist name, tag name and tag count from the input file and emits a tuple,
(<artist>, <tag>;<tag count>). The reduce phase outputs a tuple for each artist-
tag couple with the associated tag count, but also the total tag count for that artist.

17

18 Small scale clustering

The second step takes the tag count and total tag count and calculates the TF, IDF,
TF-IDF and the raw term frequency according to the following formulas

t f =
ni
nk

id f = log
(

N
|d ∈ D : w ∈ d|

)
t f id f = t f · id f

where ni is the count of a certain tag for a certain artist, nk is the total tag
count for that artist and N is the total number of artists. The raw term frequency
mentioned above is simply ni, not divided by nk. D is the set of all artists and the
divisor in the IDF-calculation is therefore the total number of artists tagged with
the tag w.

Finally, to create the actual feature vectors, a last MapReduce job is run. In
the configuration to this job we include a serialized version of the dictionary.
The map phase then creates partial vectors for each of the artist-tag couples from
the output of the previous step. Each partial vector has the calculated weight
set in the element with index taken from the artist-to-integer mapping from the
dictionary. The reduce phase then combines the partial vectors to a single, full
vector for each artist.

An important thing to note is that the limit (mapred.user.jobconf.limit) for the
configuration is five MB by default. This is enough to contain the dictionary for
the Last.FM data set, but will cause problems for larger data sets as will become
evident in the large scale tests of this project.

4.2 Spherical K-Means

As mentioned previously, spherical k-means clustering is the process of cluster-
ing a data set using the k-means algorithms with the cosine similarity. As seen
in the data set exploration section, the data sets do not strictly follow the Zipfian
distribution usually seen in natural language, but they are quite close. As a result,
TF/IDF weighting will be used for the spherical k-means clustering. TF/IDF was
initially introduced as a heuristic weight and the success of using it on natural
language corpora has been mostly empirical, but there are examples of informa-
tion theoretic explanations of its success [23].

4.2.1 Determining k
As mentioned before, a successful clustering using k-means depends on the choice
of k, the number of clusters. There are several ways of determining this. One way
is the previously mentioned canopy clustering, which is a more lightweight clus-
tering process that can be used for generating the initial clusters for k-means,
instead of picking them at random.

Another possibility is to run the k-means algorithm multiple times while
varying k. The traditional procedure is to inspect the within-cluster sum of squares,

Small scale clustering 19

WSS, at each k. The idea is to find the point where the rate of decrease in WSS
levels out, meaning that for each increase in k the decrease in WSS is no longer a
big “win”. This method is sometimes called “the elbow method”.

Mahout provides a simple way to extract the inter-cluster density with its
clusterdump tool. This is the average distance between each of the cluster centers.
An inter-cluster density approaching 1 (when using cosine similarity) indicates
evenly spaced clusters. [7, pp. 188–190]

Figure 4.1: Elbow-method applied on the Last.FM data set

Figure 4.1 was created by running the spherical k-means algorithm on the
Last.FM data set repeatedly, each iteration increasing k by 10 (going from 10 to
200) and measuring the inter-cluster density for each k. Based on the plot in
Figure 4.1 k = 60 seems like a good fit for the Last.FM data set.

4.2.2 Performance and running time

There are three controllable parameters that might influence the running time of
these clustering jobs. The number of clusters, k, and the cardinality and dimen-
sionality of the data set.

Figure 4.2 shows the running time of clustering the Last.FM data set using
spherical k-means on a modern laptop computer. Apart from the outlier when
k = 80 the running time seems to depend linearly on the value of k.

Figure 4.3 shows how removing a certain percentage of the artists in the
Last.FM data set at random influences the running time of the clustering algo-
rithm. The x-axis indicates the percentage of artists still in the data set, so 100%

20 Small scale clustering

Figure 4.2: Running time for varying values of k (95% confidence
interval in gray)

equals the full data set. As expected, the running time increases seemingly lin-
early as more data points are used.

Finally, Figure 4.4 shows how the running time changes as only 20%, 40%,
60%, 80% and 100% of tags are used, reducing the dimensionality in steps. The
increase is not quite as distinguished between different percentages as in Fig-
ure 4.3, but we can definitely see that the slope increases when using a higher
percentage of tags, and again roughly linearly.

4.2.3 Scaling horizontally

It has been established that the way Mahout’s running time increases with in-
creases in k, cardinality and dimensionality is at least roughly linear. Ideally, Ma-
hout scales linearly with the number of nodes available in the cluster, meaning
that it could theoretically handle arbitrary data set sizes simply by adding more
data nodes.

In order to determine how Mahout scales when scaling horizontally (adding
more nodes in contrast to increasing resource on a single node) two rounds of jobs
(for k = {20, 40, 60, 80, 100, 120, 140, 160}). These jobs were run on Amazon EMR
(using instance type m1.large) in three batches with 5, 10 and 15 nodes respec-
tively doing the computation. Execution times were derived from the timestamps
in the log files.

In the small scale test the input data size and the size of the data in the inter-

Small scale clustering 21

Figure 4.3: Running time for varying percentages of data points

Figure 4.4: Running time for varying numbers of dimensions

22 Small scale clustering

mediate steps are smaller than the default HDFS block size on Amazon EMR (128
MB). As a result, only one mapper process can run at a time effectively eliminat-
ing the performance gains of having more nodes. For this reason, the block size
is forced to 128 KB in the tests on Amazon EMR. This will impact performance
negatively as HDFS is not optimized to read many small files, but it will allow
us to see the effect of adding more nodes (and as a result, more map processes)
on the running time. Due to this and the fact that the hardware on Amazon EMR
differs from the laptop previous test jobs were run, EMR job performance and the
performance of the jobs run on the laptop can not be compared in a useful way.
These tests are purely to see whether the running time decreases linearly with the
number of nodes in use.

Figure 4.5 shows the results of this experiment. Apart from an outlier when
k = 80 and using 15 nodes the running times drop and the line gets “flatter”
as we increase the amount of nodes, indicating that the difference in running
time between the hadoop cluster configurations would increase as k increased
even more, and that for this size of data set and range of k we are able to scale
horizontally.

Figure 4.5: Running time for different k using 5, 10 and 15 nodes

4.2.4 Final clustering

In the previous sections we found that k = 60 is a reasonable choice for the small
scale data set. In this section we present the result of such a clustering, and use
the Mahout clusterdump utility to inspect the outcome.

Small scale clustering 23

Artist name Top tags in cluster Weight of tag

The Rolling Stones

classic rock 0.192
hard rock 0.160
hair metal 0.092
rock 0.073

Bob Dylan

singer-songwriter 0.152
folk 0.094
acoustic 0.075
female vocalists 0.065

Madonna

80s 0.163
new wave 0.138
post-punk 0.087
pop 0.083

Frank Sinatra

jazz 0.346
lounge 0.082
acid jazz 0.080
downtempo 0.067

Antonio Vivaldi

Classical 0.762
piano 0.140
contemporary classical 0.120
opera 0.106

Eminem

Hip-Hop 0.294
rap 0.233
hip hop 0.188
hiphop 0.070

Table 4.1: Results of K-means clustering of the Last.FM data set

The easiest and most straightforward way of assessing the clustering outcome
is to visually inspect it. This is also a rather unscientific method since music and
music genres are highly subjective. Keeping this in mind, we should however be
able to spot instances where an artist definitely does not seem to belong to the
cluster it has been assigned to and get at least a subjective “feel” for the quality
of the clustering. Table 4.1 shows a few non-random artists and the top tags in
the cluster they belong to. The artists were chosen solely on the basis of being
well-known enough that any reader should be able to determine whether they fit
in their cluster or not.

Overall, these six artists look like they have been assigned to sane clusters.
Madonna would probably not be considered “post-punk” by most people but
“80s” and “pop” certainly fits in my opinion. Artists tagged with “post-punk”
might also often be tagged with “80s”. The same situation applies to Bob Dylan
and “female vocalists”.

It is also interesting to see whether or not artists considered as close (in a

24 Small scale clustering

Artist #1 Artist #2 Same cluster?
The Rolling Stones The Who Yes
Bob Dylan Neil Young Yes
Madonna Kylie Minogue No
Frank Sinatra Dean Martin Yes
Antonio Vivaldi Ludwig van Beethoven Yes
Eminem 2Pac Yes

Table 4.2: Comparing cluster assignment of similar artists

musical sense) have ended up in the same clusters. Again, I will use the artists
from Table 4.1 and choose six additional artists that I believe should be in the
same cluster. As before, this is a subjective test of the clustering quality, which of
course is a subjective quality in its own.

Looking at the results in Table 4.2, most of the artists fall into the same, ex-
pected cluster. The one miss is Kylie Minogue who did not end up in the same
cluster as Madonna. This could be due to the subjective nature of my choice or
the fact that the “australian” tag is very common for Kylie Minogue but obviously
not for Madonna. All in all, for this very small subset of the artists the clustering
seems to agree with my perception of which artists should share a cluster. The
full output of centroids can be found in appendix B.1.

There are some quantative features of the clustering that can be examined
as well. For instance, we can compare the various sizes of the clusters. In this
case, we see that the mean size of the clusters is 347.72 data points per cluster,
the largest having 1141 data points and the smallest only a single data point. The
standard deviation is quite high, 245.81, indicating that the sizes of the clusters
vary quite heavily, as also indicated by the difference in the maximum and mini-
mum cluster sizes.

Finally, as discussed before, at k = 60 the rate of increase in inter-cluster den-
sity flattens out which is why k = 60 was chosen in the first place. For this par-
ticular clustering output the inter-cluster density is 0.9244, again showing fairly
evenly distributed clusters. The intra-cluster density, i.e. the average distance
between the data points within a cluster, is 0.734. This is a bit higher than I sus-
pected, but since it is quite a bit lower than the inter-cluster density it still seems
like the clusters are nicely separated.

4.3 Spherical K-Means with Canopy seeding

As mentioned in the survey, using Canopy clustering to seed the k-means clus-
tering can give both faster convergence as well as produce more accurate results.
I will therefore extend our previous experiment with spherical k-means to be
seeded by a canopy clustering.

The authors of [17] report better results in practice when using different dis-
tance metrics for the canopy clustering and the second stage clustering (Spherical
K-Means in the current context). For this reason, the cosine similarity will not

Small scale clustering 25

be used for the canopy clustering step. Instead, I tried using the Tanimoto dis-
tance. The reasoning behind the choice being that since the Tanimoto distance is
smaller for vectors that have components in common and hopefully this leads to
initial centroids that are close to other vectors with common components. The
reasoning was that it would work well with the cosine similarity since the cosine
similarity depends on vector components that are both non-zero.

Unfortunately, due to the sparsity and high-dimensionality of the data this
turned out to be a dead end. The T1 and T2 thresholds had to be very large
because of the sparsity and dimensionality. Previously, we have established k =
60 to be a good choice for k, but even with T2 = 0.999 canopy clustering still
yielded 70-80 clusters to be used as initial centroids. In general, seeding k-means
clustering with the output from canopy clustering can be very useful, but it also
needs a way of estimating good values for T1 and T2. Usually, this is done by
someone knowledgable in the field based on the dimensions applicable. In this
case, this is not possible due to the very high dimensional nature of the data.
Since canopy clustering is rather fast, T1 and T2 could be estimated by running
the clustering several times to find what values for T1 and T2 would give the
sought for number of canopies. [7, p. 158] This is the approach taken here, but I
still could not find suitable values to produce the number of clusters I was looking
for.

4.4 Latent Dirichlet Allocation

With k-means, each document was assigned to a single cluster, where the cluster
is defined by a centroid vector in the vector space. With LDA, each document
is instead assigned a set of probabilities, each giving the probability of a word
in the document coming from a corresponding topic. As mentioned, Mahout
implements Latent Dirichlet Allocation using Collapsed Variational Bayes to infer
the latent topics. [24]

Stopword filtering is suggested by Blei, Ng and Jordan (2003) in the paper in-
troducing LDA. [18] In their example however, the data set is a natural language
corpus. The Last.FM data set is not. For instance, the most common tag is “rock”
and regular stopwords such as “a” and “the” are not very frequent on their own
since the tags are not split in to unigrams. For this reason, I chose not to apply
stopword filtering for the Last.FM data set.

To see whether or not the algorithm has converged perplexity testing is used.
With perplexity testing we put a part of the data aside as a test data set that can
be used to see how well the found models fit the test data.

4.4.1 Performance and running time

Much like for k-means we will investigate how three parameters affect the per-
formance of the LDA clustering algorithm in Mahout. These are the choice of
number of topics and the dimensionality and cardinality of the data set. There
are other parameters like smoothing for the document-topic and topic-term dis-
tributions, but in this project these have been kept constant at the Mahout default,

26 Small scale clustering

0.0001. For all these tests, unless otherwise specified, 5% of the data was held for
perplexity testing and the tests were run each iteration until the change was less
than 0.05. The running of the perplexity test will affect the running time nega-
tively, but since it was consistently run for all tests the effect should be constant.

Figure 4.6 shows how the algorithm running time differs when increasing the
number of topics sought for. A rather clear linear relationship can be seen.

Figure 4.6: Running time for different number of topics

Figure 4.7 shows how the running time of the algorithm depends on the car-
dinality of the data set. As was the case with k-means, the slope decreases as the
percentage of data points used decreases. There is however an increase starting
at k = 80 (i.e. 80 topics) that does not quite follow the linear pattern seen for
k < 80.

Figure 4.8 shows the result of the same procedure, but instead of reducing
the cardinality of the data set the dimensionality has been reduced. Again, a
relationship between running time and the percentages as seen in Figure 4.7 can
be seen here too.

Finally, Figure 4.9 shows how the running time decreases as more worker
nodes are added to the cluster. We can see a definite decrease in the slope, even
more clearly than in the corresponding experiment when running k-means.

4.4.2 Final clustering

As done for the k-means clustering, we inspect the outcome manually. Running
the algorithm and setting the number of topics to 30 as previously discussed the

Small scale clustering 27

Figure 4.7: Running time for various numbers of dimensions

Figure 4.8: Running time for various percentages of data points

28 Small scale clustering

Figure 4.9: Running time for various amount of worker nodes

topics listed in appendix B.2 emerges along with their top three associated words.
The weight of the tag in this context is the probability of certain tag in the topic,
P(word|topic). Optimally, for the purposes of this thesis, these topics would cor-
respond to genres of music. This is true for some of the topics, such as topics 6,
7, 10, 14, et.c. Others are a bit more mixed. Such as topic 3, which has “Classical”
mixed in with “soul” and “rnb”.

The algorithm also outputs the probability of an artist’s tag coming from a cer-
tain topic, P(topic|artist). Combining these we can see which are the most likely
topics for the artists we used in the k-means evaluation. For simplicity’s sake
the topics are represented by their id but also the name of their highest weighted
tag. Table 4.3 lists the same artists as listed after running K-means in the previous
section.

Antonio Vivaldi immediately stands out as an anomaly. Neither “soul”, “jazz”
or “punk” would normally be used to describe Vivaldi’s music. Note however,
that topic number 18 (marked here as “soul”) is very dominant, and the top two
tags in that topic are “soul” (0.118) and “Classical” (0.108). The latter being a
much more reasonable tag for Vivaldi.

Other than that, the topics and topic probabilities the algorithm found seems
to, subjectively, be rather accurate, especially when taking note of the weights of
the topics.

Small scale clustering 29

Artist name Top topics Topic probability

The Rolling Stones

15 - classic rock 0.770
7 - rock 0.127
16 - seen live 0.041
14 - indie 0.030

Bob Dylan

29 - singer-songwriter 0.583
15 - classic rock 0.324
16 - seen live 0.055
7 - rock 0.013

Madonna

3 - pop 0.664
11 - female vocalists 0.149
26 - dance 0.109
6 - electronic 0.034

Frank Sinatra

22 - jazz 0.835
3 - pop 0.082
15 - classic rock 0.080
14 - indie 0.014

Antonio Vivaldi

18 - soul 0.965
22 - jazz 0.020
28 - punk 0.002
5 - ambient 0.002

Eminem

23 - Hip-Hop 0.830
3 - pop 0.050
7 - rock 0.026
16 - seen live 0.023

Table 4.3: LDA clustering of the Last.FM data set

30 Small scale clustering

Chapter 5
Large scale clustering

This chapter aims to

− apply the algorithms and techniques discussed in section 2 to the Tumblr data set,
and

− present and discuss the outcome of the clustering jobs.

5.1 Preparation

Massaging the data into Mahout’s vector representation is mostly done in the
same way as described for the Last.FM data set in the previous section, with a
couple of differences.

As mentioned, serializing the dictionary and distributing it to the worker
nodes as a part of the configuration is not an option as the full dictionary is close
to one GB and the default limit is five MB. Instead, the dictionary is distributed
using Hadoop’s distributed cache feature. The distributed cache is designed to
take large read-only files from HDFS and automatically cache them on the data
nodes. [3, p. 289]

The files from the distributed cache are read in the setup phase of the map task
and in this context it is a matter of reading the dictionary from a SequenceFile into
a Java HashMap. Unfortunately, this does not work either for the full Tumblr data
set as the reading of the dictionary from the cache takes more than ten minutes,
the default time limit for the setup phase of a map task.

Instead, I limit the amount of tags to only the two million most common ones.
This leads to a dictionary of only 42 MB. An alternative could be building the
vectors locally. That way the setup time limit would not be an issue, but the
process would of course take a lot longer than if the full Hadoop cluster was
used.

Another possibility could be to reduce the dimensionality by only consider-
ing the first n tags on a post, working with the hypothesis that users will use tags
he or she considers most important first. It is unclear, however, to what kind of
decrease in dimensionality this would lead to.

31

32 Large scale clustering

5.2 Spherical K-Means

Due to the success with spherical k-means for the small scale data set it is again
used for the large scale data set. Again, k = 60 is used. It is a mostly arbitrary
choice. It is meant to keep it low enough to be able to get a good overview of
all clusters. The reason the elbow method is not used as previously done for
the small scale clustering is two-fold. First, the clustering job takes up a lot of
resources of the Hadoop cluster which might interfere with other jobs that are
used in production. Secondly, increasing k further leads to memory usage issues
as discussed in the next section.

5.2.1 Performance and running time

Even though the dimensionality of the data set was limited to two million in the
previous section to be able to actually create the feature vectors in a MapReduce
fashion, it has to be limited even more for the actual clustering. With two million
dimensions and using k = 60, the production cluster at Tumblr struggles with the
memory usage of the tasks on the data nodes. Running the job in the same way as
for the small scale data set the worker nodes run out of memory since they need
to keep the last couple of iterations in memory.

This could perhaps be mitigated by altering the configuration of the cluster by
allowing a fewer number of tasks per data node giving each task the possibility to
use more memory without starving the others. This, however, is not a possibility
since this is a live cluster and there are many other jobs, used in production, that
run on it.

Instead, the dimensionality is further reduced by choosing only the tags that
have been used 150 times (overall), or more. This leads to a total of 535270 tags
in the dictionary, or 11.4 MB.

Running the spherical k-means algorithm with this input and keeping k = 60
on the Tumblr Hadoop cluster 1 hour, 34 minutes and 46 seconds elapsed until
the convergence threshold (max 1% of data points reassigned in an iteration) was
reached.

As a point of comparison to the EMR cluster used for the small scale cluster-
ing jobs, we can compare the running time of clustering the small scale data set
on the Tumblr Hadoop cluster. Using only one data node, clustering the small
scale data set takes 9 minutes and 16 seconds on an EMR data node, whereas a
single data node from the Tumblr cluster requires only 4 minutes and 44 seconds.

5.2.2 Final clustering

In order to assess if blogs have been assigned to a fitting a cluster, some sort of
reference is needed. For this purpose, the Tumblr spotlight page will be used.

The spotlight page is a directory of blogs divided into around 50 subjects,
curated by the Community team at Tumblr. Six blogs will be chosen from six of
these categories, and compared with the top three tags in their assigned clusters.

Looking at Table 5.1, There are a couple of assignments that stand out as a
bit odd. The first being the Olympics blog belonging to a cluster with a centroid

Large scale clustering 33

Blog name (category) Top tags Tag weight

Pitchfork (Music)

music 0.204
rock 0.013
the 0.012
video 0

The Getty (Art)

art 0.165
illustration 0.068
drawing 0.058
anime 0.035

Engineering is Awesome (Science)

architecture 0.054
gaming 0.034
education 0.027
history 0.024

BBC One (Television)

sherlock 0.192
doctor 0.115
who 0.071
spoilers 0.059

Olympics (Sports)

boanoite 0.064
feliz 0.048
goodmorning 0.038
amigos 0.029

Vogue (Fashion)

fashion 0.214
polyvore 0.122
style 0.094
model 0.024

Table 5.1: Output of K-means clustering on the Tumblr data set

with portuguese and spanish tags. This could possibly be due the fact that the
next summer olympics will be held in Brazil. The second assignment that seems
a bit odd is the “Engineering is awesome” blog, with the top tags “architecture”,
“gaming”, “education” and “history”. Overall, this cluster seems to cover a lot of
academic subjects and given that the blog is in the “Science” category the cluster
assignment might not be as odd as initially thought. The cluster “BBC One” is
assigned to also is dominated by tags one might not have expected, until you
consider that “Sherlock” and “Doctor Who” are TV shows from the BBC that
have very large followings on Tumblr.

In the small scale test the six initial artists and their cluster assignments were
compared with six additional, similar, artists to see whether they ended up in the
same clusters or not. The same thing is done here but choosing the additional
blogs from the same category and shown in Table 5.2

The fact that the “Olympics” and “Yahoo Sports” blogs did not end up in
the same cluster can probably be explained with the fact that “Olympics” was

34 Large scale clustering

Category Blog #1 Blog #2 Same cluster?
Music Pitchfork Rolling Stone Yes
Art The Getty SFMOMA Yes
Science Engineering is awesome Atomic-o-licious Yes
Television BBC One Zap-2-It No
Sports Olympics Yahoo Sports No
Fashion Vogue Harper’s Bazaar Yes

Table 5.2: Comparing cluster assignment of blogs in same category

assigned to the cluster with portuguese and spanish tags, as seen earlier. Finally,
“Zap-2-It” belongs to a cluster with top tags “supernatural”, “spn”, “teen”, and
“wolf”. Supernatural and Teen Wolf are two american TV shows, that also have
large followings on Tumblr.

The average size of the clusters is 194 206.7 data points, with a standard de-
viation of 200 264.6. The smallest cluster contains 47 230 data points, while the
largest contains 1 570 229. As was the case with the small scale test, the cluster
sizes vary quite heavily.

5.3 Latent Dirichlet Allocation

LDA showed good results in the small scale test. Both in terms of scaling with
the number of worker nodes used and with the results. For the large scale test,
the number of topics is kept at 30.

Unlike the Last.FM data set the tags in the Tumblr data set are already tok-
enized into unigrams, meaning that it is a lot closer to a “normal” natural lan-
guage data set. In the first run of this job, no stopword filtering was applied since
the main goal of the thesis is to test the performance of Mahout and Hadoop. The
result was that “the” was one of the most likely tag in almost every topic, closely
followed by other very high frequent words.

Therefore, I chose to use stopword filtering and the results presented in this
section are the results of the running the LDA algorithm after removing a set of
stopwords. The stopwords chosen were the standard list from Lucene with a
couple of additions based on frequent tags seen in the initial attempt. The full list
of stopwords can be found in the source code. Please see appendix A.

The dimensionality of the data set is only very slightly decreased by the use
of stopword filtering. The list of stopwords used here contains 40 words which
is a tiny fraction of the total list of tags so the performance improvements that
might come from reducing the dimensionality through the filtering is negligeble.

5.3.1 Performance and running time

The same, reduced, data set used in with spherical K-means was used for LDA as
well and no other memory issues appeared. One thing to note is that to be able to
run the Mahout LDA implementation on the Tumblr Hadoop cluster the Mahout

Large scale clustering 35

package used had to be updated to very latest, in which (so far experimental)
support for Hadoop 2.x is present. This upgrade might enable more efficient
usage of the cluster compared with previous LDA jobs which ran on an older
version of Hadoop.

The job took 2 hours, 39 minutes and 37 seconds to complete.

5.3.2 Final clustering

Looking over the topics found (see appendix B.4) there are some topics that look
coherent while others are less. There are two topics, topics #9 and #28, that are
centered on fashion. One of them focussing more on Polyvore, a social commerce
site with a focus on fashion. There is also a clear photography topic, topic #23,
where “photography”, “black” and “white” are important tags.

Interesting to note is also that K-means found a single cluster that contained
the TV shows “Doctor Who”, “Sherlock” and “Supernatural” while LDA split
these up into separate topics. Namely topics #14, #18 and #16 respectively.

Other topics are not so coherent. Topic #21 for example, with the top three
tags “art”, “cute” and “cats”. Other topics have tags which maybe should have
been added to the stopwords list. Such as topic #8 with top tags “like”, “just” and
“have”.

In order to see the topics LDA found were prominent for each blog we reuse
the blogs chosen for evaluating the result of the previous K-means job here as
well. Again, we present this by listing the top four topics for each blog and the
most common tag in those topics in Table 5.3.

“The Getty” and, especially, “Vogue” seem to have mixtures of topic that suit
them. “BBC One” does too when, although the topic with “harry” seems a bit out
of place. Overall, the topic mixtures for the various blogs seem relatively good,
but not quite as good as the small scale test.

36 Large scale clustering

Blog name (category) Top topics Topic probability

Pitchfork (Music)

23 - photography 0.386
9 - fashion 0.187
26 - news 0.145
20 - queued 0.087

The Getty (Art)

23 - photography 0.773
26 - news 0.123
21 - art 0.060
9 - fashion 0.015

Engineering is awesome (Science)

26 - news 0.808
23 - photography 0.135
1 - snk 0.030
18 - sherlock 0.006

BBC One (Television)

18 - sherlock 0.389
14 - doctor 0.268
27 - harry 0.087
23 - photography 0.087

Olympics (Sports)

26 - news 0.571
29 - ifttt 0.162
24 - exo 0.120
5 - love 0.031

Vogue (Fashion)

9 - fashion 0.739
28 - polyvore 0.158
14 - doctor 0.053
26 - news 0.014

Table 5.3: LDA clustering of the Tumblr data set

Chapter 6
Conclusions

This chapter aims to

− summarize and draw conclusions about the scalability from the small scale and
large scale tests,

− discuss the quality of the clusterings, and

− briefly discuss possible use-cases and improvements

6.1 Scalability and performance

We saw that both algorithms work nicely with the small scale data set (which is
an actual, real-world data set), even on a single computer. They both seemed to
scale roughly linearly with the amount of worker nodes in use. LDA showing
more consistent running times than K-means.

Going in to the project, I thought that the algorithms would be mostly CPU
bound. This turned out to be false when moving on to the large scale data set as
significant reductions in dimensionality had to be made in order to solve memory
problems. These issues also put a limit on the choice of k for k-means. It is possi-
ble that these issues can be mitigated by a more liberal configuration of memory
related parameters, both in my code and the Hadoop cluster configuration. The
mapred.child.java.opts setting allows for increasing the maximum heap size
of map and reduce tasks, but increasing might impact other tasks. Furthermore,
this setting is already set quite high on the Tumblr hadoop cluster.

There were also a couple of problems when transforming the data into vectors
for Mahout. This is unrelated to the performance of the algorithms, but still a
problem that needs to be taken in to consideration in practice. In order to create
vectors we need to have a dictionary which map each tag to a unique integer (the
index in the vector) and the dictionary needs to be available to all worker nodes.
In the small scale test this was trivial as the dictionary was small enough to send
with the job configuration.

For the large scale tests the dictionary was distributed using Hadoop’s dis-
tributed cache, and the dictionary was read by each task when starting. Initially,
the tasks took too long reading the dictionary, hitting the time limit for the setup
phase of the tasks causing them to fail. This was ultimately resolved by further re-
duction of dimensionality leading to a smaller dictionary. It is possible this could

37

38 Conclusions

be solved by altering the mapred.task.timeout parameter (default 600 seconds)
to allow the tasks more time to load the dictionary. This would however tie up a
lot of task slots for a long time. Another option would be to generate the vectors
offline (i.e. not using Hadoop). This would of course take longer time, but that
might be a tradeoff worth doing if removing dimensions is not an option.

In conclusion, Mahout can definitely handle data sets with a cardinality in
the tens of millions of data points. However, a natural language data set of this
size will most likely have too many dimensions for a default Hadoop cluster to
handle memory-wise. In this thesis, this has been circumvented by only includ-
ing the most common tags. In a real environment we would probably limit our
dictionary both by setting a cut-off point for the number of times a tag has been
used but also more aggressive stopword filtering, preferably with a stopword list
specific to the data set as well.

6.2 Cluster quality

Attempting a high-quality clustering is not the primary goal of this thesis. Never-
theless, since we are performing a series of clusterings we might as well se what
kind of results come out.

During the small scale tests, k-means showed good results. The artists chosen
were assigned to clusters with appropriate tag weights. For instance, the top tags
of the cluster “Eminem” was assigned are all variations on “hip-hop” or “rap”.
There also seems to be a nicely defined cluster around the tag “Classical” (weight
0.762), which “Antonio Vivaldi” was assigned to. When investigating whether
similar artists are assigned to the same cluster or not, only one couple did not;
“Madonna”and “Kylie Minogue”. As mentioned previously, this is likely due to
the strong influence of the “australian” tag for “Kylie Minogue”. This suggests
that we might want to filter out non-music related tags, in the case we are strictly
interested in genres and such. These country-related tags can also be seen by
looking at the full cluster output. There are quite a few clusters where tags like
“finnish”, “deutsch” or “japanese” have heavy weights. This is, of course, specific
to the Last.FM data set, and while filtering these out in subsequent clustering jobs
might be beneficial here that might not be the case for other data sets. Since the
quality of the clustering was not the primary goal in this project this filtering was
not performed.

To try to assess whether the output was reasonable in a slightly more objective
way a survey was set up. People not involved with this thesis (friends, relatives)
were asked to search for an artist they knew, and the top three tags for the cluster
that artist was assigned to was shown. The user was then asked to rate how well
those tags described the genre on a scale from one to five. In total, 55 answers
were collected.

As can be seen in Figure 6.1 the results seem very favorable with a mean vote
of 4.14. This high score might be flawed by a misunderstanding of the question.
An example would be swedish artist “Orup”, who is assigned to a cluster with
top tags “swedish”, “svenskt”, and “pop”. While all definitely relevant to the
artist, the first two are a bit redundant and do not really form a coherent “genre”

Conclusions 39

Figure 6.1: Histogram of ratings from external users

together with the last tag.
Even so, the high score should indicate that the output is not unreasonable.

The test users were overall happy with the clusters their artists were assigned to.
LDA also worked fairly well for the small scale test, although some of the

topics seem to consist of mixed genres. For instance, topic #18 has, as mentioned
before, “soul”, “classical” and “rnb” as the three most probable tags. Again, we
see a few topics with language tags in them.

For the large scale K-means clustering we saw that blogs chosen from the
Discovery page were assigned to clusters centered around relevant tags. Similar
blogs were assigned to the same clusters, with the exception of blogs from the
Television section and the Sports section. Possible reasons for this was discussed
in section 5.5.2. Looking at the full K-means output of the large scale clustering
we are able to find some of the subcultures (or fandoms, in Tumblr lingo) one
might expect to see on Tumblr. For instance, clusters #2, #17 and #45 seem to
revolve around television shows; The Vampire Diaries, Supernatural and Doc-
tor Who. Cluster #47 appears to be a “Youtube-cluster” with tags representing
popular Youtubers. A couple of music-related clusters appear (#35 - 5 Seconds of
Summer, #55 - One Direction and #56 - Justin Bieber). The fact that these subcul-
tures were split in to distinct clusters to me shows a successful clustering. There
are however some problems. Tags such as “http” and “com” do not really add
anything and are most likely from automated posting from other sites such as
IFTTT or Instagram.

The latent topics found by LDA in the Tumblr data set are not quite as clear as

40 Conclusions

the clusters found by K-means. Again, we see topics centered around TV-shows
(#14 - Doctor Who, #16 - Supernatural, #18 - Sherlock). However, there are a
couple of topics that are either non-sensical (e.g. #22 with tags “oh”, “yes” and
“love”) or seem to consist of varying tags (e.g. #12 with tags “disney”, “food”
and “fitness”).

6.3 Future improvements and use-cases

In both the cases with spherical K-means and LDA the data sets could probably
have used some filtering in terms of stopwords (which was already used to some
extent for LDA) and imposing harder limits on how many times a tag has to be
used before including it to make the data less noisy, especially in the case of the
Tumblr data set since the tags were split in to unigrams and is used more as an
extension of the post instead of categorization, which I believe is more the case
with tags in the Last.FM data set.

The output from the clustering jobs is most likely not something that can be
consumed by end-users immediately. It might however be useful as input to
other algorithms. For example, using the assignment of the cluster as a feature in
a recommendation engine or for classification. Blei, Ng and Jordan (2003) gives
the example of using LDA for document classification by training a support vec-
tor machine using the model inferred by using LDA. They achieve the same (and
sometimes even better) results with a 99.6% reduction in feature space. [18]

For spherical K-means tf/idf weighting was used which seems to have gener-
ated good results. Wilson and Chew (2010) suggest adding a weighting scheme
to LDA as well, in the process eliminating the need for stopword filtering. [25]
This would be interesting to explore, as it might give the benefits of a weighting
scheme while also taking in to account correlations.

Overall, I consider the experiments a success. Mahout has shown to scale
nicely with the computing power available but also some problematic issues with
memory usage became apparent. It is indeed capable of clustering very large
data sets but, and in especially the case with Tumblr, quite heavy filtering might
be needed, as well as term weighting. Both for reducing the memory resources
needed and trying to filter out noisy data.

References

[1] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. H.
Byers, “Big data: The next frontier for innovation, competition, and produc-
tivity,” 2011.

[2] K. W. Pamela Vagata, “Scaling the facebook data warehouse to
300 pb.” https://code.facebook.com/posts/229861827208629/
scaling-the-facebook-data-warehouse-to-300-pb/. Accessed: 2014-
03-21.

[3] T. White, Hadoop: The definitive guide. "O’Reilly Media, Inc.", 2012.

[4] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large
clusters,” Commun. ACM, vol. 51, pp. 107–113, Jan. 2008.

[5] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,” SIGOPS
Oper. Syst. Rev., vol. 37, pp. 29–43, Oct. 2003.

[6] “What is apache hadoop?.” http://hadoop.apache.org/#What+Is+
Apache+Hadoop%3F. Accessed: 2013-10-21.

[7] S. Owen, R. Anil, T. Dunning, and E. Friedman, Mahout in action. Manning,
2011.

[8] P. Lamere, “Lastfm-artisttags2007.” http://musicmachinery.com/2010/
11/10/lastfm-artisttags2007/, 2010. Accessed: 2013-10-21.

[9] K. Ericson and S. Pallickara, “On the performance of distributed clustering
algorithms in file and streaming processing systems,” in Utility and Cloud
Computing (UCC), 2011 Fourth IEEE International Conference on, pp. 33–40,
IEEE, 2011.

[10] G. S. Ingersoll, T. S. Morton, and A. L. Farris, Taming text: how to find, organize,
and manipulate it. Manning, 2013.

[11] G. Salton, A. Wong, and C. S. Yang, “A vector space model for automatic
indexing,” Commun. ACM, vol. 18, pp. 613–620, Nov. 1975.

[12] R. Baeza-Yates, B. Ribeiro-Neto, et al., Modern information retrieval, vol. 463.
ACM press New York, 1999.

41

https://code.facebook.com/posts/229861827208629/scaling-the-facebook-data-warehouse-to-300-pb/
https://code.facebook.com/posts/229861827208629/scaling-the-facebook-data-warehouse-to-300-pb/
http://hadoop.apache.org/#What+Is+Apache+Hadoop%3F
http://hadoop.apache.org/#What+Is+Apache+Hadoop%3F
http://musicmachinery.com/2010/11/10/lastfm-artisttags2007/
http://musicmachinery.com/2010/11/10/lastfm-artisttags2007/

42 REFERENCES

[13] D. J. Rogers and T. T. Tanimoto, “A computer program for classifying
plants,” Science, vol. 132, no. 3434, pp. 1115–1118, 1960.

[14] W. R. Dillon and M. Goldstein, Multivariate analysis: Methods and applications,
vol. 45. John Wiley & Sons New York, 1984.

[15] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,” ACM
computing surveys (CSUR), vol. 31, no. 3, pp. 264–323, 1999.

[16] J. B. MacQueen, “Some methods for classification and analysis of multivari-
ate observations,” in Proceedings of the Fifth Berkeley Symposium on Mathemat-
ical Statistics and Probability, University of California Press, 1967.

[17] A. McCallum, K. Nigam, and L. H. Ungar, “Efficient clustering of high-
dimensional data sets with application to reference matching,” in Proceed-
ings of the sixth ACM SIGKDD international conference on Knowledge discovery
and data mining, KDD ’00, pp. 169–178, ACM, 2000.

[18] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” J. Mach.
Learn. Res., vol. 3, pp. 993–1022, Mar. 2003.

[19] J. Mannix, “New implementation for lda: Collapsed variational bayes
(0th derivative approximation), with map-side model caching.” https://
issues.apache.org/jira/browse/MAHOUT-897. Accessed: 2014-03-23.

[20] Y. W. Teh, D. Newman, and M. Welling, “A collapsed variational bayesian
inference algorithm for latent dirichlet allocation,” in NIPS, vol. 6, pp. 1378–
1385, 2006.

[21] I. S. Dhillon and D. S. Modha, “Concept decompositions for large sparse text
data using clustering,” Machine Learning, vol. 42, no. 1-2, pp. 143–175, 2001.

[22] R. Nock and F. Nielsen, “On weighting clustering,” Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, vol. 28, no. 8, pp. 1223–1235, 2006.

[23] S. Robertson, “Understanding inverse document frequency: on theoretical
arguments for idf,” Journal of documentation, vol. 60, no. 5, pp. 503–520, 2004.

[24] A. Foundation, “Latent dirichlet allocation - overview.” https://mahout.
apache.org/users/clustering/latent-dirichlet-allocation.html.
Accessed: 2014-03-21.

[25] A. T. Wilson and P. A. Chew, “Term weighting schemes for latent dirich-
let allocation,” in Human Language Technologies: The 2010 Annual Conference
of the North American Chapter of the Association for Computational Linguistics,
pp. 465–473, Association for Computational Linguistics, 2010.

https://issues.apache.org/jira/browse/MAHOUT-897
https://issues.apache.org/jira/browse/MAHOUT-897
https://mahout.apache.org/users/clustering/latent-dirichlet-allocation.html
https://mahout.apache.org/users/clustering/latent-dirichlet-allocation.html

Appendices

43

44

Appendix A
Git repository of source code and data

The source code of the Hadoop jobs, various R scripts for producing the graphs
as well as the LATEXsource code of this document can be found in a git repo on my
GitHub page: https://github.com/defect/exjobb

A.1 Hadoop jobs

The Hadoop jobs used to preprocess the data sets and run the clusterings can be
found under the hadoop-jobs directory. The java source code is located in hadoop-
jobs/src/main/java under the package com.tumblr.felixaronsson.thesis. The
project can be built using Maven and the mvn package command which will pro-
duce a jar file in in hadoop-jobs/target.

A.2 R scripts

R is a programming language for statistical analysis. However, in the context of
this project it has mostly been used for its graphing and visualization capabilities.
Each of the scripts in the R directory will read a CSV file from the R/input directory
and output a PNG image that is then used in the report.

A.3 Documentation and report

The docs directory contains the source files needed to produce this document.
This includes all the images produced by the R scripts, the list of references (lo-
cated in docs/refs/references.bib) and the actual report (docs/report/report.tex). There
is also a simple makefile to compile the report to pdf. However, the latest com-
piled version is already available in the docs/output directory.

45

https://github.com/defect/exjobb

46 Git repository of source code and data

Appendix B
Full clustering outputs

In this appendix section are lists of the centroids from K means and the topics
from LDA clusterings.

B.1 Last.FM Spherical K-Means output

The following table shows the three most prominent tags for each of the 60 cen-
troids the spherical k-means algorithm found.

Centroid 0: german 0.188 deutsch 0.097 Hawaiian 0.096
Centroid 1: synthpop 0.194 80s 0.183 new wave 0.145
Centroid 2: noise 0.236 breakcore 0.192 deathrock 0.166
Centroid 3: norwegian 0.398 danish 0.353 norsk 0.115
Centroid 4: folk 0.244 Czech 0.119 singer-songwriter 0.084
Centroid 5: Hip-Hop 0.317 hip hop 0.199 rap 0.146
Centroid 6: post-punk 0.181 Garage Rock 0.157 New Zealand 0.058
Centroid 7: Avant-Garde 0.211 experimental 0.192 contemporary classical 0.099
Centroid 8: jazz 0.422 swing 0.109 oldies 0.063
Centroid 9: twee 0.241 indie pop 0.223 swedish 0.096
Centroid 10: classic rock 0.120 rock 0.079 russian 0.067
Centroid 11: Progressive metal 0.359 metal 0.121 Nu Metal 0.115
Centroid 12: pop punk 0.204 emo 0.177 punk 0.086
Centroid 13: italian 0.234 latin 0.179 brazilian 0.170
Centroid 14: screamo 0.428 post-hardcore 0.166 emo 0.157
Centroid 15: christian 0.758 christian rock 0.201 worship 0.193
Centroid 16: funk 0.283 soul 0.222 Disco 0.141
Centroid 17: Belgium 0.222 belgian 0.188 slovak 0.150
Centroid 18: Drum and bass 0.175 downtempo 0.155 chillout 0.134
Centroid 19: hard rock 0.277 hair metal 0.266 glam rock 0.096
Centroid 20: video game music 0.662 Game Music 0.287 game 0.189
Centroid 21: celtic 0.797 irish 0.158 bagpipes 0.149
Centroid 22: psychobilly 0.958 rockabilly 0.530 horror punk 0.244
Centroid 23: Soundtrack 0.464 anime 0.130 musicals 0.121
Centroid 24: thrash metal 0.499 Melodic Death Metal 0.428 death metal 0.150
Centroid 25: dutch 0.262 Nederlandstalig 0.202 chinese 0.139
Centroid 26: Power metal 0.716 folk metal 0.219 heavy metal 0.155
Centroid 27: RAC 0.926 nsbm 0.276 vikingarock 0.171
Centroid 28: eurobeat 0.232 female vocalists 0.188 singer-songwriter 0.090
Centroid 29: j-pop 0.374 japanese 0.295 JPop 0.263
Centroid 30: techno 0.542 podcast 0.143 schranz 0.081

47

48 Full clustering outputs

Centroid 31: world 0.265 turkish 0.259 african 0.112
Centroid 32: comedy 0.711 funny 0.126 humor 0.101
Centroid 33: blues 0.295 jazz 0.231 Romanian 0.087
Centroid 34: post-rock 0.268 spanish 0.223 Spanish Rock 0.091
Centroid 35: irish 0.326 acoustic 0.176 Irish Folk 0.064
Centroid 36: finnish 0.644 Suomi 0.070 seen live 0.070
Centroid 37: doom metal 0.377 Gothic Metal 0.312 Gothic 0.135
Centroid 38: hardcore 0.362 metalcore 0.212 polish 0.170
Centroid 39: trance 0.411 dance 0.169 House 0.162
Centroid 40: heavy metal 0.217 Canadian 0.206 hard rock 0.115
Centroid 41: Crust 0.447 anarcho-punk 0.309 folk punk 0.160
Centroid 42: industrial 0.360 ebm 0.310 darkwave 0.135
Centroid 43: Sludge 0.220 drone 0.150 Stoner Rock 0.129
Centroid 44: black metal 0.779 Progressive rock 0.182 melodic black metal 0.070
Centroid 45: death metal 0.433 grindcore 0.217 swedish 0.215
Centroid 46: french 0.491 chanson francaise 0.201 Surf 0.110
Centroid 47: rap 0.368 Hip-Hop 0.208 hip hop 0.146
Centroid 48: reggae 0.399 dancehall 0.201 rnb 0.200
Centroid 49: shoegaze 0.437 dream pop 0.129 4ad 0.072
Centroid 50: idm 0.179 electronic 0.149 minimal 0.097
Centroid 51: punk 0.218 ska 0.186 punk rock 0.104
Centroid 52: australian 0.522 Aussie 0.149 New Zealand 0.102
Centroid 53: Classical 0.523 new age 0.160 piano 0.104
Centroid 54: indie 0.128 indie rock 0.100 seen live 0.052
Centroid 55: OC ReMix 0.617 game remixes 0.412 video game music 0.318
Centroid 56: splatterpop 0.851 great german Rock 0.550 Aschaffenburg 0.511
Centroid 57: country 0.808 bluegrass 0.180 Alt-country 0.087
Centroid 58: japanese 0.354 J-rock 0.353 visual kei 0.199
Centroid 59: Flamenco 0.313 guitar virtuoso 0.264 guitar 0.190

B.2 Last.FM LDA topic output

These are the topics from the final LDA clustering job with their three most promi-
nent tags.

Topic 0: post-rock 0.166 experimental 0.158 doom metal 0.098
Topic 1: finnish 0.154 french 0.094 comedy 0.065
Topic 2: Power metal 0.192 Gothic Metal 0.140 metal 0.125
Topic 3: pop 0.412 80s 0.073 rock 0.045
Topic 4: Progressive metal 0.201 ska 0.138 reggae 0.134
Topic 5: ambient 0.147 psychedelic 0.052 new age 0.048
Topic 6: electronic 0.304 electronica 0.143 idm 0.052
Topic 7: rock 0.310 alternative 0.197 alternative rock 0.12
Topic 8: seen live 0.247 Canadian 0.105 swedish 0.103
Topic 9: german 0.131 ebm 0.097 Gothic 0.065
Topic 10: metal 0.260 heavy metal 0.192 Melodic Death Metal 0.136
Topic 11: female vocalists 0.448 female 0.066 female vocalist 0.038
Topic 12: indie 0.145 indie pop 0.129 Soundtrack 0.077
Topic 13: japanese 0.174 j-pop 0.091 JPop 0.062
Topic 14: indie 0.332 indie rock 0.173 alternative 0.12
Topic 15: classic rock 0.214 rock 0.168 Progressive rock 0.1
Topic 16: seen live 0.243 rock 0.158 emo 0.137
Topic 17: death metal 0.348 thrash metal 0.129 grindcore 0.092
Topic 18: soul 0.118 Classical 0.108 rnb 0.074

Full clustering outputs 49

Topic 19: metal 0.191 rock 0.163 hard rock 0.101
Topic 20: Grunge 0.284 Stoner Rock 0.121 rock 0.099
Topic 21: hardcore 0.245 metalcore 0.156 screamo 0.107
Topic 22: jazz 0.338 blues 0.065 Fusion 0.03
Topic 23: Hip-Hop 0.283 rap 0.166 hip hop 0.134
Topic 24: punk 0.305 punk rock 0.115 new wave 0.085
Topic 25: trip-hop 0.152 chillout 0.151 downtempo 0.085
Topic 26: dance 0.203 trance 0.147 House 0.09
Topic 27: industrial 0.313 industrial metal 0.089 seen live 0.064
Topic 28: black metal 0.406 folk metal 0.112 viking metal 0.063
Topic 29: singer-songwriter 0.244 folk 0.199 acoustic 0.072

B.3 Tumblr Spherical K-Means output

This section presents the centroids found in the Tumblr data set by K-means.

Centroid 0: bitstrips 0.152 ifttt 0.144 meus 0.138
Centroid 1: black 0.098 pokemon 0.095 white 0.084
Centroid 2: tvd 0.073 vampire 0.055 damon 0.036
Centroid 3: architecture 0.054 gaming 0.034 education 0.028
Centroid 4: girl 0.101 hair 0.067 grunge 0.033
Centroid 5: rp 0.364 roleplay 0.110 rpg 0.101
Centroid 6: tattoo 0.217 lt3 0.161 tattoos 0.11
Centroid 7: http 0.779 com 0.264 www 0.236
Centroid 8: spotify 1.144 music 0.505 text 0.119
Centroid 9: liebe 0.109 berlin 0.081 ich 0.066
Centroid 10: graffiti 0.044 cara 0.038 delevingne 0.024
Centroid 11: beach 0.151 diary 0.151 journal 0.106
Centroid 12: dog 0.105 fall 0.058 puppy 0.056
Centroid 13: kik 0.303 selfie 0.241 bored 0.074
Centroid 14: family 0.090 daddy 0.065 dom 0.032
Centroid 15: chicago 0.033 san 0.026 california 0.026
Centroid 16: quotes 0.360 fave 0.058 audio 0.046
Centroid 17: supernatural 0.103 spn 0.078 teen 0.055
Centroid 18: food 0.160 foodporn 0.044 yummy 0.04
Centroid 19: of 0.102 zelda 0.022 thrones 0.017
Centroid 20: milestone 0.597 posts 0.571 tumblr 0.335
Centroid 21: homestuck 0.080 snk 0.075 no 0.035
Centroid 22: me 0.314 fav 0.051 1d 0.018
Centroid 23: music 0.204 rock 0.013 the 0.012
Centroid 24: webcamtoy 1.465 effect 0.850 acnl 0.184
Centroid 25: exo 0.302 kpop 0.068 sehun 0.065
Centroid 26: love 0.155 you 0.000 true 0.0
Centroid 27: this 0.033 is 0.023 you 0.0
Centroid 28: de 0.088 la 0.040 bestfriend 0.024
Centroid 29: friends 0.154 party 0.045 best 0.042
Centroid 30: art 0.165 illustration 0.068 drawing 0.058
Centroid 31: photography 0.246 landscape 0.027 35mm 0.021
Centroid 32: cat 0.186 cats 0.089 kitten 0.04
Centroid 33: personal 0.441 the 0.009 thoughts 0.0
Centroid 34: gifboom 0.325 gif 0.294 mine 0.195
Centroid 35: summer 0.124 5sos 0.115 luke 0.056
Centroid 36: follow 0.437 back 0.082 f4f 0.079
Centroid 37: amor 0.292 frases 0.202 para 0.08

50 Full clustering outputs

Centroid 38: tumblr 0.508 milestone 0.354 birthday 0.179
Centroid 39: boanoite 0.065 feliz 0.048 goodmorning 0.038
Centroid 40: birthday 0.656 tumblr 0.401 happy 0.032
Centroid 41: eu 0.079 amore 0.073 que 0.066
Centroid 42: fitness 0.18 fitblr 0.104 healthy 0.093
Centroid 43: lol 0.127 funny 0.091 cute 0.084
Centroid 44: poetry 0.182 quote 0.154 writing 0.107
Centroid 45: sherlock 0.192 doctor 0.115 who 0.071
Centroid 46: fashion 0.214 polyvore 0.122 style 0.094
Centroid 47: danisnotonfire 0.097 amazingphil 0.058 oakley 0.048
Centroid 48: tbt 0.148 weed 0.089 nofilter 0.072
Centroid 49: the 0.07 sims 0.026 ts3 0.0
Centroid 50: depression 0.124 depressed 0.064 suicide 0.062
Centroid 51: pink 0.105 nails 0.071 flowers 0.052
Centroid 52: sad 0.088 help 0.058 sorry 0.041
Centroid 53: 2013 0.174 truth 0.055 watch 0.042
Centroid 54: design 0.121 payday 0.063 loan 0.062
Centroid 55: harry 0.097 styles 0.073 direction 0.052
Centroid 56: justin 0.178 bieber 0.173 icons 0.137
Centroid 57: swag 0.205 dope 0.084 yolo 0.074
Centroid 58: gay 0.083 sex 0.081 porn 0.059
Centroid 59: new 0.095 halloween 0.066 york 0.042

B.4 Tumblr LDA topic output

The topics from the final LDA clustering job of the Tumblr data set with their
three most prominent tags.

Topic 0: photo 0.056 reblog 0.054 breaking 0.005
Topic 1: snk 0.028 free 0.027 anime 0.023
Topic 2: girl 0.061 sexy 0.046 girls 0.044
Topic 3: follow 0.084 love 0.054 quotes 0.036
Topic 4: rp 0.081 hs 0.033 roleplay 0.0192
Topic 5: love 0.018 selfie 0.006 tattoo 0.006
Topic 6: nsfw 0.104 gay 0.088 porn 0.060
Topic 7: sex 0.043 ass 0.042 porn 0.039
Topic 8: like 0.017 just 0.015 have 0.012
Topic 9: fashion 0.077 style 0.015 design 0.011
Topic 10: tom 0.019 potter 0.017 hp 0.015
Topic 11: chat 0.030 cam 0.016 5sos 0.014
Topic 12: disney 0.028 food 0.021 fitness 0.017
Topic 13: dont 0.013 fuck 0.013 like 0.0113
Topic 14: doctor 0.042 who 0.033 teen 0.0170
Topic 15: lol 0.031 homestuck 0.025 funny 0.0185
Topic 16: spn 0.077 supernatural 0.070 dean 0.043
Topic 17: ronpa 0.021 dangan 0.020 aph 0.019
Topic 18: sherlock 0.122 spoilers 0.044 benedict 0.022
Topic 19: personal 0.031 ooc 0.013 dont 0.011
Topic 20: queued 0.036 glee 0.029 wolf 0.019
Topic 21: art 0.054 cute 0.029 cats 0.014
Topic 22: oh 0.0165 yes 0.013 love 0.013
Topic 23: photography 0.028 black 0.024 white 0.021
Topic 24: exo 0.057 sehun 0.013 kai 0.012
Topic 25: text 0.047 fav 0.021 love 0.020

Full clustering outputs 51

Topic 26: news 0.020 boys 0.007 men 0.007
Topic 27: harry 0.061 one 0.046 direction 0.038
Topic 28: polyvore 0.055 fashion 0.046 style 0.036
Topic 29: ifttt 0.162 instagram 0.069 com 0.037

Larg
e scale clu

ster an
alysis w

ith
 H

ad
o

o
p

 an
d

 M
ah

o
u

t

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, February 2015.

Large scale cluster analysis
with Hadoop and Mahout

Felix Aronsson

Fe
lix A

ro
n

sso
n

Master’s Thesis

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2015-431

http://www.eit.lth.se

	report_felixaronsson.pdf
	List of Figures
	List of Tables
	Introduction
	Background
	Goals and methodology
	Tools, infrastructure and data sets
	Previous works

	Survey
	Distance measures
	K-Means clustering
	Canopy clustering
	Latent dirichlet allocation
	K-Means variations

	Data set exploration
	Summary

	Small scale clustering
	Preparation
	Spherical K-Means
	Spherical K-Means with Canopy seeding
	Latent Dirichlet Allocation

	Large scale clustering
	Preparation
	Spherical K-Means
	Latent Dirichlet Allocation

	Conclusions
	Scalability and performance
	Cluster quality
	Future improvements and use-cases

	References
	Appendices
	Git repository of source code and data
	Hadoop jobs
	R scripts
	Documentation and report

	Full clustering outputs
	Last.FM Spherical K-Means output
	Last.FM LDA topic output
	Tumblr Spherical K-Means output
	Tumblr LDA topic output

