
N
etw

o
rk In

terface C
ard

 an
d

 Sw
itch

 in
teg

ratio
n

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, May 2014.

Network Interface Card
and Switch integration

Diptyajit Choudhury

http://www.eit.lth.se

D
ip

tyajit C
h

o
u

d
h

u
ry

Master’s Thesis

DEPARTMENT OF ELECTRICAL AND INFORMATION

TECHNOLOGY

MASTER OF SCIENCE THESIS

Network Interface Card

and Switch integration

Author: Diptyajit Choudhury

Advisor: Robert Wikander

Examiner: Joachim Rodrigues

The Department of Electrical and Information Technology
Lund University
Box 118, S-221 00 LUND
SWEDEN

©2014 Diptyajit Choudhury

Printed in Sweden
E-huset, Lund, 2014

Abstract

Today server computers are being stacked in racks. A computer rack consists of
40+ [1] server computers connected to a top of rack switch. This top of rack
switch is then connected to other racks. Together they form a large cluster of
computers which are used in today's cloud computing. Each server has one or
sometimes two Network Interface Cards (NICs) which are connected to the top
of rack switch. The functionality of the NIC is to transport the packets from the
server's main memory onto a standard such as Ethernet and then transfer them to
the network. However today inside a server the protocol to transport packets in
and from the main memory is already done by Peripheral Component Interconnect
Express (PCIe) protocol. It can therefore be argued that the NIC's function is
useless. Since it will only translate PCIe packets to Ethernet packets. Hence the
NIC functionality, i.e. going from PCI express to Ethernet can be put into the
switch instead.

In this project a NIC is built from scratch to understand how it works and under-
stand networking and networking hardware to achieve this vision. Then the PCIe
protocol is studied in detail and a customized PCIe IP is implemented and veri�ed
to prove that it can be utilized for the project. Hardware tests are conducted on a
FPGA interfaced with a host computer using this protocol. Finally, a theoretical
investigation of the costs and feasibility of supporting a new networking proto-
col called Quantized Congestion Noti�cation (QCN) in a novel NIC-switch hybrid
device is provided.

i

ii

Acknowledgements

I would like to thank my supervisor, Robert Wikander who gave me the opportu-
nity to work on this project. Both he and Per Karlsson at Packet Architects AB
have given me ample suggestions on my designs, which allowed me to spot issues
early on. I would like to thank my examiner Joachim Rodrigues for suggesting that
I apply to the thesis opportunity. His feedback and positive criticism have been
instrumental for my progress. Also, I thank the EMEA scholarship programme
and the EM2 team at Lund University for the opportunity to come to Lund and
study at Lund University. Lastly, to the people I love, thank you for your support
and understanding.

iii

iv

Table of Contents

1 Introduction 1
1.1 Traditional Approach . 1

1.2 Proposed technical solution . 3

1.3 Scope and structure of thesis . 5

2 Building a NIC 7
2.1 Overview of goals and steps . 7

2.2 Interfaces and Speci�cations . 8

2.3 Architecture . 10

2.4 Bu�er . 11

2.5 MAC . 16

2.6 DMA . 18

2.7 Control Path . 20

2.8 Testing . 22

2.9 Results and Discussion . 25

3 PCIe interfacing with host 29
3.1 The PCIe interface . 29

3.2 Goals and Overview . 29

3.3 PCIe : Transactions and Packets . 32

3.4 Debug strategy . 42

3.5 Results and Discussion . 43

4 Investigation of QCN implementation 49
4.1 Introduction and goals . 49

4.2 Flows and Queues . 50

4.3 Descriptor Organization . 51

4.4 Design considerations . 54

4.5 Summary and results . 61

5 Conclusion 63

v

vi

List of Figures

1.1 A typical Switch showing Ethernet ports 1

1.2 The traditional setup . 2

1.3 Dropping packets due to congestion 2

1.4 Individual hosts in a DCN, from CERN. 4

1.5 Proposed Solution . 4

2.1 NIC functionality . 8

2.2 Ethernet packet . 8

2.3 NIC interfaces . 9

2.4 NIC architecture . 10

2.5 The Bu�er block . 11

2.6 The Address Generator . 12

2.7 Packet rate as a variation of Packet size 15

2.8 The MAC . 17

2.9 The DMA . 18

2.10 The DMA Tx FSM . 20

2.11 DMA Bu�er TX control logic . 21

2.12 The test-bed around the DUT . 22

2.13 The FIFO architecture . 23

2.14 Behavioral simulations of the NIC 24

3.1 Di�erence between the PCI and the PCIe 30

3.2 PCIe project overview . 31

3.3 PCIe read and write transactions . 33

3.4 PCIe MWr packet . 34

3.5 PCIe MRd packet . 35

3.6 PCIe Completion with data . 35

3.7 How an interrupt works . 36

3.8 Legacy interrupt line architecture 37

3.9 Hardware on FPGA for interrupts 38

3.10 PCIe Packets for DMA . 39

3.11 Showing the byte enable �eld . 40

3.12 Read and Write Test programs . 41

3.13 The system log displaying messages from the console 42

vii

3.14 Veri�cation using Chipscope . 44

4.1 Two queues showing how congestion can be handled 51

4.2 Data architecture . 52

4.3 Proposed Solution . 53

4.4 The TQD area . 54

4.5 Descheduling �ows due to MBL reached 56

4.6 Relationship between scheduling and target rate 56

viii

List of Tables

2.1 Macro statistics from Synthesis log 26

2.2 Device Utilization Summary . 27

2.3 Timing Summary . 27

2.4 Timing Breakdown . 28

3.1 PCIe packets and abbreviations . 32

3.2 Device Utilization Summary : Synthesis 45

3.3 Device Utilization Summary : Place and Route 46

3.4 Timing Summary . 47

3.5 Dynamic Power Consumption . 47

3.6 Total Power Consumption . 48

4.1 Number of �ows supported by size of RAM 58

4.2 Time to fetch descriptors as limited by target bandwidth 58

4.3 PCIe latency for 2kB packets . 59

4.4 E�ective bandwidth as a function of frequency of �ow fetch 61

ix

x

List of Acronyms

AXI Advanced eXtensible Interface
BSCAN Boundary Scan
CPU Central Processing Unit
CRC Cyclic Redundancy Check
DCN Data Center Network
DMA Direct Memory Access
FCOE Fiber Channel Over Ethernet
FIFO First In First Out
FPGA Field Programmable Gate Array
FSM Finte State Machine
HDL Hadrware Descriptive Language
ISR Interrupt Service Routine
JTAG Joint Test Action Group
LIFO Last In First Out
LUT Look Up Table
MSI Message Signaled Interrupts
NIC Network Interface Controller
PCI Peripheral Component Interconnect
PCIe Peripheral Component Interconnect Express
PHY Physical Layer
PLL Phase Locked Loop
QCN Quantized Congestion Noti�cation
QoS Quality of Service
RAM Random Access Memory
ROM Read Only Memory
RTL Register Transfer Level
SATA Serial ATA
SERDES Serializer/Deserializer
SR-IOV Single Root I/O Virtualization
TFD Transmit Flow Descriptor
TQD Transmit Queue Descriptor
VF Virtual Functions

xi

xii

Chapter1

Introduction

1.1 Traditional Approach

The NIC is a modular hardware unit which is responsible for connecting a computer
to a network. From the computer's point of view, the NIC is alike all other I/O
devices and from the network's perspective it represents one unique node [2].

The NIC has two interfaces, one is the PCIe standard which connects it to the
CPU via the motherboard, and the other is the Ethernet standard which is used
to interface with the network tra�c.

A switch (Figure 1.1) is a device used in networks to deliver a message from one
node to another, for which the message is intended. There are di�erent types of
switches which have additional functions as well, but the basic underlying principle
is the same.

Figure 1.1: A typical Switch showing Ethernet ports

Source : http://goo.gl/ynKJjb

Network tra�c means packets of data, which need to be transmitted or received
by a device. In the generic case of a computer which is part of a data center, the

1

2 Introduction

Figure 1.2: The traditional setup

traditional network architecture is shown in Figure 1.2. If one considers trans-
mission of tra�c, the CPU's task is to assemble a packet, which is then sent via
the NIC to the switch and further transmitted to the packet's destination to the
network. For receiving packets, the CPU must allocate space for the incoming
tra�c and relay this information to the NIC, which receives the data intended for
this unique node from the switch.

The setup shown in Figure 1.2 has a problem. All the network devices such as
NICs, switches, routers etc. have a small amount of memory (bu�er memory) that
they use to temporarily store the tra�c that they are transferring. A scenario can
arise, where programs or applications running on a device on the network attempt
to transfer more packets per unit time than what is permissible by the network
itself. A real-world example of this event is when a video conference is initiated
from the same machine where a �le transfer program was already active. This sit-
uation is called `exceeding the bandwidth', and this causes the bu�ers to get �lled
up and/or over�ow. When this happens, the network gets congested and packets
start getting dropped. As a consequence of dropped packets, data transmission
protocols such as TCP [3] and others [4] mandate a re-transmission of those same
packets which were not delivered, which further increment the congestion in the
network and result in throughput degradation.

Figure 1.3: Dropping packets due to congestion

Multiple solutions have been proposed by investigating the problem from di�erent

Introduction 3

perspectives. For example, there has been previous research on managing bu�er
over�ow in switches [5]. Another approach is highlighted in literature on network
congestion avoidance and/or mitigation [6]. Others suggest a combination of the
two approaches [7]. This thesis proposes a di�erent viewpoint whereby the setup
architecture is identi�ed as the source of the problem. The argument is provided
below. The information that the network is congested, is only available to the
switch which tries its best to mitigate the problem. But, this information is not
relayed to the CPU or endpoint which is causing the problem itself. It would be
worthy to envision a means to let the CPU know that a network congestion has
occurred and it should halt transmissions now. Instead, the CPU employs a `�re
and forget' approach, whereby it keeps dumping packets to the NIC which further
dumps them to the switch and leaves it to deal with the problem. This is shown
in �gure 1.3.

1.2 Proposed technical solution

DCNs are unique in nature, because they must maintain high QoS and must strive
for loss-less transmission of network tra�c because of their choice of Fiber optic
hardware or FCOE infrastructure does not allow any packets to be dropped [8].

Due to these requirements, the previously discussed generic architecture is un-
suitable to perform in DCNs and several work arounds have been proposed. The
proposed technical solution is embodied in the principle of an intelligent con�g-
urable switch called the Flexswitch working in tandem with a DMA engine called
the Hydra. This proposal is explored in some detail below.

Typically DCNs consist of server racks, multiple computers serially arranged in a
cabinet, each having its own unique NIC in its enclosure, connected to a switch
using Ethernet [9]. This is shown in Figure 1.4.

The solution proposed in this thesis involves a novel device, the Hydra which
consists of several Hydra NICs. Each Hydra NIC has two major components, a
PCIe endpoint which connects to the host and a DMA controller which moves
data between the host memory and the switch (and the other way around). From
a host's point of view the Hydra NIC appears as an ordinary NIC, albeit with a
somewhat extended feature set. The change in the architecture is shown in the
�gure 1.5.

4 Introduction

Figure 1.4: Individual hosts in a DCN, from CERN.

Source : http://goo.gl/Ep9ppL

Figure 1.5: Proposed Solution

Introduction 5

The possibilities which open up when a shift is made from the traditional setup
to the proposed solution above, are listed below.

� PCIe bandwidth (256Gbps) is much higher than that of Ethernet (10Gbps)
today, so low latency tra�c transfer is handled more e�ciently between the
host and the network device.

� Power consumption (per host) is reduced because instead of individual NICs
on the hosts, a physically separate module incorporating NICs is proposed.
This enables the use of other architectural modi�cations in the Hydra which
further reduces power consumed.

� Most importantly, since the Hydra and the Flexswitch are part of the same
module, information about network congestion can be exchanged between
them and this information can be relayed to the host without causing sig-
ni�cant overhead, particularly due to PCIe's large bandwidth.

As can be gathered from the above discussion, the entire proposed solution is a
complex device and it supports several features to make it a marketable and viable
product. These include

� PCIe 3.0 speci�cation (including backwards compatibility)

� Support for virtualization (virtual machines) using SR-IOV

� Proprietary interface with the �exswitch, which includes con�gurability ac-
cording to customer needs

� Novel descriptor management architecture, to support upto 512 hosts (con-
sidering PCIe 1x channels for each host)

� Support for QCN which solves certain problems associated with network
congestion

Since implementing all these features is a time consuming and intensive task, the
purview of the thesis is limited to a subset of these.

1.3 Scope and structure of thesis

In the �rst part of the project, a NIC is built using Verilog HDL. This step is
requisite to gain familiarity with networking and networking hardware. The �rst
chapter discusses the entire design process and presents the internal architecture
of a NIC. This is followed by an implementation of this architecture which adopts
a modular approach. The testing strategy is then presented, along with the results
of the simulation.

The second part of this project is devoted to studying the PCIe interface, assimi-
lating this industry standard protocol and investigating if it can be used to achieve

6 Introduction

the features that are part of the proposed solution. Initially, the thesis focusses
on understanding the theoretical structure and underlying signaling of the PCIe
interface. Once that is completed, the focus shifts to working with the standard
in hardware and tailoring it to the solution's needs. Since this is the development
phase and rapid redesign is necessary, a Xilinx FPGA board that includes a PCIe
port is chosen as the target platform. A generic barebones PCIe soft IP which
is bundled with the Xilinx ISE design suite is chosen as a starting point, and
several changes and additions are incorporated. This leads to a customized PCIe
IP which is now a product that can be reused by the company where the thesis
is conducted. Additionally Linux drivers are designed and implemented at each
stage of the PCIe exploration to debug the system at a higher level. In addition to
that, the Xilinx Chipscope tool is utilized to debug the live hardware. The goals,
design procedures and results from this part of the thesis are discussed in the third
chapter.

Once it is seen that PCIe can actually be used to achieve the results envisioned
with the Hydra, it is imperative to conduct a feasibility study on the feature set
that must be supported by the �nal product. This includes evaluation of hardware
footprint, optimization of the same and exploration of co-designing with software.
The most challenging idea is to study the feasibility of implementing QCN, and
how the di�erent trade-o�s associated with the same can be managed. This is
important because the competition either does not support QCN, dubbing it as
�ine�ective in today's FCoE networks� [10] or supports a very small subset of what
the proposed device is equipped with. This section of the thesis is discussed in the
fourth chapter.

Chapter2

Building a NIC

2.1 Overview of goals and steps

This step of the project is dedicated to building a NIC. The goals of this step are
listed below.

� Build a functional DMA engine, to lay the groundwork for the proposed
solution (Hydra).

� Build a functional MAC which can handle Ethernet packets.

� Investigate, analyze and implement hardware components such as shared
memories, FIFOs and linked lists.

� Identify and point out issues with the traditional setup discussed in the
previous chapter.

� Gain familiarity and work with the Ethernet standard in hardware.

� Acquire an overall design experience of networking and networking hard-
ware.

Figure 2.1 shows the basic functionality of the NIC. There are two directions that
packets can �ow.

The �rst direction, henceforth called RxPath is composed of packets from the
network which are received by the host. The NIC accepts packets from the network
which are encapsulated in a particular format which is dependent on the network
chosen. The NIC stores the packet in the on-chip bu�er memory, and then stores
it in the main memory of the host through a direct memory access (DMA) engine.
The second �ow of packets occurs when the host machine needs to transmit packets
to the network, and this is called the TxPath. The NIC should retrieve those
packets from system memory, package them as required by the network and send
them through the medium access controller (MAC). At any point of time, both the
Rxpath and the Txpath can be active, and maximum e�ciency is achieved when

7

8 Building a NIC

Figure 2.1: NIC functionality

both these �ows are at maximum bandwidth. At this high level of abstraction,
the NIC built in this thesis is comparable to the RiceNIC [11].

This chapter will �rst present the interface of the NIC and cover its design spec-
i�cations according to the interface. Then, it will propose an architecture for
achieving the speci�cations and describe the function of the di�erent modules,
justifying design choices when they are encountered. This will be followed by a
presentation of the testing strategy and the reasons why the test bench was made
in a particular way(s). Then, it will show the results of the behavioral simulations.

2.2 Interfaces and Speci�cations

The NIC consists of two interfaces, a 10Gbit Ethernet port at the network side and
a memory access interface at the host memory side. The interfaces are discussed
below.

2.2.1 Ethernet packet format

An Ethernet packet is shown in the Figure 2.2.

Figure 2.2: Ethernet packet

Essentially the packet contains two distinct parts. The data itself, which is the
payload, and various other information regarding the data to be transferred. These
include the source and the destination MAC addresses which are used for routing
the packets to the correct destination, and then identify from which device they
were originally sent. There are also mechanisms by which one can check if the

Building a NIC 9

packet has been damaged since it was sent, and Ethernet packets include a CRC
code at the tail of the packet to make such checks if and when required.

2.2.2 Ethernet interface

The actual interface that is used by the NIC on the Ethernet side needs to be
discussed. This is shown in �gure 2.3 on the right hand side of the NIC.

Figure 2.3: NIC interfaces

The data port(s) is a 64 bit port through which the Ethernet packet must be
received and transmitted, and there are two data ports on the NIC, one for the
Rxpath and the other for the Txpath. The word data might be misleading as this
has no connection with only the payload of the packet; the entire packet is moved
through the data port(s), 64 bits per clock cycle. As long as the active signal is
high, the data port is either receiving or sending a packet. To mark the end of
the packet, the eop signal is set to high during the last 64 bits being transferred.
This is especially useful to distinguish between two packets which arrive without
any inter-frame gap,(i.e the last 8 bytes of a packet are immediately followed by
the �rst 8 bytes of a subsequent packet in the very next clock cycle), and the
active signal does not go low, because there is no pause in packet tra�c. The 3 bit
ethernet_active signal indicates how many bytes of the current data in the data
port is actually valid. This is required to transmit packets of any size, using the
same data port. For example if a packet of 65 bytes needs to be transmitted, during
the �rst eight clock cycles, 8 bytes will be transmitted using the data port, while
ethernet_active remains 000 indicating all bytes of the data are valid. In the last
clock cycle, the 65th byte will be padded with 7 bytes of zeroes and transmitted
through the data port while the ethernet_active will be 001 indicating that only
the �rst byte of this data is actually active.

10 Building a NIC

2.2.3 Interface to main memory

Most NICs in today's computers use either the PCI or the PCIe protocols to con-
nect to the motherboard of the computer [12]. Since these protocols are complex
industrial standards implementing these protocols was beyond the scope of this
part of the project. Instead, a simple memory interface was used and shown in
Figure 2.3. There are separate address buses for reading and writing, coupled
with separate read enable and write enable signals. Essentially the module which
mimics the main memory of the computer is a dual port RAM and this allows us
to adopt this simple interface. The important design choice made at this juncture
was the width of the data bus(es) between the main memory and the NIC. The
constraint was actually determined by the Ethernet interface discussed in section
2.2.2, and this is elaborated in section 2.4.2.

2.3 Architecture

The architecture of the NIC is presented in Figure 2.4. The approach is to have
separate modules for each of the tasks that the NIC must handle simultaneously.

Figure 2.4: NIC architecture

� Firstly, the NIC must be able to receive and send Ethernet packets to and
from the external world. This is done by the block called the MAC.

� The next task that the NIC should perform, is to transfer data packets
to and from the main memory of the computer. Since the computer itself
should not be interrupted for such transfers, the NIC should be able to
transfer this data by directly accessing the memory, and hence this task is
covered by the DMA block.

Building a NIC 11

� The �nal task of the NIC, is to store packets when either the DMA or
the MAC is busy, and to do this the NIC has an on-board memory. To
implement this model and to carry out the NIC's �nal task, the block `Bu�er'
is used in the architecture.

These three blocks constitute the data path of the NIC. The control path is sepa-
rated from these blocks and is comprised of state machines. In addition to these
blocks, there are two Descriptor FIFOs and two pairs of Head-Tail FIFOs. The
Head-Tail FIFOs are used to keep track of the order of data packets, for example,
packet 'x' received before packet 'x+1' from the Ethernet must be stored in that
order in the main memory. Each pair is dedicated for each �ow of packets (Rx
path and Tx path). The Descriptor FIFOs store descriptors, which indicate ad-
dresses in the main memory where incoming packets must be stored (for the Rx
path) or outgoing packets must be retrieved for transmission (Tx path). Each of
these blocks or modules are discussed in detail below. This will be followed by a
description of the control logic used in the design.

2.4 Bu�er

Figure 2.5: The Bu�er block

The Bu�er block is shown in Figure 2.5 and has three components, the address
generator, the chunk memory, and the size memory. The address generator is used
to generate new (or reusable) addresses where data will be written. The chunk
memory stores the packet data. Every index in the chunk memory has a corre-

12 Building a NIC

sponding index in the size memory which is used to store information regarding
how much of the entire chunk is actually valid data. This feature is essential in
order to support packets of varying sizes, where only few bytes of an entire chunk
might contain the useful information. Each of these components are discussed in
detail below.

2.4.1 The Address Generator

At the onset, it is to be established as to why the address generator is required.
The memories in the bu�er are initially empty. When the MAC or the DMA
needs to transfer data to and from the bu�er, it is preferable to have the address
management logic (for chunk memory and size memory) independent of these
blocks so as to simplify the interface between the Bu�er block and the MAC as
well as the bu�er and the DMA. Read operations will be investigated in a later
section, but for write operations to the bu�er memory, the address generator
manages the locations where data is written into. This management is done by
using a LIFO data structure, complemented with a counter and is shown in Figure
2.6.

Figure 2.6: The Address Generator

When the device is reset, the counter is initialized to zero, and it is assumed that
the bu�er memory is empty. The counter can count up to the last location of
the memory, which is determined by the (con�gurable) size of the memory. If
there are `n' locations in the memory, for the �rst `n' write requests, the counter
will generate the address and the address generator will send this address to the
memory for the corresponding write request. Owing to the limited size of the
memory to maintain area constraints of the chip, one is bound to run out o� these
`n' locations in a �nite amount of time. Hence, the addresses must be re-used after
the corresponding data has already been read from the memory and there is no
need to store the data anymore. This is done by using the LIFO. When a read
operation is completed in the bu�er block, subsequently the address from which
the data was read is now pushed into the LIFO. For the `n+1' th write request, we
check the LIFO, and if it is not empty, an address is popped from it, and this is

Building a NIC 13

forwarded by the address generator to the memory for the relevant write request.
In this way addresses are successfully reused for future writes.

When the counter's value is `n' and the LIFO is also empty, it means that all
`n' locations in the memory are currently occupied by data, and none of these
locations have been read so these memory locations cannot be recycled. In other
words, at this stage the bu�er memory is full and the address generator cannot
generate an address for a subsequent write request. Since we don't want to start
dropping packet data, we prevent this new write request from being generated
by asserting a signal `Bu�er Full' which indicates the control logic to wait till
addresses are freed.

2.4.2 The Chunk Memory

The chunk memory is where we store the actual packet data and it has been
implemented as a dual port RAM. It has a simple interface, identical to the of
the main memory discussed in 2.2.3. Some features of the memory are explored
below.

To ensure that maximum throughput is achieved, the memory model must be of a
`shared memory' type. This can be veri�ed using a simple example where we use
separate memories of prede�ned sizes for the separate Rx Path and Tx Path. If due
to network congestion or faults, the network tra�c consists of just one type of data
(say data only in the Rx Path), the prede�ned (separate) memory for the Rx path
will inevitably become full and the device will have to start dropping incoming
packets because it has nowhere to store it. Meanwhile, the (separate) memory
block for the Tx path is still empty and unused. This leads to a simultaneous drop
in performance as well as underutilisation of resources. The better choice is to opt
for a shared memory space which can be populated with data packets from either
path. This choice does introduce a need for tagging memory locations with the
�ow (Rx or Tx) that they are associated with (for identi�cation during subsequent
read requests), but this is easily achieved by using two separate FIFOs outside the
Bu�er block. This the tagging mechanism is pursued later in section 2.4.3, and
for now, the size of the data ports of the chunk memory is justi�ed.

The speci�cation of the Ethernet port is 10Gbit. So, every second 10G bits will
enter(or leave) the device. However as we have already seen in section 2.2.2, the
port through which the Ethernet data is transmitted, is only 64 bits wide. Hence,
the clock frequency with which the device should operate is given by

f =
10 ∗ 1000000000

64
= 156.25MHz

To achieve this frequency for the entire design, the memory in the bu�er block
must be able to handle reads and writes at the same frequency.

Hence, the frequency constraint on the memory means that the number of bytes
read from or written to the memory in every cycle must also be chosen correctly. It
must be kept in mind that both the DMA and the MAC have read and write access

14 Building a NIC

to the on-chip bu�er memory, and since the memory is a shared memory, it has
only one write port and one read port. A situation may arise where the DMA has
initiated a read request for a packet on the RxPath, and before that is completed,
the MAC also issues a read request for another packet on the TxPath. Since only
one read port is available, the easiest solution is to queue such requests and handle
them sequentially. However this solution will severely a�ect the throughput of the
device, as the NIC and the MAC will no longer be independent of each other. Each
block has to wait till the previous block which made the read or write request is
serviced, and only then will the current block's request be satis�ed. This will
result in under-utilization of the external ports, that is, no transmission will be
made even when the ports are idle, and the only reason is that a pending read(or
write) request.

An alternative solution is to read or write in bursts, where data chunks are moved
between the memory and the peripheral blocks(the MAC and the DMA) for every
request. In this scenario, when the MAC or the DMA issues a read(or write)
request, it will receive or send a chunk of data at a time. This will signi�cantly
reduce the number of memory accesses that the peripheral blocks must issue to
transfer an entire packet. For example, consider a packet in the TxPath, of length
256 bits, that must be read from the bu�er memory by the MAC and then be
transmitted to the external network. Now, since the data port on the MAC is
64 bits wide (as mandated by the Ethernet interface in section 2.2.2) the logical
decision is to transfer 64 bits of the packet from the bu�er memory to the MAC in
every clock cycle, and transmit them to the network. So, for the current example
this will take 4 clock cycles. Now, consider that the DMA was busy transferring
a packet for the �rst two cycles of this operation. At the beginning of the third
cycle, the DMA is ready to transfer a new packet on the RxPath and issues a read
request to the bu�er memory. Since the bu�er memory is already processing a read
request, this new request will not be serviced immediately, but has to wait for two
more cycles till the read from MAC is �nished. Now instead of reading only 64
bits at a time, let us assume that the data chunk size is �xed at 256 bits. Then,
the MAC can read all 256 bits of the packet in one cycle, and the aforementioned
con�ict with the DMA read request is avoided. After the chunk read, the MAC
now needs to store the 256 bits in a register (internal to the MAC), and transmit
64 bits per clock cycle from this, and is thus no longer in�uencing the speed at
which the DMA can read from the bu�er memory. This solution does introduce
overhead in terms of hardware, but the throughput is increased considerably.

Now that it is clear that the data chunk transfer is the preferred mode of reading or
writing to the memory, the next step in the design process is to choose an optimal
chunk size. When the size of the chunk is progressively increased, frequency of
read and write requests to the memory by the peripheral blocks is progressively
reduced. This also decreases the probability of a request con�ict. However, a
larger chunk size also means larger registers, more chip area, and more power
consumption. Thus choosing the size of the chunk is an important design decision.
At this junction, it must be recalled that the frequency of operation should be
156.25 MHz and hence the frequency with which chunks are written in or read out
from the memory should be roughly equal to this. This chunk rate can be equated

Building a NIC 15

as
Chunk rate =

Packet Rate

Chunk Size

Figure 2.7: Packet rate as a variation of Packet size

For this discussion, refer to Figure 2.7. In the X axis of this graph the packet
size has been varied as allowed by the ethernet standard in section 2.2.2. With
this variation in mind, the packet rate, which is determined by the speci�cation
of the NIC (10Gbit), is plotted on the Y axis. The highest packet rate and its
corresponding packet size is marked on the graph with the dotted line. The chunk
size is now chosen so that it is equal to the packet size for which the packet rate is
maximum. This choice is justi�ed because it can ensure performance even when
the NIC is operating at maximum load and maximum throughput. From this
calculation and the graph above, it was decided that the chunk size will be 144
bytes (1152 bits). Furthermore, to maintain a uniform design the width of the
data ports of the main memory is also kept as 144 bytes.

2.4.3 The Size Memory and the Head-Tail FIFOs

This is another memory in the Bu�er block. The size memory contains as many
index as the chunk memory so that there is a one-to-one correspondence with
it. Since the useful data in a chunk may be less than the maximum size of the
chunk, this memory is necessary to keep track of the payload data. The tagging
mechanism introduced in section 2.4.2 is explained below. Since the Size and
Chunk memories are both shared memories, it is not mandatory that consequent

16 Building a NIC

address locations contain consecutive fragments of a single packet. What this
translates to, is a requirement for keeping track of the memory locations which
contain all the fragments of a single packet. The solution to this problem is to use
a linked list, and this is where the Rx and Tx Head/Tail FIFOs come into action.
Essentially, these FIFOs shown in Figure 2.4 store the memory index of a complete
(chunk and size) entry in the bu�er block. An example of the entire process is
provided. Initially these FIFOs are empty, and once we get a number of Rx packets
(so that a chunk can be written) in the MAC, a chunk write is performed. The
address generated by the address generator is pushed onto the Rx Head/Tail FIFO
and the same address is used to store that chunk and its corresponding size on the
chunk memory and size memory respectively. Since its a FIFO, this action can
be continued until the DMA is ready to transfer the chunks into main memory
(system memory) of the host. When the DMA is ready, the addresses stored in
the FIFO is popped, and the chunk which has been residing in the bu�er for the
longest time (i.e the packets which came in �rst) will be moved to the DMA �rst,
and then the subsequent packet and so on. The size of the chunk from the Size
memory is also transferred to the DMA and then forwarded to the main memory
because the physical host machine should also be informed about how much of the
chunk stored in its system memory is actually useful data.

2.5 MAC

The MAC is the block which interfaces the NIC to the ethernet network. So,
it must include the ethernet interface as outlined in section 2.2.2. Almost all
leading manufacturers have their own implementation of a MAC available for con-
sumers. Popular choices in this increasingly competitive market included Xilinx's
10GEMAC [13], Arasan's XGMAC [14] and Altera's XAUI [15]. Though the basic
functionality explained below is the same for these popular alternatives and the
MAC developed here in this thesis, it is clari�ed that the implemented MAC does
not have a PHY module (beyond the scope of the thesis), so it lacks the ability to
be hooked up to a physical copper medium and start transmitting packets.

The MAC (shown in Figure 2.8.) is responsible for the interaction with the external
Ethernet network. It receives and transmits packets using 64 bit data ports to the
Ethernet interface. It is also connected to the bu�er block and these two blocks
interact by using read and write chunks of 144 bytes. The biggest challenge in this
block is to maintain the integrity of the data �ow even though data ports on either
side of the MAC are so di�erent in size. This challenge is tackled by adopting a
�ne-grained control of the data �ow and the solution is described below. The MAC
has two internal registers which are the same size as the determined chunk size (this
is con�gurable as well). These registers allow the MAC to perform serial in parallel
out (SIPO) and parallel in serial out (PISO) conversions on the data packets. For
example, when packets are being transmitted to the Ethernet network, the MAC
will �rst receive a chunk of data and store it in one of these registers. Then it will
serially transmit 8 bytes from this register onto its eth_data_out port over 144/8

Building a NIC 17

Figure 2.8: The MAC

= 18 clock cycles. And in this way it performs a PISO function. The reverse is
applicable for packets on the RX path.

On the RX path, the MAC has to ful�ll another function as well. Since the size
value which we associate with every chunk is required for our internal architecture
and is not available from the Ethernet network directly, when the MAC (serially)
receives the 64 bits of Ethernet data per clock cycle and stores them in the internal
SIPO register (for a future write to the bu�er), every cycle, the MAC must use the
3 bit eth_active_in signal to ascertain the valid bytes of the incoming 64 bit data.
As discussed earlier this value can range from 000 (indicating all bytes are valid)
to 111 (indicating the �rst 7 bytes are valid) and accordingly, the MAC increments
the size value associated with that particular chunk which it is handling in the
SIPO register. When the register is full and the bu�er indicates that it is ready
for a write, the MAC will write the contents of both the PISO register and this
size register into the bu�er's chunk memory and size memory respectively.

An additional port named `full' has been added to the MAC which was not visible
in the original sketch of the NIC interfaces in Figure 2.3. This is used to let the
external Ethernet network know that the internal bu�er of the NIC is full and it
should not send any more packets. If the network still persists in sending any more
packets when the value of `full' is high, then the packets will be dropped and since
that is an important metric of evaluating a networking device, we have added a
`drop_count' port in the MAC which keeps a record of the packets dropped.

As part of its function to transmit Ethernet packets which are compatible with
the external ethernet network, the MAC also maintains appropriate values on the
eth_active_out and active_out signals. To achieve that, when its making the
PISO conversion for the TX path, it monitors the `size' value associated with the

18 Building a NIC

chunk (both the size and chunk have been retrieved from the system memory by
the DMA, then stored in the bu�er, and �nally read by the MAC for transmission),
deducts the number of bytes it is transmitting every cycle from this value, and uses
a look up table to generate the eth_active_out for the next data transmission.

2.6 DMA

The DMA block shown in Figure 2.9 is responsible for transferring packets between
the bu�er and the system memory of the host. To allow this interaction with the
system memory, the DMA should be informed about the memory locations (in the
system memory) which either store packets which need to be transmitted and the
memory locations where incoming packets (from the Ethernet network) on the RX
path can be stored. To achieve this, descriptors which are addresses pointing to
the aforementioned memory locations are used. There are two types of descriptors
: RX and TX and in the real world case, its the (host machine) operating system's
task to manage these descriptors. Since interfacing with a physical host machine is
investigated in a later part of the project, a hardware based descriptor management
system consisting of two FIFOs was implemented in the form of the RX descriptor
FIFO and the TX descriptor FIFO (refer Figure 2.4).

Figure 2.9: The DMA

The descriptor FIFOs are part of the test-bed that will be discussed later, but to
understand the DMA's functions an example is presented here. Consider a TX
packet is ready to be transferred in the system memory. These are the events that
occur in sequence.

Building a NIC 19

� The memory location where this packet is stored, will be pushed to the TX
descriptor FIFO.

� As soon as this FIFO is not empty, the control logic will inform the DMA
that a descriptor is available, which is pointing to a packet waiting for
transmission.

� The DMA will pop the FIFO and get this address. It will use this address
to generate a read from the system memory and store the response in an
internal register which has the same size as the chunk used in the bu�er. It
will also retrieve the size value associated with this chunk from the system
memory.

� Once a chunk is loaded, the DMA will inform the bu�er control logic that
it has a pending transmission request and it needs to write to the bu�er.

� If it is not full, the bu�er will generate a new address or reuse one of the
previously used addresses (as discussed in section 2.4.1) for its internal mem-
ories and indicate to the control logic that it is ready to receive the TX packet
from the DMA.

� The DMA will write the chunk to the bu�er.

� The DMA will now update the TX descriptor, indicating that the packet
has been sent to the bu�er and that the host can now reuse this address to
store another packet it needs to transmit.

A similar set of steps are followed when a packet is being received, but the data
�ow is the other way round (from the bu�er to the DMA and then to the system
memory). A glance at Figure 2.9, reveals a number of ports which were previously
not seen in Figure 2.3. These have been added to allow the interaction with the
control logic, managing the descriptors and communicating with the descriptor
FIFOs.

To maintain the order of these steps and ensure that the DMA reacts as outlined
above, FSMs are used within the DMA block in conjunction with the control logic.
The TX FSM used inside the DMA is shown in Figure 2.10.

A walk-through of these states is presented to get a clear understanding of how
the DMA manages to interact with the data �ow and the control logic, and the
steps highlighted above are included in the discussion for the sake of clarity.

� Initial : In this state the DMA is idle and its is waiting for packets that need
to be transmitted from the system memory. As soon as the TX descriptor
FIFO is not empty, (indicating a pending transmission) the FSM goes to
the next state.

� Retrieve Descriptor : In this state the DMA will pop the TX descriptor
FIFO to get the descriptor which is pointing to the packet (in system mem-
ory) waiting to be transmitted. This will take one clock cycle and then the
FSM will proceed to the next state.

20 Building a NIC

Figure 2.10: The DMA Tx FSM

� Ready : The DMA will use the address in the descriptor and fetch the
chunk and its size from system memory. This will take one clock cycle.
After that, it waits in this state until the bu�er indicates that its ready for
a write (tx_start=1).

� Transmit and Send : The DMA will complete the transfer of the chunk
to the bu�er block. Then it will update the current descriptor and send it
to the descriptor management system. Once done, the FSM goes back to
the idle state, waiting for the next descriptor.

2.7 Control Path

From Figure 2.4 it can be recalled that the control paths are four FSMs which lie
between the three principal blocks viz. the MAC, the DMA and the bu�er. The
naming convention followed (for these FSMs) is based upon which blocks they
are between, and the �ow (RX or TX) that they are controlling. For example,
the control logic FSM between the Bu�er and the DMA which controls the Rx
path, is called the Bu�er_DMA_RX_FSM. These FSMs are responsible for these
functions indicated below.

� They ensure that the MAC, DMA and the bu�er follow the steps that were
highlighted in the above sections.

Building a NIC 21

� They interact with the FIFOs in our architecture making sure that they pop
and push as required by the blocks.

� They interact with the internal architecture in the bu�er, control the address
generator when required.

To get a clearer picture of how they are implemented, the DMA_Bu�er_TX_FSM
is investigated in detail. It is shown in Figure 2.11.

Figure 2.11: DMA Bu�er TX control logic

Each state in the FSM is described below.

� Initial : This is the idle state, the control logic is in this state until the
DMA indicates that it has successfully transferred a packet from the system
memory and is waiting to transmit (tx_start=1).

� Size Check : Now that the controller knows that the DMA wants to write,
it will �rst check if the bu�er is full, whether there is enough space on the
bu�er to store this write packet (tx_size > free). If not, it waits till the
bu�er is freed of some memory.

� Request Head : The controller prompts the address generator for a free
address (it can be a new address or one which can be reused) in the bu�er
memory.

� Start : Now, the controller has a free address to use on the bu�er, and the
DMA is also ready for the transfer. So, in this state the controller instructs
the DMA to start the write to the bu�er.

� Store : In this state, the DMA �nishes its transfer and the data is stored
in the bu�er.

� Update Tail : Now that we have a valid data in the bu�er, and the transfer
is completed, the address where this transfer was made, is pushed to the TX
FIFO so that we know which packets are scheduled to be transmitted and
in which order. Once this process is completed, the controller goes back to
the initial state.

22 Building a NIC

All four controllers work in a similar fashion.

2.8 Testing

The principal objective of this part of the thesis is to get an in-depth knowledge
and hands-on experience of networking and networking hardware. Thus, it is
su�cient to have a functional veri�cation of the same, and the NIC was not tested
on a physical hardware platform. Instead, a test bed was designed, and this is
shown in Figure 2.12.

Figure 2.12: The test-bed around the DUT

The blocks around the NIC design under test (DUT) are explained here. The
system memory is modeled by a dual port RAM. At the start of the top level test,
packets are written into the system memory (mimicking the operating system's
role) and these addresses are updated in the Tx descriptor FIFO. Furthermore, a
few addresses which are empty in the system memory block, are pushed into the
Rx descriptor FIFO for incoming packets.

The Ethernet network is modeled by a register bank which include registers of
di�erent widths (64 bits to mimic ethernet data, 3 bits to simulate ethernet active
etc.) and these are controlled by a state machine so that all of them change into
appropriate values at the correct clock cycles.

The FIFOs are essentially a RAM block with a state machine and internal registers
control the addresses where the reads and writes take place. This is shown in
Figure 2.13.

The internal registers are called head and tail. Initially they are initialized to
zero. When a `push' operation is requested, the data is written into the address

Building a NIC 23

Figure 2.13: The FIFO architecture

indicated by the `tail' register (denoting the end of the queue). This is followed
by an update (increment) of the tail because now the queue has e�ectively grown
longer. The reverse is done in case of a `pop' operation. The address stored in
the `head' register is used to read from the RAM and then decremented to denote
that the head is now pointing to the next data.

Block level unit testing was carried out on the MAC, DMA and bu�er. This was
followed by a top level test where the entire setup is tested. It was desirable to test
both the Rx path and the Tx path. To mimic a typical scenario where the host
machine has packets to transmit, at the onset of the test, packets were loaded into
the main memory RAM block. Additionally, the TX descriptor FIFO was updated
with TX descriptors which pointed to these packets in the system memory. With
this setup in place, the NIC was activated. For the RX �ow to be tested, while the
NIC was active, a packet mimicking network tra�c was sent to it using its ethernet
interface. Additionally an empty address in the system memory was pushed to the
RX descriptor FIFO where this incoming packet was supposed to be stored. The
results from these simulations are shown in Figure 2.14.

The TX �ow is veri�ed from the Figure 2.14(a). At the 710 ns mark, it can
be seen that the system memory is being read and a packet with the recurring
pattern `10' is read from it. This is denoted as packet A. Similarly, another packet
is read at 810 ns, and this packet B has a recurring pattern of `01'. At 830 ns,
it an be observed that the `active_out' signal on the Ethernet interface of the
NIC goes high, indicating that a packet is now being transmitted to the Ethernet
network. And simultaneously one can notice packet A being transmitted by the
`eth_data_out' port of the NIC. Similarly, packet B is seen to be transmitted at
990 ns. The di�erence in latency between these two packets can be attributed to
the fact that packet B is longer than packet A as indicated in Figure 2.14(a).

The RX �ow is veri�ed from Figure 2.14(b). At 990 ns, a packet starts arriving
at the Ethernet interface as the signal `active_in' goes high. It has the recurring
pattern `0010' and will be denoted as packet C. At 1210 ns, a write operation on
the system memory can be observed, and it can be veri�ed from the �gure that
the data being written is indeed packet C.

24 Building a NIC

(a) TX �ow test

(b) RX �ow test

Figure 2.14: Behavioral simulations of the NIC

Building a NIC 25

2.9 Results and Discussion

The primary objective of this part of the thesis was to build a NIC in hardware
and based on the veri�cation results shown in section 2.8, it can be con�rmed that
a NIC which can handle both Rx and Tx �ows has been designed and implemented
using Verilog HDL in this project. In retrospect, the goals listed in section 2.1 are
re-evaluated in conjunction with the material presented in this chapter.

2.9.1 Goals achieved

In section 2.6, the architecture of the DMA engine is presented, which has been
implemented for this part of the thesis. Block-level tests, in addition to top-level
tests have been conducted and positive results from both have con�rmed that the
DMA engine is indeed functional and ready to be adopted for the future work on
the proposed solution.

In section 2.5, the MAC has been presented in detail and from the discussion of
its interface it can be inferred that it can handle Ethernet packets. The top level
tests have been conducted with packets that resemble Ethernet packet sizes and
so, it is imperative to conclude that this part of the project has been successful in
achieving this goal.

During the course of this chapter, section 2.4.2 has introduced the need for the
shared memory, and when discussing its implementation, additional components
such as the linked list and FIFOs have been investigated in 2.4.3. The designer
did not have previous experience with building these data structures on hardware,
but after this part of the project I have gained experience in implementing these
as exempli�ed in section 2.8.

In this step of the project I have gained familiarity with the ethernet standard
which has been discussed in section 2.2.1 and then used in practice during the
testing in section 2.8. Furthermore, by designing the entire NIC with all its com-
ponents I have now attained a working knowledge of networking hardware, and
most importantly, encountered the particular issues with the traditional setup (re-
fer section 1.1) during the design process. These issues and the mechanism used
in the current design to tackle them are discussed below.

From the Figure 1.2, it is understood that dropping packets is not desirable and it
was hypothesized in section 1.1 that the limited bu�er memory size is responsible
for this situation to arise. In the presentation of the architecture, one needs to
recall section 2.4.1 where it became necessary to introduce a `Bu�er Full' signal
to indicate that the internal bu�er is full when the address generator runs out of
free memory locations. By designing the architecture and implementing it, this
thesis has been able to point out the exact location of the bottleneck in the NIC
hardware. This justi�es the proposed technical solution shown in Figure 1.5 and
gives the project an idea about the next steps that need to be taken. Though it
is not possible to solve this problem while following the traditional NIC approach,

26 Building a NIC

in order to have a fool-proof design, this designer has opted to add the above
mentioned signal so as to prevent (high load) data tra�c from collapsing the
implemented NIC. It can be argued that it is more of a preventive measure which
limits the feature set of the NIC, but the purpose of this part of the project is not
to come up with a solution at this stage, but to build a working NIC in hardware.

2.9.2 Hardware implementation results

Though testing on hardware has not been pursued for this part of the project,
since the NIC is implemented in RTL logic in Verilog, it is synthesized using the
Xilinx ISE tool. As such, to get an insight into how the tool has invoked the code,
some statistics are reported below.

Table 2.1: Macro statistics from Synthesis log

Hardware unit Number of blocks

FSM 7

8x32 bit ROM 1

Adders and Subtractors 20

Flip-Flops 14082

Comparators 14

Multiplexers 1236

The NIC is a fairly large design, as will be clear in the device utilization summary
below in Table 2.2, but from Table 2.1, a few �elds are now examined in detail.
There are no RAM modules invoked, which means that the chunk memory and
the size memory, as well as the internal RAMs used in the FIFO blocks and the
LIFO block have all been invoked as register banks. This can explain why the
number of �ip-�ops seems to be disproportionate compared to the other �elds in
the table. Another point of discussion is the number of multiplexers. The RTL
code in the appendix of this report can account for this large number as well. It
is due to how the SIPO and PISO registers in the MAC and DMA blocks have
been designed. Of course, more e�cient implementation of the blocks in the NIC,
combined with restraints on the synthesis tool can yield di�erent statistics, but
that was not a goal of this project.

The device utilization summary is presented below for the Virtex 5 FPGA as part
of the ML507 development board.

In Table 2.2, the number of slices and their utilization gives the reader an idea of
the footprint of the design. Since the project uses a FPGA �ow, area statistics
are not available because the dimensions of the FPGA is �xed, and a proper
evaluation of the design's size can be made from the percentage of utilization. A
closer look at Table 2.2 yields a disproportionate value in the number of bonded
IOBs (Input/Output Bu�er). This is not unusual if the reader recalls from Figure
2.3, Figure 2.9 and Figure 2.8, that the external interfaces of the NIC contain a

Building a NIC 27

Table 2.2: Device Utilization Summary

Logic Utilization Used Available Utilization

Number of Slice Registers 14091 44800 31%

Number of Slice LUTs 6558 44800 14%

Number of fully used LUT-FF pairs 3818 16831 22%

Number of bonded IOBs 588 640 92%

Number of BUFG/BUFGCTRLs 2 32 6%

large number of signals which interface it to the host memory and the Ethernet
network. As such, this high number of IOBs is indicative of the architecture
chosen, and in case one prefers to decrease this number, the external interface
can be simpli�ed, or a serial interface may be preferred over the (present) parallel
bus based interface. Opting for this alternative, however is likely to introduce a
constraint on the speed of the design which is explored below.

Table 2.3 shows the timing information for the NIC, as reported by the Xilinx
synthesis and timing tool. It is to be kept in mind that in both cases, the speed
grade was set to -1.

Table 2.3: Timing Summary

FPGA Minimum Period Maximum Frequency

Virtex 5 3.543ns 282.247MHz

Virtex 7 2.659ns 376.081MHz

Section 2.4.2 presents a calculation of the minimum frequency with which the NIC
design must operate in order to ful�ll the ethernet speci�cation discussed in section
2.2. Table 2.3 indicates that the actual maximum frequency achieved is higher than
this requirement, so that is a positive result. However, the designer was surprised
to see the results for the Virtex 5 FPGA, because though Table 2.2 indicates a
fairly large area utilization, a minimum period of 3.5 ns is indicative of a very fast
design. Consequently, the timing reports were generated for successive runs, and
since the results were consistent with what is shown in the �rst row of Table 2.3,
the designer opted to synthesize the design for the Virtex 7 platform as well (row
2 of Table 2.3) and look for discrepancies. It seems that these results depend on
the size of the FPGA, and the resources used in the FPGA. As seen in Table 2.3,
the larger FPGA (virtex 7) allows an even faster frequency of operation. Further
investigation of the timing report for the Virtex 5 platform yield an interesting
feature shown in Table 2.4.

Since the NIC is the sole block which is being implemented, the Xilinx tools are able
to optimize it for speed, and based on what is shown in Table 2.4, the placement
and routing of the components might be responsible for these statistics. In fact,
up to 49.7% of the minimum period can be attributed to this factor alone, and
since Table 2.3 shows that a larger FPGA gives a faster implemented design, this

28 Building a NIC

Table 2.4: Timing Breakdown

Time Percentage

Logic 1.782ns 50.3%

Route 1.761ns 49.7%

argument is valid. Additionally, the high number of �ip-�ops reported in Table
2.1 can also be attributed to these results because from the knowledge gathered in
my courses at LTH, an e�cient RTL implementation with separate data path and
control path, complemented with extensive pipelining in the design should yield a
smaller maximum path for delay.

To conclude, in this section of the report, the results from this part of the project
has been presented and evaluated both, in terms of the goals and speci�cations
required, and on the basis of results generated by the Xilinx FPGA �ow.

Chapter3

PCIe interfacing with host

3.1 The PCIe interface

In this section of the the project the PCIe standard [16] is investigated in order
to achieve the goals in this chapter. PCIe is an industry standard which is used
to connect devices such as graphic cards, NICs, solid state storage etc. to the
motherboard of the computer. It improves the previous generation of PCI [17]
which is a traditional bus based architecture, and introduces a network based
architecture, whereby it is implemented as a point-to-point link between devices.
PCIe is a network of devices, and communication between them occurs in the form
of PCIe packets. This di�erence is shown below in Figure 3.1. Since the topology
of PCIe is more of a serial network rather than a parallel bus (like PCI) there are
no performance hindrances such as bus arbitration, operating speed bottlenecks
(due to low maximum frequency achievable) etc. associated with the previous
generation [16]. A more detailed discussion on the advantages of PCIe over PCI
can be found in [18].

Since the proposed technical solution is targeted towards DCNs as seen in section
1.2, its worthy to mention that previous research [19] has evaluated the bene�ts
of using PCIe in such an environment. For the purpose of the project, the theory
of the PCIe standard and its implementation has been studied in detail. Since
this is an industry standard, there is limited scope for the designer to contribute
to the theoretical details and instead of repeating this information which is well
documented in [16], [18] and [20], this report will focus mainly on the di�erent
types of packets and the protocol followed to establish transfer of data between
devices.

3.2 Goals and Overview

After studying the PCIe standard in detail, the designer was presented with a set
of objectives that were required to be ful�lled at the end of the project. These

29

30 PCIe interfacing with host

Figure 3.1: Di�erence between the PCI and the PCIe

goals are presented below.

� Demonstrate that the PCIe standard can be utilized to interact between the
host machine and the proposed solution.

� Design a PCIe IP that can be re-used to interface future products to a Linux
based system.

� Ensure that the IP is able to handle DMA and Interrupts.

� Deliver a complete hardware and software module which can serve as the
starting point for the proposed solution.

� Verify above goals by testing on a physical hardware platform.

With these goals in mind, the designer now presents an overview of the outcome
from this part of the project. The requirements mandate two elements which are, a

PCIe interfacing with host 31

hardware device which can connect to the host as a PCIe endpoint and a software
driver which can be used to control this device and its interaction with the host
machine. The hardware used is discussed here. Since the proposed solution is a
proprietary device with speci�c requirements, the designer did not choose to use
an o� the shelf PCIe IP such as [21] because it would take more time to interface it
with the company speci�c interface, especially since the IP itself was closed source
and did not allow investigation into its internal structure. Instead, this designer
adopted a more open ended solution, which is the Xilinx PCIe Block Plus v14 IP
[22]. This is a very generic implementation of the standard and the designer built
the hardware application on top of the existing PCIe speci�c PHY and link layer.
As a hardware platform to test, evaluate and demonstrate the developed IP, a
Xilinx ML507 development board [23] is chosen which has a Virtex 5 FPGA and
has support for a physical PCIe 2.0 1x endpoint. The developed IP is loaded on
the FPGA and the board is inserted into the motherboard of the host machine.

Figure 3.2: PCIe project overview

The developed solution, and its position in the bigger picture as described below
can be seen in Figure 3.2. On the software side, another employee at the company
helped to design the di�erent versions of the driver needed to control and interact
with the hardware from a terminal. All the drivers developed during the course of
this project are based on the Linux 2.6 kernel but they are easily ported to include
support for the newer 3.x kernels as well. This approach of having a hardware and

32 PCIe interfacing with host

software based solution to create a customized PCIe IP on top of the Xilinx PCIe
core, has been followed in academia [24], industry [25] and a master thesis [26].
Hence, even though the solution developed at the end of the project is my original
contribution, I opted to use a similar approach as them because as a designer I
evaluated that it was well suited to satisfy the goals presented above.

3.3 PCIe : Transactions and Packets

Any transfer of data in the PCIe protocol is called a transaction. There are two
kinds of transactions, posted and non-posted. For non-posted transactions the de-
vice (for example, the host) which initiates the transaction (from now on, called the
`requester') transmits a request packet to another device (for example, the board).
As a response the latter device (called the `completer') returns a completion packet
to the requester. In contrast, for posted transactions, the completer does not gen-
erate a completion packet in response to the requester's request packet. It seems
that posted transactions are geared towards performance and speed because the
extra time to send the completion packet is non-existent. For this project, it is
worthwhile to know that memory writes are posted transactions while memory
reads are non-posted transactions.

The naming convention followed in the PCIe speci�cation is straightforward. In-
stead of listing all the di�erent types of PCIe packets, the reader is provided Table
3.1 which includes the subset of PCIe packets which were encountered during the
project.

Table 3.1: PCIe packets and abbreviations

Packet type Abbreviation Purpose

Memory Read Request MRd Initiates a read

Memory Write Request MWr Initiates a write

Message without data Cpl Interrupts

Completion With Data CplD Response to a read

3.3.1 Write to board

The �rst step is to set up a register on the FPGA and write to this register from
the host. As shown in Figure 3.3 this requires a posted MWr transaction.

For debug purposes, the value written to the register is used to light up the user
accessible LEDs on the board. Three design initiatives are requisite to achieve this
step.

� Writing a driver and a user space program to run on the host, which initiates
the Write request.

PCIe interfacing with host 33

Figure 3.3: PCIe read and write transactions

� Writing a user de�ned hardware register on the board and interfacing that
with the Xilinx PCIe core.

� Decoding the PCIe MWr packet on the host, extracting the payload and
using it to drive the LEDs.

For the �rst item, the driver which Xilinx has provided for the IP was explored. It
was found that it was incompatible with the newer kernel and furthermore, it was
only designed to calculate the throughput of the PCIe standard. It did not allow
user space applications to interact with it, so a driver was written from scratch. It
is bene�cial to understand how PCIe devices are enumerated at start up to design
the driver.

� At boot time, the PCIe root on the motherboard searches the available slots
for devices.

� When it �nds one, it is able to access the PCIe endpoint's (device's) con�g-
uration space.

� This con�guration space, besides other information, has a register which
lets the PCIe root know how much memory is on board.

� The PCIe root relays this information to the operating system, which allo-
cates the same (or less, depending on size) amount of memory in the host's
system memory which the driver for the device can access.

Once the host boots up, I manually insert the driver in the Linux kernel and launch
the user space application which is a shell script, which on execution, prompts the
user to enter a number using the keyboard.

For the hardware design on the FPGA, I looked into how the Xilinx PCIe IP
was implemented. After identifying the requisite signals which are carrying the
information of interest, I proceeded to extract it from the protocol. For this
purpose, I also looked into the actual structure of a PCIe MWr packet, which
gives us the information about which bits need to be extracted to obtain the
payload. This is shown in Figure 3.4.

34 PCIe interfacing with host

Figure 3.4: PCIe MWr packet

The critical issue about the payload is that by default it is 32 bits long, whereas the
register implemented on the hardware, as well as the number of LEDs available, is
8. So, to look into the exact byte that contains the information, I set up the Xilinx
Chipscope tool, which enabled me to look into the actual hardware signals, like a
virtual logic analyzer. A detailed discussion on this is presented later in section
3.4.

3.3.2 Read from board

To read from the board, I interface a new register to the PCIe IP, and toggle the
user accessible switches available on the board to actively input a byte of data
from the board into this register.

PCIe MRd is a non-posted transaction, and the driver for this phase initiates a
read request. The hardware logic on the board responds with a completion to this
read request. This is shown in Figure 3.3.

Now, the Xilinx core does not provide the means to respond with the requisite
data when getting such a request. Furthermore, the completion packet needs to
have information appended to it, regarding the destination of the packet (in this
case, the host).

I needed to implement this completion mechanism on my own, and to do that
I looked into the read request from the board (Figure 3.5), in order to extract
information about the source of that packet (Requester ID in Figure 3.5), to which
the developed IP will send its response. Furthermore, the structure of a PCIe CplD
(Figure 3.6) is also investigated so as to ensure that the completion is actually
accepted by the host.

Once these packets were assimilated, I identi�ed the signals which allowed me to

PCIe interfacing with host 35

Figure 3.5: PCIe MRd packet

Figure 3.6: PCIe Completion with data

receive and send the corresponding request and completion. The next step was
to write a custom hardware module and interface that with the IP to achieve the
following steps sequentially.

� Deconstruct the MRd request

� Extract the information about the Requester Id and Packet Tag

� Assemble the CplD response

� And �nally, transmit the response to the requester (host machine)

This also required setting correct values to other auxiliary signals which carried
information about which byte was valid in the entire payload so that the host can
identify the same.

On the software side, a user space application was employed to generate a read
request and receive the response. The user space application was another shell

36 PCIe interfacing with host

script which generated the request at the press of the return key on the host
machine's keyboard.

3.3.3 Interrupt generation

Figure 3.7: How an interrupt works

The concept of interrupting a process can be broken down to three basic steps as
shown in Figure 3.7.

� The hardware module that wants to interrupt the software process asserts
the interrupt in response to some event. From the hardware point of view
this assertion can be done in more than one way, which we will see later.

� Once the interrupt is received by the software, it halts the normal operation
of the process, and starts executing an Interrupt Service Routine (ISR)
which is unique to that interrupt. In most cases, the ISR is a sequence of
predetermined instructions.

� After the ISR has been completed, the state of the interrupt is reset and the
process resumes its normal operation.

Before PCIe was introduced as an industry standard, PCI and previous generations
of interconnect used the `legacy' mode of generating an interrupt. This is shown
in Figure 3.8.

PCIe interfacing with host 37

Figure 3.8: Legacy interrupt line architecture

In this generation, it was necessary to have a separate `interrupt' line which would
be set high in order to assert an interrupt. It was level sensitive, so the interrupt
was asserted as long as this signal was driven high by the peripheral device.

This arrangement is not necessary for devices which natively support PCIe (version
2.2 and later). This is because PCIe by default uses packets to generate interrupts.
Interrupts are propagated to the host using the same physical medium that carries
all data and control information in the PCIe interconnect standard. The imple-
mentation of message signaled interrupts (MSI) in PCIe devices is achieved by a
three fold process.

� An interrupt register in the device's PCIe con�guration space is initialized.
This contains relevant information like how many interrupts the device is
requesting to take control of.

� At system boot, the host operating system will read the con�guration space
of the external devices and accordingly assign the available interrupts among
them.

� During active operation, the external device needs to write a PCIe interrupt
message and send it to the host to activate the previously assigned interrupt.

In this project, I enabled MSI functionality and properly con�gured the Xilinx
IP using the Coregen tool of the Xilinx ISE software. To actually generate the
interrupt, I assembled a MWr packet and send it from the board to the host
machine.

The MSI capability register is the aforementioned interrupt register in the con�g-
uration space of the PCIe device. The entire MWr packet for the MSI message
consists of two parts, the header and the data. I had to access the read-only con-
�guration space manually by going through the IP code to copy the information
from the appropriate register into our MSI packet and send it to the host.

So far the actual process of generating an interrupt has been discussed. But one
also has to consider a real world case where interrupts are actually required. Con-
sider the particular example of a �rst-in �rst-out (FIFO) data structure interfaced

38 PCIe interfacing with host

with the PCIe IP, where the host writes to and reads from, this FIFO on the
FPGA using the PCIe standard. A straight-forward implementation is that the
host should always read from the FIFO. But this is not possible when the FIFO is
empty. So, to indicate to the host when the `read-from-FIFO' process can start,
it was decided that the board will send an interrupt to the host as soon as a par-
ticular event occurs, that is, the FIFO changes from `empty' state to `non-empty'
state. In other words, this event occurs when at-least one element is in the FIFO.
The hardware developed on the board is shown in Figure 3.9.

Figure 3.9: Hardware on FPGA for interrupts

On the software side, the existing driver is augmented with the handling of inter-
rupts. The existing write and read test programs from the previous versions of
the driver is reused. The write program is used to push data into the FIFO and
the read program is used to pop the FIFO and retrieve the data. Additionally, the
read program is linked to the interrupt handling mechanism as well. At launch, the
read program remains suspended because by default the FIFO is empty. Then as
the write program is used to populate the FIFO, an interrupt is generated from the
hardware which activates the read program. It remains active till all the contents
of the FIFO is popped, after which the read program again goes to the suspend
state and waits for the next interrupt.

3.3.4 Direct Memory Access

Considering the functionality of the proposed solution, the most important feature
is to transfer packets to and from the system memory without active intervention of
the CPU. This is called direct memory access (DMA). When reviewing literature
on this issue, I found out that this DMA functionality using the PCIe is the
motivation for most research on the subject. Authors in [27] describe a scatter-
gather DMA engine using the PCIe express, whereas [28] outlines a DMA engine
for the Windows platform and a Dell Optiplex machine. Others such as [29] build
and use the PCIe DMA function to achieve active bu�er data transmission.

To build and test the DMA functionality, I decided to pursue this sequence of
PCIe tra�c

PCIe interfacing with host 39

� Write a packet from the host to the FPGA.

� Use the payload from the previous action to write another packet from the
FPGA to the host.

� Issue a read request from the host to the FPGA.

� Since the requested data is not on the FPGA, issue a read request from the
FPGA to the host.

� Wait for the host's completion to the FPGA's read request.

� Extract the payload from the host's response and use the same for the
completion from board to host.

Figure 3.10: PCIe Packets for DMA

It is imperative to point out that in this stage of the project, the physical location
of the data being written and read - is now stored only in the system memory, and
not on the physical registers in the FPGA. The actual packets which need to be
transferred for this DMA engine are shown in Figure 3.10.

Adding DMA functionality to the hardware IP does not imply that the host will
recognize this capacity on its own. To solve this problem, the changes in the
software driver are presented below. To support DMA, the board must be informed

40 PCIe interfacing with host

which memory location (in the system memory) it has access to. It will write and
read from this memory location. It is the driver's task to allocate this space in
the system memory for the device so it is not overwritten (for example by other
applications or devices). Furthermore, its the driver's task to let the board know
of this location.

The driver uses the dma_alloc_coherent function available in Linux to allocate
a 64 bit address pointing to a byte of space in the system memory. When the
external device is enumerated, a MWr packet is sent to it, independent of the
user test programs, and this contains the address of the space allocated in system
memory where the device can write to and read from.

It is time to look deeper in the hardware IP module to understand the changes
and additions implemented at this stage. The di�erent packets that need to be
handled by the user module are listed below.

� A read packet MRd from the host.

� A write packet from the host informing about the address.

� A memory write packet from the host.

� A completion packet from the host.

So, immediately it can be seen that there is a need to distinguish between two types
of write packets (address write and memory write) from the host. They have the
same source (host) and destination (board) and they have the same header type
(MWr) because they are both write packets. So the hardware and the software
agreed to designate a byte enable �eld (Figure 3.11) which was used to distinguish
between the two write packets.

Figure 3.11: Showing the byte enable �eld

In addition to this, there is a need to handle a new type of packet which has not
been encountered before, the completion from the host. The information gathered
from section 3.3.3 is reused. After generating the read request to the host, there
is a small latency before the hardware receives the response from the host. This
latency can be attributed to the PCIe connection between the board and the host.
After receiving the completion from the host, the hardware IP decodes the packet,

PCIe interfacing with host 41

extracts the payload and then reconstructs another completion packet which the
device (FPGA) must send to the host again.

The testing strategy used is also modi�ed. First, the write test is invoked. The
program returns the value written to the board as well as the value which is written
by the board to the register in system memory. Then, as an extra hidden step, the
driver increments the value in that register by one. Next the read test is executed.
This returns both the value in the system memory which is read (directly by the
driver) and the value actually returned by the board. If at any point, these two
pairs are not coherent, the test fails. This high-level software based testing strategy
which utilizes parts of all the tests carried out before is shown in Figures 3.12 and
3.13.

Figure 3.12: Read and Write Test programs

42 PCIe interfacing with host

Figure 3.13: The system log displaying messages from the console

3.4 Debug strategy

Once the design is synthesized and routed on the ML507 evaluation platform,
high level tests are performed using user written software programs as indicated
in Figure 3.2. However, when these tests fail, it is necessary to look into the FPGA
design. The ideal approach for this debugging is to use a PCIe logic analyzer and
interface that with the board. However these instruments are expensive and are not
available to the designer at this phase of the project. Xilinx provides an alternative
solution known as Chipscope, which enables debugging at chip-level albeit at the
cost of additional area on the FPGA. The idea is to insert additional modules
into your existing design, and these modules monitor and capture snapshots of all
desired signals (in your existing design) which can be viewed while the FPGA is
on-line. This communication is achieved through the JTAG cable provided with
the board.

Post synthesis, an Integrated Controller Pro (ICON) core and an Integrated Logic
Analyzer Pro (ILA) core are inserted into the design. Then, these cores are con-
�gured to monitor the signals for reading and writing to the FPGA's PCIe inter-
face. This is done to manually inspect the actual packets which are being sent
or received, to verify that the developed user application (behind the hard IP) is
assembling and decoding packets correctly. There is a need to choose a hardware
trigger, that is, a signal which is monitored continuously by these cores. When
a change on this trigger is detected, the ILA stores a snapshot of all signals and

PCIe interfacing with host 43

reports it to the user. This choice of trigger is motivated by which packets (read
or write) needs to be inspected. Since there is a typical `end of packet' signal in
the PCIe interface, this signal is used as the trigger signal.

To give an insight into this strategy an the DMA read test from section 3.3.5 is
considered as an example.

Signals trn_reof_n and trn_teof_n are of interest in Figure 3.14 because they
indicate the end of packet (and e�ectively end of transmission) of packets received
and packets sent respectively. As indicated by the marker T, the latter is used
as a trigger in this example. The ILA is con�gured to capture a large number
of samples after the trigger is activated, and as a result the actual packets that
are used for accomplishing the DMA read can be seen. At sample number -3,
it is observed that a packet is received by the FPGA. This is the host machine
requesting a read. At sample 0, a packet being transmitted by the FPGA can be
identi�ed. This is the FPGA issuing a read request to the host's system memory.
A latency is observed on the PCIe interface because there are no packets until
sample 101. At this point, the completion is received from the host and it carries
the data requested by the user application running on the FPGA. Finally at sample
105, the FPGA transmits a completion back to the host. Since this observation is
in sync with the acquired knowledge of the PCIe standard, and because the test
programs report success as shown in Figure 3.13, it is con�rmed that the DMA
task is completed.

3.5 Results and Discussion

The primary objective of this section of the project is to build a PCIe IP which is
able to handle certain functions and can be used to interface the proposed solution
to a live computer. As indicated in the above tests, this has been achieved by the
designer. It is imperative to look back at the goals listed in section 3.2 once again
at this point in the report.

3.5.1 Goals met

When the project was initialized, the objective of this step was to investigate
and learn the PCIe standard. The information available at that juncture was
that PCIe is a commonly used industry standard with high throughput that can
be used to implement and support the functionality and unique features of the
proposed solution which introduced a large overhead in the system and could not
be implemented without PCIe support. In section 3.3 it has been shown that
the PCIe can actually be used to interact with the host machine and an external
FPGA board. Additionally, since the hardware utilization of the developed PCIe
IP as indicated in Table 3.2 and Table 3.3 indicates that a majority of the available
resources on the FPGA are free, it can be assumed that it is possible to augment
the FPGA with a moderately sized standalone hardware project as well. Of course,

44 PCIe interfacing with host

Figure 3.14: Veri�cation using Chipscope

PCIe interfacing with host 45

this will require an additional step where this additional project will be register
mapped to the internal registers discussed in section 3.3.2 and section 3.3.3. So,
the �rst two goals listed in section 3.2 are ful�lled.

In section 3.3.4 the interrupt handling process has been elucidated and a MSI
based interrupt generation has been presented. This developed functionality has
been reused during the DMA step, as discussed in section 3.3.5 and it has been
veri�ed on hardware that interrupts can properly be generated and handled by
the developed IP. In section 3.3.5, the DMA functionality has been explained
and the results from hardware testing, using a high level software veri�cation
platform, has been presented in Figure 3.12 and Figure 3.13. To supplement these
observations, section 3.3 has explained the debug functionality on live hardware,
and from Figure 3.14 the DMA functionality has been veri�ed. At the end of this
project, the designer has delivered a PCIe IP which has been veri�ed on hardware,
and a software driver which interfaces this module to a Linux kernel. So, it can
be stated that the rest of the goals of the project, from section 3.2, have also been
met.

3.5.2 Hardware implementation results

The device utilization summary for the PCIe design on the ML507 development
platform is presented below. Table 3.2 provides the results achieved from synthesis,
and Table 3.3 shows the resource utilization after place and route.

Table 3.2: Device Utilization Summary : Synthesis

Logic Utilization Used Available Utilization

Number of Slice Registers 3305 44800 7%

Number of Slice LUTs 2883 44800 6%

Number of fully used LUT-FF pairs 4521 16831 26.8%

Number of bonded IOBs 8 640 1%

Number of BUFG/BUFGCTRLs 6 32 18%

Number of Block RAM/FIFO 10 148 6%

Number of GTX_DUALs 1 8 12%

Number of PLL_ADVs 1 6 16%

It is interesting to compare Table 3.2 with Table 2.2 because they are both for the
same board, and they are both generated by the Xilinx ISE synthesis �ow. The
immediate observation is the change in the number of logic slices (in rows 1 and
2), which has decreased considerably in the case of the PCIe IP as compared to
the NIC. One argument for this is that the NIC might be a larger design than the
PCIe IP and the developed user application behind it. But, one must not overlook
the additional Block RAM/FIFO row in Table 3.2.

46 PCIe interfacing with host

To recall the discussion in section 2.9.2, it was speci�cally pointed out that the
RAMs and FIFOs in the NIC has been synthesized as register banks by the ISE
tool. In the PCIe IP case, this does not happen. The speci�c reason as to why
this has happened, can be attributed to the fact that in the PCIe IP project,
the RTL for the RAM block has been obtained from a Xilinx example design. So,
their synthesis tool has performed better at translating their code into appropriate
hardware blocks.

The number of bonded IOBs has decreased signi�cantly as compared to the NIC
design. And the reason behind this, is that at the top level, PCIe can be interfaced
using a pair of coaxial signals and few additional signals (reset, clock etc). The
reader can also notice two new additions in the Table 3.2. The GTX_DUALS
are Xilinx's implementation of the SERDES whereas the PLL_ADVs is used to
generate multiple clocks that are required for the PCIe IP to function.

Table 3.3: Device Utilization Summary : Place and Route

Logic Utilization Used Available Utilization

Number of BSCANs 1 4 25%

Number of BUFDSs 1 8 12%

Number of BUFGs 6 32 18%

Number of GTX_DUALs 1 8 12%

Number of External IOBs 9 640 1%

Number of External IPADs 4 690 1%

Number of External OPADs 2 32 6%

Number of PCIEs 1 3 33%

Number of PLL_ADVs 1 6 16%

Number of RAMB36SDP_EXPs 2 148 1%

Number of RAMB36_EXPs 29 148 19%

Number of Slices 2067 11200 18%

Number of Slice Registers 4165 44800 9%

Number of Slice LUTS 3250 44800 7%

Number of Slice LUT-Flip Flop pairs 5273 44800 11%

Table 3.3 gives an idea of the post route and placement hardware utilization.
Most entries reported in this table are speci�c to the Xilinx FPGA tool chain, and
for further information on each component, the reader is advised to refer to the
product documentation of the development platform [23]. To get a clearer inter-
pretation of Table 3.3, certain examples are highlighted. BSCAN is the module
used to interface the hardware with the JTAG chain. Since the Chipscope tool
is used in this project, the JTAG interface has been used in the implementation,
so that the designer can connect the board to the computer and capture signals
while the hardware is online. This is useful for the debugging of the hardware,
and has been discussed in section 3.3. Again, since the developed PCIe IP is built

PCIe interfacing with host 47

upon the Xilinx PCIe core as a starting point, this core shows up in the Table 3.3
as PCIE.

The timing information obtained is presented in Table 3.4.

Table 3.4: Timing Summary

Minimum Period Maximum Frequency

15.744ns 63.516MHz

Comparing Table 3.4 to Table 2.3, the di�erence in the operating frequency is
noticeable. However, it is important to point out that when using speci�c IPs
with precon�gured components, one is limited to the operating frequency of the
components used. In this project, the hardware development platform has a PCIe
2.0 1x as indicated in section 3.2 and when the Xilinx PCIe core is con�gured
using the Coregen tool, the operating frequency cannot be changed from the value
indicated above.

Finally, the power consumption by the implemented design is reported below. This
information is obtained by using the Xpower analyzer tool.

Table 3.5: Dynamic Power Consumption

On-Chip component Power (mW)

Clocks 84.19

Logic 5.71

Signals 21.88

IOs 16.69

BRAMs 26.09

GTP_DUALS 171.78

PLLs 81.07

PCIEs 305.62

Total Dynamic Power 713.03

There are two key points that one must keep in mind when interpreting the in-
formation in Table 3.5. Firstly, Xpower Analyzer is more of an estimation tool
rather than a measurement tool. In the case of this project, I have chosen to
enable the default toggle rate for the �ip-�ops (12.5%) and the BRAM write rate
is set to default as well (50%). This information is pertinent, because Table 3.5
shows the dynamic power consumption, or rather, an estimation of the dynamic
power consumption using this toggle rate and write rate. The actual dynamic
power consumption can vary from the values shown above, depending on the load
on the IP.

Secondly, since the project has been implemented in a FPGA �ow, the value of
the power consumed cannot be compared to ASIC solutions. One of the reasons

48 PCIe interfacing with host

for this can be directly observed in Table 3.5. The reader's attention is drawn
to the fact that there are several components in the table above, which may be
considered as auxiliary additions that are necessary for the PCIe IP to work on
this FPGA. For example, the PCIe core itself is using 305 mW of power, but the
total dynamic power is more than two times that value. Since, the designer is
constrained by the design of the hardware platform, removing these supporting
blocks is not feasible, because then the designed IP will stop working.

Table 3.6: Total Power Consumption

Power Type Value (mW)

Static Power 1633.66

Dynamic Power 713.03

Total Power 2346.69

Table 3.6 sheds light on the total power consumption, and the issue of interest
is the wide gap between static and dynamic power consumption seen here. The
reason FPGAs consume a large amount of static power compared to ASIC imple-
mentations is that FPGAs use up to 10x the number of transistors compared to an
ASIC [30], and the static power is a manifestation of the power lost due to leakage
current on all of these transistors. This issue cannot be resolved by an end-user of
the FPGA, such as the designer in this project due to the nature of how FPGAs
are constructed as discussed in detail in [31].

I have previously come across this information during lectures in Digital IC design
and Introduction to Structured VLSI at LTH, and have also come across literature
like [32] which speci�cally explores these issues in the current context. However,
by completing this project, I have experienced it myself. So, this discussion is con-
cluded by stating that even though FPGAs allow faster prototyping on hardware,
through this project, I have gained a �rst-hand idea of the power consumption
and area consumption challenges as compared to an ASIC solution.

Chapter4

Investigation of QCN implementation

4.1 Introduction and goals

The goal of QCN is to give switches the capability to notify end hosts of any
congestion in the network so that the hosts can respond by decreasing the trans-
mission of packets and therefore alleviate the congestion [10]. QCN is an acronym
for Quantized Congestion Noti�cation and is part of the IEEE802.1Qau Ethernet
Congestion Noti�cation standard. The algorithm is based on two types of nodes
in a network. The Congestion Point (CP) is the node where there is a scope for
congestion to occur and is typically a switch. The Reaction Point (RP) is the
node which can react to a congestion by controlling the �ow of packets, and is
typically the source of the packets like a host machine. This part of the project is
an investigation of the resources required for supporting this algorithm. The goals
of the project are listed below.

� Conduct an analysis of the hardware cost for supporting QCN.

� Discuss and �nalize (high-level) descriptor handling architecture for the pro-
posed solution

� Suggest an optimum size of a on-chip memory for the proposed solution.

� Investigate if the PCIe standard can handle the overhead and latency re-
quirements for the proposed solution.

� Estimate the number of client machines that the proposed solution can
support.

For this chapter, the term Hydra will be used to refer to the proposed technical
solution in section 1.2.

49

50 Investigation of QCN implementation

4.2 Flows and Queues

To get a better understanding of the architecture one must �rst be familiarized
with certain terminology that will be repeated in the following discussions. A
�ow, or speci�cally a packet �ow is a stream of packets traveling from one source
to a destination. This destination can be another host machine, a server or even
multiple machines. The issue of interest is how to distinguish between �ows right
from the level of software applications, through the operating system and down to
the networking hardware. Consider an example, where a host machine is simul-
taneously connected to a voice call on Skype as well as downloading a �le from a
ftp server. In this scenario, packets used for the voice call constitute a single �ow,
which is distinguishable from the connection to the ftp server which is identi�ed
as another �ow. QCN allows implementation of packet processing on a �ow level,
which enables application of QoS requirements.

Queues on the other hand exist mostly in the hardware domain of network equip-
ment. Queues are utilized to temporarily store network tra�c until it is ready
for packet processing (an ingress or incoming queue) or until it is ready for seri-
alization and transportation on a physical medium or wire (an egress or outgoing
queue) [33]. Queues are necessary because in any network device like a switch or
a router, it is likely that input packets (destined for the same port) are received
from several applications, but only one �ow can be active (that is, be forwarded
through that port) at one time. Hence the device must temporarily store packets,
and thus queues are necessary. Multiple �ows reside in a single queue. For exam-
ple, one queue can be deemed to be a priority queue and all �ows which demand
a higher QoS can be placed in that queue. In the event of network congestion, the
device will use all the available bandwidth to try and transfer the packets which
are in the priority queue and thus maintain high QoS as desired.

This is where QCN becomes interesting. Consider an example where both a Voice
Over IP (VOIP) application and a �le transfer application are using the same
queue. Suppose a network congestion occurs due to which the �le transfer's �ow
is being hampered, i.e. the remote server might be busy or not responding. One
of the most popular solutions which currently aim to mitigate this is the Ethernet
`pause frame' [34] which causes the entire queue to be paused. What this means is
that now both the �ows for the VOIP application (�ow 1 in Figure 4.1) and that
of the �le transfer (�ow 2 in Figure 4.1) are paused. This is detrimental for the
application which was not facing congestion because it gets paused as well. QCN
allows us to implement a similar `pause' e�ect at a �ow level, allowing other �ows
in the same queue to continue transmission even if one �ow is facing congestion. It
only pauses the congested �ow. The implementation of this `pause' e�ect in QCN
is di�erent from [34] but this is one of the reasons why the Hydra supports QCN.

Investigation of QCN implementation 51

Figure 4.1: Two queues showing how congestion can be handled

4.3 Descriptor Organization

The PacketArc Hydra speci�cation [35] states that the Hydra supports up to 1024
Virtual functions, each with 8 queues and up to 65536 �ows. Virtual functions
(VF) can be viewed as individual PCIe endpoints, so essentially each VF is a
host machine (physical or virtual). An explanation of how VFs, queues, �ows and
actual data packets are organized is provided. For the sake of simplicity, consider
one host machine. Software applications running on the machine utilize its system
memory (RAM) to store packets of data which are being transferred to and from
the system memory by the application. Bu�er descriptors are place holders which
are address bu�ers and point to the relevant packet data. Since packet data is
organized in the form of chunks and may or may not be contiguous, complete sets
of such bu�er descriptors (which point to the packet data) are required.

For a single �ow, a �ow descriptor (another place holder which stores an address)
points to a set of bu�er descriptors which in turn point to the packet data associ-
ated with the �ow as described above. To service an active �ow, the Hydra must
have the relevant �ow descriptor on its on-chip memory, using which it will �rst
read to get the relevant bu�er descriptors and store them on chip. When the �ow is

52 Investigation of QCN implementation

Figure 4.2: Data architecture

scheduled for processing, the Hydra will use the on-chip bu�er descriptors to locate
the packet data in the host's system memory and transfer them by issuing read or
write request over the PCIe interface. This is shown in Figure 4.2. Now that the
mechanism using which data packets are transferred by the Hydra is understood,
it is imperative to explore certain options to fully support the speci�cations. At
each step of the calculations, detailed discussions are provided.

4.3.1 Full Hardware solution

In this approach it is assumed that all required �ow descriptors are stored directly
on the on-chip memory of the Hydra device. This removes the latency associated
with fetching the �ow descriptors from the system memory every time a new �ow
is scheduled for service. What is gained in speed, is lost in resources required, i.e.
the size of memory on-chip needs to be increased, and that is going to cost chip
area. Calculations are presented below.

According to [35], 1 Flow Descriptor is 383 bits long. So, the size of on-chip
memory is
= Number of VFs * Number of �ows per VF * Length of one �ow descriptor
= 1024 * 65536 * 383 bits
= 4.2 GB

Since this amount of memory on-chip is not feasible for a system-on-chip, alter-
natives must be explored. Considering the platform for which the Hydra is being
developed for, this realistic value of on-chip memory is 2MB. If one must abso-
lutely must choose the full hardware approach, realistically either the support for
the number of VFs must be decreased or the number of �ows each VF is allowed
to handle must be reduced.

Investigation of QCN implementation 53

4.3.2 Descriptor manager solution

To overcome this problem, utilizing the host machine's system memory to store
the entire set of descriptors is proposed. Simultaneously, a descriptor cache resides
in the local on-chip memory of the Hydra. The solution is based on intelligent pre-
fetching of these descriptors from system memory to the on-chip cache over a PCIe
connection.

Figure 4.3: Proposed Solution

The architecture depicted in Figure 4.3 is explained below. The block on the left
side is the Hydra device and the block on the right is representing the system
memory of a host machine (VF) connected to the Hydra. For each VF there is a
base address pointing to the start of a contiguous block allocated in host memory.
This block in the system memory, as shown, is divided into a Transmit Queue
Descriptor (TQD) area and a number of Transmit Flow Descriptors (TFDs). (One
TFD for each �ow to be precise.)

The TQD area is a 64kbit block, where each bit corresponds to each �ow and
indicates whether the �ow has packets waiting in host memory. This idea is shown
in Figure 4.4.

The TQD area is divided into chunks so that 32 chunks per queue exist. For
each of these chunks, a corresponding bit mask is kept on-chip, which tells the
Hydra about changes that may occur in the TQD area for that particular VF.
Since there are 8 queues per VF and 32 bits per queue, 32 Bytes of mask info
(per VF) is updated (over PCIe) immediately after servicing each �ow, so that
the Hydra knows which �ows need to be scheduled next. The TFDs on the other

54 Investigation of QCN implementation

Figure 4.4: The TQD area

hand, contain all the con�guration and status data for the �ows including target
bandwidth etc. required for the QCN protocol.

Hence, according to this proposal, the on-chip memory needs to store

� Byte masks for all VFs i.e. (32*1024) Bytes = 32 KB.

� The TFD cache, which is shared between all VFs.

This proposed solution aims to reduce the cost of chip area (as compared to the
results in section 4.3.1) by using this architecture highlighted above. The critical
issue is to control the number of �ows that are stored in the on-chip TFD cache,
and the next section sheds light on this.

4.4 Design considerations

It is already known that QCN can be implemented in hardware, as seen in [36],
but the existing implementations are mostly proof-of-concept in nature. A realistic
calculation of the extent to which QCN must be supported for customers in the
data center market is required at this point, and this part of the thesis is geared
towards the same.

4.4.1 Bu�er Descriptor management

Once a �ow is scheduled, in order to maintain a steady �ow of data according
to the requirements (i.e maintaining bandwidth speci�cations) there is a need to
fetch the bu�er descriptors from the system memory which point to actual packet
data. The process is three fold.

� Schedule a �ow X.

� Retrieve all bu�er descriptors which are pointed to by the TFD of �ow X.

Investigation of QCN implementation 55

� Transfer packet data pointed to by these bu�er descriptors.

To maintain bandwidth, the number of bu�er descriptors that need to be on-chip,
when a particular �ow has been scheduled, is calculated. If the target bandwidth
is Bt Bytes/second and if each bu�er descriptor points to a �xed size of packet
data lp Bytes, then the number of bu�er descriptors that need to be present on
chip per unit time to meet Bt requirements is

nb =
Bt

lp
(4.1)

The transfer of bu�er descriptors will be handled by a separate stand-alone mod-
ule which will be operating using a proprietary `�re-and-forget' algorithm. This
module is beyond the scope of this thesis.

4.4.2 Descheduling of �ows

A clari�cation is made between two concepts viz. descheduling and purging. De-
scheduling is the process whereby a scheduled or active �ow is paused or stopped
due to certain conditions, which are elucidated below. Purging on the other hand,
is the process by which TFDs are removed from the on-chip cache. Depending on
the purge policy, i.e how descriptors are transferred between the on-chip memory
and the system memory, descheduling and purging might have the same result for
example, in the case where a TFD is purged as soon as it is descheduled.

In such a case, two events occur once a �ow is descheduled. Firstly, the control
information on the header of the descriptor is updated and written back to the
system memory. And secondly, a new TFD is retrieved from the system memory
to the on-chip memory (which is waiting to be scheduled). Both these steps will
introduce an overhead into the PCIe bandwidth, especially if one considers that
per unit time (seconds), the number of �ows that will be descheduled can be
considerably high.

The quanti�cation of this descheduling process is now presented by investigating
the factors which are responsible for descheduling a �ow (after it has become
active, or scheduled).

� Maximum burst length (MBL) reached.
MBL denotes the amount of data that can be sent as one continuous burst.
In more general terms, it determines the duration of time for which a �ow
can be scheduled as active. For example, if the MBL is 2kB and the currently
scheduled �ow is transmitting data, as soon as it reaches that threshold, it
will be descheduled. If data transfer is occurring at a rate of 2kB/s for this
example, and there are 2 �ows which are active, the scheduling should look
like as shown in Figure 4.5.

56 Investigation of QCN implementation

Figure 4.5: Descheduling �ows due to MBL reached

� Target rate exceeded.
In the QCN protocol the �ows are transmitted using a custom target rate
(TR) and a current rate (CR). The target rate sets a limit on the maximum
transfer rate for the �ow in question, and when a �ow is scheduled, with
every byte of data that is transferred, the �ow's current rate is dynamically
updated. If during this process, the �ow's current rate exceeds its target
rate, then the �ow is descheduled because other �ows need to be serviced.
This process is depicted in Figure 4.6.

Figure 4.6: Relationship between scheduling and target rate

Investigation of QCN implementation 57

� Packet data exhausted
This option is only invoked when a scheduled �ow has completed transferring
all the data packets it was assigned to. Since by de�nition, QCN is particu-
larly suited for long-lived �ows, the occurrence of this event is particularly
scarce in frequency.

What must be remembered is that some of the above factors are not completely
independent. For example, for a larger MBL, every time a �ow is scheduled, it
will transfer packets for a longer duration, e�ectively increasing its CR, which can
reach the TR and hence lead to the �ow being descheduled before it has transferred
the exact amount of data as assigned by the MBL.

4.4.3 Size of on-chip RAM

The Hydra design has to be accommodated on a FPGA provided by the interested
parties, and since a preliminary idea about the target environment is available, and
the hardware footprint of the existing design is also known, it can be calculated
that the maximum amount of memory resources available for the Hydra is around
the 2MB mark. This is actually a good starting point for the calculations which
are shown below.

First, an investigation of the relationship between the amount of on-chip RAM
(Rc)and the number of TFDs (nf) that can be stored on chip is made. Since there
are 1024 VFs and each has a 32 byte mask on-chip (Figure 4.3),

nf =
Rc − (32 ∗ 1024)B

lf
(4.2)

=> nf =
Rc − 32kB

lf
(4.3)

where lf denotes the length of a TFD.

Now, it is known that lf is 383 bits from the speci�cations [35], hence the reader
can look at Table 4.1 to get an e�ective idea of what equation 4.3 suggests.

So, for each VF up to 42 �ows can be supported if all 1024 of them are connected.
One cannot comment at this point whether this is the optimal distribution of
available resources, because in the real use scenario, a client may desire more
number of �ows and less number of VFs or the other way around. But using the
information that is available during the design phase, this is what can be o�ered,
and further calculations will be based on this result.

4.4.4 Time available to fetch descriptors

Once a �ow is scheduled, the actual duration before which it gets descheduled is
determined by three factors as discussed in section 4.4.2. Assuming that all �ows

58 Investigation of QCN implementation

Table 4.1: Number of �ows supported by size of RAM

Rc(kB) lf (kB) nf Flows/VF

64 0.048 685 0

128 0.048 2054 2

256 0.048 4792 4

512 0.048 10267 10

1024 0.048 21218 20

2048 0.048 43121 42

4096 0.048 86926 84

are long-lived �ows (so they don't run out of packets) this relationship can be
represented by the equation

ts = MBL/Bt (4.4)

where MBL denotes the maximum burst length, ts represents the time for which
the �ow is scheduled and Bt represents the target bandwidth. Since up to 42 �ow
descriptors can be stored on chip for every VF as shown in Table 4.1, assuming
that a cache miss does not occur, i.e. a descriptor which is not on chip is not
scheduled (this must be taken care of by the cache purging algorithm which is
beyond the scope of this thesis), the time required to schedule all of these 42 �ows
(T) can be calculated as

T = 42 ∗ ts (4.5)

This is the same time available to fetch up to 42 new �ow descriptors which will
be scheduled in the next round. A clearer estimation of this time is warranted
for decisions regarding the design and hence, calculations are presented below.
Here, the MBL is kept constant at 200kb, while the target bandwidth supported
is varied, and the time available for fetching new descriptors is calculated.

Table 4.2: Time to fetch descriptors as limited by target bandwidth

MBL (Mb) Bt (Mbps) T (micro-second)

0.2 1 8400000

0.2 10 840000

0.2 100 84000

0.2 1000 8400

0.2 10000 840

0.2 100000 84

So, from Table 4.2 it can be gathered that to maintain a 10G target bandwidth,
0.84 ms is available to fetch up to 42 new �ow descriptors from a single VF.

Investigation of QCN implementation 59

4.4.5 Latency on PCIe

From the previous sections a clear picture of how many descriptors that can be
stored on chip, how many need to be fetched during a particular interval of time,
and the actual extent of that interval has been shown. But an important consid-
eration is the latency on the PCIe link because one cannot a�ord to issue a read
request and receive its completion data beyond the times shown in Table 4.2.

PCIe latency depends on factors such as the con�guration of the link (number of
lanes, generation of PCIe etc.) and the size of the payload (short packets contain
a few bytes of useful data, while longer payloads can be up to 4kB). In light of
this, the designer suggests running tests on actual physical hardware with such
con�gurations to get a more exact understanding of latency in PCIe, but for this
thesis, data from other simulations [37] will be used.

The latency for read packets of size 2kB, (which have been split into smaller
requests of 128 bytes or 256 bytes) is shown in Table 4.3 [37, page 9]. Time
indicated in the data is for a complete round trip, i.e from the transmission of the
read request from the requester to receiving the data from the completer.

Table 4.3: PCIe latency for 2kB packets

Path Latency (ns)

Max Payload setting 128 256

Number of requested packets 16 8

Read Request

Tx Application 15 6

Data Link + Transaction layers 15 15

SERDES + PMA + PCS + MAC 20 20

SERDES + PMA + PCS + MAC 30 30

Data Link + Transaction layers 15 15

Rx Application 15 6

Fabric + DRAM cont. + DRAM (open) 51 51

Read Completion

Tx Application (builds response packet) 63 6

Data Link + Transaction layers 63 15

SERDES + PMA + PCS + MAC 20 20

SERDES + PMA + PCS + MAC 30 30

Data Link + Transaction layers 63 111

Total to get 1st byte of 1st packet back 400 325

Rx application (waits for all bytes at link speed) 608 560

Total: Source->Link->CPU->Link->Sink 1008 885

As can be observed above, it takes around 1 micro second to complete such a
request due to latency on the PCIe. Now, consider the amount of data (D) that

60 Investigation of QCN implementation

is fetched as a block of descriptors,

D = 42 ∗ lf => D = 42 ∗ 383bits = 2.01kB (4.6)

it is found to be comparable to the size of the data for which Table 4.3 is valid.
Since even for a 100Gbit target rate, 84 micro seconds are available to do the fetch
operation (Table 4.2), and Table 4.3 suggests that latency on the PCIe for packets
of that size is signi�cantly less, it can be concluded that the proposed technical
solution is immune from failures due to latency on the PCIe.

4.4.6 Overhead due to �ow fetch

In section 4.4.2 it has been shown that fetching descriptors from the system mem-
ory is likely to introduce an overhead into the PCIe bandwidth. It is now time to
investigate these e�ects in detail.

If the number of �ows being fetched is denoted as nfetch then the overhead in
bandwidth (Ov) is

Ov = (lf + PCIeb) ∗ nfetch (4.7)

where PCIeb denotes the header and CRC of the PCIe packet which is independent
of the payload size. In order to equate overhead with the bandwidth, overhead
introduced per second Os, is given by

Os = Ov ∗ ffetch (4.8)

where ffetch is the frequency of such a fetch. Assuming that all active �ows have
the same Bt and each VF has one �ow active per clock cycle, total bandwidth
requested by all active �ows (Ba) is given by

Ba = 1024 ∗Bt (4.9)

Equation 4.9 gives the amount of PCIe bandwidth that will be utilized to actually
transfer the data packets to and from system memory to the �exswitch.

To maintain a system which is functional despite the overhead introduced by
fetching �ow descriptors from memory, one needs to ensure that

Os < BT −Ba (4.10)

where BT is the total bandwidth supported by the PCIe link.

Using the above equations, one can �nd an expression for the target bandwidth of
the �ows that can be supported even with the overhead that is generated.

Investigation of QCN implementation 61

Bt <
BT − ((lf + PCIeb) ∗ ffetch ∗ nfetch)

1024
(4.11)

One of the reasons why the PCIe protocol is chosen for this project, as described in
section 1.2, is its high BT which can be maximized by choosing a x16 lane (widest
con�guration) and using the hardware platform which supports the latest version
of the protocol (up to 31.5 GB/s). Considering the availability of this hardware,
one can assume BT = 31.5 GB/s. Furthermore, from section 4.4.3 it is known that
nfetch = 42 * 1024 = 43k, and from section 4.4.4 the value of ffetch is found to be
1/T. lf is 383 bits from the Packet Arc speci�cations and the value of PCIeb can
be determined from Figure 3.5 as 96 bits. Using these values in equation 4.11 the
calculations as shown in Table 4.4 are obtained.

Table 4.4: E�ective bandwidth as a function of frequency of �ow

fetch

B_t(Mbps) B_T (GB/s) nf l_f(bits) PCIe_b(bits) f(Hz)

222 31.5 42 383 96 1190.4

243 31.5 42 383 96 119.04

245 31.5 42 383 96 11.9

246 31.5 42 383 96 1.19

246 31.5 42 383 96 0.119

From Table 4.4 it can be interpreted that if there were 1024 VFs and all were
transmitting �ows at the same time, and all of these �ows had the same Bt, then
target rates up to 240 Mbps can be supported. But one must remember that in
real life cases, not all �ows need to be con�gured the same. Some applications
(and their corresponding �ows like for example a media transfer) can be assigned
a higher (1Gbps) bandwidth and others can do well with a lower (kbps) bandwidth
(for example text messaging). The actual permutation will de�nitely be dependent
on the client's speci�cation, and this thesis has calculated the overhead due to �ow
fetches which will have an impact on the available target bandwidth for the �ows
in question. The total bandwidth available for all VFs to share is in the range of
(245 Mbps *1024) = 250 Gbps. The value of Bt from Table 4.4 seems to have
saturated because of the nature of equation 4.11 where BT is a signi�cantly large
value.

4.5 Summary and results

This chapter has presented a theoretical exploration of the viability of QCN sup-
port for the proposed technical solution. Through calculations, discussions and
results at every step of the project, it has been shown that QCN can be imple-
mented, using the PCIe support from the IP developed in the previous chapter.
So, it can be argued that the primary goal of this section of the project has been

62 Investigation of QCN implementation

met. At this point, the other goals of the project as discussed in section 4.1 are
revisited.

In section 4.3, the organization of the data, and the descriptors required to handle
the same has been presented. Speci�cally, it has been shown that the full hardware
solution in section 4.3.1 has a limited feasibility and section 4.3.2 has discussed an
alternative solution for descriptor management. This ful�lls the second goal from
section 4.1.

Section 4.4 has presented a multitude of design considerations that must be consid-
ered in order to deem the proposed solution to be technically sound. In particular,
section 4.4.3 has suggested that the optimum size of the on-chip memory is 2MB.
So, the third objective of the project has been satis�ed.

Utilizing the calculations from sections 4.4.4, 4.4.5 and 4.4.6, it can be said that the
PCIe standard has the capacity to handle the overhead and latency requirements
to enable QCN support in the proposed solution, and hence the fourth goal of the
project has been achieved.

Finally, as re�ected in the discussion presented throughout this chapter, the num-
ber of client machines that are to be supported by the proposed solution, can
vary as per the speci�cations as well as the client requirements. However, for a
clear depiction of the results from section 4.4.6, a case study of a typical client is
presented below.

It is assumed that the client is a mid sized growing business, who are running
roughly 500 machines in their o�ce. Since its mid sized and is a growing enter-
prise, the client is likely to plan ahead for the future when ordering networking
infrastructure. In the typical user-case, the client will require 100*1Gb ports,
250*10Mb ports and 150*1Mb ports. The 1Gbps ports are standard to maintain
connections to other o�ces and the external world, servers etc. The 10Mbps ports
form the majority of work stations in o�ces around the world. And for typical
o�ce tasks such as email or sur�ng, 1Mbps ports are su�cient. The e�ective
(useful) bandwidth that needs to be supported for this client is

Be� = 100 ∗ 1G+ 250 ∗ 10M + 150 ∗ 1M = 102.65Gbps (4.12)

which is less than the maximum that can be supported (250Gbps). Hence, this
project has been successful in suggesting a practical estimation of client machines
that can be supported by the proposed solution. In conclusion, it can be stated
that all the goals from section 4.4.1 have been met by this part of the thesis.

Chapter5

Conclusion

This thesis is a compilation of three parts which is the background work for the
implementation of the proposed solution from section 1.2. These three parts are

1. Designing and implementing a traditional simple NIC in verilog.

2. Studying the PCIe interface, implementing an IP and interfacing it to a
physical host. Controlling the on-chip hardware over PCIe to prove that it
can be used in conjunction with the solution.

3. Investigating a novel descriptor management architecture which allows the
solution to support QCN. This involves identi�cation of trade-o�s and cal-
culations to determine the feasibility of a feature set.

The goals and results of each part of the project has been discussed in the preceding
chapters. So, in this conclusion, I will point out the limitations and scope of future
work.

In the �rst part of the project, I have worked with a setup of networking hardware
and a NIC architecture has been designed in Verilog. The traditional approach
outlined in section 1.1 has been implemented, and through this part, I have shown
that the major issue of this approach is the (�nite) amount of on-chip bu�er
memory. An operating frequency of 282 MHz has been achieved for a Virtex 5
platform. The limitation of the NIC is that it does not include a PHY for the
MAC and it lacks an industry standard for the memory interface (like SATA).
Due to these two issues, this NIC cannot be used to interface a client machine to
the network.

Further work on this part of the project does not need to be pursued as far as
the goals in section 2.1 are concerned. However, if this NIC is supplemented with
a MAC IP (with support for the PHY and link logic layer) and support for the
SATA interface is built in as well, then it can be functional for a computer.

In the next part of the project, which is discussed in the third chapter of this
thesis, I have explored the PCIe standard and developed a customized IP which
can be used to interface the technical solution to a (client machine's) motherboard.

63

64 Conclusion

The reader has been provided with an understanding of the protocol architecture
and how transactions and packets are signi�cant for using PCIe. At the end of
this step, I am now capable of interfacing any device using this protocol, and also
have gained an insight into how to design driver software to control and utilize
the advantages o�ered by PCIe. The IP has achieved an operating frequency of
63.5 MHz, and the total hardware solution (along with the supplementary blocks
on the development board) consumes 2346mW of power.

The limitation of this part of the project is the constraint of the target platform.
The board used has support for the PCIe 2.2 standard and the physical PCIe port
is a 1x type. Furthermore, since it has been built on top of a Xilinx PCIe core, the
IP will not work on other platforms and the driver includes support for the Linux
platform. Further work on this has already been started. Currently I am working
with a 16x PCIe 3.0 board, and the IP is undergoing several modi�cations such as
the addition of a AXI-4 streaming interface. In the long run, it is suggested that
the IP is supplemented with cross-platform support so that it can be reused for
most designs.

The �nal part of the project is to investigate the feasibility of implementing QCN
on the proposed solution, in conjunction with the available target platform. This
step, as shown in chapter 4 of this thesis, also involves the systematization of the
Hydra architecture and the novel descriptor management system and through cal-
culations which involved real world network tra�c con�gurations, I have explored
variables such as size of the on-chip memory, latency on PCIe and overhead on
bandwidth due to the fetching of descriptors.

At the end of this part of the project, I have shown that it is feasible to implement
QCN, but there are some restrictions on the number of �ows and VFs that need to
be kept in mind. The limitation of this part is the shortage of test data. Though
all the assumptions made during the calculations are sound from a theoretical
perspective, from my limited experience, I have found that once a solution moves
from napkin to silicon, a multitude of issues are bound to creep up. So, the future
work for this part is to implement the solution, and conduct more tests with the
speci�c hardware requested by the client.

The major experience which I gathered from this project is an e�ective transition
from the theory learned in class to the industry. In the �rst two steps of the project
where I was working in Verilog and building hardware I applied my knowledge from
the `Introduction to structured VLSI' course at Lund University. I also took other
courses as electives which helped me to work in the �eld of computers and network
design, particularly `Computer Architecture' which enabled me to understand the
concepts of how system memory is shared, where the operating system lies, and
the function of driver software. My course in `Embedded systems' enabled me to
get a clearer understanding of how hardware and software co-exist and interact
with each other (for example how registers in the hardware world and variables
in the lower level software domain work in tandem), which helped me in my work
with the driver and the board. I also took the course `Computer Communications'
which �rst introduced me to the idea of data packets and the basics of Ethernet
and networking which I utilized extensively during the �rst step of the project

Conclusion 65

when I was building the NIC.

When I started my thesis at PacketArc AB, I was introduced to new ideas and
novel design architectures which were the result of years of experience in the switch-
ing silicon industry. It was my function to investigate these ideas in depth and
determine the possibility of them being implemented in hardware. At the end of
the project, I have been able to show that it is feasible to convert these novel
ideas into a �nished product and so the future work after this thesis is to start the
implementation of the Hydra which is now scheduled for completion in Q3 2014.

66 Conclusion

Bibliography

[1] 42U. Industry leader of server racks. 42U, 2014. URL http://www.42u.com/.
[Online; last accessed 21-04-2014].

[2] Douglas Comer and Larry Peterson. Network Systems Design Using Network
Processors. Prentice-Hall, Inc., 2003.

[3] Jon Postel. Rfc 793: Transmission control protocol, september 1981. Status:
Standard, 88, 2003.

[4] Karl-Johan Grinnemo, Johan Garcia, and Anna Brunstrom. Taxonomy and
survey of retransmission-based partially reliable transport protocols. Com-
puter Communications, 27(15):1441�1452, 2004.

[5] Alexander Kesselman, Zvi Lotker, Yishay Mansour, Boaz Patt-Shamir,
Baruch Schieber, and Maxim Sviridenko. Bu�er over�ow management in
qos switches. SIAM Journal on Computing, 33(3):563�583, 2004.

[6] Van Jacobson. Congestion avoidance and control. In ACM SIGCOMM Com-
puter Communication Review, volume 18, pages 314�329. ACM, 1988.

[7] Bob Braden, David Clark, Jon Crowcroft, Bruce Davie, Steve Deering, Debo-
rah Estrin, Sally Floyd, Van Jacobson, Greg Minshall, Craig Partridge, et al.
Recommendations on queue management and congestion avoidance in the
internet. 1998.

[8] International Committee for Information Technology Standards (formerly
NCITS). Fibre channel â�� �bre channel backbone - 5 (fc-bb-5). 2010.

[9] Luiz André Barroso and Urs Hölzle. The datacenter as a computer: An
introduction to the design of warehouse-scale machines. Synthesis lectures on
computer architecture, 4(1):1�108, 2009.

[10] Cisco. Quantized congestion noti�cation and todays �bre channel over
ethernet networks (white paper). Cisco Public Information, 2011.
URL http://www.cisco.com/en/US/prod/collateral/switches/ps9441/

ps9670/white_paper_c11-630674.html. [Online; last accessed 29-10-2013].

67

68 BIBLIOGRAPHY

[11] Je�rey Shafer and Scott Rixner. A recon�gurable and programmable gigabit
ethernet network interface card. Network, 1(2):3, 2006.

[12] Consumer nic products. Amazon. URL http://www.amazon.com/b/ref=dp_

brw_link?ie=UTF8&node=13983711. [Online; last accessed 04-04-2014].

[13] Xilinx. 10gemac ip product information. Xilinx, 2013. URL http://www.

xilinx.com/products/intellectual-property/DO-DI-10GEMAC.htm.
[Online; last accessed 09-04-2014].

[14] Arasan. Xgmac ip product information. Arasan, 2013. URL http://arasan.

com/products/ethernet/10ge-mac-2/. [Online; last accessed 09-04-2014].

[15] Altera. Xaui ip product information. Altera, 2013. URL
http://www.altera.com/technology/high_speed/protocols/10gb_

ethernet/pro-10gb_ethernet.html. [Online; last accessed 09-04-2014].

[16] Don Anderson, Tom Shanley, and Ravi Budruk. PCI express system archi-
tecture. Addison-Wesley Professional, 2004.

[17] PCI Local Bus Speci�cation. Revision 2.3. MOTOROLA Ltd., European
Literature Center, 2008.

[18] David Mayhew and Venkata Krishnan. Pci express and advanced switching:
evolutionary path to building next generation interconnects. In High Per-
formance Interconnects, 2003. Proceedings. 11th Symposium on, pages 21�29.
IEEE, 2003.

[19] Weikuan Yu, Ranjit Noronha, Shuang Liang, and Dhabaleswar K Panda.
Bene�ts of high speed interconnects to cluster �le systems: a case study with
lustre. In Parallel and Distributed Processing Symposium, 2006. IPDPS 2006.
20th International, pages 8�pp. IEEE, 2006.

[20] Faraj Nassar, Jan Haase, Christoph Grimm, Herbert Nachtnebel, and Majid
Ghameshlu. Design and simulation of a pci express based embedded system.
In IEEE Austrian workshop on microelectronics (AUSTROCHIP08), Linz,
Austria, October, 2008.

[21] Xillybus. Xillybus. URL http://xillybus.com/. [Online; last accessed
14-04-2014].

[22] Xilinx. Virtex 5 pcie ip product information. Xilinx, 2013. URL
http://www.xilinx.com/products/intellectual-property/V5_PCI_

Express_Block_Plus.htm. [Online; last accessed 14-04-2014].

[23] Xilinx. Ml507 development platform information. Xilinx, 2013. URL http://

www.xilinx.com/products/boards-and-kits/HW-V5-ML507-UNI-G.htm.
[Online; last accessed 14-04-2014].

[24] Mike Rose. Fpga pcie bandwidth. University of California San Diego, 7,
2010.

BIBLIOGRAPHY 69

[25] Ray Bittner. Speedy bus mastering pci express. In Field Programmable Logic
and Applications (FPL), 2012 22nd International Conference on, pages 523�
526. IEEE, 2012.

[26] Anandhavel Sakthivel. Implementing a pci-express amba interface controller
on a spartan6 fpga. Master's thesis, Chalmers University of Technology,
February 2013.

[27] Peng Yu, Li Bo, Liu Datong, and Peng Xiyuan. A high speed dma transaction
method for pci express devices. In Testing and Diagnosis, 2009. ICTD 2009.
IEEE Circuits and Systems International Conference on, pages 1�4. IEEE,
2009.

[28] Qiang Wu, Jiamou Xu, Xuwen Li, and Kebin Jia. The research and imple-
mentation of interfacing based on pci express. In Electronic Measurement &
Instruments, 2009. ICEMI'09. 9th International Conference on, pages 3�116.
IEEE, 2009.

[29] W Gao, A Kugel, R Männer, and G Marcus. Pci express dma engine design.
CBM Progress Report, page 54, 2007.

[30] Lattice Semiconductors. Power considerations in fpga design
(white paper). Lattice Semiconductors, 2009. URL http:

//www.latticesemi.com/~/media/Documents/WhitePapers/NZ/

PowerConsiderationsinFPGADesignLatticeECP3.PDF. [Online; last
accessed 14-04-2014].

[31] National Instruments. Fpga fundamentals (white paper). National Instru-
ments, 20. URL http://www.ni.com/white-paper/6983/en/. [Online; last
accessed 18-04-2014].

[32] Ian Kuon and Jonathan Rose. Measuring the gap between fpgas and asics.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transac-
tions on, 26(2):203�215, 2007.

[33] Aaron Balchunas. Qos and queing(white paper). Router Alley, 2010. URL
http://www.routeralley.com/ra/docs/qos_queuing.pdf. [Online; last
accessed 29-10-2013].

[34] Ieee standards for local and metropolitan area networks: Supplements to car-
rier sense multiple access with collision detection (csma/cd) access method
and physical layer speci�cations - speci�cation for 802.3 full duplex operation
and physical layer speci�cation for 100 mb/s operation on two pairs of cate-
gory 3 or better balanced twisted pair cable (100base-t2). IEEE Std 802.3x-
1997 and IEEE Std 802.3y-1997 (Supplement to ISO/IEC 8802-3: 1996; AN-
SI/IEEE Std 802.3, 1996 Edition), pages 0�324, 1997.

[35] Packet Arc Inc. Dragon chipset speci�cation. PacketArc AB, 2012. [Protected
Documentation].

70 BIBLIOGRAPHY

[36] Masato Yasuda & Balaji Prabhakar. 10g qcn implementation on hardware.
NEC corporation, Japan, 2009. URL http://www.stanford.edu/~balaji/

presentations/au-yasuda-10G-QCN-Implementation-1109.pdf. [Online;
last accessed 29-10-2013].

[37] Brian Holden. Latency comparison between hypertransport and pci-
express in communications systems. HyperTransport Technology Con-
sortium, 2006. URL http://www.hypertransport.org/docs/wp/Low_

Latency_Final.pdf. [Online; last accessed 29-10-2013].

N
etw

o
rk In

terface C
ard

 an
d

 Sw
itch

 in
teg

ratio
n

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, May 2014.

Network Interface Card
and Switch integration

Diptyajit Choudhury

http://www.eit.lth.se

D
ip

tyajit C
h

o
u

d
h

u
ry

Master’s Thesis

