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Abstract

The MAX IV facility is a 3rd generation state-of-the-art synchrotron light
source currently under construction in Lund, Sweden. The MAX IV 3 GeV
storage ring has a large negative natural chromaticity, which has to be
corrected to positive values to prevent head-tail instabilities. On the other
hand, high linear chromaticity can lead to a large tune footprint limiting
Touschek lifetime. Therefore, the linear chromaticity is corrected to +1 in
both planes with sextupoles while both sextupoles and octupoles are used to
optimise the tune footprint. Studies indicate this design leads to threshold
currents for resistive wall and transverse mode coupling instabilities be-
yond what is expected during regular user operation. However, since these
are preliminary studies based on several approximations, the possibility of
instability issues during commissioning needs to be considered. A short term
solution is to operate the storage ring at a higher chromaticity. This thesis
describes the development of a high-chromaticity optics for the MAX IV
3 GeV storage ring with linear chromaticity +4 in both planes. It focuses
on reduction of chromatic and amplitude-dependent tune shifts to maxi-
mize dynamic aperture and Touschek lifetime. A comparison between the
performance of the high-chromaticity optics and the design optics is also
presented. The analysis reveals that the performance of the developed high-
chromaticity optics is, not quite unexpectedly, poorer than the performance
of the design optics. However, the performance of the high-chromaticity op-
tics is estimated to be sufficient to allow the optics to be applied in the
MAX IV 3 GeV storage ring as a short term solution if instability issues
should occur during commissioning.
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Preface - A Brief Introduction to
Accelerator Physics

The purpose of this preface is to give a brief introduction to the concepts
and terminology used in this report. The principles of particle accelerators
and especially storage rings are introduced. This preface also presents the
aspects of beam dynamics that are of importance for the understanding of
this thesis. For a more in-depth description, an introductory textbook in
accelerator physics is recommended, for example [1].

The basic principle of a particle accelerator is to accelerate and guide
charged particles with electromagnetic fields. In most accelerators, electric
fields are used for acceleration and magnetic fields for guiding. A storage
ring is a circular accelerator used for storing a particle beam over prolonged
periods of time [1]. The focus of this thesis lies on the MAX IV 3 GeV storage
ring, which is a storage ring for electrons with the purpose of producing
synchrotron radiation for science |2|, and therefore this type of accelerator
will be the topic of this preface.

According to the laws of electrodynamics, a charge undergoing acceler-
ation will radiate energy in the form of electromagnetic waves, called syn-
chrotron radiation. Thus, when electrons are circulating in a storage ring
they lose energy as synchrotron radiation. An electron storage ring there-
fore has cavities where radiofrequency fields transfers energy to the electrons
to compensate for this energy loss. The storage ring also includes various
types of magnets for guiding and focusing of the beam [1|. The elements
of the storage ring are placed in a pattern along the ring called lattice. To
avoid collisions with gas particles, resulting in the loss of particles from the
beam, the beam needs to be travelling in a vacuum pipe with a high vac-
uum |[3|. The electrons are injected into the storage ring during an injection
process [1].

A radio frequency (RF) cavity is a resonant cavity fed with a time-
varying electromagnetic field. When the particles of the beam enter the
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cavity energy is transferred from the RF field to the particles and the par-
ticles are accelerated. Due to the time-varying nature of the field the beam
gets bunched and this affects the dynamics of the beam [1].

The beam in a circular accelerator is directed on a circular orbit in
the horizontal plane by dipole magnets. For every machine an ideal orbit
is defined along which a particle with the ideal energy and ideal initial
position travels. This orbit is designed to be a closed orbit and is usually
located close to the centre of the vacuum chamber of the machine. In reality,
the particles of a bunch are spread around the ideal orbit and at a given
moment a particle may deviate in both position and angle compared to the
ideal orbit. Therefore there is a need for focusing particles back to the ideal
orbit to prevent particle loss [3].

The focusing is achieved with quadrupole magnets. The use of quadrupole
magnets causes focusing of the beam in one plane while at the same time
defocusing in the other plane [1]. Therefore, in order to focus the beam in
both planes, focusing and defocusing quadrupoles need to be inserted in
an alternating sequence often referred to as a FODO-lattice, for focusing -
defocusing. The result is that particles conduct oscillations around the ideal
orbit referred to as betatron oscillations and described by the so called beta
function, 8. These betatron oscillations have a minimum near each defo-
cusing magnet and maximum in the centre of the focusing magnets. Since
quadrupole magnets cause different behaviour in the two transverse planes
there will be a different beta function for each of the planes. The beta
function can be used to determine the amplitude of the oscillations and
is therefore commonly used for describing the behaviour of the transverse
oscillations of the particles [3].

An important property of a particle beam is the emittance. The emit-
tance is a quality factor of a beam as it indicates how far away from the
ideal orbit beam particles oscillate. A small emittance is desired in most
rings since this leads to highest brightness or luminosity. The amplitude of
the transverse oscillations can be calculated with the use of the emittance
and the beta function as /e, where ¢ is the constant emittance and /3
the beta function at that position. The emittance can therefore be used to
determine the beam size [1].

As in the transverse plane, particles also conduct oscillations in the lon-
gitudinal plane due to the momentum spread of the beam and the bunching
and focusing of the RF cavities. The ideal particle with the design energy
always arrives at a phase called the synchronous phase where the particle is
given exactly the amount of energy from the RF cavities needed to remain
on the same orbit [3|. For high-energy storage rings, where the particles have
relativistic velocity, particles with a lower momentum travel along a shorter
orbit due to stronger bending in the dipole magnets. This means they will
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arrive at the RF cavity earlier and see a larger accelerating field than the
ideal particle, resulting in a longer orbit during next revolution. The oppo-
site occurs to particles with a higher momentum. The result is that particles
oscillate around the synchronous phase and these oscillations are therefore
called synchrotron oscillations [1].

Both for betatron and synchrotron oscillations a tune can be defined that
describes the number of oscillations per revolution in the machine [3]. The
tunes of the machine can change for various reasons, for example because
of magnetic field errors or because of large oscillation amplitudes caused by
nonlinear motion of the particles. It is important to have knowledge of these
tune shifts since they can cause the beam to become unstable, resulting in
beam loss [1].

For all accelerators, instabilities are an important issue and need to be
avoided in order not to lose the beam. Instabilities can also limit the lifetime
of the beam which is of great importance for storage rings since they have
the purpose of storing beam over prolonged periods of time. Instabilities
cause the amplitude of a particle trajectory to grow uncontrollably. In this
context it is necessary to discuss the rise of resonances. It can be shown that
for specific values of the tune a resonance can occur as the beam receives
a kick at the same phase at every revolution and the amplitude therefore
grows continually. Values of the tunes for which resonances occur give rise
to so called resonance lines, and strong resonance lines need to be avoided
[1].

As mentioned earlier, except for having a spacial deviation from the
ideal particle in the transverse and longitudinal planes the particles can
also have a momentum deviation. This gives rise to a new closed orbit
due to a difference in bending radius in the dipole magnets. This is called
dispersion and is described by the dispersion function 7. The momentum
deviation also gives rise to a difference in focusing from the quadrupole
magnets, called chromaticity [3]. The chromaticity and its impact on the
performance of the machine is the focus of this thesis and will be discussed in
more detail later. The chromaticity caused by the ideal linear optics (dipole
and quadrupole magnets) is called natural chromaticity and is corrected by
inserting nonlinear optics into the lattice [1|. The reason for this correction
and details of how it is performed are also presented in this report.

Another important part of a storage ring used as a light source are the
so called insertion devices (IDs). They are inserted into the beam at straight
sections in the storage ring to produce synchrotron radiation of high quality
that can be used for experiments. They consist of a periodic arrangement
of short bending magnets of alternating polarity and cause the electrons
to move in a zig-zag pattern leading to the emission of high-brightness
synchrotron radiation [1].



Preface - A Brief Introduction to Accelerator Physics




Chapter 1

Introduction

The MAX IV facility is a 3rd generation state-of-the-art synchrotron light
source currently under construction in Lund, Sweden. The facility will oper-
ate a 3 GeV storage ring, which is the focus of this thesis. The MAX IV 3 GeV
storage ring has a large negative natural chromaticity in both transverse
planes that needs to be corrected to positive values to avoid head-tail in-
stabilities. On the other hand, a large chromaticity can lead to large tune
shifts resulting in crossing of potentially dangerous resonances. In the de-
sign optics of the MAX IV 3 GeV storage ring the linear chromaticity has
therefore been corrected to 41 in both transverse planes to satisfy both the
constraint on the sign and on the magnitude of the chromaticity. Initial
instability studies show this should be sufficient to avoid instabilities, but
since these studies were performed with several approximations there is a
need for an alternate optics that can be used if instability issues should
occur during commissioning. A short-term solution to these instability is-
sues is to operate the storage ring at a higher chromaticity. The aim of
this thesis was therefore to develop an alternate optics for the MAX IV 3
GeV ring with a linear chromaticity of +4 in both planes and to study its
performance.

This chapter presented only a brief introduction to the focus of this the-
sis. Chapter 2 explains the theory required to understand the report. Chap-
ter 3 discusses the focus of this thesis and its motivation in detail. It also
presents the methodology that was used during the work. Chapter 4 presents
the results of the work. The results are discussed and conclusions drawn in
Chapter 5. Ideas for further work are given in Chapter 6.
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Chapter 2

Background

2.1 The MAX IV Facility

The MAX IV facility is a state-of-the-art 3rd generation synchrotron light
source currently under construction in Lund, Sweden [4]. Synchrotron radia-
tion is produced when charged particles undergo acceleration [1]. In MAX IV
electrons will be used as source of synchrotron light [2|. Synchrotron light
is useful for experiments in a large number of different fields, e.g. material
science, chemistry, biology and medicine [5].

The facility will consist of a 3 GeV linac and two storage rings operated
at 3 GeV and 1.5 GeV. The linac will be used as an injector to the storage
rings, but also for the production of short X-ray pulses and at a later stage
as a driving for a free-electron laser (FEL) [4]. An overview of the facility
is given in Fig. 2.1.

MAX IV

SWECO &

Figure 2.1: An overview of the MAX IV facility [2].
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2.2 The MAX IV 3 GeV Storage Ring

The design of the MAX IV 3 GeV storage ring focuses on achieving an
ultralow emittance. A 7-bend achromat lattice was chosen for this purpose
[6]. An achromat is a magnet structure that consists of several magnet cells
and is designed to have no dispersion at its beginning and its end [7]|. The
MAX IV 3 GeV storage ring consists in total of 20 achromats with seven cells
each [6]. A schematic picture of one of the achromats is given in Fig. 2.2. As
can be seen, each achromat consists of dipole magnets, quadrupole magnets,
sextupole magnets and octupole magnets. The properties of these magnets,
with focus on the sextupole and the octupole magnets, are discussed in
section 2.3.

y [m]
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Figure 2.2: A schematic picture of one achromat of the MAX IV
3 GeV storage ring. The achromat consists of dipole magnets
(blue), quadrupole magnets (red), sextupole magnets (green)
and octupole magnets (brown) [2].

The optical functions for one of the achromats is displayed in Fig. 2.3. The
lattice makes use of strong focusing which results in small beta functions
and low dispersion leading to a low emittance [2].

Some parameters of interest for the MAX IV 3 GeV storage ring are
given in Table 2.1. The design energy of the ring is 3 GeV and the circum-
ference 528 m. The RF frequency of the cavities is 100 MHz and the beam
current 500 mA [2]. The harmonic number describes the maximum number
of bunches in the beam [3] and is designed to be 176 [2|. The betatron tune
is 42.20 in the horizontal plane and 16.28 in the vertical plane [8]. These
tunes define the working point, which is the pair of betatron tunes at which
the machine is designed to operate [1]|. As already mentioned, the ring has a
large negative natural chromaticity in both planes which has been corrected
to +1 in both planes. The momentum acceptance of the lattice is designed
to be no less than £4.5%, meaning the lattice is designed to be able to store
particles in the interval £4.5% from the design momentum in the beam [2].

The MAX IV 3 GeV storage ring will use Landau cavities [2] which
are harmonic cavities used to improve the lifetime and stability of the beam
[9]. The Landau cavities in the MAX IV 3 GeV storage ring will be operated
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Figure 2.3: Optical functions for one achromat of the MAX IV 3

in passive mode, i.e. without any applied RF voltage, and instead be driven
by the electron beam. By tuning the cavity it is possible to achieve bunch

GeV storage ring. The horizontal beta function (3, (blue) and
the vertical beta function 3, (red) are displayed as well as the
dispersion function 7, (green). The magnet structure is indi-
cated at the bottom [8].

Dispersion [m]

lengthening [2] and an increased damping of longitudinal and some trans-
verse oscillations, called Landau damping [9]. Bunch lengthening leads to a
decrease in charge density which increases the lifetime of the beam [10]. At

the same time, damping of the oscillations leads to damping of instabilities

and an improved beam stability [9]. A more thorough description of these
effects will be presented in section 2.6.3 and 2.4.2.
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Energy [GeV]| 3.0 2]

Main radio frequency [MHz] 99.931 2]
Harmonic number 176 (2]
Circulating current [mA] 500 [2]
Circumference [m] 528 2]
Number of achromats 20 [2]
Betatron tune (Horizontal/Vertical| 42.20/16.28 8]

Natural chromaticity (Horizontal/Vertical) -49.984/-50.198 [§]
Corrected chromaticity (Horizontal/Vertical) +1/+1 [2]

Required momentum acceptance +4.5% [2]

Table 2.1: Design parameters for the MAX IV 3 GeV storage ring

2.3 Magnets

2.3.1 Magnet Theory

The magnetic fields produced by magnets can be derived from Maxwell’s
equations. A coordinate system (x,y,z) can be defined where z is the hori-
zontal axis, y the vertical axis and z the axis along the beam direction. In
a long magnet, the magnetic field can be assumed to be constant along the
beam direction and the problem is then reduced to a 2D problem in the
xy-plane. The beam will pass at the centre of the magnet and therefore the
magnetic field in this area is of interest. Without beam, both the current
density and the charge density can be assumed to be zero at the centre of
the magnet. The electromagnetic fields can also be assumed to be constant
in time [1]. Maxwell’s equations are then reduced to

V-E=0 (2.1a)
VXxE=0 (2.1b)
V-B=0 (2.1c)
VxB=0 (2.1d)

where E is the electric field and B the magnetic flux density [11|. The
magnetic field is described by (2.1c) and (2.1d). Since V x B = 0, the
magnetic flux density can be expressed as a scalar potential B = V& due
to V x V& = 0. This gives

V-B=0 (2.2)
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=
Vie =0 (2.3)

which is the Laplace equation. By solving the Laplace equation the mag-
netic field can be determined. An ansatz for the vertical component of the
magnetic flux density can be made according to

By(z,y) = Gy(z) + f(y)- (2.4)

This means the vertical component of the field can be described by the sum
of the vertical component along the horizontal axis Gy(z) and a function
f(y) depending on the vertical coordinate. Inserting this ansatz into the
Laplace equation gives the potential

- ldQGy(eT) 3

O(z,y) = Gy(x)y PR

(2.5)

and the magnetic flux density can be calculated according to

d®(z,y)

Bw) = | |- (2.6)

Cdy
This means that for any given field shape G(x) along the horizontal axis
the potential and the magnetic field in the transverse xy-plane can be de-
termined [1].
If the vertical component of the magnetic flux density is expanded close
to the nominal trajectory along the horizontal direction it becomes

1 1
By(x,0) = Gy(0) + G}, (0)z + 56‘;’ (0)z? + 6G§j”>(0);c3

- 2—14G§/4) (0)z* + - (2.7)
Hence, the magnetic field can be seen as a sum of multipoles with different
effects on the trajectory of the particles. The first term corresponds to a
dipole, the second to a quadrupole, the third to a sextupole, the fourth to
an octupole etc. When only the two lowest multipoles are used to guide
particles in an accelerator this is referred to as linear optics since the forces
they give rise to are either constant (dipole) or increase linearly with the
transverse deviation from the ideal orbit (quadrupole). The higher order
multipoles are referred to as nonlinear optics. However, in reality dipole
and quadrupole magnets also give rise to higher order multipoles due to
their finite length and magnetic field errors. Therefore, the linear optics in
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reality also show nonlinear behaviour. This is usually treated as errors in
the machine [1].

The pole shape of the magnets that give rise to the different multipole
terms can be derived from the potential in (2.5) and the expansion of the
magnetic field in multipoles in (2.7). In this thesis, the focus lies on the
nonlinear optics and therefore only the pole shapes of the sextupole and the
octupole magnets will be derived here. For a sextupole magnet, the field
along the horizontal axis has the form

G, () = %Gg(ow (2.8)

according to (2.7). Inserted into (2.5) this gives the potential

b(o.) = 56400 (%~ L) 29)

) 5Gy 5 ) .
For a surface of a highly permeable material, such as the iron used in magnet
poles, the potential is the same at all points on the surface. This is called an
equipotential which means that the potential at the surface of the magnet
poles is constant, ® = ®q. Inserting this into (2.9) gives the shape of the

poles as
z(y) = ’/GZ’((D(;])?J + 3{: [1]. (2.10)

The pole profile of a sextupole magnet is displayed in Fig. 2.4. The same
derivations for an octupole magnet lead to the pole profile that is displayed
in Fig. 2.5.

Figure 2.4: Pole profile of a sextupole magnet [12].

However, these potentials and pole profiles do not describe the general
solution to the Laplace equation due to the ansatz that was chosen. If a more
general ansatz in the form of a Taylor expansion is applied it gives a solution
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Figure 2.5: Pole profile of an octupole magnet [14].

where the potential has a real and an imaginary part which are two indepen-
dent solutions to the Laplace equation. These two components differ only
in rotational angle. Real magnets used in accelerators are usually aligned
such that only one of the two components appears. Unfortunately, the other
component can appear as a field error due to misalignment and therefore
still has to be considered in a real machine [7|. The magnets can be divided
into two types depending on their rotation angle, upright (normal) magnets
and rotated magnets, which are also called skew magnets [13]. The fields of
the upright magnets for the four types of magnets present in the MAX IV
3 GeV storage ring lattice are given in Table 2.2 and the equivalent fields for
the skew magnets in Table 2.3. The pole profile of the skew multipole fields
are the same as for the upright fields but rotated around the longitudinal
axis with the angle 5, where n is the order of the multipole. An important
conclusion from comparing these fields is that the normal linear optics, i.e.
upright dipole and quadrupole magnets, do not cause coupling between the
particle motion in the horizontal and vertical plane, which is the case for
nonlinear optics. This means for normal linear optics the particle motion
can be calculated in the two planes independently [7].

Magnet type Horizontal field Vertical field
Dipole %Bx =0 %By = %BO
Quadrupole %Bm =ky %By = kx
Sextupole Z%Bz = mzy %By = %m(xz — %)
Octupole 5B = #r(32%y — y?) > By = (@3 — 3zy?)

Table 2.2: The upright multipole fields [7].

The magnetic strengths are functions of particle momentum and can be

dB d’B
%Txy = by, m = % 2 = 2bs and

denoted according to }%Bo = %, k =
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Magnet type Horizontal field Vertical field
Dipole %Bw = %BO %By =0
Quadrupole ng = —kzx %By = ky
Sextupole %BI = —%m(:ﬂQ —y?) %By = mxy
Octupole 5B = —%7’(1‘3 — 3zy?) s By = —%r(?)ac?y — %)

Table 2.3: The skew multipole fields [7].

3
r = 4% ddggy = 24by where R is the bending radius, e the electron charge

and p the momentum of the particle. Here, the convention & > 0 for a
horizontally focusing quadrupole magnet is used and the same convention
applies to rest of the multipoles. The notations b3 and by will be used later
on for the gradient strengths of sextupole and octupole magnets and is
therefore of importance. The expansion of the vertical component of the
magnetic flux density close to the nominal trajectory along the horizontal
direction in (2.7) with these notations becomes

1
By(z,0) = §+b2x+b3x2+b4x3+-~- (2.11)

2.3.2  Nonlinear Optics of the MAX IV 3 GeV Storage Ring

The focus of this thesis is the nonlinear optics of the MAX IV 3 GeV storage
ring and therefore the sextupole and octupole magnets will be presented in
more detail here. The reason for why the nonlinear optics are of special
interest will be explained in section 2.5.

The MAX IV 3 GeV storage ring has five sextupole families. Three of
them (SFi, SFo, SFm) are focusing sextupole magnets whereas the other
two (SD, SDend) are defocusing sextupole magnets [2|. Their positions in
an achromat can be seen in Fig. 2.6. The gradients of the sextupole magnets
in the design optics are given in Table 2.4.

y [m]

SEm SFo SFi S.H SFo

SDend \ ‘\l‘ | ] Ill | I’I |} l./' / SDend
Ft "‘ SD-SD sp SD SD SD SD gp SD-SD’., :~! _

5 10 15 20 25
x [m]

SFm

Figure 2.6: The position of the sextupole magnets in an achromat
of the MAX IV 3 Gev storage ring [2]
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Sextupole family b3 [m™]

SD -116.625
SDend -170.000
SFm 170.000
SFo 174.000
SFi 207.412

Table 2.4: The gradients of the sextupole magnets in the design
optics of the MAX IV 3 GeV storage ring [8]

The MAX IV 3 GeV storage ring also has three octupole families (OXX,
OXY, OYY) [2]. Their position in an achromat can be seen in Fig. 2.7.

The gradients of the octupoles magnets in the design optics are given in
Table 2.5.

y [m]

o o]
-

YY o

Oy

Y oxy
\ \ [0).0:¢

1 1 1 1 1 )
5 10 15 20 25
x[m]

Figure 2.7: The position of the octupole magnets in an achromat
of the MAX IV 3 Gev storage ring [2]

Octupole family by [m™]

OXX -1648.58
OXY 3270.14
oYy -1420.22

Table 2.5: The gradients of the octupole magnets in the design
optics of the MAX IV 3 GeV storage ring [8]
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2.4 Resonances and Instabilities

2.4.1 Optical Resonances

In a storage ring the beam is affected by the same magnet structure during
every revolution while it circulates in the machine. This means that the
forces acting upon the beam repeat periodically and under certain condi-
tions the beam can start to resonate. This can lead to growing betatron
oscillations and cause the beam to blow up. Sometimes even beam loss can
occur if the resonance is sufficiently strong [1].

The phase of the betatron oscillations @ is defined as

dz
b —
p(2)
where ((z) is the beta function and z the position at the ring. The tune

v describes the number of betatron oscillations during a revolution in the
machine and is defined as

(2.12)

o
T oor
where @ is the phase of the betatron oscillation. The equations of motion for
a particle travelling through the magnet structure of an accelerator can be
used to study the origin of resonances. For a machine with only dipole (with
bending radius R) and quadrupole magnets (with focusing strength k), the
equations of motion are

v (2.13)

(2.14)

where x is the horizontal coordinate, y the vertical coordinate and z the co-
ordinate in the beam direction. These equations describe an ideal machine,
but a real machine always has imperfections. The effects of such errors can
be studied using a more realistic magnetic field consisting of an ideal mag-
netic field with added field errors. The field can be expressed as

e 1 AB(z,z)
since % = RLBO according to the motion of a charged particle in a dipole

magnet. Setting up the equations of motions for this field gives, for on-
momentum particles the inhomogeneous Hill’s equation
_ AB(z,2)

2"(2) + K(2)x(2) T (2.16)
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To study resonances the equation can be written in a form which is periodic
with the machine circumference. A variable ¢(s) is defined according to

1 dz
P(z) = o %

and the transverse amplitude is replaced with by the normalised transverse
amplitude

(2.17)

= . 2.18
¢(2) 50 (2.18)
This will transform (2.16) into
d2C 2 3/2,,2 AB
e vc=p Ll (219)
with the solution
¢+2m AB
_ v 3/2 20
(o) = > sin (w0 / 6} RB cos(v(m + ¢ +19))d0. (2.20)
¢

From this solution it becomes clear that the amplitude of the oscillations can
grow to infinity as the tune approaches an integer value. While circulating
in the machine, if the beam receives a kick from a magnet with a field error
and the tune is a whole number, the beam will receive this kick at the same
betatron phase every revolution which can result in resonant behaviour [1].

In reality the situation is more complex since all magnets carry im-
perfections. If the field error AB(z) is expanded in its multipoles and we
apply the same transformation of variables as previously used we find the
inhomogeneous Hill’s equation becomes

(53/2 B+ﬁ4/2d§CB< 65/2d ¢t ) (221)

The first term in this equation describes the effect of a dipole field, the
second of a quadrupole field, the third of a sextupole field etc. Solving this
equation shows that the dipole term can excite resonances of type v = p,
where p is an integer, whereas the resonance conditions for the quadrupole
and the sextupoles terms are 2v = p and 3v = p, respectively. In the same
way higher order resonances can be excited by higher order multipole fields
[1].

In a real machine all multipole fields can be present due to technical
limitations as well as imperfections and therefore resonances of the type
nv = p, where both n and p are integers, can occur. Since there exist

2

ag T =

RB
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tunes in the horizontal and vertical planes there exist resonance conditions
for both planes. Also, for nonlinear multipole fields the coupling between
the particle motion in the horizontal and vertical planes leads to coupling
between the betatron oscillations in the two planes and this can result in
coupled resonances. The resonance condition for both planes is therefore
expressed as

Nglgp + Nyly =D (2.22)

where ng, n, and p are all integers. The sum |n;|+|ny| is called the order of
the resonance and in general the strength of the resonance decreases with
the order [1|. The optical resonances can be drawn in a diagram such as
the one displayed in Fig. 2.8. The resonance lines have different thickness,
called stop band width, which is dependent on the strength of the reso-
nance |7]. When choosing a working point for the machine it is important
to consider the resonance lines and place 