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Abstract. 

 

In wireless communication networks, the cell edge users’ throughput is 

limited by inter-cell interference. The Interference Rejection Combining 

(IRC) receiver can effectively suppress the inter-cell interference. The main 

working principle of the IRC receiver is the Minimum Mean Square Error 

(MMSE), and requires both channel estimation and the received signal 

covariance matrix estimation, whose quality determines the performance of 

the receiver. 

 

Channel estimation is achieved using pilot boosting, where by more power 

is allocated to the pilot symbols than the data symbols.  The signal 

covariance matrix can be estimated using the reference symbols, or the data 

symbols, but in this piece of work we aim to enhance the accuracy of the 

covariance matrix by optimizing both estimation schemes (data and 

reference symbols), secondly using the Rao Blackwell Ledoit Wolf 

(RBLW) method, and lastly by applying the RBLW method to the 

optimized covariance matrix.  

 

The results indicate that the RBLW method (for coherence time, T = 10) 

dominates the rest of the covariance matrix estimation schemes for the case 

of the channel estimate, while the reference symbols estimation method 

outperforms the other schemes for the true (ideal) channel, due to more 

accurate channel and covariance matrices. We also investigate the optimal 

number of pilots versus channel conditions using different signal 

constellations to achieve maximum capacity. 
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CHAPTER 1 

 

 

1 Introduction 

 

The roots of interference rejection is in military applications, some of 

which aimed at protecting the desired signals from being hindered (signal 

jamming), while some needed to achieve signal jamming. However the 

rapid growth in cellular communication systems, coupled with increased 

user demand for more throughput have pushed for  interference rejection 

suppression techniques to be used even for non-military applications. 

 

Several interference rejection methods have evolved over time, with a lot of 

receivers combining interference rejections schemes alongside diversity to 

achieve robustness against interference. Diversity is the transmission of the 

same information via more than a single channel, so that in the possible 

event that data from one channel is corrupted, or irretrievable for some 

reason, a copy of the data can be retrieved from another channel. 

Interference rejection on the other hand involves estimating the residual 

covariance matrix of the interference, in the frequency domain, and 

combating /minimizing the effect of the interference. The channel and the 

interference covariance matrices could also be jointly estimated in time 

domain.  

 

Channel estimation requires the use of reference symbols, which cause 

extra system overhead, and waste of bandwidth, as they do not carry any 

data. Interference rejection can also be implemented by using more than a 

single receive antenna, in which case, one of the antennas is used to cancel 

the interference while the other is in principle used for receiving the desired 

information, this however adds to the system complexity. 
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In this thesis, we model the interference and the desired user data in a 

similar manner, using quadrature amplitude modulation (QAM) and matlab 

for our simulations. The performance evaluation of the various interference 

rejection schemes is based on the bit error rate, and capacity. 

 

1.1 Background  

 

Over the last decade, the world has witnessed tremendous improvement in 

communication technologies as a result of increased data rates made 

available/possible by cutting edge research and innovation. Modern systems 

such as LTE-A, also use Orthogonal Frequency Division Multiplexing 

(OFDM) algorithms in combination with Multiple Input and Multiple 

Output antennas (MIMO) to achieve these high data rates and hence 

improve general system capacity. However, with the ever increasing 

demand in user traffic, more has to be done to cope up with the demand. 

 

Increasing the system bandwidth clearly would go a long way to positively 

impact this cause, if only bandwidth was not such an expensive resource. A 

better approach is more efficient utilization of the available radio spectrum 

by re-using the existing bandwidth, this though comes at the expense of 

increased interference between parties using the same frequency band, 

leading to lower Signal to Noise plus Interference (SINR) levels, and 

therefore less capacity and increased error rates. 

 

Building receivers and transmitters with interference rejection algorithms 

plays an important role to increase the signal to interference plus noise 

levels, by minimizing and possibly mitigating the generation and effect of 

interference. In this thesis however we focus more on the receiver side, if 

the receiver has knowledge about the structure of the interference, it is 

possible to partly, get rid of this interference (1).  
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1.2 Motivation  

 

The investigation of interference rejection suppression in MIMO systems is 

a very important topic for quite a number of reasons. Cellular capacity is 

hugely interference limited especially by co channel interference (CCI) and 

adjacent channel interference (ACI) (1) (2). One remedy for this kind of 

cellular interference is cell splitting and reduction in transmission power 

(2). Cell splitting however leads to creation of more cells, and each cell 

would require separate equipment (base station) rendering this process 

rather expensive. A less expensive alternative would in fact be to use more 

sophisticated signal processing, and in particular IRC is a promising 

technique (1) (2).  

 

Also with improvements and innovations in technology, we have seen an 

upspring of better user equipment, in form of smart phones, Tablet PCs etc, 

these however raise the issue of compatibility with the older technologies. 

Interference rejection algorithms are useful in facilitating a transition 

between old and new technologies. The usefulness of compatibility can be 

highlighted by a number of examples, such as the co-utilization of the same 

frequency band between narrow band Code Division Multiple Access 

(CDMA) systems and the older Time Division Multiple Access (TMA) 

systems (2). 

 

Hence the motivation of this thesis evolves from the need to evaluate some 

of the existing interference rejection algorithms, such as estimation of the 

covariance matrix of the interference, using reference symbols, among 

others, and to combine these algorithms with the hope of coming up with an 

even better algorithm that minimizes or mitigates interference, and as a 

result achieve increased data rates and lower bit/symbol error rates. 
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1.3 Objectives of the Thesis  

 

This thesis concerns the evaluation of various interference rejection 

suppression algorithms in MIMO systems, and investigating the factors 

which influence their performance.  

The focus through the research has been put on methods using minimum 

mean square error, and how we can obtain better results by applying 

algorithms such as the Rao-Blackwell Ledoit Wolf method, and 

optimization in combination with the reference symbols and the data 

symbols covariance matrix estimation methods. 

 

1.4 Structure of the Thesis 

 

This thesis is made up of 6 chapters, and organized as follows. Chapter 2 

provides a theoretical background of MIMO systems, QAM, MMSE and 

LDPC codes, all of which are used in the thesis. Chapter 3 gives a 

description of the various covariance matrix estimation methods that we 

investigate, explaining what we actually do. It also includes the system 

model used and the methods for performance evaluation. Chapter 4 covers 

the results obtained from the various covariance matrix estimation methods 

in terms of BER and capacity, and an analysis of these results. We also 

present results about the optimal amount of training needed, and how it 

varies with SNR, SIR, signal (16-QAM and 4-QAM) constellation and 

coherence interval (in symbols). Chapter 5 covers a brief conclusion of our 

findings and chapter 6 contains areas for possible future research in 

connection with interference rejection suppression.  
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CHAPTER 2 
 

2 Theoretical Background 

2.1 The Quadrature Amplitude Modulation (QAM) 

 

 For the simulations, as mentioned earlier, Quadrature Amplitude 

Modulation (QAM) is used. In this information modulation technique, the 

data is carried on the amplitude values of two signals which are 90
0
 out of 

phase with each other (orthogonal).  At a given time, t, the QAM signal 

(with respect to band-pass transmission) can be expressed as 

 

                                                               (2.0) 

               

where I(t) represents in the inphase signal component, consisting of the 

amplitude and pulse shape, Q(t) represents the quadrature component and fc 

is the carrier frequency. The information is represented by changing the 

amplitude and the phase of the two components (I and Q components) (3). 

Figure 1 below is a diagrammatic representation of 16-QAM signal 

constellation, where each dot represents one signal made up of 4-bits. 
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Figure 1. Signal Constellation for 16-QAM 

 

2.2 Multiple Input Multiple Output (MIMO)  

 

As stated earlier, MIMO stands for multiple input and multiple output 

antennas, which if used can achieve higher traffic data rates in 

communication systems. MIMO techniques also open up a whole new 

spatial dimension for exploitation, keeping in mind the limitations 

surrounding frequency and time dimensions. By using multiple transmit 

and multiple receive antennas, it is possible to transmit multiple data 

streams at the same time, and within the same frequency band, hence 

increasing the data rate with the number of transmit antennas and thereby 

improving system performance through diversity. Figure 2, below depicts a 

wireless transmission system using MIMO. By exploiting the structure of 

the channel matrix, independent paths can be obtained via which 

independent data streams can be transmitted, that is multiplexing.  
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Despite the positive side of MIMO deployment, using multiple antennas 

comes at a cost of space and extra power requirement (especially for hand 

held devices), and not to mention the increased complexity needed for 

multi-domain signal processing (4). 

 

 

 

Figure 2. Wireless Transmission MIMO system 

 

 

Using the above diagram, the MIMO system model can be derived as 

below. 

 

 

  
 

   

   
        

   
          

  

  
 

   

   

  

 
   

                        (2.1) 

 

Equation (2.1) above can alternatively be written as 

 

                                                                 (2.2) 
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where,  y is the received, Mr x 1, symbol column vector, x is the Mt x 1, 

column vector of the transmitted symbols, H is the channel matrix of 

dimension Mr x Mt, and n the Mt x 1 noise vector. Mt and Mr are the total 

number of transmit and receive antennas respectively. 

2.2.1 Parallel Decomposition of the MIMO Channel 

(CSI available at Tx) 

 

Having multiple transmit and receive antennas can further be exploited by 

sending independent data streams across the independent channels. The 

MIMO channel can be decomposed into independent channels, there by 

achieving spatial multiplexing. The performance of such a system can thus 

be improved by a factor, denoted R, where R is the rank of the channel. The 

rank is the number of independent streams which can be obtained from 

decomposing the MIMO channel, also called the multiplexing gain, and 

cannot exceed the number of rows and columns of the MIMO channel 

matrix, R ≤ min (Mt, Mr), for a channel matrix, H of dimension Mr x Mt. 

Applying matrix theory, the singular value decomposition of the matrix can 

be obtained as; 

       

                                                       (2.3) 

 

Where U and V are singular-square matrices of dimensions Mr and Mt 

respectively, while   is an Mr x Mt, diagonal matrix with singular values of 

H. Decomposition of the MIMO channel is illustrated in Figure 3, before 

transmission, the signal transmission vector, x is multiplied by the matrix V 

and at the receiver, the received signal vector, y is multiplied by the matrix 

U
H

 (5). 

 

At the transmitter 

 

                                                  (2.4) 

                                                       (2.5) 

 

At the receiver 
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                                                (2.6) 

                                                      (2.7) 

 

 

 

 

Figure 3. Decomposition of the MIMO channel 

 

 

Since     is a unitary matrix, then     =n (4). 

 

2.2.2 Capacity of the MIMO Channel 

 

The Shannon capacity refers to the maximum amount of information rate 

that can be sent across the channel with minimal error rate. The channel 

capacity very much depends on the availability of Channel State 

Information (CSI) at the receiver/transmitter or both, however we assume 

that CSI is available at the receiver. 

The capacity, C of the channel is given by the relationship between the 

input data vector, x and the output vector y. 

 

                                                         (2.8)  

 

Where, p(x) is the probability distribution of the input vector x, while I(x;y) 

represents the mutual information between x, and the receiver vector y. 

for assuming a memory-less channel, the mutual information, is defined as; 
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          ,               (2.9) 

 

Taking the sum over all possible input and output pairs           

respectively, in which case Equation 2.8 becomes (4), 

 

                        
      

        
                    (2.10) 

 

 Mutual information can also be written in terms of the channel differential 

entropy of the channel output and the conditional differential entropy of the 

channel output vector, y, given knowledge of the input vector x, as below, 

 

                                                      (2.11) 

 

Where, 

 

                                                      (2.12) 

 

and, 

 

                                                 (2.13) 

 

However since x and n are independent, H(Y|X) = H(n), and Equation 2.11 

simplifies to 

 

                                                          (2.14) 

 

From Equation 2.14, it is clear that to maximize the mutual information, y 

has to be maximized, and the mutual information of y depends on its 

covariance matrix which is given by, 

 

                    
                          (2.15) 
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Where           , the covariance matrix of the input vector, and 

     is the expectation operator.  It so happens that for all random output 

vectors with covariance matrix Ryy, the entropy H(y) is maximized when y 

is a zero mean circularly symmetric complex- Gaussian (ZMCSCG) 

random vector. But for this to happen, the input vector, x must also be a 

ZMCSCG random vector, hence this is the ideal distribution on x (5). The 

differential entropies of y and n are given in the equations below 

 

                                                       (2.16) 

 

                                                     (2.17) 

 

This implies that the mutual information in Equation (2.14) translates into,  

 

                       
  

    
      

              (2.18) 

 

And hence the capacity in Equation 2.8 reduces to 

 

                              
  

    
      

              (2.19) 

 

This is the capacity for unit bandwidth, therefore for a bandwidth, W Hz, 

the maximum achievable data rate would be W.C bits/s (4) (5) (6). 

 

2.2.3 Capacity when channel is unknown to 

Transmitter 

 

Without channel state information the transmitter is unable to optimize its 

power, the best strategy would be to equally distribute the available power 

across all the Mt transmit antennas. The resulting input covariance, Rxx = 

IMt, which implies that the input signal vector x is chosen to be statistically 

independent, and the capacity follows from Equation 2.19.         
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                                (2.20) 

 

Using eigen decomposition, HH
H 

can be expressed as, Q Q
H

, where Q is 

an Mr x Mr unitary matrix while   is a diagonal matrix with the eigen 

values of the matrix HH
H

 on its main diagonal. 

 

                                  
  

    
                            (2.21) 

 

Using the fact that                     , with     , in connection 

with basic matrix theory, the capacity further reduces to 

 

                                       
  

    
                            (2.22) 

 

            
  

    
    

 
                               (2.23) 

 

where r is the rank of the channel and    are the eigen values of HH
H

. 

From Equation 2.23, the MIMO capacity can be seen as a combination of r 

SISO links, each with a power gain,   , and transmit power, Es/Mt. 

 

 2.2.4 Capacity when channel is known to 

Transmitter 

 

The capacity obtained in Equation 2.21 above cannot be considered as the 

Shannon capacity, since with availability of channel state information at the 

transmitter, better capacity, and improved system performance can be 

registered. This is achieved by assigning different energy levels to the 

various links that make up the MIMO channel, with more energy being 

allocated to links with better quality and vice versa, a technique referred to 

as water filling, refer to Equation 2.34 below (6). 
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Where    is the transmit energy in the i-th sub channel so that    
 
    . 

 

2.3 Minimum Mean Square Error (MMSE) Detection 

 

The MMSE equalizer offers a tradeoff between minimizing the interference 

level and noise enhancement, unlike the zero forcing equalizer which is 

ignorant to noise enhancement. The basic principle of the MMSE is to 

minimize the Mean Square Error (MSE) between the correct data symbols, 

x, and the filter output. The filter output, z= wy and the minimum square 

error for the k-th symbol is evaluated as in Equation 2.35 and w is the 

MMSE filter. The ideal MMSE filter will be dealt with later and is given in 

Equation 3.7. 

 

  
           

          
                                (2.35) 

 

2.4 Low Density Parity-Check (LDPC) Codes  

 

In communication systems, errors are bound to happen for a number of 

reasons, such as channel dispersion, which in turn leads to inter-symbol 

interference, noise in the channel, which causes erroneous decisions at the 

receiver, power surge in the electronic circuits, to mention but a few. One 

way to detect and correct these errors is through coding, this introduces 

redundancy in the system, that is, extra bits added to the original number of 

bits. There are number of coding schemes employed in communication 

systems, with turbo codes being used in LTE, others include reed Solomon 

codes, convolutional codes, etc. 

 

In this thesis however, LDPC codes are used because their performance is 

closer to the Shannon limit for various channels, for large block lengths, 
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and they also experience less error floor as compared to turbo codes. They 

derive their name from the nature of their parity-check matrix, which is 

comprised of few 1’s and a lot of 0’s. LDPC codes are divided into regular 

and irregular LDPC codes. Regular LDPC codes have a constant number of 

1’s across the rows and columns of the parity-check matrix, while the 

opposite is true for irregular LDPC codes. The irregular LDPC codes 

however are the ones whose performance is close to the Shannon capacity 

limit. 

 

   

                     
                     
                     
                     

                                      (2.36) 

 

If the M-above is a parity-check matrix, the code word, v is constructed 

such that 

 

                                                         (2.37) 

 

However to construct the code, a generator matrix, is used, the generator 

matrix can be calculated from the parity check matrix, M. The parity check 

matrix in Equation 2.36 can also be represented graphically by Tanner 

graphs. (7) Decoding can be done by either hard decoding, where each bit is 

considered either a 0 or 1, for binary codes, or soft decoding which offers 

additional information about how probable each of the possible channel 

symbols might have been (8). 

 

However the problem with LDPC codes is that the code lengths have to be 

quite long in order to obtain capacity performance close to the Shannon 

limit, more over long block lengths lead to large parity-check and generator 

matrices which require a lot of computational resources and thereby making 

the encoders for the LDPC codes somewhat complex and expensive. 

However similar problems exist for most near-capacity codes and LDPC 

are usually better than Turbo-like codes from this perspective. 
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2.5 Coherence Time 

 

One of the important channel measurements is the coherence time, which 

characterizes the channel changes. The Channel coherence time defines the 

time interval in which the channel is assumed to be constant (9).   

 

According to (10) the values of coherence time T for a fading channel can 

be calculated using  

 

   
 

        
                                                (2.38) 

 

where      is the maximum Doppler frequency, which can be obtained 

using 

       
 

 
                                                           (2.39) 

 

and     is the symbol time , whereas     is the carrier frequency. Finally v 

and c denote the velocity of the receiver and the speed of light respectively. 

 

2.6 Covariance Matrix 

 

The covariance matrix is an important statistic that describes the pair-wise 

correlation between random variables. These variables are considered to 

have a Gaussian distribution and zero mean (11).  

For an n x 1 random vector P, below with mean µ, 

   

   

  
  
 
  

                                                     (2.40) 

 

the covariance matrix of P, denoted as cov[P] is defined as; 

 

                                                    (2.41) 
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where µ = E[P], and  E[.] denotes expectation. Equation 2.14 can also be 

expressed as below. 

 

        
                                   

   
                                   

     (2.42) 

 

2.7 Channel Estimation and Reference Symbols 

 

In wireless communications it is important to know the channel properties 

of the communication link because with this information, it is possible to 

adapt the signal transmissions to the current channel conditions. This in 

turn leads to reliable data transmissions and increased information rate. 

A popular approach used to estimate the channel is using reference 

symbols, also called pilot symbols or training sequence, where symbols 

known to the receiver are transmitted, and the channel estimate obtained by 

combining the knowledge of the transmitted reference symbol and the 

received copy of the signal. This is achieved at the cost of reduced number 

of symbols for data transmission (12). If C denotes the pilots sent, we can 

simply estimate the channel using the Least Squares (LS) approach as 

 

    
 

 
                                               (2.43) 

 

where R is the received noisy-distorted version of the pilot symbols (9).  

However the LS channel estimate in Equation 2.34 can be improved by 

taking into account the correlation between different frequencies and using 

the linear MMSE (LMMSE) method. For more details about the LMMSE 

channel estimation method, the reader is referred to (9). It should also be 

noted that the LMMSE approach has a better performance but high 

computational complexity in comparison with the LS method. In this thesis, 

the LS approach for channel estimation is used, refer to Section 3.1.1 for 

more details. 
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CHAPTER 3 

 

 

3 Covariance Matrix Estimation Methods 

 

In order to build an MMSE receiver that can combat inter-cell interference 

and improve system capacity and BER, the interference covariance matrix 

has to be estimated, the more accurate the estimate of the covariance matrix 

the better the receiver performance. For this matrix estimate, we focus on 

two different schemes, using the received data symbols (data-samples-

based interference covariance matrix,     ), and secondly using the 

reference symbols (reference symbols based interference covariance 

matrix,    ). Earlier research indicates that algorithms based on the 

reference symbols outperform data-samples-based algorithms (1). 

 

In this thesis, the aim is to improve the accuracy of these two estimated 

covariance matrices by employing different techniques. First by optimizing 

over the estimated interference covariance matrices (data samples and 

reference symbols) according to the criteria that will be presented in 

Section 3.5, and secondly by applying the Rao-Blackwell Ledoit-Wolf 

(RBLW) (13) method, which is presented in Section 3.6 to both the data 

samples based covariance matrix estimation method, and the optimized 

interference covariance matrix.  

 

Also presented in this chapter is the criteria used to obtain the channel 

matrix estimate, and the system performance evaluation. However before 

getting into the details of the covariance matrix estimation, let us look at the 

system model employed in this thesis work. 
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3.1 System Model 

 

Depending on the multiplexing schemes applied at the transmitter side, 

various transmit-receive configurations can be achieved. In this thesis we 

assume spatial multiplexing at the transmitter and multiple receive antennas 

with a focus on the downlink, for a single user experiencing interference 

from another cell. The received signal vector    at the t-th time instant is 

given by,                 , which can further be expressed as  

 

 

  
 

   

    
        

   
          

  

  
 

   

    

        

   
          

  

  
 

   

  

              
  
 

   

                                                                          (3.0)                                                                                                                              

 

 

where    = [y1 y2  y3  … yMr ]
T
 , Mr being the number of antennas at the 

receiver,    = [x1 x2  x3  … xMt ]
T
 is a column vector of the transmitted 

symbols from Mt transmit antennas while    = [z1 z2  z3  … zMr ]
T
 is a 

column vector of the received symbols at Mr receive antennas,   = [n1 n2  

n3  … nMt ]
T
 is the white Gaussian noise with zero mean and unit variance. 

Finally H and S are the corresponding desired channel matrix and the 

interference channel matrix respectively. 

 

The desired channel matrix, H and the interference channel matrix, S are 

both normalized to have unit mean energy, while    and    are the mapped 

data and the interference symbols respectively which are also normalized to 

have unit mean energy. k and l are scaling factors for the SNR and the SIR 

respectively and their derivation is shown in appendix A.  SNR is a ratio of 

the desired signal power to the background noise power, while the SIR is a 

ratio of the desired signal power to the interference power. 
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Initially simulations were done without coding, however to further improve 

our results, LPDC coding was introduced, see Section 2.4 

3.1.1 Channel Estimation by Pilot Boosting 

 

To achieve better channel estimates and system performance, the reference 

symbols can be assigned more power than the data carrying symbols. 

This is achieved as follows, assume a randomly generated matrix, R and 

make the singular value decomposition. 

 

                                                                       (3.1) 

 

Where U and V are unitary matrices, while    is a diagonal matrix with the 

singular amplitudes of R on its main diagonal. 

We then create a new matrix, call it W, by taking Mt rows and Tp columns 

of the unitary matrix U, where Tp is the number of pilots, and the boosted 

pilots are achieved in the following equation. 

 

                                                                  (3.2) 

 

where      , this is optimal when we using pilot boosting 

The channel estimate is obtained as below using the least mean squares 

criterion. 

 

                                                                        (3.3) 

 

   is the pseudo inverse of the boosted pilots, (10)   is the channel estimate 

used in the simulations. 

 

However its also of importance to keep in mind that channel estimation 

using reference symbols has its drawbacks. Obviously the reference 

symbols consume bandwidth yet they carry no useful information, for 

instance LTE uses 12 refence symbols for each resource block pair (12 x 

16), if these were instead used for data symbols, it could provide better 
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spectral efficiency. Therefore in order to have a sensible spectral efficiency, 

the training sequence should be kept short, but short training sequencies are 

more sensitive to noise than longer sequencies which can average out the 

noise. Also if the channel changes after pilot transmission, the receiver is 

unable to detect these changes and would use an out-dated channel 

estimate, resulting into decision error (9). 

 

3.1.2 System Performance Evaluation 

 

The system performance is evaluated based on two factors, the first being 

the BER, and the other is the system throughput. The BER for MIMO 

systems with M-QAM modulation is calculated using matlab, as the 

number of erroneous bits detected by the interference aware receiver, 

divided by the total number of bits in the transmitted signal. 

System throughput is obtained by finding the receiver filter w, refer to 

Section 2.3, for the different covariance matrix estimation schemes under 

investigation, which maximizes the signal to interference plus noise ratio 

(SINR). The SINR per receive symbol per receive antenna is calculated by: 

 

      
         

 
   

          
            

          
  

 
 
 

 
     

                  (3.4) 

 

where i represents the transmit antenna while j represents the receive 

antenna and i = j, refers to the main diagonal elements which represent the 

desired symbol or channel for specific antenna while the case of     refers 

to the off-diagonal elements, also considered as interference. For each 

receive antenna, the SINR is calculated by finding the energy in the desired 

data symbol with respect to the interference power and the noise power. 

 

Then the system capacity is calculated according to Shannon capacity (3). 

Keep in mind that the system capacity has been covered in Section 2.2.2. 
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                            (3.5) 

 
   
Where, BW is the physical bandwidth (3) , in our simulations we assume 

the unit bandwidth. This equation above holds for Gaussian inputs symbols, 

and not for QAM. 

3.2 Interference Rejection Combining 

 

Interference rejection combining (IRC) algorithms are effective in 

improving the cell edge user throughput and can suppress the inter-cell 

interference when the information on the interference covariance matrix 

assumed to be known, which is an ideal assumption and can be considered 

as the upper bound for any receiver based on MMSE algorithms and in this 

thesis as well (1) (14). With the fore mentioned assumptions in 

consideration, the true covariance matrix of the received signal would be 

given as; 

 

                            
                  (3.6) 

 

The ideal MMSE filter is obtained as 

 

                 
  

                                       (3.7) 

 

where, No is the noise power. 

 

3.3 Reference Symbols based Covariance Matrix 

Estimation 

 

This is one of the most common methods of estimating the desired channel 

in communication systems. In our simulations, it is assumed that the 

receiver has information about Tp reference symbols of each transmitted 

block, in a coherence time T, where     . We further investigate the 
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optimal number of pilots, based on different signal constellations (Section 

3.3.1) and various channel conditions (SIR and SNR). Based on the 

received block, it is possible to estimate the effective interference plus 

noise vector,    as below, 

 

                                                          (3.8) 

 

where    is a 1 x Mr column vector of containing the known pilot symbols 

for the k-th time instant. Using the estimate in Equation 3.8 above, the 

interference covariance matrix is computed below. 

 

      
 

  
     

 

  

   

   
 

  
                   

 

  

   

                  

 

       

 

The overall covariance matrix for the reference symbol based method, 

assuming the channel is known (an assumption that can be made due to the 

structure of LTE) is then calculated as 

 

                                                         (3.10) 

 

while the filter, wRS is formulated as, 

 

              
                                             (3.11) 

 

The equalized block (filter output) follows as, 

 

                                                               (3.12) 

3.3.1 Optimal Training Interval 

 

It is possible to achieve high data rates in multiple antenna systems 

especially when the receiver has knowledge about the channel, which can 
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be achieved using reference symbols (15). As we are study the case of the 

user throughput on the cell edge, the interference covariance matrix has to 

be estimated, but in order to achieve maximum capacity, the number of 

reference symbols has to be chosen properly and appropriately. However, 

the optimal number of reference symbols depends on the SNR, SIR, and 

coherence time of the channel, (16) see section 4.4. 

 

Increasing the number of pilots, Tp improves the estimate of the covariance 

matrix (    ), but if Tp is too large, the slots left for data transmission (T-

Tp), could be too small. Therefore we compute the optimal value of Tp 

versus the total block length through the scale factor (T-Tp) /T, for different 

SNR, SIR, and block lengths. According to Equation 3.13, the maximum 

capacity is dependent on the optimal value of Tp. Thus, the capacity 

decreases linearly when the time interval of Tp increases beyond the optimal 

value through the coefficient (T-Tp) /T.  

 

                 
  

 
    

 
                 

  

   

                      

 

 

where C is the capacity, arg max denotes the argument maximization 

function, and the SINR is defined in Section 3.1.2. The channel of the 

serving cell is assumed to be constant for the entire block length. 

 

3.4 Data Samples Based Covariance Matrix 
Estimation 

 
Sometimes using reference symbols to estimate the covariance matrix is a 

suboptimal choice, in such an instance, the received data symbols could be 

used to estimate the covariance matrix. Since the received data symbols 

contain both the channel effect and that of the interfering channel, it is not 

possible to estimate the covariance matrix of the undesired channel and that 

of the desired channel independently, like was the case for the method 
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using reference symbols. Instead the estimated covariance matrix in this 

case is a combination of both the desired channel and the interfering 

channel effect (1). From the system model in Equation (3.0), the received 

signal covariance matrix is estimated as, 

 

     
 

 
      

  
                                               (3.14) 

 

 

where T is the number of symbols considered. The covariance matrix 

estimate in the equation above approaches the true covariance matrix of the 

received signal when the observation window grows large. Since the 

covariance matrix has been estimated, we can easily formulate the receiver 

filter, wd, for this case as, 

 

            
                                          (3.15) 

 

and the filter output,             However the above estimate of the 

receiver filter is not realistic because the ideal channel is unknown at the 

receiver side, hence we build the filter using the estimate channel ( ) 

presented in Section 3.1.1. Considering the estimation channel, the receiver 

filter,     can be expressed as 

 

             
                                         (3.16) 

 

3.5 Covariance Matrix Optimization  
 

We also investigate the case of optimizing the interference covariance 

matrix based on the data samples method with the covariance matrix based 

on reference symbols method. Optimization generally leads to improved 

system performance, though at a cost of increased system complexity. 

However after optimization of the covariance matrices, we also apply the 

RBLW method presented in Section 3.6.      
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                                         (3.17) 

 

The optimized interference covariance matrix should be one that minimizes 

the minimum square error, in comparison with the IRC and maximizes the 

capacity of the system. The optimized interference covariance matrix 

          is a function of Q, which is chosen to vary between 0 and 1. 

 

The Q which minimizes the error is chosen to be the optimal value, and the 

corresponding optimized covariance matrix considered as the best choice. 

We obtain the optimal value of Q according to the criteria below 

 

         
 

                        
 
                             

 

where E{.} denotes expectation. Once the optimal value is obtained, we can 

employ this covariance matrix with less error to determine the receiver 

filter, which, assuming the true channel can be expressed as, 

 

                    
                               (3.19) 

 

while the receiver filter        with considering the estimate channel reads  

 

                     
                               (3.20) 

 

 

3.6 The Rao-Blackwell Ledoit-Wolf (RBLW) Method  

 

The performance of the MMSE method for interference refection is greatly 

dependent on the covariance matrix estimate and how accurate it is in 

comparison to the true covariance matrix of the received signal. Different 

methods can be used to improve the estimate of the covariance matrix such 

as the Oracle Approximating Shrinkage (OAS) estimator, Ledoit-Wolf 

(LW) method, to mention but a few. The RBLW estimator as the name 
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suggests, is a combination of the LW method and the Rao-Blackwell 

theorem, in an attempt to improve or reduce the estimation error of the LW 

method (13). 

 

The Rao-Blackwell theorem states that if g(X) is an estimator of a 

parameter θ, then the conditional expectation of g(X) given T(X), where T is 

a sufficient statistic is never worse than the original estimator g(X) under 

any convex loss criterion. (13) (17). The estimated sample covariance 

matrix in Equation 3.14, which is the most used estimator in a lot of applied 

problems, has its shortcomings, when its dimension, p, is bigger than the 

number of symbols under consideration, T, then it is not possible to invert 

the sample covariance matrix. On the other hand when T   p, the 

covariance matrix can be inverted, but inverting it leads to an even bigger 

estimation error, hence, it is ‘ill conditioned’ (18).   

 

However the covariance matrix based on the data method does not 

necessarily achieve the MSE due to its high variance, (especially with few 

samples, a case we investigate) despite the fact that its unbiased for a large 

number of samples, therefore with the RBLW method, we aim to reduce 

this high variance of the covariance matrix by shrinking it towards the 

shrinkage target in Equation 3.21 below using the shrinkage coefficient 

given by Equation 3.23. 

 

Thus, we can force the covariance matrix to be well conditioned, by 

imposing some ad hoc structure, for instance by diagonality or a factor 

model (18) (13) 

 

   
        

 
                                             (3.21) 

 

where F is the shrinkage target. 

For           
  vectors that have a Gaussian distribution, and of dimension, p, 

and a sample covariance matrix     , the RBLW estimator is obtained as a 

weighted average of the well conditioned covariance matrix, which is given 

by Equation 3.21, and the sample covariance matrix,      (18) (13). 
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                                                    (3.22) 

 

Where,   is the shrinkage coefficient and is given by, 

 

  
   

 
        

 
           

             
 
   

         

 
 
                                 (3.23) 

 

the receiver filter       assuming the true channel reads  

 

                                                      (3.24) 

 

while the receiver filter        with considering the estimate channel reads  

 

                                                      (3.25) 

 

The RBLW method described above, is applied on the covariance matrix 

estimation method using data symbols, and the optimization method, so as 

to obtain more accurate covariance matrices and hence improved system 

performance. 
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CHAPTER 4 

 

4 Results 

 

As mentioned in the previous chapter, system performance evaluation is 

based on the BER and the system capacity, more so the 5% outage capacity 

and the Cumulative Distribution Function (CDF) of the capacity. The BER 

and capacity simulations are carried out for two assumptions about channel 

and interference knowledge at the receiver. The first being the availability 

of perfect channel state information at the receiver, in which case we refer 

to the desired channel as the true channel, secondly we simulate using the 

estimated channel from the reference symbols. Besides the difference in 

channel knowledge, different channel conditions (SNR, SIR and coherence 

time) are also considered, for a user of interest with 4 receive antennas and 

a transmitter also comprising 4 antennas.  

 

Two data modulations schemes are employed, 4-QAM and16-QAM. The 

channel capacity for 4-QAM has been computed based on the Gaussian 

formula, Equation 3.5, which only holds for Gaussian input symbols, and 

not for 16-QAM or QPSK. Therefore the capacity results presented with 

respect to these schemes are rather "indicative" than hard facts. 

 

 

4.1 BER for True Channel at the Receiver 

 

Referring to Figure 4 below, the SIR is fixed to 10 dB, assuming a 

coherence time of 10 (in symbols), we evaluate the BER for various signals 

to noise ratios of the system using 4-QAM. As depicted in the figure, the 

IRC receiver performs best, which is as expected considering that the IRC 

receiver assumes complete knowledge of the true channel and the 

interference channel. The IRC is followed closely by the reference symbols 
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based estimation method while the data symbols based method exhibits the 

poorest performance. The good performance of the reference symbols 

based method can be explained by the fact that since we assume knowledge 

of the true channel we are able to accurately estimate the interference and 

noise component in the received signal according to Equation 3.8, which 

directly translates to a good estimation of the covariance matrix and a rather 

efficient receiver filter as in Equation 3.11. 

 

 

Figure 4. BER for true channel, T=10, SIR=10 dB, 4-QAM 

 

The poor performance of the data symbols based covariance matrix 

estimation method is because few data samples were considered, 10, in this 

case. The RBLW method only offers a slight improvement in BER, since 

the data based method already exhibits a not so good BER performance. 

However with increased number of data samples, the performance of the 

data samples based method can be improved. This can be explained by the 

fact that the noise is uncorrelated and so is the interference, so over a large 
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observation window, the two can be averaged to zero, leaving only the data 

signals. 

 

The results in Figure 4 show a rather high BER (because of the high 

interference levels and considering high order QAM, and 4 transmit/ 

receive antennas with spatial multiplexing), this can be reduced by coding. 

In this thesis, LDPC codes from the DVB-S2 standard with a code rate 1/2 

and a block length of 32400 information bits have been used, the results of 

which are shown in Figures 5 and 6 for channel coherence intervals of 10 

and 100 (in symbols) respectively.  

 

The data symbols based method shows the same performance pattern, with 

BER decreasing with increasing number of samples taken into 

consideration even with coding. Proving further that the data based 

covariance estimation method performs well when a large number of data 

samples are taken into consideration. In attempt to further improve the 

performance of the data based method, the RBLW method is applied. The 

combination the data based method and the RBLW method offers a better 

performance, however the performance gain is not that much in comparison 

with just the data symbols based method, as we consider the user at the cell-

edge. 

 

The IRC receiver and the pilots based covariance estimation method on the 

other hand show a drastic drop in the BER, of course the IRC being the 

better performer, with BERs close to zero at SNR of about 10 dB and 

beyond, while the reference symbols based method achieves this after about 

10.2 dB of SNR (Figure 5). By optimizing the data based covariance matrix 

and the reference symbols based covariance matrix, considerable gain is 

obtained comparing to the data symbols covariance estimation method 

alone. However applying the RBLW method on the optimized covariance 

matrix deteriorates its performance and the reason for this is discussed in 

the next section. The reference symbols method still out-performs the 

optimization method. 
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Figure 5. BER for true channel, T=10, SIR=10 dB, 4-QAM with coding 

 

 

In Figure 6 below, the coherence time is set to be 100, which is rather a rare 

occurrence, so the main purpose of this particular simulation is to illustrate 

the conditions under which the data based covariance estimation method 

can obtain zero BER. According to the Equation 2.38 and Equation 2.39, Ts 

the symbol time chosen to be 100µs, and    the carrier frequency, 2GHz. 

Thus       for high train velocities             and       for 

average human walking speed         .  

 

However for large T there is no gain using the RBLW method as can be 

seen and this is because the RBLW is not well conditioned for covariance 

matrices with large number of samples (13). It is also observed that using 

optimization slightly decreases the system BER compared to the reference 

symbols based method, while there is a penalty applying the RBLW 

algorithm on the optimization result especially at high SNR. 
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Figure 6. BER for True channel, T=100, SIR=10 dB, 4 QAM, with coding 

 

4.2 Estimated Channel at the Receiver 

 

 Using the method, presented in Section 3.1.1, an estimate of the desired 

channel matrix is obtained according to Equation 3.3. In the simulations, 

performance for the case when T = 10, and Tp = 4 is evaluated. Normally 

covariance matrix estimation is done over the pilots alone, leaving the rest 

of the data block to waste; this is suitable for perfect channel estimates, as 

depicted in the previous section. However for not so accurate channel 

estimates, the data carrying symbols alone perform better than the pilots 

under certain channel conditions as will be seen later. The results presented 

in this section are obtained using the same covariance matrix estimation 

methods applied in the previous section, with the exception that instead of 

8 8.5 9 9.5 10 10.5 11 11.5
10

-5

10
-4

10
-3

10
-2

10
-1

B
E

R

SNR (dB)

SIR=10 dB M=Mt=Mr=4 T=100

 

 

IRC

Data

RS

RBLW(Data)

Optz(data&pilots)

RBLW(optz)



 

 

 

33 

assuming the true channel, a practical channel estimate-matrix is used. 

Coding using LDPC is also applied. 

 

 

 

Figure 7. BER for the Channel Estimate, T=10, SIR=10 dB, 4-QAM with coding 

 

In Figure 7 above, the SIR is fixed to 10 dB and a coherence time of 10 

assumed. 4-QAM modulated symbols are used to simulate the BER of the 

system with the estimated channel.  

 

It is observed that the pilots do not perform as well as they did with the true 

channel, in fact they experience the worst performance, especially at low 

SIR and SNR. The data based method also performs not so well, but can be 

improved by combining it with the RBLW method. Also the combination 

of the data based method and the reference symbols based method coupled 

with optimization offers slightly better results. Interestingly, it is observed 

that applying RBLW on optimized covariance matrix decreases the system 

4 6 8 10 12 14 16
10

-3

10
-2

10
-1

10
0

B
E

R

SNR (dB)

SIR=10 M=Mr=Mt=4 Estimated Channel

 

 

IRC

Data

RS

RBLW(Data)

Optz(data&pilots)

RBLW(optz)



 

 

 

34 

error rate significantly, unlike the case with the true channel. The reason for 

this change in behavior is because, in case of the true channel (Figure 5), 

the optimized covariance matrix is largely made up of the reference 

symbols based covariance matrix, which explains the good performance. So 

combining the optimized covariance matrix with the RBLW method based 

matrix introduces more error as it is made up of the shrinkage target which 

is a scaled identity matrix, F, Equation 3.21, and the sample covariance 

matrix. While in the case of the estimated channel, the poor performance of 

the optimized covariance matrix is inherited from both the data and the 

reference symbols covariance matrices. In this case, applying the RBLW 

method to the optimized covariance matrix, which has a high variance leads 

to better performance, as the RBLW method reduces the variance. The IRC 

receiver is used as the upper bound, and the gap between the IRC curve and 

the rest of the curves suggests that the channel estimate is not as good. 

 

 However at higher SIR, (20 dB in this case) it is possible to obtain a more 

accurate channel estimate which in turn leads to better covariance matrix 

estimates, and hence better performance as depicted in Figure  8 below. 
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Figure 8. BER for Channel Estimate, T=10, SIR=20 dB, 4-QAM with coding 

 

Figure 8 shows that at higher SIR (20 dB in this case), the pilots perform 

better than the data based method for SNR higher than 10 dB. But even 

better, is the performance of the RBLW and the optimization method. BERs 

of zero can be obtained by these two methods at SNRs of approximately 17 

dB and 13 dB respectively, which is a huge improvement compared to the 

previous results at 10 dB of SIR.  

 

By the optimization technique explained in Section 3.5, we obtain an 

optimal covariance matrix from the combination of the data based 

covariance matrix and the reference symbols based covariance matrix, 

which minimizes the MSE. This is because the data method and the 

reference symbols method vary in power due to the random nature of the 

channel, that is, at different SNR one of the two methods could have higher 

power than the other, as can be seen from the above figure. The optimized 

matrix is always allocated the highest power from the combination of the 
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pilot and the data based covariance matrix which explains the good 

performance of the optimization method. Hence applying RBLW method to 

this well natured optimized covariance matrix boosts its performance as 

only a small number of samples has been considered.  

 

Therefore high performance gains can be registered by these algorithms at 

high SIR, since the accuracy of the covariance matrix estimate increases 

with SIR. This further implies that the method of channel estimation by 

pilot boosting is not suited for interference limited systems. 

 

4.3 Capacity Based Evaluation 

 

In this section, results for the outage capacity of the various covariance 

matrix estimation methods, taking into account both the true channel and 

the estimated channel are presented. Furthermore the cumulative 

distribution function of the system capacity is also evaluated and presented 

in this section. 

 

4.3.1 Outage Capacity 

 

Outage capacity is an important measure especially in case where the 

transmitter lacks perfect channel state information, a case we assume, as we 

concentrate more on the receiver side (5). The h% outage capacity can be 

defined as the capacity which can be guaranteed for h% of all the channel 

realizations (9). The capacity evaluation is based on the 5% outage 

capacity, which is also considered as the cell-edge user throughput (14). 
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Figure 9. 5% outage capacity for 4-QAM, true channel 

 

  

In Figure 9, above, the SIR is fixed to 5 dB, for data modulation scheme of 

4-QAM, and the 5% outage capacity evaluated at various SNR for the true 

channel with a coherence interval of 10. As expected the outage capacity 

increases with SNR, till a point when it gets saturated, i.e., beyond this 

point, the capacity remains almost constant even with increasing SNR. 

The outage capacity of the reference symbols based estimation method 

achieves more gain than the data based method. But by applying the RBLW 

algorithm, the outage capacity of the data based method can be improved, 

this is especially prevalent at low SNR (0-5 dB) where the RBLW method 

achieves a higher outage capacity than the reference symbols method as 

shown in Figure 9. 
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Figure 10. 5% Outage Capacity for 4-QAM, channel estimate 

 

In Figure 10, we present the 5% outage capacity using the estimated 

channel matrix, for a coherence interval of 10, while SIR is 5 dB. 

 

The reference symbols based covariance matrix estimation method 

performs the worst, because of a matrix mismatch between the true channel 

and the channel estimate as a result of the channel estimation error. 

The data based method performs better because it offers a more accurate 

covariance matrix estimate since more samples (the entire block of 10 

symbols) were used in the estimation. By using optimization between the 

data based method and the reference symbols based method, user 

throughput can be improved significantly. 

 

However applying the RBLW algorithm to the data based method shows a 

significant gain in outage capacity, proving further that with the RBLW 
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method, we are able to obtain a more accurate estimate of the covariance 

matrix, than relying just on the data based estimation method. 

 

The results above shows that the system performance based on the 

estimated channel matrix is degraded for all covariance matrix estimation 

methods in comparison to the true channel based results. This is attributed 

to the poor channel estimation using pilot boosting in an interference 

limited system.  

 

 

 

Figure 11. Comparison of the 5% Outage Capacity for the true channel and the 

channel estimate using 4-QAM 

 

We also evaluate the 5% outage capacity performance of these covariance 

matrix estimation methods at 0 dB SIR, for 4-QAM, while maintaining a 

coherence interval of 10 symbols, the results of which are depicted in 

Figure 11 above with both the true channel and the channel estimate for 
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comparison. As expected generally the 5% outage capacity is less than it 

was at 10 dB of SIR which was illustrated in Figure 10, increased 

interference and noise causes more error even with the true channel, hence 

the decrease in capacity.  

 

However the RBLW method using the estimate channel performs very 

close to the data symbols covariance matrix estimation method with the true 

channel. Therefore in extreme interference scenarios, such as for users at 

the cell edge, a combination of the data symbols covariance matrix 

estimation and the RBLW method is a more viable option.  

 

On the other hand, for the true channel matrix, the pilot based method 

outperforms the data based method, however at low SNR       , the 

combination of the RBLW method and the data based covariance matrix 

estimation method significantly outperforms the pilots based method. 

However at high SNR, pilots based method is able to accurately estimate 

the covariance matrix better than the RBLW method leading to a better 

outage capacity performance. 
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Figure 12. Comparison of 5% outage capacity at high/low SIR for the channel 

estimate using 16-QAM 

 

 

Figure 12 shows the comparison in performance of the covariance matrix 

estimation methods at high and low SIR, for 16-QAM, with the estimated 

channel matrix. 

 

At high SIR, it is observed that applying the RBLW method provides better 

performance in comparison to the reference symbols method until a specific 

SNR, but as the SNR increases beyond 20 dB the reference symbols 

perform best. In a low SNR region, even though large SIR is available, the 

performance curves for the data based and the RS based methods are almost 

the same. This is because of the low SINR, which leads to poor a channel 

estimate and the mismatch between the covariance matrix and the 

multiplied channel estimate is the same for both schemes. But as the SNR 

increases, so does the SINR, translating into a more accurate channel 
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estimate. Hence the reference symbols achieve higher capacity than the data 

symbols based method owing to the reduced mismatch with a more 

accurate channel estimate, a case similar to the true channel simulation 

results.  

 

Furthermore, since the covariance matrix includes the true channel matrix 

of the serving cell regardless of whether the true or the estimate channel 

matrix is used, the mismatch of the channel matrix between the covariance 

matrix and the multiplied channel matrix becomes more predominant when 

practical channel estimation is performed. This mismatch explains the 

deterioration in performance of the data symbols based covariance matrix 

estimation method, whereas there is no mismatch when using the reference 

symbols.  This is because the mismatch is eliminated as shown in Equation 

3.10 (14). 

 

A slight increase in the outage capacity can observe using the 16-QAM 

instead 4-QAM and this can be seen more clearly in Tables 1 and 2. 
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4.3.2 Over all System Capacity 

 

 

Figure 13. Comparison of the CDF of the overall user throughput for both the true 

channel and the channel estimate, using 4-QAM 

 

In Figure 13 above, the SIR is fixed to 0 dB, for a channel coherence 

interval of 10, and the CDF of the overall user throughput is evaluated, for 

the various covariance matrix estimation methods, considering both the true 

channel and the channel estimate at a signal to noise ratio of 10 dB. The 

constellation used is 4-QAM. 

 

As depicted, the pilots based method exhibits the lowest capacity with the 

channel estimate, up to nearly CDF = 70%. This poor performance is 

attributed to the high channel estimation error between the estimated 

channel matrix and the true channel matrix. On the other hand applying the 

RBLW method to the optimized covariance matrix achieves the highest 

throughput up to nearly CDF = 70%, beyond which the optimized 

covariance matrix method takes over.  
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Using the true channel, its observed that the data based covariance matrix 

estimation method achieves the lowest capacity, followed by the RBLW 

method, then the pilots based method, while the optimization between the 

data based covariance matrix and the reference symbols covariance matrix 

estimate the achieves the highest data rate. However in the lower part of the 

curve (which includes the 5% outage capacity), the gain from the RBLW 

method in comparison with the reference symbols method can be observed. 

The IRC is shown for comparison and is considered as the upper bound. 

The results still show an improvement in data rate when the RBLW method 

is applied to the data based covariance estimation method, proving further 

that the data based covariance method can in fact be improved using the 

RBLW method. The optimization between the data symbols and the 

reference symbols covariance matrix estimation performs even better than 

the reference symbols based estimation method.  

 

4.3.2 Outage Capacity and Ergodic Capacity  

 

Tables 1 and 2 below depict the summary of the 5% outage capacity and 

the ergodic (average) capacity for each of the methods investigated, using 

both signal constellations with respect to both the true channel and the 

estimated channel matrices respectively. The ergodic capacity of the 

channel is the expected value of the capacity taken over all the channel 

realizations (9). 
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Table 1. User Throughput (5% outage and average capacity) For the True Channel 

 

   

SIR=5 dB  

SNR=10 dB  

   

Signal 

Constellat

ion  

True Channel  

IRC  Optz.  

(Data + 

Pilots)  

RS  RBLW  

(Optz.)  

RBLW 

(Data)  

Data  

5%outage 

capacity 

(bps/Hz)  

4- QAM  7.02  5.84  5.45  5.76  5.47  3.08  

16 QAM  8.93  8.04  7.78  7.53  6.81  3.66  

Average 

capacity 

(bps/Hz)  

4- QAM  7.80  7.16  7.01  6.79  6.67   4.92  

16 QAM  10.52  9.74  9.61  8.64  8.44  5.98  

 

 

As shown in the Tables, the 5% outage capacity, which is defined as the 

user throughput at the cell edge, can be improved using the RBLW method 

and the optimization method. The same is true for the average capacity. 

Generally, more gain is achieved by using 16-QAM as compared to 4-

QAM.  

 

From the point of view of the estimated channel matrix, the RBLW and the 

optimization method still dominate the system performance whereas the 

reference symbols based method is degraded in performance, for reasons 

explained earlier.  
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Table 2. User Throughput (5% outage and average capacity) for the Estimated 

Channel 

 

   

SIR=5 dB  

SNR=10 dB  

   

Signal 

Constellati

on  

Estimated Channel  

IRC  RBLW  

(Optz)  

RBLW 

(Data)  

Optz.  

(Data + 

Pilots)  

Data  RS  

5%outage 

capacity 

(bps/Hz)  

4- QAM  7.02 3.27 3.02 2.57 1.88 1.33 

16 QAM  8.93 5.74 5.10 4.05 2.54 1.97 

Average 

capacity 

(bps/Hz)  

4- QAM  7.80 4.42 4.21 4.27 3.35 3.21 

16 QAM  10.52 7.17 6.54 6.32 4.43 4.88 

 

 

4.4 Performance of the RBLW method for different 
coherence intervals 

 

Figure 14 below illustrates the performance of the RBLW with different 

number of data symbols taken into consideration. It is observed that when T 

is small, the RBLW improves the performance of the data based method 

significantly, but as the T increases, in other words, as the number of  data 

samples considered increases, the RBLW does not make any improvement 

and it converges to the data symbols covariance estimation method in 

performance. 
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Figure 14. Performance of the RBLW method for different block lengths 

 

 

This is because of the high variance of the covariance matrix of the data 

based estimation method due to few samples (i.e. T=10, in our case). The 

RBLW method aims to reduce this high variance by shrinking the 

covariance matrix towards the shrinkage target F (Equation 3.21), by using 

the shrinkage coefficient ρ that minimises the MSE. The RBLW method is 

hence well conditioned for small sample sizes. 

As expected, the variance of the covariance matrix reduces with increasing 

number of samples, rendering the RBLW method rather unsuitable with 

large samples. This explains why for T =100, i.e. large number of samples 

under consideration, the RBLW method behaves the same as the unbiased 

data based covariance method. The reader is refered to (13) for more 

details. 

 

Considering the estimated channel, a gain in performance can be achieved 

by applying the RBLW method over the optimized covariance matrix 
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whereas for the true channel, this technique does not show much gain in 

performance. 

 

4.5 Optimal Training Interval  

 

One piece of information that could come in handy for system designers is 

knowledge about the optimal number of pilots to use, for various channel 

conditions and signal modulation schemes, see Section 3.3.1. In this section 

the results for the optimal number of pilots that can be used to achieve 

maximum capacity with 16-QAM and 4-QAM modulation schemes and a 

channel of coherence interval of 10 symbols are presented. 

 

The maximum capacity is determined according to Equation 3.13, which 

depicts that the capacity increases with increasing number of pilots up until 

a certain point, where the capacity starts to decrease with increasing 

number of pilots. This relationship is further illustrated in Figure 15 below. 

In this particular case, we consider 4-QAM symbols while the SIR and the 

SNR are both fixed to 10 dB. Maximum capacity is achieved with 3 

reference symbols. Therefore, for our system model under these mentioned 

channel parameters, 3 would be the optimal number of reference symbols. 

 

Using the same procedure we estimate the optimal number of pilots that 

would be needed under various channel conditions (SIR and SNR), the 

results of which are presented in Tables 3 and 4.  
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Figure 15. How to find the optimal number of pilots 

 

Table 3. Optimal training interval for coherence time T =10 (in symbols) using 16-

QAM 

          SNR 0 dB 5 dB 10 dB 15 dB 20 dB 

SIR 

0 dB 4 3 3 3 3 

5 dB 3 3 2 2 2 

10 dB 3 3 2 2 2 

15 dB 3 3 2 2 1 

20 dB 3 3 2 1 1 

 

In Table 3 above, the coherence time of the channel is assumed to be 10, 

and the modulation type used is 16-QAM, for which the optimal number of 

pilots needed in the range of 0-20 dB for both SIR and SNR is evaluated. 
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As shown in Table 3, the optimal number of pilots decreases with increase 

in both SIR and SNR, and at high SIR and SNR, a single pilot is all that is 

needed. In fact one could argue that at high SIR and SNR, pilots are not 

necessary, since the channel conditions are already excellent hence sending 

more information carrying symbols is more appropriate and also leads to 

better bandwidth efficiency. 

 

Table 4 below also depicts the optimal number of pilots needed for the 

same conditions as before, except in this case 4-QAM modulation is used. 

Clearly there is a difference between these two tables, as the 16-QAM 

based evaluation shows less number of pilots needed for similar channel 

conditions as compared to the 4-QAM based evaluation. Hence the optimal 

number of pilots not only depends on the channel state conditions, but also 

on the signal modulation type used. 

 

It is also important to keep in mind that for this evaluation, pilot boosting 

was not used, but rather pilots which have the same energy as the data 

carrying symbols. The information presented in Tables 3 and 4 can be used 

to build devices that can adapt to the channel state to vary the number of 

pilots thereby ensuring effective spectral efficiency. 

Table 4. Optimal training interval for coherence time T =10 using 4-QAM 

 

          SNR 0 dB 5 dB 10 dB 15 dB 20 dB 

SIR 

0 dB 6 5 5 5 5 

5 dB 5 4 4 4 4 

10 dB 4 4 3 2 2 

15 dB 4 4 3 2 2 

20 dB 4 4 3 2 1 
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CHAPTER 5 

 

5 Conclusions 

 

In this piece of work we investigate some of the methods that can be 

employed to deal with interference rejection suppression in MIMO systems. 

These methods all have one thing on common, their performance is very 

much dependent on the interference covariance matrix estimation, of course 

the more accurate the matrix estimate, the better the performance. Some of 

the methods studied include, the reference symbols covariance estimation 

method, the data symbols covariance matrix estimation, RBLW method 

plus the data covariance matrix estimation method, optimization of data 

covariance estimation method and the reference symbols covariance 

estimation method, and applying RBLW method to the optimized matrix. 

The performance of the IRC receiver has also been evaluated and shown for 

comparison, and is considered as the upper bound in this thesis work. 

 

From the BER point of view, assuming ideal channel estimation (true 

channel) the data covariance matrix estimation method incurs the highest 

error rate, while the reference symbols covariance matrix estimation 

method incurs the least error rate. The RBLW method leads to improved 

BER performance of the data symbols covariance estimation method as a 

result of a more accurate estimate of the covariance matrix, though it still 

performs worse than the reference symbols based estimation method. 

However using the practical channel estimate obtained using pilot boosting, 

the pilots encounter a higher BER than the data symbols estimation method, 

while the RBLW still leads to improved performance of the data based 

method, especially at low SNR. At higher SNR, optimization between the 

data covariance matrix and the reference symbols based covariance matrix 

method outperforms the RBLW method. It is also observed that the data 

based covariance method encounters less BER with increasing block size. 
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With LDPC codes, the BER of all the covariance matrix estimation 

methods was improved. 

 

From the perspective of the outage capacity, assuming the true channel, the 

reference symbols based estimation method offers the highest outage 

capacity, followed by the RBLW method, while the data based method has 

the lowest outage capacity. However with the channel estimate, the 

reference symbols based method achieves the lowest outage capacity, 

followed by the optimization method (between the reference symbols and 

the data based covariance estimate methods), the data based method and the 

RBLW achieves the highest outage capacity. 

 

However in terms of general capacity, with increasing SIR, the pilot based 

method outperforms the data based method, though the RBLW method still 

performs better. The RBLW method also exhibits excellent performance 

with small coherence intervals but as the number of data symbols 

considered increases, the RBLW method shows little or no improvement at 

all to the data based estimation method. 

 

Therefore at low SIR, it is better to use the received data symbols for 

channel estimation other than using the reference symbols. The data based 

estimation method can further be improved by using RBLW method. 

We also investigate how much training is needed and how it is affected by 

SIR, SNR, and signal constellation. The results show that higher order 

modulation schemes, such as 16-QAM, generally require less training in 

comparison to lower order modulation schemes, such as 4-QAM. This is 

something we are yet to understand, since it higher order modulation 

schemes have higher bit rates and hence require accurate  However with 

better channel conditions, less training is required to achieve maximize 

capacity.   
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CHAPTER 6 

 

6 Future Work 

 

From the results it can be observed that applying the RBLW method to 

perfect channel estimation does more harm than good, contrary to its effect 

on the not so perfect channel estimate. Unfortunately due to time 

constraints we were unable to deeply investigate the reason for this 

ambiguous behavior. Therefore we propose a further investigation into the 

nature of conditions under which the RBLW thrives and why it is 

unsuitable for the perfect channel estimation. 

 

Also as can be observed from the results, in the low SINR region, for 

instance, the RBLW method outperforms the reference symbols method. It 

would therefore be interesting to build a system that switches between the 

different covariance matrix estimation methods, depending on the 

performance and channel state conditions. 
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Appendix   

A. Derivation of scaling factors 

 

From 

                                                  (A.1) 

 

    
       

       
   

    
             

     
            

                         (A.2) 

 

But  

                   
  

     
                     (A.3) 

 

           
 
                                            (A.4) 

 Since the channel is normalized to have unit energy (the same applies for 

the interference channel) 

 

                                                   (A.5) 

 

Substituting for A.4 and A.5 in A.2, we obtain 

 

                
     

    

     
      

  

  
                                  (A.6) 

 

The SNR is also computed as 

 

    
     

    

      
  

     
    

   
                      (A.7) 

 

However the noise is also normalized to have unit energy 

 

Therefore 

           
                                        (A.8) 
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For    
     

    

 

Equation (A.8) reduces further to 

 

                                                    (A.9) 

 

A.9 can be expressed in dB as 

 

                    

 

  
      

         

 

 

Hence 
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A.6, can also be expressed in dB as 
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Therefore 
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