
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY, FACULTY

OF ENGINEERING, LTH

MASTER OF SCIENCE THESIS

Hardware Implementation of the Logarithm
Function

using Improved Parabolic Synthesis

Author:

Jingou Lai

Supervisor:

Peter Nilsson
Erik Hertz

Rakesh Gangarajaiah

Lund September 2, 2013

The Department of Electrical and Information Technology
Lund University
Box 118, S-221 00 LUND
SWEDEN

This thesis is set in Computer Modern 11pt,
with the LATEX Documentation System

© Jingou Lai 2013

Abstract

This thesis presents a design that approximates the fractional part of the based two
logarithm function by using Improved Parabolic Synthesis including its CMOS
VLSI implementations. Improved Parabolic Synthesis is a novel methodology in
favor of implementing unary functions e.g. trigonometric, logarithm, square root
etc. in hardware. It is an evolved approach from Parabolic Synthesis by combining
it with Second-Degree Interpolation. In the thesis, the design explores a simple
and parallel architecture for fast timing and optimizes wordlengths in computing
stages for a small design. The error behavior of the design is described and char-
acterized to meet the desired error metrics. This implementation is compared to
other approaches e.g. Parabolic Synthesis and CORDIC using 65nm standard cell
libraries and it is proved to have better performance in terms of smaller chip area,
lower dynamic power, and shorter critical path.

iv

Acknowledgments

This thesis would not have been possible without the support from many people.

I would like to express my deepest gratitude to the supervisors, Peter Nilsson, Erik
Hertz, and Rakesh Gangarajaiah who patiently, inspiringly guided me through this
thesis work.

My special thanks would go to my families and dearest friends who always have
faith in me and encourage me.

Finally, my appreciation would extend to my SoC classmates for all the bright
ideas and generous helps.

Jingou Lai
Lund, September 2013

vi

Contents

Abstract iii

List of Tables xi

List of Figures xiii

List of Acronyms xv

1 Introduction 1
1.1 Thesis Outlines . 3

2 Parabolic Synthesis 5
2.1 First Subfunction . 6
2.2 Second Subfunction . 8
2.3 Subfunction, sn(x), for n > 2 9

3 Improved Parabolic Synthesis 13
3.1 First Subfunction . 13
3.2 Second Subfunction . 14

3.2.1 Second Degree Interpolation 14
3.3 Develop two subfunctions concurrently 16

4 Hardware Architecture 19
4.1 Preprocessing . 20
4.2 Processing . 20

4.2.1 Architecture of Parabolic Synthesis 21

viii CONTENTS

4.2.2 Architecture of Improved Parabolic Synthesis 22
4.2.3 Floating-Point Operations 22
4.2.4 Algorithm for squarer 23
4.2.5 Truncation and Optimization 24

4.3 Postprocessing . 24

5 Error Analysis 25
5.1 Error Behavior Metrics . 26

5.1.1 Maximum/Minimum Error 26
5.1.2 Median Error . 27
5.1.3 Mean Error . 27
5.1.4 Standard Deviation . 27
5.1.5 RMS(Root Mean Square) 27

5.2 Error Distribution . 28

6 Implementation of Logarithm 29
6.1 Development of Subfunctions 30

6.1.1 Development of c1 . 30
6.1.2 First Subfunction . 31
6.1.3 Second Subfunction . 32

6.2 Hardware Architecture . 34
6.2.1 Preprocessing . 34
6.2.2 Processing . 34
6.2.3 Postprocessing . 35

6.3 Error Behavior . 35

7 Implementation Results 39
7.1 Area Information . 39
7.2 Timing Information . 40
7.3 Power and Energy Estimation . 41

7.3.1 Power analysis . 41
7.4 Physical Design . 42

8 Conclusion 45
8.1 Comparison . 45
8.2 Future Work . 46

CONTENTS ix

A Logarithm Impementation Results 49
A.1 Area . 49
A.2 Timing . 50
A.3 Power Estimation for LPHVT 50

List of Tables

6.1 the optimized 8 coefficients l2,i in the second subfunction, s2(x). . 32
6.2 the optimized 8 coefficients j2,i in the second subfunction, s2(x). . 32
6.3 the optimized 8 coefficients c2,i in the second subfunction, s2(x). . 33
6.4 The error metrics of the truncated and optimized implementation

for logarithm. 37

7.1 ASIC synthesis result for the Improved Parabolic Synthesis when
least area constraint is applied. 39

7.2 ASIC synthesis area for the 3 methods 40
7.3 ASIC synthesis timing result for fastest constraint 40
7.4 ASIC synthesis timing results for two methods 40

A.1 ASIC synthesis area results using LPLVT 49
A.2 ASIC synthesis area results using LPHVT 49
A.3 ASIC synthesis area results using GPSVT 49
A.4 ASIC synthesis timing results in LPLVT 50
A.5 ASIC synthesis timing results in LPHVT 50
A.6 ASIC synthesis timing results in GPSVT 50
A.7 Primetime Power Estimation for CORDIC method using LPHVT

library . 51
A.8 Primetime Power Estimation for Parabolic Synthesis method using

LPHVT library . 52
A.9 Primetime Power Estimation for Improved Parabolic method using

LPHVT library . 53

List of Figures

2.1 An example of two original functions, forg1(x) and forg2(x), com-
pared with a strait line y = x. 6

2.2 Two help functions results from the quotient between the original
functions, forg1(x) and forg2(x) in Fig. 2.1, and a strait line, y = x. 7

2.3 An example of the first help function, f1(x), shown to be a strict
convex curve. 8

2.4 An example of the second subfunction, s2(x), compared with first
help function, f1(x). 9

2.5 An example of the second help function, f2(x), a pair of opposite
concave and convex functions. 10

3.1 The first help function, f1(x), divided into 4 intervals. 14
3.2 The bit precsion as a function of c1 with 1 interval in the second

subfunction, s2(x). 17
3.3 The bit precision depending on the value of c1 with 1, 2, 4, 8, 16,

32, 64 interval in the second subfunction, s2(x). 17

4.1 Three stages hardware architecture for both Parabolic Synthesis
and Improved Parabolic Synthesis, shown in hierarchy view. . . . 19

4.2 The parallel hardware architecture for Parabolic Synthesis. 20
4.3 Processing stage architecture for the Parabolic Synthesis with 4

subfunctions. 21
4.4 The processing stage architecture for Improved Parabolic Synthesis. 22

xiv LIST OF FIGURES

4.5 The algorithm of the optimized architecture of the squarer unit,
in which the reduced logical operations are used to calculate the
partial products. 23

5.1 The error functions before and after truncation. 25
5.2 The error functions before and after truncation and optimization. . 26
5.3 The error histogram of the error function in Fig. 5.2. 28

6.1 Normalization of binary logarithm x range from 1 to 2, in which
the dashed line is the function before normalization and the solid
line is the original function, forg(x). 30

6.2 With the interval of 1, 2, 4, 8, 16, 32, and 64, in the second sub-
function, s2(x), the output precision as a function of the coefficient
c1 in the first subfunction, s1(x). 31

6.3 Hardware architecture of logarithm in hierarchy 34
6.4 Hardware architecture of logarithm in the processing stage 35
6.5 The error function before and after the truncation and optimization. 36
6.6 Absolute error function expressed in dB unit of the Fig. 6.5. . . . 36
6.7 The error histogram before the optimization on the coefficients of

the second subfunction, s2(x), and the wordlength between opera-
tions. 37

7.1 Power estimation for 3 designs at different frequencies 42
7.2 The GDSII result for the binary logarithm realized by the Improved

Parabolic Synthesis. 43

List of Acronyms

ASIC Application Specific Integrated Circuit

CORDIC Coordinated ROtation DIgital Computer

DSP Digital Signal Processor or Digital Signal Processing

EDA Electronic Design Automation

FPGA Field Programmable Gate Array

GDS Graphic Database System

LUT Look Up Table

MOS Metal Oxide Semiconductor

RMS Root Mean Square

SDF Standard Delay Format

SPEF Standard Parasitic Exchange format

VCD Value Change Dump

VHDL Very high speed integrated circuit Hardware Discription Language

VLSI Very Large Scale Integrated circuit

VT Threshold Voltage

Chapter 1
Introduction

Binary logarithm is widely applied in the field of graphical processing, communi-
cation systems, etc. It can substitute some high complex operation e.g. multipli-
cation and division [1]. For high speed processing, it is not efficient to only rely
on software solutions. Instead, due to the rapidly decreasing scale of Metal Oxide
Semiconductor Transistor (MOS) transistors, realizing the function in Very Large
Scale Integrated Circuit (VLSI) becomes applicable nowadays.

Methodologies to approach a binary logarithm in hardware, e.g. a rudimentary
implementation, simply employs a direct Look-Up Table (LUT) [2] [3]. How-
ever, the large table size will be problematic both for large number of input pat-
terns and high precision. An alternative method, polynomial approximation, can
reduce design to some extent but far from enough due to its high computational
strength architecture [4]. To address those problems, the Coordinate Rotation Dig-
ital Computer (CORDIC), an algorithm offers a time-multiplexed architecture, is
often used [5] [6]. However it has a drawback since it has a long processing delay
due to the iterative characteristic. Moreover, in consideration of error behavior,
since CORDIC calculates output by configuring bit by bit, it leads errors statics to
be unbalanced referring to zero [7].

An innovative methodology, parabolic synthesis, recently proposed by Erik Hertz
and Peter Nilsson, suggests new hardware architectures to approximate unary func-
tions e.g. sine, logarithm, exponential, and square root etc. [8] [9] [10]. This
methodology instructs to develop and recombine several parabolic functions, which
are called subfunctions, to approximate each normalized function, called original

2 Introduction

function. The idea explores parallelism to achieve fast speed and uses simple hard-
ware for each subfunction to reduce the overall area. Its evolved methodology, Im-
proved Parabolic Synthesis, proposed by Erik Hertz and Peter Nilsson, combining
Parabolic Synthesis and second-degree interpolation, employs only two subfunc-
tions to approximate the original function. Accuracy is dependent on both the first
subfunction and the number of intervals in the second subfunction. Thereby, the
first subfunction can be chosen for less hardware complexity while the second sub-
function in each subinterval is developed.

The error behavior is also an important factor to character the design. The de-
sired error behavior is symmetric and concentrating around 0. The coefficients of
the second subfunction are optimized to characterize error behavior.

A fractional part of binary logarithm function had been approximated using Parabolic
Synthesis by Peyman P. The results were compared to CORDIC on a Field Pro-
grammable Gate Arrary (FPGA) and an Application Specific Integrated Circuit
(ASIC). It is proved to be faster and consume less power than the CORDIC [11].
In the thesis, a binary logarithm that calculates 15 bits output precision from inputs
with 14 bits mantissa range from integer 1 to 2 is implemented using the Improved
Parabolic Synthesis. It results in a simpler hardware due to the advantage of the
Improved Parabolic Synthesis and optimized word length in each stage. In addi-
tion, refined coefficients result in a characterized error behavior with symmetry
concentrated around zero.

For implementation, it includes three hierarchical stages in the Parabolic Synthe-
sis and the Improved Parabolic Synthesis. For logarithm implementation, in the
processing stage, a squarer unit is implemented from a hardware-effective algo-
rithm. [12]. The design is written in Very High Speed Integrated Circuit Hardware
Description Language (VHDL) using the 65nm CMOS technology with low power
low VT, low power high VT and low power standard VT cell libraries with a supply
voltage 1.2V library.

As result, area and timing information from synthesis and place and route (P&R)
are reported. Power and energy are estimated under different operating frequencies.
Those results are compared to the Parabolic Synthesis Method and the CORDIC.

1.1 Thesis Outlines 3

1.1 Thesis Outlines

Remaining chapters are outlined below:

Chapter 2 introduces Parabolic Synthesis theory, subfunctions developing meth-
ods.

Chapter 3 explains the Improved Parabolic Synthesis theory, subfunctions devel-
oping methods.

Chapter 4 introduces the overall and different hardware architectures of Parabolic
Synthesis and Improved Parabolic Synthesis.

Chapter 5 explains the error behavior analysis and its metrics with examples.

Chapter 6 describes the implementation of binary logarithm using Improved Parabolic
logarithm.

Chapter 7 lists and analyzes results of implementation including area, timing, and
power. It also lists the result from physical design.

Chapter 8 concludes the advantage using Improved Parabolic Synthesis, in com-
parison with early method, and future improvements.

Appendix A lists the area and timing results using 3 different cell libraries, which
are 1.2V LPHVT, 1.2V LPLVT, and 1.2V GPSVT. The power estimation result
using 1.2V LPHVT cell library is shown as well.

4 Introduction

Chapter 2
Parabolic Synthesis

The Parabolic Synthesis methodology is based on the calculation of several sec-
ond order functions, called subfunctions, expressed as s1(x), s2(x), ..., sn(x), and
recombine them to approximate the original function, forg(x), as defined in (2.1).
Notice that when the number of subfunctions reaches infinity, the product of all
the subfunctions will result in the original function, forg(x). The original function,
forg(x), is the target function to be approximated.

forg(x) = s1(x) · s2(x) · s3(x)... · s∞(x) (2.1)

For the aid of the development of the subfuctions, help functions are used. As
shown in (2.2), the first help function, f1(x), is defined as the division between the
original function, forg(x), and the first subfunction, s1(x), since the first subfunc-
tion, s1(x), is designed to approximate the original function, forg(x).

f1(x) =
forg(x)

s1(x)
= s2(x) · s3(x)... · s∞(x) (2.2)

The second subfunction, s2(x), is designed to approach the first help function,
f1(x), which is to make the overall error smaller. This will also result in a second
help function, defined recursively, as shown in (2.3).

f2(x) =
f1(x)

s2(x)
= s3(x) · s4(x)... · s∞(x) (2.3)

In general, when n ≥ 2 the nth subfunction, sn(x), is designed to approach (n-1)th

help function, fn−1(x), as defined in (2.4).

6 Parabolic Synthesis

fn(x) =
fn−1(x)

sn(x)
= sn+1(x) · sn+2(x)... · s∞(x) (2.4)

When n increases, the amplitude of the help function, fn(x), will decrease in size.
This indicates that a larger number of subfunctions will result in a higher accuracy
on the output.

2.1 First Subfunction

The original function, forg(x), must cross two points, (0,0) and (1,1), as shown in
Fig. 2.1, where a convex curve, forg1(x), and a concave curve, forg2(x) are shown.

0 0.2 0.4 0.6 0.8 1x
0

0.2

0.4

0.6

0.8

1

fo
rg
(x
)

forg1(x)
forg2(x)
y=x

Fig. 2.1: An example of two original functions, forg1(x) and forg2(x), compared
with a strait line y = x.

The first subfunction, s1(x), which is a second order function, is defined in (2.5).

s1(x) = l1 + k1x+ c1(x− x2) (2.5)

Since the first subfunction, s1(x), crosses (0,0), the constant part l1 in (2.5) is cal-
culated to be 0. The linear part k1 in (2.5) is calculated to be 1 since the starting
point is (0,0) and the end point is (1,1). The first subfunction, s1(x), is thereby
reduced to (2.6).

s1(x) = x+ c1(x− x2) (2.6)

2.1 First Subfunction 7

In order to develop the first subfunction, s1(x), the original function, forg(x), is
first divided by a strait line, f(x) = x. The help function, fhelp(x), is therefore
defined as:

fhelp(x) =
forg(x)

x
(2.7)

Applying (2.7) to the two original functions, forg1(x) and forg2(x), in Fig. 2.1, the
help functions in (2.7) are calculated as the two curves in Fig. 2.2.

0 0.2 0.4 0.6 0.8 1x0.6

0.8

1

1.2

1.4

1.6

1.8

fo
rg
(x
)/x

1 < forg(x) / x < 2
0 < forg(x) / x < 1

Fig. 2.2: Two help functions results from the quotient between the original func-
tions, forg1(x) and forg2(x) in Fig. 2.1, and a strait line, y = x.

Additional criteria on the original function, forg(x), when developing c1 are:

1. The original function, forg(x), must be strictly convex or concave, which means
it cannot be both convex and concave.

2. The fucntion, forg(x)x , must have a limit value when x goes to 0.

3. The limited value in criteria 2 cannot be larger than 1 or smaller than -1 af-
ter subtraction by 1.

The help function, fhelp(x), in (2.7) is calculated as 1 + c1(1 − x). This func-
tion cuts two points, (0,0) and (1,1). This interprets that the function starts from
1+c1 and ends with 1. The coefficient c1 in the first subfunction, s1(x) is therefore

8 Parabolic Synthesis

defined as in (2.8).

c1 = lim
x→0

forg(x)

x
− 1 (2.8)

2.2 Second Subfunction

The second subfunction, s2(x), is a second order function, developed to approxi-
mate the first help function, f1(x).
The first help function, f1(x), is strictly concave or convex. As the example, shown
in Fig. 2.3, the first help function, f1(x), derived from the upper original function
in Fig. 2.1 using (2.2).

0 0.2 0.4 0.6 0.8 1x1

1.02

1.04

1.06

1.08

1.1

f1
(x
)

Fig. 2.3: An example of the first help function, f1(x), shown to be a strict convex
curve.

The second subfunction, s2(x), is defined in (2.9).

s2(x) = l2 + k2x+ c2(x− x2) (2.9)

Since the second subfunction, s2(x), starts from the point (0,1) and ends at the
point (1,1), the constant part in (2.9), l2, is calculated as 1. The linear part in (2.9),
k2, is the gradient from (0,1) to (1,1) and therefore equals to 0.
In (2.10), the reduced second subfunction, s2(x), is shown.

s2(x) = 1 + c2(x− x2) (2.10)

2.3 Subfunction, sn(x), for n > 2 9

0 0.2 0.4 0.6 0.8 1x1

1.02

1.04

1.06

1.08

1.1
s2(x)
fhelp(x)

Fig. 2.4: An example of the second subfunction, s2(x), compared with first help
function, f1(x).

The desired second subfunctions, s2(x), needs to cross the same points, including
the start point, middle point, and end point, as the help function, shown in Fig. 2.4.
To calculate c2 in (2.9), the middle point of the first help function, f1(0.5), is used
according to (2.9)

c2 =
f1(0.5)− 0.5 · k2 − l2

0.25
= 4 · (f1(0.5)− 1) (2.11)

2.3 Subfunction, sn(x), for n > 2

When further developing subfunctions, sn(x), for n > 2, the same methodology
is applied, which is designed to approach the help function, fn−1(x), as stated in
(2.2) and (2.4). However, all the help functions, from f2(x) to fn(x) for n > 1,
are no more strictly convex or concave from 0 to 1 on the x axis. As an example
shown in Fig. 2.5, the second help function, f2(x), results in a pair of convex and
concave functions. The first function is in the interval 0 ≤ x < 0.5 and the second
function is in the interval 0.5 ≤ x ≤ 1.
The second help function, f2(x), is expressed in (2.12).

f2(x) =

{
f2,0(x) 0 ≤ x < 1

2

f2,1(x)
1
2 ≤ x ≤ 1

(2.12)

To approximate the second help function, f2(x), composed of two parabolic curves,
every parabolic curve in the function is normalized into 0 to 1 in the x axis. Notice

10 Parabolic Synthesis

0 0.2 0.4 0.6 0.8 1x
0.996

0.998

1

1.002

1.004

f1
(x
)

Fig. 2.5: An example of the second help function, f2(x), a pair of opposite concave
and convex functions.

that x is substituted with x′ in order to map the input x to the normalized parabolic
curve. From x to x′, the mapping is according to (2.13).

x′ = fract(2 · x) (2.13)

Each of the parabolic curve is approximated using the method in Section 2.2 in
Fig. 2.4. For the third subfunction, s3(x), when 0 ≤ x < 1

2 , s3,0(x′) is calculated.
When 1

2 ≤ x ≤ 1, s3,1(x′) is calculated. It is expressed in (2.14).

s3(x) =

{
s3,0(x

′) 0 ≤ x < 1
2

s3,1(x
′) 1

2 ≤ x ≤ 1
(2.14)

In general, the nth subfunction fn(x), when n > 1, consists of pairs of concave
and convex functions, as defined in (2.15). A larger n results in a higher numbers
of pairs.

fn(x) =

fn,0(x) 0 ≤ x < 1

2n−2

fn,1(x)
1

2n−2 ≤ x < 2
2n−2

...

fn,2n−1−1(x)
2n−2−1
2n−2 ≤ x < 1

(2.15)

As a consequence, in general, when developing the nth subfunction, sn(x), when
n > 2, the subfunction is defined, as shown in (2.16).

2.3 Subfunction, sn(x), for n > 2 11

sn(x) =

sn,0(xn) 0 ≤ x < 1

2n−2

sn,1(xn)
1

2n−2 ≤ x < 2
2n−2

...

sn,2n−2−1(xn)
2n−2−1
2n−2 ≤ x < 1

(2.16)

Similarly, in order to map the input to the normalized parabolic curve, the input
x is substituted by xn. In (2.17), xn is the fractional part of the product of x and
2n−2.

xn = fract(2n−2x) (2.17)

Each parabolic curve in the nth subfunction, sn(x), is sn,m(xn). sn,m(xn) is de-
fined in (2.18),

sn,m(xn) = 1 + (cn,m · (xn − x2n)) (2.18)

where the cn,m for each sn,m, is calculated similar as in Section 2.2, as defined in
(2.19):

cn,m = 4 · (fn−1,m(
2 · (m+ 1)− 1

2n−1
)− 1) (2.19)

12 Parabolic Synthesis

Chapter 3
Improved Parabolic Synthesis

The extended method, called Improved Parabolic Synthesis, uses only two sub-
functions to approximate the original function, forg(x), as shown in (3.1).

forg(x) = s1(x) · s2(x) (3.1)

The first subfunction, s1(x), is developed to be a parabolic function. The second
subfunction, s2(x), combines parabolic functions with second-degree interpola-
tion. In this methodology, the first subfunction, s1(x), and the second subfunction,
s2(x), are developed with conformity.
In order to apply the methodology, as shown in Fig. 2.1, the original function,
forg(x), needs to cut (0,0) and (1,1). Additional constraints applied to the original
function, forg(x), when using the methodology are:

1. The original function, forg(x), must be strictly convex or concave. It cannot
be both convex and concave.
2. The function, forg(x)x , must have a limit value when x goes to 0.

3.1 First Subfunction

The first subfunction, s1(x), is developed to approximate the original function,
forg(x), similar to section 2.1, as defined in (2.6). Depending on the convexity
or concavity of the original function, forg(x), a proper c1 in (2.6) is chosen by

14 Improved Parabolic Synthesis

sweeping it from range 0 to 1.2 or -1.2 to 0 respectively. With every value of c1,
the first subfunction, s1(x), is developed.

3.2 Second Subfunction

The second subfunction, s2(x) , is developed to approximate the first help function,
f1(x), as shown in Section 2.2.

3.2.1 Second Degree Interpolation

In the Improved Parabolic Synthesis, as shown in Fig. 3.1, the first help function,
f1(x), is divided into intervals of power of 2 numbers. To develop the second sub-
function, s2(x), in each subinterval, the curve is normalized.

0 0.2 0.4 0.6 0.8 1x0.7

0.75

0.8

0.85

0.9

0.95

1

fh
el
p(
x)

Fig. 3.1: The first help function, f1(x), divided into 4 intervals.

The general equation of the second subfunction that denotes the ith interval is
shown in (3.2):

s2,i(x) = l2,i + k2,i · xw + c2,i · (xw − x2w) (3.2)

where i is the integer from 0 to number of intervals-1.

The second subfunction in each interval, s2,i(x), is developed to approximate the
help function in that interval, f1,i(x), by cutting 3 points, which are the start point,
middle point, and end point of the first help function in that interval, f1,i(x). In

3.2 Second Subfunction 15

general, the second subfunction, s2,i(x), can be expanded with all the intervals as:

s2(x) =

s2,0(xω) 0 ≤ x < 1

2ω

s2,1(xω)
1
2ω ≤ x <

2
2ω

...

s2,I−1(xω)
I−1
2ω ≤ x < 1

(3.3)

Note that x is substituted by xw. The input x is multiplied by 2w to transfer the
inputs in each interval to the normalized domain, in which way the second sub-
function, s2(x), approximates the first subfunction, f1(x):

xω = fract(2ωx) (3.4)

As shown in (3.5), I is the number of intervals, which is expressed in a power of 2
number. The number of intervals can be chosen as radix-2 numbers. It will further
benefit when developing the hardware architecture.

I = 2ω (3.5)

Similar to the Parabolic Synthesis, the offset of the second subfunction in the ith

interval, l2,i, is simply the starting point of that interval:

l2, i = f1(start, i) (3.6)

The ingredient of the second subfunction in the ith interval, k2,i, is the difference
between the start point and the end point of that interval:

k2, i = f1(start, i)− f1(end, i) (3.7)

The second degree component, c2,i, is developed by the help of middle point of
each interval, shown in (3.8).

c2, i = 4 · (f1,i(0.5)− l2,i − k2,i · 0.5) (3.8)

For the purpose of saving an adder in hardware, ji is preset as in (3.9).

j2,i = k2,i + c2,i (3.9)

16 Improved Parabolic Synthesis

3.3 Develop two subfunctions concurrently

In order to find the coefficient c1 of the first subfunction, s1(x), the following steps
are performed:

1. Choose a value of the coefficient c1. With every value of the coefficient c1,
the first subfunction, s1(x), is developed according to (2.6).
2. Since the first subfunction, s1(x), is set, the second subfunction, s2(x), is de-
veloped according to (3.1).
3. Since the first subfunction, s1(x), and the second subfunction, s2(x), have been
developed, the output precision is calculated.

By Changing the value of the coefficient c1 and repeat Step 1 to 3, the output
precision is therefore a function of the coefficient c1. For the explanation of the
Step 3, the output precision is calculated by the error function. The error function,
e(x), is define in (3.10):

e(x) = |s1(x) · s2(x)− forg(x)| (3.10)

It results in the differences between recombined result, s1(x) · s2(x), and original
function, forg(x), expressed in decibel(dB) unit. Since the 1 bit precision in the
floating point, namely 0.5, is approximately -6 dB, as shown in (3.11),

20 · log10(0.5) ≈ 20(−0.301) ≈ −6dB (3.11)

the bit precision is the quotient between the maximum of the error function,max{e(x)},
in dB and -6, as shown in (3.12).

bit precision =
20 · log10(max{e(x)})

−6
(3.12)

In contrast to the Parabolic Synthesis method, the coefficient c1 is developed by
considering overall precision on the output. The preferable c1 is the value that
fulfills the precision requirement and results in a simple architecture.

3.3 Develop two subfunctions concurrently 17

The bit precision is therefore a function of c1, as an example of sine approximation
using this approach shown in Fig. 3.2. Two peak values are detected, one is around
0.3 and the other is around 1.1.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
C1

7

8

9

10

11
Bi

t P
re

ci
si

on

Fig. 3.2: The bit precsion as a function of c1 with 1 interval in the second subfunc-
tion, s2(x).

After combining with the Second-Degree Interpolation, the bit precision depends
not only on the coefficient c1 but also the number of intervals. As shown in Fig.
3.3, for the higher number of intervals, the output precision curve result in higher
precision.

0 0.2 0.4 0.6 0.8 1 1.2 1.4C1

10

15

20

25

30

35

Bi
t P

re
ci

si
on

1 int.
2 int.
4 int.
8 int.
16 int.
32 int.
64 int.

Fig. 3.3: The bit precision depending on the value of c1 with 1, 2, 4, 8, 16, 32, 64
interval in the second subfunction, s2(x).

Typical values for c1 are 1, 0.5, and 0, with which numbers the hardware will be

18 Improved Parabolic Synthesis

simplified.
With more intervals, freedom of choosing c1 is increased. By choosing the typical
values above, the output precision can be increased.

Chapter 4
Hardware Architecture

The hardware architecture is shown in Fig. 4.1. The architecture consists of three
stages: preprocessing, processing, and postprocessing. The Preprocessing and
Postprocessing stages are transformation stages, while the Processing stage ap-
proximates the original function, forg(x).

Preprocessing

Postprocessing

Processing

v

x

y

z

Fig. 4.1: Three stages hardware architecture for both Parabolic Synthesis and Im-
proved Parabolic Synthesis, shown in hierarchy view.

20 Hardware Architecture

This approach is applicable for both Parabolic Synthesis and Improved Parabolic
Synthesis.

4.1 Preprocessing

In the Preprocessing stage, the input v maps the input domain to the output x into
the interval from 0 to 1.
As an example, the preprocessing stage of sin(x) implementation process the input
v from the input domain, which is from 0 to π

2 , to the output x into the interval from
0 to 1 by multiplying the 2

π .

4.2 Processing

The processing stage processes the input x that results in the output y, which is the
approximated quantity from the processing stage function or the original function,
forg(x). The parabolic Synthesis or Improved Parabolic Synthesis is applied in
this stage to approximate the processing stage function, forg(x). As shown in Fig.
4.2, the architecture can fulfill the calculation of (2.1) and (3.1).

s1 (x)

s2 (x)

s3 (x)

s4 (x)

x

x

xx y

...
Fig. 4.2: The parallel hardware architecture for Parabolic Synthesis.

4.2 Processing 21

4.2.1 Architecture of Parabolic Synthesis

The unrolled architecture of (2.1) is shown in Fig. 4.3 with the subfunctions when
n = 4.

x +x2

x +

x

+

x +

x +

x

x

x3
2 x4

2

+

+

-

-

-

x3
2

x4
2

x

x3

x4

i

h

C3,i

c4,i

yps

c1

c2

1

1

1

s1(x)

s2(x)

s3(x)

s4(x)

Fig. 4.3: Processing stage architecture for the Parabolic Synthesis with 4 subfunc-
tions.

To process the first subfunction, s1(x), and the second subfunction, s2(x), x is
the direct input. For the third subfunction, s3(x), x is divided into 2 parts, the
interval and the input. The interval part are the most significant bits that select the
step function, c3,i(x), and the rest of the bits is the input x3. It is similar when
computing the fourth subfunction, s4(x), except the use of 1 more significant bit
as the interval part and 1 less bit for the input. The squarer unit is used to produce
the the square module x2, the partial products x23 and x24 for the subfunctions. Note
that the architecture shows that in the first subfunction, s1(x), k1 is equal to 1 and
l1 is equal to 0. For the nth subfunctions, sn(x), that is when n > 1, the kn equals
to 0 and ln equals to 1.

22 Hardware Architecture

4.2.2 Architecture of Improved Parabolic Synthesis

The architecture of (3.1), as shown in Fig. 4.4, only computes and combines two
subfunctions, s1(x) and s2(x).

x +x2 +

x

+

x

-

-

x2
2

x

x2

i c2,i

yips

c1

x2
2

j2,i

l2,i

x +

s1(x)

s2(x)

Fig. 4.4: The processing stage architecture for Improved Parabolic Synthesis.

In the second subfunction, s2(x), the most significant bits of the input x are used
to select the set of coefficients, c2,i, k2,i, l2,i. The number of significant bits, which
is the ω in (3.5), are determined by the number of intervals I . The squarer unit
produce the products of x2 and partial products x2ω, which are used in the first
subfunction, s1(x), and the second subfunction, s2(x), respectively.

4.2.3 Floating-Point Operations

In hardware, a floating point number is represented by a fixed point number and
noted by a fractional length. For the addition(or subtraction), the operation should
be performed with the alignment of the fractional length. For the multiplication,
the numbers are simply multiplied and the fractional length is accumulated as the
sum of fractional parts of the multiplier and the multiplicand.

4.2 Processing 23

With this representation system, the wordlengths of the coefficients, c2,i and k2,i
can be reduced.

4.2.4 Algorithm for squarer

The algorithm of the square unit, x2 and x2ω, in Fig. 4.4, can be implemented from
an algorithm shown in Fig. 4.5.

x3 x2 x1 x0x4

x3 x2 x1 x0x4x

x0x0

p0

x0x1
x1x0x1x1

q0q1q2q3

r0r1r2r3r4r5

x0x2

x1x2

x2x0x2x1x2x2

x0x3

x1x3

x3x0x3x1

x2x3

x3x3 x3x2

s0s1s2s3s4s5s6s7
x0x4

x1x4

x4x0x4x1

x2x4

x4x3 x4x2

x3x4

x4x4

t0t1t2t3t4t5t6t7t8t9

p

q

r

s

t

Fig. 4.5: The algorithm of the optimized architecture of the squarer unit, in which
the reduced logical operations are used to calculate the partial products.

It calculates and adds the partial products p, q, r, s, and t etc. to produce the final

24 Hardware Architecture

result. Following this algorithm, the number of partial products is implemented
and controlled by the number of bits from the parameterized input x.
The advantage of implementing the squarer using this algorithm is that both the
chip area and the latency of the squarer are about half compared to the correspond-
ing multiplier.

4.2.5 Truncation and Optimization

To represent the coefficients, c2,i, j2,i, and l2,i in hardware, they are truncated to
feasible binary numbers and fractional lengths as described in Section.4.2.3.
The optimization to the coefficients c2,i, j2,i, and l2,i can characterize error behav-
ior, which will be described in Chapter 5.
The wordlengths can be reduced to some extent while the system still maintain the
required output precision.
Under the condition to meet the output precision, different wordlengths between
the operations have been simulated and one combination that results in a mini-
mized architecture and a best error behavior is chosen.

4.3 Postprocessing

The Postprocessing stage processes the output y, which is the approximated result,
in the range from 0 to 1, to the z with the range of the target function, to fulfill the
approximation.
As the example of sin(x) approximation, the range of y is from 0 to 1, which is
the same range to the target function, sin(x) with x from 0 to π

2 . Therefore, the
postprocessing stage function is z = y.

Chapter 5
Error Analysis

After the development of the first subfunction, s1(x), the second subfunction,
s2(x), in Chapter 3, and the architecture in Chapter 4, the following step is to
determine the wordlengths to be used in the architecture. This will effect the error
behavior, As shown in Fig. 5.1. The black curve is the error function before trun-
cation, and the grey is the error function after the truncation.

0 0.2 0.4 0.6 0.8 1x
-0.000015

-0.00001

-5x10-6

0

5x10-6

0.00001

0.000015

er
ro
r

before truncation and optimization
after truncation

Fig. 5.1: The error functions before and after truncation.

As shown in the Fig. 5.1, after truncation, the error function has a negative offset
compared to the error function before the truncation.
To neutralize this effect, the coefficients in the second subfunction, s2(x), are ad-
justed. It is fulfilled by manipulating those coefficients to result in a normal dis-
tributed error. This will help to reduce the wordlengths of the architecture in Fig.

26 Error Analysis

4.4 since the margin between the maximum error and the required precision be-
comes larger. The error function after truncation is shown in Fig. 5.2, where the
black curve is the error function before the truncation and optimization and the
grey is the error function after the truncation and optimization.

0 0.2 0.4 0.6 0.8 1x

-0.00001

-5x10-6

0

5x10-6

0.00001

0.000015

er
ro

r

before truncation and optimization
after truncation and optimizaion

Fig. 5.2: The error functions before and after truncation and optimization.

As shown in Fig. 5.2 and 5.1, the error function after the truncation and normal-
ization is more evenly distributed around 0 than the the error function only after
truncation.

5.1 Error Behavior Metrics

When developing the architecture to result in a normal distributed error behavior,
for the supplements of the error function, some metrics are important, namely the
max error, the min error, the median error, the mean error, the standard deviation,
and the Root Mean Square (RMS) error.

5.1.1 Maximum/Minimum Error

The maximum or minimum error is the maximum or minimum value of the error
function respectively, as shown in (5.1) and (5.2).

emax = max{e(x)} (5.1)

emin = min{e(x)} (5.2)

5.1 Error Behavior Metrics 27

The max or min error gives the precision bottleneck of the design.

5.1.2 Median Error

The median error gives an error value that is in the middle value of all the error
samples. For an odd number of samples, it is the value makes an equal number of
samples that are larger or smaller than that value. For an even number of samples,
it is the mean value of central values. The median error shows the skewness of the
error distribution.

5.1.3 Mean Error

The mean error is the average value of error error function, as shown in (5.3)

emean =
1

n

n∑
x=0

e(x) (5.3)

Where n is the number of samples.

5.1.4 Standard Deviation

The standard deviation is the square root of the average from the sum of the square
of difference between the error and the mean error, as shown in (5.4).

σ =
√

1
n

∑n
x=0[e(x)−emean]2

(5.4)

The standard deviation indicates the dispersion around mean.

5.1.5 RMS(Root Mean Square)

The root mean square is the square root of the average from the sum of the square
of errors, as shown in (5.5).

σ =
√

1
n

∑n
x=0 e(x)

2 (5.5)

The RMS error gives the equivalent quantity of a varying value.
In order to result in a normal distributed error, the optimization is expected to make
the Standard deviation and RMS equal.

28 Error Analysis

5.2 Error Distribution

Another tool to analyze the error is to use the histogram of the error function. An
histogram can indicate the distribution of the error, it gives the number of the errors
for all the specific values, as shown in Fig. 5.3.

-1.5e-05 -1.0e-05 -5e-06 0.0e+00 5e-06 1.0e-05 1.5e-05
error

0

200

400

600

800

1000

1200

1400

nu
m

be
r o

f e
rro

rs

Fig. 5.3: The error histogram of the error function in Fig. 5.2.

Fig. 5.3 shows that the error histogram of Fig. 5.2 is evenly distributed around 0.

Chapter 6
Implementation of Logarithm

The based-2 logarithm function that calculates the number from 1 to 2 with 14 bits
mantissa and produces the output with 15 bits precision is implemented in hard-
ware using the improved Parabolic Synthesis methodology described in Chapter 3.
Subfunctions are developed adopting the approach from Section 3.3, within which
the coefficient c1 is chosen for the simplest hardware. For the hardware implemen-
tation, the architecture and optimization in Chapter 4 is used. The error metrics in
Chapter 5 is listed.

30 Implementation of Logarithm

6.1 Development of Subfunctions

To derive the original function, forg(x), as shown in Fig. 6.1, the binary logarithm
function with the input x ranging from 1 to 2 is simply shifted 1 to the left.

0 0.5 1 1.5 2x
0

0.2

0.4

0.6

0.8

1
y=log2(x+1)
y=log2(x)

Fig. 6.1: Normalization of binary logarithm x range from 1 to 2, in which the
dashed line is the function before normalization and the solid line is the original
function, forg(x).

Therefore, the original function, forg(x), is:

forg(x) = log2(x+ 1) (6.1)

6.1.1 Development of c1

When different coefficient c1 in the first subfunction, s1(x), combining second-
degree interpolation with different number of interval in the second subfunction,
s2(x), as the method described in section 3.3.2, the result is shown in Fig. 6.2. It
plots the precision as a function of c1 from 0 to 1.4 under the number of intervals
from 1 to 64 for the second subfunction.

6.1 Development of Subfunctions 31

0 0.2 0.4 0.6 0.8 1 1.2 1.4C1
5

10

15

20

25

30

Bi
t P

re
ci

si
on

1 int.
2 int.
4 int.
8 int.
16 int.
32 int.
64 int.

Fig. 6.2: With the interval of 1, 2, 4, 8, 16, 32, and 64, in the second subfunction,
s2(x), the output precision as a function of the coefficient c1 in the first subfunction,
s1(x).

To achieve a simple hardware, the coefficient c1 is chosen to be 0. To compensate
the output precision, the number of intervals is chosen to be 8.

6.1.2 First Subfunction

Since the coefficient c1 is set to 0, the first subfunction, s1(x) is defined in (6.2):

s1(x) = x (6.2)

As the first subfunction, s1(x), is developed, the first help function, f1(x), is de-
fined in (6.3):

f1(x) =
forg(x)

s1(x)
=
log2(x+ 1)

x
(6.3)

The first help function, f1(x), helps to develop the second subfunction, s2(x), as
shown in Section 3.2.

32 Implementation of Logarithm

6.1.3 Second Subfunction

To develop the second subfunction, s2(x), the methodology from section 3.2 is
used. In the outcome from (3.3) to (3.9), the 8 sets of coefficients, l2,i, j2,i, and
c2,i of the (3.2), after truncation and optimization, are listed in Tab. 6.1 to 6.3,
respectively.

Table 6.1: the optimized 8 coefficients l2,i in the second subfunction, s2(x).

coefficient Value
l2,0 1.44268798828125000
l2,1 1.35939788818359375
l2,2 1.28771209716796875
l2,3 1.22514343261718750
l2,4 1.16991424560546875
l2,5 1.12069702148437500
l2,6 1.07646942138671875
l2,7 1.03644561767578125

Table 6.2: the optimized 8 coefficients j2,i in the second subfunction, s2(x).

coefficient Value
j2,0 -0.089294433593750
j2,1 -0.076629638671875
j2,2 -0.066589355468750
j2,3 -0.058471679687500
j2,4 -0.051849365234375
j2,5 -0.046447753906250
j2,6 -0.041900634765625
j2,7 -0.038085937500000

6.1 Development of Subfunctions 33

Table 6.3: the optimized 8 coefficients c2,i in the second subfunction, s2(x).

coefficient Value
c2,0 -0.0060424804687500
c2,1 -0.0049438476562500
c2,2 -0.0040435791015625
c2,3 -0.0032501220703125
c2,4 -0.0026397705078125
c2,5 -0.0022277832031250
c2,6 -0.0018920898437500
c2,7 -0.0016479492187500

The effective wordlengths representing the coefficients l2,i, j2,i, and c2,i in the sec-
ond subfunction, s2(x), are selected as 18, 12, and 8 bits respectively.
The optimized wordlengths between the operations will be described in Section.6.2.2.

34 Implementation of Logarithm

6.2 Hardware Architecture

The architecture for the implementation of binary logarithm is shown in Fig. 6.3.

x=v-1

z=y

y=s1(x)*s2(x)

v

x

y

z

Fig. 6.3: Hardware architecture of logarithm in hierarchy

It is divided into 3 stages: preprocessing, processing, and postprocessing, as shown
in Fig. 4.1. In the Preprocessing stage, it is simply subtracted by 1 from its operand.
In the Processing stage, it uses the Improved Parabolic Synthesis method to approx-
imate the original function, log2(x+ 1). In the Postprocessing stage, the output is
directly equal to the input.

6.2.1 Preprocessing

Since the Improved Parabolic Synthesis approximates the original function, forg(x),
in (6.1), for the binary logarithm, log2(v), with interval from 1 to 2, The input v is
therefore subtracted by 1 to get x normalized from 0 to 1. The Preprocessing stage
function is shown as:

x = v − 1 (6.4)

In hardware, therefore the input in the next stage represents only the mantissa part
of the number between 1 and 2.

6.2.2 Processing

In the Processing stage, the fractional part of logarithm is approximated using im-
proved Parabolic Synthesis, which contains two subfunctions, where the first sub-

6.3 Error Behavior 35

function is a parabolic function and the second function is a second-degree inter-
polation. The architecture with optimized wordlengths is shown in Fig. 6.4.

interval

frac�onal	input

3

11

x 14

l2,i

j2,i

C2,i

X

X

X

X

+ +

18
12

8

17

9

18 18

18

-
17

14

Fig. 6.4: Hardware architecture of logarithm in the processing stage

The optimization of the architecture has an impact on the error behavior, which is
to be described in Section 6.3.

6.2.3 Postprocessing

Since the normalization is only the left shift on the coordinate, therefore, in the
Postprocessing stage, the output is simply equal to the input, as shown in (6.5).

z = y (6.5)

6.3 Error Behavior

The error behavior of the implementation is shown in Fig. 6.5, where the black
curve is the error function before truncation and optimization and the grey is the
error function after the truncation and optimization.

36 Implementation of Logarithm

0 0.2 0.4 0.6 0.8 1x

-0.000015

-0.00001

-5x10-6

0

5x10-6

0.00001

0.000015

er
ro
r

before truncation and optimization
after truncation and optimization

Fig. 6.5: The error function before and after the truncation and optimization.

In Fig. 6.5, it indicates that after the error function after the truncation and opti-
mization is evenly distributed around 0.
The error function is expressed in dB unit and shown in Fig. 6.6.

0 0.2 0.4 0.6 0.8 1x-160

-150

-140

-130

-120

-110

-100

dB

Fig. 6.6: Absolute error function expressed in dB unit of the Fig. 6.5.

As described in (3.11), since all the errors are below -90dB, the precision require-
ment of 15 bits is satisfied.
For the histogram of the error in Fig. 6.5, which is two-sided, symmetric and cor-
related to the normal distribution, shown in Fig. 6.7.
As shown in Fig. 6.7, the errors of the optimized design distributed around −1.5 ·
10−5 to 1.5 · 10−5, which has most of the errors around 0, and the number is grad-

6.3 Error Behavior 37

-1.5e-05 -1.0e-05 -5e-06 0.0e+00 5e-06 1.0e-05 1.5e-05error
0

200

400

600

800

1000

1200

nu
m

be
r o

f e
rro

rs

Fig. 6.7: The error histogram before the optimization on the coefficients of the
second subfunction, s2(x), and the wordlength between operations.

ually decreasing to the sides.
The error metrics in Section 5.1 for the implementation are listed in Tab. 6.4.

Table 6.4: The error metrics of the truncated and optimized implementation for
logarithm.

Value Bits
Min error -0.000015692179454 15.96 bits
Max error 0.000015897615491 15.94 bits

Mean 0.000000019483566 25.61 bits
Median -0.000000025005258

Standard Deviation 0.000004737796437
RMS 0.000004737691911

The min and max error show a good symmetry of the error behavior. The similarity
between standard deviation and RMS indicate that the error histogram is highly
correlated to the normal distribution.

38 Implementation of Logarithm

Chapter 7
Implementation Results

In this Chapter, the implementation results including the area, timing, and power
estimation using 65nm Low Power High VT (LPHVT) CMOS technology are listed
and compared. A full list of results using Low Power Low VT (LPLVT) and Gen-
eral Purpose Standard VT (GPSVT) cell libraries is shown in Appendix A. The
binary logarithm is also implemented using Parabolic Synthesis and CORDIC. For
Parabolic Synthesis implementation, 4 subfunctions are used and no optimization
to the wordlengths of design has been performed. For CORDIC implementation,
20 iterations are used, where 15+1 of 20 is used for accuracy and iteration 4, 7, 10,
and 13 are used to ensure convergence [13]. Notice that no pipeline are used in any
of those implementations.
The results are compared to the Improved Parabolic Synthesis approach and will
be described in Chapter 8.

7.1 Area Information

The synthesis tool estimates the ASIC area for logic gates. Least area can be ex-
tracted by applying least-area constraint. As shown in Tab. 7.1, the binary loga-
rithm possesses less than 4800µm2.

Table 7.1: ASIC synthesis result for the Improved Parabolic Synthesis when least
area constraint is applied.

Area(µm2)
least area 4785

40 Implementation Results

Under the normal conditions, where no constraints are applied to the synthesis, the
results for the 3 approaches are listed in Tab. 7.2.

Table 7.2: ASIC synthesis area for the 3 methods

Desgin Area(µm2)
CORDIC 12893

Parabolic Synthesis 16258
Improved Parabolic Synthesis 4865

The Improved Parabolic approach possesses much less area compared to the other
two methods.

7.2 Timing Information

The timing information in a design gives the bottleneck for the highest clock fre-
quency. As shown in the Tab. 7.3, it lists the timing information when the fastest
design is required.

Table 7.3: ASIC synthesis timing result for fastest constraint

constraint timing path(ns) frequency(Hz)
fastest design 1.71 584MHz

Under the normal constraint, Tab. 7.4 compares the timing results of the 3 imple-
mentations.

Table 7.4: ASIC synthesis timing results for two methods

Desgin timing path(ns) frequency(Hz)
CORDIC 86.96 11.5MHz

Parabolic Synthesis 21.03 47.5MHz
Improved Parabolic Synthesis 6.96 140MHz

As the results derive, the binary logarithm function designed in Improved Parabolic
Synthesis can be implemented in a system that has a local clock frequency of
1/6.96ns = 140MHz. When using Parabolic Synthesis, it can be implemented with
a clock frequency of 1/21.03ns = 47.5MHz. For the CORDIC implementation,
however, due to the iterative character, the equivalent frequency is 1/86.96ns =
11.5MHz [11].

7.3 Power and Energy Estimation 41

7.3 Power and Energy Estimation

7.3.1 Power analysis

The CMOS transistors consist of two power sources: dynamic power, and static
power, where

Ptotal = Pdynamic + Pstatic (7.1)

The static power source is the leakage current when the power is on. The dynamic
power consists of switching power and internal power:

Pdynamic = Pswitching + Pinternal (7.2)

where the switching power is the charge and discharge from transistor capacitors
and the internal power source is the transition spike current when transistors are
short-circuited.
The dynamic power is positive proportional to the switching activity, α, clock fre-
quency, f , the equivalent capacitors of the transistor, C, and the supply voltage,
VDD.

Pdynamic = αfCV 2
DD (7.3)

The switching activity, α, is estimated from Value Change Dump (VCD) file gen-
erated from simulation tools.
The power estimation of the binary logarithm using the Improved Parabolic Syn-
thesis, Parabolic Synthesis, and CORDIC are plotted in Fig. 7.1 under different
frequencies.

42 Implementation Results

0.001 0.01 0.1 1 10 100 1000 10000 100000 1x106 1x107Frequency(Hz)
10

100

1000

10000

100000

1x106

1x107
P(
nW
)

Improved P.S. logarithm
P.S. logarithm
CORDIC logarithm

Fig. 7.1: Power estimation for 3 designs at different frequencies

For the same cell library, the static power depends on the number of transistors,
which will be the dominating dissipation source during low frequencies. When
frequency increases, dynamic power start to possess more and more power, which
thereby become the main source of dissipation.
The binary logarithm function implemented with Improved Parabolic Synthesis,
due to less area and lower switching activity, consumes much less static power and
dynamic power compared to the other 2 approaches.

7.4 Physical Design

In The physical design, The Electronic Design Automation (EDA) tools combine
the netlist and library files, which results in the Graphic Database System (GDSII)
for fabrication. The layout of the binary logarithm is shown in Fig. 7.2.

7.4 Physical Design 43

Fig. 7.2: The GDSII result for the binary logarithm realized by the Improved
Parabolic Synthesis.

The floor plan is specified as 80x80µm2. Two metals are placed for power supply
and ground. The Standard Delay Format (SDF) file, which contains the timing de-
lay information from physical design, is added with netlist to perform post layout
simulation.
The SPEF file is also extracted after physical placement. It presents parasitic data
information, which is used when doing post layout power estimation.
The post-layout simulation is performed to ensure the design computation correc-
tion before fabrication.

44 Implementation Results

Chapter 8
Conclusion

For the Improved Parabolic Synthesis, the first subfunction and the second subfunc-
tion, s1(x) and s2(x), are developed with conformity where the desired coefficient
c1 is chosen for a value that results in both high accuracy and low complexity. An
increased number of intervals in the Second-Degree Interpolation for the second
subfunction, s2(x) can compensate the output precision when a simple hardware
is chosen.
The truncation gives an offset to the error behavior and the optimization on the
coefficients, c2,i, j2,i, and l2,i, will balance it. Note that it is beneficial when devel-
oping the second subfunction, s2(x), if the difference between first help function,
f1(x), and the second subfunction, s2, is gradually decreased on the x-axis.

8.1 Comparison

Compared to the Parabolic Synthesis and CORDIC, the Improved Parabolic Syn-
thesis is much smaller, faster, and consumes much less power.
The implementation using Improved Parabolic Synthesis and Parabolic Synthe-
sis have an advantage of error behavior comparing to CORDIC implementation,
where the error of Improved Parabolic Synthesis can be characterized to be near
an normal distribution after the optimization. The Improved Parabolic Synthesis
approach is suitable for a high frequency low power solution.

46 Conclusion

8.2 Future Work

The three different approaches can be implemented and prototyped on an FPGA to
compare the resource utilization.
The design is possible to be implemented to be faster if it is pipelined for a smaller
critical path. Alternatively, increase the number of interval in the second subfunc-
tion, s2(x), will make design faster.
The tactic of optimizing the design to characterize the error behavior should be
studied and standardized.
The Improved Parabolic Synthesis can realizes other unary functions, e.g. trigono-
metric, exponential, square root functions, etc.

Bibliography

[1] J. N. Mitchell, “Computer multiplication and division using binary loga-
rithms,” IRE Transactions on Electronic Computers, vol. EC-11, no. 4, pp.
512–517, 1962.

[2] P. Tang, “Table-lookup algorithms for elementary functions and their error
analysis,” in 10th IEEE Symposium on Computer Arithmetic, 1991. Proceed-
ings, 1991, pp. 232–236.

[3] P.-T. P. Tang, “Table-driven implementation of the logarithm func-
tion in ieee floating-point arithmetic,” ACM Trans. Math. Softw.,
vol. 16, no. 4, pp. 378–400, Dec. 1990. [Online]. Available:
http://doi.acm.org/10.1145/98267.98294

[4] J. Hormigo, J. Villalba, and M. Schulte, “A hardware algorithm for variable-
precision logarithm,” in Application-Specific Systems, Architectures, and Pro-
cessors, 2000. Proceedings. IEEE International Conference on, 2000, pp.
215–224.

[5] J. E. Volder, “The cordic trigonometric computing technique,” Electronic
Computers, IRE Transactions on, vol. EC-8, no. 3, pp. 330–334, 1959.

[6] A. Boudabous, F. Ghozzi, M. Kharrat, and N. Masmoudi, “Implementation of
hyperbolic functions using cordic algorithm,” in The 16th International Con-
ference on Microelectronics, 2004. ICM 2004 Proceedings, 2004, pp. 738–
741.

48 BIBLIOGRAPHY

[7] R. Andraka, “A survey of cordic algorithms for fpga based computers,” in
Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field
programmable gate arrays. ACM, 1998, pp. 191–200.

[8] E. Hertz and P. Nilsson, “A methodology for parabolic synthesis,” a book
chapter in vlsi, in-tech,” ISBN 978-3-902613-50-9, Tech. Rep.

[9] ——, “A methodology for parabolic synthesis of unary functions for hard-
ware implementation,” in 2nd International Conference on Signals, Circuits
and Systems, SCS 2008, 2008, pp. 1–6.

[10] ——, “Parabolic synthesis methodology implemented on the sine function,”
in IEEE International Symposium on Circuits and Systems. ISCAS 2009,
2009, pp. 253–256.

[11] P. Pouyan, E. Hertz, and P. Nilsson, “A vlsi implementation of logarithmic
and exponential functions using a novel parabolic synthesis methodology
compared to the cordic algorithm,” in Circuit Theory and Design (ECCTD),
2011 20th European Conference on, 2011, pp. 709–712.

[12] Y. Voronenko and M. P. Üschel, “Multiplierless multiple constant multiplica-
tion,” ACM Transactions on Algorithms.

[13] P. Meher, J. Valls, T.-B. Juang, K. Sridharan, and K. Maharatna, “50 years of
cordic: Algorithms, architectures, and applications,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 56, no. 9, pp. 1893–1907, 2009.

Appendix A
Logarithm Impementation Results

A.1 Area

Table A.1: ASIC synthesis area results using LPLVT

Desgin Area(µm2)
CORDIC 12991

Parabolic Synthesis 16368
Improved Parabolic Synthesis 4855

Table A.2: ASIC synthesis area results using LPHVT

Desgin Area(µm2)
CORDIC 12893

Parabolic Synthesis 16258
Improved Parabolic Synthesis 4865

Table A.3: ASIC synthesis area results using GPSVT

Desgin Area(µm2)
CORDIC 13061

Parabolic Synthesis 16378
Improved Parabolic Synthesis 4853

50 Logarithm Impementation Results

A.2 Timing

Table A.4: ASIC synthesis timing results in LPLVT

Desgin timing path(ns)
CORDIC 86.96

Parabolic Synthesis 21.03
Improved Parabolic Synthesis 6.96

Table A.5: ASIC synthesis timing results in LPHVT

Desgin timing path(ns)
CORDIC not simulated

Parabolic Synthesis 38.93
Improved Parabolic Synthesis 11.90

Table A.6: ASIC synthesis timing results in GPSVT

Desgin timing path(ns)
CORDIC not simulated

Parabolic Synthesis 8.09
Improved Parabolic Synthesis 4.89

A.3 Power Estimation for LPHVT

A.3 Power Estimation for LPHVT 51

Table A.7: Primetime Power Estimation for CORDIC method using LPHVT li-
brary

frequency(Hz) Dynamic Power(nW) Static Power(nW) Total Power(nW)
0.001 0.0001585 43.8 44

1 0.1585 43.8 44
1.77827941004 0.281857286 43.8 44
3.16227766017 0.501221009 43.8 44
5.6234132519 0.891311 43.8 45

10 1.585 43.8 45
17.7827941004 2.818572865 43.8 47
31.6227766017 5.012210091 43.8 49
56.234132519 8.913110004 43.8 53

100 15.85 43.8 60
177.827941004 28.185728649 43.8 72
316.227766017 50.122100914 43.8 94
562.34132519 89.131100043 43.8 133

1000 158.5 43.8 202
1778.27941004 281.857286491 43.8 326
3162.27766017 501.221009137 43.8 545
5623.4132519 891.311000427 43.8 935

10000 1585 43.8 1629
17782.7941004 2818.57286491 43.8 2862
31622.7766017 5012.21009137 43.8 5056
56234.132519 8913.11000427 43.8 8957

100000 15850 43.8 15894
177827.941004 28185.7286491 43.8 28230
316227.766017 50122.1009137 43.8 50166
562341.32519 89131.1000427 43.8 89175

1000000 158500 43.8 158544
1778279.41004 281857.286491 43.8 281901
3162277.66017 501221.009137 43.8 501265
5623413.2519 891311.000427 43.8 891355

10000000 1585000 43.8 1585044
17782794.1004 2818572.86491 43.8 2818617
31622776.6017 5012210.09137 43.8 5012254

52 Logarithm Impementation Results

Table A.8: Primetime Power Estimation for Parabolic Synthesis method using
LPHVT library

frequency(Hz) Dynamic Power(nW) Static Power(nW) Total Power(nW)
0.001 6.54e-05 56.5 57

1 0.0654 56.5 57
1.77827941004 0.116299473 56.5 57
3.16227766017 0.206812959 56.5 57
5.6234132519 0.367771227 56.5 57

10 0.654 56.5 57
17.7827941004 1.162994734 56.5 58
31.6227766017 2.06812959 56.5 59
56.234132519 3.677712267 56.5 60

100 6.54 56.5 63
177.827941004 11.629947342 56.5 68
316.227766017 20.681295898 56.5 77
562.34132519 36.777122667 56.5 93

1000 65.4 56.5 122
1778.27941004 116.299473417 56.5 173
3162.27766017 206.812958975 56.5 263
5623.4132519 367.771226674 56.5 424

10000 654 56.5 711
17782.7941004 1162.99473416 56.5 1219
31622.7766017 2068.12958975 56.5 2125
56234.132519 3677.71226674 56.5 3734

100000 6540 56.5 6597
177827.941004 11629.9473417 56.5 11686
316227.766017 20681.2958975 56.5 20738
562341.32519 36777.1226674 56.5 36834

1000000 65400 56.5 65457
1778279.41004 116299.473417 56.5 116356
3162277.66017 206812.958975 56.5 206869
5623413.2519 367771.226674 56.5 367828

10000000 654000 56.5 654057
17782794.1004 1162994.73417 56.5 1163051
31622776.6017 2068129.58975 56.5 2068186

A.3 Power Estimation for LPHVT 53

Table A.9: Primetime Power Estimation for Improved Parabolic method using
LPHVT library

frequency(Hz) Dynamic Power(nW) Static Power(nW) Total Power(nW)
0.001 6.12e-06 16.7 17

1 0.00612 16.7 17
1.77827941004 0.01088307 16.7 17
3.16227766017 0.0193531393 16.7 17
5.6234132519 0.0344152891 16.7 17

10 0.0612 16.7 17
17.7827941004 0.1088306999 16.7 17
31.6227766017 0.1935313928 16.7 17
56.234132519 0.344152891 16.7 17

100 0.612 16.7 17
177.827941004 1.0883069989 16.7 18
316.227766017 1.935313928 16.7 19
562.34132519 3.4415289102 16.7 20

1000 6.12 16.7 23
1778.27941004 10.8830699894 16.7 28
3162.27766017 19.3531392802 16.7 36
5623.4132519 34.4152891016 16.7 51

10000 61.2 16.7 78
17782.7941004 108.830699894 16.7 126
31622.7766017 193.531392802 16.7 210
56234.132519 344.152891017 16.7 361

100000 612 16.7 629
177827.941004 1088.30699894 16.7 1105
316227.766017 1935.31392802 16.7 1952
562341.32519 3441.52891016 16.7 3458

1000000 6120 16.7 6137
1778279.41004 10883.0699894 16.7 10900
3162277.66017 19353.1392802 16.7 19370
5623413.2519 34415.2891016 16.7 34432

10000000 61200 16.7 61217
17782794.1004 108830.699894 16.7 108847
31622776.6017 193531.392802 16.7 193548

