LUND UNIVERSITY

DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY

MASTER OF SCIENCE THESIS

Wi-Fi Based Remote Control
of an Audio-Platform

A System Approach

Supervisor:
Author: André Spanberg
Anders Skoog Examiner:
Fredrik Stolt Joachim Rodrigues

Lund 2013

The Department of Electrical and Information Technology
Lund University

Box 118, S-221 00 LUND

SWEDEN

This thesis is set in Computer Modern 12pt,
with the IfTEX Documentation System

(©Anders Skoog & Fredrik Stolt 2013

Printed in E-huset Lund, Sweden.
june. 2013

Abstract

Wi-Fi connectivity is becoming present in more and more places and devices.
This opens up for new and innovative ways to use Wi-Fi technology compared
to the Personal Computer (PC) to PC network it was first intended for.

In this thesis a solution for a Wi-Fi extension module together with software
for using the extension module to remote control an audio platform developed
by Béhmer Audio has been researched and constructed. The Wi-Fi expansion
module solution was developed by researching what Wi-Fi chip solutions were
available on the market and then choosing one solution that is optimised for
low price, ease of use and bandwidth. A printed circuit board (PCB) for the
TiWi-SL WiFi chip that was chosen has been developed and constructed. The
software part of the thesis consist of low level serial peripheral interface (SPI)
drivers developed in C code for an AVR microcontroller used in the communi-
cation with the WiFi extension module. To remote control the Audio platform,
server and client software have also been implemented. The server side software
consists of a HyperText Transfer Protocol (HTTP) server programmed in C
code which lets the client access a web interface written in HyperText Markup
Language (HTML) and Javascript that controls the audio platform. The web
interface layout is automatically generated by a script written in Python that
parses an Extensible Markup Language (XML) file provided by Béhmer Audio.

Acknowledgement

We would like to thank our thesis supervisor, André Spanberg, for all the help
he has given during the thesis project and Bohmer Audio for letting us do the
thesis at their company. We would also like to thank everyone else working at
Bohmer Audio and Aditus Science for making us feel welcome and part of the
team.

We would like to thank Joachim Rodrigues for his help on how to write a good
report.

Finally, we want to especially thank our family and friends for supporting us
during the five years of education at Lunds Tekniska Hogskola.

Anders Skoog & Fredrik Stolt
Lund, May, 2013

Contents

[Abstract] ii
[Acknowledgements| iv
[List_of Tables viii
[List of Figures| ix
xi
1__Introduction| 1
[LI Thesis Outlinel 2
.2 Overviewl. e e 3
(1.3 Requirements| 5}
6
DI WIEEFT . . oo 6
2.2 Network Protocols 00 7
PR3 SPT. . . oo 8
2.4 Antenna Alternatives 11
2.5 Cross Platform Softwarel 12
[3 Hardware Components| 13

BT WAL CIID| - .« o oo oo e 13

CONTENTS vi
[3.1.1 Requirements|, 13

[3.1.2 Off the Shelt Wi-Fi Chip Alternatives/. 14

B.1.3 TiWi-SIL Wi-Fi-Modulel. 15

B2 Antennal 17
B3 Microcontrolledo 19
[4 PCB Designl| 20
M1 Schematid 22
[4.1.1 Level Shifting| 23

42 PCBLayout| 24
4.3 Assembling the PCB| 26
27
b1l SPIDriver00 29
H.1.1 PExtended SPII oo oo 29

[5.1.2 Implementing the Driver on the Microcontroller| 30

[.1.3 Driver Operationl 31

[H.2 Client Solution| 33
Hh.2.1 Web Interfacelo 35

H.2.2 XML to HIMIL Parserl 38

[5.2.3 Smartphone App Solution| 39

b.3 The Server|.o 40
H.3.1 Wik Module APII 40

[5.3.2 HTTP Server Functionality] 41

[>.3.3 HTTP Server Implementation| 42

[6 Conclusion and Ending Comments| 43
[6.1 Challenges| 43
6.1.1 SPI Slave Select Probleml. 43

[6.1.2 Web Intertace Touch Screen Event Triggeringl 44

[6.1.3 Web Interface Loading Speed Optimization/. 44

[6.1.4 Web Interface Screen Size Optimizationl. 44

[6.1.5 Patching|, 45

[6.1.6 Bugs on Module Side| 45

6.2 Conclusion|. 46

CONTENTS vil
51

[A_Cod€ 52
A1 SPI Driver Codel o o 52
A2 Server Codel 59
[A.3 _Web Interface Codel 67

List of Tables

[3.1 Wi-F1 chip solutions considered| 16
[3.2 Specifications tor TiWi-SL Wi-Fi module] 18
M1 Bill of materiald 23

List of Figures

(1.1 High level overview| 3
(1.2 Low level overviewl 4
[2.1 Data encapsulation when sending over network|. 7
2.2 SPlsignals| 9
[2.3 SPI timing with different settings| 10
[2.4 Different types of antennas| 10
[3.1 Block diagram of TiWi-SL| 17
[3.2 Sketches of the antenna and its SMA connector) 18
4.1 Schematic of the Wi-Fi extension modulel 21
4.2 PCB Wi-Fi extension module top side| 24
U3 PCB Wi-IFi extension module bottom sidel 24
6.1 Overview of the software structurel 28
5.2 SPT State machined 32
.3 Web interfacelo oo 36

List of Acronyms

AP

API

CAD
CSMA/CA
cs

CSS

CPU
DHCP
DMA
DOM
DSP
DSSS
EEPROM
FEM
GPIO
GPU
Hi-Fi

Access Point

Application Programming Interface

Computer Assisted Drawing

Carrier Sense Multiple Access/Collision Avoidance
Chip Select

Cascading Style Sheets

Central processing unit

Dynamic Host Configuration Protocol

Direct Memory Access

Document Object Model

Digital Signal Processing/Processor
Direct-Sequence Spread Spectrum

Electrically Erasable Programmable Read-Only Memory
Front End Module

General Purpose In Out

Graphic processing Unit

High Fidelity

LIST OF FIGURES xii

PCB
RAM
RF
RISC
SCLK

HyperText Markup Language

HyperText Transfer Protocol

[-squared-C Protocol

Institute of Electrical and Electronics Engineers
Internet Protocol

In Out

Interrupt Request

Light Emitting Diode

Macintosh

Master In Slave Out

Master Out Slave In

Near Field Communication

Original Equipment Manufacturer
Orthogonal frequency-division multiplexing
Operating System

Personal Computer

Printed Circuit Board

Random Access Memory

Radio Frequency

Reduced instruction set computing

Serial Clock

LIST OF FIGURES xiii

SMA SubMiniature version A

SMD Surface Mount Device

SPI Serial Peripheral Interface
SRAM Static random-access memory
SS Slave Select

SSID Service Set Identification

TCP Transmission Control Protocol
UART Universal Asynchronous Receiver/Transmitter
UbDP User Datagram Protocol
WEP Wired Equivalent Privacy
Wi-Fi see WLAN

WLAN Wireless Local Area Network
WPA Wi-Fi Protected Access
WPA2 Wi-Fi Protected Access 2

XML Extensible Markup Language

Chapter

Introduction

In todays world people expect to be able to do everything with their smart-
phone or tablet which is always within arm’s reach. Due to this it is a big
advantage for a product to have an easily accessible interface that works with
such devices. Smartphones and tablets have a number of different ways to com-
municate wirelessly with other devices, some of the most common technologies
are: Bluetooth, Near Field Communication (NFC), cell phone network and
Wi-Fi. Of these technologies, Wi-Fi is the one present in almost all tablet and
smartphones currently on the market(2013). Wi-Fi also makes it easy to com-
municate with desktop and laptop computers connected to the same network
as the Wi-Fi enabled product.

In a larger perspective more and more devices get the ability for network
connectivity which opens many new possibilities. There is a lot of talk about
the internet of things to describe this phenomena where people no longer have
only one special device for connectivity but have it conveniently built into most
of the devices around them instead. It is in this light Ericsson [1] have predicted
that by 2020 over 50 billion devices will be available online which can only be
achieved if people have more than one device.

This creates a demand for inexpensive and easy to use solutions for adding
wireless connectivity to products. Currently there is a high competition in
many consumer electronics with many products seen as commodities. This
leads to price sensitive customers so the solution has to be cheap and also
simple to keep the development cost low.

1.1 Thesis Outline 2

Finding such a solution is at the core of this project. The solution has to be
cheap and have a reasonable complexity. It should also be able to integrate with
most embedded applications meaning it cannot take up too many resources.
Although here we use it for remote control, the application could be anything
from a sensor sending statistics to a server as well as streaming audio. The
techniques used mostly stay the same, for example here we do not connect
to the internet but still uses the Transmission Control Protocol (TCP) and
Internet Protocol (IP).

The project have been done at the company Bohmer Audio that devel-
ops a digital platform for Hi-Fi audio applications that includes digital signal
processing (DSP). For a simpler way to change various settings of the audio
platform such as volume and input source they want to add the capability to
connect over Wi-Fi for remote control. We have made a prototype by choos-
ing one chip among many available on the market and developed the software
needed to get the remote control to work, the prototype has been verified and
works.

1.1 Thesis Outline

The remainder of this chapter gives an overview of the whole system to have
in mind when reading the rest of the report.

Chapter 2 presents relevant theory for the project, including theory about
different communications protocols but also about antennas and cross platform
development.

In chapter 3 the hardware components used are described.

Chapter 4 describes how the hardware is connected and how the PCB is
designed.

Chapter 5 describes the software, both the low level part handling commu-
nication with the hardware and the higher level handling the web server.

Finally, chapter 6 starts by listing some specific problems and challenges
during the project and after that the ending comments and conclusion is pre-
sented.

1.2 Overview 3

1.2 Overview

g

T

e o Wi-Fi Router

66600608

Figure 1.1: High level overview of the Wi-Fi remote control system that has
been developed in this project and how it is used in the end product.

Figure [I.T] shows a high level overview of the Wi-Fi remote control system
developed in this project. The figure illustrates how the communication goes
from the device, i.e. a smartphone, via the Wi-Fi router and finally to the audio
platform connected to the speakers. Both the device and the audio platform
thus have to be connected to the same network provided by the Wi-Fi router
to send messages between them and enable the remote control features. In this
report the audio platform will be referred to as the server and the device as
the client.

In Figure the device and the router are already existing hardware, so is
the Hi-Fi system except the part of it that handles the network communication.
Figure [1.2| shows the inside of the Hi-Fi system with the part added in this
project labeled as implemented hardware. For the Wi-Fi extension module

1.2 Overview 4

Audio Platform (Existing Hardware) : Wi-Fi extension module
X : (Implemented Hardware) :
: Antenna

N 20-pin connector

| IS
=== Module

UART debug

Micro-
controller

Figure 1.2: Low level overview showing how the implemented hardware fits in
the system.

1.3 Requirements 5

there is the constraint of needing to use the existing 20-pin connector and
the selection of communication protocols that are available on the pins. The
final design consists of a Wi-Fi module from LS Research which communicates
through a modified version of SPI with the microcontroller on the main board.

The module handles receiving and transmitting of the wireless data as well
as the network stack. It also handles connecting to the network, connection
information is saved in the internal non volatile memory. The microcontroller
handles the communication with the module and runs a server that clients can
connect to and remote control through. The microcontroller also handles the
rest of the audio system including coding and decoding audio data, handling
USB and controlling the DSP. In order to handle all the tasks efficiently the
microcontroller runs a real time operating system. Compared to the other
tasks running the Wi-Fi solution have a low priority which means it can not
use to much resources on the microcontroller.

1.3 Requirements

The overall requirement of the project is to provide a complete solution for wire-
less communication. That includes choosing a suitable chip, doing a PCB lay-
out and finding a solution for sending control commands to the audio-platform
that works on all common platforms such as smart phones, tablets and PCs.
More detailed requirements are listed below.

e Find an off the shelf Wi-Fi-chip solution
e Design and manufacture a PCB for the Wi-Fi chip
e Create a cross platform remote control interface solution

e Implement drivers and control software for the Wi-Fi solution on the
main microcontroller

e Implement a server solution for the remote control interface
e Make a remote control interface that is configurable via XML files

e Integrate software into the existing Bohmer Audio HiFi platform

Chapter

Theory

In this chapter the background theory needed for the rest of the report is
presented.

2.1 Wi-Fi

Wi-Fi is a technology for wireless networks. Wi-Fi uses the different IEEE 802.11
standards and although these two are often used interchangeably Wi-Fi is a
certification given by the Wi-Fi alliance organization after testing that the de-
vice is compatible with the standard. The standard uses Carrier Sense Multiple
Access/Collision Avoidance (CSMA/CA) to allow multiple access by different
clients. To avoid collisions the sender sends a Request To Send frame and re-
ceives a Clear To Send frame in a handshake operation. The wireless network
can either use an Access Point or work in Ad-Hoc mode. An access point, often
a wireless router, is a central node controlling the traffic while Ad-Hoc is a di-
rect connection between two devices. Every network have an SSID standing for
Service Set IDentifier for identification. In the standard are also different en-
cryptions, first there was Wired Equivalent Privacy (WEP) followed by Wi-Fi
Protected Access (WPA) and later WPA2. WEP and WPA is not considered
safe so all new devices come with support for WPA2.

The frequency bands used are around 2.4 GHz or 5 GHz. These frequencies
can be used freely without any license as long as the emission power is not too

2.2 Network Protocols 7

high. The first version of the standard were limited to data rates of 1-2 Mbps
and is not used anymore because several new standards have made it obsolete.
802.11b uses the 2.4 GHz band and supports up to 11 Mbps. 802.11g uses
the same frequency but supports speeds up to 54 Mbps. The difference being
that 802.11g uses the more complicated Orthogonal Frequency-Division Mul-
tiplexing (OFDM) as modulation instead of Direct-Sequence Spread Spectrum
(DSSS) used in 802.11b but they are backward compatible. 802.11a came at
the same time as 802.11b using the 5 GHz band and supporting up to 54 Mbps
but was not as widely accepted as the b/g standards. The most recent standard
on the market is 802.11n that can use both 2.4 GHz and 5 GHz and multiple
antennas and streams to achieve 600 Mbps. 802.11n is backwards compatible
with 802.11b/g and also have almost twice the reach compared to the older
standards. Note that all speeds here are theoretical and only obtained in best
case scenarios. [2]

2.2 Network Protocols

802.11 | IP TCP HTTP Data
Header | Header| Header | Header

Figure 2.1: Data encapsulation when sending over network

Apart from the IEEE 802.11 standard some higher level network protocols
are needed for real world applications. Each protocol add its own headers to
the message resulting in some overhead over the useful data. This is called
encapsulation and an example when sending data over a wireless network is
shown in Figure [2.1 The figure shows how headers are added in turn to the
data, starting with the HT'TP header and ending with the IEEE 802.11 header,
with the header from the higher level protocol being encapsulated as data for
the lower level protocol. The protocols are briefly described in this section.

The Internet Protocol (IP) transmits blocks of data called datagrams in
this case over the wireless connection but over wired connections as well such

2.3 SPI 8

as ethernet. It uses [P-addresses to move the data packages over networks to
their destination. The protocol have the ability to fragment a datagram into
smaller packets so it can be transported through all networks. IP is not a
reliable protocol meaning that packets can be lost but it includes a checksum
to detect errors in the transmission. [3]

Another layer is the the Transmission Control Protocol (TCP) which is a
connection oriented protocol meaning it has some status information including
how much has been sent etc. As well as it uses an IP-address it also uses a port
number to address the receiver, these two combined is called a socket address
and the connection is called a socket. TCP is a reliable protocol and ensures
that everything is sent correctly. To achieve this it uses acknowledgements
and trigger retransmissions if they are not received or the package is damaged.
Another simpler protocol is the User Datagram Protocol (UDP) that uses a
socket address and just sends messages over IP without any control mechanisms
meaning it is as unreliable as the IP protocol is. On the upside it is has higher
throughput.[4] [5]

HyperText Transfer Protocol (HTTP) is the protocol that is mainly used
for internet web pages. It is a request/response protocol with messages sent
as text. The request contains among other things protocol version, request
modifiers as well as the data. The response is similar but adds a server status
line in the beginning of the message. HTTP is sent over TCP/IP using port
number 80.[6]

Dynamic Host Configuration Protocol (DHCP) is a protocol used for de-
livering configuration parameters. It is a client-server protocol and uses UDP
to deliver messages. DHCP is useful for allocating an IP address to the client,
either the client requests dynamic allocation and gets an available IP-address
or it can also try to request a specific static IP address. With dynamic alloca-
tion the IP address is only valid for a certain amount of time but the DHCP
server will as far as possible allocate the same address as before. [7]

2.3 SPI

Serial Peripheral Interface Bus more commonly know as SPI is a master slave
protocol. As the name implies it is a serial interface and it has its own clock
line, driven by the master, making it easy to synchronize between slave and

2.4 Antenna Alternatives 9

SCLK
MOSI
MISO

Yy Vv

A

SPI| Master SPI Slave

SS

Figure 2.2: SPI signals

master. It is also full duplex and relatively simple to implement with high
throughput. SPI is an industry standard way for serial communication but it
is not a formal standard so there exists different flavors of SPI.

SPI consists of four signals seen in Figure needed for communication
to one slave. SCLK, Serial Clock, is a clock signal for synchronization. MOSI
and MISO standing for Master Output Slave Input and Master Input Slave
Output are for the data and SS, Slave Select to select the chip/slave. Another
name for SS is CS standing for Chip Select. SPI also has the ability to share
one bus with multiple slaves, this is done by a separate SS line for each slave
unit. By asserting the slave select line of the unit that the master wants to
talk to it can share the same MOSI, MISO, SCLK between all the slaves.

Since SPI is not a formal standard it can be configured in different ways
in respect to how the clock signal is related to the data signals. To configure
this two variables called CPOL and CPHA are commonly used. CPOL is the
polarity of the clock and controls the base value of the clock to 0 or 1. CPHA
is the phase and controls if the data is sampled on the first or second clock edge
also specified by values 0 or 1. Combined there are four modes which can be
seen in Figure that shows the transmission of one byte. For example with
CPOL=0 and CPHA=0 the clock would be 0 when not transmitting and the
data would be sampled on the rising edge of the clock, changing to CPHA=1
would mean the data would be sampled on the falling edge instead.[§]

2.4 Antenna Alternatives 10

SS B I~
Cycle # I L1213
CPHA=0 MISO =X i -
MOSI zZX 11 =z13
Cycle # 2 (3 (<
CPHA=1 MISO smCiCHCRCar GO G
MQOSI z 1T 2 3 X4 (5 X6 N7 X8z

Figure 2.3: SPI timing with different settings for CPOL and CPHA for trans-
mission of 8 bits. The vertical lines shows when the data lines are sampled in
relation to the clock.[9]

Figure 2.4: Different types of antennas: to the left is a PCB antenna, in the
middle a chip antenna and to the right a half wave length antenna

2.4 Antenna Alternatives 11

2.4 Antenna Alternatives

For a wireless solution to work it will need an antenna to transmit and receive.
Special care has to be taken when designing the antenna because it is critical
for the wireless performance and because of the high frequencies involved. Here
three possible approaches on how to design the antenna are described with their
respective advantages and disadvantages.

The first possible solution is to add a trace in the PCB layout and adjust
it to the frequency of the signal, in this case 2.4 GHz. An example how it
can look is in Figure to the left. Obviously this is a cheap solution since
it only needs some extra PCB area. However it is also very sensitive to its
surroundings. It has to be placed where there is no copper pour i.e. there
can be no ground or power plane under it and it is sensitive to metal in its
surroundings. Also small variations in the PCB manufacturing can detune it.
To make the PCB antenna work it requires many iterations of the design and
every time the PCB layout is changed the antenna may need to be tweaked,
leading to increased development cost and time to market. [10]

Another solution is to use a ceramic chip antenna. Ceramic chip antennas
are much smaller than trace antennas, they are just a few mm in each dimension
compared to a trace antenna where a quarter wave length for 2.4 GHz is about
31 mm. It looks like a generic component as seen in the Figure in the
middle. Due to it being ceramic it is also less sensitive to nearby components
and metal making it more forgiving to changes in the design. There is the need
to add some extra components(inductors, capacitors) to match the impedance
to the antenna but it still is an easier design than the antenna trace.[10]

The third solution is an external half wave length antenna as shown to the
right in Figure . It connects to the board via a standard SMA (SubMiniature
version A) connector. The design for this is the easiest, the only thing to think
about is to keep the distance from the connector and the antenna output of the
chip as short as possible[I1]. Tt is also the most costly and bulky alternative
but on the flip side it has the best performance.

2.5 Cross Platform Software 12

2.5 Cross Platform Software

In this thesis cross platform software is defined as software that can be written
once in one programming language and then be run on multiple operating
systems, for example: Windows, Android, iOS and Linux. The cross platform
solutions research in this thesis can be summarized in three different alternative
approaches presented here.

The first solution is to write the software in one programming language
and then use a compiler that has the ability to compile native code for each
platform. Since the code is compiled into native code it has a speed advantage
over other solutions, the disadvantage is that there has to be a compiler for
each platform.

The next solution is to a use a scripting language and have interpreter
software that is written for the different hardware platforms which runs the
script code. This approach has the advantage of being able to have access
to the native hardware functions such as the accelerometer and local memory
depending on the interpreter software. The disadvantage is that it is slower
and uses more resources than running native code.

The final solution is to not write an app but use HI'ML code together with
javascript code as a normal website. The interface can then be loaded in the
device web browser from a server. In a way it is similar to the previous solution
only that the interpreter software is the web browser that is already included
in the device. This has the advantage that it can run on any platform that has
a web browser giving it a big advantage in the number of platforms supported.
The disadvantages are that it is slower than the other solutions and that it can
be hard to get access to native hardware functions.

Chapter

Hardware Components

This chapter introduces the main hardware components used in this project
consisting of a Wi-Fi module, an antenna and a host microcontroller. The
microcontroller is a part of the existing audio platform and thus not inter-
changeable while the Wi-Fi module and antenna had to be chosen and the
criterias used for the choice are specified.

3.1 Wi-Fi Chip

The Wi-Fi chip is an off the shelf chip that handles the wireless communica-
tion. Since it will work with other devices it is important that it supports the
standard described in section First the requirements for the Wi-Fi chip is
specified before the different alternatives are presented and then comes relevant
information about the chosen chip.

3.1.1 Requirements

The requirements for the off the shelf Wi-Fi chip in this project are as follows:

e The chip should be an off the shelf Wi-Fi chip that is available at major
electronic distributors.

3.1 Wi-Fi Chip 14

The chip has to have a minimum bandwidth of 1.4Mbit/s. The minimum
bandwidth limitation comes from the fact that the Wi-Fi chip is planned
to be used for audio streaming in the future, which according to equation
(3.1) gives the minimum bandwidth of 1.4Mbit/s.

The price should be as low as possible. The price of the Wi-Fi chip is
important since it is going to be used in a consumer product. A fact that
needs to be considered is that the end consumer might have to pay 5 to
10 times more for the component than the original purchase price due to
development and manufacturing costs[12].

The Wi-Fi chip uses one of the following communication standards: SPI,
[2C (Inter-Integrated Circuit), or UART (Universal Asynchronous Re-
ceiver/Transmitter).

The chip should have support for the different encryption schemes used
by the standard. This can not be done on the microcontroller without
using too much resources.

16bit - 2channels - 44100samples/s = 1.AMbit/s (3.1)

Some features were not considered as requirements but seen as beneficial:

An integrated TCP/IP stack, would be useful since it frees up resources
from the hosting microcontroller.

Support for the newer IEEE 802.11n standard was considered benefi-
cial not primarily because of the bandwidth increase but for the better
range that the newer standard provides compared to the older 802.11b/g
standards, see section [2.1]

Example code and APIs, which speed up the development process.

3.1.2 Off the Shelf Wi-Fi Chip Alternatives

From the requirements, stated above in section [3.1.1, 13 off the shelf Wi-Fi
chips were chosen and can be seen in Table (3.1} The table contains in addition
to the name of the manufacturer and Wi-Fi chip four columns that contain the

3.1 Wi-Fi Chip 15

price, data rate, interface and comments about the Wi-Fi chips. The data rate
column states the data rate for the Wi-Fi part of the communication while the
data rates stated in the interface column are the speed of the communication
protocol between the Wi-Fi chip and the microcontroller. The data rate stated
in the interface column gives a more realistic view of the throughput of the
Wi-Fi chip but could not be used to compare the different chips since only a
handful of the chips stated the interface data rate in their data sheets.

From the Wi-Fi chips in the Table the one called TiWi-SL was chosen
for the project. Other than meeting the requirements for performance the
TiWi-SL was chosen because of its extensive documentation and API. Another
strong point of the TiWi-SL is that it is based on the same network controller
as the Texas Instruments CC3000MOD so it could be replaced in the future.
The reason the TiWi-SL was chosen over the the CC3000MOD, was the lack
of availability at the suppliers when the thesis project began (February 2013).

3.1.3 TiWi-SL Wi-Fi-Module

The TiWi-SL is a Wi-Fi-module developed by LS Research. The module is
based on Texas Instruments CC3000 SimpleLink™ technology which means
that all of the APIs (Application Programing Interface) that are provided by
Texas Instrument for the CC3000 also work together with the TiWi-SL. A
block diagram of the module can be seen in figure [3.1] and specifications are
available in table 3.2l

The block named WLAN in Figure [3.1]is the part of the Wi-Fi module that
uses the Texas Instrument CC3000 network controller. The CC3000 network
controller has a CPU that runs the necessary operations to enable wireless
access. It also has hardware for encryption and decryption of the different
standards with support to handle WEP, WPA and WPA2. It handles all the
network communication, such as the TCP/IP stack, radio baseband and SPI
communication with the host microcontroller. Also included is a non volatile
32 KB EEPROM (Electrically Erasable Programmable Read-Only Memory)
that stores information such as connection profiles, radio parameters and about
5 KB of the 32 KB is available for the user. A large part of the EEPROM is
reserved for patching the internal software of the processor. The user has no
access to the internal software but relies on the API that is supplied.

3.1 Wi-Fi Chip 16
Table 3.1: Wi-Fi chip solutions considered
Name Manufacture| Price | Data Interface Comment
Rate
TiWi-SL [13] LS Research | 25§ | b/g, SPI (16MHz) | detailed docu-
54Mbps mentation
CC3000MOD [14] Texas instru- | 12.5 | b/g, SPI(16MHz) | detailed docu-
ments $ 54Mbps mentation, not
available yet
WYSBCVGXA [15] | Taiyo Yuden |[20$ | b/g/n, SDIO Bad documen-
150Mbps tation and
support, no
TCP/IP
RN171 [16] roving net- | 23$ | b/g, SPI (2Mbps) | Easy to use
works 54Mbps
WF121-A [17] Bluegiga 32% | b/g/n, 12C, SPI, | No datasheet
Technologies 72.2Mbps | UART available
(20Mbps)
RS9110-N-11-24 [18] | Redpine 36 % | b/g/n, SPI/SDIO Good documen-
65Mbps tation
GS1011MEE-SMP [19] | GAINSPAN | 43§ | b, 11 | SPI (3 | Easy to use
Mbps Mbps)/
UART/ 12C
HDG104 [20] H&D Wire- | 47$ | b/g, SPI Recommended
less 54Mbps by atmel, no
TCP/IP
HDG204 [21] H&D Wire- | 548 | b/g, SPI Not available
less 54Mbps at suppliers, no
TCP/IP
ARA100P [22] Qualcomm 603% | b/g/n SPI Expensive
Atheros
SPB4100 [23] H&D Wire- | 79 % | b/g/n, SPI Expensive
less 72Mbps
AX22001 [24] asix a/b/g, SPI, 12C, | Not available at
54Mbps UART suppliers, com-
plete SoC
Ec3285xx [25] econais b/g/n, SPI Not available at
54Mbps (18Mbps), suppliers

12C

3.2 Antenna 17

TiWi-SL
VCC
— > \ /
32 kHz | FEM
P 5 - WLAN
- SPI(Wi-Fi) MAG/BB/RF
2.4 GHz
26MHz TCXO BPF
B PWR_EN 0

Figure 3.1: Block diagram of TiWi-SL [13]

Communication with the microcontroller is done via a modified version of
the SPI protocol. The modification to the SPI protocol consist of an extra
line called IRQ in addition to the normal signals, MISO, MOSI, SCLK, SS,
for more information on SPI see section 2.3 and B.1.1l On the Wi-Fi module
there is an 12C interface for writing directly to the modules EEPROM but it
is preferably done through commands over the SPI. For debug purposes of the
internal software there is a 1.8 V UART port available to extract logs.

The FEM in Figure block is the RF(Radio Frequency) Front End Mod-
ule that takes care of the digital data coming from the baseband and converts it
to an analog radio signal. After that the radio signal passes through a 2.4 GHz
band pass filter indicated by the 2.4 GHz BPF block and finally the signal
is transmitted through the antenna. In the block diagram there are also two
crystal oscillators, one 26 MHz oscillator used by the WLAN block as its main
clock source and a 32.768KHz used for the realtime clock on the chip.

3.2 Antenna

The antenna chosen is an external antenna that is sensitive to 2.4GHz. It
is an omni-directional half wave-length antenna with 50 €2 impedance. It is

3.2 Antenna

18

Table 3.2: Specifications for TiWi-SL Wi-Fi module

Standards Supported

IEEE 802.11 b/g

Host Interface SPI

Vee Min 2.9 Volts
Vee Max 3.6 Volts
Temp Range -40 to +85 C

Transmit Power

20.0 dBm, 11 Mbps, CCK (b), 16.9 dBm, 54 Mbps, OFDM (g)

Rx Sensitivity

-89 dBm, 8% PER, 11 Mbps, -76 dBm, 10% PER, 54 Mbps

Transmit Current

269 mA, CCK (b), 187 mA, OFDM (g)

Receive Current

92 mA, b/g

Power Down Current

<1 uA

Figure 3.2: Sketches of the antenna and its SMA connector.

3.3 Microcontroller 19

connected with a standard SMA connector. The used connector is fitted to the
side of the board and soldered on both the top and the bottom of the PCB.
Both connector and antenna can be seen in figure [3.2]

Different alternative of antennas are discussed in section [2.4] For this ap-
plication there is the constraint that antenna will be located inside a metal
casing meaning that the whole chip would be shielded hindering the wireless
signal to reach it. That rules out the antenna trace and the chip antenna and
leaves the external antenna as the only viable option.

3.3 Microcontroller

The microcontroller on the Bohmer audio control board is an AVR AT32UC3C0512C
made by Atmel. It is a 32-bit RISC(Reduced Instruction Set Computing) ar-
chitecture running at a clock speed of 60 MHz. For memory it has 64 kB of
SRAM available with single-cycle access as well as 512 kB of flash RAM. It

has a low latency interrupt controller with 4 different priority levels. There

are support for a lot of interfaces including two modules for SPI which can
handle 4 different slaves each. Also there is built in support for Direct Memory
Access(DMA) operation. The peripheral DMA controller supports 16 channels

and is compatible with the SPT modules.[20]

Chapter

PCB Design

A Printed Circuit Board (PCB) was designed to hold the Wi-Fi chip, antenna
and some supporting components. Connection to the host microcontroller
which is already located on the main control board of the audio platform is
done through a 20-pin connector. How everything is connected was specified
in a schematic. With help of the schematic a PCB layout was designed and
later assembled. This chapter follows the same structure as described above.

21

OINPOW UOISUIXD T{-TA\ 9} JO DI}RWOYDS

1§ oInSryg

_WNa
ASN ZETSY-9XTW-NOD

0 S1y
NI axy
LNO~axL
NE€+
NI“S1D
ano

otc

Hout
201
5080-QNI v o
n EAE+
{1
]
D NI 8T 521 33
(-
U NI DI 52T 3 I 9
(- 9 % T 3 5
D 1IN0 SoYT SaT a3 , 1a
D FINAOW I1S-IMLL 15 €
|- TG WL S2r X3 W 2 ¥ <
g Hegess ;
— NI VIVd 5eT 13 23] ‘m .
2
= 3 ”
[oo T _
= — 1 il 1ds .
|- 23 0 €A+
0= . : e Xl o rvsrrom— ™ : eSSy
I v L ano 1300 H_|_
} _! vas N—
4U00T UU\\(nm ON p— P Dm
HouT e uuuwww o |
€1c
AAS
0
S080-GNI vV = z
3
a e+

10309UU0D Ul

VWS-NOD

4.1 Schematic 22

4.1

Schematic

A complete schematic of the hardware can be seen in Figure[4.1} For component
values and further details refer to table 1.1 The 20-pin connector is found
to the right in the schematic and goes to the main control board and the
microcontroller. It has all communications as well as power supply at 3.3 V.
There is also a six pin connector used for debugging. Other than the main
module there are some supporting components surrounding it described briefly
here, all the names of the components refer to the schematic.

Capacitors C1, C2 and C3, are used for decoupling of the power lines.
C1, C2 are specifically for the Wi-Fi module and of different values to be
effective at different frequency ranges.

L1, L2 and L3, are ferrite beads also used at the power lines for filtering
out high frequency noise.

R1 and R2, are two jumpers that depending on which one is populated
decides if the Wi-Fi module is in debug mode or normal mode.

R3 and R4, are two jumpers used to short the I12C interface that is used
for writing to the EEPROM. The 12C can be used to recover the module
if it is bricked during a firmware update.

R5 and R6, are two resistors in a voltage divider level shifting the debug
signals.

R7, a 510 Ohm pull up resistor used in the level shifting circuit.
D1, a protection diode use in the level shifting circuit.

D2, a red LED with a threshold voltage of 1.8V that is used to clamp
the voltage in the level shifting circuit

4.1 Schematic 23

Table 4.1: Bill of material

102]

Components Info Package Art. num farnell
TiWI-SL Custom 741-450-0067 (Mouser.com)
Antenna 2,4GHz SMA 2143321

C1 1uF 1206 9227873
L1,L.2,L3 0.2 Ohm 0805 1635706
C2,C3 100nF 0603 431989
R5,R6 10kOhm 0603 1653253
Antenna connector SMA SMA 1909295
LED Red 0603 2112124
R1,R2,R3,R4 0 Ohm 0603 2131805
R7 510 Ohm 0603 1627741

Diode Signal diode 0805 8150206
Main connector SMD 20 Pin connector 1641873
Debug connector Pin header | 6 Pin connector 1654535

4.1.1 Level Shifting

In the schematic in Figure the connector called J10 is used for debug
communications. The debug cable available usees 3.3 V signals and the Wi-Fi
module uses 1.8 V signals, this meant that some components were needed for
shifting the levels of the signals. For this purpose two different circuits for
doing the shifting in each direction were added [27].

On the the line going from 3.3 V output to 1.8 V input a voltage divider
was used to reduce the 3.3 V to 1.7 V. The 1.8 V output to 3.3 V input side
uses slightly more advanced circuitry and here the fact that a logic low does
not have to be exactly zero to be interpreted as low is used. The circuit has
three components, a pull up resistor connected to 3.3 V and a diode in series.
The last component is a red LED to protect the input of the Wi-Fi module
which has a threshold of 1.8 V which means that if the voltage is over 1.8 V
the LED will light up and clamp the voltage. During high voltage there will
be no current through the series diode and thus the pull up will give 3.3 V
and during low voltage the diode will be fully open and give a diode threshold
voltage as output.

4.2 PCB Layout

4.2 PCB Layout

- I_EIEE-F::A:/:::

)

i

- oy

N

/1

oAt

t
-rl.ll TR

Figure 4.2: PCB Wi-Fi extension module top side

Figure 4.3: PCB Wi-Fi extension module bottom side

4.2 PCB Layout 25

For the PCB layout a footprint of each component in the schematic was used.
The footprint specifies how the pads of the components is to be drawn onto
the PCB. Two terminal components like capacitors and resistors have standard
footprints that are available in the library of the PCB Computer Assisted
Drawing (CAD) software. For the the non-standard packages used by the Wi-
Fi module and SMA connector, custom footprints had to be drawn in the CAD
software. How the footprints needed to be drawn was found in the respective
data sheet. PCB manufacturing have limited accuracy so to make sure that
traces were not placed too close to each other suitable design rules were set to
the CAD program.

The routing of the PCB was done manually. The antenna connector is
placed at an edge of the board because of the mounting of the connector, see
section 3.2 The module was placed close to the antenna connector to make the
trace to the antenna short. A shorter trace between the antenna and module
result in less parasitic inductance which is important because of the high RF-
frequencies in the antenna signal. The components for the filtering of the power
to the module are also put as close as possible to the Wi-Fi modules power
pad to minimize parasitics. The rest of the components are placed close to
the pads they would be connected to and in a way so as to make the routing
simple. It was not possible to have the routing in only one layer so two were
used, changing layers was done with vias. To avoid reflections of signals in the
traces on the PCB, 90 degree angles were avoided in all traces when routing.

The PCB is designed as a two layer PCB although the manufacturer rec-
ommends a four layer PCB in the TIWI-SL Antenna Design Guide[I1]. The
choice to use two layers is based on the price and the ease of manufacturing
of the PCB and due to the fact that only a few traces need to use the second
layer. As much of the routing as possible is done on the top layer, shown in
Figure [4.2 The unused area on the bottom layer is flooded with copper cre-
ating a partial ground plane. The traces on the bottom plane are drawn so
that the partial ground plane is not divided in any significant way. No traces
are drawn under the module itself as specified in the TIWI-SL Antenna Design
Guide. The bottom layer is shown in Figure [4.3l To compensate for the loss
of the power plane present in a four layer design the width of the power lines
and power vias are increased.

Not only electrical considerations were made with the layout but also the

4.3 Assembling the PCB 26

heat dissipation was taken into account. Although the module is quite low
power it produces some heat. The four pads connected to ground in the middle
of the module as seen in the top layer are for thermal dissipation. As the ground
plane is big it can handle the heat better which is one of the reason no traces
were drawn under the module. The antenna connector pads on the bottom
layer only have small connections in the corner to the ground plane. That is
so that they can be soldered on, if the connection were larger the heat needed
for melting the solder would dissipate in the ground plane.

On the top of the PCB there is a picture of a piece of cake, this was added
to improve the aesthetic of the PCB.

4.3 Assembling the PCB

All the components used for the PCB are SMD (Surface-Mount Device) com-
ponents. The choice of using SMD components is in part that they can be
made much smaller than through hole components and the fact that the pro-
cess of populating the PCB can be automated with the help of a so called
pick-and-place machine. A pick-and-place machine is just as the name sug-
gests a machine that after having been configured picks up a component and
places it on the correct pads on the PCB. When the components have been
placed the components need to be soldered, this is usually done either by wave
soldering where the PCB is passed under a wave of molten solder or with reflow
soldering where the PCB with its components are baked in a oven to let the
solder paste on the pads reflow.

In this project only two prototype PCB were assembled, this means that it
is not time or cost effective to use the manufacturing process described above,
instead the PCB was assembled by hand.

Chapter

Software

Figure [5.1] shows an overview of the different software blocks that have been
developed in this project. The dark gray blocks are APIs provided by Texas
Instruments that handle the Wi-Fi connection configuration and socket net-
working, described in section [5.3.1} In these block only minor changes had to
be made in order to get the APIs to compile with the GCC compiler used. The
code developed can be found in the appendix [A]

The SPI driver is the part of the software that control the lowest level
functions of the communication between the microcontroller and the Wi-Fi
module. The SPI driver also control the power enable signal of the Wi-Fi
module. The SPI driver is described in section 5.1l

The block called HTTP Server and Wi-Fi Control interface contains the
software for the HT'TP server that is used to get access to the remote control
functions from an external device. The HTTP server is described in section
(.32l The block also contains the commands that are used to control how
the Wi-Fi module connects to the network and which network it chooses. The
lower box called the Wi-Fi thread is the part that is run on the microcontroller
connected to the Wi-Fi module. As the name implies it runs as a thread on
the real time OS of the microcontroller with a low priority.

The interface builder generates the web page used by the HTTP server and
only has to be executed once. It runs on a PC and takes the design files and
and combines them with the help of a Python script, described in section [5.2.2]

28

Interface Builder * High Level
Javascript

XML File A

Web
Interface File

XML2HTML

Image
logo /

File

WiFi Thread

HTTP Server and
WiFi Control interface

SPI Driver

v Low Level

Figure 5.1: Overview of the software structure. White blocks have been imple-
mented in the project, dark gray blocks are APIs from Texas Instruments and
light gray pages are in- and output files used by the different software blocks

5.1 SPI Driver 29

5.1 SPI Driver

In order to enable communication between the Wi-Fi module and the AVR
microcontroller drivers for the SPI communication were implemented. The
following subsections describe the extended SPI protocol used and how it was
implemented on the microcontroller.

5.1.1 Extended SPI

The module communicates over SPI but with some modifications as mentioned
earlier in section [3.1.3] The module operates in slave mode and the microcon-
troller in master mode but the module also needs to initiate communication
with the microcontroller. The solution is an extra signal named TRQ that is
an interrupt line that is pulled low by the module when it is ready or has
something of interest to send to the microcontroller. How the IR(Q) works is
described here:

e Startup: At startup the Wi-Fi module signals with the IRQ signal when
it is ready to receive the first write operation over the SPI from the
microcontroller. The first write operation is slightly different from normal
in that it requires a pause after sending the first 4 bytes for 50 pus before
continuing the transmission.

e Writing data to module: For writing to the Wi-Fi module other than the
first write the IRQ is used to signal that the module is ready. In normal
SPI after asserting the chip select it will start with the transmission
directly. However the module may not be ready and therefore first has
to reply that it is ready by asserting the IRQ line before the transmission
from the microcontroller is allowed to start. Therefore the pattern when
writing is, the CS line goes low, the module acknowledges by setting the
IRQ line low and then the data is sent from the microcontroller.

e Reading data from module: Because the module works in slave mode
there would be no way for it to signal when it has data to transmit with
the normal SPI protocol. Instead of having the master microcontroller
polling the Wi-Fi chip to see if there is new data the Wi-Fi module sets
the TRQ signal low alerting the master that there is new data to read.

5.1 SPI Driver 30

e Ending transmission: TRQ remains low during each transmission and goes
high when it is done, thus alerting that it is ready for a new transmission.

Because the module operates in slave mode it can not do a transmission to
the microcontroller on its own, the master has to send as many bytes as it gets
during receiving to toggle the clock line. The first byte the microcontroller
sends while receiving data is specified to be 0x03 to signal that the microcon-
troller wants to read data. The rest of the bytes sent to the Wi-Fi module are
just dummy bytes and are set to zero.

The extended SPI version has one potential flaw where the master could
misinterpret the IRQ signal if the slave tries to write something at the same
time as the master tries to write. If the master starts a write operation it first
make sure that the IRQ is high before asserting CS. If the module at the same
time has something to transmit it can assert the IRQ before it notices the CS
line. The master will then misinterpret that the module is ready to receive and
not as a pending transmission from the module. The problem is resolved by
the Wi-Fi module always looking at the first byte received to see if it is the
read flag byte (0x03) to tell if the master wants to read or write.

5.1.2 Implementing the Driver on the Microcontroller

The AVR microcontroller has hardware support for communicating over SPI
which is necessary to obtain the desired speed. SPI communication could also
be done in software by bit banging but since the processor is only running at
60 MHz it would not be possible to get the SPI to run at the full 16 MHz
the Wi-Fi module is capable of. The software solution would also take up all
resources of the processor during the transfer. The SPI hardware generates
the SPI clock by dividing the main clock. Naturally it is divided by an integer
meaning that SPI clock might not be able to set an exact frequency and in
this case it settles at 15 MHz when setting it to 16 MHz since it is the closest
choice. The data is loaded byte by byte into a shift register which is transferred
bit by bit by the SPI hardware.

Configuring the SPI involves mapping the pins to use and specifying the
phase and polarity of the clock and the desired frequency. Some modifications
had to be made with regard to the chip select line. When setting up the
SPI hardware for a transfer, the data to be sent will be written to a 32-bit

5.1 SPI Driver 31

register and the same register also holds which CS signal is to be used since
the same SPI hardware can be shared between up to four different slaves. When
transmitting the SPI hardware will assert CS and then directly start the data
transfer. This creates a problem since according to the communication protocol
used the Wi-Fi module has to assert IRQ before transmission can begin. The
solution is not to map the CS signal to a pin when configuring the SPI and
instead handling the CS signal in software separately as a general purpose 10
pin.

The first implementation of the SPI driver had the processor looping through
each byte and transferring them one by one. That is not the most efficient way
since the microcontroller has the capability of DMA transfers. DMA, standing
for Direct Memory Access is specialized hardware that lets peripherals access
the main memory without going through the CPU. It gets rid off the overhead
needed when the CPU otherwise has to read from the peripheral into one of
its registers and then transfer it from the register to the memory which is an
unnecessary step. Not only does it free up the CPU for more useful work but
also allows faster memory transfers when the CPU is not a bottleneck. When
the DMA transfer is complete the DMA controller notifies the processor by
triggering an interrupt.

Access when using DMA is made through continuous blocks of memory.
With each transfer a starting address in the memory is given along with the
number of transfers and the size of each transfers together specifying a mem-
ory block. For initializing the DMA channel it needs to know the hardware
peripheral that are to be used and the direction, i.e. loading from or to the
memory. It is specialized hardware therefore it can only be used with sup-
ported peripherals. Also the interrupt used when transfer is done has to be set
up. Here, two DMA channels are used since it is needed in both directions one
for sending and one for receiving.

5.1.3 Driver Operation

The SPI driver is implemented like a state machine shown in figure (the
code may differ slightly in names). Using a state machine is suitable because
the driver uses a lot of interrupts and the state has to be stored between them.
In the figure it is shown which interrupt triggers a change from one state to

5.1 SPI Driver

32

POWER UP

IRQ

N
.O\b

USER

HANDLE
MESSAGE

S
bJ/f@S

DMA
>10 bytes

READ
CONTINUE

Figure 5.2: SPI State machine

5.2 Client Solution 33

another, the two different interrupts are interrupts from the IRQ line of the
module and the other DMA transfer done interrupt. The only state changes
that are not triggered by an interrupt are when: initiating a write, since that
is triggered by the user of the driver and from HANDLE MESSAGE which
returns after the higher level have processed the message.

On startup the initial state of the SPI driver is POWER UP where the
power enable line is set high and it waits for the module to respond that it is
ready. From there the state changes to INITTALIZED where the SPI driver
waits for the user to trigger the first write operation, the Wi-Fi module will
not send a message unless it has first received one. After the DMA controller
signals that the first write has been completed the SPI driver changes to the
IDLE state.

If the SPI driver receives a write command while in the IDLE state, it goes
into WRITE INIT where the driver adds the SPI header and asserts CS. After
getting a response from Wi-Fi module through an IRQ interrupt the driver
initiates the data transfer in state WRITE and when the DMA transfer is
complete the driver returns to IDLE.

Getting an IRQ interrupt when IDLE signals that there exists data to read
and moves the driver into the state READ. To use DMA for reading, the
length of the message have to be known beforehand. Because it is not known
how many bytes should be read from the Wi-Fi module, the driver first reads
only 10 bytes including the header which is the shortest message it will ever
receive. After that transfer is done the SPI driver looks at the header to see
the size of the whole message. If the message was only 10 bytes the SPI driver
goes to HANDLE MESSAGE, if there is more data to read the driver moves
to the READ CONTINUE state reading the rest of the data before going
to HANDLE MESSAGE. In HANDLE MESSAGE the SPI driver pauses the
SPI so no messages can be sent or received from the Wi-Fi module. When
the message has been processed the SPI driver goes back to the IDLE state
unpausing the SPI. For the full SPI driver code see appendix [A.T]

5.2 Client Solution

Table 5.1l is a collection of the different client solutions considered for the
project. For cross platform development there were three different types of

5.2 Client Solution 34

apps considered, for more information see the one that was chosen was
an HTML based interface accessed via a web browser from an HTML server.
The reason being that the solution has better cross platform support since it
supports both hand held devices and desktop/laptop devices without needing
to have any special software installed on the different platforms. Another
good reason for using a HTML based interface is that it relatively easy can be
translated from an XML based layout file to HTML code, as specified in the
requirements in section [1.3| For more information on how the XML to HTML
translation works see section Since there are no advanced graphics or
other heavy calculations in our remote control application the slower speed of
the HTML solution compared to the other solutions is not an issue.

5.2 Client Solution

35

Table 5.1: App programing languages considered for the project

interpreted na-

programing with

Name Programming | Pros Cons
solution
Kivy [2§] Interpreted Works on many | No official sup-
Python code platforms, GPU | port by Google
accelerated and Apple
Sencha touch | Interpreted Easy to use de- | sencha touch
[29] HTML, velopment tools | slow on many
Javascript, phones, no
CSS code support for
PC/Mac
Phonegap [30] Web browser | Uses standard | Needs to be built
based, HTML, | web technologies | for every plat-
Javascript, CSS form. No sup-
port for PC/Mac
Appcelerator Compiles Good perfor- | No support for
[31] to native | mance PC/Mac
code, HTML,
Javascript, CSS
Mosync [32] Hybrid between | Able to mix web | Only support for

10S 4.3 and ear-

tive, C/C++ | C/CH++ lier
and/or HTML,
Javascript, CSS
HTML website | Web browser | Works on all | Limited memory
based, HTML, | platforms that | on host to save
Javascript, CSS | have a web | images and code
browser
Xamarin [33] Native code, C# | Good perfor- | Not free to use
mance

5.2.1 Web Interface

The web interface consist of HTML and CSS code for defining the layout of the
interface and Javascript working in the background to handle the communica-

5.2 Client Solution 36

WHEN SOUND MAKES THE DIFFERENCE

OHMER| A

Master volume: 924 1.

] Mute 2.

Input source
OUSB

) Phona

) SPDIF

® WLAN

Sound Profiles

Party |w 4.

Advanced Features

Frequency: 21390 Boost / Cut: 257

Q:0.039 Gain: 100.0

C B

Figure 5.3: Web interface

5.2 Client Solution 37

tion with the server. The HTML part of the code defines the basic layout of the
interface while the CSS part is used for the detailed layout such as background
colors, organising the widgets into boxes and changing the layout according to
screen size. Javascript, a coding language used for running code on the client
side inside the browser, is used to send the user commands to the server. The
HTML part of the code is automatically generated with the help of a special
script, see section [5.2.2] so that the customer easily can choose which functions
should be available to the end user.

The interface consist of 5 different kinds of input widgets, as can be seen
in Figure [5.3] The widgets are:

1. Range sliders, which are used for inputs such as volume, filter cutoff
frequency, gain and so on. To make it easier for the user to control the

slider input an extra print out of the current value of slider has also been
added.

2. Checkboxes, which are used for features that only have two options, like
the mute command.

3. Radio Buttons, that are used for features that have many options where
only one of the options can be activated at a time, for example when
choosing input source.

4. Dropdown boxes are used for the same type of input as the radio buttons
but is more compact which can be useful on devices with small screens.

5. Buttons, has no uses in our application but was added for future updates.

There is also the possibility to group together widgets with similar functions
under a caption, see Advance Features captions in Figure [5.3

The javascript is written in such a way that each kind of input widget,
such as range slider, button, checkbox and so on, is tied to a specific javascript
function and not the specific widget. The reason for doing it that way is that
the javascript does not have to be changed when the layout changes. When the
function is triggered it gets passed a DOM reference (Document Object Model)
to identify which specific widget has triggered the function. The widgets are
designed so that the name of the widget is the same as the command that is
going to be sent to the server. The javascript takes the name of the widget and

5.2 Client Solution 38

append the value of the widget to a text string and send it as a HIT'TP GET
request to the server. For the full code of the Javascript script see appendix
A3l

5.2.2 XML to HTML Parser

According to the requirements in section[I.3|the remote control interface should
be configured from an XML file. In order to fulfill the requirement a script that
parses the XML file and translates it into HTML was developed in Python.
Python is a scripting language developed to make code easy to read and write.
Python also has a vast amount of libraries available making it a good language
for rapid development.

The script takes a logo image file and an XML layout file that is gener-
ated by the Bohmer audio PC software and generates the web interface. The
XML file contains data on which controls should be available to the user, which
commands should be sent to the server when an action is triggered on the web
interface and the layout of the controls. An example of how the XML code is
translated to HTML code can be seen below. The XML code in the example
below is a tag for a slider widget. A tag in HTML and XML code is marker for
an object e.g. < numeric > in the code below for the slider widget. The tag
has a variable called cmd containing a string with the command that should be
sent to the audio platform and min and max values for the range of the slider.
When the XML code is translated into HTML the values from the XML tag
are transferred to the HTML tag called input, from the transferred values an
appropriate step size value is calculated and added to the HTML tag. Above
the input tag in the HTML code an extra tag is added that show the current
value of the slider to make it easier for the user to know the value of the slider.

XML code

<numeric cmd="vol_set” min="0" max="100">Master Volume</numeric>

HTML code

<form>

<div style="float:left”>Master Volume: </div><div id="Master_.VolumeOut” style="float:left”
>0</div>

<input type="range” name="vol_set” id="Master_.Volume” value="0" onchange="slChange(this)”
max="100" min="0" step="0.1" >

</form>

5.2 Client Solution 39

The script produces two files, one HTML file for previewing how the interface
will look and one file containing the website coded to work with the micro-
controllers file system. The second file is transferred to the file system on the
microcontroller where it is accessed by the server software. For the full code
for the XML to HTML script see appendix

5.2.3 Smartphone App Solution

T

Master volume: 37.0

[Mute Please enter the ip-address of the
Input source stereo

O UsB

O Phono 192.168.0.236
O SPDIF

@ WLAN

Sound Profiles

Advanced Features

Cancel

Frequency: 16740

Boost/ Cut: 17.4

Figure 5.4: App interface on Android smartphone. Left picture showing the
remote control interface. The right picture showing the dialog box for inputting
the ip-address of the audio platform

A framework called Phonegap was used to also develop an app. Phonegap is
a framework that makes it possible to take HTML and Javascript code and

5.3 The Server 40

package it so that it can be installed on a smartphone like a native app. The
existing code is reused but in order to make the HTML and Javascript interface
work better as an app some changes to how it works were made. The changes
in code that were made were mainly two extra buttons, one that updates all
the current values of the audio platform and another one that opens up a dialog
where the user can input the servers IP address and save it so there is no need
to reenter it when rebooting the app.

Using an app instead of loading the interface in the handheld device web
browser has some advantages and some disadvantages which can be seen below.

Advantages:

e No need to remember ip-address after initial configuration

e Customers can install app from app store/play store

e Good selling point when pitching product to customers

e Loading layout data from memory card instead of for the server
Disadvantages:

e Needs to be compiled individually for each OS

e Need to be distributed through an app store

5.3 The Server

As a result of choosing a HTML based interface, see section [5.2) an HTTP
server was implemented as the server solution. The HTTP server consists of
one part that handles the communication with the client through TCP sockets
using the CC3000 API and another part that parses the messages that come
from the client and sends appropriate responses.

5.3.1 Wi-Fi Module API

The available API have C functions to utilize the module. It consists of basic
functions like starting and stopping the device, connecting and disconnecting

5.3 The Server 41

to a Wi-Fi access point and scanning for access points. For wireless communi-
cations it uses the syntax of standard sockets also used in linux for example.
API functions are mostly implemented by taking the arguments and packaging
them in a frame and sending over the SPI.

Some changes had to be made to the supplied API to make it compile partly
due to strict compiler settings and due to name conflicts. Also in the API it
would at some points perform busy wait polling in a while loop waiting for a
message from the module. Since the microcontroller is running a real time OS
it was instead implemented so that the thread goes to sleep and wakes up when
a new message is received with the help of semaphores. The changes have no
effect on the functionality of the code.

5.3.2 HTTP Server Functionality

The server software is written to handle three different kinds of requests, load
interface request, set command request and get update request.

The load interface request is the request sent by the web browser in order
to receive the HTML layout data and the javascript data to be able to render
the web site. The HTML layout data is too big to send in one TCP message
so it is divided into smaller chunks when sending.

The command request is used for controlling the parameters of the audio
platform. The server parses the command request by looking for the start of
the command indicated by a 7 character. The parsed command is sent to the
command queue of the system where it later will be processed. More than one
command can be sent in one request by inserting a & character between the
commands.

The update request is used to get information about the current state of
the parameters used by the remote control. The update request is sent every
time the web interface is reloaded. When an update request is received by
the server it responds to the client with an answer in a special format seen in
italic text below. The answer has an abbreviation for each parameter and the
value is presented with a five text characters and can thus be an integer, float
number or normal text.

mute=true0&muvol=000126rvol=00100&1vol=00100&vlfu=0.111Ebfre=40000

5.3 The Server 42

& bbos=00.0365bqqq=0.018€bgai=000.9& inpt=USBO0

If the server receives an unknown request, it will respond with a 404 not
found error which is a standard error in the HI'TP protocol.

5.3.3 HTTP Server Implementation

The whole HTTP server is written in C-code, see appendix for code, and
uses the API for the WiFi-chip to set up TCP sockets, see section for more
info, needed to receive the requests for loading the web interface. TCP has to
be used for it to work with the HTTP protocol.

The server is implemented in a standard way, the emphasised words in the
following text corresponds to the respective API commands. At startup the
server opens a socket and setting the address to port number 80 which is called
binding. Nothing is set about the address of the receiver, instead the socket is
set to listen for incoming connections from clients. That means that the Wi-Fi
module will receive the connections and put them in a queue, and the server has
to accept the connection. Accepting a connection returns a new socket to the
client. The server then receive the request from that socket, parse the request
and sends back a reply before closing the socket and thus the connection.
When not handling connections to clients the server will constantly poll the
Wi-Fi module for new connections to accept using the original socket.

Chapter

Conclusion and Ending Comments

6.1 Challenges

Here some challenges and problems encountered throughout this project are
described. They are things that did not fit in the rest of the report and that
took some time and effort to resolve.

6.1.1 SPI Slave Select Problem

As specified in section the Wi-Fi module does not use normal SPI and
some changes had to be made in regard to that in section by controlling
the chip select separately. These changes made it not as straightforward to
implement as it otherwise would, adding some not so obvious timing issues.
For example when running the code without the extra delays of debug outputs
the chip select went high before the transfer was done. The thing happening
was that when the DMA signals that the transfer has been completed it only
mean it has transferred the last byte to the SPI hardware. So the chip select
was put high but there was still some data left in the SPI shift register to send.
That would have been taken care of with standard SPI but here the check that
the send buffer was empty had to be implemented in the code.

6.1 Challenges 44

6.1.2 Web Interface Touch Screen Event Triggering

To get the web interface to work on both touchscreen input devices and con-
ventional mouse and keyboard setup and together with the relatively resource
limited embedded system, certain problems had to be solved.

The problem that was encountered was the fact that many of the events
available to trigger a javascript function from the slider did not work together
with both touchscreens and conventional mouse/keyboard setups. After some
research an event called “onChange” was found which would trigger indepen-
dent of which input device is being used. OnChange has one big disadvantage
by the fact that it triggers for every step that the slider is moved. This means
that one command is being sent for each step putting stress on the server since
each command opens and closes many TCP-link resulting in poor performance.
The solution to the problem was to only send a command when the slider has
been released. This was implemented by having a timer that is reset every time
a onChange event happens, if the timer reaches 400 ms the slider is considered
to have been released and the value of its current position is sent to the server.

6.1.3 Web Interface Loading Speed Optimization

An optimization made to make the web interface load faster in the web browser
was to encode the logo image file as base64 encoded data[34] and including that
data directly in the HTML data being sent. This gives a faster loading of the
interface because normally the web browser will first open a TCP socket and
request the HTML data and then close that socket just to open a new one
and then request the image data, if the image-data is base64 encoded and
included in the HTML-data there is no need for the second connection. This is
good since handling many request takes more time than just sending one data
stream.

6.1.4 Web Interface Screen Size Optimization

Since the interface can be accessed by many different devices with varying
screen sizes, special consideration had to be taken to make the layout work
with the different screen sizes. The solution found was to have two different
layouts, one for screens under 600 pixels wide and one for screens that are

6.1 Challenges 45

wider than 600 pixels. For screens smaller than 600 pixels all the widgets are
laid out in one column while for bigger screens some widgets are laid out so
that they are next to each other on the same row using more of the screen and
reducing the amount of scrolling needed in the interface.

6.1.5 Patching

The module supplied did not come with the latest version of its driver and
firmware and during the time of the project new firmware versions came out.
Updating was done by writing to the internal EEPROM that had part of the
memory reserved for this use. The part originally allocated for the patches
was too small to accommodate the newer patches so to update the module
the file structure of the EEPROM had to be rewritten. To do that an earlier
version of the firmware first had to be loaded to the module since the newer
versions do not allow full access to the EEPROM leading to a more complicated
update procedure. Texas Instruments supply a patch programmer to run on the
microcontroller but that was only compatible with their own microcontrollers
so the code had to be ported to the used microcontroller. To make it function
correctly took some extra time but was important since the new firmware fixes
some crucial bugs.

6.1.6 Bugs on Module Side

Since the module is fairly new there were some bugs that had to be worked
around as with all new products. Most were fixed in patches from Texas
Instruments, for example one bug when sending at full speed the different
parts in a TCP stream were sent out of order. One elusive bug was that the
module sometimes would accept a connection when there was no message to be
received. The bug was hard to detect because it looked as the module hanged
when what was really happening was that it tried to receive something that
was not there. Receiving is a blocking operation and therefore it stalled. To
find the bug all packets sent over the network were inspected with the help
of a package analyzer program called Wireshark. Finally, it was solved by
using another command called select that monitors the state of the socket and
more specifically can check if the socket really has data to read before calling

6.2 Conclusion 46

receive. The Texas Instrument support forum was helpful in how to solve these
problems.

6.2 Conclusion

This thesis main focus has been to find a suitable solution to the requirements
set by Bohmer Audio in the beginning of the thesis. Another aspect of the
thesis has been how to take requirements from paper and turn it into a working
product which has been a great learning experience for gaining the knowledge
needed to complete all the different stages in the development process.

Bohmer Audios idea is to sell their audio platform to OEM manufacturers
that then can configure the platform according to their needs. To integrate our
thesis project into the same philosophy all the software has been designed so
that it can be easily reconfigured, e.g. the web interfaces function and layout
are configured via an XML file. Also the HTTP server is programmed in such
a way that if new control commands are added in the main system there is no
need to change anything in the server part of the software.

By doing extensive research on the different Wi-Fi chip solutions available
on the market a price and performance effective solution has been found. An-
other factor that lowers the price of the Wi-Fi extension module is the fact
that the Wi-Fi chip chosen requires only a few external components to work,
reducing the total component cost and manufacturing complexity. The Wi-Fi
chip has enough bandwidth to be used for streaming music in the future and
the software remote control interface can, since it is HI'ML based, be used by
most modern devices that have a web browser.

We believe this is part of the future for consumer products. It is much more
convenient and easy to control the settings wirelessly from the comfort of the
couch than being constrained to a few buttons and small numeric display on the
front panel of the audio platform. The possibilities other than this application
are numerous for example the module could be connected to a sensor and be
used to load a web page with statistics.The technology is mature enough to be
added to most products and this thesis proves that the effort needed is not too
big. Hopefully the price of the WiFi chip will decrease further making it even
more appealing.

Overall this thesis project has been a success, we fulfilled all the require-

6.2 Conclusion 47

ments set in the beginning of the project and hopefully we have shed some
light on the process of adding wireless connectivity to an application.

Bibliography

Ericsson, more than 50 billion connected devices, Februari 2011
Data Communications and Networking 4th edition, Behrouz A. Forouzan

RFC 791 Internet Protocol, http://www.ietf.org/rfc/rfc791.txt acc: 2015-
05-03

RFC 793 Transmission Control Protocol,
http://www.ietf.org/rfc/rfc793.txt acc: 2013-05-03

RFC 768 User Datagram Protocol, http://www.ietf.org/rfc/rfc768.txt
acc: 2013-05-03

RFC 2616 Hypertext Transfer Protocol,
http://www.ietf.org/rfc/rfc2616.txt acc: 2013-05-03

RFC 2131 Dynamic Host Configuration Protocol,
http://www.ietf.org/rfc/rfc2131.txt acc: 2013-05-03

SPI - Serial Peripheral Interface , http://www.mct.net/faq/spi.html acc:
2013-05-02

Colin M.L. Burnett, http://en.wikipedia.org/wiki/File:SPI_timing_diagram?2.svg,
acc: 2013-05-06

BIBLIOGRAPHY 49

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]
[18]

[19]
[20]

[21]

[22]

[23]

Liflander J, Ceramic Chip Antennas vs. PCB Trace Antennas: A Com-
parison, http://www.pulseelectronics.com/file.php?id=3721 | acc: 2015-
05-02

LS Research LLC, Antenna Design Guide, 8 March 2012

Burris M, Price of component in end product,
http://components.about.com/od/Design/a/How-Component-Selection-
Impacts-The-Final-Price-Of-A-Product.htm. acc: 2013-04-04

LS Research LLC, TiWi-SL module Datasheet, 2011-2012

Texas Instruments, TI SimpleLink™ CC3000 Module — Wi-Fi 802.11b/g
Network Processor, November 2012

Taiyo Yuden, WYSBCVGXA Brief Data Report, 17 December 2012

Roving Networks, RN-171 802.11 b/g Wireless LAN module, 10 February
2012

, BlueGiga, Bluegiga WF121 Wi-Fi module, 2012

Redpine Signals, RS-9110-N-11-24 Self Contained 802.11 b/g/n Module
with networking stack, November 2012

GainSpan, GS1011M-DS, 29 October 2012

H & D Wireless, Data Sheet HDG104 WiFi SIP component, February
2011

H & D Wireless, Data Sheet HDG204 WiFi SIP component, February
2011

Qualcomm Atheros, AR4100 single-stream 802.11n SIP for the internet of
everything, 12 March 2012

H & D Wireless, Product brief SPB4100 Wirelesss LAN module

BIBLIOGRAPHY 50

[24]

[25]

[20]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]

Asix, AX22001 Single Chip Microcontroller with
TCP/IP and 802.11 WLAN MAC/Baseband,
http://www.asix.com.tw /products.php?op=pltemdetail&PItemID=106;72;104,
acc: 2013-05-03

Econais, WiSmart EC32Sxx Wi-Fi 802.11b/g/n Module Family,
http://www.econais.com/wp/products/ec32wxx-family, acc: 2013-05-03

Atmel, AT32UC3C, January 2012

Microchip, Compiled Tips N Tricks Guide, Chapter 8, 2009

Kivy, http://kivy.org/ acc: 2013-05-2/

Sencha touch, http://www.sencha.com/products/touch acc: 2013-05-2/
Phonegap http://phonegap.com/ acc: 2013-05-24

Appcelerator, http://www.appcelerator.com/ acc: 2013-05-24

Mosync http://www.mosync.com/ acc: 2013-05-24

Xamarin http://xamarin.com/ acc: 2013-05-24

S. Josefsson, Ed., The Basel6, Base32, and Base64 Data Encodings, July
2003

Appendices

Appendix

Code

A.1 SPI Driver Code

code/spiwifi.c
/*

* spiwifi.c
*
* Created on: 12 feb 2013
* Author: Anders Skoog & Fredrik Stolt
*/
#include ”spiwifi.h”
#include <spi.h>
#include <gpio.h>
#include <intc.h>
#include ”cc3000_.common .h”
#include ” hci.h”
#include ”pinout.h”
#include ”dbgmsg.h”
#include ”FreeRTOS.h”
#include ”task.h”
#include <semphr.h>
#include ”printk.h”
#include ”dmesg.h”
#include <pdca.h>

#define SPI.MASTER_SPEED 16000000 //16MHZ maz SPI frequency
#define SPI_BITS 8
#define CPUHZ FOSCo

#define SPI.IRQ_-PIN AVR32_PIN_PA16
#define POW_EN_PIN AVR32_PIN_PA11l
#define CS_PIN AVR32_PIN_PA13
#define CS 1

#define SPI.HEADER_SIZE (5)

//different states

#define eSPI.STATE_.POWERUP (0)
#define eSPI.STATE_INITIALIZED (1)
#define eSPI_.STATE_IDLE (2)
#define eSPI.STATE_WRITE_WAIT (3)
#define eSPI_.STATE_FIRST_WRITE (4)

A.1 SPI Driver Code 53

#define eSPI.STATE_WRITE (5)
#define eSPI.STATE_READ_IRQ (6)
#define eSPI.STATE_READ_CONT (7)

#define eSPI.STATE_HANDLE_MESSAGE (8)

//used in SPI header

#define READ (3)

#define WRITE (1)

#define HI(value) (((value) & O0xFF00) >> 8)
#define LO(value) ((value) & OxO00FF)

volatile avr32_spi_t *xspi;

typedef struct {
gcSpiHandleRx SPIRxHandler;
unsigned short usTxPacketLength;
unsigned short usRxPacketLength;
unsigned long ulSpiState;
unsigned char xpTxPacket;
unsigned char xpRxPacket;

} tSpilnformation;

volatile tSpilnformation sSpilnformation;

// Static buffer for 10 bytes wused for reading with read code and 9 dummy bytes
unsigned char tSpiReadHeader[10] = { READ };

unsigned char spi_-rx_buffer [CC3000.RX_BUFFER_SIZE];
unsigned char wlan_tx_buffer [CC3000-TX_BUFFER_SIZE |;

xSemaphoreHandle DMAWriteSemaphore;
xSemaphoreHandle stateChangeSemaphore;
#define SPI.PDCA_CHANNEL_RX 0

#define SPI.PDCA_CHANNEL.TX 1

void SpiPauseSpi(void);

void SpiWritelnternal (void) ;
void SpiRead(void) ;

void SpiReadCont(void) ;

void SpiReadDone(void) ;

_—attribute__((--interrupt--)) static void pdca_int_handler (void);

//has to be run after init_spi_-synth
void init_-spi-wifi(void) {

//configure IRQ pin as input
gpio_configure_pin (SPI_LIRQ_PIN, GPIO_DIR_INPUT) ;

//configure CS pin as output
gpio_configure_pin (CS_PIN, GPIO.DIR.OUTPUT) ;
gpio_set_gpio_pin (CS_PIN) ;

spi = &AVR32_SPI0; //pointer to access hardware SPI

spi—_options_t spiOptions;

spiOptions.reg = CS;

spiOptions.baudrate = SPI.MASTER_-SPEED;
spiOptions. bits = SPI_BITS; //8 bits per transfer
//standard values

spiOptions.spck-delay = 4;

spiOptions. trans_-delay = 0;

spiOptions.stay-act = 1;

spiOptions.spi_mode = 1;

spiOptions. modfdis = 1;

//set options for slave
spi-setupChipReg (spi, &spiOptions, CPUHZ);

spi_enable (spi);

// PDCA channel options mneeded to initiate

A.1 SPI Driver Code 54

static const pdca_channel_options_t PDCA_OPTIONS_FOR.TRANSFER =

.addr = (void x*)wlan_tx_buffer , // memory address

.pid = AVR32_PDCA_PID_SPIO_-TX, // select peripheral

.size = 0, // transfer counter

.r_addr = NULL, // mext memory address, mnot used
.r_size = 0, // mext transfer counter, not used
.transfer_size = PDCA_TRANSFER_SIZE_.BYTE // size of each transfer 8 bits

}s
static const pdca-channel_options_-t PDCA_OPTIONS_FOR-RECIEVE =

.addr = (void x*)spi_-rx_buffer ,
.pid = AVR32_PDCA_PID_SPIO_RX,

.size = 0,
.r_addr = NULL,
.r_size = 0,

.transfer_size = PDCA_TRANSFER_SIZE_BYTE
s

Jrxkxkxkk Interrupt config sxsksksksxskskkkkskk/
// Disable all interrupts.
Disable_global_interrupt () ;

//register interrupt handler function
INTC_register_interrupt(&pdca_int_-handler , AVR32.PDCA_IRQ-1, AVR32_.INTC_INTO) ;

//initiate DMA channels
pdca-init_-channel (SPI.PDCA_CHANNEL.TX, &PDCA_OPTIONS_FOR_-TRANSFER) ;
pdca_init_channel (SPI.PDCA_CHANNEL_RX, &PDCA_OPTIONS_FOR_RECIEVE) ;

// Enable all interrupts.
Enable_global_interrupt () ;

//enable DMA channels
pdca_enable (SPI.PDCA_CHANNEL_TX) ;
pdca_enable (SPI.PDCA_CHANNEL_RX) ;

//semaphore used with DMA interrupt
vSemaphoreCreateBinary (DMAWriteSemaphore) ;
xSemaphoreTake (DMAWriteSemaphore, 0);

//semaphore used with IRQ interrupt
vSemaphoreCreateBinary (stateChangeSemaphore) ;
xSemaphoreTake (stateChangeSemaphore, 0);

//Need to wait for 1 second after powering up before starting the module
vTaskDelay (1000) ;

}

// Initializes SPI hardware and registers the SPI RX handler that is called on
// each packet received from the CC3000 device.
void SpiOpen(gcSpiHandleRx pfRxHandler) {
sSpilnformation.SPIRxHandler = pfRxHandler;
sSpilnformation.pRxPacket = &spi_rx_buffer [0];
sSpilnformation.ulSpiState = eSPI.STATE_POWERUP;
sSpilnformation.usTxPacketLength = 0;
sSpilnformation.pTxPacket = NULL;
sSpilnformation.usRxPacketLength = 0;
tSLInformation. WlanInterruptEnable () ;

}

// Receives a pointer to data and the length of data and transmits a data
// packet to the SPI according to the SPI protocol,

// differentiating between the first write and subsequent write operations.
long SpiWrite (unsigned char x*pUserBuffer, unsigned short usLength)

//wait until the we are in a state that allows writing
while (sSpilnformation.ulSpiState != eSPI_STATE_INITIALIZED
&& sSpilnformation.ulSpiState != eSPI.STATE_IDLE) {
//put thread on hold wuntil state is changed
xSemaphoreTake (stateChangeSemaphore, portMAX_DELAY) ;

A.1 SPI Driver Code

}
//check if padding is needed for even number of bytes
unsigned short ucPad = !(usLength & 0x0001);

//5—byte header including message length
//user required to leave the first 5 bytes blank
pUserBuffer [0] WRITE;

pUserBuffer [1] = HI(usLength 4 ucPad);
pUserBuffer [2] = LO(usLength 4+ ucPad);
pUserBuffer [3] = 0;
pUserBuffer [4] = 0;

//number of bytes to send

usLength += SPI_LHEADER_SIZE + ucPad;
sSpilnformation.usTxPacketLength = usLength;
//message to send

sSpilnformation.pTxPacket = pUserBuffer;

while (1) {

switch (sSpilnformation.ulSpiState) {

case eSPI_STATE_INITIALIZED:
sSpilnformation.ulSpiState = eSPI.STATE_FIRST_WRITE;
vTaskDelay (7); //delay 7ms according to data sheet
gpio_clr_gpio_pin (CS_PIN); //chip select low, request start transmission
SpiWritelnternal () ;
return O0;

case eSPI_STATE_IDLE:
//Disable interrupt because of potential race condition with read
sWlanInterruptDisable () ;

if (sSpilnformation.ulSpiState == eSPI.STATE_IDLE)
sSpilnformation . ulSpiState = eSPI.STATE_-WRITE_WAIT;
else
break;

xSemaphoreTake (stateChangeSemaphore, 0); //reset semaphore
sWlanInterruptEnable () ;
gpio_clr_gpio_pin (CS_PIN); //chip select low, request start transmission
//wait for change to write wait with the semaphore
xSemaphoreTake (stateChangeSemaphore, portMAX_DELAY) ;
SpiWritelnternal () ;
return O0;
default:
break;

//if mot walid state wait for change in state
//wrong state can happen if there is an incoming message
xSemaphoreTake (stateChangeSemaphore, portMAX_ DELAY) ;

return O;

}

//make transfer over SPI
void SpiWriteIlnternal () {
switch (sSpilnformation.ulSpiState) {
case eSPI_STATE_FIRST_WRITE:
vTaskDelay (1); //Wait atleast extra 50uS before first write
spi_selectionMode (spi,0,0,100); //Set selection mode to fized peripheral
spi-selectChip (spi, CS); //set right CS to load the right options

//start with first 4 bytes
for (unsigned short i = 0; i < 4; i++4+) {
spi-write (spi, sSpilnformation.pTxPacket[i]);

}
vTaskDelay (1); //delay according to data sheet

//Transfer the rest by setting up DMA
pdca_load_channel (SPI.PDCA_.CHANNEL.TX, (voidx*)(&sSpilnformation.pTxPacket[4]) ,
sSpilnformation.usTxPacketLength —4);
pdca_enable_interrupt_transfer_complete (SPI.PDCA_CHANNEL_TX) ;
break;

case eSPI.STATE_WRITE:
//Transmit by setting up DMA

A.1 SPI Driver Code 56

}

spi-selectChip (spi, CS);
pdca_load_channel (SPI_.PDCA_CHANNEL._TX, (voidx)sSpilnformation.pTxPacket,
sSpilnformation.usTxPacketLength) ;
pdca_enable_interrupt_transfer_complete (SPI.PDCA_CHANNEL_TX) ;
break;
default:
break;
}

//wait until the DMA is done
xSemaphoreTake (DMAWriteSemaphore, portMAX_DELAY) ;

//when DMA is done there can still be data left in the SPI
//shift register that have not been send
while (! spi_writeEndCheck (spi));

spi—_unselectChip (spi,CS);
sSpilnformation.ulSpiState = eSPI.STATE_IDLE;
gpio_set_gpio_pin (CS_PIN); //chip select high, end transmission

//interrupt handler for DMA transfer complete
__attribute__((--interrupt-_)) static void pdca_int_handler (void) {

}

//Disable the interrupt

Disable_global_interrupt () ;
pdca_disable_interrupt_transfer_complete (SPI.LPDCA_CHANNEL.TX) ;
pdca_disable_interrupt_transfer_complete (SPI.LPDCA_CHANNEL_RX) ;
Enable_global_interrupt () ;

if (sSpilnformation.ulSpiState == eSPI.STATE_WRITE ||
sSpilnformation.ulSpiState == eSPI.STATE_FIRST_WRITE) {
//Give semaphore to signal that write is done
xSemaphoreGiveFromISR (DMAWriteSemaphore, NULL) ;

}

if (sSpilnformation.ulSpiState == eSPI.STATE_READ_IRQ) {
//iinterrupt on transfer line so check that the receive 1is done, at most one byte left
volatile avr32_pdca_channel_t* dma_rx_channel = pdca_get_handler (SPI.PDCA_CHANNEL RX) ;
while(dma_rx_channel—>tcr);
SpiReadCont () ;

}

else if (sSpilnformation.ulSpiState == eSPI.STATE_READ_CONT) {
volatile avr32_pdca_channel_t* dma_rx_channel = pdca_get_-handler (SPI.PDCA_.CHANNEL_RX) ;
while(dma_rx_channel—>tcr);
SpiReadDone () ;

}

//interrupt handler for IRQ line
__attribute__((--interrupt-_-)) static void irq_-arbiter (void) {

//change to the right state

switch (sSpilnformation.ulSpiState) {

case eSPI.STATE_POWERUP:
sSpilnformation.ulSpiState = eSPI_.STATE_INITIALIZED;
break;

case eSPI_STATE_IDLE:
sSpilnformation.ulSpiState = eSPI.STATE_READ_IRQ;
SpiRead () ;
break;

case eSPI.STATE_WRITE_-WAIT:
sSpilnformation.ulSpiState = eSPI.STATE_WRITE;
break;

default:
sSpilnformation.ulSpiState = eSPI.STATE_READ_IRQ;
SpiRead () ;
break;

// Clears the interrupt flag
gpio_clear_pin_interrupt_flag (SPI.IRQ-PIN) ;

//signal that the state changed

A.1 SPI Driver Code 57

xSemaphoreGiveFromISR (stateChangeSemaphore , NULL) ;

}

//Read the first tem bytes of incoming message

void SpiRead () {
sWlanInterruptDisable(); //disable IRQ to mot interrupt send
gpio_clr_gpio_pin (CS_PIN); //ready for read
spi-selectChip (spi, CS);

//if already something in SPI read register empty it
while(spi-readRegisterFullCheck (spi))
spi-read (spi ,NULL) ;

//Start reading 10 bytes which is minimal transfer length
pdca_load_channel (SPI.PDCA_CHANNEL_RX, (voidx)spi-rx_buffer , 10);
pdca_load_channel (SPI.PDCA_CHANNEL_TX, (voidx*)tSpiReadHeader, 10);
pdca_enable_interrupt_-transfer_complete (SPI.PDCA_CHANNEL_TX) ;

}

void SpiReadCont () {
sSpilnformation.ulSpiState = eSPI.STATE_READ_CONT;

//read the packet length in header
sSpilnformation.usRxPacketLength = (spi_-rx_buffer [3] << 8) | spi-rx_buffer [4];
//already read 5 bytes excluding header
unsigned long leftToSend = sSpilnformation.usRxPacketLength — 5;
if (leftToSend) {
//read the rest
spi-selectChip (spi, CS);
pdca-load_channel (SPI.PDCA_.CHANNEL_RX, (voidx*)(spi-rx_-buffer+10), leftToSend);
pdca_load_channel (SPI.PDCA_CHANNEL_TX, (void*)sSpilnformation.pTxPacket, leftToSend);
pdca_enable_interrupt_transfer_complete (SPI.PDCA_CHANNEL_TX) ;
}
else {
SpiReadDone () ;
}

}

//all bytes read so process message

void SpiReadDone () {
SpiPauseSpi(); //pause to process message
sSpilnformation.ulSpiState = eSPI.STATE_HANDLE_MESSAGE;
sWlanInterruptEnable () ;
//call the supplied callback with pointer to message
sSpilnformation.SPIRxHandler (sSpilnformation.pRxPacket + SPI.HEADER_SIZE) ;

}

//Releases all resources used by the SPI and deinitializes the hardware.
void SpiClose(void) {
if (sSpilnformation.pRxPacket)

sSpilnformation.pRxPacket = 0;

tSLInformation. WlanInterruptDisable () ;

//Resumes SPI communication under the assumption that it was

//previously paused within the SPI driver itself.

void SpiResumeSpi(void) {
gpio_set_gpio_pin (SPI.IRQ_PIN) ;
gpio_configure_pin (SPI_LIRQ_PIN ,GPIO_DIR_.INPUT); //set pin as input
gpio_set_gpio_pin (CS_PIN); //read done

//change state to idle and signal with the semaphore
sSpilnformation.ulSpiState = eSPI_STATE_IDLE;
xSemaphoreGiveFromISR (stateChangeSemaphore, NULL) ;

}

//Pause SPI by forcing IRQ high

void SpiPauseSpi() {
gpio_configure_pin (SPI_IRQ_-PIN ,GPIO_DIR.OUTPUT); //set pin as output
gpio_clr_gpio_pin (SPI.IRQ-PIN); //set pin high

A.1 SPI Driver Code 58

//The callback provided during wlan_init call and invoked
//to read a walue of the SPI IRQ pin of the CC3000 device
long sReadWlanInterruptPin (void) {

return (long) gpio_get_pin_value (SPI.IRQ_PIN);

}

//The callback provided during the wlan_init call and invoked to

//enable an interrupt on the IRQ line of SPI

void sWlanInterruptEnable (void)
gpio_configure_pin (SPI.IRQ-PIN, GPIO_.DIR.INPUT); //set pin as input
Disable_global_interrupt () ;
gpio_enable_pin_interrupt (SPI.LIRQ_PIN, GPIO_FALLING_EDGE) ;
//register interrupt, INTO=Lowest priority
INTC_register_interrupt(&irq-arbiter , AVR32_GPIO_.IRQ_0+(SPI_-IRQ_-PIN/8) ,AVR32_INTC_INTO) ;
Enable_global_interrupt () ;

}

//The callback provided during the wlan_init call and invoked
//to disable an interrupt on the IRQ line of SWLANINTERRUPTDISABLE
void sWlanInterruptDisable (void) {

gpio_disable_pin_interrupt (SPI.IRQ-PIN) ;

//The callback provided during the wlan_init call and invoked to write a value to the
//enable pin of the CC3000 device, that is, entry or exzit from reset of the CC3000 device
void sWriteWlanPin (unsigned char in) {

// Enables gpio control for the pin

gpio_enable_gpio_-pin (POW_EN_PIN) ;

if (in == WLANENABLE) {
gpio_set_gpio_pin (POW_EN_PIN) ;
} else {
gpio_clr_gpio_pin (POW_EN_PIN) ;
}
code/spiwifi.h
/*
* spiwifi.h
*
* Created on: 12 feb 20183
* Author: Anders Skoog & Fredrik Stolt
*/

#ifndef _SPI_DRIVER_H_
#define _SPI_DRIVER_H_

#include ”compiler.h”
typedef void (xgcSpiHandleRx) (voidx* p);
extern unsigned char wlan_tx_buffer [];

//Used by CC3000 API
void SpiReceiveHandler (void xpvBuffer);

//set power enable, init spit pins and DMA channels
void init_spi_-wifi(void);

//Initializes SPI hardware and registers the SPI RX handler that is called on each
//packet received from the CC3000 device.
void SpiOpen(gcSpiHandleRx pfRxHandler) ;

// Receives a pointer to data and the length of data and transmits a data packet
//to the SPI according to the SPI protocol, differentiating between the first write
//transaction and subsequent write operations.

long SpiWrite (unsigned char xpUserBuffer , unsigned short usLength);

//Releases all resources used by the SPI and deinitializes the hardware.
void SpiClose(void) ;

A.2 Server Code

//Resumes SPI communication under the assumption that it was previously paused
//within the SPI driver itself.

void SpiResumeSpi(void);

//sWriteWlanPin — The callback provided during the wlan_init call and invoked to write a
//value to the enable pin, that is, entry or exzit from reset of the CC3000 device
void sWriteWlanPin (unsigned char in);

//sWlanInterruptDisable — The callback provided during the wlan_init call and invoked
//to disable an interrupt on the IRQ line of SPI

void sWlanInterruptDisable (void);

//sWlanInterruptEnable — The callback provided during the wlan_init call and invoked
//to enable an interrupt on the IRQ line of SPI

void sWlanInterruptEnable (void);

//sReadWlanInterruptPin — The callback provided during wlan_init call and invoked

//to read a walue of the SPI IRQ pin of the CC3000 device
long sReadWlanInterruptPin (void) ;
#endif // _SPI_DRIVER_H_
A.2 Server Code
code/remotewifi.c
#include ”spiwifi.h”
#include ”"remotewifi.h”
#include ”printk.h”
#include ”httpserver.h”
include ”socket.h”
zinclude ”wlan.h”
#include ” hci.h”
#include ”netapp.h”
#include ”nvmem.h”
#include ”security.h”
#include ”cmdchan_input.h”
//semaphores used

xSemaphoreHandle
xSemaphoreHandle
xSemaphoreHandle
xSemaphoreHandle
xSemaphoreHandle
xSemaphoreHandle

waitEventSemaphore;
smartConfigSemaphore;
connectSemaphore;
DHCPSemaphore;
freeBufferChangeSemaphore;
sendingDoneSemaphore;

//variables for sockets
static int highsock 0;
static int serversock;

static int connectlist []

= {0};

static volatile int DHCPfinished;

static void CC3000_-UsynchCallback(long l1EventType, char x data, unsigned char length);

static
static
static

void handleHttpRequest (void) ;
int openServer(void);
void sendUpdate(void);

//function called with various events from the module
static void CC3000_.UsynchCallback(long lEventType, char x data, unsigned char length) {
if (1EventType == HCI.LEVNT_WLAN_UNSOL_INIT || 1EventType == HCI.LEVNT_-WLAN_KEEPALIVE) {
printk (”"something is working\n”);

else if (1EventType == HCI.EVNT_WLAN_ASYNC_SIMPLE_CONFIG_.DONE) {
xSemaphoreGiveFromISR (smartConfigSemaphore , NULL) ;

else if (lEventType ==

HCI_LEVNT_ASYNC_TCP_CLOSE_WAIT) {

A.2 Server Code 60

//printk ("HCI.LEVNT_ASYNC_TCP_CLOSE_-WAIT\n”) ;

else if (lEventType == HCILEVNT_WLAN_UNSOL_DHCP) {
xSemaphoreGiveFromISR (DHCPSemaphore, NULL) ;
DHCPfinished = 1;

}
else if (lEventType == HCIEVNT_WLAN_UNSOL_.CONNECT) {
xSemaphoreGiveFromISR (connectSemaphore, NULL) ;

}
else if (lEventType == HCL.LEVNT_-WLAN_UNSOL_DISCONNECT) {
//printk (" HCLEVNT-WLAN-UNSOL_-DISCONNECT\n”) ;

//evnet after it has released and sent all buffers on the module
else if (lEventType == HCI_.EVENT_CC3000-CAN_SHUT_DOWN) {
xSemaphoreGiveFromISR (sendingDoneSemaphore, NULL) ;

void wifi_serverInit (){

}

openServer () ;

void wifi_init () {

}

//create semaphores

vSemaphoreCreateBinary (waitEventSemaphore) ;
vSemaphoreCreateBinary (connectSemaphore) ;
vSemaphoreCreateBinary (DHCPSemaphore) ;
vSemaphoreCreateBinary (freeBufferChangeSemaphore) ;
vSemaphoreCreateBinary (sendingDoneSemaphore) ;
//reset semaphores

xSemaphoreTake (connectSemaphore, 0);
xSemaphoreTake (waitEventSemaphore, 0);
xSemaphoreTake (DHCPSemaphore, 0);

sWriteWlanPin (0) ;
vTaskDelay (50) ;

init_spi_-wifi(); //start by init SPI

//init wlan by giving function pointers to handle the pins
wlan_init (CC3000-UsynchCallback,0,0,0,&sReadWlanInterruptPin ,
&sWlanInterruptEnable, &sWlanInterruptDisable , &sWriteWlanPin) ;

//start by sending the first messages

wlan_start (0) ;

//policy to auto connect to saved access point
wlan_ioctl_set_connection_policy (DISABLE, DISABLE, ENABLE) ;

void wifi_smartConfig (unsigned charx key) {

//create and reset semaphore to wait for the configuration
vSemaphoreCreateBinary (smartConfigSemaphore) ;
xSemaphoreTake (smartConfigSemaphore , portMAX_DELAY) ;

// Reset all the previous configuration
wlan_ioctl_set_connection_policy (DISABLE, DISABLE, DISABLE) ;
wlan_ioctl_del_profile (255);

//Wait until CC3000 is dissconected
while (wlan_ioctl_statusget ());

xSemaphoreTake (connectSemaphore, 0); //reset
//create entry for encryption key in EEPROM

it (key) {
nvmem_create_entry (NVMEM_AES128_ KEY_FILEID, AES128 KEY_SIZE) ;
}

const char aucCC3000_prefix[] = {’T’, 'T’, T’ };
wlan_smart_config_set_prefix ((char*)aucCC3000_-prefix);

// Trigger the Smart Config process

A.2 Server Code

61

if (key == NULL)

result = wlan_smart_config_start (0); //without encryption
else

result= wlan_smart_config_start (1); //with encryption

xSemaphoreTake (smartConfigSemaphore , portMAX_DELAY) ;

if (key) {
// Decrypt configuration information and add profile
long ret = wlan_smart_config_process();

// Configure to connect automatically to the AP retrieved in the
wlan_ioctl_set_connection_policy (DISABLE, DISABLE, ENABLE) ;

// reset the CC3000
wlan_stop () ;
vTaskDelay (50) ;
wlan_start (0) ;

¥
int wifi_status (unsigned charx ip_addr) {
if (wlan_ioctl_statusget () != 3) { //disconnected
return O0;
}
if (ip-addr != NULL) {
tNetappIpconfigRetArgs report;
//get ip—address
netapp-ipconfig(&report);
ip-addr [0] = report.auclP [3];
ip_addr [1] = report.auclP [2];
ip_addr [2] = report.auclP [1];
ip-addr [3] = report.aucIP [0];
}
return 1;
}

void wifi_reset () {
wlan_stop () ;
vTaskDelay (50) ;
wlan_start (0) ;

}

//manual connection

void wifi_connect(int security , unsigned charx ssidPtr, int ssidLen ,

unsigned charx decKeyPtr, int keyLen) {
//delete previous connection information
wlan_ioctl_set_connection_policy (DISABLE, DISABLE, DISABLE);
wlan_ioctl_del_profile (255);

//Wait until CC3000 is dissconected
while (wlan_ioctl_statusget ());

switch (security) {

case WLAN_SEC_UNSEC:
wlan_add_-profile (WLAN_SEC_.UNSEC, ssidPtr, ssidLen, NULL, 1, O,
break;

case WLAN_SEC_WEP:

wlan_add_profile (WLANSEC_.WEP, ssidPtr, ssidLen, NULL, 1, keyLen,

break;
case WLAN_SEC.WPA:
case WLAN_SEC.WPA2:

wlan_add_-profile (WLAN_SEC.WPA2, ssidPtr, ssidLen, NULL, 1, 0x18,

decKeyPtr, keyLen);
break;

//set policy to comnect to the stored profile
wlan_ioctl_set_connection_policy (DISABLE, DISABLE, ENABLE) ;

}

static int openServer()
serversock = socket (AF.INET, SOCKSTREAM, IPPROTO.TCP) ;

0, 0,
0, O,
Oxle,

0);

decKeyPtr,

2,

0);

A.2 Server Code

62

sockaddr aj
short port = 80;
a.sa_family = AF_INET;

a.sa_data [0] = (port & O0xFF00) >> 8;

a.sa_data[1l] = (port & Ox00FF);

a.sa_data[2] = 0; //Ip—address 0.0.0.0 connects to
a.sa_data [3] = 0;

a.sa_data [4] = 0;

a.sa_data [5] = 0;

memset(&a.sa_-data[6], 0, 8);

//bind socket to port 80

if (bind(serversock, &a, sizeof(sockaddr)) != 0) {
printk (”bind failed\n”);
return —1;

//set socket to listen for mew comnections
if (listen (serversock ,0) != 0) {
printk (”listen failed\n”);
return —1;
¥
if (serversock > highsock)
highsock = serversock;
return 0;

}

void wifi_checkHttpServer () {
static cc3000-fd_-set socks;
static int clientsock = 0;

//setup for wusing select to monitor socket
CC3000_-FD_ZERO(&socks) ;
CC3000_-FD_SET (serversock , &socks);

if (connectlist [0] != 0) {
CC3000_-FD_SET (connectlist [0] , &socks);
if (highsock < connectlist [0])
highsock = connectlist [0];

//minimum timeout at 5 ms
timeval timeout;
timeout.tv_sec = 0;
timeout.tv_usec = 5000;

//check if socket have something send

all

int readsocks = select (highsock+1, &socks, NULL, NULL,

if (readsocks < 0){
printk (7 error with select”);
return;

sockaddr clientaddr;

socklen_t addr_length = 0;

if (readsocks == 0){
//accept new connection

&timeout) ;

clientsock = accept(serversock , &clientaddr , &addr_length);

if (clientsock >= 0) {
if (connectlist [0] != 0) {
//close ezisting
closesocket (connectlist [0]) ;

}
connectlist [0] = clientsock;
if (highsock < clientsock)

highsock = clientsock;

//error need to restart server

if (clientsock == —57) {
closesocket (serversock);
openServer () ;

}

return;

A.2 Server Code 63

}

}

//This doesn 't work, wusing select for serversockelt gives mno response
if (CC3000_-FD_ISSET (serversock ,&socks)) {
if (connectlist [0] != 0) {
closesocket (connectlist [0]) ;

clientsock = accept(serversock , &clientaddr , &addr_length);
if (clientsock >= 0) {
connectlist [0] = clientsock;
if (highsock < clientsock)
highsock = clientsock;

else if (clientsock == —57) {
closesocket (serversock);
openServer () ;

return;

}

//if select flagged for thing to receive then handle request
if (CC3000_-FD_ISSET (connectlist [0],&socks)) {

clientsock = connectlist [0];
} else {

return;

3
handleHttpRequest () ;

//function for sending over TCP, splitting it up in suitable chunks
//return 0 if managed to send and —1 otherwise

static int TCPsend(long sd, const char xbuf, long len);

static int TCPsend(long sd, const char xbuf, long len) {

}

long offset = 0;
long length = 0;
while(len) {
if (len > 1400)
length = 1400;
else
length = len;

xSemaphoreTake (freeBufferChangeSemaphore ,0); //reset semaphore
int sent = send(sd, buftoffset , length, 0);

if (sent == —1) {

return —1;
//sent == —2 signals no free buffers on the module so have to wait
else if (sent == —2)

xSemaphoreTake (freeBufferChangeSemaphore ,5000/port TICK_RATE_MS) ;
sent = send(sd, buf+offset , length, 0);;

if (sent != length)
return —1;

offset += length;
len —= length;

}

return O0;

#define VALUERES 5
typedef char vString [VALUERES];

A.2 Server Code

64

//struct with settings stored as float wvalues
//float wvalues stored as 5 character string
typedef struct{

vString volume;

vString vinfau;

vString bqg-freq;

vString bqg-bc;

vString bqg-q;

vString bqg-gain;

char end;
} updateValuesFloat;

//stuct with settings stored as integers
typedef struct{
int mute;

struct {
int usb;
int phono;
int spdif;
int wlan;

} input;

int end;

} updateValuesInt;

updateValuesFloat fValues;
updateValuesInt iValues;
int *xiValues_ptr;

char xfValues_ptr;
volatile int done_values;

//receives messages as strings from the other threads about different
void wifi_SendPartialPacket (const packet_t* p,uintl6_t* sendOffset){
*sendOffset = p—>dataLength;
if (!strncmp(”200 OK” ,p—>pData,6))
return;

//if waiting for integer
if (iValues_ptr) {
//convert to integer

*iValues_ptr = atoi(p—>pData);
if(++iValues_ptr == &iValues.end)
done_values = 1;

}
//if waiting for double
else if (fValues_ptr) {
//limit to number using 5 characters
int length = strlen (p—>pData)—1; //—1 for newline
if (length > VALUERES)
length = VALUE_RES;
if (length < VALUE_RES)
memset (fValues_ptr, ’0’, VALUERES-length) ;
memcpy (fValues_ptr+(VALUE_RES—length), p—>pData, length);

fValues_ptr += VALUE_RES;
if (fValues_ptr == &fValues.end)
done_values = 1;
}
¥

static void sendUpdate () {

//prepares message for updating wvalues in the interface
done_values = ;

fValues_ptr = NULL;

iValues_ptr = (intx)&iValues;

//fill up struct with answers in wifi_SendPartialPacket
//have to call in same order as in struct
CmdChan_ProcessRow_const (PACKET_TYPE_WIFI
CmdChan_ProcessRow_const (PACKET_TYPE_WIFI

”preset test Mute.upr”);
”preset test USBx.fpr”);

»

CmdChan_ProcessRow_const (PACKET_TYPE_WIFI

settings

preset test SPDIFx.fpr”);

,
,

CmdChan_ProcessRow_const (PACKET_TYPE_WIFI ,” preset test Phonox.fpr”);
s
,

CmdChan_ProcessRow_const (PACKET_TYPE_WIFI
while (! done_values) ;

”preset test WLAN=x.fpr”);

A.2 Server Code

65

fValues_ptr
iValues_ptr

CmdChan_ProcessRow_const (PACKET_TYPE_WIFI ,
CmdChan_ProcessRow_const (PACKET_TYPE_WIFI ,
CmdChan_ProcessRow_const (PACKET_TYPE_WIFI ,
CmdChan_ProcessRow_const (PACKET_TYPE_WIFI ,
CmdChan_ProcessRow_const (PACKET_TYPE_WIFI |,
CmdChan_ProcessRow_const (PACKET_TYPE_WIFI

= NULL;

while (! done_values) ;

#define RESPONSEH 17

//Copy wvalu
//Master vo

es into
lume

response

(char=*)&fValues;

string

memecpy (allValues+17+RESPONSEH,

//right

volume

memecpy (allValues+28+RESPONSEH,

//left

volume

memcpy (allValues+39+RESPONSEH,

J/vlfu

memcpy (allValues+50+RESPONSEH,
//Biquad frequency
memcpy (allValues+61+RESPONSEH,

//Biquad Boost

Cut

memecpy (allValues+72+RESPONSEH,

//Biquad Q

memecpy (allValues+83+RESPONSEH,
//Biquad Gain
memecpy (allValues+94+RESPONSEH,

if (iValues
allValues
allValues
allValues
allValues
allValues

else if(iVa
allValues
allValues
allValues
allValues
allValues

else if(iVa
allValues
allValues
allValues
allValues
allValues

else if(iVa
allValues
allValues
allValues
allValues
allValues

}

.input.usb) {

RESPONSEH+105
RESPONSEH+106
RESPONSEH+107
RESPONSEH+108
RESPONSEH+109

lues .
RESPONSEH+105
RESPONSEH+106
RESPONSEH+107
RESPONSEH+108
RESPONSEH+109

lues.input.spdi
RESPONSEH+ 105
RESPONSEH+ 106
RESPONSEH+107
RESPONSEH+108
RESPONSEH+109

lues .input.wlan
RESPONSEH+105
RESPONSEH+106
RESPONSEH+107
[RESPONSEH+108]
[RESPONSEH+109]

if (iValues.mute) {

allValues
allValues
allValues
allValues
allValues
}else{
allValues
allValues
allValues
allValues
allValues

RESPONSEH + 6]
RESPONSEH+7]
RESPONSEH+8]
RESPONSEH+9]
RESPONSEH+ 10

RESPONSEH+ 6]
RESPONSEH+7]
RESPONSEH 8]
RESPONSEH+9]
RESPONSEH+10)]

input.phono

i~

-
~

U
'g
B

-~

fValues.

fValues.

fValues.

fValues.

fValues.

fValues .

fValues.

fValues

”vol

get”);

volume, 5);
volume, 5);
volume, 5);
vinfau, 5);
bq-freq, 5);
bg-bc, 5);

bg-q, 5);

.bg-gain, 5);

get PEQUserTarget—1_1[0..
get PEQUserTarget—1_1[0..
get PEQUserTarget—1_1[0..
get PEQUserTarget—1_1[0..

4]

4]
4]
4]

”uservalue get VeryLongNameForAUser”);
”biquad
”biquad
”biquad
”biquad

F0”);
BC”) ;
Q)
")

A.2 Server Code

66

//read, parse and respond to http request
static void handleHttpRequest (){
int clientsock = connectlist [0];
static char buff[1000]; //buffer to store received message
char error_response[23]= {’H’,’T’,’T’,°P’,’>/’>,’17,°.7,70",7 >,74>,°0°,°4"," 7|
N’ ,707,°67,° 7, °F? 70’ ,’u’,’n’,’d’,’\n"’ };
char OK_response[17]= {’'H’,’T’,°T’,’P’>,>/°,’1°,>.>, 70", >,°2°,°0°,°0°," *,’0",
K’ ,’\n’,’\n’};
int bytes = recv(clientsock , buff, 1000, 0); //read response from wlan
if (bytes <= 0)
closesocket (clientsock);
printk (” failed recv\n”);
return;
buff[bytes] = *\0’; //null terminate for search to work
/xprintk (" bytes received: %d\nmessage:” ,bytes);
for (int i = 0; i < bytes; i++) {
printk("%c”,buff[i]);
printk ("\n”);x/
xSemaphoreTake (sendingDoneSemaphore, 0); //reset
int sent = —1;
if (strstr (buff, "HTTP/1.0”) != NULL || strstr (buff, "HTTP/1.17) != NULL){
if(strstr (buff, "GET”) != NULL){
charx request = strchr (buff,’?’); //check for ? to indicate settings request
if (request != NULL) { //update values request
request++; //remove ? from request
if (strncmp(request ,” update” ,4) == 0){ //sends update with all the current values
sendUpdate () ;
sent = TCPsend(clientsock , allValues ,h sizeof(allValues));
¥
//Handle commands
else{
int i = (request[0] == &’ 7 1 0); //fizes a rare bug in javascript
char* command = &request [i];
while (i<bytes) {
//replaces 777 with ” 7 in request
if(request[i] == "7 7){
request [i] = > 7
//meaning there is another command after this one
else if (request[i] == ’'&’
request [i] = '\0’; //add null termination
//send message directly as a string
CmdChan_ProcessRow (PACKET_TYPE_WIFI ,command, false);
//printk (”command: %s\n” , command) ;
command = &request [i+1];
¥
//
else if (request[i] == *) {
request[i] = "\0’;
CmdChan_ProcessRow (PACKET_TYPE_WIFI ,command, false);
//printk (”command: %s\n” command) ;
break;
it++;
¥
//send response
sent = TCPsend(clientsock , OK_response,sizeof(OK_response));
}
else if (strstr(buff,” / ”)){ //site request
sent = TCPsend(clientsock , site, SITE_SZ);
}
else { //nothing supported
sent = TCPsend(clientsock , error_response, 23);
}

}
else{ //nothing supported

A.3 Web Interface Code 67

sent = TCPsend(clientsock , error_response , 23);
//wait for sending done before closing socket
if (sent == 0)

xSemaphoreTake (sendingDoneSemaphore, portMAX_DELAY) ;

closesocket (clientsock);
connectlist [0] = 0;

code/remotewifi.h

#ifndef _-REMOTE_WIFI_H_
#define . REMOTE_WIFI_H_

#include ”packet_list.h”
#include <FreeRTOS.h>
#include <task.h>
#include <semphr.h>

extern xSemaphoreHandle connectSemaphore;
extern xSemaphoreHandle DHCPSemaphore;

void wifi_SendPartialPacket (const packet_t*x p,uintl6_t* sendOffset);

void wifi_init (void);

J//return 1 if connected, zero otherwise

//ip-addr is 4 bytes long and is filled in by the function

int wifi_status (unsigned charx ip_addr);

//security — no security = 0, WEP = 1, WPA = 2, WPA2 = 3

void wifi_connect(int security , unsigned charx ssidPtr, int ssidLen, unsigned charx keyPtr
, int keyLen);

void wifi_smartConfig (unsigned charx key);

void wifi_serverInit (void);

void wifi_checkHttpServer (void);

void wifi_reset (void);

#Hendif

A.3 Web Interface Code

code/remote.js
var pendingCommand = false; //Flag for pending commands
var sendingFlag = false; //blocking while sending
var command2Send = 7?”; //pending command queue

var x; //xmlHttpRequeuest

//button event handler
function bClick(obj)
{
if (sendingFlag){ //if already sending data put command in queue
command2Send += "&”+4obj .name;
timeoutPendingCommand () ;
}else{
x = new XMLHttpRequeuest () ;

x.open("GEI”, ”?”4obj.name, true);
x.send (null);

sendingFlag = true;

x.onreadystatechange = checkPendingCommands;

A.3 Web Interface Code

68

}

//radio button event handler
function radioClick (obj)

if (sendingFlag){//if already sending data put command in queue
command2Send += "&”+4obj.value;
timeoutPendingCommand () ;
}else{
x = new XMLHttpRequeuest () ;
x.open("GEI”, ”?”4obj.value, true);
x.send (null);

sendingFlag = true;

x.onreadystatechange = checkPendingCommands;
}
}
//dropdown
function ddClick(obj)
{
if (sendingFlag){//if already sending data put command in queue
command2Send 4= "&”+4obj.name+” "”+obj.value;
timeoutPendingCommand () ;
}else{
x = new XMLHttpRequeuest () ;
x.open("GEI”, ”?”4obj.name+” "”4+obj.value, true);
x.send (null);
sendingFlag = true;
x.onreadystatechange = checkPendingCommands;
}
}

//checkbox event handler
function cbClick(obj)

{
if (sendingFlag){//if already sending data put command in queue
if (obj.checked){
command2Send += ”&”+4o0bj .name;
}else{
command2Send += "&”+4o0bj.value;
}
timeoutPendingCommand () ;
}else{
x = new XMLHttpRequeuest () ;
if (obj.checked){
x.open("GEI”, ”?”4obj.name, true);
}else{
x.open("GEI”, ”?”4obj.value, true);
x.send (null);
sendingFlag = true;
x.onreadystatechange = checkPendingCommands;
¥
¥

//Slider event handler
var flag=0;

var pendingEvent = 0;
var pendingObj = null;
var timer = null;

function slChange(obj)

//calculate how many decimals to use to optimaly fill the five

var decimals = Math.round(—Math.log (parseFloat ((obj.step) ,10))/Math.LN10);

if (decimals < 0)
decimals = 0;

byte

var sliderValue = parseFloat (obj.value,10).toFixed(decimals);

avalble

A.3 Web Interface Code

69

//updating the number over the slider
var numberid = obj.id4+”Out”;
document . getElementByld (numberid) .innerHTML = sliderValue;

//checks if slider has changed the last 400ms and then sends
clearTimeout (timer) ;

timer = setTimeout (function () {
//calculate how many decimals to wuse to optimaly fill the five

byte

avalble

var decimals = Math.round(—Math.log(parseFloat ((obj.step) ,10))/Math.LN10) ;

if (decimals < 0)
decimals = 0;

//updating the number over the slider
var numberid = obj.id+”Out”;
document . getElementById (numberid) .innerHTML = sliderValue;

if (sendingFlag){ //i¢f already sending data put command in queue
if (parselnt (obj.value) > parseFloat (obj.max)){
command2Send += 7&”+4obj.name+” "”+4o0bj .max;
}else if(parselnt (obj.value) < parselnt(obj.min)){
command2Send += 7&”4obj.name+” "”4o0bj.min;
}else{

}

timeoutPendingCommand () ;

command2Send += "&”+4obj.name+” "7+sliderValue ;

}else{
x = new XMLHttpRequeuest () ;
if (parselnt (obj.value) > parseFloat(obj.max)){

x.open("GEI”, ”?”4obj.name+” "”+obj.max, true);
}else if(parselnt(obj.value) < parselnt(obj.min)){

x.open("GEI”, ”?”4obj.name+” "”+obj.min, true);
}else{
) x.open("GEI”, ”?”4obj.name+” ""+sliderValue , true);

x.send (null);
sendingFlag = true;
x.onreadystatechange = checkPendingCommands;

}
},400);

//Checks range slider support
function checkSLsupport (){

var i = document.createElement (”input”);
i.setAttribute (”type”, “range”);
return i.type !== "text”;

}

//Removes extra zeros in begining of string
function removeZeroBegining(s){
for (var i = 0; i < s.length; i++4){
if(s[i] '= 0){
if(s[i] = 7.7)
return s.substring (i—1);

else
return s.substring (i);
}
return 707 ;
}
window . onload = updateValues; //fire on wedsite load
//Update all values on website
var once = 0

function updateValues (){

//send requeuest for current status of DSP
x = new XMLHttpRequeuest () ;

x.open ("GET” ,” ?update” , false) ;

x.send (null);

var response = x.responseText;

//Ezample response: ?mute=true0&mvol=000128rvol=0010061lvol=001008vlfu=0.1116bfre

A.3 Web Interface Code

70

=400008bbos=00.036bqqq=0.0186bgai=000.98inpt=USB00

//Parse response

if (document.getElementsByName(” preset "recall "Mute.upr”) [0] != null){ //check if widget
is present in layout
inputValue = response.substr(response.indexOf(”mute”)+5,5);
if (inputValue.indexOf(” false”) != —1){
document . getElementsByName (” preset "recall "Mute.upr”) [0]. checked = true;
}else{
document . getElementsByName (” preset "recall "Mute.upr”) [0]. checked = false;
}
¥
if (document.getElementsByName(” vol "set”) [0] != null){
var o = document.getElementsByName (” vol“set”) [0];
var r = response.substr(response.indexOf(”mvol”)+5,5);
r = removeZeroBegining(r);
o.value = r;
var s = o.id.toString () ;
s= s+70ut” ;
document . getElementByld (s) .innerHTML = r;
}
if (document.getElementsByName(” vol“set " 17)[0] != null){
var o = document.getElementsByName (” vol set™1”)[0];
var r = response.substr(response.indexOf(”Lvol”)+5,5);
r = removeZeroBegining(r);
o.value = r;
var s = o.id.toString ();
s= s+70ut”;
document . getElementById (s) .innerHTML = r;
¥
if (document.getElementsByName(” vol "set "r”) [0] = null){
var o = document.getElementsByName(” vol set ™ r”)[0];
var r = response.substr(response.indexOf(”rvol”)+5,5);
r = removeZeroBegining(r);
o.value = r;
var s = o.id.toString ();
s= s+”70ut”;
document . getElementBylId (s) .innerHTML = r;
}
if (document . getElementsByName (” uservalue “set VeryLongNameForAUser”) [0] != null){
var o = document.getElementsByName (” uservalue “set VeryLongNameForAUser”)
[0];
var r = response.substr(response.indexOf(” vlifu”)+5,5);
r = removeZeroBegining(r);
o.value = r;
var s = o.id.toString () ;
s= s+”Out”;
document . getElementById (s) .innerHTML = r;
}
if (document.getElementsByName (” biquad “set " PEQUserTarget—1_1[0..4] F0”) [0] != null)

var o = document.getElementsByName (” biquad “set "PEQUserTarget—1_1[0..4] " F0”

) [0]5
var r = response.substr(response.indexOf(”bfre”)+5,5);
r = removeZeroBegining(r);
o.value = r;
var s = o.id.toString ();
s= s+70ut”;
document . getElementById (s) .innerHTML = r;

}

if (document.getElementsByName (” biquad "set " PEQUserTarget—1_1[0..4] "BC”) [0
var o = document.getElementsByName (” biquad "set " PEQUserTarget—1

) [0]5

var r = response.substr(response.indexOf(”bbos”)+5,5);
r = removeZeroBegining(r);
o.value = r;

var s = o.id.toString ();
s= s4+”7Out”;

]

= null){
_1[0..4]"BC”

A.3 Web Interface Code 71

document . getElementBylId (s) .innerHTML = r;

}

if (document .getElementsByName (” biquad “set " PEQUserTarget—1_1[0..4]7Q”) [0] != null){
var o = document.getElementsByName (” biquad “set "PEQUserTarget—1_1[0..4] Q")
[0];
var r = response.substr(response.indexOf(”bqgqq”)+5,5);
r = removeZeroBegining(r);
o.value = r;
var s = o.id.toString ();
s= s+70ut”;
document . getElementById (s) .innerHTML = r;
¥
if (document . getElementsByName (” biquad " set "PEQUserTarget—1_1[0..4]7G”) [0] != null){
var o = document.getElementsByName (” biquad “set " PEQUserTarget—1_1[0..4]~G”)
[0];
var r = response.substr(response.indexOf(”bgai”)+5,5);
r = removeZeroBegining(r);
o.value = r;
var s = o.id.toString ();
s= s4+7Out”;
document . getElementByld (s) .innerHTML = r;
¥
//update drop down and radiobuttons position
var inputValue = response.substr(response.indexOf(”inpt”)+5,5);
inputValue = inputValue.replace(/0/g,””); //strip padding if needed
inputValue = ”preset "recall "”+inputValue+” x.fpr”;
var elementsName = document.getElementsByName (” pre”);
var elementsld = document.getElementByld(” prel”);
updateRadioAndDD (elementsName , elementsId ,inputValue) ;
if (! checkSLsupport () && once == 0){
alert ("No slider support, please choose another browser for a better experience”);
once=1;

}

//Function for handling if there are commands waiting to be sent while waiting for server
to anwser
function checkPendingCommands () {
if (x.readyState == 4){
if (pendingCommand) {
x = new XMLHttpRequeuest () ;
x.open("GEI” , command2Send, true);
x.send (null);

command2Send = 77?7
pendingCommand = false;
x.onreadystatechange = checkPendingCommands;

}else{
sendingFlag = false;
}

}

/*timeout for pendingCommands
If no answer is recived 5 seconds after a command is sent to server

the pending command2Send queue will be sentx/
function timeoutPendingCommand () {
pendingCommand = true;

setTimeout (function () {
if (pendingCommand) {
x = new XMLHttpRequeuest () ;
x.open("GEI” , command2Send, true);
x.send (null);
command2Send =
pendingCommand = false;

non .

}else{
sendingFlag = false;
} },5000);

A.3 Web Interface Code

72

}
//Goes

throught mame array of radiobutton and Dropdown and updates the wvalues

function updateRadioAndDD (elementsName ,elementsId, changeVal){

for (var i=0; i<elementsId.length; i++4){
if (elementsld.options[i].value == changeVal) {
elementsId[i].checked = true;
elementsId [i].selected = true;
}
for (var i = 0; i < elementsName.length; i++4) {
if (elementsName[i].value == changeVal) {
elementsName[i].checked = true;
elementsName[i]. selected = true;
}
}
}
code/xml2html.py
import base64
from math import log, ceil
#Class wused to build the HTML file
class htmlFile:

def

_-init__(self ,newfilename ,backgroundColor , forgroundColor , title):

self.inGroup = False

self .f = open(newfilename, ’‘w’)

self . f.write(’HTTP/1.0 200 OK\nContent—type: text/html\n\n<!DOCTYPE html>\n<html>\
n<head>\n<title >’'+title+’'</title>")

self.f.write(’\n<script type="text/javascript”>function bClick(e){if (sendingFlag){
command2Send+="&”+e¢ . name ; timeoutPendingCommand () }

else {x=new XMLHttpRequest;x.open ("GET”,”?” +e.name, true) ;x.send (null);sendingFlag=
true;x.onreadystatechange=checkPendingCommands}}

function radioClick (e){if(sendingFlag){command2Send+="&"+e¢.value;
timeoutPendingCommand () } else {x=new XMLHttpRequest;x.open(”GET”,”?”+e.value,
true);

x.send(null);sendingFlag=true;x.onreadystatechange=checkPendingCommands}}function
ddClick (e){if (sendingFlag)

{command2Send+="&"+e .name+"""+e.value;timeoutPendingCommand () } else {x=new
XMLHttpRequest ;x.open ("GET” ,”?” 4 e .name+”"7+e.value , true) ;

x.send (null);sendingFlag=true;x.onreadystatechange=checkPendingCommands}}function
cbClick (e){if (sendingFlag){if (e.checked)

{command2Send+="&"+e .name} else {command2Send+="&"+e . value } timeoutPendingCommand () }
else {x=new XMLHttpRequest; if (e.checked){x.open

(?”GET” ,”?”+e.name, true) }else{x.open("GET” ,”?” 4 e.value ,true) }x.send(null);
sendingFlag=true;x.onreadystatechange=checkPendingCommands}}

function slChange(e){var t=Math.round(—Math.log (parseFloat (e.step,10))/Math.LN10);
if (t<0)t=0;var n=parseFloat(e.value,10).toFixed(t);

var r=e.id+"Out”;document.getElementByld(r).innerHTML=n;clearTimeout (timer);timer=
setTimeout (function

var t=Math.round(—Math.log(parseFloat(e.step,10))/Math.LN10);if (t<0)t=0;var r=e.id
+70ut” ;document . getElementById (r) .innerHTML=n;

if (sendingFlag){if (parselnt(e.value)>parseFloat (e.max)){command2Send+="&"+e .name
+”"74+e.max}else if(parselnt(e.value)

<parselnt (e.min)){command2Send+="&"+e .name+”""+e.min} else {command2Send+="&”+e . name
+”"”4+n}timeoutPendingCommand () }

else {x=new XMLHttpRequest;if (parselnt (e.value)>parseFloat (e.max)){x.open(”GET
7 ,7?” 4+ e.name+”""+e.max, true) }else if(parselnt(e.value)

<parselnt (e.min)){x.open(?GET” ,”?”+e.name+"""+e.min, true)}else{x.open("GET” ,”?" +e.
name+”""+n, true)}x.send(null);sendingFlag=true;

x.onreadystatechange=checkPendingCommands}} ,400) }function checkSLsupport(){var e=
document . createElement (” input”);

e.setAttribute (" type”,”range”);return e.type!=="text”}function removeZeroBegining (
e){for(var t=0;t<e.length;t++){

A.3 Web Interface Code 73

if(e[t]!=0){if(e[t]==".")return e.substring(t—1);else return e.substring(t)}}
return”0”} function updateValues () {

x=new XMLHttpRequest;x.open(”GET” ,” ?update”,false);x.send(null);var e=x.
responseText ;

if (document .getElementsByName (” preset "recall "Mute.upr”) [0]!=null){i=e.substr(e.

indexOf(”mute”)+5,5);if (i.indexOf(” false”)!=-1)

{document . getElementsByName (” preset "recall "Mute.upr”) [0]. checked=true}else{
document . getElementsByName (” preset "recall "Mute.upr”) [0]. checked=false}}

if (document.getElementsByName(” vol “set”) [0]!=null){var t=document.
getElementsByName (” vol "set”) [0]; var n=e.substr (e.indexOf(”mvol”)+5,5);

n=removeZeroBegining(n);t.value=n;var r=t.id.toString ();r=r+"Out”;document.
getElementByld (r) .innerHTML=n}if (document.getElementsByName (” vol set "1”) [0]!=
null)

{var t=document.getElementsByName(” vol set 1”) [0]; var n=e.substr (e.indexOf(” Lvol”)
+5,5) ;n=removeZeroBegining (n);

t.value=n;var r=t.id.toString () ;r=r+"Out”;document.getElementByld (r) .innerHTML=n}
if (document .getElementsByName(” vol “"set "r”) [0]!=mnull)

{var t=document.getElementsByName(” vol set r”) [0]; var n=e.substr(e.indexOf(”rvol”)
+5,5);n=removeZeroBegining(n);t.value=n;

var r=t.id.toString () ;r=r+”0Out”;document.getElementByld(r) .innerHTML=n}if (document
.getElementsByName (” uservalue “set " VeryLongNameForAUser”) [0]!=mnull)

{var t=document.getElementsByName (” uservalue ™ set” VeryLongNameForAUser”) [0]; var n=e
.substr (e.indexOf(” vIifu”)+5,5);

n=removeZeroBegining(n);t.value=n;var r=t.id.toString ();r=r+"Out”;document.
getElementBylId (r) .innerHTML=n}

if (document . getElementsByName (” biquad "set "PEQUserTarget—1_1[0..4] " F0”) [0]!=mnull){
var t=document.getElementsByName (” biquad "set " PEQUserTarget—1_1[0..4] F0”) [0];

var n=e.substr (e.indexOf(” bfre”)+5,5) ;n=removeZeroBegining(n);t.value=n;var r=t.id
.toString () ;

r=r+"0Out” ;document . getElementById (r) .innerHTML=n}if (document.getElementsByName (”
biquad “set "PEQUserTarget—1_1[0..4] "BC”) [0]!=null){

var t=document.getElementsByName (” biquad "set "PEQUserTarget—1_1[0..4]"BC”) [0]; var n
=e.substr(e.indexOf(” bbos”)+5,5);

n=removeZeroBegining(n);t.value=n;var r=t.id.toString ();r=r+"0Out”;document.
getElementById (r) .innerHTML=n}

if (document .getElementsByName (” biquad “set "PEQUserTarget—1_.1[0..4]7Q”) [0]!=mnull){
var t=document.getElementsByName (” biquad “set " PEQUserTarget—1_1[0..4]7Q”) [0];

var n=e.substr (e.indexOf(”bgqq”)+5,5);n=removeZeroBegining(n);t.value=n;var r=t.id
.toString () ;r=r+”Out” ;document.getElementById(r) .innerHTML=n}

if (document .getElementsByName (” biquad “set "PEQUserTarget—1_.1[0..4]7G”) [0]!=mnull){
var t=document.getElementsByName (” biquad “set " PEQUserTarget—1_1[0..4]7G”) [0];

var n=e.substr (e.indexOf(” bgai”)+5,5);n=removeZeroBegining(n);t.value=n;var r=t.id
.toString () ;r=r4+”"Out”;

document . getElementById (r) .innerHTML=n}var i=e.substr(e.indexOf(”inpt”)+5,5);i=i.
replace (/0/g,””);i="preset "recall™+i4+"x.fpr”;

var s=document.getElementsByName(” pre”);var o=document.getElementBylId (” prel”);
updateRadioAndDD (s ,0,i);if (! checkSLsupport ()&&once==0){

alert ("No slider support, please choose another browser for a better experience”);
once=1}}function checkPendingCommands(){if(x.readyState==4){

if (pendingCommand) {x=new XMLHttpRequest;x.open (”GET” ,command2Send, true) ;x.send (
null);command2Send=""7";

pendingCommand=false ;x.onreadystatechange=checkPendingCommands}else{sendingFlag=
false}}}function timeoutPendingCommand () {

pendingCommand=true ;setTimeout (function () {if (pendingCommand) {x=new XMLHttpRequest;
x.open (?”GET” ,command2Send , true) ;x.send (null);

command2Send=""7";pendingCommand=false } else {sendingFlag=false }},5e3)}function
updateRadioAndDD (e, t ,n){for (var r=0;r<t.length;r++){

if (t.options[r].value==n){t[r].checked=true;t[r].selected=true}}for(var r=0;r<e.
length;r++){if (e[r]. value==n){e[r].checked=true;e[r].selected=true}}}

var pendingCommand=false;var sendingFlag=false;var command2Send="7";var x;var flag
=0;var pendingEvent=0;var pendingObj=null;

var timer=null;window.onload=updateValues;var once=0</script>"’)

self.f.write(’\n<meta name="viewport” content="width=device—width”>")

self . f.write(’\n<style>button[type="button”]{width:98%; height:50px; background—
color:#787878; —moz—border—radius: 10px; border—radius: 10px;}

input [type="range”|{ background—color: #333; color: #fff; width:95%; } input[type
="range”]|:: — webkit—slider —thumb{ background—color:#888; height:20px; width:20
px; }

body{background—color: '+backgroundColor+’;} #wrapper{margin:auto; width:90%;
background—color: '+forgroundColor+’; box—shadow:10px 10px 30px black; padding—
bottom:1%;}

h3{margin:1%;} .DD{margin:1%;} .CB{margin:1%;} .SL{margin:1%;} .RB{margin:1%;} #
logo{ margin:1%;} @media screen and (min—width: 600px) {.BT{margin—left:1%;

A.3 Web Interface Code 74

width:25%;}

.hbox{margin—left:3%; display: inline—block; width:45%;}} @media screen and (max—
width: 601px) {.BT{margin—left:1%; width:100%;}

.hbox{margin—left:3%; display: inline—block; width:98%;}} .gbox{margin:1%; border—
style:ridge; }</style>")

self.f.write(’</head>\n<body>\n’)

self.f.write(’'<div id="wrapper”>")

self.img2base64 ()

def closehtmlFile(self):
self.f.write(”</div></body >\n</html>")
self . f.close ()

#Encode logo as Base64 for faster loading of web interface
def img2base64(self):
data_uri = base64.encodestring (open(”logo.png”,”’rb”) . .read())
img_tag = ’<center>’ .format(
data_uri)
self . f.write(’'<div id="logo”>"+img_tag+’</div></center>")

#Radio button
def addRb2Html(self ,val ,cmd) :
if self.inGroup:
addHboxStart ()
self.f.write(’'<input type="radio” name="'+4+cmd[0 : 3]4+’'” onclick="radioClick (this)”
value=""+cmd+ "> +val+4+’
\n"’)

if self.inGroup:
endDiv ()

def startRadio(self):
self.f.write(’<div class="RB’><form>\n"’)
def endRadio(self):
self.f.write(”</form></div>\n")

#Checkbox
def addCb2Html(self ,val ,cmdOn,cmdOff) :
if self.inGroup:
addHboxStart ()
self.f.write(’<div class="CB’><form>\n")
self . f.write(’<input type="checkbox” name="’'+cmdOn+’'” onclick="cbClick (this)”
value=""4+cmdOff4+ "> 4+val+’
\n"’)
self . f.write(”</form></div>\n")
if self.inGroup:
endDiv ()
#Button
def addButton2Html(self ,cmd, val):
self.f.write(’<div class="BT">\n")
self . f.write(’<button type="button” name="'4+cmd+’” onclick="bClick (this)”>’+valt’
</button></br/>\n")
self . f.write(”</div>\n")

#Dropdown
def addDd2Html(self ,cmd) :
self . f.write(’<div class="DD’"><select id="’4cmd[0 : 3]+ ’1” onchange="ddClick (this)
7>\n’)

#Add item to DropDown
def addItemDD(self ,val ,cmd):
self . f.write(’<option value="’'+4cmd+’’>’+val4+’</option>\n"’)

def endDropDown(self):
self.f.write(”</select ></div>\n")

#Range slider
def addSl12Html(self ,maxVal,minVal, text, cmd):
if self.inGroup:
self.addHboxStart ()
r = 10x*xceil (log(float (maxVal)—float (minVal) ,10)—3); #calculate stepsize of slider
if r >= 10:
r=r1r / 10
iDtext= text.translate (None, ’ !.;,/—%x7")
self.f.write(’<div class="SL”"><form>\n")

A.3 Web Interface Code 75

self.f.write(’<div style="float:left”>’+text+ : </div><div id="'+iDtext+’Out”
style="float:left”>0</div>
 ’); #add sider texzt and slider wvalue
indicator

self.f.write(’<input type="range” name="’4cmd+4’” id=""+iDtext+’” value=""+str (
minVal)+’” onchange="slChange (this)”

max=""+str (maxVal)+’” min=""+str (minVal)+’” step=""+str(r)+’” >
\n’)

self . f.write(”</form></div>\n")

if self.inGroup:
self .endDiv ()

#Add hbox start
def addHboxStart(self):

self.f.write(’\n<div class="hbox”>")

#Add start groupbozx
def addGroup(self ,lable):

self.inGroup = True
self.f.write(’<div class="gbox”>\n<h3>’+lable+’</h3>")

#Add div end for groupboz
def endGroup(self):

self . f.write(’</div>\n")
self.inGroup = False

#Add end div
def endDiv(self):

self.f.write(’'</div>\n")

#add label
def addLabel(self ,label):

#Class

self.f.write(’<h3>"+label+’</h3>")

that parses XML file

class parseXML:

#Gets text that is between ”">7 (text) 7<”
def getText(self ,line,xmlfile):

#removes comments from line

commentStart = line.find ("<!—=")
if commentStart != —1:

line=line[: commentStart]
text = "xml error”
while 1:

if line.find (’>") != —1: break

line=xmlfile.next ()
#removes comments from line

commentStart = line.find ("<!—=")
if commentStart != —1:
line=line | : commentStart]
startIndex = line.find (’>")+1
if 7<” in line [startIndex :]: #texzt on one line
text = line[startIndex : line.index(’</’,startIndex)]

return text
elif line[startIndex].isalpha(): #texzt on one line end on next

text = line[startIndex : |
return text
else: #text on mnext line

line = xmlfile.next ()

while 1: #jump intill text is found
if line.strip(’ \t\n\r ’): break
line = xmlfile.next ()

if 7</” in line: #end on same line as text
text = line[: line.index(’</’)]
return text

else: #only text on line
text = line

return text

#gets cmd attribute
def getCMD(self ,line ,xmlfile ,name):

cmd="xml error”

A.3 Web Interface Code

while 1:

#print line

if line.find (name) != —1: break

line = xmlfile.next ()

#remowves comments from line

commentStart = line.find ("<!—=")

if commentStart != —1:

line=line[: commentStart]

startIndex = line.index (namet+’="")+len (name)+2
cmd = line[startIndex : line.index(’”’,startIndex)]
cmd = cmd.replace (” 7 ,777)

return cmd

#Parse zml file
def ScanXml(self ,filename ,bg, fg):
i =0
inDropDown = False
inRadioButton = False
xmlfile = open(filename , r
for 1 in xmlfile: #scan for back/foreground colors
if ”background” in
bg=self .getCMD(1, xmlfile, ”color”)
if ”forground” in 1:
fg=self .getCMD(1l,xmlfile, ”color”)
xmlfile . close ()

[

xmlfile = open(filename, ’'r’
webHtml = htmlFile(’remote.htm’ ,bg,fg ,” Remote”)
for line in xmlfile:
i4=1
if "<title>” in line:
title = self.getText(line ,xmlfile)

webHtml = htmlFile(’remote.htm’ ,bg,fg,6 title)

elif ”radiobutton” in line:
if not inRadioButton:
webHtml. startRadio ()
inRadioButton = True
cmd = self.getCMD(line , xmlfile ,”cmd”)
val = self.getText(line ,xmlfile)
webHtml.addRb2Html(val ,cmd)

elif 7</vbox>" in line and inRadioButton:
webHtml. endRadio ()
inRadioButton = False

elif ”"numeric” in line:

minRange = 0
maxRange = 100
val = self.getText(line ,xmlfile)

cmd = self.getCMD(line ,xmlfile ,”cmd”)
if ?min” in line:

minRange = self.getCMD(line ,xmlfile ,” min”)
if ?max” in line:

maxRange = self.getCMD(line ,xmlfile ,”max”)
webHtml. addS12Html (maxRange , minRange , val , cmd)

elif ”"<groupbox” in line:
startIndex = line.index(’title="")+7
text = line[startIndex : line.index(’”’,startIndex)]
webHtml.addGroup (text)

elif 7?</groupbox” in line:
webHtml.endGroup ()

elif ”<label>” in line:
val = self.getText(line ,xmlfile)
webHtml.addLabel (val)

elif ”"<combobox>" in line:

inDropDown = True
while not "<item” in line:
line = xmlfile.next ()

cmd = self.getCMD(line , xmlfile ,”cmd”)

A.3 Web Interface Cod

e

77

val = self.getText(line ,xmlfile)
webHtml.addDd2Html(cmd) #add start to dropdown
webHtml.addItemDD (val ,ecmd) #add first item to dropdown

elif ”</combobox>" in line:

inDropDown=

False

webHtml.endDropDown ()

elif 7"<item” in
val = self.

elif ”"<checkbox

line and inDropDown:
getText (line , xmlfile)
cmd = self.getCMD(line ,xmlfile ,”cmd”)
webHtml . addItemDD (val ,cmd)

” in line:

cmdOn = self.getCMD(line ,xmlfile ,”on”

cmdOff = se

1f .getCMD (line

,xmlfile ,” off”)

val = self.getText(line ,xmlfile)
webHtml.addCb2Html(val ,cmdOn, cmdOff)

elif "<button”

in line:

val = self.getText(line ,xmlfile)
cmd = self.getCMD(line ,xmlfile ,”cmd”)
webHtml.addButton2Html (cmd, val)

webHtml. closehtmlFi
class data2Array:

def __init__(self , filename,
self . myfile = open(filen

le ()

ArrayName) :
ame, 'r’)

self.ArrayName = ArrayName

#Trasnforms HTML data into
def transform2Array(self):

array with HEX

htmlArray = 7’
cnt = 0
br = 0
while 1:
char = self.myfile.read (1)
if char == ””: break
cnt +=1
br 4= 1

htmlArray += " \\x%02x” % ord(char)

if br >= 19:

htmlArray += 7\\\n”
br=0
add-nulls = lambda number, zero_count

cnt = add_nulls(cnt,6) #padds cnt with
htmlArray = str(cnt) + ”\n” + htmlArray #add cnt header to file

self . myfile.close ()
filel = open(”httpremot
filel .write(str (htmlArr
filel .close ()

filename = ’zygote.xml’
print ’Starting XML2HTML’
p=parseXML ()

e w?)
ay))

values

read by character

7 {0:0{1}d}” . format (number,

leading zeros

list

zero_count)

p.ScanXml(filename , *#127533° , "#FfFfFf’) #Standard colors of mnothing is specifide in XML

file
site = data2Array(”remote.htm”
site.transform2Array ()
print ”done o

<window icon="bohmeraudio.ico”>

<background color="#127533">
<forground color="#FfFfFf’>

»Gite?
,7site”)

code/zygote.xml

A.3 Web Interface Code

78

<title>Remote control</title>
<vbox>

<numeric cmd="vol set” >Master volume</numeric> <!—— "vol get”: LED intensity —>

<checkbox on="preset recall Mute.upr” off="preset recall Unmute.upr”>
Mute
</checkbox>
<hbox>
<label>Input source</label>
<vbox>
<radiobutton cmd=" preset recall USBx*.fpr”>USB</radiobutton><!—— " preset test USBx.

fpr”: LED color —>
<radiobutton cmd=" preset recall Phonox*.fpr”>Phono </radiobutton>
<radiobutton cmd=" preset recall SPDIFx*.fpr”>SPDIF</radiobutton>
<radiobutton cmd=” preset recall WLANx*.fpr”>WLAN</radiobutton>
</vbox>
</hbox>

<hbox>
<label>Sound Profiles</label><!—— made up profiles —>
<combobox>
<item cmd=
<item cmd=
<item cmd=
<item cmd=
</combobox>
</hbox>

”»

preset recall profile Movie”>Movie</item>
preset recall profile Speach”>Speech</item>
preset recall profile Music”>Music</item>
preset recall profile Pary”>Party</item>

”»
»

»

<groupbox title="Advanced Features”>
<hbox>

<numeric cmd="biquad set PEQUserTarget—1_1[0..4] FO0” min="0" max="48000”">Frequency

</numeric> <!—— maz min range added by anders——>
<numeric cmd="biquad set PEQUserTarget—1_1[0..4] BC’>Boost / Cut</numeric>
<numeric cmd="biquad set PEQUserTarget—1_1[0..4] Q” min="0" max="1">Q</numeric>
<numeric cmd="biquad set PEQUserTarget—1_1[0..4] G”>Gain</numeric>
</hbox>
</groupbox>
<button cmd="button press”>Press</button> <!—— added by Anders—>
</vbox>
</window>

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Acronyms
	Introduction
	Thesis Outline
	Overview
	Requirements

	Theory
	Wi-Fi
	Network Protocols
	SPI
	Antenna Alternatives
	Cross Platform Software

	Hardware Components
	Wi-Fi Chip
	Requirements
	Off the Shelf Wi-Fi Chip Alternatives
	TiWi-SL Wi-Fi-Module

	Antenna
	Microcontroller

	PCB Design
	Schematic
	Level Shifting

	PCB Layout
	Assembling the PCB

	Software
	SPI Driver
	Extended SPI
	Implementing the Driver on the Microcontroller
	Driver Operation

	Client Solution
	Web Interface
	XML to HTML Parser
	Smartphone App Solution

	The Server
	Wi-Fi Module API
	HTTP Server Functionality
	HTTP Server Implementation

	Conclusion and Ending Comments
	Challenges
	SPI Slave Select Problem
	Web Interface Touch Screen Event Triggering
	Web Interface Loading Speed Optimization
	Web Interface Screen Size Optimization
	Patching
	Bugs on Module Side

	Conclusion

	Appendices
	Code
	SPI Driver Code
	Server Code
	Web Interface Code

