
Course Recommendation Using

Aggregated Information Retrieval

Fredrik Karlsson

Daniel Perván

Department of Electrical and Information Technology

Lund University

Advisor: Anders Ardö

June 27, 2013

Printed in Sweden
E-huset, Lund, 2013

Abstract

Study plan scheduling is a natural part of each student's life cycle at LTH. In the
fourth and �fth year, the students have to customize their education by selecting
courses that will give them the possibility to graduate.The selection and scheduling
is done ad hoc by the students and is most often a quite time consuming act; the
information is spread across di�erent web pages and a lot of values needs to be
summarized manually by the student.

This spring, a web based tool for study plan scheduling, searching and brows-
ing has been developed to help the students. Using aggregation of obtainable
structured data about the courses given at LTH and crawled unstructured course
material from the course web pages, the system helps the students both by letting
them create and validate their study plan, as well as easily explore suitable courses
at LTH.

i

ii

Acknowledgements

We would like to thank:

Our advisor Anders Ardö for the great insight and support that he has given
us throughout the project.

Nora Ekdahl and Roger Berlin for their domain knowledge, suggestions and
feedback on the prototype.

Karim Andersson for the data he has provided to us and the feedback we have
received.

The technical sta� at EIT for the computer support and hardware con�gura-
tion.

Last but not least, we like to thank the students at the D and C programmes that
sometimes almost voluntarily helped us to test and evaluate the system!

iii

Exjobbsrummet

iv

Table of Contents

1 Introduction 1

1.1 Problem statement . 1
1.2 Prestudy . 2
1.3 Background . 3
1.4 Methods . 6
1.5 Limitations . 11
1.6 System structure . 12
1.7 Responsibilities . 12

2 Crawler 15

2.1 Introduction . 15
2.2 Choice of implementation . 15
2.3 Implementation . 16
2.4 Results . 19

3 Search Engine 21

3.1 Introduction . 21
3.2 Choice of implementation . 21
3.3 Overview of Solr . 22
3.4 Con�guration . 23
3.5 Fields . 24
3.6 Autocompletion . 25
3.7 Search handler . 26

4 Recommendation Engines 27

4.1 Similarity recommendations . 27
4.2 Statistical recommendations . 38

5 Course Dependencies and Validation 41

5.1 Parsing algorithm . 42
5.2 Example . 43
5.3 Graph structure . 44
5.4 Graph visualization . 45
5.5 Validation . 45

v

6 Web Application Backend 47

6.1 Introduction . 47
6.2 Implementation . 47

7 User Interface 53

7.1 Course Information Page . 54

8 Search Page 55

8.1 Layout . 55

9 Study Plan Scheduler 59

9.1 Layout . 59
9.2 Validation . 62
9.3 Discarded interactivity . 63

10 Course List 65

11 User Evaluation 67

11.1 Survey . 67
11.2 Conclusions . 68

12 Extensibility 71

12.1 Example . 71
12.2 Suggested extensions . 72

13 Discussion 73

14 Conclusions 75

15 Glossary 77

References 79

A Prestudy Questions 81

B LoT data example 83

C Code Examples 85

C.1 Home page . 85
C.2 Gymnasist page . 85
C.3 PageState Javascript object . 88

vi

Chapter1

Introduction

1.1 Problem statement

Choosing courses at LTH highly involves manual labour, where a signi�cant amount
of information about each course is typically not available in one place and some in-
formation not even explicitly stated anywhere. Instead it is required of the student
to thoroughly read through the many di�erent course web pages, the curriculum,
timetable and many other sources. During this, the student is also required to con-
sider eligibility of the course and the amount of hp (equivalent to ECTS points)
the course will provide.

At the time of writing there exists no tool to easily accomplish this nor validate
that the course composition can be used to graduate according to the Bologna
model. Students are therefore forced to use ad hoc solutions such as complex
spreadsheets or other rather creative methods.

Based on a prestudy using interviews of people studying their fourth or �fth
year at LTH, a dedicated web service for study planning and course exploration
might be a possible solution to the problems mentioned above.

In this master thesis we will examine the possibility of simplifying the process
by implementing a prototype web based solution with aggregated searching of
multiple sources and data structures. We will also try to enhance the result set by
the use of statistical data from Ladok and data from CEQ at LTH. While some
data may be mined directly from di�erent databases or web pages, some may need
to be produced through calculation.

Further, we will study the use of recommendation engines to suggest suitable
courses in the system, likely using a hybrid type of engine based on relevant data
that we may manage to get access to.

We will investigate if comparing course material by using VSM (Vector Space
Model) or LSI (Latent Semantic Indexing) give useful results that can be used to
�nd similar courses.

The system created as a part of the master thesis will be tested and evaluated
by potential users of such system (e.g. students of LTH).

1

2 Introduction

1.2 Prestudy

We have conducted a study to better understand the problems involved and how
the students currently handle them. The study consisted of a number of interviews
(some individual, others two at a time) using some written questions as a basis
and we have then followed up interesting leads to get more detailed information.
The paper with questions is available in Appendix A.

Some of the interview participants mentioned using the student's counselor for
their programme. Therefore we also had a interview (no prepared questions) with
him, to understand how he can help the students.

1.2.1 Results

While the test set is because of time constraints arguably too small and homo-
geneous to hold a more scienti�c relevance, the study could still discover some
recurring trends among the test subjects as well as con�rm some of our prior the-
ories. Most students answered that a major challenge with choosing courses was
that it was di�cult to compare information between di�erent courses. Typically,
getting an overview of relevant information in general was a common nuisance
when selecting courses.

Surprisingly, the absolute majority of the subjects claimed that they relied
heavily on information provided by the CEQ system. Information that was con-
sidered as important varied from person to person, but �overall happiness with
the course�, �number of passed students� and �appropriate workload� occurred
frequently. Many complained however that the CEQ data wouldn't always be ac-
curate and that they mostly watched for numbers that swayed greatly out of the
ordinary.

Documentation of students' study plans varies signi�cantly. We encountered
both complex solutions such as auto-calculating spreadsheets and manually up-
dated text documents, as well as students simply attempting to keep all informa-
tion in their heads. When we asked for the bene�t of a united system concerning
study planning and course exploration, practically everyone were greatly in favour
of such a system and some even wondered why it didn't exist already.

However, when asked about a system that could automatically build an entire
study plan, people were more sceptical, many claiming that it would be interesting
in a technical sense and that someone might have some use for it, but that they
would most likely not use it themselves.

Some students mentioned that they had meetings with the student counselor
for their respective programme and thus received support and material from there.
After an interview with the counselor we came to the conclusions that information
received from him mainly consisted of the same information that is already publicly
available on the web, though in a few di�erent representations combined with
formal guidelines and rules, as well as friendly advice of how to interpret the
information.

Introduction 3

1.3 Background

1.3.1 Web applications

The web has since the nineties been a great tool for distributing information[1].
However, with the introduction of modern web standards as well as the prolifera-
tion of standard compliant browsers, the web may today be used for much more.
A web application may in short be described as a computer program built with
web technologies and typically runs in a regular web browser.[22]

Even though there are some limitations to web technologies compared to native
programming languages, they still feature bene�ts that make them valuable for
some implementations:[23]

Cross platform Even though di�erent browsers may render pages slightly di�er-
ent, it's still relatively easy to handle compared to the alternative of porting
a native application to multiple platforms. With proper coding practices,
the same application may work no matter processor, operating system or
even I/O.

Instant distribution From a con�guration management standpoint, releasing
updates to an already released application is often complicated. Not all
users update at the same time and some may choose to not update at all.
With web applications as soon as the application is updated, every single
user will instantly have access to that version as well.

Client system requirements In some ways, a web applications adheres to many
of the principles of a thin client. While animations and similar still have
to be rendered by the client, storage and many kinds of preprocessing may
instead be handled by the server. This makes it especially useful for mobile
units and other low powered machines.

Availability Web browsers are becoming more and more common and may today
be found in everything from mobile phones and computers, to refrigerators.
In contrast to native applications, no actual installation of a web application
is required; if there is a web browser then the application will be available.
Additionally, if all data is stored on the server then the user's settings and
content may also be instantly available.

1.3.2 NoSQL

Historically, relational databases have very commonly been used as the conven-
tional database structure of choice. A relational database is typically designed
with a �xed predesignated schema for each and every table in the database. Every
table require a primary index which is used to fetch the correct rows. Relational
databases features the concept of foreign keys which enables easy merging of data
between di�erent tables. Lastly, this type of databases also features a hard con-
sistency model called ACID, which de�nes how data is stored and handled.[18]

While relational databases are able to handle even the most complex data re-
lationships and are typically considered a very reliable database structure, there
are a few drawbacks. To handle this very strict consistency model, many relational

4 Introduction

database systems have troubles with horizontal scaling[17] which means that as
more rows are inserted into the system, the performance becomes worse. However,
while the strict consistency model might be appealing or even an absolute require-
ment for some systems, for other this might be completely super�uous. Also, while
it's technically possible to handle almost any data relationships with a relational
database, the sheer complexity of the structure may eventually become excep-
tionally complicated to the degree where the programmers have great di�culties
understanding the mere structure.

One solution to this problem is NoSQL systems. NoSQL refers to the use
of database systems that aren't based on a relational database model. While
the exact de�nition varies, many refer to it as Not only SQL, where SQL is one
of the most common query languages for relational databases. Unlike relational
databases, NoSQL systems don't necessarily have to comply with the strict ACID
model. Instead they typically use looser models, sometimes categorised as BASE
(Basically Available, Soft state and Eventually consistent)[18]. There are many
di�erent kinds of NoSQL systems available and each have their respective strength
and weaknesses depending on what kind of problem they are supposed to solve.
Because of the limitations and specialised nature found in many NoSQL systems,
it's common to combine many di�erent kinds of NoSQL databases as well as SQL
databases to handle di�erent parts of the system.

1.3.3 Searching

While searching data may be done in many di�erent ways, they often share a few
basic concepts. Generally, searching consists of two fundamental parts: a query
and a collection of documents. Each document that is to be searched will �rst
need to be described by a set of computationally readable keywords called index
terms. What such term actually consists of varies from system to system, but is
often composed of a single word from a document. More advanced search engines
may instead use e.g. multiple words to somehow represent the general topic of
the document. It is also common to apply additional preprocessing to the index
terms in order to make it easier to process when searching. This might include
storing additional spelling variations of a word, synonyms or even translations into
multiple languages.

A very common type of preprocessing is stemming. The idea is that instead
of having to store uncountable di�erent in�ected forms and variants of the same
term (e.g. walking, walked and walks) that don't really add to the semantics, one
may simply store only the most basic form of the term (e.g. walk) and then apply
the same preprocessing on the query terms.

The search query is then also divided into index terms and later applied to
the indexed document collection in order to �nd the relevant documents. The
simplest concept of doing this is by merely �nding the co-occurrences of each
term between the query and a document, without any regards of neither grammar
nor term position. This concept is often referred to as a so called bag of words
representation[24, p.62]. A score for each document may then be calculated for
example through simply counting the co-occurring term frequency which can be

Introduction 5

represented as a term-document matrix seen below:

d1 d2

t1 f1,1 f1,2

t2 f2,1 f2,2

t3 f3,1 f3,2

t4 f4,1 f4,2

Where d is an individual document, t is a term and f is the frequency of that
term in a document. There are however many di�erent ways to �ll this matrix,
depending on which model is used, but the core principles still remains. This core
concept provides a very powerful basis for building a full �edged search engine.

There are three very common models that are based on the bag of words
concept, namely the boolean, vector space and probabilistic. The boolean model
is the simplest of the three and as its name might imply is based around boolean
algebra. The model only regards the existence or absence of a term and not the
number of occurrences in a document, why the term-document matrix is populated
with solely boolean values representing the existence of a term within a speci�c
document. The query consists of a boolean expression on terms to be searched for,
and is then evaluated for every document to calculate their similarity. Because of
its boolean structure, the boolean model cannot however handle partial matches
and can only produce a boolean similarity score; either the query evaluates entirely
as true or not.[24, p.64-65] Because of that, the boolean model can by itself only
�nd a collection of documents without providing any internal ranking of the result
set.

However, this is something that the vector space model directly tries to solve.
Instead of only populating the term-document matrix with binary values, the
vector space model uses calculated weights for every term. One very common
way of calculating these weights is by using so called TF-IDF term weighting. TF
stands for Term Frequency and refers to the number of times a speci�c term occurs
in speci�c document. IDF stands for Inverse Document Frequency and refers to
the inverse number of documents in the collection where the term occurs at least
once. The TF-IDF score is calculated simply by:[24, p.68-77]

TF · IDF =
TF

DF

The theory behind the algorithm is that a term that occurs often in a doc-
ument, is probably more relevant for describing that particular document and
should be weighted higher when sorting. However, if it's a very common term
that also appears in many other documents then it might not be important at all,
even though it may appear very often in a single document. As always, there are
a few di�erent variations of the TF-IDF algorithm such as applying normalisation
to the score based on document length, but the general principles stay the same.

To use these weights to calculate the similarity between two documents, the
associated row in the matrix for the concerned documents is treated as a unit
vector of N-dimensional space. The similarity score can then be calculated by the
angle between these two vectors; the closer the two vectors are to each other, the
more similar they are (e.g. by cosine similarity).[24, p.78]

6 Introduction

1.4 Methods

1.4.1 Hardware

For this project to work, a server was needed. We got to borrow an old and rather
slow machine with CentOS 61. During experiments and indexing with Solr we
felt that the server did not have enough memory and so we had it increased from
2GB to 4GB. Later when using the almost completed prototype, the motherboard
together with CPU and memory was upgraded. From a two-core AMD Athlon
64-bit (which sometimes had up to 100% load) we had it upgraded to a four-core
Intel i5 and the memory was increased again to 8GB.

1.4.2 Software

CentOS uses yum2 for software management and provides a simple way of installing
and updating software components. To be able to get access to a wider array of
software and versions, we con�gured yum to use extra repositories, namely the
atomic repo3 and EPEL (Extra Packages for Enterprise Linux)4.

The following packages were installed through yum (not counting dependency
packages):

zsh our favorite command-line shell

screen command-line window manager

apache httpd 2.2.15 web server

mysql-server 5.5 relational database

php 5.4 script language processor

php-tidy functions to sanitize and clean html in php

htop interactive process viewer

graphviz graph visualization software

java openjdk 1.5.0, 1.6.0, 1.7.0 java runtime

libreo�ce o�ce software suite with command-line conversation support

xvfb virtual display emulator

Some software is not available through any yum repositories and had to be
manually installed. For this project we also installed:

Solr open-source search server using Lucene5

Neo4j transactional property graph database6

Tomcat open source servlet container7

1http://www.centos.org/
2http://yum.baseurl.org/
3https://www.atomicorp.com/channels/atomic/centos/6/
4http://fedoraproject.org/wiki/EPEL
5http://lucene.apache.org/solr/
6http://www.neo4j.org/
7http://tomcat.apache.org/

Introduction 7

Some of the software are servers and are running as daemons by themselves,
but Solr was con�gured to run by Tomcat. Solr comes precon�gured with Jetty8

(another web server/servlet container), but in order for easier reboot and control
over the Solr process, we used Tomcat instead as servlet container.

1.4.3 Languages

For simplicity, we chose to use PHP9 as our main programming language. Both
authors are �uent in PHP and we have been working with it in the past years.

Making a web application, it is required to write some CSS10 and Javascript11.
Javascript is executed by the browser and is implemented somewhat di�erent in
di�erent browsers. Therefore it is quite handy to use frameworks that makes
Javascript more platform/browser independent. There are a few solid frameworks
that does this, such as jQuery12, PrototypeJS13, MooTools14, YUI15 and we for
the same reasons as for PHP we chose to use jQuery above the other alternatives.

The databases needs to be queried in some way; MySQL uses SQL16 and Neo4j
uses Cypher17. Solr is queried by sending HTTP-requests using a special query
syntax18.

Both Neo4j and Solr are open source Java19 applications, but no programming
in Java had to be done in this project.

To be able to con�gure Solr, XML (eXtensive Markup Language)20 was needed.
Another markup language that was used is JSON (JavaScript Object Notation),
that makes it easier to pass data structures between, in our case, backend PHP
and frontend Javascript.

1.4.4 Software con�guration management

Development of the system has been simpli�ed by enabling collaboration on the
coding side by the use of version control software. We selected Git21 for the task
and set it up to have two developer repositories that are synchronized by a third
production repository. The developer repositories are then pulling updates from
the production repository when it is practical and pushing updates when they are
tested. The repository directories are placed in the web server root directory and
therefore all the repositories are accessible through the web server. Normally the

8http://www.eclipse.org/jetty/
9http://www.php.net

10http://www.w3.org/Style/CSS/
11http://www.w3.org/standards/webdesign/script
12http://jquery.com/
13http://prototypejs.org/
14http://mootools.net/
15http://yuilibrary.com/
16http://dev.mysql.com/doc/refman/5.0/en/sql-syntax.html
17http://docs.neo4j.org/refcard/1.9/
18http://wiki.apache.org/solr/SolrQuerySyntax
19http://www.java.com
20http://www.w3.org/XML/
21http://git-scm.com/

8 Introduction

web server would be con�gured to host the di�erent repositories as sub domains,
but this was not done due to us having limited control over the domain name.

Along with the collaboration functionality Git also provides the means to check
di�erences between the edited and checked in versions of code which is very handy
at times and makes sure that unwanted changes stays unchanged.

1.4.5 Data sources

We have received both publicly available data in an easily parseable format as well
as anonymized private data and we have crawled the web for even more data.

Our primary data sources are:

LoT Läro- och timplaner, contains meta information about courses given at LTH

CEQ Course Evaluation Questionnaire, contains feedback from the students about
the courses

Student results Ladok (the register for the storage and management of higher
education study results) contains the students' results

Course homepages usually maintained by the departments and contains course
material such as lecture slides and laboratory instructions

Master thesis courses The departments at LTH gives Master thesis courses
and it is required for the students to have taken one of those to be able to
graduate

Läro- och timplaner

The LoT-database hosted by LTH contains meta information about courses. We
need the meta data to tell when a course is given, how many hp it gives and what
presciences it requires (among many other things).

The partial database dump that we have received (in spreadsheet form) con-
tains the �elds:

Course code A six-character long codeword that represents the course (e.g. EITN01
or EIT070)

Course name The name of the course

hp The amount of hp that is given when the course is fully completed

Level The level of the course, either G1, G2 or A i.e. basic 1, basic 2 and advanced
respectively. In order to graduate from the D and C programmes, a certain
amount of hp needs to be studied in advanced courses.

Programme The programme that the course is given to

Specialization The specialization that the course is given to, or ALLM if it is
general

Choosability When the course is in the general specialization, it might be manda-
tory or not for the programme.

Introduction 9

Year In what year of the education it is most reasonable to study.

Start period Which period (läsperiod) the course is given in. lp1 starts in the
autumn and lp4 is the last term and ends just before the summer break.

End period In which period the course ends.

Course responsible The email address of the course responsible

Prescience requirements A free-text containing the prescience requirements
that needs to be ful�lled in order to study the course. These requirements
are considered hard and are checked upon applying for the course using
Ladok.

Prescience recommended A free-text containing the recommended presciences
for the course. These usually say what kinds of general knowledge you need
to know or what other courses you need to have taken in order to understand
the course fully.

Teaching goals (1-3) Three �elds with free-text saying what the students are
about to learn in the course22.

Examination form How the student is examined during the course. Usually
written exam or project assessment.

Contents A short text describing what the course is about and in which areas it
teaches22.

Rationale A text describing the need for the course22.

Other Usually meta data saying that the exercises are preparatory for the labs
or that the course has an examination in the middle of a course spanning
over two periods, and such information.

Web page The URL to the course web page. Sometimes this is the web page of
the department giving the course instead.

It is important to note that one course is represented by multiple rows in the
database dump; there is a di�erent row for each program and each specialization
that can study the course. This allows for having di�erent prescience requirements
for di�erent programmes taking the course and it allows for giving the course in
di�erent years for di�erent programmes as well.

The LoT data was inserted into our relational MySQL database.

A real example of a row in this database dump is given in Appendix B on
page 83.

22Some of the �elds are meant to be printed on the web and do therefore contain
HTML elements.

10 Introduction

CEQ

The CEQ data comes from students �lling in questionnaires23 after �nishing
courses they have studied. The questionnaires are voluntary and the results are
published by LTH24. The CEQ involves 26 questions where the students answer
if the claim in the question �ts the events in the course or not. The student can
answer 1�5, where 5 means that the student agrees fully and 1 that it was not
like that at all. These numbers are then converted into a scale between -100 and
100 (where a 5 is 100, a 4 is 50, 3 is 0, 2 is -50 and 1 is -100). We have received
historical CEQ-data from the last �ve years. The �elds we have received from the
CEQ database are:

Course code A six-character long codeword that represents the course (e.g. EITN01
or EIT070)

Year and period The time index for the CEQ, e.g. 2008/09 lp3.

Overall, I am satis�ed with this course Value in the range -100 to 100

The course seems important for my education See above.

Good Teaching See above.

Appropriate Assessment See above.

Appropriate Workload See above.

Clear Goals and Standards See above.

Registered students The number of students who were registered on the course

Passed students The number of students that passed the course.

We have received CEQ data only for the courses (i.e. course codes) that our
system currently supports. When courses change (no matter how much or little)
they change course code and therefore they lose their CEQ history (which is in-
tended). In our case it makes some courses have a very long history while others
have a very short history.

The CEQ data was inserted into our relational MySQL database.

Ladok

The data we have received from Ladok is anonymized and contains the grades
for students studying non-mandatory courses that our system supports; the data
is up to �ve years old. The anonymization is done in a way that replaces the
personal identity number (Swedish: personnummer) with an increasing number.
This allows us to follow individual students but not identify them directly.

The Ladok data contains these �elds:

Student index The converted personal identity number

23Example: http://www.ceq.lth.se/info/dokument/�ler/CEQ-enkat_engwebb.pdf
24http://www.ceq.lth.se/

Introduction 11

Course code A six-character long codeword that represents the course (e.g. EITN01
or EIT070)

Programme code The 5-character programme code, e.g. TDATY for the 270hp
(i.e. old) D programme and TADAT for the 300hp D programme

Year and term A concatenated �ve-number string containing year and which
term (i.e. spring or autumn, where spring is equal to period 3 and 4, and
autumn is equal to period 1 and 2), e.g. 20082

Grade For UG courses (i.e. courses that only gives grades pass or fail) it is a
number 0 or 1 and for TH courses (i.e. courses that have grades 3, 4, 5 and
fail) it is a number 0, 3, 4 or 5. In both cases 0 means that the student have
failed the course.

The Ladok data was inserted into our relational MySQL database, but will
never be shown directly in any way.

Course homepages

The list of course homepage URLs in the system have been mined from the LoT
web pages25 that show which courses are given to which programmes. We have
mined the pages for the D and C programmes respectively and manually made
sure that they are correct.

Course web pages are of varying quality and quantity. We are only interested
in human readable media such as text and not images. Text can be found in many
di�erent �le formats and we have focused to crawl HTML, TXT, PDF, PS and
Microsoft O�ce formats (e.g. Powerpoint presentations, Word documents, etc.).
Some courses have published all lecture slides as well as links to other sources of
information that are relevant to the course, while others only present the meta
data of the course (i.e. when it is given and how many hp it gives).

Our crawler will download and de�ne the course material for the supported
courses and the crawled data will later be indexed to enable for full-text searching
and for similarity measures.

Master thesis courses

The master thesis courses have been mined from the LoT webpages26. The master
thesis courses are quite similar to each others (same level, hp and periods) and
it was quicker to mine them directly than to ask for a database dump containing
them.

1.5 Limitations

The goal of the project is to create a functioning prototype that help a student to
completely plan his or her study plan. The project has limited time and resources

25http://kurser.lth.se/lot/?val=program
26http://kurser.lth.se/lot

12 Introduction

why some limitations are to be expected. The prototype will receive fairly small
amount of testing and code review, far less than what would be expected of a
commercial product, but still su�cient for this prototype. It will also only support
the current desktop versions of Safari, Chrome and Firefox. Other versions and
browsers may still work, but there will be no testing done for those browsers. The
prototype will neither o�cially support any browser for mobile devices.

The prototype will only fully support two di�erent programmes, namely the
D and C programmes at LTH. This also means solely supporting courses that
students from these programmes are eligible for. We will also not take in consid-
eration that the content of the two programmes may change over the years, and
will instead merely assume that the programmes always stay the same. Similarly,
other data such as data from CEQ, Ladok or LoT will not be updated in real time
and will simply be preprocessed and stored in the early stages of the project.

With that said, one goal of the project is still to enable relatively simple
maintenance, where if needed new and updated content can easily be added to the
system.

Concerning optimisation, we will only consider performance for a handful of
concurrent users. Scaling is not be an issue that will be handled for this particular
project. However, the system should still feel fast and responsive when used by a
single or a few di�erent users.

1.6 System structure

This report subsequently describes every part and module of the system in detail
in the respective following chapters. An overview of the structure of the system
can be seen in Figure 1.1.

1.7 Responsibilities

While most of the work has been closely collaborated upon, some modules has been
more in�uenced by one of the authors, whereas he has had main responsibility for
its implementation.

Daniel had responsibility over Solr and its con�guration, the PHP backend
framework and Neo4j con�guration. Fredrik had responsibility over the crawler,
prescience parsing, validation and extensibility spikes.

The residual work has been fully collaborated between the two authors.

Introduction 13

The
Internet Crawler Conversion and

generation

Seed urls Stop lists
Stop function

SOLR

Course
material

LoT

Schema

Dependency
parser

Neo4j

Prescience

More Like
This

Ladok

Recommender
engine

Buddy
courses

PHP and
Javascript

GraphViz

Study
plans

Validation

Master
theses

Parser

CEQ

Processing

Figure 1.1: A diagram of the system structure

14 Introduction

Chapter2

Crawler

2.1 Introduction

Web crawling is the process used by search engines to collect pages from the
Web[2]. The crawler is seeded with web pages (URLs) and then recursively �nds
new pages to crawl using hyperlinks found on the pages.

Many of the components in our system rely on data available on the course
homepages to enable full-text search, course similarity comparison and course rec-
ommendation. For that purpose, we need a crawler to collect the course mate-
rial for the supported courses. The seeded pages for our crawler are the course
homepages for each course in our system. We only want the crawler to mine the
documents relevant to the course and not to crawl outside of the course pages.

2.2 Choice of implementation

In our prestudy, we found that most course pages are created inside a web CMS
(content management system) and therefore shares a lot of its page design with
other course web pages given by the same department (i.e. using the same CMS).
The page designs usually contains a lot of hyperlinks that are common to all courses
such as department links and other university links (e.g. the LTH homepage).

There are several implementations of crawlers freely available on the internet
today and therefore it is advisable to use an existing crawler. After sampling some
crawler implementations (we installed and tried PHP-crawler1 and Nutch2) and
sampling some papers on crawlers[3, 4, 5, 6], it became evident that most crawlers
are focused on containing the crawler within pages with similar semantics of the
content while we are more interested in the page structure; speci�cally we want
the crawler to only crawl pages that have a signi�cant amount of links in common.

Since we did not �nd any crawler being able to carry out crawling the way we
needed it to, we created our own. We based it on letting the page designs classify
whether pages are relevant and if they should be followed further or not.

1http://en.wikipedia.org/wiki/PHP-Crawler
2http://en.wikipedia.org/wiki/Nutch

15

16 Crawler

2.3 Implementation

First the crawler parses the seeded course homepages for all hyperlinks (excluding
Javascript and mailto-links) which are converted into absolute canonicalised URLs,
taking in account any potential <base>-tags. A �ow diagram of this step is seen
in Figure 2.1.

Page->links()

Input:
$self

$body = $self->body()

Search $body
for <base>-tag

$base =
basename($self->url)

not found

$base = base.href

$root = domainname($base)

Parse $body and
generate DOM-tree

$matches[] = all
<a.href> in the

DOM-tree

A

A

Foreach
$matches

as $url

$url =
remove_anchor($url)

B next

isEmpty($url)

B

yes

Cexit

$url begins
with "http://" or

"https://"
Add $url to

$links[]yes

$url begins
with "mailto:"

or "javascript:"

$url begins
with "/"

$url =
concat($root,$url)

$url = concat($base,$url)

yes

yes

Foreach
$links as $url

C

$page = new
Page($url)

$page->valid

D

no

next

Add $url to $self->links D

Return:
$self->linksexit End

Add $url to
$links[]

Figure 2.1: Flow diagram of initial hyperlink parsing

Crawler 17

The links are then counted; if a link occurs in more than two courses, it is
deemed as shared (i.e. not speci�c to any course) and all of its occurences are
thereby removed and put into a stoplist such that it never gets crawled. This
technique e�ectively �lters common pages such as the university homepage and
department pages linked by all courses given by the department. Hyperlinks are
further �ltered through the use of custom stop functions which remove links con-
taining certain substrings such as GET-parameters for individual laboratory en-
rollment pages.

With the new set of hyperlinks, the crawler then downloads the linked doc-
uments and decides whether their links will be followed further or only indexed.
Documents that are not HTML or are located on a di�erent domain than the
course homepage are only indexed and never followed. We also apply a similarity
check where we compare the hyperlinks of a document with the links on the re-
spective course homepage. If a document is deemed too dissimilar, it is regarded
as outside the scope of the web pages of the course and is therefore not followed.
Without this last �lter the crawler might have found a large amount of irrelevant
documents such as other department pages not relevant to the course. Since we
are mostly interested in human readable course documents (such as slides, lab
preparatory papers and exercises), the crawler also removes documents based on
their �le type without indexing. This includes �les like images, source code and
binary data.

This whole second step is then done depth �rst recursively until there are no
more valid links to follow. After each recursion we update the hyperlink count
and �lter the new links using the stoplists described in the previous step. A �ow
diagram of this step is seen in Figure 2.2.

When the crawler has downloaded all documents for all courses it removes
duplicate HTML documents and reinserts originally seeded homepages if they
have been removed by any of the previous �lters. Documents are compared by
hashing the content of the body (using MD53 for speed and simplicity) with all
HTML-tags removed.

Finally we generate one additional document for every course using data from
the LoT database.

Since the crawled material will be inserted into Solr, the result from the crawler
is post-processed by:

• Deep data inspection that removes irrelevant �le types such as source code
and images that could not be removed earlier due to their �le extension

• Removing documents from certain domains deemed irrelevant

• Converting .doc, .docx, .ppt, .pptx and .ps to .pdf

The �le type conversation of Microsoft O�ce-type �les is done using the command-
line tool version of LibreO�ce4 (a freeware software suite with programs similar
to Microsoft O�ce). Since we failed to run LibreO�ce headless (i.e. without a

3http://www.ietf.org/rfc/rfc1321.txt
4http://www.libreo�ce.org/

18 Crawler

display), we had to let LibreO�ce use an emulated display through Xvfb5. The
.ps-�les are converted using ps2pdf6 on the command-line.

Page->links2()

Input:
$self

Foreach
$self->links as

$url

$page = new
Page($url)

$page->content_type

Add $url to
$output[]

pdf, doc, ppt, etc.

A next $self->links =
array_unique($output)exit

A

Images, zip, code

Skip

A

$page->body
== $self->body

text/html

yes

linkcount($url)

$self->isExternal($url)

>1

yes

$page->links similar
to $self->links ?

no

Add $url to $self->follow[]yes

End

Add $sefl->url to
$seff->visited[]

Destroy $page

Figure 2.2: Flow diagram of the inner function of the recursive
crawling

5http://en.wikipedia.org/wiki/Xvfb
6http://www.ps2pdf.com/

Crawler 19

2.4 Results

The crawler handled 191 courses and downloaded (cached) 12178 documents. The
number of residual documents after �ltering and removal was 6416 (which is 53%
of the considered documents) and of the residual documents, 89 needed to be
converted into PDF (about 1.4%).

The post process removed:

• 228 documents because of duplication

• 233 URLs because of unusable �letypes

• 411 URLs because of blocked domains

The execution time for the crawler from a clean state is about 2-3 hours on
our server. Most of the time is spent requesting and downloading web pages.

Since the crawler only crawls a subset of all courses given at LTH, some de-
partments are not crawled for more than a few courses, resulting in that their page
design will not be exploited. In order to make the crawler bene�t from these as
well, some extra courses were crawled, but not indexed later on. This gave the
crawler more hyperlink counts that could be used to discard more pages.

Some departments (such as the Math department) does not use a CMS for
their course web pages and in some cases they only use a PDF-document for
course homepage. In those cases it is hard for our crawler to �nd sub pages to
follow if they do not share enough links. Hopefully these course homepages have
all important links on the homepage itself and not too many unique links outside
the course pages.

Number of documents Number of courses Percentage of the courses

1 29 15,18%

≤ 10 94 49,21%

≤ 50 158 82,72%

≥ 100 10 5,24%

≥ 200 4 2,09%

Table 2.1: Breakdown of number of documents per course

The �nal distribution of number of documents per course is shown in Table 2.1.
and is a quite �uctuating number in reality. This is partly due to our crawler
but especially to the course homepages themselves. Some courses have very few
documents on the web (like a single PDF), while others have an extreme amount
of external linkage or contain links to old course pages with shared links.

The crawler can be tuned to better de�ne the boundaries of the course material
for a course, meaning which documents are considered to be part of the course
material as well as which pages shouldn't be crawled at all. This is done by
manually tuning the stoplists and stop functions. Both the stoplists and stop
functions can potentially be iteratively enhanced by running the algorithm multiple
times and evaluating the result. While we did apply some additional tuning by
this method, it could still be explored considerably in order to improve the results.

20 Crawler

The data created in the crawling stage is later qualitatively evaluated during
the similarity study and also when used in the search engine.

Chapter3
Search Engine

3.1 Introduction

In order to easily �nd a course in the the vast collection of course material, a
search engine is required. A regular search engine is generally divided into two
distinct parts: indexing and searching. Indexing is plainly the task of creating
an index that may later be easily searched through. An index is conceptually
not very di�erent from the index in a regular handbook in the sense that the
engine creates an easily searchable key-value list of search terms and where their
corresponding document is located. The engine may then use this index to �nd
documents without having to expensively iterate through the whole collection.

The goal was to integrate a search engine that would let the user �nd courses
by searching for any words or sentences that may have a connection to any of
the course data available, may it be course code, names, programming languages,
topics or anything else that has been indexed.

3.2 Choice of implementation

Our choice of search engine was constrained by a few di�erent criteria. Firstly,
the indexer is required to successfully handle multiple di�erent document formats,
ranging from pure ASCII text and HTML pages to complex (and sometimes bro-
ken) PDF and Powerpoint documents. Secondly, while the prototype only has to
handle a few simultaneous users at a time, the server hardware would at least ini-
tially be relatively old and limited with low amount of both RAM and processing
power. The prototype still needs to be fast and responsive even with this limited
hardware.

Further the engine would need to be easily integratable with the rest of the
system, preferably providing some kind of API to query the engine directly with
PHP.

Finally, the engine would need to be able to provide the corresponding course
code for multiple documents. From our experience, search engines are gener-
ally specialised at �nding individual documents based on a search query and the
contents of that particular document. However, in our case the documents by
themselves serve little purpose; instead we are only interested in �nding a course
based on the contents of the many indexed documents associated with it.

21

22 Search Engine

While it would be technically possible to implement a custom search engine
from scratch using PHP and MySQL, because of time constraints and the imprac-
tically vast scope of such project, we rather wanted to con�gure (and extend where
needed) an existing publicly available search engine to �t our needs.

We had already in an early state been looking at Apache Lucene1 for our
choice of search engine. Lucene is a mature open source project maintained by
the Apache Software Foundation and is used by many large companies and or-
ganisations around the world, including Twitter[19], LinkedIn and IBM[20]. After
further study we did however turn to another Apache project called Solr2, which is
an enterprise search engine solution based on Lucene with several additional fea-
tures, including being precon�gured out of the box to be queried through HTTP
and output both serialised PHP objects and JSON. Overall Solr seemed to �t our
needs on all points, why we chose it for our implementation.

3.3 Overview of Solr

The basic Solr con�guration consists of several con�guration �les, modules and
plugins. Most of them may be left as is, while a few require extensive con�guration
to properly �t our needs.

There are three primary con�guration �les that needed to be changed: the
core schema, the core con�guration �le and �nally the primary con�guration �le.

The basic structure of Solr is seen in Figure 3.1. The primary con�guration
�le handles global settings for Solr, where its main purpose is listing all available
cores and their locations. A Solr Core is conceptually an isolated instance of a
Solr con�guration, complete with its own index and con�guration �les. With the
use of cores, a single Solr installation may host multiple search services that may
be accessed by simply pointing the request URL to the appropriate core.[21]

For each Solr Core there is then a dedicated con�guration �le as well as a
schema. The schema contains all �elds, �eld types as well as how these �elds will
be populated when documents get indexed. The schema also handles how each
�eld will be handled when the index is queried.

The con�guration �le for a Solr Core handles most of the settings for Solr
itself. This includes �le paths for the di�erent modules as well as con�guration of
the request handlers. A request handler (as its name implies) handles all incoming
HTTP requests to Solr. The handler register itself for a speci�c URI (e.g. /select
or /autocomplete) which results in all requests to

/coreName/handleName?parameter1=value¶meter2=value

will be managed by the respective request handler. The handler itself is com-
posed of one or more so called components which to the request parameters (includ-
ing any default or overriding parameters that the handler itself may specify) are

1http://lucene.apache.org/core/
2http://lucene.apache.org/solr/

Search Engine 23

Figure 3.1: Basic structure of Solr cores

then forwarded to. The component then �nally performs the actions it's speci�ed
for (e.g. spell checking or highlighting).

The result is then returned back to the user in one of a few di�erent formats,
depending on how the request handler is con�gured.

3.4 Con�guration

Basic installation of Solr turned out to be a rather straightforward process where
the downloadable package is precon�gured to work with rudimentarily functional-
ity out of the box. Since Solr is queried through HTTP requests it is dependent
on a web server, whereas the default con�guration is bundled with a simple HTTP
server called Jetty.

Naturally, further con�guration would still be needed in order to fully cover
our needs. We had to con�gure the schema to hold all the required �elds and upon
analysis of the crawled data, we concluded that the schema would only need to
support a document title, the document text and the course code. At a later stage
we also added a �eld for the course name.

First of all, we would need a way to properly index the many di�erent docu-
ment types that had been crawled. By default, Solr only handles properly struc-
tured XML-�les and can't index HTML or PDFs without aid. Thankfully the
ExtractingRequestHandler module, based on Apache Tika, was made exactly for

24 Search Engine

this purpose. The module automatically identi�es the document type and extracts
the relevant data. However, while it was able to properly index even rather bro-
ken HTML, ASCII and PDF �les, it would systematically crash when trying to
index some Microsoft Word �les and e-fax �les. Our solution was to build a PHP
based middle layer between the crawler and the indexer where all �les that are
not HTML, ASCII or PDF will be converted to PDF when possible before they
are handed to the indexer.

When con�guring the �elds, we soon realised that the number of distinct hu-
man languages used in di�erent courses would turn out to be a problem in need
of a solution. Every language needs slightly di�erent preprocessing to function
optimally; for example stemming for one language will not work at all for another
language and the same with stopwords. Again, the solution was the Extractin-
gRequestHandler module which additionally has support for identifying languages
and labeling the �elds accordingly. We then created two versions for both the doc-
ument title and text �elds; one for Swedish and one for English which were by far
the two most common languages. The reason for not supporting additional lan-
guages was mostly because of time constraints as every language would later need
to be handled separately when integrating the search module into the prototype.

3.5 Fields

Solr is a based around a de�ned schema, which contains what kinds of data for a
document is stored in the index. These are called �elds and use de�nitions from
�eld types, which con�gure what kinds of preprocessing is applied to the �eld.
Many �elds can share a single �eld type.

3.5.1 Title �eld and text �eld

Both the text �eld and the title �eld share the �eld types text_en and text_sv

for respective language. Several layers of preprocessing is done by Solr on both
the �elds themselves and by the query when searching in the �elds.

The two �eld types are of type text and uses a standard tokeniser to create
the initial bag of words. It's a simple tokeniser that splits the text on whitespace
and removes punctuation as well as some special characters. Later, all tokens
that are either less than 3 characters or greater than 35 characters in length are
removed. The rationale behind this is foremost to remove documents containing
irrelevant byte data that slipped through (e.g. text documents with images) and
that it's very unlikely that documents contain actual human readable words of
more than 35 characters in length. The remaining tokens are then lowercased in
order to achieve case insensitivity.

Additionally, we apply a localised list of stopwords as well as a stemmer to
further increase search accuracy. Stopwords are merely a list of common and
semantically unimportant words that will be removed from the bag of words. For
English this list would include words like I, the and an.[24, p.226]

Stemming is plainly the task of reducing tokens to its stem in order to remove
semantically unnecessary variants of the same token. The tokens walking, walked
and walks can for example be reduced into the single token walk.[24, p.226]

Search Engine 25

The english variant of the �eld type also applies a possessive �lter to remove
trailing -s from the tokens.

Lastly, we apply two N-gram �lters; one from left to right and one right to
left. N-grams are basically subtokens of every token. Instead of merely saving the
token walk a left-to-right N-gram �lter would also create the tokens w, wa and wal.
With both �lters applied the complete list of tokens becomes w, wa, wal, walk, k,
lk and alk. N-grams are an e�ective way of enabling partial matches where users
may search for incomplete words and still �nd what they are looking for. Without
N-grams the query car would not match the word racecar, while with N-grams it
will.

N-grams cannot however be applied to the query, since this will result in an
excessive amount of false positive matches. For example the query walking will
now incorrectly match both ingredient and walrus.

The original text is also stored in Solr in order to be used for result highlighting
later.

3.5.2 Course code

The course code �eld contains the course code and therefore needs a rather small
amount of preprocessing. The �eld is of type text and is tokenised with a simple
whitespace tokeniser that only splits on whitespace. The �eld is then lowercased
without any further �ltering.

3.5.3 Course name

The contents of this �eld is self-explanatory. Again the �eld is of type text and
uses a standard tokeniser which works well for this purpose. Since the course name
consists of rather small amounts of text, we didn't manage get satisfying results
from the automatic language identi�er, why we instead chose to use a single �eld
for both Swedish and English. Because of this, we don't use a stoplist nor stemmer
and only applies a lowercase �lter and N-grams. However, we also keep a second
copy of the course name, but without N-grams such that it won't interfere with
the autocomplete function explained below.

3.6 Autocompletion

In order to provide a more streamlined user experience we wanted the system to
support autocompletion on course codes and course names. To achieve this we used
a feature called faceting. Faceting is a technique for generating counts for certain
properties. In our case we wanted to simply get a list of the most common words
that begins with the typed letters. Con�guration was rather straightforward where
we merely created a speci�c auto-complete request handler and set it to return
maximum �ve facets with a user speci�ed pre�x, ordered by number of occurrences.
Due to the mixed quality of the contents of the text �eld, we con�gured the
autocomplete handler to solely search within the course code and course name
�elds. However, we had to speci�cally create a dedicated variant for the course
name �eld that didn't use N-grams. This is because we only wanted the handler to

26 Search Engine

suggest complete words and not partial ones that would otherwise be found with
N-grams activated.

3.7 Search handler

Our basic search handler is set to search all of the indexed �elds, namingly: title,
text, course code and course name.

To make sure that the appropriate course is always returned when a user
searches for a valid course code we wanted the course code �eld to be ranked much
higher than other �elds. Solr implements the concept of boosting, where a �eld
(or term) may be con�gured to be ranked relatively higher or lower than default.
Using this system, we boosted the course code �eld greatly, giving it a boost value
of 10. We also boosted the title �eld slightly with a boost value of 2. After some
basic internal testing we found ourself often wanting to merely search for a speci�c
course name and not necessarily the contents of a course. Because of that, we
�nally also boosted the course name �eld with a value of 10.

We also have three additional components activated for the search handler,
namely highlighting, grouping and spell checking. The former is set to highlight
words contained in the text �eld that somehow match the search query. It then
returns a snippet of formatted HTML containing a total of 200 characters of text
surrounding the matching words. With standard highlighting being remarkably
slow, we use the fast vector highlighter which is noticeably faster, but require the
�elds being vectorised in advance (and thus increasing index �le size).

The spell checker uses the contents of the text �eld to suggest spell corrections.
It does however not take language in account when checking and instead suggests
any word that may be close to the misspelled word.

Lastly, we use grouping. A big problem with the standard search handler is
that it is specialised at �nding documents that are relevant to the provided query,
which as explained earlier, is not what we want. Instead we want it to return
courses that have relevant documents connected to them. There are a few more
or less creative ways of achieving this with Solr, but our way of handling it is with
the grouping component. This component is con�gured with a common �eld which
is to be grouped on. All documents that share the same value on this �eld are
concatenated in the result as one single result item. In our case we group on the
course code �eld and returns the �ve highest scoring documents for each course.

Chapter4
Recommendation Engines

To make it easier for students to select and explore viable courses, we have imple-
mented two recommendation engines.

The �rst recommendation engine uses similarities in course material to rec-
ommend courses, and the second uses statistical data to recommend courses that
students have studied at the same time before. In some sense, the search engine
can also be seen as a recommendation engine, but one that requires a keyword or
a phrase to do its magic.

4.1 Similarity recommendations

4.1.1 Introduction

When exploring possible courses to study, it might be interesting to know if there
are more courses like a given course that was fun or interesting. We want our
prototype to be able to list similar courses, but the choice of algorithm is not
obvious by any means. Therefore we have done an evaluation of some di�erent
algorithms on our dataset. By using the contents of the found course material for
each course, we have created several di�erent similarity experts, which consist of
di�erent algorithms that rank courses similar to a given course.

In addition to the similarity experts, we are also investigating if combining their
results through di�erent voting algorithms and merging creates better similarities.

Most algorithms are using term vectors (i.e. vectors representing term oc-
curences in a document) for their similarity measurement. The term vectors for
all courses have been created by extracting the terms in each document in Solr
and then summing up the term frequencies for each course.

4.1.2 Algorithm families

We are evaluating similarity experts of three di�erent types:

• Set-based

• Term frequency-based (TF-based)

• Concept-based

27

28 Recommendation Engines

All of the results created by the experts are precalculated and their results are
stored in a database for quick retrieval without recalculation.

Set-based

Set based algorithms only use the vocabulary overlap of courses and by using set
theory creates a similarity index.

The two set-based similarity algorithms to be evaluated are: Jaccard similarity
coe�cient[9] and Dice's coe�cient[8]. They are quite similar in their de�nitions
(where A and B are sets to be compared):

JaccardSim(A,B) =
|A ∩B|
|A ∪B|

DiceSim(A,B) =
2|A ∩B|
|A|+ |B|

Term frequency-based

The TF-based algorithms uses the term frequency (i.e. tf) in each course as well as
the term document frequency (i.e. df). The term document frequency is often used
as a denominator and is therefore usually called inverse term document frequency
(i.e. idf).

The tf and idf are used to create weights for every term in the documents and
the weights are then used to represent the courses as an array of terms (Vector
Space Model, VSM) with weights.

The similarity between two vectors can be measured using cosine similarity
that calculates the angle between the vectors. The similarity between two courses
are calculated by cosine similarity using the respective term vectors.[9]

sim(A,B) = cos(θ) =
A ·B

||A|| · ||B||

The measure is a real number between 0 and 1, where 1 means that the vectors
are equal and 0 that they have nothing in common.

The di�erent TF-based algorithms di�ers in how their weights are calculated,
whereas some use logarithm functions to normalize numbers. There are four some-
what di�erent weighting schemes that we have evaluated:

normalized tf_idf:

weight(t) =
tf · idf
T

where T is the number of di�erent terms in the course

glasgow (log-normalized tf_idf):

weight(t) =
log(1 + tf) · log(N · idf)

log T

where N is the number of courses and T is the number of di�erent terms in
the course

Recommendation Engines 29

aug:

weight(t) = 0.5 +
0.5 · tf
max(tft)

·max{0, log
N − df
df

} · 1
T

where T is the number of di�erent terms in the course

aug_log:

weight(t) = 0.5 +
0.5 · df
max(tft)

·max{0, log
N − df
df

} · log
1
T

where T is the number of di�erent terms in the course.

aug_log was meant to be the same expression as aug, but with the only dif-
ference that the normalization was the logarithm of the original normalization.
Due to a small programming error (sometimes referred to as a bug), the term
frequency was substituted for the term document frequency in the �rst term. This
was not found out until much later, when the code was reviewed for the master
thesis paper.

Concept-based

Information retrieval has been enhanced over the years by the use of merging
terms into concepts. The idea is that terms that adhere to a concept are used in a
similar way. Two well known ways of creating concepts from terms are LSI (Latent
Semantic Indexing)[10] and PLSI (Probabilistic Latent Semantic Indexing)[11].
These will e�ectively lower the number of di�erent words and combine them into
concepts, making it possible to match documents by their semantic meaning and
not just their vocabulary use.

LSI uses Singular Value Decomposition (SVD) to lower the high dimensionality
of terms into much fewer concepts[10].

PLSI is an improved form of LSI and uses a well built statistical ground
to create concepts containing terms. PLSI can be calculated by iterating the
expectation-maximization (EM) algorithm to �nd the maximum likelihood of a
term being in a concept. This iterative process takes much time when the amount
of concepts increases.[11]

The results of LSI and PLSI gives the courses new vectors in lower dimensional
concept space, and these vectors can also be checked for similarity by the use of
the cosine similarity measure.

LSI

We calculated LSI using a standalone command-line executable called SVDLIBC1,
that runs SVD on a dataset formatted in a special way (sparse text). SVDLIBC
has support for a number of parameters, but we only used the -o (output directory)
and -d (number of dimensions i.e. concepts) parameters. We created three di�erent
sized LSI datasets with 50, 100 and 150 concepts each.

PLSI

1http://tedlab.mit.edu/~dr/SVDLIBC/

30 Recommendation Engines

Since there isn't a freely available PHP implementation of PLSI, we implemented
our own, using the algorithm descriptions given in [12]. The algorithm ends when
it converges and we chose to check if the mean absolute di�erence between the last
and current iteration in a matrix element was below 0.01 as end condition.

The PLSI script took quite a while to run for a very small number of concepts
(i.e. 2) on our server and therefore we used the easiest means of parallelism that
PHP can handle: C-style process forking2. The most time consuming part of the
PLSI algorithm can easily be split into two independent parts that calculates the
di�erent probability matrices. The fork did however not double our performance
since the di�erent matrices are of di�erent size and takes an uneven amount of
time to generate, but we still got a signi�cant performance boost.

In retrospect, we should have implemented PLSI in C or some other language
with high computational performance, if we needed it to be faster. With that in
mind, speed was not really an issue for us since we precalculate all of our similarity
results.

In the end we used a Macbook Pro (with an Intel i7 processor) to run the PHP
script and produce a result with 20 concepts. Compared to LSI, PLSI is extremely
slow to create the same number of concepts.

4.1.3 More Like This

We have also evaluated a Solr module called MLT (More Like This) which uses
the term vector of a given document, calculates term weights and searches Solr
using the terms and weights.

The actual MLT algorithm is not well documented, but a kind soul has ana-
lyzed the source code and created a write-up which makes it quite clear in [13].

MLT algorithm overview:

• Creating term vectors for each �eld (separately, only counting occurrences
in the same �eld)

• Removing stopwords

• Filters out term frequencies less than 2

• idf is calculated as: log(N
df+1) + 1

• The term scores are then calculated as: tf · idf = tf · (log(N
df+1) + 1)

• After sorting the di�erent term scores, picks the 25 terms with highest fre-
quency for querying

• Boosting the terms (downwards) using: boosted = score/max_score, where
max_score is the score of the term with highest score

• Search using the created query vector with boosting values34

2http://php.net/manual/en/function.pcntl-fork.php
3Note that the search is carried out using a vast complement of di�erent pre- and

post-processing
4Also note that the terms are only searched for in the �elds where they occurred the

most and not in all �elds where they exist

Recommendation Engines 31

Con�guration

Con�guring the Solr MLT module for basic usage is done by creating a new request
handler in the Solr core con�guration �le. The MLT request handler is then
implemented very similar to a regular search request handler, sharing many of the
common search parameters. The result set for MLT is divided into two separate
parts.

First, MLT does a regular search to �nd the document to base the recommen-
dation on. In our case we only wanted to precisely fetch a course with a speci�c
course code, why we only search in the course �eld.

The second part of the MLT result set contains the actual recommended doc-
uments based on the previously found query document. The latter part needs
very little con�guration and merely requires a list of �elds to return (in our case
title and course code), the minimum TF and DF score (1 and 2 in our case) and
whether boosting should be applied or not (which it will in our case).

To our dismay the MLT handler does not support the grouping module that
we use for concatenating documents on the respective course. Because of this,
simply running the MLT handler would only return the most similar documents
to the highest ranking document for a speci�c course. Most of the time the MLT
handler would thereby pointlessly return a list of documents belonging to the same
course that the recommendation was initially based on.

The solution to this problem was to take advantage of a Solr feature called
multivalued �elds. A multivalued �eld can e�ectively contain multiple independent
rows of data, making it possible to let a single indexed document contain the data
of all documents belonging to a single course. However, the current version of the
ExtractingRequestHandler does not as far as we could see support iteratively insert
data into �elds as the documents are indexed. With that said, it is still possible to
subsequently export the original data from one index to another without having
to rely on the ExtractingRequestHandler. In the end, we settled with creating an
additional Solr core speci�cally for the MLT module. The data was then exported
from the original Solr core and successfully concatenated so that every course only
consists of a single document each. The original core is however still used for
regular searching.

4.1.4 Combining expert results

The similarity experts work in di�erent ways and they seem to show (di�erent)
valid results among their top ranked results. Therefore it would be viable to
combine their e�orts into creating result sets that merges the rankings from the
experts in a way that keeps the most relevant results in the top rankings.

We have decided on four merging algorithms that should be evaluated together
with the experts. Two of the algorithms are voting algorithms, meaning that they
let multiple similarity experts hand out weighted scores that are then combined
in di�erent ways. Another algorithm is the Run-o� algorithm[15], that iterates
breadth-�rst through the similarity experts rankings and picks courses that have
been found enough times. The last algorithm is a simple round robin merger[15]
which just merges the results breadth-�rst and skips items that have already been
collected.

32 Recommendation Engines

The two voting algorithms are Borda count[14] and Inverted nauru[15]. They
are both based on letting the experts vote and give their top ranked courses the
most points. If the voting algorithms only use one expert, the sorted result is the
same as for the expert. The points are summarized and then the result is returned
as a course list, where the courses are sorted by their respective point totals.

Borda count

Borda count is similar to the Eurovision Song Contest scoring method and it works
by letting the experts give R+1−position points to course at place position where
R is the total number of rankings (i.e. 10 in our case).[14]

Inverted Nauru

Inverted Nauru only di�ers from Borda count by the points given. The amount of
points is given by: 1

position . For example, the top ranked course by an expert gains

1 point, the second 1
2 , the third

1
3 and so on. The idea is that the point di�erence

between position 1 and 2 is greater than between 9 and 10.[15]

Run-o�

The run-o� algorithm works by selecting courses in a sorted fashion by letting the
course found in enough (by a threshold) experts �rst be the top ranked, and so
on. The default threshold is: floor(numberOfExperts

2).[15]
We have enhanced the standard algorithm so that if not enough courses are

found to �ll the list, the threshold is decreased by one until the list is �lled. The
bene�t of using this algorithm is that it totally ignores experts that are in minority
to have top ranked a course until a majority have found it.

Round Robin

Round Robin is the simplest of the result merging algorithms and contrary to the
others, it does not need a memory to keep track of points, it simply scans the
experts and adds courses to the list if they are not already present in the list. The
immediate disadvantage with this algorithm is that it does not care about how
many experts have found a course, just that someone have. This makes round
robin perform poorly when inadequate experts are used as input.[15]

4.1.5 Evaluation

TREC-style average precision (TSAP) can be used to score search engines. It
mends the common problem of not knowing enough information to perform a
standard precision/recall evaluation by skipping the recall part and using weighted
precision taking into account result positioning.[16]

We have used a slightly modi�ed version of TSAP with cuto� N (denoted
TSAP@N), where N is 5 or 10. The cuto� is used to only analyse the top N

Recommendation Engines 33

results. For an expert E and cuto� N , the TSAP@N is calculated by

TSAP (E,N) =
1
N

N∑
i=1

Ei

i

where Ei = 1 if the element in position i in expert E is deemed relevant in the
comparison, otherwise 0.

Data gathering method

The evaluation data has been created by using a web tool that lets users select a
course to evaluate and then mark its suggested courses to be similar or not to the
selected course. The set of courses to evaluate against is the merged expert results
and to get rid of some biasing, the merged pool of courses have been shu�ed before
being displayed.

The evaluation requires that the test subject have a working knowledge of all
the courses in the set, as well as the course that is being evaluated.

Figure 4.1: Snapshots from the TSAP evaluation tool: Index page
(left) and voting page (right)

We have carried out three rounds of TSAP:

• Round 1 was executed by us (the two authors), testing 22 courses.

• Round 2 was executed by us also, but with less experts feeding the merging
algorithms.

• Round 3 was executed by 16 other students (and former students), testing
25 courses.

The results from Round 1 was used to modify the evaluation by tuning the voting
algorithms for Round 2. Round 3 was carried out by more people to hopefully get
a more balanced and less biased result.

4.1.6 TSAP round 1

22 evaluations done by the two authors using courses in di�erent departments for
tests. The results are shown in Table 4.1 where bold rows represent combined
results and a higher score is better. In this round, the combined results are based
on all of the similarity-ranking-algorithms.

34 Recommendation Engines

Algorithm Cuto� Score

mlt 5 0.280

runO� 5 0.258

bordaCount 5 0.257

invertedNauru 5 0.256

glasgow 5 0.254

aug_log 5 0.252

aug 5 0.249

tf_idf 5 0.236

roundRobin 5 0.223

jaccard 5 0.215

dice 5 0.215

lsi100 5 0.181

lsi50 5 0.163

mlt 10 0.160

bordaCount 10 0.146

runO� 10 0.145

invertedNauru 10 0.145

aug_log 10 0.143

glasgow 10 0.142

aug 10 0.140

tf_idf 10 0.137

roundRobin 10 0.130

jaccard 10 0.123

dice 10 0.123

lsi150 5 0.111

lsi100 10 0.102

lsi50 10 0.095

plsi 5 0.065

lsi150 10 0.061

plsi 10 0.037

Table 4.1: The results from TSAP round 1

Recommendation Engines 35

Comments

• MLT (Solr More Like This) wins both TSAP@10 and TSAP@5 and it is
even superior to the voting algorithms using all similarity experts.

• 3 out of 4 voting algorithms are placed top 5 for TSAP@10, the only voting
algorithm missing is Round Robin, which is placed together with the set-
based algorithms. RoundRobin is considerably worse than the other voting
algorithms

• LSI and PLSI are both placed at the bottom end of the list. Both PLSI
and LSI are supposed to be superior for TF-based document querying using
cosine similarity, but in this context they both perform badly, probably
because they are not tuned in such a way that the concepts can be used to
distinguish similarities in the given material.

• Dice and Jaccard are both set based similarity measures and does not take
into account the term frequencies, only their presence. Their mathematical
de�nitions are quite close, and in our test they perform exactly the same.

• The simplest term frequency based similarity ranker, tf_idf, performs worst
in both TSAP@10 and TSAP@5 and is superseded by the logged versions.

• Glasgow and aug_log performs about the same and has swapped positions
in the di�erent cuto�s. Even though aug_log is faulty implemented it still
performs fairly well.

• Run-o� and borda count also performs about the same and has also swapped
places in the di�erent cuto�s. Both their scores are very similar to inverted
nauru, and their results could be considered being of the same quality, al-
though the way they create them di�ers much in algorithmical terms.

4.1.7 TSAP round 2

Using the results from the �rst round, input of the voting algorithms has been
slightly changed. Dice has been removed (having the same results as Jaccard),
LSI and PLSI has been removed (showing that they do not contribute). The
hypothesis is that this change should improve the score of the voting algorithms
and especially the Round Robin.

Comments

The results from TSAP round 2 is shown in Table 4.2. and as expected, the
Round Robin algorithm bene�ted greatly from the changes, in fact more so than
initially anticipated, ending up scoring very close to the previously dominating
MLT. However, the test is still limited by the small homogenous test group and
relatively few tests why small errors may impact greatly on the scores. The tf_idf
algorithm is noticeably higher on the list even though no changes have been made
to the algorithm. One explanation could be that because of the generally unreliable
nature of the algorithm where it sometimes provides very good results and other
times utterly �awed, the score may �uctuate greatly if the data set is too small.

A proposed solution can be to increase the size of the test group.

36 Recommendation Engines

Algorithm Cuto� Score

mlt 5 0.356

roundRobin 5 0.354

tf_idf 5 0.353

bordaCount 5 0.334

glasgow 5 0.328

runO� 5 0.325

invertedNauru 5 0.324

aug_log 5 0.309

aug 5 0.305

jaccard 5 0.275

mlt 10 0.206

roundRobin 10 0.202

tf_idf 10 0.199

bordaCount 10 0.194

invertedNauru 10 0.188

runO� 10 0.187

glasgow 10 0.187

aug_log 10 0.175

aug 10 0.174

jaccard 10 0.160

Table 4.2: The results from TSAP round 2

Recommendation Engines 37

Algorithm Cuto� Score Di�. to TSAP 1 Di�. to TSAP 2

mlt 5 0.306 0 0

roundRobin 5 0.290 8 0

glasgow 5 0.284 2 2

runO� 5 0.283 -2 2

bordaCount 5 0.283 -2 -1

tf_idf 5 0.280 2 -3

invertedNauru 5 0.279 -3 0

aug 5 0.275 -1 1

aug_log 5 0.256 -3 -1

jaccard 5 0.209 0 0

mlt 10 0.178 0 0

roundRobin 10 0.169 8 0

tf_idf 10 0.165 5 0

runO� 10 0.165 -1 2

bordaCount 10 0.164 -3 -1

invertedNauru 10 0.163 -2 -1

glasgow 10 0.161 -1 0

aug 10 0.157 -1 1

aug_log 10 0.149 -4 -1

jaccard 10 0.123 0 0

Table 4.3: The results from TSAP round 3

4.1.8 TSAP round 3

One potential �aw with the results from the previous tests is the somewhat limited
test group solely consisting of the two authors. The third round of the test was
carried out through an online public form distributed to a larger group of students
of roughly a bit more than a hundred people. While we didn't expect a response
rate of more than 10-20 people, the greatly increased test group should still provide
more reliable data.

Comments

The results of TSAP round 3 is shown in Table 4.3 and as expected, the tf_idf
algorithm has gone down signi�cantly and now has a much more feasible score.
MLT still outperforms all other algorithms, even more so than the voting algo-
rithms, both at a cuto� of 5 as well as 10. While it was anticipated that the round
robin algorithm would improve because of the changes from the second round, the
degree of it is surprising. Also interesting is the relatively low score of the two aug
algorithms, placing second to last at both cuto�s. Judging from the score, one
can also draw the conclusion that the glasgow algorithm is relatively e�ective at
producing reliable list of �ve courses, but becomes less e�ective when increasing

38 Recommendation Engines

the list, dropping four places between the two cuto�s.
In the end, it's obvious that MLT is the most favourable algorithm to use for

this task, even outperforming the di�erent voting algorithms.

4.2 Statistical recommendations

4.2.1 Introduction

To provide additional options for course recommendation, we wanted to be able
to suggest courses based on previous students choice of courses. To do this we
use data from the national student documentation service called Ladok which
accurately log all course selections as well as grades for every examination element
that a student has participated in. Because of privacy concerns we only gained
access to the last �ve years of data with the personal identity numbers thoroughly
replaced with anonymous ID numbers.

4.2.2 Implementation

Some preprocessing was required before it was possible to query the recommender
for suggestions. For simplicity, we do this in two separate parts. In step one, we
group all courses given in a certain period pairwise and averages the result for all
students for respective course such that we get the combined average grade for both
of those two courses at every speci�c period. However, since the grades at LTH can
either be in the form failed/3/4/5 (TH) or merely the binary failed/passed (UG),
we assume that all passable grades are equal to the score of 1 and failed grades the
score of 0. If we instead would try to adjust the average value depending on the
TH grades, the end result would then be unfairly biased towards either TH or UG
courses. While only counting passed and failed grades results in lower precision,
it at least makes the result more unbiased.

The data structure at the end of the �rst part can be seen in Table 4.4.

Year Term Course 1 Course 2 Average grade

Table 4.4: Data structure (database row) containing the calculated
average grade for two courses given at a certain time.

With the new data prepared we proceed to the second part of the preprocess-
ing. For the data to be useful we have to cover three additional factors. Firstly we
only want a score which is based on all occurrences of two speci�c courses and not
only on one particular period. We also want to account for how the grades for the
two concerned courses di�er from the grades overall. Finally we want to count the
number of students who study the two courses together compared to only one of
the courses together with any other course. The resulting equation for calculation
of the new score is as follows:

• Gi = {failed/passed, . . .} is a set containing the individual grades from
course i

Recommendation Engines 39

• Gi is the average grade across course i

• Gij = Gi+Gj

2 is the average grade across course i and course j (which are
given in the same period)

• |Gi| is the number of grades (i.e. students) in course i

• |Gij | = |Gi∪Gj | is the number of students taking BOTH course i and course
j at the same time

the score is then given by:

score(i, j) =
Gij |Gij |
Gi|Gi|

This means that if many students choose to study two speci�c courses at the
same time instead of any other courses, then those two courses will be ranked
higher by the recommendation engine. If however only a very few of the students
actually pass relative to students studying other courses, then they will be ranked
lower.

4.2.3 Result

After preprocessing we ended up with 1,238 rows of data (down from 7,039) each
containing two courses and a score between 0 and 1. The usefulness of the gener-
ated data is evaluated in the prototype user evaluation.

40 Recommendation Engines

Chapter5

Course Dependencies and Validation

Courses at LTH have di�erent requirements that need to be ful�lled in order to be
allowed to study the course. The most common sort of the requirements are of the
form that the student need to have passed some courses prior, but can also be that
the student needs to have studied a certain amount of hp. Requirements can also
be both hard and soft, meaning that in a case of a soft requirement, the student
only need to have passed some compulsory parts of the course, such as laborations
and not have passed the course exam. The requirements can therefore be thought
of as dependencies between courses together with some conditional checks.

The course requirements are originally stored in free text, but they are gen-
erally written in a uniform way, probably from old texts being copied to create
the new requirements, which make them somewhat parseable. The majority of
the requirements are written in CNF (conjunctive normal form). To be able to
study the course you need to have completed at least one course in each group of
requirements. The boolean expression that is derived from this assumption has
the form:

Req = (A ∨B) ∧ C

This means that you can study the course if you have completed at least A and
C, or B and C. An easy method to get all the di�erent course states that ful�ls
the expression is to create a graph and then programmatically create all paths
through it.

We wanted our system to be able to validate the study plans �lled in by users
and answer the question if a course can be studied when the student wants to
study it. Quite early in this project, we wanted to work with the graph database
Neo4j1, and the most promising area to apply a graph upon was the courses
themselves. Neo4j provides a schema-less database with nodes and relationships
where both can have individual properties containing data. While nodes may be
fetched individually, the strength of Neo4j is that it can quickly perform pattern
matching of nodes and relationships and thereby traverse large graphs with ease.
Neo4j is queried by the custom querying language Cypher2.

1http://www.neo4j.org/
2http://docs.neo4j.org/chunked/milestone/cypher-introduction.html

41

42 Course Dependencies and Validation

5.1 Parsing algorithm

The �rst and perhaps most important part of formalizing the course prescience
dependencies is the parsing of the free-text representation.

P
H
P

LoT

Preprocessing

Tokenization

Parse tokens

Free-text course presciences

Create graph
structure

Neo4j

Sanitized strings

Token lists

Array structure

Graph structure

Figure 5.1: Flow diagram of the dependency parsing algorithm

The free text requirements are �rst preprocessed by removing course names so
that they will not interfere with the tokenization process. The residual text is then
tokenized by a regex containing di�erent words and lexical constructs that can be
used to create the boolean expressions of the requirements as well as describe
the di�erent special conditions that also needs to be passed in order to study the
course. The token lists are then parsed using a state machine to create a graph-
like structure using arrays, which is then converted into graph nodes and assigned
relationships and properties before inserted into the graph database.

The graph nodes in PHP are provided by a package called Neo4jPHP3, which
is available as a PHAR (PHP Archive)4. It also provides an API to communicate
with Neo4j.

3https://github.com/jadell/Neo4jPHP
4http://www.php.net/manual/en/intro.phar.php

Course Dependencies and Validation 43

5.2 Example

In this example of the course EDA221 (Computer graphics), the prescience require-
ment text is the following:

EDAA01 Programmeringsteknik - fördjupningskurs eller EDA027 Algoritmer
och datastrukturer samt FMA420 Linjär algebra.

This is tokenized into a list containing:

["EDAA01","eller","EDA027","samt","FMA420"]

The list is then parsed from the left into an array structure:

1. "EDAA01" is a course code, add it to current group

2. "eller" is converted into the boolean OR and is skipped

3. "EDA027" is also a course code and is added to the current group

4. "samt" is converted into the boolean AND and therefore the current group
is closed and a new one is created

5. "FMA420" is a course code and is added to the new group.

This leaves us with the multidimensional array:

[["EDAA01","EDA027"], ["FMA420"]]

The multidimensional array is then converted into a graph structure:

• The Start and End nodes are created

• The Start node relates to both elements in the �rst group

• Each element in the �rst group is then related to all elements in the second
group

• All the elements in the last group is related to the End node

• The graph structure is then inserted into the Neo4j using the PHP interface.

no, he has a thermal detonator! The boolean expression for this example is then:

ReqEDA221 = (EDAA01 ∨ EDA027) ∧ FMA420

The subgraph for the example is shown in Figure 5.2.

44 Course Dependencies and Validation

Figure 5.2: Subgraph of the prescience dependencies of EDAA21

5.3 Graph structure

The graph structure (shown in Table 5.1.) we created uses the fact that we want
to represent the course prescience dependencies as CNF and that we want to easily
�nd the Start and End nodes for a given course.

Node type Properties Outgoing relationships
Start node tag = course code REQ, REQ_D, REQ_C
in-between-nodes stag = course code REQ, REQ_D, REQ_C, ORIG
End node end = course code,

special = special condi-
tions

-

Root node - COURSE

Table 5.1: Graph database structure

By using indexes in Neo4j, it is quite easy to select a Start node as well as the
End node. They have di�erent properties, but share one value, the course code,
that are stored in the properties tag and end respectively. The in-between-nodes
are then returned as parts of the paths found between the Start and End nodes

Course Dependencies and Validation 45

by only following REQ, REQ_D or REQ_C (i.e. requiring) relationships. The need for
more than one kind of requiring relationship is due to that the course presciences
are sometimes individual for the di�erent programmes. In reality it is not used
very often, especially when looking at courses which is given for the quite similar
programmes D and C.

The ORIG relationship type is used to let the in-between-nodes point to the
Start nodes that represents their dependency graphs. In addition to the other
node types, there is also a singular Root node (with ID=0) that has a COURSE

relationship to all of the Start nodes. This allows for writing cypher queries easier
that uses all of the Start nodes as part of the query.

The ORIG and COURSE relationships were not needed for the validation algo-
rithm to work, but they were quite interesting and handy to have when exploring
the possibilities of Neo4j and its querying language Cypher.

Other functions than the course validation was implemented together with
Neo4j as well, but they were not included in the �nal prototype system. These
include a traversal algorithm that given a list of courses returns a list of courses
which presciences are ful�lled for. The traversal is another way of querying Neo4j
(in contrast to Cypher) and is supported by Neo4jPHP. Traversal requires rules
written in Javascript that is run in the Neo4j Java application and they are run
during the traversal of the graph. The reason for this function never to be imple-
mented into the prototype was due to it being di�cult to explain and visualize to
the user.

5.4 Graph visualization

To easier visualize the graph and get ideas for possible queries to the graph
database, we implemented a converter to be able to show our Neo4j database
with GraphViz5, a graph visualization tool. By combining Neo4jPHP and the
PHP GraphViz library Image_GraphViz6, it was just a matter of converting the
output from Neo4jPHP into the GraphViz dot format and styling the di�erent
nodes and relationships. To make the graph drawing look a bit more fancy and
appealing, colors for the nodes are randomized every time the graph is drawn.

5.5 Validation

Neo4j has support for a lot of di�erent graph algorithms including some which
returns all paths between two nodes.7

The algorithm which validates if a student can study a course needs a few
parameters:

• The course to be validated

• The time coordinates for when it is to be studied

5http://www.graphviz.org/
6http://pear.php.net/package/Image_GraphViz
7http://components.neo4j.org/neo4j-graph-algo/snapshot/

46 Course Dependencies and Validation

• All courses which are planned (both earlier and later than the course to be
validated)

• The programme that the student is studying

The algorithm starts by asking Neo4j to �nd all paths between the Start and
End node for the course to be validated as well as fetching any special conditions
(which are included as a property in the End node) which might apply. Then the
algorithm checks all paths and whether any of the paths can be followed by only
passing nodes which represents courses that the student has studied prior (i.e. are
planned earlier in the study plan) to the course being validated.

If there were any special conditions that needed to be ful�lled the algorithm
will carry out some special checks such as if the student has enough hp at the time
or enough hp within a certain set of courses. If any special checks was carried out,
their boolean result is returned, otherwise the earlier results from the path check
is returned.

The validation algorithm actually have two output results; the �rst being a
boolean that represents if the student is eligible for the course in question, and
the second a string containing the special conditions. This algorithm is called by
the prototype system using the data the user have inputed in its study plan. The
prototype also checks whether the course is studied in a study period where the
course is given in addition to the course prescience dependency validation. Since
we know that we can't fully validate all special conditions (such as correspond-
ing courses and the students language capabilities) the di�erent combinations of
eligibility and special conditions creates two di�erent warnings. If the special con-
ditions only contains validatable data, the course is classi�ed fully by the eligibility
output, but if there are special conditions that cannot be validated, the course is
classi�ed as maybe possible to study.

Chapter6
Web Application Backend

6.1 Introduction

When we started building the prototype we had right from the beginning a few
di�erent principles in mind that we wanted the system to comply with. First of
all, the overall goal of the prototype would ultimately be to facilitate the process
of designing one's personal study plan. This means that features would generally
need to have a practical purpose where some would regrettably be cut out if they
don't su�ciently help the user. Secondly, the prototype would need, to as far
as possible, be module based with a relatively easily modi�able core. While this
is in general a good coding practice, we mainly wanted this type of structure to
make it easier for us to work independently on di�erent parts of the system while
minimising the integration process. Albeit not our primary goal, we also wanted
to code with extensibility in mind, such that the prototype could be extended into
a stable product in the future if needed.

The PHP backend interacts with the underlying layers of the system that is
described in earlier chapters and a diagram depicting the whole system is shown
in Figure 6.1.

6.2 Implementation

6.2.1 PageBuilder class

To achieve a stable module based structure we would need a common solution
to build pages with and to handle the modules themselves. For this purpose we
built a PHP class named PageBuilder together with a closely associated PHP
interface named PageResource. To create a new page, the programmer allocates a
new PageBuilder object and initiates it. The PageBuilder will then automatically
generate the basic page structure, including scripts, stylesheets and the navigation.
The programmer can then continue adding content as usual until �nally closing
the page structure by invoking the associated method. The Page object usage is
exempli�ed in Appendix C.1 on page 85.

Most modules that would be created for the prototype relies heavily on both
Javascript and CSS, sometimes even requiring entire third party libraries to func-
tion. To simplify the process of integrating such module on a page, we created the

47

48 Web Application Backend

The
Internet Crawler Conversion and

generation

Seed urls Stop lists
Stop function

SOLR

Course
material

LoT

Schema

Dependency
parser

Neo4j

Prescience

More Like
This

Ladok

Recommender
engine

Buddy
courses

PHP and
Javascript

GraphViz

Study
plans

Validation

Master
theses

Parser

CEQ

Processing

Figure 6.1: A diagram of the system image

PageResource interface which all modules are required to implement. The inter-
face speci�es a few additional methods that when called will return a list of �le
paths to any external Javascript or CSS �les that is required by the module. It is
also possible to return pure Javascript or CSS code directly if needed. Addition-
ally, the interface speci�es a method for returning HTML intended to be placed
at the top of the page.

The module methods are however not expected to be called by the programmer
directly. Instead the PageBuilder class has methods for automatically loading sin-
gle or multiple page resources. When initiating the PageBuilder, the programmer
merely has to specify what modules to load, and the PageBuilder will automati-
cally prepare the necessary scripts, styling and HTML for the modules to behave
properly.

6.2.2 Solr class

While we had already con�gured Solr to successfully search for courses based on
course codes, course names or just free text, it would still need a PHP layer for

Web Application Backend 49

easier integration, as well as additional �ltering that could not easily be done
through Solr itself. In our case, Solr is not expected to be queried directly by the
programmer whereas all requests to Solr are entirely managed by the class.

A diagram of basic usage of the Solr class can be seen in Figure 6.2.

Figure 6.2: Flow chart of course searching

GUI

First of all a GUI would need to be made. We wanted as far as possible the
prototype to feel simple and familiar to the user, why our design choices have
been heavily in�uenced by other web search services such as Google Search1 and
Microsoft Bing2. The Solr class implements the PageResource interface and is

1http://www.google.com
2http://www.bing.com

50 Web Application Backend

set to handle the entire GUI, including both search controls, �ltering tools and
the result set. Searching is mainly done through AJAX requests, but will also
seamlessly make use of regular GET-requests if needed (such as at initial page
load). Additionally, the search bar autocompletes on course names and codes
through the use of the Solr autocomplete handler that we had con�gured prior.

The result set consists of a simple list of courses, a snippet of highlighting from
the most relevant course document, as well as some basic information about the
course. A typical item in the result set may look like Figure 6.3.

Figure 6.3: Example of a search result item for the query analys

Clicking on the result set item brings up a lightbox (i.e. an asynchronous modal
overlay) with extensive information about the course. If the user is logged in, the
course may also directly be added to the course basket by clicking on the green
button with the plus sign.

Filtering

We additionally support a few di�erent �ltering options. In order to minimise
the amount of duplicated data, we store a signi�cant amount of course data in a
MySQL database separate to the Solr installation. Because of this, the �ltering
is done entirely by the PHP class and not by Solr. To do this we always fetch a
considerably sized result set from Solr even though only a limited set will actually
be presented to the user. By doing this we assure that the presented result will
not unnecessarily become shortened because of applied �lters. Since requests to
Solr are done internally to localhost and because of how Solr scales with the size
of the result set, the performance actually merely takes an insigni�cant hit by this
oversized result set.

6.2.3 Course class

The course class is an abstract container class for managing all kinds of di�erent
courses and their respective data. The class provides basic getters and setters for
the most common course types, including course code, course name, number of
hp, when it is given and whether the course is advanced or not.

The course class is in turn extended by three di�erent subclasses: LTHCourse,
CustomCourse and SplitCourse.

Web Application Backend 51

6.2.4 LTHCourse class

This class handles all courses that are given by LTH. It is initiated solely with
a course code and then lazily populates itself from di�erent data sources when
needed. The basic course information that is inherited from the superclass is
fetched from the MySQL database. Part from the basic course information, the
class also contains MLT and CEQ data.

6.2.5 CustomCourse class

The primary purpose of this class is to enable the users to create their own courses
on the study plan page. This may be the case when a they have taken a course
outside of LTH or a course that for some reason hasn't been registered in the
system. The class is initiated with a course code which it then uses to fetch the
custom course from the respective table in the MySQL database that has been
created earlier.

6.2.6 SplitCourse class

A split course generally represents a mandatory course that spans over multiple
periods and consists of di�erent parts with separate examination. A prime example
of a split course in three parts is the course �calculus in one variable� (FMAA01,
endimensionell analys), which spans over three periods with separate exams in
each period. Split courses are created when the mandatory courses are inserted in
a user's study plan and they are stored in database together with the rest of the
user's courses.

6.2.7 Lightbox class

To minimise the need of constantly reloading entire pages we built our own spe-
cialised lightbox module. The class implements the PageResource interface and
relies heavily on Javascript. The content may be populated either by loading en-
tire pages through AJAX or by simply explicitly assigning the content as a string
when calling the Javascript function. We also created a simple navigation bar for
the lightbox which is automatically handled by Javascript object. When multiple
calls to the lightbox are made, the Javascript object keeps a stack of the requests
and displays a convenient �back�-button such that the user may pop the stack
and go back to the previous lightbox. If the lightbox is closed the stack is reset,
however.

52 Web Application Backend

Chapter7
User Interface

The prototype is a web application that attempts to mimic a web shop where a
user picks out courses and puts them into a course basket. Instead of checking out
the basket, the user rather places the courses from the course basket into a study
plan. The latter may conceptually be imagined as a manual planning procedure
involving paper cards representing courses.

The planning procedure lets the student put course cards into di�erent stacks
on a desk organised in a grid pattern. A row represents a year and a column
represents a study period. The course basket works in this case like a stack of
cards where unplaced course cards are kept. The student may move cards to and
from the course basket, as well as between stacks at anytime. Cards may also be
discarded completely, except for a few mandatory cards (courses) that can't be
discarded.

The web shop part of our system lets the student shop for courses. The student
can �nd courses both by searching as well as browsing. The student may also shop
by the use of recommendations based on similarities between courses or courses
that other students have already studied together.

The �nal prototype consists of an extensive web based GUI that is based on
the building blocks supplied by the backend. The most important aspect when
creating the front-end of our prototype is to make it easy to use. We expect that
students will use this tool relatively seldom and that they will not likely read the
supplied help page. We also believe that they will likely not use the tool at all if
they don't understand it immediately.

The prototype is divided into four primary pages1:

Search page GUI for the search engine. Lets the user search for courses as well
as add them to the user's course basket. This is also the start page of the
system.

Study plan scheduler Tool for building and viewing the user's study plan. Courses
added to the course basket will appear here.

Course list Extensive list of all courses available to respective program. Also
lets the user add courses to the course basket.

Help page Simple support page that describes the interface and how to use the
system.

1Not counting the login and select programme pages

53

54 User Interface

The subsequent chapters will describe these pages in detail.

7.1 Course Information Page

In addition to the primary pages, several pages needs to show complete information
about a speci�c course. For this we built a new page intended to be opened in
a lightbox that displays all available information about a particular course. This
includes general course information, CEQ data, similar courses and complementary
courses. The information is divided into several collapsible categories to minimise
space and clutter. The CEQ data is presented by color coded percentages of the
weighted mean, an arrow to indicate the trend and a line chart showing entries
from previous years. For drawing the graphs we use a third party library called
jQuery Sparklines2. The Course Information Page is shown in Figure 7.1.

Figure 7.1: The Course Information Page showing FMS012

2http://omnipotent.net/jquery.sparkline

Chapter8
Search Page

This is the entry page of the prototype and is thus the �rst thing the user sees.
The page handles course searching as well as being one of the primary methods of
adding courses to the user's course basket.

8.1 Layout

Figure 8.2 shows the top of the search page after the user has entered the query
analys. The page includes three major components:

• Search �eld with a submit button

• Toolbox for advanced �lters

• Result set

8.1.1 Search �eld

The search �eld is a regular text �eld where the user may write his or her desired
search query. The query may consist of course code, course name or any free text
that might occur somewhere in the course material. As seen in Figure 8.1 the
search �eld also features word completion for both course code and course name.
To accept a suggested word, the user may either click on the word or navigate to it
with the keyboard and press enter. The result set will also automatically update
continuously while the user is writing.

Figure 8.1: A screenshot showing the search �eld as well as the word
completion

55

56 Search Page

Figure 8.2: A screenshot of the �nal version of the web application
showing the Search page

8.1.2 Advanced �lters

The advanced �lters are hidden as default, but can seamlessly be toggled by click-
ing on the avancerat link. For convenience, the state of the �lter box is saved so
the user doesn't have to toggle it every time he or she visits the site. The system
supports the following �lters which can also be seen in Figure 8.3:

Program All, D, C

Program that should be eligible to take the course.

Search Page 57

Level All, Basic, Advanced

Type of course.

Points ≥, ≤, = followed by [number]

The desired number of hp a course should be worth.

Specialisation All, [list of specialisations for each program]

Which specialisation a course should be part of.

Study period All, autumn 1, autumn 2, spring 1, spring 2

When the course should be given.

Course length All, 1, 2, 3, 4 periods

How many periods a course should span.

Mandatory All, only mandatory, only optional

Whether the course should be mandatory or not

Show picked All, not in course plan

Hide courses already in the user's study plan. Is only available when logged
in.

Figure 8.3: A screenshot showing the advanced �lters

8.1.3 Result set

The result set consists of a list of courses that match the submitted query and
�lters. The respective course name is presented at the top of each item. Below
the title there is a snippet of highlighted text, showing what part of the course
material (if any) that was matched. In the footer of each item, there are a few
�elds of important information about the course, including number of hp, level
and which study periods the course is given in. If the user is logged in there is
also a button in the top left of every item to add or remove the course from the
user's course basket.

If the user clicks on a course, the course information lightbox will be presented
with extensive information about the course.

A typical result set item can be seen in �gure 8.4.

58 Search Page

Figure 8.4: Example of a search result item for the query analys

Chapter9
Study Plan Scheduler

This part of the web application handles the creation and modi�cation of the user's
study plan as well as validating if it will be possible to graduate when it is studied.

9.1 Layout

Figure 9.1: A screenshot of the �nal version of the web application
showing the Study Plan Scheduler page

The study plan scheduler shown in Figure 9.1. contains �ve integral parts:

• Toolbar (top-left)

• Course basket (top-right)

59

60 Study Plan Scheduler

• Study plan (below the toolbar)

• Statistics (below the study plan)

• Study plan validation (bottom)

The study plan and the course basket both contain course objects that repre-
sent courses.

9.1.1 Course objects

The course objects can be moved between the di�erent periods and the course
basket by drag and drop1. While dragging, the di�erent drop zones are colored
di�erently based on if the course is given at the time the zone represents; valid
zones are colored green and the others are colored grey.

The course objects shows some of the most important information directly:

• The name of the course

• The level of the course

• A red asterisk if the course is mandatory

• The course code

• Specialization inherency

• Amount of hp

Figure 9.2: Example of a course object being hovered

The course objects also have their own tools that are shown when they are
hovered by the mouse pointer. The tools, shown in Figure 9.2., are from the left:

Course information Opens a lightbox that shows information about the course

Buddy courses and similar courses Opens an overlay that shows courses that
students have studied at the same time as the course as well as courses that
are similar to the course

1The drag and drop is supported by the Sortable-class in the Javascript package
jQueryUI (http://jqueryui.com/)

Study Plan Scheduler 61

Disable/enable course Toggles the course being disabled, i.e. not providing any
hp and virtually like the course is in the course basket. Useful when trying
di�erent course options out.

Mark as reexam Makes the course one period long and skips validation for cor-
rect period. This tool is used when a course is meant to be reexamined and
not studied at its full length.

Move to basket/remove If the course is in the study plan the tool moves the
course to the course basket and if the course is already in the course basket
it will be removed.

9.1.2 Toolbar

The study plan toolbar has gone through many changes during the iterations and
only contains two tools in the �nal version of the prototype. The residual tools are
a button to expand/contract all years in the study plan and a link (which is hidden
by default) to reset the study plan and allow for the user to change programme.

9.1.3 Course basket

The course basket is a staging area much like a shopping basket on an E-commerce
web site. It contains courses that the user possibly wants to (or have to) study
but that have not yet been placed in the study plan. The user can interact with
courses in the course basket either by dragging them or to use the course tools
that are displayed on hovering over a course object.

The course basket also contains links to add courses from di�erent sources.
There are two special kinds of courses that can only be added from here: Master
thesis courses and custom courses.

The master thesis courses are shown in a list and simply added, but the custom
courses requires more information to be provided by the user. The custom courses
are meant to make the user able to add courses not given by LTH into the study
plan. The custom courses requires the user to input a six-character course code,
a course name, the amount of hp, the level and the length of the course.

9.1.4 Study plan

The study plan is the main area of the study plan scheduler and contains courses
planned to be studied as well as courses already completed. Courses are placed
in a period and each year have four periods that can hold courses. Courses that
are longer than one period are represented by placing special course objects in the
subsequent periods to indicate that the course continues. The study plan contains
�ve years by standard, but can be extended inde�nitely by adding more years.

The study plan also presents the amount of hp being earned during a period
and summed up over the year. In the prototype, all hp from a course is given in
the end of the course and therefore the amount of hp can be pretty low in some
periods with many long courses.

62 Study Plan Scheduler

9.1.5 Statistics

The statistics table contains information about how the gained hp is divided both
in time and in programme specializations. It is meant as an overview to know
where more courses can be �tted and to know how many points are within the dif-
ferent programme specializations. The table shows both normal hp and advanced
hp given from courses that are of the advanced level. These numbers are also the
basis for the study plan validation.

9.1.6 Study plan validation

The study plan validation box shows if the study plan is possible to graduate or
what needs to be ful�lled in order to be able to graduate using it. When the study
plan is valid, it will also show which specialization is ful�lled for graduation.

9.2 Validation

The study plan scheduler performs two kinds of continuous validation, both of the
course prescience requirements and the study plan graduability.

9.2.1 Course required prescience validation

Figure 9.3: Example of course prescience validation error message

All courses in the study plan are validated whenever a course is moved or is being
enabled/disabled. If a course fails validation its border is colored orange or red
depending on if the course presciences can be validated perfectly or if they require
information that only the student knows to be validated correctly. If a course is
placed in a wrong period (one where the course is not normally given) the course
is also colored orange. A course that in some way fails validation displays a small
question mark when hovered with the mouse pointer that can be clicked in order
to get more information about what failed. Figure 9.3. shows a error message for

Study Plan Scheduler 63

a course where the course presciences can be perfectly validated, but where the
required courses are either missing or in planned too late. Some courses, such as
the master thesis courses require the student to have earned enough hp and that
is also validated.

9.2.2 Study plan validation

Whenever the study plan is changed, it is validated. The validation is done to
conform to the current requirements to graduate from the D and C programmes2.
It checks whether the study plan ful�ls:

• A total of at least 300 hp

• At least 75 hp from advanced courses

• That all the mandatory courses are planned

• That there are at least 45 hp (whereof at least 30 hp in advanced courses)
that are included in a specialization

• That there is a planned master thesis course

9.3 Discarded interactivity

The �rst iteration of the study plan scheduler allowed for the user to color courses
red, white and green depending on their status using photoshop-like brushes.
When the brushes were active, the mouse pointer was changed to re�ect which
color was being used. Courses colored red represented failed courses, green courses
were completed and white courses were being uncertain or planned in the future.
The coloring brushes were discarded since the system did not require to know
whether a course was completed or not. Except for the coloring brushes, a remove
brush was added to easily move courses to the course basket or out of existence.
In this iteration the courses could also only be dragged using a small red handle
shown in the right corner of the course object.

Iteration two removed the color brushes, but kept the brush concept and cre-
ated a few new brushes. One of them allowed for courses to be disabled (virtually
being in the course basket but still placed in the study plan). Another brush made
the buddy course lightbox to displayed and �nal brush made it possible to drag
courses to any period (not just to the valid ones, that was the standard constraint
at the time).

Iteration three added a context menu (i.e. right-click menu) on the course
objects to more easily apply the tools on a course.

Iteration four removed the drag handle and iteration �ve removed the tool that
allowed for freely moving the courses and made it into the new default behaviour
(i.e. removed the moving constraint).

Iteration six removed the context menu and all of the brushes and moved all
of the tools into their �nal position, below the course when hovering it with the
mouse pointer. This rather large discarding of tools and their interactions was

2e.g. http://www.student.lth.se/infocom/c300/

64 Study Plan Scheduler

based on feedback from potential users who had problems understanding how to
use the tools or even notice their existence. The conclusion was that the web was
ready for much more interactions than the users of that time.

Chapter10
Course List

The course list page contains the courses given to a speci�c programme. It shows
the mandatory courses and all the possible specializations with their included
courses in separate tables.

Our course list page is an enhanced version of an already existing web page in
use at LTH. The enhancements includes the ability to client-side sort the columns
and the extension of CEQ �gures directly in the table.

The course list page is meant as a browsing tool when exploring possible courses
to study. Since it is required to have a certain amount of hp that consists of
courses in a specialization, it is very important to be able to get an overview of
those courses.

Figure 10.1: Example of a sortable table with courses

Figure 10.1. partly shows one of the tables on the course list page. The table
headers are (from the left):

• Course code

• Course name (with a �Add course to basket�-button to the left)

• Total amount of hp given

• Course level

• Period

• CEQ - Overall satisfaction

• CEQ - Important for my education

• CEQ - Good teaching

• CEQ - Appropriate workload

65

66 Course List

• CEQ - Passed students

The table columns are sortable (both ascending and descending) and it is even
possible to sort by multiple columns at the same time by shift-clicking the column
headers. The sorting is made by a very useful and easily used jQuery plug-in
simply called tablesorter1, which is enhanced by custom comparators to be able
to sort the custom data cells in the table.

One of the goals with the course list page was to present as much useable
information to the user as possible, but a great constraint with working with
tables are their width; when there are too many columns in a table it becomes
di�cult to read. The last �ve columns, which contain CEQ �gures, are selected
based on what the students (in our limited prestudy) used the most when selecting
courses to study. All information about a course is available through the course
information lightbox opened by clicking the course name.

The table rows are integrated with the study plan scheduler in such a way
that courses can easily be added and removed from the course basket. It is also
possible to see if the course is part of the mandatory courses or if it is already
planned in the study plan.

1http://tablesorter.com/docs/

Chapter11
User Evaluation

When the prototype was �nished, we wanted to see how the intended users (i.e. stu-
dents at the D and C programmes) envisage the system. We performed a test
session in a computer room at LTH where a reasonably random selection of test
users could try the system. We tried to lead the test users as little as possible,
but answered direct questions and accepted vocal feedback. The task the test
users were assigned was to try to create their study plan for the rest of their
education. Throughout the test, we sporadically asked the students about their
initial thoughts and feelings about the di�erent parts of the system, without trying
to lead the answers signi�cantly.

The designated task was easier for older students who often had previously
planned at least parts of their education before trying the system. The younger
students were in the beginning concerned that that they had to fully create their
de�nite study plan on such short notice. They were however eventually able to be
assured enough to however at least create hypothetical study plans, even though
the reality might turn out di�erently.

After the test users were done with testing the prototype, they �lled out a web
questionnaire that the user evaluation is based upon. The number of test users
(15 students) is relatively low, but it is su�cient for this user evaluation.

11.1 Survey

We structured the survey such that it wouldn't take too much time and e�ort of
the user to complete it while still providing necessary information to draw proper
conclusions from the results.

Question 1 was asked to con�rm that our prototype �lls its primary purpose
to actually help students to �nish their study plan. If the student wasn't able to
�nish his or her study plan we were however also interested in knowing whether
the system failed fundamentally (e.g. the students couldn't �nish their study plans
because of technical limitations of the system) or if there were merely some minor
issues that made the student stop. For that purpose we additionally included an
optional associated question (Question 2) where the students could freely explain
why they didn't complete their study plan. We wanted to know what advanced
features of the system that the testers used. For this, we added questions 3, 4, 6, 7,
9 and 10 to cover all parts of the advanced features. Additionally we also wanted to

67

68 User Evaluation

know how the students used the fundamental parts of the system, more speci�cally
how the students added courses to the study plan. To cover this, we added the
multiple choice Question 8 to let the students specify how they added courses, as
well as Question 11 to see whether the system is su�ciently comprehensive or not.

To gather the students' thoughts about the ease of use of the system, we added
two more questions, Question 5 and Question 12, asking about how easy it was to
use the system, as well as whether they had to use the help page or not.

Lastly, we end the survey with a question asking if the students would con-
sider using this system for real if it was publicly available, as well as an option
to add any free text of �nal thoughts and opinions. We can add that we speci�-
cally put Question 13 last in hope that this would let the tester more thoroughly
think through his or her opinions about the system by answering all the previous
questions �rst.

The results from the user evaluation survey is shown in Table 11.1.

11.2 Conclusions

The results from the user evaluation turned out to be relatively promising to the
favour of the project. All students who answered the survey stated that they would
use the system if it was publicly available. 93% of the students answered that they
thought the system was easy or very easy to use. From observing the students at
the testing phase, we could also gather that while many students had some initial
confusion of how to use the system, they would rather quickly learn from simply
trying out the di�erent functionality. The students would then �nally manage to
use the basic features with relative ease. Interestingly enough, very few answered
that they ever used the help page. When directly asked about the topic, many
answered that they hadn't even re�ected on that such page actually existed, even
though it's clearly visible in the navigation.

While 60% of the testers managed to successfully complete their study plans,
the remainder answered that they were almost able to complete their plans. Ques-
tion 2 however revealed that the absolute majority only failed to complete their
plans due to very minor reasons, mostly related to not being able to decide on the
last few courses in their plans and not because of limitations in the system itself.

To our annoyance very few students answered that they used any of the more
advanced features such as creating custom courses. Those who did use them also
had a rather varying (albeit generally inclined towards the positive) experience
of the perceived accuracy and e�ciency of the tools. While these features may
arguably belong to the more academically interesting parts of the project, the end
users are still apparently mainly interested in the most basic functionality of the
system, whereas the advanced features are merely seen as optional nice-to-have
assets.

Together with the excellent result from Question 13, the rather positive free
text answers as well as the generally positive results from the survey overall, we
happily conclude that from a user standpoint the system is a success!

User Evaluation 69

No. Question Alternative breakdown

1. Did you �nish your study plan? Yes (60%)
No (0%)
Almost (40%)

2. If you answered Almost to the above question,
please write why so here

FREE-TEXT

3. Did you use similar courses and/or buddy courses? Yes (40%)
No, did not need it (47%)
No, was there such functions?
(13%)
No, didn't understand it (0%)

4. Did you use Mark as reexam? Yes (60%)
No, did not need it (40%)
No, was there such functions?
(0%)
No, didn't understand it (0%)

5. Did you use the Help page? Yes (13%)
Yes, but it didn't help me (0%)
No (87%)

6. Did you create custom courses? Yes (20%)
No, did not need it (47%)
No, was there such functions?
(7%)
No, didn't understand it (27%)

7. Did you ever disable a course? Yes (13%)
No, did not need it (53%)
No, was there such functions?
(13%)
No, didn't understand it (20%)

8. How did you add courses? (Multi-select) Search (73%)
Similar courses (40%)
Buddy courses (13%)
Course list (93%)
Custom course (13%)
Master thesis (53%)

9. If you used similar courses, how well did it
perform?
(Range: 0 (bad)...5(very well))

1 (0%)
2 (14%)
3 (14%)
4 (29%)
5 (43%)

10. If you used buddy courses, how well did it per-
form?
(Range: 0 (bad)...5(very well))

1 (0%)
2 (17%)
3 (33%)
4 (33%)
5 (17%)

11. Did you ever need to look for any
information outside the system?

Yes (35%)
No (65%)

12. How cognitive did you �nd the system?
(range: 0 (not at all)..5(very))

1 (0%)
2 (7%)
3 (0%)
4 (73%)
5 (20%)

13. Would you use a system like this if it was available? Yes (100%)
No (0%)

14. Comment the system (bugs, desired features, etc.) FREE-TEXT

Table 11.1: The results from the user evaluation

70 User Evaluation

Chapter12
Extensibility

We have tried to build our prototype system in such a way that it is easy to
expand. Most functionality is created in a generalised way that combines lower
level functions to make up for the �nal results in the high level functions. This
both reduces the amount of duplicated code in the code base and it allows for
easily creating similar functions.

12.1 Example

There are quite a few di�erent things one can do using the results from the free-text
search done by Solr. To test the extensibility of our prototype we implemented
a tool meant for senior high school students (gymnasielever) that helps them to
select which LTH programme and which specialization they should study by using
their already existing interests. The tool works by letting the students enter a few
keywords that they would like to have in the courses of the programme that they
are about to study. Then a search is done for each of the keywords and the �nal
result is then created from combining the subresults of the searches.

The subresults are ordered lists of courses and to make that into programmes
and specializations each course gets a voting power that is:

voting_power = 1
pos , where pos is the result position starting with 1 (similar

to Inverted Nauru on page 32).
Then each course in the results votes with its voting power for the programmes

and specializations where it is included. For example, if EDAN20 (Language
Technology) is found in a result in third place, it will vote 1/3 point to D and
the pv (software development) specialization. The last step is to sum up all the
points given to di�erent programmes and specializations and order the results and
present them to the student.

Since the scope of our prototype limits its courses to be mostly courses given
to the D and C programmes, its use is quite limited, but still presents valid results
for keywords where there are searches with satisfying results. The time needed to
implement this example (shown in Appendix C.2 on page 85) was under half an
hour, due to all the functions already existing on the lower level.

Another similar extension is a tool that returns course teachers instead of
programmes and specializations, which would be helpful for journalists and other
people who wants to get in contact with people in academia.

71

72 Extensibility

12.2 Suggested extensions

Due to the scope of the prototype, some extensions are simply to enlarge the
datasets that makes up for the system and to extend its use to the rest of LTH.
Other extensions are enhancements that makes the current prototype system help
the students even more. During the �nal user evaluations we gathered a few
suggestions for enhancements that would make this system help students even
more:

CSN check Count the number of hp per term (i.e. spring and autumn).

Export options Export to pdf, txt, csv, spreadsheet, etc.

Import options Import from Ladok results and/or course registrations.

Add prescience required courses when not in study plan When adding a
course with unful�lled prescience requirements, add also the courses needed
to study the course.

Support for prior years and the old 270hp programmes The requirements
and mandatory courses changes over the years and support for this would
be extremely important.

Support for partly completed courses Some course gives the student hp for
completing parts of a course. This is also important for knowing if CSN will
still hand out �nancial support.

Planning summer courses Have a separate period where one can store summer
courses.

Alternative mandatory courses Some mandatory courses can be swapped for
other courses.

Calendar synchronization Automagically generate a synchronized calendar with
the courses in the study plan.

Reexamination and examination dates Show exam and reexam dates, so that
one won't get double booked and have enough time between exams.

Support for equivalent courses In some prescience requirements the word equiv-
alent is used and it would be nice to know which courses are deemed to be
equivalent.

Chapter13
Discussion

While the overall results of the project were satisfactory, there are still a number
of both planned and unplanned limitations that would need to be taken care of
before a potential product could be released. Perhaps the most obvious limitation
is the overall lack of data, especially for other programmes than the D and C
programmes. The system is however built in such a way that adding additional
programmes would hopefully require small amount of e�ort. With that said, new
programmes would bring an assortment of new odd special cases of both course
requirements as well as structures of course web sites. While it's impossible to
predict what these kinds of special cases would be, the system is originally designed
with special cases in mind.

There are however a few limitations that applies even to the already imple-
mented programmes. For example the current data collection is gathered solely
from one particular point in time and doesn't cover neither future nor historic
changes to the courses or requirements. Some courses change their names over
the years and some are replaced with entirely new courses. In reality the system
should handle overlapping courses and name changes, but in its current state it
doesn't. Another issue is the concept of student batches dependent on when they
started their programme. When students begin their programmes they apply to a
speci�c programme plan (which in fact might not even be completed at the time)
that they have to pass in order to graduate. Even students who linger on beyond
the standard programme schedule (because of e.g. failed courses or lower study
speed) will still need to complete the programme plan of their original student
batch. The system however doesn't take this in consideration at all; it merely
handles each term disjointly as they were scheduled at the point in time of col-
lection of the data. In our speci�c test cases this is usually not a problem, but
in reality for a very small set of students this limitation could lead to drastically
inaccurate validation of their study plan.

Overall, our speci�c implementation of the validator is only a proof of concept
that it's possible to validate a study plan, but to actually guarantee validity the
system needs to be con�gured with many additional rules and special cases to fully
handle all of the requirements for graduation.

The quality of the course prescience validation system is dependent on the
parsed data structure created from the LoT data. The assumption that the pre-
science requirements can be parsed is generally true, but if the data existed in a
formal and fully parsable form it could potentially be perfectly validated. Based

73

74 Discussion

on discussions with personnel at LTH, we apprehend that the work of creating
such formal data is already underway.

We found the need for tagging prescience requirements with special conditions
that might apply to the validation. While these special conditions may include
multiple complex requirements, they are in reality often linked to single courses
in the prescience requirements (such as when a course can be partly completed).
It would therefore also be helpful if the special conditions were formally stored
together with the course that it applies to in the requirements. Because of these
special conditions, we realised that our validator would apart from fully validating
a prescience requirement as passed or failed, also needs to be able to validate it
as uncertain whether the prescience requirement was ful�lled or not. It would
arguably be more helpful for the end users if the validator was more certain of its
validation than it is in this prototype.

The prototype validates and warns the user of any errors found in the study
plan. The users reported however during the user evaluation that they would
like even more feedback from the system. One of the problems that they pointed
out was that the system did not display a message when a period had too many
courses such that the workload would become impractical for the student. Since
this is not a hard limitation, we decided to allow the users to decide themselves
how much they want to study, but it seems that the more checks and validations
we implement, the more users require of the system.

Our prototype has been user evaluated and system tested by potential end
users. Since our prototype was adapted for students of the D and C programmes,
we used students from those programmes for our testing. These students are
generally accustomed to web applications as well as di�erent computer applications
that they build and test during their education. Students from other programmes
might however not have the same knowledge and experience of computer systems
and may very well have other usage di�culties with our prototype.

We tried a few di�erent more or less unconventional ways of interacting with
the study plan. It quickly became evident that it was not obvious how to imple-
ment an interface that the users easily understood and could handle; many users
had trouble with the initial implementations. Our guess is that the test users are
used to simple websites and have preconceived ideas of how to use them and there-
fore have a hard time adjusting to other ways of interacting with web applications.
We believe that if the prototype would have been a native desktop application with
a customized graphical style, it would not have been an issue in the same way since
it is more common to interact with such applications in non-standard ways.

The prototype supports a few features that enables the students to get course
recommendations. The recommendation engines are interesting and works fairly
well from a technical standpoint. Even though many testers appreciated the ad-
vanced features, several test users did not seem to think that the features were
absolutely necessary in order to create their study plan. We imagine that a much
smaller system that would only contain the course list, the statistics and the study
plan without validation would probably be su�cient to satisfy most students and
let them plan their education. This simpler system would be much easier to im-
plement and maintain, and it would be clearer to the students that the tool is not
omnipotent and that it require additional work of the user.

Chapter14
Conclusions

After the largely positive user evaluation, we conclude that the prototype indeed
ful�ls its goal of helping students to plan their study plan. The system enables
users to with relative ease, search for desired courses and add them to the users'
study plan. The system is also able to successfully validate their study plans
to inform the students whether it is possible to follow their plan and if it would
eventually provide them with a �nal degree. The absolute majority of the students
who answered the provided feedback form, claimed that they would use a system
like the prototype if it would actually be released and maintained.

While the search module does provide advanced �ltering options, the prototype
does in fact not actually enhance the result set by the use of neither Ladok nor CEQ
data. However, the data is used for providing additional features and information;
the Ladok data is used by the recommender engine as historical data, and the CEQ
data is processed and presented to the users so that they may use it to assess a
course. Both the Ladok data as well as the CEQ data goes through various layers
of preprocessing in order to be used by its respective module in the system.

Two di�erent variants of recommendation engines have been implemented.
The �rst uses similarities in the course material and suggests courses that are
deemed similar to a given course; the second uses historical data and suggests
courses that other students have taken at the same time as a given course. Both
implementations perform fairly well and produce useful results, but it is hard to
measure how well they perform since the perfect result is unknown.

VSM and its variants performed rather well and could potentially be used
in the prototype to supply similar courses. LSI and PLSI, which reduces words
into concepts, did however not perform according to our initial estimation. Both
algorithms removed a signi�cant amount of granularity from the course material
which reduced the quality of the result set instead of enhancing it, like it does
when they are used for searching. Other models for measuring similarity between
courses was evaluated whereas the Solr's MoreLikeThis module performed best in
the tests.

75

76 Conclusions

Chapter15
Glossary

AJAX Asynchronous JavaScript and XML, a way of letting web applications
update parts of the view without having to update the whole page

Apache Lucine Open source search engine framework

Apache Solr Open source search suite based on Lucine

ASCII Character encoding based on the English alphabet

Browser A computer program that displays web contents

C programme A programme at LTH that is specialised in information and com-
munication technologies

Classi�er A piece of software that can classify contents, either by parsing or
machine learning

Content management system An application that provides easy creation, edit-
ing and publishing of contents

Course code Identi�cation code of six characters for a speci�c course

Crawler An internet bot program that follows links structures and downloads
contents from the web, most often for the purpose of indexing

CSN Centrala studiestödsnämnden, gives students �nancial support if certain
requirements are met

D programme A programme at LTH that is specialised in computing and the
creation of computer systems

DF Document frequency, how many documents that a term occurs in at least
once

Full-text search Search containing any text in the database

GET-parameter Parameter sent to the web server through the URL

GET-request A request sent to a web server requesting a web page or some
contents

GUI Graphical User Interface, the front end of a computer system

hashing Converting variable length data into �xed length data

77

78 Glossary

hp One hp (högskolepoäng) is equivalent to one ECTS (European Credit Transfer
System) point.

HTML Markup language for building websites

Hyperlink A link from one web page to another

IDF Inverse document frequency, 1/DF

IR Information retrieval

JSON Javascript-like text representation of data. Suitable for transferring data
between di�erent programming languages.

Ladok Swedish national system for handling study results of higher education

LoT (Läro- och timplaner) Database with programme curricula, time tables and
course information

lp A time period in which courses can be given, there are four lp in a year

LTH The Faculty of Engineering at Lund University

Neo4j Open source graph database

PHP Server side scripting language for web development

Query A request for a special set of data

Recursive See Recursive

Regex A language that provides the descriptions needed for automated text pro-
cessing

SQL (Structured Query Language) A common query language for relational databases

Term A word

TF Term frequency, how many times a term occurs in a speci�c document

URL Web address

References

[1] CERN, The birth of the web. 13 June 2013
http://home.web.cern.ch/about/birth-web

[2] C. Castillo, E�ective Web Crawling. University of Chile, November 2004
http://www.chato.cl/papers/crawling_thesis/effective_web_crawling.pdf

[3] J. Akbari Torkestani, An adaptive focused Web crawling algorithm based on
learning automata. Appl. Intell., 37:586�601. 2012

[4] T. Furche et al, OXPATH: A language for scalable data extraction, automa-
tion, and crawling on the deep web. The VLDB Journal 22:47�72. 2012

[5] M. Kumar, R. Vig, Learnable Focused Meta Crawling Through Web. Procedia
Technology 6:606�611. 2012

[6] S. Chakrabarti, M. van den Berg, B. Dom, Focused crawling: a new approach
to topic-speci�c Web resource discovery. Computer Networks 31:1623-1640.
1999

[7] DW. Shattuck et al, Online resource for validation of brain segmenta-
tion methods. Laboratory of Neuro Imaging, University of California. 2008
http://sve.loni.ucla.edu/instructions/metrics/jaccard/

[8] DW. Shattuck et al, Online resource for validation of brain segmenta-
tion methods. Laboratory of Neuro Imaging, University of California. 2008
http://sve.loni.ucla.edu/instructions/metrics/dice/

[9] C. Manning, P. Raghavan, Information Retrieval and Web Search,
Lecture 6. Department of Computer Science, University of Vermont.
http://www.cs.uvm.edu/~xwu/wie/CourseSlides/TFIDF.pdf

[10] Susan T. Dumais, Latent semantic analysis. Annual Review of Information
Science and Technology 38:188�230. 2004

[11] T. Hofmann, Probabilistic latent semantic analysis. Department of Computer
Science, Berkeley, University of California. 1999

[12] A. Kaban, Machine learning, Lecture 5: Probabilistic Latent Semantic Anal-
ysis. School of Computer Science, University of Birmingham. 2012

79

80 References

[13] A. Johnson, How MoreLikeThis works in Lucene. [web log], 2008.
http://cephas.net/blog/2008/03/30/how-morelikethis-works-in-lucene/

[14] L. Bowen, Introduction to contemporary mathematics:
The borda count method. University of Alabama, 2001.
http://www.ctl.ua.edu/math103/Voting/borda.htm

[15] A. Alba et al, Applications of Voting Theory to Information Mashups. In Pro-
ceedings of the 2008 IEEE international Conference on Semantic Computing,
pages 10-17. 2008

[16] Y. Lu, W. Meng, C. Yu, K. Liu, Evaluation of Result Merging Strategies for
Metasearch Engines. WISE conference, pages 53-66. 2005

[17] R. Cattell, Scalable SQL and NoSQL Data Stores. 2010
http://cattell.net/datastores/Datastores.pdf

[18] Oracle, Oracle NoSQL Database. 2011
http://www.oracle.com/technetwork/database/nosqldb/learnmore/nosql-database-498041.pdf

[19] Twitter, Open Source Thanks. 30 May 2013
https://dev.twitter.com/opensource/thanks

[20] Apache, Powered by Lucine. 30 May 2013
http://wiki.apache.org/lucene-java/PoweredBy

[21] Apache, Solr Terminology. 31 May 2013
http://wiki.apache.org/solr/SolrTerminology

[22] Dominique Hazaël-Massieux, W3C Sta�, What is a Web application?. 5 June
2013
http://people.w3.org/~dom/archives/2010/08/what-is-a-web-application/

[23] Alverno College, Basic technology learning module Ben-
e�ts and Drawbacks of web applications. 5 June 2013
http://depts.alverno.edu/cil/basic/webapps/benefits-drawbacks.html

[24] Ricardo Baeza-Yates, Berthier Ribeiro-Neto, Modern Information Retrieval,
Second edition, Pearson Education Limited. 2011

AppendixA
Prestudy Questions

Our prestudy consisted partly of interviews with students on the D and C pro-
grammes. Before the intertviews, they were handed a paper (shown in Figure A.)
with questions that they could think about for a while. During the interview, all
the questions were asked and at the end they could add their thoughts that had
come up during the interview.

Kursplanering på LTH
Vi ska skriva ett exjobb om verktygsbaserad kursplanering och skulle vilja få reda på hur
studenter vid LTH tacklar problemet att välja kurser varje period i fyran och femman,
dokumenterar detta och ser till att sina kurser kan användas för att ta ut en examen inom en
specialisering.

Frågor
1. Planerar Du kurser till dina läsperioder i god tid eller bara en läsperiod framåt?

a. Hela utbildningen?

b. Ett år?

2. Hur gör Du när Du väljer vilka kurser du skall ta i en läsperiod?

3. Dokumenterar Du dina valda kurser på något sätt?

4. Vet Du vilka kurser som företag uppskattar att du studerat?

5. Vilka problem har Du när du planerar din utbildning?

6. Skulle du beskriva hela processen med val av kurser som lätt eller svår?

7. Skulle ett verktyg där Du kan mata in kurser, söka på kurser och hitta kurser som

liknar andra kurser hjälpa dig?

Figure A.1: Prestudy question paper

81

82 Prestudy Questions

AppendixB
LoT data example

This appendix contains a real life example of a row in the LoT database. EDA260
is a mandatory course given to the D programme in the second year and spans over
two periods. Some database �elds are empty while some contains HTML tags.

Course code EDA260

Course name Programvaruutveckling i grupp � projekt

hp 6

Level G2

Programme D

Specialization ALLM

Choosability 1 (i.e. mandatory)

Year 2

Start period 2

End period 3

Course responsible Boris.Magnusson@cs.lth.se,Gorel.Hedin@cs.lth.se

Prescience requirements Samtliga obligatoriska moment i kursen EDA061 eller
de obligatoriska momenten under första läsperioden av EDAF10. Dessu-
tom godkänd tentamen i någon av kurserna EDAA01, EDA027, EDA061,
EDAF10.

Prescience recommended empty

Teaching goals 1 kunna redogöra för och motivera de olika delteknikerna
inom extremprogrammering kunna redogöra för principer för ver-
sionshantering

Teaching goals 2 kunna utveckla och leverera en hållbar program-
varuprodukt i samarbete med andra kunna tillämpa tekniker
och verktyg för automatiserad testning, refaktorisering, och versionshanter-
ing kunna tillämpa iterativ planering och uppföljning kunna
tillämpa parprogrammering

83

84 LoT data example

Teaching goals 3 empty

Examination form För godkänt krävs fullgjorda laborationer, godkänt på kon-
trollskrivningen samt fullgjorda planeringsövningar, långlaborationer och
godkänd projektredovisning under kursens andra läsperiod. Detaljer kom-
mer att �nnas i kursprogrammet.

Contents En konkret iterativ, så kallad agil, programutvecklingsmetodik används
där studenterna tränas i att arbeta i grupp. Den använda metoden tar
sin utgångspunkt i idéer från extremprogrammering (XP) med deltekniker
som iterativ planering, automatiserad testning, test-�rst, parprogrammer-
ing, refaktorisering och täta leveranser. <p>Kundens/användarens krav
formuleras och prioriteras i samarbete med studenterna. Därigenom får stu-
denterna inblick i de olika rollerna i processen exempelvis som kund/använ-
dare, projektledare och utvecklare samt förståelse för användarens behov och
hur de kan hanteras. Kursen ger praktisk erfarenhet av hur ett småskaligt
projekt kan drivas och ger därmed en referensram för påbyggnadskurser, som
behandlar metodik för programutveckling för större projekt och organisa-
tioner.</p><p>Kursen går över två läsperioder. Under den första perioden
varvas föreläsningar med laborationer på enskilda moment som planering,
testning, versionshantering och refaktorisering. Under andra perioden de-
las studenterna in i grupper om cirka 10 personer. Varje grupp driver ett
programutvecklingsprojekt som en serie av planeringsmöten varvade med
långlaborationer och med en avslutande projektredovisning.</p>

Rationale Många civilingenjörer kommer under sin karriär att samarbeta med
andra i utveckling av programvara. Syftet med kursen är att ge kunskaper
om och praktisk erfarenhet av hur man samverkar i ett team för att ta fram
en programvaruprodukt. Fokus ligger på metoden extremprogrammering, en
högiterativ, så kallad agil, utvecklingsprocess som syftar till hållbar utveck-
ling av mjukvara. Kursen tar upp principer för samarbete med beställaren,
planering, hållbar design/implementation, testning och leverans. Kursen
fungerar samtidigt som fördjupning inom objektorienterad programmering.

Other Kurstyp projekt.

Web page cs.lth.se/eda260

AppendixC
Code Examples

The prototype consists of about 8000 lines of PHP code (and other nested lan-
guages), not counting third party code such as GraphViz and Neo4JPHP, but
including experiments and processing code. There is also about 1000 lines of
CSS stylesheet code and 2000 lines of javascript (not counting third party such as
jQuery).

The measurements have been carried out by running

find . -name '*.php' | xargs wc -l

in a server terminal and is therefore an approximation.

C.1 Home page

The home page of the prototype is a simple example showing the usage of our
Page object (i.e. $PAGE) and the Solr module. index.php:

<?php

require_once('layout.php');

$search = new SolrSearch ();

print $PAGE ->setTitle('Rekommendr - Kurssök')->setCurrentPage('

rekommendr ')->addResource($search)->getHeader ();

print $search;

print $PAGE ->getFooter ();

?>

C.2 Gymnasist page

The example given in the Extension chapter (the gymnasist page) is made from a
quite short PHP script. It uses the Page object and then initiates searches using
the Solr module and then uses the referenced Course objects to calculate the score.
The same script contains both the form for the input as well as the processing and
the result presentation.

85

86 Code Examples

gymnasist.php:

<?php

require('layout.php');

print $PAGE ->getHeader ();

print "<h1 >Gymnasist </h1>";

if(!isset($_POST['action '])) {

printForm ();

} else {

showResults ();

}

print $PAGE ->getFooter ();

exit;

function printForm($j=5) {

$inputs = '';

for($i=0; $i <$j; $i++) {

$inputs .= "<input type =\" text\" name =\" query[$i]\"/>
";

}

print <<<HTML

<form method="post">

<h2>Nyckelord <h2>

<input type="hidden" name="action" value="getStudies"/>

$inputs

<input type="submit" value="Hitta utbildning">

</form >

HTML;

}

function showResults () {

static $programTranslation = array(

'F' => 'Teknisk fysik',

'E' => 'Elektroteknik ',

'M' => 'Maskinteknik ',

'V' => 'Väg- och vattenbyggnad ',

'A' => 'Arkitekt ',

'K' => 'Kemiteknik ',

'D' => 'Datateknik ',

'I' => 'Industriell ekonomi ',

'W' => 'Ekosystemteknik ',

'B' => 'Bioteknik ',

'BI' => 'Brandingenjör',

'C' => 'Informations - och kommunikationsteknik ',

'N' => 'Nanoteknik ',

'Pi' => 'Teknisk matematik ',

'L' => 'Lantmäteri',

'MD' => 'Maskinteknik - teknisk design ',

'BME' => 'Medicin och teknik ',

);

$courses = array ();

$times = array ();

foreach($_POST['query '] as $query) {

if(! $query)

continue;

$solr = new SolrSearch($query);

foreach($solr ->getResults ()->results as $i => $item) {

$score = 1/($i+1);

$courses[$item ->course ->tag] = $item ->course;

$times[$item ->course ->tag] = isset($times[$item ->course ->

Code Examples 87

tag]) ? $times[$item ->course ->tag]+ $score : $score;

}

$specs = array ();

$specCourses = array ();

foreach($courses as $course) {

foreach($course ->getSpecsArray () as $spec) {

if($spec [2]=='ALLM')

continue;

$key = $spec [0].':'.$spec [2];

$score = $times[$course ->tag];

$specs[$key] = isset($specs[$key]) ? $specs[$key]+ $score

: $score;

$specCourses[$key][] = $course;

}

}

arsort($specs);

echo "Nyckelord: ", trim(implode(', ',$_POST['query']),", ");

echo "<h2>Du bör plugga:</h2>";

$i=0;

foreach($specs as $key=>$score) {

$i++;

if(preg_match(" `^(\w+)\:(\w+)`",$key ,$matches)) {

$program = $programTranslation[$matches [1]];

$spec = $matches [2];

} else {

debug($key);

}

$cs = array ();

$scores = array();

foreach($specCourses[$key] as $c) {

$scores[$c->tag] = $times[$c ->tag];

}

arsort($scores);

foreach($scores as $tag=>$score) {

$c = $courses[$tag];

$cs[] = "name }\">{$c->tag}";

}

$cs = implode(', ',$cs);

echo $i , ". ", $program , " - ", $spec , ": ", $cs , "
";

if($i==5)

break;

}

echo '
Gör om sökningen ';

}

?>

88 Code Examples

C.3 PageState Javascript object

This is a Javascript object that handles browser history primarily when changing
the layout with AJAX.

var pageState = new function () {

var that = this;

var data = {};

var namespaces = Array ();

var title = false;

var getParams = {};

this.setTitle = function(t) {

title = t;

document.title = t;

}

this.getTitle = function () {

return title;

}

var getStateObj = function () {

return {data:data , namespaces:namespaces , title:title ,

getParams:getParams };

}

this.readStateObj = function(obj) {

data = obj.data;

namespaces = obj.namespaces;

title = obj.title;

getParams = obj.getParams;

}

this.addParam = function(par ,val) {

getParams[par] = val;

}

this.addParams = function(obj) {

for (o in obj) {

if (o != "")

that.addParam(o,obj[o]);

}

}

this.addCurrentParams = function () {

var url = $.url();

var params = url.param ();

that.addParams(params);

}

this.unsetParam = function(par) {

delete getParams[par];

}

this.getHref = function () {

var r = '';

var first = true;

for (par in getParams) {

if ($.isArray(getParams[par])) {

for (var i=0; i<getParams[par]. length; i++) {

Code Examples 89

r += !first ? '&' : '?';

r += par+'[]='+getParams[par][i];

first = false;

}

} else {

r += !first ? '&' : '?';

r += par;

r += getParams[par] !== undefined ? '='+getParams[par

] : '';

first = false;

}

}

if (r == '') {

r = window.location.pathname;

}

return r;

}

this.handleState = function () {

for (var i=0; i<namespaces.length; i++) {

var name = namespaces[i][0];

var func = window[namespaces[i][1]];

func(data[name]);

}

}

this.pushState = function(namespace , d) {

if (JSON.stringify(d) == JSON.stringify(data[namespace])) {

return false;

}

if (namespace) {

data[namespace] = d;

}

var t = title ? title : document.title;

history.pushState(getStateObj (), t, that.getHref ());

return true;

};

this.replaceState = function(namespace , d) {

if (namespace) {

data[namespace] = d;

}

var t = title ? title : document.title;

history.replaceState(getStateObj (), t, that.getHref ());

};

this.registerNamespace = function(namespace , func) {

return namespaces.push(Array(namespace ,func));

};

return this;

}();

$(window).bind('popstate ', function(e) {

var state = e.originalEvent.state;

if (state != undefined) {

pageState.readStateObj(state);

pageState.handleState ();

}

});

