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Abstract

In this report, a digital implementation of a data compressor for wireless
brain machine interface with an attractive area and low energy cost is pre-
sented. This design consists of pre-processing filters, spike detectors, a spike
compressor and the Serial Peripheral Interface (SPI) IO protocol, target-
ing the 65 nm CMOS technology. Area and energy dissipation have been
dramatically reduced by resources sharing, architectural optimizations and
using a standard-cell based latch memory. Moreover, the compression ratio
for each channel is adjustable based on the channel quality and the require-
ment of spike reconstruction accuracy. The loss of the reconstruction ac-
curacy of the fixed-point digital implementation is less than 0.1% compares
to the full precision Matlab model. Additionally aggressive voltage scaling
(down to the sub-VT region), clock gating and multiple clock domains have
been performed resulting in a total die area of 900×500 µm2 for 16 channels.
Energy dissipation in the sub-VT region is estimated using a high-level sub-
VT energy model. The estimated value is 1.03 pJ/clock cycle, which is 30×
improvement compared to the standard super-VT implementation without
clock gating.
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CHAPTER 1

Introduction

1.1 Neurophysiological Background

The central nervous system (CNS) is the information processing centre for
the nervous system. Through probing the CNS for its neuronal activities
while simultaneously observing behaviour, the underlying connection be-
tween brain signal and behaviour can be illustrated with specific simulation
and modelling. Such knowledge enlightens clinical potentials in neurologi-
cal dysfunction and allows the treatment of the symptoms of neurological
disease. Moreover, the physical functions that have been lost due to neu-
ral injury can be retrieved by building up a feedback route to the nervous
system with means of electrical simulation.

Neurons are the basic electrically excitable cells of the CNS and they are
able to communicate with neurons and other cell types through specialized
junctions called synapses, at which electrical or electrochemical signals can
be transmitted from one cell to another. A typical neuron has four distinct
parts or regions (see Fig. 1.1). The first part is the cell body (or soma). This
is the neuron’s center for metabolic functions and protein synthesis. The
second and third parts are process structures that extend away from the
cell body. Generally speaking, the function of a process is to be a conduit
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Dendrite

Cell body

Node of
Ranvier

Presynaptic Terminal

Myelin sheath

Axon

Soma
Fig. 1.1: A basic architecture of the building box of a typical neuron.
(partially adopted from [1] and [2])

through, which signals flow to or away from the cell body. Input signals from
other neurons are typically received through its dendrites. The output signal
to other neurons flows along its axon. A neuron may have many thousands
of dendrites, but it will have only one axon. The fourth distinct part of a
neuron lies at the end of the axon, the presynaptic terminals. These are
the structures that contain neurotransmitters. Neurotransmitters are the
chemical medium through which signals flow from one neuron to the next
at chemical synapses. In summary, the function of a neuron is to receive an
input signal from other neurons, to process that signal, and then to send an
output to other neurons [2].

The study of neural activity can be performed by extracellular neural
recording [2]. It provides a method of measuring the change in electric poten-
tial associated with the activation of a single neuron using a microelectrode
system. When a neuron generates an action potential, the signal propagates
along the neuron as a current that flows in and out of the cell through ex-
citable membrane regions in the soma and axon. The action potential is a
short-lasting electrical signal, which rapidly rises and falls and is similar to
the electrical signals in electronic devices. A microelectrode is implanted
into the brain, where it can record the rate of change in voltage with respect
to time. The extracellular signal consists of several components. The first
one is the spiking component that reflects the action potentials elicited in
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neurons that are close to the recording electrode. The other components of
the extracellular signal are physiological noise, representing spiking activity
from distant neurons, and low-frequency local field potentials (LFPs) that
represent synaptic input to neurons close to the recording electrode. Most
of LFPs reside in the lower part of the frequency spectrum compared to the
spiking component. Hence, the most straightforward way to remove LFPs
from the recorded signal is high-pass filtering [2].

1.2 Motivation

Recently, Brain Machine Interfaces (BMIs) have become an important re-
search tools in neuroscience by providing a bidirectional communication be-
tween the CNS and the outside world. A typical BMI is shown in Fig. 1.2.
It acquires signals from the CNS, processes them and forwards the output
to a research application or to an actuator. The function of the actuator
is generating feedback that is modulated by the acquired neural activity.
The feedback has various forms like neural stimulation, prosthesis control,
muscular stimulation or the operation of a personal computer [2]. The con-
nection between the parts of a BMI can be realized by wire or wireless [3] [4].
The traditional form of connection between the measurement system is im-
plemented by wire. When performing acute experiments on anesthetized
subjects, the mobility of the subject and risks for surgical or post-surgical
complications are usually insignificant. Hence, the wired connection is not a
problem in these case. However, in experiments on awake and freely moving
subjects or in clinical applications where the acquisition device is chronically
implanted, the wires and the bulk of the equipment, as well as the potential
risks for post-surgical complications will become significant. Hence, we are
interested in exploring wireless BMIs to avoid complication inferred while
using wires [2].

Despite the advantages of wireless BMIs, the paramount problems in
wireless BMIs involve a restricted wireless link capacity and energy provi-
sion. From the point of view of clinical application, the measurement device
to be implanted has to sustain through a long life span , where reliabil-
ity and patient safety are of major significance. This eliminates the need
for replacing the energy source, which involves invasive surgery. Moreover,
the increasing number of recording channels results in the rising demand of
energy provision and wireless link capacity [5]. In order to overcome the
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Fig. 1.2: A typical brain-machine interface (BMI).
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Fig. 1.3: Basic process of neural signal in BMI: (a) An illustration of basic
process of wireless BMI. (b) A basic process blocks of wireless BMI.
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bottleneck of channel capacity and maximize battery life, data reduction is
the most effective and practically feasible method as compared to increasing
the channel capacity since it will lead to a reduction of power and area con-
sumption as well [2]. Thus, a spike compression step is introduced in Fig.
1.3 (b) to perform data reduction.

The data reduction is performed in two steps. The first step minimizes
the acquired data from target neurons by minimizing sampling rate and
resolution of data. In [6], the authors concluded that a sampling rate of
16-31 kHz and resolution of 9 bits are sufficient for the best performance
in spike detection and spike sorting with realistic recording Signal-to-Noise
Ratio (SNR). The second step removes any redundancies for the data to
be transmitted through a compression algorithm. In previous research [2],
five different compression algorithms are compared in terms of computa-
tional complexity and performance. The conclusion shows the most feasible
approach is using a fixed generic compression basis. These fixed bases are
derived from spike data by singular value decomposition (SVD), which en-
suring the majority of the data is described by a minimal number of compres-
sion coefficients. The compression coefficients are ordered by significance by
using SVD and the coefficient selection simply involves selecting the first
coefficients. It should be noted that these bases are not derived from the
detected spike waveforms each time, but from a large pre-recorded assembly
of spike waveforms that cover a wide range of shapes. Thus, the significant
information of the detected spike waveforms lies in the lower end of the
coefficient spectrum and the coefficient selection becomes straight-forward.

In wireless BMIs, a measurement system that contains the electrode,
the acquisition part and some of the processing part is implanted into the
subject along with a transceiver. The implanted part of the BMI sends the
acquired data to an external device that is used in processing and analyz-
ing the incoming measurement data, as well as controlling the measurement
device. In Fig. 1.3 (a), a illustration of a basic process of wireless BMI
is given. An implanting microelectrode into the CNS is a common way of
acquiring signals in BMI applications. The extracellular recordings can be
used in studying the single unit activity of individual neurons. The main
processing steps include spike detection and spike sorting. In Fig. 1.3 (b),
some basic process blocks of neural signal in wireless BMI are illustrated.
The acquisition unit is used in performing pre-processing of acquired signal,
which includes the amplifier, an A/D converter, and filters. The next step is
to perform spike detection and record their timing when the spike gets de-
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tected. The final step is to use classification algorithms to sort the extracted
spike waveforms and assigning them to correct neurons. A spike alignment
step is often included to enhance the spike sorting accuracy. In wireless
BMI, one more step called spike compression is needed before sending the
signal to external devices.

Various different system architectures were compared in previous work
[2], involving different combinations of spike detection, spike alignment,
spike compression, spike reconstruction and spike sorting. The authors also
concluded that the most feasible architecture of a wireless BMI consists
of absolute value threshold detection, maximum value spike alignment and
compression with a fixed generic basis that is derived from a large assembly
of empirically found spike waveforms. The basic structure of this system is
shown in Fig. 1.3 (b). The subject of this thesis project is to implement
this architecture in hardware with the requirement of hardware efficiency
and energy efficiency. Several features such as resource sharing, architec-
ture optimization and the use of the standard-cell based latch memories,
have been applied resulting in a dramatic area and energy reduction. Fur-
thermore, low power techniques such as aggressive voltage scaling (downto
sub-VT region), clock gating and multiple clock domain have been performed
aiming at an ultra low energy dissipation. The rest of this report is orga-
nized as follows. Chapter 2 introduces the algorithm that has been selected
for implementation in this project. Chapter 3 presents the detailed hard-
ware implementation of each unit and the ideas of hardware sharing. The
discussion of speed requirement in the proposed design is also introduced
in Chapter 3. Chapter 4 illustrates the low energy approaches consisting
of multi-clock domain, aggressive supply voltage reduction and the use of
standard-cell based latch memories. Chapter 5 summarizes the results and
analyzes the performance. Chapter 6 gives the conclusion and the ideas of
future investigation.



CHAPTER 2

Algorithm

The algorithm implemented in this project is a fixed generic bases compres-
sion, where the basis was obtained by performing singular value decomposi-
tion on a set of empirically found mean spike waveforms and is independent
on the test recordings [2]. The desired building block for this algorithm is
shown in Fig. 2.1. In the following sections, the functionality of each block
is detailed.

Neural Signal 
Preprocessing

Spike 
Detection

Spike 
Alignment

Spike 
Compression

Fig. 2.1: An illustration of the building blocks of the fixed generic bases
algorithm.

2.1 Neural Signal Preprocessing

Typically, the peak to peak amplitude of the recorded signal from the elec-
trode is less than 1 mV, requiring amplification before digitization by the
A/D converter. The amplifier can be included inside the A/D converter as



8 Algorithm

most of the commercial A/D converter support amplification. In this pa-
per [6], the authors systematically analyzed the influence of the sampling
rate and resolution on the performance of spike detection and spike sorting
in a BMI system. Moveover, the authors concluded that a sampling rate of
16-31 kHz with 9 bits resolution was sufficient for maximizing performance
at a realistic recording SNR. However, the resolution needs to be increased if
dynamic range of the A/D converter does not exactly match with the ampli-
tude range of the spike signal. Besides, both a highpass filter and a lowpass
filter are needed since both the high-frequency spiking components and low-
frequency LFPs are essential for analysis of neurophysiological data. Figure
2.2 illustrates a neural recording signal as well as the highpass filtered signal
and lowpass filtered signal, which are time zooming in for occurrence of one
spike. Typically the cut-off frequency is 300 Hz for both the highpass filter
and the lowpass filter. Note that the comparison between different studies
should be considered carefully if the filtering is performed in a different way
since it influences the shape of spikes [7]. In this project, all the filters were
implemented by the digital filters, which can provide much better frequency
response.

2.2 Spike Detection

Spike detection aims at separating the spike from the recorded signal. The
detection is usually based on a threshold, where the values above a given
threshold are considered as the location of spike. Meanwhile, the time-
stamps that indicate the occurrence of spike in the neurons also need to
be recorded. In this paper [6], the performance of several spike detection
algorithms were compared in terms of sampling rate, noise level and number
of target neurons. The spike detection algorithms that were implemented
and compared in this paper [6] were ABSolute value (ABS) [8], Nonlinear
Energy Operator (NEO) [9], Stationary Wavelet Transform Product Detec-
tion (SWTP) [10] and Matched Filter Detection (MF) [11]. The discussion
was carried out mainly in terms of sampling rate and true positive detec-
tion rate. Among them, ABS is the simplest method of spike detection that
provides a good combination of performance and computational complex-
ity [6], [12], [11]. Moreover, ABS is also attractive in hardware implemen-
tation due to its simplicity. Different approaches to generate the threshold
for ABS detection are described and compared in the section 2.3.
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2.3 Noise Estimation

In the ABS detection, a threshold is defined as a multiple of an estimate of
the background noise level. The formula is shown as

T = s · σN (2.1)

where σN is the estimated background noise and s is the scale factor. The
scale factor is used in generating a reasonable threshold value by scaling the
noise level. This scale factor generally varies from case to case and in this
design, the value is equal to 6. Three methods to estimate the noise level
were introduced in following sections: exponential averaging filter, mean
filter and median filter.

2.3.1 Exponential Smoothing Filter

The exponential smoothing filter is a filter that can be applied to a set of
time series data to produce smoothed data. The simplest form of exponential
smoothing filter is given by the formula 2.2

S1 = X0

Sn = αXn−1 + (1 − α)Sn−1, n > 1
(2.2)

where the smoothed statistic Sn is a simple weighed average of the previous
observation Xn−1 and the previous smoothed statistic Sn−1. In the proposed
design, Sn refers to the background noise level. The factor α here refers to
the smoothing factor (0 < α < 1), for which larger values of α closer to 1
actually reduce the effect of smoothing, and give greater weight to recent
changes in the data. In the case with α = 1 the output of data series is
identical to the original data series delayed one time unit. While, the values
of α closer to zero have a greater smoothing effect and are less sensitive to
recent changes. Simple exponential smoothing is easily applied, and unlike
some other smoothing methods, this technique does not require any mini-
mum number of observations to be made before it begins to produce results.
However, in practice, a ”reasonable average” value will not be achieved until
several samples have been averaged together. In other words, an appropri-
ate estimation of background noise level will not be achieved until a given
amount of samples calculated together, for example, a constant signal will
take approximately 3/α stages to reach 95% of the actual value (See more
detailed discussion in section 2.3.3).
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Table 2.1: Frequently used sorting algorithms

Algorithm Memory Time
Average Worst

Bubble O(1) O(n2) O(n2)

Selection O(1) O(n2) O(n2)

Insertion O(1) O(n2) O(n2)

Shell O(1) O(n(log2 n)2) O(n(log2 n)2)

Merge O(n) O(n log2 n) O(n log2 n)

Quick O(log2 n) O(n log2 n) O(n2)

Median-finding Algorithm O(log2 n) O(n) O(n2)

2.3.2 Median and Mean Filters

In the median or mean filter, a window slides across a set of data, then the
median or mean value of the samples inside the window is chosen to be the
output in these type of filters. The median filter is considered as a more
robust estimation than the mean filter, since it is less sensitive to extreme
values. In this design, the noise measurement time for each channel was
assumed as 82 ms. Thus, 2048 neural signals are needed for performing
the noise measurement according to 25 kHz sample rate. That means the
window size of the median filter is 2048. The estimation of background noise
is defined as [8]

σN = median(
abs(v)

0.6745
) (2.3)

where v is the sampled signal and σN is the background noise level.
The sorting algorithm is the critical computational block of the median

filter. Some widely used sort algorithms are compared in this section in
terms of time performance and memory usage. All of them are shown in
table 2.1 and a brief description is given below. Among them, the median-
finding sorting algorithm is the most feasible choice in terms of performance
and memory usage.

� Bubble Sort: This algorithm is very straightforward and easy to
implement. The algorithm starts on the first item on the left of the
data array, comparing adjacent items and keeps moving the larger one
to the right. After this, the same process will be applied to sort the
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remaining N−1 items. This method normally performs O(n2) in both
average and worst case. Thus, this algorithm is very inefficient, and
rarely used in practice.

� Selection Sort: The process of this algorithm is performed by select-
ing the smallest element in specific order, then putting them in proper
position in the final list. This process is repeated once for every ele-
ment of the list. Thus, selection sort is an in-place sorting algorithm,
which has O(n2) complexity for both worst and average case.

� Insertion Sort: The main logic of insertion sort is implemented by
sorting one element in the array at a time, which means the memory
requirement is O(1). Assume the algorithm starts processing from the
beginning of a set of data. When a value is smaller than the previously
viewed value, move the new value into its correct position and shift
all of the previous values forward. The average case and worst case
are O(n2). However, in some cases, like a partially ordered list, this
algorithm will correctly reorder the list faster than selection sort [13].

� Shell Sort: The basic idea of shell sorting is based on the insertion
sort algorithm and is also known as the diminishing increment sort. It
starts by comparing the elements far apart, then the elements less far
apart, and finally comparing adjacent elements. The number of sorting
operations in each is limited due to the pre-sorted of the sequence
obtained in the preceding steps.

� Merge Sort: This sorting algorithm is a ”divide and conquer” algo-
rithm, which works in two steps. Firstly, dividing the unsorted list
into n sublists, until each containing only one element. The elements
in these sublists are considered as sorted. Then repeat merging sub-
lists to produced new sublists until there is only one sublist remaining.
This will be the final sorted list.

� Quick Sort: The basic idea of the quick sort algorithm is a ”divide
and conquer” procedure. The algorithm selects a partitioning element
that is called ”pivot” and partitions the data into two parts around
this ”pivot”. Assume an array of n numbers x1, ..., xn. The quick
sort is done by first rearranging it to two subarrays x1, ..., xj−1 and
xj+1, ..., xn. Elements in the sub arrays are greater and less than xj
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respectively. Then the same procedure is recursively applied to the
subarrays [13].

� Median-finding Algorithm: This algorithm is similar to the quick
sort algorithm but the recursion is done only on one of the subarrays
and not on both. Assume a ith order statistic is the median number of
the array. First of all, the algorithm will randomly select a pivot and
partitions the data in two parts around this pivot. Thus, the elements
are greater and less than the pivot respectively in these two parts. If
the pivot is the ith element of the data then the process is done, oth-
erwise apply recursion to the sub array that contains the ith element.
The worst case for this algorithm is O(n2) and only occurs when each
partition creates two subarrays of size 1 and n − 1 respectively. This
rarely occurs as the pivot is selected randomly. The average case is
O(n) [13].

2.3.3 Comparison between Exponential Filter and Median Filter

As mentioned in section 2.3.1 and section 2.3.2, the estimation of background
noise level can be realized by a median filter or a exponential filter. These
two algorithms will be compared in terms of memory usage, effect on accu-
racy of spike sorting, and complexity of hardware implementation. First of
all, the memory usage of median filter is extremely larger than exponential
filter, it requires 2kB (2048*8 bits) memory to store the data for calculation
of median value. Whereas the memory usage of the exponential filter is only
two register according to 2.2. Obviously, the memory usage of the median
filter can be reduced from the point of view of the whole system if the mem-
ory is shared with the spike compression unit. It is feasible to do this sharing
because the noise estimation is not required to execute all the time. In other
words, the update of background noise level is periodic or can be controlled
by the user through the I/O interface. Thus, the 2kB memory can be used
in storing the data for spike compression unit when the noise estimation is
not executing. It should be noted that the noise estimation unit is shared by
several channels. The disadvantage of the memory sharing is that it might
decrease the accuracy of the spike detection and affect the accuracy of spike
sorting eventually. For example, when the noise estimation is running, all
the memory is used in storing the data for calculation of median value until it
finishes. In the meantime, new neural signals keep coming and get discarded
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since there is no space for storing these new coming signals. Thus, the ac-
curacy of spike detection might decrease if these abandoned neural signals
contain spikes. It is obvious that the accuracy of spike sorting can be kept if
using extra registers to store the new coming neural, but it is not wise since
the memory usage will increase and it is hard to tell how large extra registers
are needed since it depends on the sorting algorithm and spike firing rate.
For a exponential filter, the memory usage just involves two registers which
is much smaller than the median filter and it will generate the estimation
value of noise level continuously. In other words, it will keep track of noise
level and maintain the accuracy of spike sorting since the memory used in
exponential filter is independent with spike compression. The complexity of
hardware implementation of exponential filter is also lower than the median
filter which involves implementation of sorting algorithm.

In summary, the exponential filter has lower complexity of hardware
implementation, no effect on accuracy of spike sorting, and smaller memory
usage. Thus, it is the most feasible alternative in the proposed design.

2.4 Spike Alignment

The spike alignment is necessary to achieve maximum accuracy in spike
sorting. For a given neuron, the detected spikes are typically not sampled
at the same time instances within the noise-free spike waveform. This is
attributed to noise and asynchronicity between the sampling of the signal
and the firing of action potentials [2]. Thus, the extracted spike waveforms
are misaligned to each other since the spike detection threshold is not crossed
at the same relative time between spikes. This phenomenon is referred to as
spike detection jitter and it will introduce an apparent deviation in shape
between the spike waveforms from the same neuron.

Spike alignment eliminates the influence of spike detection jitter by
identifying the location of a reference point (a maximum value in the pro-
posed architecture), then shifting the detected waveform to ensure the ref-
erence point occur at the same absolute point for all spike waveform from
same neuron [2]. In the proposed design, the reference point is 16. That
means the maximum absolute value will be shifted by 16.
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2.5 Spike Compression and Reconstruction

The basic idea of spike compression is first transforming the detected spike
waveform onto a full set of basis waveforms, then reducing the dimensional-
ity, which means only transmitting the significant coefficients and discarding
the rest. The amplitude of the majority of transform coefficients are small
whereas the minority of coefficients has high amplitude. Thus, the detected
spike waveform can be roughly described by the small subset of compression
basis waveforms. The selection of a compression basis is crucial for compres-
sion since it is beneficial both in terms of data reduction and computational
complexity. In this paper [14], the conclusion shows that the spike library of
paper [15] can be described by the first six principal components, indicating
that spike waveforms could be compressed with a fixed generic compression
basis derived from a large set of experimentally obtained spike waveforms
and always using the first six or even more compression coefficients. The
number of fixed compression coefficients for transmission will vary depend-
ing on signal quality. The transformation of spike waveform is defined as

Wc = BT
c S (2.4)

Where the M × N matrix S contains the M sample long spike waveforms
in its column, the M × N matrix Bc contains the M sample long basis
waveforms of the compression basis in its columns and the M × N matrix
Wc contains the full set of transformation coefficients. The compression
only involves selecting K of the total set of M transformation coefficients
and discarding the rest, thus, the compression was referred as the K × N
dimensionality reduction matrix Bd. The eight basis waveform from the
fixed compression bases was shown in Fig. 2.3.

The transmitted coefficients are thus described by

Wd = BdWc = BdB
T
c S (2.5)

Since the compression and dimensionality reduction bases were known to
the reconstruction process, the reconstructed spike waveform is obtained as

S = BcB
T
d Wd (2.6)
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2.6 Test Data

The synthetic test signals used in this project were generated by a novel
approach described in this paper [16]. The recorded signals were five min-
utes long and include 16 independent channels with various SNR. In the
proposed design, the spike compression unit is shared by 16 channels in or-
der to minimize the hardware cost. After the spike waveform is detected
and aligned in a particular channel, the compression unit will be occupied
by this channel. Thus, the critical case in the proposed design occurs when
all 16 channels detect the spike at the same time, which means all channels
need to do compression at the same time. In order to test this critical sit-
uation, the recorded signals from 16 channels were identical. The test data
was generated by the same method as described in this paper [2]. We as-
sumed a space of hollow cylinder center at z-axis, which has inner and outer
boundaries of 120 µm and 250 µm respectively. The floor and ceiling of the
hollow cylinder were ± 250 µm respectively. One particular electrode site
was set at the position of (0,0,0) µm for acquiring signals from the neuron.
The noise neurons were placed at random positions within the space of the
hollow cylinder. Four target neurons with the neural model derived in this
paper [16] were placed inside the hollow space of the cylinder. The coordi-
nates of four target neurons were (10,20,-2) µm, (-2,18,20) µm, (-20,-5,-10)
µm and (16,-13,15) µm (see Fig. 2.4 and Fig. 2.5). The choice for these
coordinates was to acquire high SNR recording (with mean SNR of 25 dB).
For the medium and low SNR recording, the target neuron should be moved
from the electrode site, which resulted in decreasing their spike amplitudes
and thus decreasing the SNR. The positions of medium and low SNR record-
ings were chosen empirically, which was obtained by simply multiplied the
coordinates given above by the factors of 1.5 and 2 respectively. Assume
the inter-spike intervals of all neurons were described by gamma distribu-
tion [17]. A random mean firing rate for each noise neuron was chosen from
a uniform distribution between 1 and 50 spikes/second. For each target
neuron, the random mean firing rate was between 1 and 10 spikes/second.
The SNR for a given recording and a given electrode site was defined as

SNR = 20 log10 (
Spp
σN

) (2.7)

where Spp is the peak to peak amplitude of the mean spike waveform of
the target neuron detected by the electrode site and σN is the standard
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deviation of background noise (described in section 2.3.2).

2.7 Performance Measurement

The performance of this system was estimated in terms of spike sorting ac-
curacy and spike reconstruction accuracy [2]. Spike reconstruction accuracy
Cmean was calculated by using the cross-correlation function between the re-
constructed spike and the mean spike for the target neuron. The maximum
value of the result refers as spike reconstruction accuracy. The spike sorting
accuracy was estimated in terms of overall sorting accuracy (PID), which is
described as

PID =
NID

M
(2.8)

where NID refers to the overall number of correctly classified spikes and M
is the total number of spikes [16].
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Fig. 2.2: An illustration of highpass and lowpass filtering for neural record-
ing signal. (a) Neural recording signal. (b) Partially zoomed Neural record-
ing signal. (c) Highpass filtered signal (the peak in the middle is the occur-
rence of one spike). (d) Lowpass filtered signal.
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CHAPTER 3

Implementation

This section gives the specific implementation of each building block. The
process flow of system with a single channel is shown in Fig. 3.1. The
LFP signal, spike time information and compression coefficients are outputs
as mentioned in chapter 2. In order to minimize the number of IO pins
and increase the communication capability, a customized serial peripheral
interface (SPI) was used as IO protocol. Besides, SRAM was needed for
storing the spike waveform and compression coefficients. When considering

NeuralPRecording
SignalP

Highpass
Filter

Lowpass
Filter

Spike
DetectionP

&PAlignment

Threshold
Generator

Spike
Compression

LocalPField
Potential

SpikePTime CompressionPcoefficients

Fig. 3.1: Process flow of a single channel system.
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Fig. 3.2: An overview of the system architecture.

the multiple channel system and hardware resources sharing, a scheduler
must be implemented to arrange the resources occupation. Moreover, a
system state machine was designed to control the state of the overall system.
Figure 3.2 illustrates a detailed system architecture.

3.1 System State Machine

The function of the system state machine is to decode and respond the
commands sent by users through the SPI. The detailed description of each
SPI command is presented in Appendix 1. The brief state diagram of SPI
decoder is shown in Fig. 3.3. Furthermore, an ASM chart of this state
machine with more detailed information is illustrated in Fig. 3.4. The
system state machine consists of eight states:

� IDLE: The state machine listens to the signal ”SPI command valid”,
which will be set high if received a new command. Once a new com-
mand has been received, the state machine will move to a different
state based on the content of the command.

� WRITE α β: This state writes new values of α and β to the corre-
sponding parameter registers of the particular channel. This operation
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Fig. 3.3: State diagram of SPI command decoder.

will be finished within one system clock cycle. Hence, the state ma-
chine will move back to ”IDLE” state in the next clock cycle.

� WRITE N: This state writes new value of N (Number of compression
coefficients per detected spike) to the corresponding parameter register
of the particular channel. This operation will be finished within one
system clock cycle. Hence, the state machine will go back to ”IDLE”
state in the next system clock cycle.

� START 1: The system will move to this state when the signal ”Th reg rst”
is asserted. The value of threshold registers of all channels is set to
zero. When signal ”fClk re” is asserted (indicating the rising edge
of the clock used by the filters), the state machine will move to ”TH
SETTLING” state.

� START 2: The system will jump to this state when The specific bit
of bus signal ”Th reg rst” is asserted and the threshold register of the
particular channel is set to zero. When signal ”fClk re” is asserted,
the state machine will move to ”TH SETTLING” state.
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� TH SETTLING: This state enables a counter for counting the time
of the exponential filters. Once the time counter exceed the settling
time, the state machine will go to ”WORK MODE” state.

� WORK MODE: The spike detectors are enabled during this state.
Besides, the system will send the result to the external device once a
spike has been detected and compressed. However, the state machine
will go back to ”IDLE” state if the signal ”Sm intr” is asserted (an
interrupt command has been received).

� TEST MODE: The signal ”Test mode en” will be asserted to enable
the test mode. In the next system clock cycle, the state machine will
jump to ”WORK MODE” state for fast testing and debugging the
functionality without the time counter of exponential filters.

3.2 Filters

In signal processing, a filter is a device or process that removes some un-
wanted components or features from a signal. The digital filters are either
Infinite Impulse Response (IIR) filters or Finite Impulse Response (FIR)
filters. In the proposed design, all the filters were implemented by IIR filter.
The advantage of IIR filter over FIR filter is that IIR filter usually requires
fewer coefficients to achieve similar filtering operation. Fewer coefficients
means fewer multipliers, registers, and adders. Thus, IIR filters are the pri-
mary choice since it works faster, and requires less memory space. However,
the IIR filter is prone to overflow and instability due to its recursion fea-
ture. Hence, the appropriate coefficients should be chosen to design a stable
IIR filter. Overflow avoidance can be achieved by data truncation during
the process of calculation as well. The detail of implementation of filters is
described below.

3.2.1 Highpass and Lowpass Filters

In the proposed design, highpass filters are applied to the sampled neural
signal in order to remove the low frequency LFP from the higher frequency
spike component. The frequency of component with spike is typically larger
than 300 Hz. The lowpass filters with 300 Hz cut-off frequency are used
in isolating the LFP information since the frequency of LFP information is
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Fig. 3.5: Zero-Pole plot of highpass and lowpass filter.

located in the lower part of the frequency spectrum. All IIR filters in the
proposed design are second order and simply implemented by Butterworth
filter with direct form I structure. The general equation of both highpass
and lowpass filter is described by

a1y(n) = b1x(n) + b2x(n− 1) + b3x(n− 2) − a2y(n− 1) − a3y(n− 2) (3.1)

Where the numerator coefficients b and denominator coefficients a were
shown in Table 3.1.

An IIR filter is stable if the root of the the denominator of transfer
function has an absolute value that is less than one. In other words, when
the poles of filter in the z complex plane have an absolute value that is less
then one, i.e lie within the unit circle. The zero-pole plot in z complex plane
of highpass and lowpass filters is shown in Fig. 3.5, which indicates that
these filters are stable since the poles are inside the unit circle.

In hardware implementation, wordlength of data is especially important
from the point of view of area and power consumption. A larger wordlength
will lead to higher accuracy, larger area and power consumption. In order to
choose a appropriate wordlength, some simulations were performed to anal-
yse the relation between accuracy and wordlength. The hardware structure
of both highpass and lowpass filters and the detail of wordlength changes
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during the process is introduced in Fig. 3.6.

Table 3.1: Coefficients of highpass and lowpass filter.

Numerator Denominator
b1 b2 b3 a1 a2 a3

Highpass 0.9648 -1.9297 0.9648 1 -1.9287 0.9316

Lowpass 3.4618e-4 6.9189e-4 3.4618e-4 1 -1.9463 0.9482

Figure 3.6 illustrates that the wordlength will increase in every cycle of
calculation. The hardware cost of register will also increase if the data is
saved in full precision. Hence, the data is truncated before saving in the
register D3 and after the node n1. The wordlength of input data xn and
output data yn were assumed to be identical. A simulation was performed
to find out the appropriate wordlength of data in register D3. The mean
value and standard deviation value of quantization errors were chosen as the
measurements for wordlength simulation. Here the normalized quantization
error is described as

ε =
abs(S̃ − S)

max(abs(S))
× 100% (3.2)
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13 14 15 16 17 18 19
0

2

4

6

8

10

Different)wordlength)of)data)in)register

Q
ua

nt
iz

at
io

n)
er

ro
r(

%
)

Fig. 3.8: Quantization error of different wordlength in lowpass filter.



3.2 Filters 27

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Real Part

Im
ag

in
ar

y 
P

ar
t

Fig. 3.9: Zero-pole plot of exponential filter.

where the S̃ is quantized signal, which is processed by filter in hardware
and S is the signal processed by filter in full precision. The simulation
result showing the relation between different wordlength on register and
quantization error is given by Fig. 3.7 and Fig. 3.8.

As shown in Fig. 3.7 and Fig. 3.8, a wordlength of 17 or larger gives
a negligible quantization error but do not gain more in precision. Whereas
the wordlength of 15 or smaller has a large quantization error. Thus, 16 bits
wordlength was chosen for both case since it gives less than 1% quantization
error with a relatively small area consumption.

3.2.2 Exponential Smoothing Filters

In this design, exponential smoothing filter is implemented by a very simple
IIR filter to be applied to estimate the background noise level. The definition
of exponential filter is described in section 2.3.1. The smoothing factors in
2.2 were chosen empirically to provide reasonable background noise level,
which consist of four values in the proposed design: 0.1, 0.01, 0.001, 0.0001.
The hardware structure is given by Fig. 3.10. The zero-pole plot in z
complex plane is given by Fig. 3.9. The poles in Fig. 3.9 are inside the unit
circle which means this filter is stable.

As Fig. 3.10 shows, the feedback loop of IIR will increase the hardware
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Fig. 3.11: Quantization error of different wordlength in exponential filter.

cost of register as the wordlength increases. Hence, the truncation need to
be done before the result stores back on the register D2, which leads to
the quantization error. Thus, a simulation was performed to find out the
appropriate wordlength. The result showing in Fig. 3.11 illustrates that the
wordlength of 17 or even larger will not gain more in accuracy. However,
using small wordlengthes like 15 bits or even smaller will lead to a larger
quantization error. Hence, 16 bits wordlength was chosen which gives a
quantization error around 1% and relatively small area.

3.3 Spike Detection and Alignment

As mentioned in chapter 2.2 and chapter 2.4, the next steps after neural
signal pre-processing by filters are spike detection and spike alignment. In
the proposed design, these process steps include:
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� Calculating the address of SRAM for storing the neural signal samples;

� Making a decision by comparing the absolute value between the pre-
processed signal and the threshold;

� Recording the time once a spike is detected (note: this is the relative
time from the previous detection);

� Finding out the maximum absolute value of the next ten incoming
samples;

� Deciding which part of SRAM will be assigned to spike compression
unit.

Figure 3.12 shows the flow chart which can be easily implemented in
a FSM (finite state machine). As shown in Fig. 3.12, the spike detection
and alignment block will assert a ”valid” signal to indicate that the data
samples stored on the memory are ready for partial data compression (see
section 3.4 for details of data compression and memory sharing). Once the
”valid” signal is asserted, the channel ID will be recorded in the compression
scheduler. It should be noticed that there is an individual spike detection
and alignment unit for each channel. Furthermore, there are some methods
of sharing resources between different channels are introduced in section 3.6.
As shown in Fig. 3.12, 10 samples are needed to be stored on memory and
compared to perform spike alignment. Considering the critical case that
the first sample of these 10 samples is the maximum absolute value of this
detected spike (the maximum absolute value should be the 16th sample of
the entire spike according to spike alignment algorithm mentioned in Section
2.4), after the spike alignment, 26 valid samples of the detected spike are
known and needed to be stored in order to process the spike compression.
Hence, the memory cost from the critical case is 26 samples/channel.

3.4 Spike Compression

The transformation function for the spike compression described in 2.5
(Chapter 2) can be expressed as follows:

Wd = BdWc = BdB
T
c S =

 Bc0,0 · · · Bc0,63
...

. . .
...

BcN−1,1 · · · BcN−1,63

 ·

 S0...
S63

 =

 Wd0
...

WdN−1
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where the dimensionality reduction matrix Bd is only aimed at selecting
N of the total set of transformation coefficients. Here a spike includes 64
data samples (S0 to S63) corresponding to 2.56 ms recording time (sampling
rate is 25 kHz). Since the parameter N (1 to 16) is configurable by SPI
commands, the maximum number for storing Bc should be considered as
16 when implementing the ROM. In general, it requires a memory that can
store all the 64 data samples (8 bits per sample) of a spike for calculating
such a matrix multiplication. Figure 3.13 shows a general implementation
of the matrix multiplier. It should be noted that the number of multipli-
ers and adders can be increased to speed up this process but the area will
also increase and the position of the data samples on the memory need
to be modified. When extending the design to M channels, it requires M
times memory usage and multipliers since the compression unit is simply
duplicated for each channel. Assuming the least usage of multipliers per
channel (i.e. 1 multiplier/channel) and 32 channels in total (it is a typical
case M=32), the utilization of RAM, ROM and multipliers are 16 kbits (512
bits/channel), 256 kbits and 32 respectively. In order to reduce the total
memory usage, another more efficient architecture based on the following
equation is proposed:

Wd =

 Bc0,0 · · · Bc0,63
...

. . .
...

BcN−1,1 · · · BcN−1,63

 ·

 S0...
S63

 =

 Bc0,0 · · · Bc0,15
...

. . .
...

BcN−1,0 · · · BcN−1,15

 ·

 S0...
S15

+

 Bc0,16 · · · Bc0,31
...

. . .
...

BcN−1,16 · · · BcN−1,31

 ·

S16...
S31

+

 Bc0,32 · · · Bc0,47
...

. . .
...

BcN−1,32 · · · BcN−1,47

 ·

S32...
S47

 +

 Bc0,48 · · · Bc0,63
...

. . .
...

BcN−1,48 · · · BcN−1,63

 ·

S48...
S63


which splits the entire matrix multiplication into 4 smaller parts with each
contains 16 data samples. This architecture consists of a FSM, 16 multipli-
ers, 16 adders, 32 SRAMs and 1 ROM as shown in Fig. 3.14. The FSM
is responsible for controlling address and data in the RAM and ROM so
that the multipliers and adders can always load the correct data at the cor-
rect time. Besides, in order to decrease the critical path, some registers are
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Fig. 3.13: An illustration of the general matrix multiplier.

used in copying the data in the RAM that is being used for the current
computation. Moreover, it is important to design a convenient data map
for the ROM which can simplify the address calculation. It is obvious that
the more splits of the matrix multiplication result in the less memory usage
for storing the data. However, based on the algorithm of spike detection
and alignment (see Fig. 3.12), at least 16 data samples being stored in the
memory once the spike detection and alignment is finished. Hence, 16 data
samples of each partial matrix multiplication is the minimum number that
can be chosen for splitting. A comparison of the resource usage between the
general matrix multiplier and the proposed matrix multiplier for 32 chan-
nels is shown in table 3.2 where the calculation of the minimum required
frequency is derived in section 3.7. Instead of having 32 RAMs with each
storing the data samples for the same channel, the proposed matrix multi-
plier spreads the data of one channel into 32 RAMs so that it can read all
the data of a specific channel in one clock cycle to speed up the computation
(see section 3.4.1). Hence only one proposed matrix multiplier is needed,
which is shared for all the 32 channels and it still provides higher through-
put and less energy consumption (less min frequency) than the general one,
which is parallel processing. Moreover, the total area cost of the memory
will be further reduced when increasing the amount of channels.
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Fig. 3.14: An illustration of the proposed matrix multiplier.
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Table 3.2: Comparison of the resource usage of matrix multiplier (32 chan-
nels).

General Customized Reduction

RAM(bits/channel) 512 256 50%

ROM(bits/channel) 8k 256 97%

Multiplier/channel 1 0.5 50%

Adder/channel 1 0.5 50%

Min frequency(MHz) 25.6 7.6 72%

3.4.1 Memory Sharing

There are 32 RAMs which stores n data sample (8bits) from n channels re-
spectively (n depends on the total number of channels). The A/D converter
(supporting multi-channel) is assumed to sample the data sequentially (for
example, S0 from channel 0, S0 from channel 1, ..., S0 from channel n-1,
S1 from channel 0, ...). The memory works as a circular buffer for each
channel. There are two modes of the address calculation for the new coming
data samples: mode 1 is that the data will be circularly updated within all
the 32 slots; mode 2 is that the data will be circularly updated within only
16 slots. Figure 3.15 shows an example of how the data is stored in the
memory with the description of each sub-figure as follows:

(a) Now considering channel 0, the system will make a decision that a
spike is detected once S16 is sampled (cause the absolute value of S16 is
larger than the threshold). According to logic flow of spike detection and
alignment described in Fig. 3.12, the system will keep updating the next ten
data samples (S17 − S26) to find out the maximum absolute value before
moving to spike compression. Assuming that S22 is the maximum absolute
value (this value can vary from S16 to S26 in this case). Based on the
alignment algorithm, the maximum absolute value must be the 16th sample
of the entire 64 samples before performing spike compression.

(b) In order to have a clear look for the spike alignment, the identify
numbers of data sample have been reordered. In other words, S7 − S22 are
reordered to S0 − S15, and S23 − S26 are changed to S16 − S29. Now the
maximum absolute value is named S15. S0 − S15 are the first 16 samples
of the spike that will be compressed.
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(c) After the compression of the first part (S0 − S15), the temporary
results W0 −WN−1 will be saved in the same slot of S0− S15. It should be
noted that N is the number of compression results per spike (see command
WRITE(C,N-1) in Appendix 1), which varies from 1 to 16 (here the critical
case N = 16 is considered). In order to process the next partial compression
of S16 − S31, S20 − S31 are still needed to be sampled (S16 − S19 are
already existing during the previous spike alignment operation). Hence, the
matrix multiplier unit is idle during this sampling time (the sampling rate is
much slower than the system clock). This provides an opportunity that the
matrix multiplier can be shared to several channels once it fulfils the timing
requirement (timing analysis is detailed in section 3.7).

(d,e) The updated temporary results W1−WN of the other three sections
(S17−S31, S32−S47, S48−S63) will be saved in the same place where the
updated data samples will be saved in the other 16 slots in order to avoid
covering the temporary results. This means that the address calculation of
memory needs to be modified. After the compressions of all the 4 parts
finished, the address calculation of memory will be back to mode 1, which
means that the compression results have to be sent out in time so that they
won’t be covered by the new input data (see section 3.7).

3.5 Serial Peripheral Interface

The proposed design communicates with A/D converter and RF transceiver
through a standard serial peripheral interface (SPI). As shown in Fig. 3.16,
a standard SPI consists of four signals: an active-low slave select (SS); a
serial data clock (SCLK) with a base value of zero; a “Master Out, Slave
In” data line (MOSI) to send the data to the slave device; and a “Master In,
Slave Out” data line (MISO) to receive the commands from the slave device.
There are two SPI masters in this design: one is responsible for receiving
data from A/D converter (see section 3.5.1) while another one is used in
sending results and receiving user’s commands through RF transceiver (see
section 3.5.2). This means that the A/D converter and the RF transceiver
always being the SPI slaves. A general timing diagram of a SPI master with
SPI options of CPOL=0 and CPHA=0 (information about SPI configuration
is introduced in this paper [18]) is illustrated in Fig. 3.17. The slave device
should sample the MOSI signal on the rising edge of ”SCLK” and update
the MISO signal on the falling edge of ”SCLK”.
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Fig. 3.18: SPI master control state machine for A/D converter.

3.5.1 SPI master for A/D converter

This SPI master is responsible for controlling the SPI slave on the A/D
converter and receiving the sample data from the A/D converter, which
has 10 bits wordlength. Here the SPI master is just a simplified version
where the MOSI signal has been removed since we assumed that the A/D
converter only works in a certain mode. This design requires a customized
A/D converter otherwise the architecture will be more complicated in order
to configure a commercial A/D converter.

The SPI master generates slave select enable signal (SS), serial clock
signal (SCLK) and controls the receiver register. If the ”Start” signal is
asserted, the state machine will start to receive the sample data from A/D
converter and the ”SCLK” signal continues to transition. Due to the CPHA
= 0, the slave select signal will negate after the required hold time and then
re-assert between consecutive byte transfers [18]). The SPI control state
machine is shown in Fig. 3.18. The SPI control state machine remains in
the IDLE state until the ”Start” signal is asserted. Then the state machine
moves to the UNMASK SCK state to assert the ”SS” signal and generates
clock mask signals that control when the clock is output to the SPI bus.
In this state, the sample data acquired from ADC stored on the receiver
register. After that, the state machine will jump to the HOLD SSN state.
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Fig. 3.19: An illustration of output data header.

This state machine will ensure that ”SS” will be asserted 1 ”SCLK” period
before the first ”SCLK” edge, meeting the ”SS” setup time requirement
of most SPI slave devices. The clock mask signal is asserted to disable the
”SCLK” signal in this state machine. After that, the state machine will move
to SAMPLE START, which will be waiting for the signal ”clk 0p8 re” to be
asserted. After ”clk 0p8 re” is asserted, it will go back to UNMASK SCK
state to receive new samples.

3.5.2 SPI Master for RF Transceiver

This SPI master is used in controlling the SPI slave on the RF transceiver
through ”SS” and ”SCLK” signals, and transmitting three types of results :
LFP (8 bits), spike timestamps (16 bits), and the compression coefficients (8
bits). An 8-bit header was used in specifying these data types and the chan-
nel ID is illustrated in Fig. 3.19. The LFP signal is sent by down sampling
ratio of 16, which can be turned off by user command as well. However the
spike timestamps and the corresponding compression coefficients will only
be sent whenever the compression of a detected spike is finished.

The SPI control state machine is shown in Fig. 3.20. Once the as-
sertion of the ”Start” signal is finished, which indicates that either LFP
signals or compression coefficients are ready, the state machine will move
to ASSERT SSN to assert ”SS” signal. The UNMASK SCK1 and the UN-
MASK SCK2 states will reset the bit/byte counters, and transmit the cor-
responding header, which is generated according to the channel ID and the
data content. The XMIT DATA1 and XMIT DATA2 states are responsible
for transmitting the LFP signals or the spike timestamps with the compres-
sion coefficients. Moreover, the HOLD SSN state is similar to the one in the
SPI master for A/D converter.
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Fig. 3.20: SPI master control state machine for RF Transceiver.

3.6 Scheduler and Resources Sharing for Multi-channels

As mentioned in section 3.4, the area can be decreased by sharing the hard-
ware resources between multiple channels as much as possible. The dupli-
cated blocks (Filters, Spike detection and alignment) can be split into two
parts: sequential logic and combinational logic. The sequential logic includes
the independent register of channel and the combinational logic contains the
state machine logic and the multiplier. (see Fig. 3.21). It is very difficult
and complicated to share the sequential logic between multiple channels due
to the channel independence. However, the combinational logic is still pos-
sible to be shared as shown in Fig. 3.22. An extra multiplexer from 1 to N
(N depends on the total number of channels) is needed to select the channel.
Moreover, the clock frequency will be N times faster in order to achieve the
same speed as the non-sharing system. The speed is not a problem even
though it is 32 (assuming 32 channels) times of the sampling rate, as the
sampling rate is 25 kHz for each channel, which is rather slow for 65 nm
CMOS technology. Actually when considering that this is a sub-VT system,
parallelism is rather ineffective in reducing energy [19], which means that
it is still more energy efficient to share the combinational logic for several
channels (see Chapter 5 for more detailed information).

It is easy to generate the channel selecting signal sequentially for the
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multiplexer of the filters and spike detectors since the A/D converter is also
assumed to sample the data sequentially for each channel (i.e. inputs are
sequentially sampled from channel 0 to channel N-1). However, the spike
occurrence of each channel is independent and unpredictable, which requires
a scheduler for the compression unit to arrange the tasks. This scheduler
is implemented by a FIFO, which records the channel ID that is ready for
compression. In addition, one more scheduler is required to arrange the
channel ID which has the desired output and is ready to be sent out. The
depth of these two schedulers is based on the maximum possible number of
channels need to be processed at the same time, which is analysed in Section
3.7.

3.7 Speed Requirement Analysis

This section analyses the timing requirement of different parts in a M channel
system in order to achieve a 25 kHz (40 us) sampling rate. The timing
requirement derived here is restricted by the design specification (sample
rate), which is different from the one from circuit nature (critical path).
By calculating the minimum required clock frequency of different parts, the
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tem.

speed constrain for the overall system can be determined.

3.7.1 Speed Requirement for Spike Compressor

As the spike compressor is the main computing part of the entire design
and its speed may also influence the timing requirement of other parts, this
is the start point to analyse the speed requirement. Here are some useful
parameters for this timing analysis: the time interval between the data
sampling from different channel is 40/M us (this is also the fastest speed
to schedule the compression task); it takes 19 (given by N+3) clock cycles
for the compression unit to finish a partial matrix multiplication for one
channel when the maximum number N = 16 is chosen (N is the number of
compression results per spike). The critical case of the compressor scheduler
is that all the M channels are ready for scheduling sequentially with a time
interval 40/M . Once all the M channels have been scheduled during this
time instance, there will be no more scheduling for any channel in the next
several time instances unless the new 16 data samples have been filled up.
Hence, the critical case is the compressor unit must finish all the tasks that
are scheduled by the scheduler within 40 us so that the new coming data
do not overlap the old data (here the old data means that it is still in the
waiting list of compression). A formula which can be derived from this
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Fig. 3.23: An illustration of scheduling and consuming.

situation is shown as follows:

K × Tp× 19 < 40us (3.3)

where Tp is the clock period of the compressor and K is the maximum
number of channels need to be scheduled (i.e., the depth of the compressor
scheduler), which is given by:

K = M − 40/(Tp× 19). (3.4)

Hence, the required clock frequency (MHz) of the compressor is:

f = 1/Tp > 19 ×M/80 (3.5)

where the minimum required clock frequency of M=16 channels is 3.8 MHz
and the depth of the compressor scheduler K is 8. The same result can be
derived from another point of view:

M × (Consuming interval − Schedule interval) < 40 us (3.6)

where the consuming interval is Tp × 19 and schedule interval is 40/M .
Figure 3.23 illustrates the relationship between scheduling and consuming
(here the response time consumes for the first scheduling is neglected).

3.7.2 Speed Requirement for the SPI Master Communicated with
RF Transceiver

Similar method can also be applied to calculate the speed requirement of
the SPI master for the RF transceiver as well as the depth of the output
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scheduler. In this case, the timing constrain is 16*40 us in order to have a
finite size for the output scheduler (16*40 us is the time interval between
two spikes at the same channel, which is caused by the spike detection and
alignment algorithm, but in reality this depends on the neuron firing rate,
which will be much larger than this value). In addition, the critical case costs
152 clock cycles to finish one spike transmission of one channel, resulting in
a consuming interval Tp′ ∗ 152, where Tp′ indicates the clock period of this
SPI master. Here the schedule interval depends on the speed of compressor,
which is Tp∗19. The Tp indicates the clock period of the compressor. Hence
a similar equation like 3.6 can be proposed:

M × (Tp′ × 152 − Tp× 19) < 16 × 40 us (3.7)

Assuming that the same clock is used in this SPI master and the compressor
(i.e., Tp′ = Tp), the minimum required clock frequency is 3.3 MHz for
M=16. Since this value is less than the minimum required clock frequency
of the compressor (the assumption of Tp′ = Tp could not be established),
Tp = 1/3.8 for M=16 are inserted in 3.7 again, resulting that the minimum
required clock frequency in SPI master for RF transceiver is f = 1/Tp′ =
6.8 MHz for M=16. Similarly the depth of output scheduler is equal to
M − 40/(Tp′ × 152), which is 15 for M=16.

3.7.3 Speed Requirement for the SPI Master Communicated with
A/D Converter

The sampling rate of the A/D converter is determined by the request sending
rate of the SPI master. If the value of sampling rate/channel is fixed, then
request sending speed also needs to be fixed. For example, assuming that
a A/D converter samples the data form M channels sequentially with a
constant request sending rate R, therefore the data sampling rate of each
channel will be R/M. In other words, the time consume of SPI master to
receive the data of one channel is 1/R. Considering that it takes 11 clock
cycles to receive one data sample using SPI (see Section 3.5.1 for detail),
the operating frequency for the SPI master must be faster than 11*R, which
can be written as:

f > 11 ×R = 11 ×M × Sampling rate (3.8)

where the sampling rate is typically 25 kHz as mentioned before, therefore
the minimum required clock frequency of SPI master for A/D converter is
4.4 MHz assume M=16.
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3.7.4 Speed Requirement for Other Modules

If there is no shared resource for the multi-channel system, the timing re-
quirement for the filters and spike detectors of each channel is just equal
to the sampling rate. However, as the combinational blocks are shared, the
minimum required frequency for the filters and spike detectors is 25*M kHz,
which is 400 kHz for M=16. For the system state machine, there is no
individual speed requirement but it is determined by the maximum clock
frequency if there are multiple clocks in the system.
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CHAPTER 4

Low Energy Approaches

Power consumption is becoming an increasingly important aspect of CMOS
devices that are energy autonomous and extremely small sized. As one of
such applications, wireless BMIs are limited in terms of energy provision.
Hence, some methods have been applied for reducing the power consump-
tion, which are described in the following sections.

4.1 Energy Model

This section presents the energy model that is used for simulating the energy
dissipation in the sub-VT region. In general, there are two types of power
consumption, dynamic and static. Dynamic power is consumed during logic
transitions on nets consisting of two components, switching power and in-
ternal power (short-circuit). Static power is due to the leakage current that
flows whenever the gates are supplied by an energy source. The total energy
dissipation of the static digital CMOS can be modelled as

Etotal = Eswitching + Einternal + Eleakage (4.1)

where the internal energy dissipation Einternal is neglected since it is only
a small portion of the overall energy [20]. Based on this fundamental, a
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Table 4.1: Minimum required clock frequency (MHz) of different parts.

M=32 M=16

SPI master 1 8.8 4.4

SPI master 2 6.6 3.3

Data compressor 7.6 3.8

All filters 0.8 0.4

System state machine 8.8 4.4

SPICE-accurate model was derived in this paper [21] as following:

Etotal = CinvV
2
DD

[
µekcap + kcritkleake

−VDD/(nUt)
]

(4.2)

where Cinv is the switched capacitance of an inverter; VDD is the supply
voltage applied to the implementation; µe is the average switching activity
per N samples operations; kcap is the scaling factor that is calculated by the
total capacitance normalized by a single inverter capacitance; kcrit is the
critical path delay per sample in terms of an inverter delay; kleak refers the
average leakage scaling factor normalized by the average leakage current of
a single inverter; n is the slope factor depends on process, and Ut is the
thermal voltage, known as 26 mV at 300 K. All these parameters can be
obtained during synthesis and high level simulations. Besides, it should be
noted that this model is based on an important assumption: the design is
running at the maximum clock frequency. Hence, for the speed constrained
design, which means that the design is working under the achievable speed
at the energy-minimum operating point, then the total energy dissipation is
modified as

Etotal = µekcapCinvV
2
DD + kleakI0VDDTclk (4.3)

where I0 represents the average leakage current of a single inverter [21] and
Tclk is the clock period.

4.2 Multiple Clock Domains and Power Domains

As calculated in Chapter 3.7, different parts of the design have different
speed requirements (see table 4.1). Thanks to the relation between power
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Fig. 4.1: The block diagram of different power domains in the design.

and supply voltage, a lower supply voltage will result in a much lower power
consumption but also a slower speed. To achieve maximum speed and lower
power consumption at the same time, each part of the design should operate
at the lowest supply voltage that can achieve the minimum required speed.
However, this means that there would be 4 clock domains in this design,
which increases the area overhead and the complexity of communication be-
tween clock domains and power domains. Actually, the speed requirements
for SPI master 1, SPI master 2, data compressor and system state machine
are quite close to each other. It gives the possibility of combining them into
one clock domain, where the maximum value of these speed requirement
is used (i.e., 4.4 MHz for M=16). Hence, only two clocks are used in this
design, which are 4.4 MHz and 400 kHz (the final tapeout is aimed at 16
channels). It should be noted that one of these two clocks is derived from
another, which means that clock 2 (400 kHz) derived from clock 1 (4.4 MHz)
divided by 11. Using a derived clock ensure that the design is synchronous
and resulting in a much easier signal communication between clock domains
without the help of a synchronizer [22]. In addition, although the speed of
memories is identical with the data compressor, there exists an extra power
domain of memories in order to perform a separate power measurement. In
summary, there are 2 clock domains and 3 power domains in this design as
shown in Fig. 4.1.
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Fig. 4.2: Energy curves versus: (a) Supply voltage; (b) Maximum opera-
tional frequency.

4.3 Supply Voltage Reduction

Voltage scaling is a very effective way to reduce energy consumption. By
applying aggressive voltage scaling, where the system will operate in the
sub-threshold region, the power and energy consumption can be reduced by
up to 2 orders of magnitude [19]. The energy dissipation shown in Fig. 4.2 is
calculated by using the model in Section 4.1. The energy minimum voltage
(EMV) is 0.33 V for both high-threshold (HVT) and standard-threshold
(SVT) standard cell libraries. To fulfil the speed requirement, the design will
operate at around 0.4 V (SVT cells) instead of 0.33 V, resulting in a slightly
higher energy dissipation. However, when compared to the design operating
at 1.2 V, it achieves a reduction of 94% in energy consumption. It should be
noted that this energy simulation was performed without the memories, and
the supply voltage of both power domain 1 and power domain 2 are identical.
That is because the optimum supply voltage (i.e, the supply voltage that can
fulfil the speed requirement with the minimum energy dissipation) of power
domain 1 is very close to the one of power domain 2, which means that
they can combine into one power domain. However, in order to measure
the energy dissipation of these two power domains separately, two power
domains remain in the final tapeout.



4.4 Standard-cell Based Latch Memories 51

4.4 Standard-cell Based Latch Memories

After applied the aggressive supply voltage reduction to the system to achieve
ultra low power design, the conventional SRAM using 6-transistor (6T) bit-
cells are inoperable in the sub-VT domain. An attractive alternative from
this paper [23] is the use of standard-cell based memories (SCMs) that pro-
vides high reliability, low area cost for small storage requirements (a few kb),
and straightforward synthesis which reduces the design effort. As the total
size of memory used in this design is 4 kb (16 channels), it will perfectly
match the optimum case of SCMs, giving a relatively low area cost. The
measurement value of EMV for this latch memories is 0.4 V with a energy
dissipation of 29 fJ/bit-access, but in our case the supply voltage should be
slightly higher (nearly 0.5 V) due to the speed constrain, which will end up
with a energy dissipation of 34 fJ/bit-access.
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CHAPTER 5

Results and Discussions

This chapter presents the analysis and discussion about the results of hard-
ware implementation organized from section 5.1 to section 5.4. Section 5.1
analyses the fixed point performance including the wordlength simulation
result of the spike compressor and the comparison with the floating point
Matlab model; The influence of different channel compression ratio on area
and processing time is discussed in Section 5.2; The synthesis results with
the corresponding strategies are presented in Section 5.3; The layout after
place-and-route is shown and discussed in Section 5.4.

5.1 Fixed Point Performance

In hardware implementation, wordlength is one of the key points with large
influence on the performance and area. It is obvious that there is a trade-
off between the performance and area: increasing the wordlength usually
improve the performance as well as increasing the area. In the proposed
design, the high performance refers to the high accuracy of results or the
low quantization error. In general, we would like to achieve a reasonable
accuracy (reasonable quantization error) with the smallest area. Hence some
simulations were performed in order to explore the relation between the
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Fig. 5.1: Wordlength simulation of: (a) Spike sample S; (b) Compression
basis Bc.

wordlength and the accuracy (quantization error). Figure 5.1 shows the
wordlength simulation results of the spike waveform and the compression
basis. Here the normalized quantization error of a given spike i is calculated
by:

εi =
abs(S̃i − Si)

max(abs(Si))
× 100% (5.1)

where S̃i is the quantized waveform of spike i and Si is the waveform of spike
i with full precision. εi is an array with 64 elements (the same numbers
as spike waveform) where only the maximum value will be selected as a
representative. As mentioned in Chapter 2, the test data of each SNR
scenario consists of thousands of spike. Hence the plot in Fig. 5.1 is an
average value of thousands of spikes with the error bar standing for the
standard deviation of these values.

As shown in Fig. 5.1, using too small wordlength such as 6 bits or an
even smaller one will lead to a very large quantization error. However, the
wordlength close to 10 bits does not affect the precision significantly. Hence 8
bits wordlength was chosen for both spike waveform and compression basis
since the normalized quantization error is less than 2% even in low SNR
scenario. Once the wordlengths of spike waveform S and compression basis
Bc were determined, the final simulation of the wordlength of compression
results Wd was performed. The result is shown in Fig. 5.2. For the same
reason, 8 bits wordlength for compression waveform Wd as a normalized
quantization error is around 5%. Moreover, another important reason for
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Fig. 5.2: Wordlength simulation for Wd.

this choice is that the memory can be simply shared between spike waveform
S and compression waveform Wd if the wordlength of Wd is the same as the
one of S. Besides, 8 bits are equal to 1 byte which is convenient for the
further process in RF transmitter.

The performance of the fixed point hardware implementation was esti-
mated in terms of spike sorting accuracy and spike reconstruction accuracy.
The calculation of overall spike sorting accuracy PID was described in Chap-
ter 2. Here the spike reconstruction accuracy is the maximum value of the
cross-correlation result between the reconstructed spike and the mean spike
of the target neuron (see Chapter 2). Figure 5.3 and Figure 5.4 show the
comparison between the fixed point hardware implementation and the float-
ing point Matlab model for spike reconstruction accuracy and spike sorting
accuracy respectively. These two figures indicate that there is very small loss
for the hardware implementation with 8 bits wordlength of the spike wave-
form, compression basis and compression waveform. Furthermore, both the
spike sorting accuracy and reconstruction accuracy decrease as the SNR de-
creases. That is because lower SNR lead to a larger quantization error which
can be seen in Fig. 5.2. Meanwhile, a higher number of compression basis
dimension results in a higher precision but also a lower compression ratio.
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Fig. 5.3: Spike reconstruction accuracy versus number of compression basis
dimension (inverse to compression ratio).

For example, in low SNR scenario, using 2 as the number of compression
basis dimension gives a compression ratio of 32, a spike reconstruction ac-
curacy of 0.88 and a spike sorting accuracy of 0.57; where using 8 gives a
compression ratio of 8, a spike reconstruction accuracy of 0.94 and a spike
sorting accuracy of 0.63.

5.2 Compression Ratio

The relation between spike compression ratio and compression basis dimen-
sion is

CRspike =
64

Compression basis dimension
(5.2)

where CRspike is the spike compression ratio, it varies from 4 to 64 since the
compression basis dimension is from 1 to 16. In general, larger compression
basis dimension (smaller compression ratio) requires higher memory usage.
However, in this design, the compression ratio does not influence the overall
memory usage. The reason is that the memory used in spike alignment com-
ponent is shared with spike compression component, and the spike sample
storage of spike alignment determines the maximum memory usage of the
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Fig. 5.4: Spike sorting accuracy versus number of compression basis di-
mension (inverse to compression ratio).

design. It also means that the memory used in spike compression component
is less than the memory used in spike alignment component. Thus, in terms
of overall memory usage, increasing the compression ratio does not influ-
ence the total area significantly. When this compression ratio is compared
with other works, it should be noted that the proposed design transmits
spike data only when there is a detection of a spike. Hence, a more realistic
definition of compression ratio for each channel is given by

CRchannel =
NB

NA
=

SR ∗W
FR ∗ (Compression basis dimension+ ST ) + LFP

(5.3)
where NB and NA are the amount of data before and after compression
respectively. SR is sample rate, FR is the spike firing rate and W is the
wordlength of sample data. The output data after compression contains
compression coefficients of spike, some overhead bits for recording spike time
(ST ) , and the LFP data (LFP ). As mentioned in the previous sections, the
sampling rate of this design is 25 kHz, the wordlength of sample data is 16,
overhead bits of recording spike time are 24, the wordlength of compression
coefficient is 8, and the LFP data is 12504 bits/sec. For example, assuming
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Table 5.1: Channel compression ratio for different spike firing rate and
spike compression ratio.

Spike firing rate FR CRspike CRchannel with LFP CRchannel without LFP

10 spikes per second 4 28 263

10 spikes per second 16 30 714

10 spikes per second 64 31 1250

100 spikes per second 4 14 26

100 spikes per second 16 22 71

100 spikes per second 64 25 125

a spike firing rate of 10 spikes/sec, and a compression basis dimension of 8,
the compression ratio for each channel is given by

CRchannel =
25000 ∗ 16

10 ∗ (8 ∗ 8 + 24) + 12504
= 18. (5.4)

The different compression ratio with different spike firing rate is described
in table 5.1. In another work [24], the author developed a data compressor
in BMI based on the Walsh-Hadamard Transform (WHT). The compression
ratio in [24] is 60 and 5 when the spike firing rate is 10 spike/sec. and 100
spike/sec. respectively. It should be noted that in [24], the output does not
contain the LFP component. Thus, in order to have a fair comparison be-
tween [24] and the proposed design, the LFP component should be removed
from the calculation of channel compression ratio (Actually the LFP trans-
mission can be turned off by a SPI command, see Appendix 1). Fig. 5.5
shows a clear comparison of compression ratio between these two designs.
Both of these two designs are compared with the SNR scenarios of 20. Table
5.1 shows the channel compression ratio with different parameters.

As mentioned before, the entire matrix multiplication (64 samples) is
split into 4 small parts and each part contains 16 samples for multiplication
(see section 3.4). For each part, it takes (N+3) clock cycles for the compres-
sion unit to finish multiplication (see section 3.7.1). N refers to the number
of compression basis dimension, as well as the number of compression result
which is actually transmitted. Thus, the processing time of spike compres-
sion is given by (N+3)*4. According to this formula, if spike compression
ratio CRspike is 64 (the compression basis dimension will be 1 according to
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Fig. 5.5: Compression ratio as a function of spike firing rate

(5.2)), the processing time is (1+3)*4=16 clock cycles. In the same way,
if spike compression ratio CRspike is 4 (the compression basis dimension is
16), the processing time is (16+3)*4=76 clock cycles.

In summary, the processing time will decrease as the compression ratio
increases and the overall memory usage is not influenced by the compression
ratio in the proposed design.

5.3 Synthesis Results

In previous research [25], different synthesis strategies for sub-VT system
design using commercial standard-cell libraries (SCLs) and commercial logic
synthesis as well as place-and-route tools were analysed. In this project,
the synthesis was performed by Synopsys Design Compiler with the low
leakage standard-threshold (LLSVT) standard-cell libraries which is already
discussed in Chapter 4. Since this design is not timing-critical, the above-VT
synthesis with a relax timing constrain and a hard power and area constrain
was performed in order to obtain the most energy-efficient result. Moreover,
the re-characterized SCL for sub-VT voltage supply voltages was still needed
during the post-layout simulation at the target voltage although it was not
needed for synthesis. Besides, the clock gating technology was used in this
design to decrease the power consumption. The insertion of clock gating
was realized by the automated script during synthesis, which achieves a fast
clock gating controlling.



60 Results and Discussions

Table 5.2: Percentage of area for the different parts.

Non-clock gating (%) Clock gating (%)

SCMs 38.5 38.9

Registers 35.3 35.4

Multipliers 11.8 12.6

Control net 9.2 7.1

Adders 3.3 3.8

ROM 1.9 2.2

The table 5.2 shows the synthesis result of area. It shows that most of
the area is occupied by the standard-cell based memories (More detailed
information is shown in Chapter 4.2) and the registers, followed by the mul-
tipliers and control nets. The registers used in the filters can not be shared
among different channels, which occupy large percentage of the area and
will grow with the increasing of total number of channels. After using clock
gating, the area occupation of the control net is reduced dramatically as
most of the control logics of registers will be redundant and can be removed
due to the existing control from the clock gating latches. Together with mul-
tipliers and adders, the total area of filters (lowpass filters, highpass filters
and exponential filters) is more than 40% while the area of data compressor
is less than 15 %. Moreover, the area of filters will increase when increas-
ing the amount of channel but the area of data compressor will keep the
same since it is shared for all the channels and independent of the amount
of channel. Hence, optimizing and minimizing the filters can be taken to
reduce the total area effectively in the future work.

The Table 5.3 shows the synthesis results for the design with clock gating
and without clock gating. It is obvious that the design with clock gating is
more area efficient and energy efficient. However, the simulation and test
with the clock gating should be very careful in a sub-VT region since the
clock gating might be a risk for a sub-VT system. Moreover, the maximum
achievable clock frequency of the design with the clock gating is also higher
than the one without the clock gating due to the shorter critical path by
removing some control logics of registers. Here the clock frequency only
means the frequency of clock 1 (i.e., the clock used by data compressor,
SPI, etc), since clock 2 (i.e., the clock used by filters and spike detectors)
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Table 5.3: Synthesis results using LLSVT SCLs.

Non-clock gating Clock gating

Core area(mm2) 0.184 0.167

Gate count 88562 80107

Max clock frequency(MHz) 1.2V 396.8 480.8
0.4V 5.0 5.3

Energy/cycle(pJ) 1.2V 30.51 16.43
0.4V 1.89 1.03

is just considered as a generated clock from clock 1. When the supply
voltage downs to 0.4 V, the maximum achievable clock frequency is still
slightly higher than the required value 3.8 MHz (calculated from Chapter
4.6). Although the real measurement of the maximum clock frequency from
the chip might be a little different from this simulation result, the supply
voltage can be slightly increased or decreased to reach the required clock
frequency. Moreover, the energy dissipation of the design without clock
gating at supply voltage of 0.4 V is merely 1.89 pJ/cycle, and has a 94%
reduction compared to the one at 1.2 V, which will achieve more than 50%
reduction if applying clock gating.

5.4 Layout

The final layout is shown in Fig. 5.6, which was realized by Cadence SoCEn-
counter. As a part of a multi-project die, the size is 900x500 um2, occupying
almost half of the 1 mm2 die with some space of right hand side remaining
for the pads placement of other projects. There are 4 power domains with a
separated VDD contact for each and two shared GND contacts. These two
GND pads were placed near right top and left bottom respectively, in order
to spread out the power distribution for minimizing the dynamic voltage
(IR) drop [26] (IR-drop is the voltage drop on the supply lines, caused by
the large current spikes at the rising edge and falling edge of the clock due
to the share of flip-flops. Increasing the numbers of supply contacts and the
width of power stripes are effective methods to reduce the IR-drop.). Table
5.4 shows the density of cell placement of different power domains. The
overall cell placement density achieves 70.55%, which is quite compact and
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Fig. 5.6: Layout of the overall design.

Table 5.4: Area occupation of cells in different parts of layout.

Part area occupation(%)

Power domain 1 72.31

Power domain 2 69.81

Power domain memory 71.34

Overall placement 70.55
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reasonable. It is still possible to reach a higher placement density if required,
but that is not a requirement in this project. Once the post-layout simula-
tion was performed successfully, fully design rule check (DRC) was applied
before fabrication. It should be noted that the re-characterized SCLs with
the target sub-VT supply voltage are needed to generate the sub-VT timing
standard delay format (SDF) files for the static timing analysis of sub-VT
timing.
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CHAPTER 6

Conclusion

This thesis project realized the data compressor for wireless brain machine
interface with an extremely low energy cost targeting in 65 nm CMOS tech-
nology. The design consists of pre-processing filters, spike detectors, spike
compressor and the SPI IO protocol. The total die area is 900×500 µm2.
Area and energy dissipation have been dramatically reduced by sharing
hardware resources for different channels, optimizing the matrix multiplier
and utilizing a standard-cell based latch memories. Moreover, aggressive
voltage scaling, clock gating and multiple clock domains have been per-
formed resulting in an even less energy dissipation. The simulated energy
dissipation is 1.03 pJ/clock cycle if applying clock gating. It is nearly 30
times less than the standard super-VT implementation without clock gating.
At the same time, the precision loss of the fixed point hardware performance
is less than 0.1% compared to the full precision Matlab model. The recon-
struction accuracy achieved more than 95% for different input SNR scenarios
and the different dimension of compression coefficients. Furthermore, high
flexibility of compression ratio has been achieved by the adjustable dimen-
sions of the compression coefficients. It can be adjusted via SPI commands
according to the signal quality of the channel and the requirement of the
spike reconstruction accuracy.
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6.1 Future Work

This design has been sent for fabrication targeting in 65 nm CMOS technol-
ogy. As the first generation, this design provides a very good example and
idea. It can be extended for building up the entire wireless BMI system,
especially the implantable device where energy dissipation and area become
more significant. Hence, some methods can be taken in account regarding
to several aspects of the ASIC part of the BMI system:

� Future research on the highpass and lowpass filters as well as the
threshold generator (exponential filter) can be investigated for decreas-
ing the area. For example, using direct form II structure of filter will
reduce the number of delay buffer. Moreover, the possibility for the
use of analogue filter can also be analysed in terms of energy, area and
performance.

� Compression ratio should be increased by improving the algorithm or
estimating other algorithms. However it should not increase the over-
head much in terms of area and power when increasing the compression
ratio.

� Customized ultra low power A/D converter should be developed, which
can provide the best performance and minimize area by adjusting the
dynamic range to the neural recording signal.

� Customized design for RF transmitter/receiver can be implemented in
order to build up the most energy and area efficient hardware without
any redundant unit.



APPENDIX A

Appendix 1

A.1 User Controlled SPI Command Words

Command: INTERRUPT

MSB LSB
7 6 5 4 3 2 1 0

0 0 1 1 1 1 1 1

Comments:
This command interrupts the current activities and sets the system state to
”IDLE”. When the system is working in ”WORK MODE”, it is necessary
to execute this command when you want to modify the parameter registers.
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Command: WRITE(C, N-1) - Write the parameter N(Number of
compression coefficients per detected spike) to channel C

MSB LSB
7 6 5 4 3 2 1 0

0 1 0 C[4] C[3] C[2] C[1] C[0]

MSB LSB
7 6 5 4 3 2 1 0

X X X X N[3] N[2] N[1] N[0]

Comments:
This is a two-section command. The first section is to select the target
channel and the second section is to specify the amount of coefficients need
to be transmitted after spike compression, which is referred to N . The
range of N is from 1 to 16 and N − 1 is from 0 to 15 (”0000” to ”1111”
in binary). The default value of N − 1 is ”1111”. The selection of this
value is based on the channel quality. If the channel quality is bad, it is
possible to increase the amount of compression coefficients to be transmitted
to increase the precision of the reconstructed spike waveform. Besides, this
value is independent for each channel which means that it is possible to
choose different value for different channel depending on the channel quality.
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Command: WRITE(C, α, β) - Write the parameter α and β to the
exponential filter in channel C

MSB LSB
7 6 5 4 3 2 1 0

0 0 1 C[4] C[3] C[2] C[1] C[0]

MSB LSB
7 6 5 4 3 2 1 0

α[1] α[0] X X X β[2] β[1] β[0]

Comments:
This is a two-section command. The first section is to select the target
channel and the second section is to specify the new value of α and β. More
information about these two parameters is introduced in section 3.2.2. The
default value for α and β is ”11” and ”110” respectively. Moreover, the ”X”
in the second section indicates that it is unused.

Command: START 1 - Reset threshold registers for ALL channels
and then start to do spike detection and compression

MSB LSB
7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 0

Comments:
This command firstly resets the content of threshold registers of all channels
to zero (the reason is detail in 3.2.2). After the settling time of the threshold
generator is set, the system will start to do spike detection and compression
(move to ”WORK MODE” state).
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Command: START 2 - Reset threshold registers for channel C
and then start to do spike detection and compression

MSB LSB
7 6 5 4 3 2 1 0

1 0 0 C[4] C[3] C[2] C[1] C[0]

Comments:
This command is similar to ”START 1” where the only difference is that
it only resets the threshold register of ONE specific channel. Normally this
command is executed to restart the spike detection and compression for one
channel without influencing the current state of other channels. Hence, it
is convenient to use this command to modify the system parameters of a
specific channel.

Command: LFP ENABLE - Turn off/on the LFP transmission

MSB LSB
7 6 5 4 3 2 1 0

1 0 1 A[4] A[3] A[2] A[1] A[0]

Comments:
This command disables the LFP transmission (when ”A” = ”11111”) or
enables the LFP transmission (when ”A” /= ”11111”). The default config-
uration of LFP transmission is ON.

Command: TEST - Start the test mode for fast functional testing

MSB LSB
7 6 5 4 3 2 1 0

1 1 1 0 0 0 0 0

Comments:
This command sets the system to the ”TEST MODE” state for testing and
debugging the functionality quickly and efficiently.
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