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Abstract

This master thesis investigates different algorithms that can be used to calibrate a vector
network analyzer (VNA). These methods are possibly a good alternative when altering
the measurement setup by inserting standards or moving the ports is difficult or not even
a possibility.

Measurements with a VNA at microwave frequencies most often result in a scattering
matrix. As no actual setup was available, simulations were carried out. These matrices
contain the data that the algorithms will use to compensate for the errors in the setup,
e.g. phase shift due to propagation and power loss due to imperfect connections.

The simulations of three different setups were performed using the commercial software
COMSOLMultiphysics. The setups that were simulated were: a parallel plate waveguide,
a straight coaxial fixture, and a tapered coaxial fixture. The parallel plate waveguide is a
big setup (1 m × 1.5 m) compared to the wavelengths that were simulated (0.015 to 0.30
m), thus making the problem difficult to solve. Due to the amount of memory needed
during calculations, only a simplified 2D model was built. For the coaxial fixtures, full
3D simulations were performed.

Three different algorithms were implemented; LNN (Line-Network-Network), Extended
LNN, and TTN (Through-Through-Network). The methods are self-calibration methods,
which means that the device under test (DUT) can be used as one of the calibration
standards. All three methods assume that the DUT is symmetric and reciprocal. The
first algorithm that was implemented and examined was the LNN method. This method
places the DUT at three different positions in the setup. The separations l1 and l2
between these positions must be equal, i.e. l1 = l2. The second algorithm implemented
was the Extended LNN. This method allows l1 �= l2 which makes the method less sensitive
for misplacement of the calibration network. The last method to be investigated was the
TTN. This method should be the easiest to perform since the three measurements that
need to be done are relatively simple. However, this simplicity comes with a price: the
setup has to be fairly long and has to have a very flat frequency response.

Next the Nicolson-Ross-Weir (NRW) algorithm was applied to the calibrated scattering
matrix. The NRW calculates the material parameters εr and μr.

When all the algorithms had been implemented and tested, different errors (random
errors, wrong guesses, noise) were injected to try the stability of the different methods.

All methods look promising and some of the intrinsic difficulties of the algorithms seem
fairly easy to work around. For the LNN and Extended LNN, the length of the mea-
surement setup does not play a big role which implies that these methods can be used in
small fixtures. The TTN has the drawback that the length of the setup has to be quite
long. Since this method is most suitable for free space measurements, where the antennas
are often placed at a fixed distance from each other, the length constraint should not be
a significant practical problem.
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1
Introduction

1.1 Background
A vector network analyzer (VNA, picture in Figure 1.1) is a tool for measuring network
parameters of an electrical network, such as a material or an electronic device, for which
an electromagnetic wave is to propagate through. The first commercial network ana-
lyzers were developed at Hewlett-Packard (HP) in the 1960’s [1, 2]. The VNA was first
mentioned in 1968 in [3], when it was called an automatic network analyzer (ANA). Two
years later, HP introduced the first commercial ANA, HP Model 8540A/8542A [4]. It
could perform measurements from 0.11 GHz up to 12.4 GHz, or 18 GHz with a frequency-
stabilized signal source. At present time it is possible to buy a VNA (from e.g. Keysight
Technologies) that can measure at a frequency as low as 5 Hz or at frequencies just over
1 THz.

Figure 1.1: Agilent Technologies N5245A PNA-X vector network analyzers. Used
with permission under the public domain [5].



The result of a measurement with a VNA is most often the so called scattering matrix
[6,7], which is a mathematical description of a material or a device (also called a network).
The matrix contains information about how much of an incident wave is reflected back
and how much propagates through the sample and is transmitted. It is a complete
description of a network and contains information about amplitude and phase of the
wave.

There are many occasions when a VNA is a useful tool, e.g. when measuring reflection
and transmission of a device under test, from which the material parameters εr and μr

can be extracted [8–16].

A VNA is often used to verify the construction of metamaterials or other electronic
devices, e.g. [17–21]. All these cases have in common the investigation of the behavior of
a network at high frequencies.

Using waveguides (e.g. coaxial cables and rectangular waveguides) one can sustain and
guide the propagating wave from the VNA to a material or device on which a measure-
ment is to be carried out. Imperfections in e.g. the connections will reflect parts of the
wave back to the VNA. The phase shift from the wave propagating in the waveguides is
also an error that has to be taken into account. All these errors will affect the result of
the measurement (cf. left Figure 1.2).

To get rid of these errors in the measurement setup, and obtain the correct scattering
matrix, a calibration has to be done [22–26], cf. Figure 1.2 where the left plot shows the
uncalibrated scattering parameters and the right plot shows the scattering parameters
after a calibration have been performed. The purpose of a calibration is to remove
errors from the measurement. This is achieved by measuring on networks with a known
response, like an (almost) ideal reflection, or an extra line with known length.

There already exists well known calibration techniques, like the TRL (Through-Reflect-
Line) [27] and the SOLT (Short-Open-Load-Through) [23]. All of these assume that the
measurement setup can be modified during calibration, e.g. the ability to extend the
setup with an additional coaxial cable or connecting the ports directly to each other.
Sometimes it is not possible to move the different parts, e.g. when two horn antennas are
used as ports and are positioned at a fixed distance from one another. Another drawback
of these established calibration methods is that the standards that are going to be used
during calibration have to be very well-known and of very high quality, which often leads
to expensive parts.



Figure 1.2: The scattering parameters for a slab. The left shows uncalibrated scat-
tering parameters and on the right calibrated scattering parameters.

1.2 Scope
A VNA is used to measure the scattering parameters of a material slab, placed at different
locations between two antennas with fixed positions, hence earlier mentioned calibration
methods are not an option for this setup. This thesis presents three methods which im-
plement self-calibration, i.e. the DUT/MUT (Device/Material Under Test) is one of the
standards. Other standards used in this project are Line and Through. With the use of
these three standards one eliminates the need for expensive well-known standards. In-
trinsic for all methods is redundancy of information which leads to that all the standards
do not have to be exactly known since they will be characterized during calibration [26].

Despite the redundancy, these methods do require certain a-priori knowledge since some
of the equations that are obtained are of second order and thus signs have to be chosen.
The a-priori knowledge can be information like the approximate refractive index of the
sample, or if the material has magnetic properties etc.

1.3 Goal
The aim of this thesis is to investigate three self-calibration methods which can be used
in situations when methods like TRL and SOLT can not be performed. The studied
algorithms are; LNN (Line-Network-Network) [28–30], Extended LNN [30,31], and TTN
(Through-Through-Network) [32]. The goal is to compare the different methods to check
if any of them is more stable than another in different setups. It will also be investi-
gated how important the a-priori knowledge is for the end result. After the investigated
calibration algorithm has been applied to the measured or simulated data, the material
parameters of the slab will be extracted.

1.4 Approach
Unfortunately there were no possibility to perform scattering measurements on a real
material slab, hence the first part of the thesis was to perform simulations of different
setups using the commercial program COMSOL, which uses a finite element method
(FEM) [33] solver. There exist several different numerical methods to solve Maxwell’s
equations. Others are e.g. the FDTD (Finite Difference Time Domain) [34] and MoM



(Method of Moments) [35]. This thesis will not go in to detail how the exact methods
work, but since they all use the exact formulation of Maxwell’s equations they can be
rather time consuming, of course depending on the problem at hand. Since numerical
methods were not the main topic of this thesis, neither were the aspect of optimizing
the simulation time, the choice to use COMSOL and hence FEM was that it was readily
available and was a familiar framework.

A COMSOL simulation can generate a Touchstone file [36, 37] which contain the scat-
tering parameters for all the simulated frequencies. Then the three algorithms (LNN,
Extended LNN, and TTN) were implemented with python, where the Touchstone files
are used as input. Different python modules (packages) were used to simplify the imple-
mentation e.g. scipy [38] and scikit-rf [39]. To induce error in the simulations, random
errors were added to scattering matrices. The implementation could have been done
in any other programming language for instance Matlab. The reason python was used,
except the obvious reason that it is free, is the availability of good modules like scikit-rf
which loads Touchstone files out of the box and it models electrical networks. Scikit-rf
also have an implemented calibration routine which is easy to apply that extracts all the
error coefficients.



2
Electromagnetic Fields and Microwave Theory

In this chapter the theory needed in this thesis is explained briefly. Some basic elec-
tromagnetic theory of Maxwell’s equations in free space and in a dielectric medium is
covered. This leads to the discussion of constitutive relations and the definition of the
relative permittivity (εr) and relative permeability (μr) which are two key concepts in
this thesis.

A discussion on guided waves is presented to reach a basic understanding of how waves
can be controlled. Waveguide theory is a subject that is not studied in detail in this
thesis, but an understanding of how waveguides work is important in this context.

When working with microwaves the concept of 2-port networks is a very helpful tool.
The definition of a 2-port network is explained, and then different ways to characterize
or describe networks are discussed, e.g. the scattering matrix. The vector network
analyzer, is the tool used for measurements of the scattering matrix. The importance
of calibration and control over the reference planes are described. A more complete
discussion about these subjects can be found in other literature e.g. [40–43].

The Nicolson-Ross-Weir (NRW) algorithm is explained since it is used to extract the
material properties from the scattering parameters (measured or simulated). Care needs
to be taken when using the algorithm due to analytically instabilities and this problem
is going to be discussed.

2.1 Maxwell’s equations
The electromagnetic interaction is one of the four fundamental interactions in nature;
the other three are the weak force, the strong force, and gravitation [42]. The interaction
is described by Maxwell’s equations which are the partial differential equations that
describes phenomena on a macroscopic scale. Today it is known that these equations are
a good approximation to the more recent Quantum Electro Dynamics (QED) developed
in the 1940s. The deviations only get significant when discussing the interaction of a few
photons (the electromagnetic force carriers). For the purpose of this thesis we only need
to consider the usual Maxwell’s equations.

Electromagnetic waves exist all around us, in telecommunication (TV, WiFi, cellular



phones etc.), kitchens (microwave ovens) and in nature as light and lightning just to name
a few examples. The theory was developed during the 19th century by different physicists
and mathematicians including Faraday, Ampère, Hertz, Gauss and finally Maxwell. The
equations in strong form are [44, p. 273]:

∇×E(r, t) =
−∂B(r, t)

∂t
, Faraday’s law (2.1a)

∇×H(r, t) =
∂D(r, t)

∂t
+ J(r, t), Ampère’s law with corrections (2.1b)

∇ ·D(r, t) = ρ (r, t) , Gauss’ law (2.1c)

∇ ·B(r, t) = 0. (2.1d)

Here, the vector fields E, H, D, B, M , J and the scalar field ρ are

E is the electric field, [V/m]

H is the magnetic field, [A/m]

D is the electric flux density, [As/m2]

B is the magnetic flux density, [Vs/m2]

J is the electric current density, [A/m2]

ρ is the electric charge density, [As/m3]

The electric charge density ρ is related to the electric current density J through the law
of conservation of charges. It is a fundamental assumption in physics that electric charges
can not be destroyed or created, i.e. the sum of all charges will always be constant. With
mathematics it is expressed as

∇ · J(r, t) + ∂ρ (r, t)

∂t
= 0. (2.2)

A magnetic current density does not exist since there have been no proof of the existence
of magnetic charges (ρm) in nature [44, p. 273]. But sometimes it is a good mathemat-
ical tool to introduce when for example calculating excitation of fields in waveguides.
Assuming that J is known, the four vector quantities E, D, B and H yield one un-
known for each spatial direction, thus resulting in a total of 12 unknowns. But they
only contain 6 different scalar equations, i.e. right now the system of equations (2.1) is
under-determined.

Since no magnetic monopoles exist in nature the source to all the electromagnetic fields
are the electric current density and the electric charge density. Hence, the real source for
the magnetic field is a loop of electric current and not a current of magnetic charges [42].

2.1.1 Waves solving Maxwell’s equations
Before solving the problem of the under-determined system, (2.1), a brief discussion is
needed to simplify the solution of the system for time harmonic signals. It is known that



the solution to Maxwell’s equations consists of waves. There are different types of waves
that solve the equations but in this thesis we consider time-harmonic plane waves. When
assuming time-harmonic waves we can express the fields in phasor-notation:

E(r, t) = Re{E (r, ω) ejωt}, (2.3)

with

E (r, ω) =

3∑
n=1

ûnAn (r, ω) e
jφn(r,ω), (2.4)

where ûn are the coordinate unit vectors (e.g. x̂, ŷ, and ẑ), An is the amplitude which
can depend on both the location r and the frequency ω, and φn is the phase.

2.1.2 Constitutive relations
To solve the under-determined system (2.1), constitutive relations must be introduced.
It relates two pairs of fields, e.g. [43]{

B
D

}
= F

({
H
E

})
. (2.5)

In free space it takes the form,

B(r, t) = μ0H(r, t), (2.6a)
D(r, t) = ε0E(r, t), (2.6b)

with (where c0 = 1/
√
ε0μ0 is the speed of light in vacuum)

μ0 = 4π · 10−7 Vs/Am

ε0 = 1/(c20μ0) ≈ 8.854 · 10−12 As/Vm.

In this section we work with phasor representation of the waves that was introduced
in section 2.1.1. The reason for this is that the material has a "memory" and this is
represented with a convolution in the constitutive relations in the time domain. But the
Fourier transform of a convolution is just the product of each function’s Fourier transform
in the frequency domain. This makes modeling of material properties much easier.

The building blocks of a material are its atoms or molecules. These will be affected by
an applied external electric field. The heavy nucleus will remain relatively unchanged
but the much lighter electron cloud will slightly change its position relative the nucleus
and thus induce an electric dipole moment that will increase the total displacement flux
D.

This is called the electrical polarization of the material and it is described by P . The
relation between D and E takes the form:

D(r, ω) = ε0E(r, ω) + P (r, ω). (2.7)

The vectors D and E do not need to be parallel (isotropic) nor linear in a material. The
non-linearity is often not a problem since these effects require a quite high field intensity



(e.g. in lasers). In a linear medium the electric polarization is related to the electric field
through

P = ε0χeE, (2.8)

where χe is called the electric susceptibility and is a complex tensor of rank 2 i.e. a 3× 3
matrix in this case. Inserting (2.8) into (2.7) yields the matrix multiplication

D = εE (2.9)

with
ε = ε0 (I+ χe) = ε0εr = ε0

(
ε′r − jε′′r

)
. (2.10)

On matrix form it looks as follows⎛
⎝Dx

Dy

Dz

⎞
⎠ =

⎛
⎝εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

⎞
⎠
⎛
⎝Ex

Ey

Ez

⎞
⎠ . (2.11)

The anisotropic property is due to the structure of the material at a microscopic level, and
in this case the different elements of the tensor can take different values. But materials
that are independent of orientation and thus have the same properties no matter how the
wave enters the material, are called isotropic. Then the tensor becomes diagonal with
the same value at all three positions.

ε =

⎛
⎝ε 0 0
0 ε 0
0 0 ε

⎞
⎠ = ε0εr

⎛
⎝1 0 0
0 1 0
0 0 1

⎞
⎠ (2.12)

which leads to (notice that εr now is a complex number)

D = ε0εrE. (2.13)

It is this relative permittivity, εr, that this project aims to extract from scattering mea-
surements on different materials. In equation 2.10 it is easily seen that εr can be complex.
The imaginary part represents the losses (heating) in the material due to the damping
of the oscillations of the dipoles.

For magnetic fields the analogy holds, i.e. if a material has magnetic properties the atoms
or molecules that exhibit a magnetic dipole moment will try to align themselves with an
external applied magnetic field. This creates a magnetic polarization (or magnetization)
M . In a linear and isotropic situation the constitutive relation takes the form

B = μ0 (H +M) (2.14)

with
M = χmH. (2.15)

Combining (2.14) and (2.15) yields

B = μ0 (1 + χm)H = μ0μrH = μH. (2.16)

Similarly, it is the relative permeability, μr, that we aim to characterize.



2.1.3 Boundary conditions
With the constitutive relations we almost have a complete system of equations. The
missing ingredients are the boundary conditions. Even when the fields are calculated
in free space, there exist boundaries. In the case of free space the boundary describes
what happens in infinity. The boundaries can not be described arbitrarily. Either the
potential or the charge distribution, i.e. the normal derivative of the field, is known at
the boundary.

A proper set of boundary conditions (see Figure 2.1) can fully describe a certain (macro-
scopic) situation and it can be shown that the solution is unique (which is a nontrivial
mathematical problem). At a boundary between two different media some components

ε1, μ1

ε2, μ2

�

n̂ ·B1

n̂ ·D1

�

n̂ ·B2

n̂ ·D2

�

n̂×H1

n̂×E1

�
n̂×H2

n̂×E2

�̂n

Figure 2.1: Boundary between two media.

of the fields are discontinuous [42, p. 12]. In this thesis only stationary boundaries will
be considered.

n̂ · (D2 −D1) = ρS (2.17a)

n̂ · (B2 −B1) = 0 (2.17b)

n̂× (E2 −E1) = 0 (2.17c)

n̂× (H2 −H1) = JS (2.17d)

Many problems treat a boundary where one of the materials is a good conductor (e.g. a
metal) which can be approximated by a PEC (Perfect Electric Conductor) which implies
that all fields vanish inside the PEC. When this is the case the boundary conditions take
the form

n̂ ·B = 0, (2.18a)

n̂×E = 0. (2.18b)

Analogous to the PEC there exists a PMC (Perfect Magnetic Conductor) which does not
exist in practice. The reason to introduce this boundary condition in the thesis is that
it will be used in COMSOL when modeling a parallel plate waveguide when utilizing
symmetry in the setup. The tangential part of the magnetic field is then forced to be
zero,

n̂ ·D = 0, (2.19a)

n̂×H = 0. (2.19b)



2.1.4 The Fourier transform of Maxwell’s equations
When going to the frequency domain with the time harmonic expression of the solution
presented in equation (2.3), Maxwell’s equations takes a slightly different and simpler
form. Every time derivative gets replaced by a multiplication of the factor jω:

∇×E(r, ω) = −jωB(r, ω) (2.20a)

∇×H(r, ω) = jωD(r, ω) + J(r, ω) (2.20b)

∇ ·D(r, ω) = ρ(ω) (2.20c)

∇ ·B(r, ω) = 0. (2.20d)

2.1.5 Wave impedance
The wave impedance Z of electromagnetic waves is defined as the ratio of the transverse
parts of the electric and magnetic fields [42, 43]. The free-space wave impedance is
η0 =

√
μ0/ε0.

2.2 Guided waves
The discussion in this section is well covered in [42–44]. Waveguides are used to guide
waves along a direction that we control and are used with high frequencies and they
exhibit low losses. Different geometries of the cross section will affect which waves (called
modes) that can propagate and their cut-off frequencies (the lowest frequency required).
The waveguides presented here are hollow, i.e. they have metallic walls enclosing the
region where the wave propagates. The direction of propagation is taken to be +ẑ. It
will also be assumed that the waveguides are source free.

If assuming that the material inside the waveguide is isotropic and that the geometry
along the propagating axis is non-varying, it is possible to divide the fields in a transverse
part (x̂ and ŷ) and a longitudinal part (ẑ) which also is the propagating direction. Then
it is shown in chapter 6 in [43] that it is only needed to solve the problem along the
longitudinal direction, since the rest of the field components can be derived from it.
The problems that need to be solved are the Helmholtz equations (here ∇2

t = ∂2/∂x2 +
∂2/∂y2):

∇2
tEz + k2cEz = 0 (2.21a)

∇2
tHz + k2cHz = 0, (2.21b)

where kc = ω
√
με is the propagation constant (or wave number, phase constant) and if

the wave propagates in a media which is not lossless, then kc is a complex number since
both ε and μ may take complex values.

By solving eqs. (2.21) inside the source-free volume bounded by a surface with proper
boundary conditions we can determine which modes that can propagate in the given
geometry. Inside an infinitely long hollow waveguide with PEC-walls the boundary con-
ditions are ⎧⎨

⎩
Ez = 0

∂Hz

∂z
= 0.



Two types of waveguides will be presented, first the parallel plate and then the coaxial
cable. The reason for choosing these two is that the two real setups that are being
modeled in COMSOL are of these types. The particular parallel plate setup is described
in detail in [21]. The coaxial cable is used because of the ability it brings to use relatively
low frequencies.

The parallel plate and the coaxial cable have in common the ability to contain TEM
(Transverse Electric Magnetic field) modes since they both consist of two separate con-
ductors. As will be explained in coming sections, TEM modes have a DC cut-off fre-
quency, i.e. fc = 0. There exist two more modes of waves that need to be investigated;
TE (Transverse Electric) and TM (Transverse Magnetic). Ideally in our setup only one
propagating mode is desired.

2.2.1 TE and TM modes

Both the parallel plate and the coaxial cable can sustain the TE and TM modes and
they can become a problem in a real setup. To determine the TE and TM modes it boils
down to solving the eigenvalue problem (2.21) where the eigenvalues are denoted by kc
(in [43] called kt). The corresponding eigenfunctions are the different modes that can
propagate inside the waveguide. The eigenvalue problem takes different form depending
on which mode you are solving for, see table 2.1.

The eigenvalues are the cut-off wave number (or transverse wave number) and the cut-off
frequency is:

fc =
c0kc

2π
√
μrεr

. (2.22)

In the propagation direction, ẑ, we have the so called propagation constant β (or the
longitudinal wave number kz) which is related to the cut-off wave number through [43,
p.86]:

k2 = k2c + β2. (2.23)

TE TM

Ez = 0 Ez �= 0

Hz �= 0 Hz = 0

ZTE =
kη

β
ZTM =

β

kη

Table 2.1: The TE and TM mode differences.

2.2.2 TEM modes

The TEM mode has both ẑ components equal to 0, i.e.

Ez(r, ω) = Hz(r, ω) = 0. (2.24)



When solving the TEM problem it can be shown that you end up with the electrostatic
problem, i.e. solving Laplace’s equation in the transverse field components [42, p. 98]:

∇2
tEt = 0 (2.25a)

∇2
tHt = 0. (2.25b)

The TEM wave is the same as a static field between the two conductors. This can be
used to argue that TEM waves can only exists when two or more conductors are present.

The wave impedance for a TEM-mode wave is the same as a plane wave propagating in
the current material but without any boundaries. A TEM wave do not have any cut-off
frequency since the propagation constant β is equal to the wave number k in the material.
Furthermore, the wave impedance is:

ZTEM =

√
μ

ε
= η. (2.26)

2.2.3 Parallel plates
The simplest waveguide is the parallel plate waveguide (see Figure 2.2). Even though
it is an approximation it is an important waveguide to understand. The plates are big
enough (W � d) so that fringing fields can be neglected and the field is non-varying in
x̂

�
x

�y

�
���

�
��

PEC

W

d

ε, μ

Figure 2.2: Parallel plate waveguide.

The parallel plate waveguide can sustain all three kinds of waves. The one we are
interested in is the TEM mode. The higher order modes (TE and TM) can be suppressed
by choosing the distance d between the plates. The cut-off wavenumbers and cut-off
frequencies for both the TEn and the TMn modes are

kc = nπ/d ⇔ fc =
n

2d
√
εμ

. (2.27)

In our setup W = 1 m and d = 2 cm. This leads to the first higher order modes (TE1

and TM1) will start to propagate at 7.5 GHz. In this thesis no real measurements have
been done on this setup, only simulations using COMSOL. When simulating only a 2D
model has been used, thus the problem of higher modes is not present. A more elaborate
discussion about the waveguide at hand can be found in [21].



2.2.4 Coaxial cable
A coaxial cable is also a waveguide with two conductors. It can be studied with transmis-
sion line theory i.e. working with currents and voltages, or one can use the full Maxwell’s
equations with boundary conditions. Since it has two conductors it can also have TEM
waves propagating.

The characteristic impedance of the coaxial cable (not to be confused with the wave
impedance) is [42, p. 56]

Z0 =

√
μ

ε

ln(b/a)

2π
, (2.28)

where a and b are the inner and outer radius of the conductors (cf. Figure 2.3).

The coaxial cable can of course also have TE- and TM-mode waves propagating. The
first higher order mode in a coaxial is the TE11 mode which has the cut-off wavenumber
kc that satisfies [42, p. 132]

J ′n (kca)Y
′
n (kcb) = J ′n (kcb)Y

′
n (kca) , (2.29)

where J is the Bessel function of first kind and Y is the Bessel function of second kind.
Find the solution for kc numerically then insert it in eq. (2.22).

In this thesis two different coaxial fixtures has been simulated. The first fixture is a
straight standard cable with the dimensions a = 3.05 mm and b = 6.97 mm (cf. Figure
2.3). The cable is air filled i.e. εr = μr ≈ 1.

The second is a so-called tapered coaxial fixture. This means that it has a and b that
varies, see Figure 2.4. The simulated tapered coaxial fixture had the following dimensions:

• a1 = 3.05 mm

• b1 = 6.97 mm

• a2 = 2a1 = 6.10 mm

• b2 = 2b1 = 13.94 mm.
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Figure 2.3: Cross section of a coaxial cable.
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Figure 2.4: A longitudinal cross section of a tapered coaxial cable.

2.3 2-port networks
The theory discussed in this section is thoroughly explained in [6,7,40,42,43] to name a
few. The theory here is limited to 2 ports, but is easily generalized to N -port networks.

Classical circuit theory is no longer sufficient when working with waves in the microwave
regime (cm-waves to mm-waves), since the wavelength is not long compared to the phys-
ical size of the equipment. One way to take this into consideration is to use transmission
line theory. Sometimes this can get very cumbersome if e.g. there are a lot of different
components in the circuit. Then you can treat everything as black box with ports.

A 2-port network is an electric circuit or a model of a setup as an electric circuit. It con-
sists of four terminals, or rather two ports (see Figure 2.5). In the following subsections
two types of matrix representations ([S] and [T]) will be introduced which relates one of
the ports to the other. Only linear and passive networks will be considered e.g. it may
contain resistors, capacitors and inductors but not amplifiers and generators.

�

�

�

�

V −1

V +
1

�

�

�

�

V −2

V +
2

Figure 2.5: A two-port network with incoming and outgoing waves. The networks
are assumed to be linear and passive.

2.3.1 The scattering matrix, [S]

When working with microwaves (cm- to mm-waves) it is difficult to define voltages and
currents for non-TEM waves. Then it is more convenient to work with waves, i.e. in-
cident, reflected and transmitted waves. This is exactly how the scattering matrix is
defined. The [S] matrix is easily measured with a Vector Network Analyzer (VNA), and
once obtained it contains a complete description of the network. With the notation in
Figure 2.5 we get: (

V −1
V −2

)
=

(
S11 S12

S21 S22

)(
V +
1

V +
2

)
, (2.30)



where the scattering matrix is defined as:

[S] =

(
S11 S12

S21 S22

)
. (2.31)

So the scattering matrix relates the reflected and transmitted waves to the incident waves
at each port, e.g. S11 is the reflection from port 1 when there is an incident wave at port
1 and a matched load a port 2.

If the network under consideration is reciprocal then S12 = S21 and if the network is
symmetric then S11 = S22. The reciprocity makes the [S] matrix symmetric, i.e.

[S] = [S]t , (2.32)

where t denotes the transpose [42, 43].

2.3.2 The transmission matrix, [T]

Often you work with a cascade of networks. Then it is more convenient to use the
transmission matrix (sometimes called the scattering transfer matrix). This representa-
tion relates the incident and reflected waves at each port, whereas the scattering matrix
relates the incident waves to the reflected waves. The definition takes the form(

V +
1

V −1

)
=

(
T11 T12

T21 T22

)(
V −2
V +
2

)
, (2.33)

where the Transmission matrix is defined as

[T] =

(
T11 T12

T21 T22

)
. (2.34)

The symmetry and reciprocal conditions for scattering matrices using the relations above
takes the form:

T12 = −T21 Symmetric,
det ([T]) = T11T22 − T12T21 = 1 Reciprocal.

In eq. (2.33), when defining the transmission matrix, care has to be taken that the
definition might differ in different books and programs. It has to do with the defined
directions of the waves in Figure 2.5.

2.3.3 Relation between [S] and [T]

The [S] and [T] matrices are closely related and it can be shown by solving (2.30) and
(2.33) that

T11 =
− det([S])

S21
T12 =

S11

S21
,

T21 =
−S22

S21
T22 =

1

S21
.



There are similar relations that transform the T -parameters to S-parameters

S11 =
T12

T22
S12 =

det([T])

T22
,

S21 =
1

T22
S22 =

−T21

T22
.

2.3.4 Moving the reference planes
Sometimes you might have an additional transmission line cable or waveguide that trans-
ports the wave to and from the ports. Then the wave accumulates phase which needs
to be taken care of. This section shows how the scattering parameters transform when
shifting the reference planes to a new location.

If the original locations are set to be z1 = z2 = 0 then the new locations of reference
planes at port 1 and 2 are z1 = l1 and z2 = l2 (see Figure 2.6) where l1 and l2 are the
physical lengths. Then the waves have accumulated the phases θ1 = βl1 and θ2 = βl2,
where β is the phase constant introduced in section 2.2.
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Figure 2.6: A two-port network with incoming and outgoing waves. The reference
planes are moved from the ports.

If the scattering matrix at the new positions is denoted be [S′] then it relates to [S]
through [42]

[
S′
]
=

(
e−jθ1 0

0 e−jθ2

)
[S]

(
e−jθ1 0

0 e−jθ2

)
. (2.38)

[
S′
]
=

(
S11e

−2jθ1 S12e
−j(θ1+θ2)

S21e
−j(θ1+θ2) S22e

−2jθ2

)
. (2.39)

Similar relations hold for a N -port network.



3
Errors and calibration

3.1 Network Analyzers
A network analyzer is an instrument which is used when measuring the [S]matrix because
of the ease of measuring reflection and transmission at high frequencies. There exist
two types of network analyzers, Scalar Network Analyzer (SNA) and Vector Network
Analyzer (VNA).

The SNA only measures the amplitudes of the waves whereas the VNA also measures the
phases. To cover in detail the inner workings of a network analyzer is outside the scope of
this thesis but in [42, p. 188] a good (simplified) block diagram and description of a VNA
is presented. The basic idea is that it has a RF source which creates the electromagnetic
wave to be sent through the DUT and then measures the scattered waves. Each physical
port of the VNA is a part of a 4-port network which contains the directional couplers or
bridges to separate the incident and reflected waves.

3.2 Error sources and error coefficients
AVNA is already calibrated once after fabrication and it is easy to confuse this calibration
with the one that is being performed in this thesis. This means that at the ports of the
VNA the amplitude and phase of the signal is well known, but when e.g. a coaxial
cable is connected to the VNA the created electromagnetic wave has a further distance
to propagate. This extra length changes the phase and thus the measurements lose
accuracy since the original calibration has its reference planes at the VNA ports. Thus,
another calibration (or error correction) is needed to move the reference planes to the
end of the coaxial cables where a device or material will be measured. But if these cables
in turn are connected to some other device (e.g. waveguides) through which the wave
propagates before reaching the DUT the planes must be moved further to compensate
this change in phase.

It is not only the phase of the measured signal that may be affected. Through cable
connections and transition from cable to waveguide impedance mismatch may occur,
hence some a part of the wave will be reflected. These kinds of mismatch errors must
also be corrected for.



3.2.1 Sources of error
Sources of error are divided into three groups [23]:

1. Random errors,

2. Drift errors,

3. Systematic errors.

Random errors, as described by the name, vary over time in a non-predictable manner.
The random nature of the errors makes them impossible to eliminate through calibration.
The main source of random errors comes from instrument noise.

Drift errors are when the system’s performance changes over time after a calibration has
been performed. The primary source of drifting comes from temperature fluctuations.
To avoid this the setup should be placed in a room or environment that is temperature
controlled or has stable ambient temperature.

Systematic errors are caused by imperfections in the setup and are related to signal
leakage, signal reflections and frequency response. There are six types of systematic
error which are described as [23, p. 3]:

• Directivity and crosstalk errors relating to signal leakage,

• Source and load impedance mismatches relating to reflections,

• Frequency response errors caused by reflection and transmission tracking within
the test receivers.

3.2.2 Error coefficients

12-term model

If the errors do not vary over time they can be removed through calibration. In a two-
port setup these six errors of course occur in both directions (forward and backwards i.e.
from port 1-2 and 2-1). Thus, to do a full two-port calibration there are 12 terms to be
determined.

a0

b0

�

�

�

� �

�

�

�

�

�

�

�
e00

e10e01

1

e11

�

� �

�

�

�

�

�

�

�
S11

S12

S21

S22

a1

b1

b2

a2

�

� �

� ��

�e22

e10e32

�� b3

�e30

Figure 3.1: Forward diagram of the 12-term error model. The part in the middle
represents the DUT, i.e. the desired scattering parameters. The six different error
coefficients that are going to be characterized through calibration. An identical model
for the other direction (backwards) is also defined but with different error coefficients.
[45]



In Figure 3.1 the six different errors are represented. They are:

e00 = Directivity, e11 = Port-1 match,

e10e01 = Reflection tracking, e10e32 = Transmission tracking,

e22 = Port-2 match, e30 = Crosstalk leakage.

8-term model

If the crosstalk leakage is assumed to be zero, or can be calibrated in a separate step,
and the switch (the mechanism that selects which port is the transmitting and which
is the receiving) is assumed to be perfect (i.e. it will not change the port match of the
network when it is switched from forward to reversed), then one can derive the 8-term
model from the 12-term model (see Figure 3.2) [45]. The assumption that the switch is
perfect is only valid if the four measurement channels are on the DUT side of the switch.

Using transfer parameters (the [T]-matrix) and cascading the matrices in Figure 3.2 one
gets

[TM] = [TX] [T] [TY], (3.2)

where X and Y are the error networks on the left and right side of the DUT. [TM] is the
measured transfer scattering parameters and [T] is the transfer scattering parameters of
the DUT. From section 2.3.2 and eq. (2.36) the different matrices are (where Δ denotes
the determinant operation in linear algebra):

[TM] =
1

S21M

( −ΔM S11M

−S22M 1

)
[T] =

1

S21

(−ΔS S11

−S22 1

)

[TX] =
1

e10

(−ΔX e00

−e11 1

)
[TY] =

1

e32

(−ΔY e22

−e33 1

)

With a slightly different mathematical formulation where we consider the error adapter
as just one located between the perfect measurement system (VNA) and the DUT it
looks like [45]: ⎡

⎢⎢⎣
b0
b3
a0
a3

⎤
⎥⎥⎦ =

[
T1 T2

T3 T4

]⎡⎢⎢⎣
b1
b2
a1
a2

⎤
⎥⎥⎦ (3.4)
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Figure 3.2: Flow graph for the 8-term error model. The number of error terms is
reduced to 7 since they can be normalized.

with

T1 =

(−ΔX 0

0 −kΔY

)
T2 =

(
e00 0

0 ke33

)

T3 =

(−e11 0

0 −ke22

)
T4 =

(
1 0

0 k

)

k =
e10
e23

The 7 error terms are now ΔX, kΔY, e00, ke33, e11, ke22 and k. Once these 7 terms have
been determined through calibration with different known standards measurements can
be done on a DUT where the actual [T] matrix can be de-embedded from eq. (3.2) and
then transformed back to scattering parameters.

There are several methods for doing this kind of calibration, many of them using well
known standards. Well known methods are SOLT (Short-Open-Load-Through), TRL
(Through-Reflect-Line) and TLN (Through-Line-Network) [23, 24].

The term self-calibration means that the object on which you are measuring is used
during the calibration as an unknown standard. This reduces the need for well known
(and expensive) standards. All the algorithms treated in this report are of self-calibration
kind. In all three algorithms a material slab is being used to calibrate the set-up, but
after the calibration we have not only determined the error coefficients but also extracted
the scattering matrix for the slab.



3.3 Random noise
Since in this thesis the means of obtaining scattering parameters is to use simulations
there will be no presence of white noise. White noise is a random signal that originates
from e.g. signal sources and other electrical components. To add this source of error to
the simulated data a function for adding small random numbers was written. To get a
good approximation of the amplitude a through measurement on a VNA was performed.
Then it is known that the S21 parameter should be constant 1. The mean deviation
around 1 is taken as the amplitude of the white noise, see Figure 3.3.

Figure 3.3: A through measurement on a calibrated VNA.





4
Extraction of the material parameters, εr and μr

4.1 The Nicolson-Ross-Weir Algorithm
The Nicolson-Ross-Weir algorithm [8,9] is a method to extract material parameters from
a scattering measurement of a planar, linear, homogeneous and isotropic material slab.
From section 2.1.2 we know that isotropic and linear materials has a constitutive relation
described by a scalar, εr. The same holds for magnetic materials. The equations behind
the algorithm will be presented and then the intrinsic problems with the algorithm will
be discussed. The quantities to be determined are

ε = (ε′r − jε′′r )ε0, μ = (μ′r − jμ′′r )μ0. (4.1)

The reflection coefficient for a slab can be written as

Γ = χ±
√

χ2 − 1, (4.2)

where

χ =
S2
11 − S2

21 + 1

2S11
. (4.3)

In eq. (4.2) the sign is chosen so that |Γ| ≤ 1. The propagation factor for a wave traveling
through a slab with thickness d is defined as

P = e−γd = e−(α+ jβ)d, (4.4)

with

γ propagation constant

α = Re(γ) attenuation constant

β = Im(γ) phase constant.

γ can also be expressed as

γ = j
2π

λ0

√
εrμr − λ0

λc
, (4.5)



where λ0 is the free space wavelength and λc is the cut-off wavelength of the transmission
line. The propagation factor, P , can be expressed in terms of S11, S21 and Γ:

P =
S11 + S21 − Γ

1− (S11 + S21)Γ
. (4.6)

According to [9] the complex permittivity, εr, and the complex permeability, μr, can be
extracted from P and Γ:

εrμr = n2 = −
[
λ2
0

2πd
ln

(
1

P

)]2
+

λ2
0

λ2
c

, (4.7a)

μr =
1 + Γ

1− Γ

√
n2 − λ2

0/λ
2
c

1− λ2
0/λ

2
c

, (4.7b)

with n as the refractive index. Here we recognize the normalized impedance, z

z =
1 + Γ

1− Γ
(4.8)

which can be expressed in the scattering parameters [12]:

z = ±
√

(1 + S11)
2 − S2

21

(1− S11)2 − S2
21

. (4.9)

The sign ambiguity can be solved due to the passivity condition which requires that
Re(z) ≥ 0 [15]. With the expression for the normalized impedance, (4.8), equation (4.4)
can be rewritten to contain only the scattering parameters and thus makes the step of
calculating Γ redundant.

P =
1− S2

11 + S2
21

2S21
+

2S11(
z − 1

z

)
S21

. (4.10)

Even though this method is relatively straightforward and simple it unfortunately suffers
from two drawbacks [14]. The first lies in eq. (4.7a) since the logarithm of a complex
number is not injective. Since it is 2π periodic, it does not have a unique inverse. This
problem is rather easy to solve with some a-priori knowledge about the slab thickness so
that the phase can be compensated for.

The second problem with NRW lies in eq. (4.9) when S11 ≈ 0 and S21 ≈ 1. This
occurs when the wavelength of the signal corresponds to an integer multiplied by half a
wavelength in the slab, and the slab has low losses. When this happens the expression
gets numerically unstable (it is undefined). The instability can be avoided with different
methods. The simplest is when dealing with slabs which are nonmagnetic (μr = 1) then
the product εrμr in eq. (4.7a) equals εr. This expression is stable.

As stated in the beginning of this section the NRW method is constructed for planar,
linear, homogeneous and isotropic samples. In the advances of metamaterials, which are
not homogeneous, new methods have been presented. In [13] effective boundaries (edges



of the slab) are introduced which is where the scattered field can be thought of as planar
waves again.

To some extent, it is possible to measure the constitutive parameters in an anisotropic
material slab. Anisotropy, which was described in section 2.1.2, is when the material has
different properties in different directions. Hence, the simple scalar relation in eq. (2.13)
does not hold but the full matrix representation in eq. (2.11) must be utilized. In [10]
a method for biaxial materials is presented. Biaxial means that all off-diagonal elements
in eq. (2.11) are zero. Then the six parameters, εxx, εyy, εzz, μxx, μyy and μzz, can
be determined. One limitation is that the biaxial materials principal axes must coincide
with axes (x̂, ŷ, ẑ) of the waveguide.





5
The algorithms

All algorithms presented require two things from the DUT/MUT (Device/Material Un-
der Test); it has to be reciprocal (S21 = S12) and symmetrical (S11 = S22). For a
material slab these requirements impose that the refractive index has to be symmetri-
cally distributed. The slab edges do not necessarily have to be planar but should also be
symmetric.

The LNN and Extended LNN uses one network (MUT or DUT) and makes four different
measurement (cf. Figure 5.1); one Line measurement and three measurements where
the DUT is placed at three different positions (Network). The difference between LNN
and Extended LNN is not huge, but the Extended LNN should be more stable since the
distances between different positions of the object slab are not so crucial. For the LNN
method the distance between the positions must be equal.

The TTN method only requires two measurements; one Through and one measurement
with the DUT (Network) placed in the middle. This greatly simplifies calibration in cer-
tain setups, e.g. in free-space measurements. The method looks really promising, but the
setup must fulfill some initial conditions, e.g. it must have a fairly flat frequency response
which means that the setup should not respond differently at different frequencies.

5.1 Calibration standards
It has been stated that the algorithms in this report are all of self-calibration type. This
means that the obstacle beeing measured is one of the calibration standards. The VNA
measures the scattering matrix, [S], but in this chapter we are working with the transfer
scattering matrix, [T], since the networks are cascaded.

The self-calibration object is here denoted by [Q] and the aim of the algorithms is to
calculate the four parameters (qij , i, j = 1, 2) of the matrix. In all methods the slab has
been implemented as a zero length two-port network. When the parameters of [Q] have
been determined, one has

[Q] =

(
q11 q12
q21 q22

)
, Network (5.1)



[L] =

(
k 0
0 k−1

)
, Line (5.2)

where k = e−γl.

In the TTN calibration a third standard is used; the Through measurement. Its transfer
matrix is

[T] =

(
1 0
0 1

)
, Through (5.3)

When all the q parameters have been determined they will be converted to scattering
parameters and then the NRW will be used to extract the material data of interest, e.g.
n, Z, εr and μr.

5.2 Line-Network-Network
Four measurements need to be done in the LNN calibration. The four schematic setups
are shown in Figure 5.1. The [G] and [H] networks include all the errors; the propagation
in the medium, the errors originating in the antennas and the imperfect connections or
transitions.

l 

l 

Figure 5.1: The four different LNN calibration standards.

[ML] = [G] [L] [L] [H]−1 (5.4a)

[MN1] = [G] [Q] [L] [L] [H]−1 (5.4b)

[MN2] = [G] [L] [Q] [L] [H]−1 (5.4c)

[MN3] = [G] [L] [L] [Q] [H]−1 (5.4d)



β1 = trace
(
[MN1] [ML]

−1
)
= trace ([Q]) (5.5a)

β2 = trace
(
[MN1] [MN2]

−1
)
= trace

(
[Q] [L] [Q]−1 [L]−1

)
(5.5b)

β3 = trace
(
[MN1] [MN3]

−1
)
= trace

(
[Q] [L] [L] [Q]−1 [L]−1 [L]−1

)
(5.5c)

Evaluating the traces in eqs. (5.5) yields the following equations [28,29]

β1 = q11 + q22 (5.6a)

β2 = 2q11q22 − q12q21(k
2 + k−2) (5.6b)

= 2− q12q21 [2 cosh (2γl)− 2] (5.6c)

β3 = 2q11q22 − q12q21(k
4 + k−4) (5.6d)

= 2− q12q21 [2 cosh (4γl)− 2] (5.6e)

Dividing eqs. (5.6e) and (5.6c) gives an expression for the complex phase constant γl, or
if the mechanical length l is known the propagation constant γ.

cosh (2γl) =
1

2

2− β3
2− β2

− 1 (5.7)

One of the initial requirements was that the obstacle should be reflection-symmetrical
which in transfer parameters gives

q12 = −q21 (5.8)

which is inserted into eq. (5.6c) and gives the equation

q21 = ±
√

β2 − 2

2 cosh(2γl)− 2
. (5.9)

Since [Q] is the transfer scattering matrix of a two-port reciprocal network the following
relation (from section 2.3.2) holds

q11q22 − q12q21 = 1. (5.10)

Combining eq. (5.10) and the first in eqs. (5.6) results in

q11 =
β1
2

±
√

β2
1

4
+ q221 − 1 (5.11)



and then q22 is easily calculated from eq. (5.6a).

q21 = ±
√

β2 − 2

2 cosh(2γl)− 2
(5.12a)

q12 = −q21 (5.12b)

q11 =
β1
2

±
√

β2
1

4
+ q221 − 1 (5.12c)

q22 = β1 − q11 (5.12d)

5.3 Extended Line-Network-Network

This calibration method only differs from the previous LNN in that the [L] network can
differ. The measurement setups are shown in Figure 5.2. The equations will be different
and more signs have to be chosen.

l1 

l2 

Figure 5.2: The four different Extended LNN calibration standards.

[ML] = [G] [L1] [L2] [H]−1 (5.13a)

[MN1] = [G] [L1] [L2] [Q] [H]−1 (5.13b)

[MN2] = [G] [L1] [Q] [L2] [H]−1 (5.13c)

[MN3] = [G] [Q] [L1] [L2] [H]−1 (5.13d)



β1 = trace
(
[MN1] [ML]

−1
)
= trace ([Q]) (5.14a)

β2 = trace
(
[MN3] [MN2]

−1
)
= trace

(
[Q] [L1] [Q]−1 [L1]

−1
)

(5.14b)

β3 = trace
(
[MN2] [MN1]

−1
)
= trace

(
[Q] [L2] [Q]−1 [L2]

−1
)

(5.14c)

β4 = trace
(
[MN3] [MN1]

−1
)
= trace

(
[Q] [L1] [L2] [Q]−1 [L2]

−1 [L1]
−1
)

(5.14d)

β1 = q11 + q22, (5.15a)

β2 = 2q11q22 − q12q21
(
k1 + k−11

)2
, (5.15b)

β3 = 2q11q22 − q12q21
(
k2 + k−12

)2
, (5.15c)

β4 = 2q11q22 − q12q21
(
k1k2 + k−11 k−12

)2
. (5.15d)

Reciprocity makes it possible to simplify it further

β1 = q11 + q22, (5.16a)

β2 = 2− q12q21
(
k1 − k−11

)2
, (5.16b)

β3 = 2− q12q21
(
k2 − k−12

)2
, (5.16c)

β4 = 2− q12q21
(
k1k2 − k−11 k−12

)2
. (5.16d)

Define α1 and α2 as

α2
1 =

β2 − 2

β3 − 2
=

(
k1 − k−11

)2(
k2 − k−12

)2 , (5.17a)

α2
2 =

β2 − 2

β4 − 2
=

(
k1 − k−11

)2(
k1k2 − k−11 k−12

)2 . (5.17b)

Using these equations one can solve for k1 and k2, resulting in

k22 + k2

(
α2

α2
1

− α2 − 1

α2

)
+ 1 = 0, (5.18a)

k1 =
−α2

α1 (α2k2 − 1)
. (5.18b)



Now the qij-parameters can be calculated:

q12 = ±
√

β2 − 2(
k1 − k−11

)2 (5.19a)

q21 = −q12 (5.19b)

q11 =
β1
2

±
√

β2
1

4
+ q212 − 1 (5.19c)

q22 = β1 − q11 (5.19d)

One of the articles ( [31]) containing this method unfortunately had an error in one of
the equations (eq. (17)). In the numerator under the square root it should read β2 − 2
and not 2− β2. This appears to be a simple misprint, because in another article ( [30])
the equation is correct.

5.4 Through-Through-Network
The measurements that need to be done is shown in Figure 5.3. The TTN is very similar
to the TLN (Through-Line-Network) calibration method. The TTN method imitates
the [L] standard by making two Through measurements at different frequencies. This
puts an important requirement on the setup. The system needs to have a flat frequency
response, i.e. the behaviour of the system (including antennas) should not vary too much
when varying the frequency. What the frequency shift does is to make the phase differ,
which would be the case if an extra line was inserted in the system.

The frequency shift should be chosen so that the electrical length changes by approxi-
mately 90◦ (π/4 rad) [32]. This requirement implies that the setup needs to be sufficently
long so that the shift in frequency is not larger than necessary.

There are two ways to obtain the [L] network. The first is to make two through mea-
surements and the second is (if the frequency sampling is high enough) to make one
measurement and let the algorithm shift the frequency.

The actual frequency that we are measuring at will here be called fi and the neighbouring
frequency is fi +Δf where Δf is chosen according to above mentioned requirements.

To be consistent with the articles (but not with the rest of this report), the following
notations for the transfer scattering matrices are used:

[T] = ΣCT(fi) =

(
1 0
0 1

)
, Through (5.20)

[L] = ΣCL(fi) = ΣCT(fi +Δf) =

(
k(fi +Δf) 0

0 (k(fi +Δf))−1

)
, Through (5.21)



[Q] = ΣCN(fi) =

(
q11 q12
q21 q22

)
, Network. (5.22)

The error networks are still [G] and [H]. With these definitions the cascade of matrices
for the different measurements looks like (cf. Figure 5.3):

[M1] = [G] ΣCT(fi) [H]−1 (5.23a)

[M2] = [G] ΣCT(fi +Δf) [H]−1 (5.23b)

[M3] = [G] ΣCN(fi) [H]−1 (5.23c)

Then these are combined to form

β21 = trace
(
[M2] [M1]

−1
)
= trace

(
ΣCLΣC

−1
T

)
(5.24a)

β31 = trace
(
[M3] [M1]

−1
)
= trace

(
ΣCNΣC−1T

)
(5.24b)

β32 = trace
(
[M3] [M2]

−1
)
= trace

(
ΣCNΣC−1L

)
(5.24c)

β21 = k + k−1 (5.25a)

β31 = q11 + q22 (5.25b)

β32 = q11k
−1 + q22k. (5.25c)

The first equation in (5.25) yields

k =
β21
2

±
√

β2
21

4
− 1. (5.26)

The last equation in (5.25) then gives:

q22 =
kβ32 − β31
k2 − 1

. (5.27)

The remaining equation can then be solved for

q11 = β31 − q22. (5.28)

To solve for q12 and q21, the symmetry (q12 = −q21) and reciprocity (det (ΣCN) = 1) of
the network has to be used (see section 2.3.2).



q21 = ±
√

1− q11q22 (5.29)

q12 = −q21 (5.30)

Figure 5.3: The TTN calibration standards. The top Through measurement is used
twice, at two different frequencies.

5.5 Choosing signs
At some places in all the mentioned algorithms, quadratic equations needs to be solved.
This means that there will be a sign ambiguity in these equations. This is where the
need for some a-priori knowledge comes in. The concerned equations are (5.12), (5.18),
(5.19), (5.26) and (5.29).

Information about the [L]-network is needed to guess the sign for k. Most often these
calibration methods are used in air, and thus the material parameters for the [L]-network
is known. The only thing that needs to be taken care of is the approximate distance
between the different positions.

Then information about the [Q]-network is needed to solve for the qij parameters. This
means that the material that is beeing tested can not be totally unknown. The informa-
tion that is needed is the approximate thickness, d, and refractive index, n.



6
Computer simulation models

To be able to test that the algorithms worked, scattering parameters were needed. To
get these scattering parameters simulations were made of three different measurement
setups. The three setups were: parallel plate waveguide, tapered coaxial fixture and
straight coaxial cable. This chapter will go through the simulations that were made.
The commercial FEM program COMSOL Multiphysics was used.

All simulations cover the frequency range f ∈ [1, 20] GHz (or λ ∈ [0.3, 0.015] m).

6.1 Parallel plate waveguide

Figure 6.1: Photograph of the actual waveguide [46].

In Figure 6.1 a photograph shows the set-up which is going to be simulated, and in
Figure 6.2 are the dimensions presented. This simulation is numerically demanding to
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Figure 6.2: The simulated 2D geometry of the parallel plate waveguide. The object in
the middle is the material slab used as self-calibration standard. In the simulation it
was 2 mm thick. RAM is an abbreviation of Radar-Absorbant Material. The purpose
is to have as little field as possible scattered back towards the obstacle. In COMSOL
RAM was simulated with a scattering boundary condition.

do since the geometry is large, 1m×1.5m, compared to the wavelengths being simulated.
The shortest wavelength is only 1.5 cm long. To capture the behaviour of a wave, a rule of
thumb is to have at least 10 elements per λ. This means that the largest allowed element
size is very small compared to the geometry that is being simulated. These calculations
will require very large amounts of memory if a full 3D simulation was to be done. So
the first approximation was to simulate the setup in 2D. The second was to simulate the
horn antennas as simple ports which excite a wave.

With these approximation we lose the higher order modes that could propagate in the
waveguide (cf. section 2.2.3). The antenna approximation also greatly simplifies the
behaviour of a real antenna.

The third trick used was the symmetry in the setup. This is where the mathematical tool
of magnetic currents on boundaries are used (cf. eqs. 2.19 in section 2.1.3). This way we
reduce the amount of elements by a factor of 2. It is important to remember that this
whole toolbox of the PMC boundary (mirroring) is our way of describing nature with
our mathematical models.

Figures 6.2-6.4 illustrate the simulation that was set up in COMSOL, and some typical
results. A simulation took 20-40 hours depending on the mesh and number of frequency
points. For the LNN and Extended LNN algorithms, mentioned in chapter 5, four simu-
lations needs to be performed, resulting in about 160 hours of simulations assuming no
failures during simulations.

In the end some unfortunate problems were discovered. The step in frequency were too
big, the result of this is shown in Figure 6.5. Another error that was found was a typo



Figure 6.3: The solution from COMSOL calculated at 1 GHz. Here it is clearly shown
that it is not yet a plane wave at the obstacle.

Figure 6.4: The solution from COMSOL calculated at 6 GHz. At around 5 GHz the
wave start to appear as plane waves at the obstacle.

made in the COMSOL configuration of the simulation; the propagation constant for the
antennas was set in an erroneous way which resulted in a mismatched antenna. This
error resulted in a large reflection directly after the port and the effect of this is shown
in Figure 6.6 where the reflections (S11 and S22) are large. Both these problems should
only make the setup worse and were unfortunately detected at the end of the project so
there was no time left to perform the lengthy simulations once more.



Figure 6.5: Top: 801 frequency points. Bottom: 261 frequency points. The red curve
is S11 and the blue curve is S21.

Figure 6.6: The scattering parameters for the object in the middle position. The
typo in the COMSOL configuration that resulted in a large reflection directly at the
port. Since the simulation is symmetric S11 = S22 and S12 = S21 and thus only two
lines can be distinguished in the figure.



6.2 Tapered coaxial fixture
The tapered coaxial cable is a lot easier than the parallel plate due to the much smaller
size. The first simulations that were made were 2D axis-symmetric, but effects from all
higher order modes that can propagate will only appear in a full 3D simulation. The
simulated geometry is shown in Figure 6.7 and 6.8 with dimensions presented in section
2.2.4. The total length of the fixture is 11 cm and the tapering parts are 2 cm each. The
middle section has a length of 5 cm.

Figure 6.7: The geometry and mesh for the tapered coaxial cable.

Figure 6.8: Result from a simulation at 15GHz.



6.3 Straight coaxial cable
The straight coaxial waveguide is even easier and the dimensions are the same as the
thin parts on the tapered coaxial fixture, i.e. rinner = 3.05 mm and rinner = 6.97 mm.
This simulation was also made in both 2D and 3D. The length of the waveguide were
set to 11 cm and 1 m and used in the result to compare against the parallel plate and
tapered coaxial waveguides. The 2D setup in COMSOL is shown in Figure 6.9.

Figure 6.9: Left. The symmetrical geometry for the straight coaxial fixture. Right.
A simulation result at 15 GHz.



7
Simulated samples

Different setups were simulated to test the algorithms, the setups are

• Set-up 1: Parallel plates, L = 0.98 m

• Set-up 2: Tapered coaxial fixture, L = 0.11 m

• Set-up 3: Straight coaxial fixture, L = 1.0 m

where L is the distance between the antennas/ports. After simulations were done on set-
up 1 it became clear that the simulation was under-sampled in frequency (see Figure 6.5).
Set-up 1 were then simulated again, with different material parameters (see Table 7.1,
1b). At this point the typo in the propagation constant for the parallel plate was not
detected yet. The sample thickness, that has been used in all the set-ups, is 2 mm thick.
The simulated samples are presented in Tables 7.1 and 7.2.

Set-up Self-calibration object
- Re (ε) − Im (ε) Re (μ) − Im (μ)

1a 2.8 0.0 1.0 0.0
1b 2.8 0.2 1.0 0.0
2 2.8 0.0 1.0 0.0
3 2.8 0.0 1.0 0.0

Table 7.1: The simulated calibration objects material parameters.

Set-up Post calibration MUT
- Re (ε) − Im (ε) Re (μ) − Im (μ)

1a 3.4 0.1 1.4 0.0
1b 3.4 0.2 1.5 0.1
2 3.4 0.1 1.5 0.0
3 3.4 0.1 1.5 0.0

Table 7.2: The simulated material slabs material parameters.





8
NRW applied on scattering parameters

To illustrate the importance of a good calibration, the result of applying the NRW al-
gorithm directly on the simulated scattering parameters is shown in this chapter. The
only correction that has been made is the move of the planes from the antenna to the
edge of the slab. A sample has been put in the middle in each of the three setups. The
properties of the sample are: εr = 2.8 − 0.0j and μr = 1.0 − 0.0j, i.e. it is a lossless
nonmagnetic slab. The sample has a thickness of 2 mm. The scale on the y-axis in these
plots have not been kept fixed in this chapter so it will be easier to see the difference. It
should also be mentioned that no additional noise has been added.

Figures 8.1-8.3 shows the relative permittivity and permeability when the NRW algo-
rithm has been applied directly on uncalibrated data from the three simulated setups;
parallel plate waqveguide, tapered coaxial fixture and the straight coaxial fixture. From
these figures it should be clear that, in these set-ups, further calibrations need to be done
too achieve higher accuracy in the results.



Figure 8.1: The NRW algorithm has been applied directly on uncalibrated data from
the parallel plate waveguide simulation. Note that the scale differs from the Real and
Imaginary parts.

Figure 8.2: The NRW algorithm has been applied directly on uncalibrated data from
the tapered coaxial fixture simulation. Note that the scale differs from the Real and
Imaginary parts.

Figure 8.3: The NRW algorithm has been applied directly on uncalibrated data from
the straight coaxial fixture simulation. Note that the scale differs from the Real and
Imaginary parts.



9
Results and discussion

In this chapter the results of the algorithms will be presented. There are many plots
generated during the thesis, and only a selection of them are presented in this chapter,
but in appendices A-C all are presented for completeness.

9.1 General
The algorithms have been tested on three different setups (see chapter 7), all simulated
in the commercial FEM software COMSOL Multiphysics. When the NRW algorithm
has been applied, there have been no assumption about the magnetic properties of the
material. The true, simulated, material parameters are presented in Tables 7.1 and 7.2.

As mentioned in chapters 6 and 7 there have been a few problems along the way (under
sampled and a typo in the configuration of the simulation). It turns out that all three
algorithms managed to calibrate despite this error. For the LNN this can be seen by
comparing Figures 6.6 and 9.1. Thus, the results should be able to be used when com-
paring the methods applied on the different setups, but to eliminate any uncertainties
regarding the simulations, they should of course be performed again.

Figure 9.1: The scattering matrix from Figure 6.6 calibrated with the LNN self-
calibration algorithm.



In this chapter we will only use the results from the long straight coaxial fixture (Sec-
tion 2.2.4, and set-up 3 in chapter 7) as a base for the discussions. The same conclusions
apply directly to the other set-ups. As previously mentioned, all the figures and plots,
from all the simulations, are presented in Appendices A-C.

9.2 LNN and Extended LNN
The sample is put in a 1 meter long straight coaxial fixture. In Figure 9.2 the extracted
material parameters, εr and μr are shown. This should be compared to Figure 8.1, then
the effect of a good calibration becomes clear.

Figure 9.2: The relative permittivity and permeability with the LNN algorithm.

Since the LNN algorithm assumes that the distance, l, between the different calibration
steps are equal, Figure 9.3 demonstrates what happens if l1 �= l2. In this specific case
the sample was only put 0.5 mm out of position.

Figure 9.3: The relative permittivity and permeability with the LNN algorithm. In
this calibration the L standard varies (l1 �= l2).

The Extended LNN algorithm does not assume l1 = l2, and therefore handles the case
of a misaligned sample better, which is shown in Figure 9.4

Since the results from the simulations are, in some sense, free from noise, random noise
was added to the scattering matrices before the calibration algorithms were applied. This



Figure 9.4: The relative permittivity and permeability with the Extended LNN algo-
rithm. In this calibration the L standard varies (l1 �= l2).

is done to get a sense of how sensitive the algorithms are. The amplitude of the noise
were discussed in section 3.3. The results of the added noise is shown in Figure 9.5.

Figure 9.5: The relative permittivity and permeability with the Extended LNN algo-
rithm. After the simulation finished, random noise were added to the data.

If there is uncertainty in the material parameters of the calibration slab, or if the slab
itself is constructed with some desired properties, then it is also interesting to see how
the algorithms behave when the a-priori knowledge is erroneous. The a-priori guess of
the material parameters that is needed was set 20% off. To add to the realism the added
noise were kept. The result of this guess is shown in Figure 9.6, and as seen the algorithms
are not very sensitive on the initial guess.



Figure 9.6: The relative permittivity and the relative permeability with the Extended
LNN algorithm. After the simulation finished, random noise were added to the data.
Then when the algorithms were applied an intended erroneous guess on the a-prior
information were made.

9.3 TTN
The TTN algorithm has advantages over the other two self-calibration methods, such as
the position of the slab does not have to be precisely known and only two measurements
have to be performed; Through and Network. Of course, these advantages does not come
without any limitations. The measurement setup has to frequency invariant, for example
the antennas must have the same characteristics on a broader bandwidth. A setup with
a distance of 1 meter between the antennas, will need a frequency shift of 75 MHz to
achieve a phase shift of approximately 90°.

In Figure 9.7 the material parameters are shown after a TTN calibration has been per-
formed. Only two simulations were made; one through measurement and one with the
sample in the middle. To obtain the Line standard that was described in section 5.4, a
frequency shift of 73.1 MHz was achieved by shifting the results of the through-simulation
in frequency. In the 1 m long straight coaxial fixture this corresponds to phase shift of
87.78°.

Figure 9.7: The relative permittivity and permeability with the TTN algorithm.
After the simulation finished, random noise were added to the data. Then when the
algorithms were applied an intended erroneous guess were made.



9.4 Statistics
Since the simulations are deterministic (except for numerical noise), noise has been added
to the scattering parameters before the calibration methods were applied. Gaussian noise
was added on both the real and imaginary parts. After the self-calibration, the NRW
algorithm was applied which gives the relative permittivity and the relative permeabil-
ity. This procedure was repeated 2 · 2000 times to generate statistics on the results. On
the first 2000 samples a normal distributed noise was added with standard deviation
0.0001, N1 = N (0, 10−4), which corresponds to what have been observed in real mea-
surements. To test how the algorithms handle more noise another 2000 calibrations were
performed this time the normally distributed noise had a standard deviation of 0.001,
N2 = N (0, 10−3). The results are shown in Figures 9.8 - 9.10. The mean value and
standard deviation at 10 GHz are presented in Tables 9.1 and 9.2 where E [·] denotes the
mean value and σ [·] denotes the standard deviation.

@10 GHz LNN E-LNN TTN
E [εr] 2.79378 + 0.00882j 2.80009 - 0.00001j 2.80005 - 0.00003j
E [μr] 0.99956 - 0.00041j 0.99983 - 0.00000j 1.00002 + 0.00002j

Table 9.1: The mean value of εr and μr at 10 GHz. Here N1 has been used.

@10 GHz LNN E-LNN TTN
σ [Re(εr)] 0.00127 0.00194 0.00161
σ [Im(εr)] 0.00125 0.00196 0.00163
σ [Re(μr)] 0.00117 0.00120 0.00123
σ [Im(μr)] 0.00119 0.00122 0.00120

Table 9.2: The standard deviation of εr and μr at 10 GHz. Here N1 has been used.

Just by looking at the figures the TTN algorithm looks like the best choice, in this
particular setup, due to the standard deviation at low frequencies for the N1 distributed
noise. But at 10 GHz there is clearly little difference between the algorithms.



Figure 9.8: The LNN algorithm run 2000 times, then the NRW applied on the 2000
data sets. The dashed (cyan) line is the standard deviation when N1 distributed noise
were used, and the dotted (purple) line is the standard deviation when N2 distributed
noise were used.

Figure 9.9: The Extended LNN algorithm run 2000 times, then the NRW applied
on the 2000 data sets. The dashed (cyan) line is the standard deviation when N1

distributed noise were used, and the dotted (purple) line is the standard deviation
when N2 distributed noise were used.

Figure 9.10: The TTN algorithm run 2000 times, then the NRW applied on the 2000
data sets. The dashed (cyan) line is the standard deviation when N1 distributed noise
were used, and the dotted (purple) line is the standard deviation when N2 distributed
noise were used.



9.5 Discussion of the self-calibrations
At lower frequencies, around 1-5 GHz, the results get much worse when adding random
noise (cf. Figure 9.5-9.10). This can in part be due to the Cramer-Rao bounds which are
discussed in [47]. The bounds state the best possible results that can be obtained from a
measurement on a specific setup assuming that all systematic errors have been removed
through e.g. calibration.

In Figures 9.6 and 9.9 the Extended-LNN algorithm has ripples at 15 GHz. The half
wavelength at this frequency is approximately 1 cm, which coincides with sum of the
[L]-standards. In the Extended-LNN algorithm a change of sign of the real part of k2
in equations (5.18) to make them continuous, see Figures 9.11 and 9.12. As discussed in
section 5.5 there are several quadratic equations that needs to be solved. It is from here
the problems of sign arise. The solution to this is a-prior knowledge like symmetry and
passivity.

At higher frequencies there might be new, higher modes of waves propagating in the
setup. This problem is clearly visible in the full 3D simulation of the short tapered
coaxial fixture (cf. Figure 8.2).

Figure 9.11: The impact of choosing the wrong sign on k2 in the Extended-LNN
algorithm.

Figure 9.12: The impact of choosing the wrong sign on k2 in the Extended-LNN
algorithm.



9.6 Post calibration DUT
Once the self-calibration has been performed one can replace the calibration slab with
another slab, with different material properties. This is shown for the three algorithms
in Figures 9.13-9.15. The calibrations were made with noisy data.

Figure 9.13: The relative permittivity and permeability of another MUT with the
LNN algorithm.

Figure 9.14: The relative permittivity and permeability of another MUT with the
Extended-LNN algorithm.

Figure 9.15: The relative permittivity and permeability of another MUT with the
TTN algorithm.



9.7 Conclusions
These calibration methods looks promising with the results presented in this thesis as
a base. They fill a purpose when working with measurement setups that can not be
altered in an easy manner, e.g. when the ports/antennas are fixed. The fact that the
three investigated algorithms are self-calibration methods and hence the slab or device
that is under test is one of the calibration standards eliminates the need for expensive,
well-known, standards.

As can be seen in section 9.4 all three algorithms seem stable, if we disregard lower
frequencies, that in part might relate to the Cramér-Rao lower bounds. Of course the
calibration becomes impossible to do if unwanted higher order modes start to propagate
in the setup.

The TTN algorithm has the advantage of being a simple setup (in free space). On the
other hand the setup, e.g. antennas, have to have a flat frequency response, and the
setup should be quite long (≈ 1 m) to keep the frequency shift as small as possible.

For the NRW algorithm, the thickness of the slab has to be known with high accuracy
in order to get good parameters, S11 and S21, as input. This accuracy depends on the
highest frequency, since a higher frequency leads to greater phase error if the thickness
is erroneous. The position of the slab is also important, especially if one wish to use
the calibration on a different DUT. Since the error in position is captured in the self-
calibration for the calibration object, this DUT is not sensitive to an erroneous a-priori
guess.

All the algorithms have been implemented with python, and with a very useful module
called scikit-rf [39] which implements electrical networks and an easy way to work with
Touchstone files. Another, obvious, benefit is the open-source aspect of python and its
modules, which reduces cost of licenses.

In the future, these algorithms should be applied on real measurements to check how
stable they are and how sensitive they are to real noise.
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A
LNN

This appendix contains all results for the LNN algorithm. The algorithm was applied on
three different, simulated setups; a straight coaxial fixture, a tapered coaxial fixture and
a parallel plate waveguide (presented in detail in chapters 6 and 7).

A.1 Straight coaxial cable or fixture

(a) The scattering parameters for the ob-
ject in the middle position.

(b) The scattering parameters for the ob-
ject after self-calibration.

Figure A.1: The self-calibration object before and after the procedure.



Figure A.2: The error coefficients.

Figure A.3: The relative permittivity and permeability with the LNN algorithm. A
1 m long straight coaxial waveguide setup simulated (full 3D) in COMSOL and no
white noise added.

Figure A.4: The relative permittivity and permeability with the LNN algorithm. A
1 m long straight coaxial waveguide setup simulated (full 3D) in COMSOL and no
white noise added. But in this calibration the L standard varies (l1 �= l2).



Figure A.5: The relative permittivity and permeability with the LNN algorithm.
A 1 m long straight coaxial waveguide setup simulated (full 3D) in COMSOL then
numeric white noise added.

Figure A.6: The relative permittivity and permeability with the LNN algorithm. A
1 m long straight coaxial waveguide setup simulated (full 3D) in COMSOL. In this
pair of plots the a-priori information on εr is 20% off and white noise is added.

Figure A.7: Once the error networks have been characterized one can remove the
sample used during calibration and insert another sample.



A.2 Tapered coaxial cable

(a) The scattering parameters for the ob-
ject in the middle position.

(b) The scattering parameters for the ob-
ject after self-calibration.

Figure A.8: The self-calibration object before and after the procedure.

Figure A.9: The error coefficients.



Figure A.10: The relative permittivity and permeability with the LNN algorithm. A
11 cm long tapered coaxial waveguide setup simulated (full 3D) in COMSOL and no
white noise added.

Figure A.11: The relative permittivity and permeability with the LNN algorithm. A
11 cm long tapered coaxial waveguide setup simulated (full 3D) in COMSOL and no
white noise added. But in this calibration the L standard varies (l1 �= l2).

Figure A.12: The relative permittivity and permeability with the LNN algorithm. A
11 cm long tapered coaxial waveguide setup simulated (full 3D) in COMSOL then
numeric white noise added.



Figure A.13: The relative permittivity and permeability with the LNN algorithm. A
11 cm long tapered coaxial waveguide setup simulated (full 3D) in COMSOL. In this
pair of plots the a-priori information on εr is 20% off and white noise is added.

Figure A.14: Once the error networks have been characterized one can remove the
sample used during calibration and insert another sample.



A.3 Parallel plates

(a) The scattering parameters for the ob-
ject in the middle position.

(b) The scattering parameters for the ob-
ject after self-calibration.

Figure A.15: The self-calibration object before and after the procedure.

Figure A.16: The error coefficients.

Figure A.17: The relative permittivity and permeability with the LNN algorithm. A
parallel plate waveguide setup simulated (2D) in COMSOL and no white noise added.



Figure A.18: The relative permittivity and permeability with the LNN algorithm.
A parallel plate waveguide setup simulated (2D) in COMSOL and no white noise
added. But in this calibration the L standard varies (l1 �= l2).

Figure A.19: The relative permittivity and permeability with the LNN algorithm. A
parallel plate waveguide setup simulated (2D) in COMSOL then numeric white noise
added.

Figure A.20: The relative permittivity and permeability with the LNN algorithm. In
this pair of plots the a-priori information on εr is 20% off and white noise added.



Figure A.21: Once the error networks have been characterized one can remove the
sample used during calibration and insert another sample.





B
Extended LNN

This appendix contains all results for the Extended LNN algorithm. The algorithm was
applied on three different, simulated setups; a straight coaxial fixture, a tapered coaxial
fixture and a parallel plate waveguide (presented in detail in chapters 6 and 7).

B.1 Straight coaxial cable or fixture

(a) The scattering parameters for the ob-
ject in the middle position.

(b) The scattering parameters for the ob-
ject after self-calibration.

Figure B.1: The self-calibration object before and after the procedure.



Figure B.2: The error coefficients.

Figure B.3: The relative permittivity and permeability with the Extended LNN algo-
rithm. A 1 m long straight coaxial waveguide setup simulated (full 3D) in COMSOL
and no white noise added.

Figure B.4: The relative permittivity and permeability with the Extended LNN algo-
rithm. A 1 m long straight coaxial waveguide setup simulated (full 3D) in COMSOL
and no white noise added. But in this calibration the L standard varies (l1 �= l2).



Figure B.5: The relative permittivity and permeability with the Extended LNN algo-
rithm. A 1 m long straight coaxial waveguide setup simulated (full 3D) in COMSOL
then numeric white noise added.

Figure B.6: The relative permittivity and permeability with the Extended LNN algo-
rithm. A 1 m long straight coaxial waveguide setup simulated (full 3D) in COMSOL.
In this pair of plots the a-priori information on εr is 20% off and white noise added.

Figure B.7: Once the error networks have been characterized one can remove the
sample used during calibration and insert another sample.



B.2 Tapered coaxial cable

(a) The scattering parameters for the ob-
ject in the middle position.

(b) The scattering parameters for the ob-
ject after self-calibration.

Figure B.8: The self-calibration object before and after the procedure.

Figure B.9: The error coefficients.

Figure B.10: The relative permittivity and permeability with the Extended LNN
algorithm. A 11 cm long tapered coaxial waveguide setup simulated (full 3D) in
COMSOL and no white noise added.



Figure B.11: The relative permittivity and permeability with the Extended LNN
algorithm. A 11 cm long tapered coaxial waveguide setup simulated (full 3D) in
COMSOL and no white noise added. But in this calibration the L standard varies
(l1 �= l2).

Figure B.12: The relative permittivity and permeability with the Extended LNN
algorithm. A 11 cm long tapered coaxial waveguide setup simulated (full 3D) in
COMSOL then numeric white noise added.

Figure B.13: The relative permittivity and permeability with the Extended LNN
algorithm. A 11 cm long tapered coaxial waveguide setup simulated (full 3D) in
COMSOL. In this pair of plots the a-priori information on εr is 20% off and white
noise added.



Figure B.14: Once the error networks have been characterized one can remove the
sample used during calibration and insert another sample.



B.3 Parallel plates

(a) The scattering parameters for the ob-
ject in the middle position.

(b) The scattering parameters for the ob-
ject after self-calibration.

Figure B.15: The self-calibration object before and after the procedure.

Figure B.16: The error coefficients.

Figure B.17: The relative permittivity and permeability with the Extended LNN
algorithm. A parallel plate waveguide setup simulated (2D) in COMSOL and no
white noise added.



Figure B.18: The relative permittivity and permeability with the Extended LNN
algorithm. A parallel plate waveguide setup simulated (2D) in COMSOL and no
white noise added. But in this calibration the L standard varies (l1 �= l2).

Figure B.19: The relative permittivity and permeability with the Extended LNN al-
gorithm. A parallel plate waveguide setup simulated (2D) in COMSOL then numeric
white noise added.

Figure B.20: The relative permittivity and permeability with the Extended LNN
algorithm. In this pair of plots the a-priori information on εr is 20% off and white
noise added.



Figure B.21: Once the error networks have been characterized one can remove the
sample used during calibration and insert another sample.





C
TTN

This appendix contains all results for the TTN algorithm. The algorithm was applied
on three different, simulated setups; a straight coaxial fixture, a tapered coaxial fixture
and a parallel plate waveguide (presented in detail in chapters 6 and 7).

C.1 Straight coaxial cable or fixture

(a) The scattering parameters for the ob-
ject in the middle position.

(b) The scattering parameters for the ob-
ject after self-calibration.

Figure C.1: The self-calibration object before and after the procedure.



Figure C.2: The error coefficients.

Figure C.3: The relative permittivity and permeability with the TTN algorithm. A
1 m long straight coaxial waveguide setup simulated (full 3D) in COMSOL and no
white noise added.

Figure C.4: The relative permittivity and permeability with the TTN algorithm.
A 1 m long straight coaxial waveguide setup simulated (full 3D) in COMSOL then
numeric white noise added.



Figure C.5: The relative permittivity and permeability with the LNN algorithm. A
1 m long straight coaxial waveguide setup simulated (full 3D) in COMSOL. In this
pair of plots the a-priori information on εr is 20% off and white noise added.

Figure C.6: Once the error networks have been characterized one can remove the
sample used during calibration and insert another sample.



C.2 Tapered coaxial cable

(a) The scattering parameters for the ob-
ject in the middle position.

(b) The scattering parameters for the ob-
ject after self-calibration.

Figure C.7: The self-calibration object before and after the procedure.

Figure C.8: The error coefficients.

Figure C.9: The relative permittivity and permeability with the TTN algorithm. A
11 cm long tapered coaxial waveguide setup simulated (full 3D) in COMSOL and no
white noise added.



Figure C.10: The relative permittivity and permeability with the TTN algorithm. A
11 cm long tapered coaxial waveguide setup simulated (full 3D) in COMSOL then
numeric white noise added.

Figure C.11: The relative permittivity and permeability with the TTN algorithm. A
11 cm long tapered coaxial waveguide setup simulated (full 3D) in COMSOL. In this
pair of plots the a-priori information on εr is 20% off and white noise is added.

Figure C.12: Once the error networks have been characterized one can remove the
sample used during calibration and insert another sample.



C.3 Parallel plates

(a) The scattering parameters for the ob-
ject in the middle position.

(b) The scattering parameters for the ob-
ject after self-calibration.

Figure C.13: The self-calibration object before and after the procedure.

Figure C.14: The error coefficients.

Figure C.15: The relative permittivity and permeability with the TTN algorithm.
A parallel plate waveguide setup simulated (2D) in COMSOL and no white noise
added.



Figure C.16: The relative permittivity and permeability with the TTN algorithm. A
parallel plate waveguide setup simulated (2D) in COMSOL then numeric white noise
added.

Figure C.17: The relative permittivity and permeability with the TTN algorithm. In
this pair of plots the a-priori information on εr is 20% off and white noise is added.

Figure C.18: Once the error networks have been characterized one can remove the
sample used during calibration and insert another sample.
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