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Abstract

The main objective of this Master Thesis is to design and implement a high

level synthesis tool for high speed packet processing. For a given network packet,

determining the destination and performing the required alterations to the packet are

the key parts of Packet Processing. The idea is to provide customers a customized

Ethernet switch which is reliable and flexible. As a requirement for this, a high level

packet processing language (PPL) is designed instead of any hardware descriptive

language because of the regularity of packet processing. The packet processing is

described in a powerful way based on the PPL.

In this thesis, a design of Ethernet switch based on the PPL is proposed. Hardware

implementation is done for the design and MyHDL is used as the hardware description

language. Using Python, the compiled PPL program is translated into an hardware

model. A tool has been developed which consists of a hardware generator and certain

hardware infrastructures. Another part in the thesis is optimization of the initial

design. For instance, optimization is done to run as much code as possible in parallel

or for removal of unused hardware in the generated switch.

Verification is done and synthesis results have been listed comparing the two

designs. Hence, we conclude that the initial design is more flexible and has more

redundancy while the optimized design is more friendly to hardware cost and power

consumption.
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Chapter 1

Introduction

1.1 Background

It has been 40 years since the invention of Ethernet. This technology was born at Xe-

rox PARC in 1973 which initially aimed at solving communication problems between

personal computers and peripherals. In the past 40 years an explosive development

has occurred and the speed of Ethernet has improved by one order of magnitude every

10 years, which gives us reason to believe that Ethernet will keep this growing trend

in the future.

In December of 1982, the advent of IEEE 802.3 remarked the take-off of Ethernet

standards. IEEE 802.3 provides the technical standards in order to use Ethernet in the

Physical Layer (PHY) and the data link layer of Open Systems Interconnection (OSI)

model. The OSI model is a layered framework describing data communication in a

network system. It contains seven separate but related layers as shown in Table 1.1 [1].
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Table 1.1: OSI model

Layer Function

7. Application Network process to application

6. Presentation Data representation, encryption and decryption

5. Session Interhost communication, managing sessions between applications

4. Transport Reliable delivery of packets between points on a network

3. Network Addressing, routing and (not necessarily reliable)
delivery of datagrams between points on a network

2. Data link A reliable direct point-to-point data connection

1. Physical A (not necessarily reliable) direct point-to-point data connection

The seven layers can be divided into three subgroups. Layer 1 to 3 (the physical

layer, the data link layer and the network layer) are the network support layers which

are in charge of transferring data from one device to another. Layer 5 to 7 (the

session layer, the presentation layer and the application layer) are the user support

layers which allow interoperability among unrelated software systems. Layer 4 (the

transport layer) in the middle links upper subgroups and lower subgroups. Normally,

user support layers are implemented in software while lower network support layers

are a combination of hardware and software. Figure 1.1 shows how a message is sent

from device A to device B through the OSI model. During data transmission, it may

pass through some intermediate nodes which usually involve network support layers

[2].

The relationship between the OSI model and Institute of Electrical and Electronics

Engineers (IEEE) 802.3 is shown in Figure 1.2. The IEEE has subdivided the data link

layer into Logical Link Control (LLC) and Media Access Control (MAC). The LLC

provides one single data link control protocol for all IEEE Local Area Network (LAN)s

while the MAC protocol varies in different LAN standards. IEEE 802.3 is a LAN

technology and also the most widespread LAN standard. Because of its forthright
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Figure 1.1: Example of data transmission through OSI model

principle and low cost implementation, it has replaced other LAN standards such as

IBM token ring and Arcnet models to a great extent [3]. The remarkable property

of Ethernet is its frame format. Based on the fixed frame format, Ethernet provides

flexibility to be enclosed in different network equipments and medium so that the

network operators will prefer to use Ethernet technology to organize low cost, high

performance networks.

Information transmitted on an Ethernet network is called Ethernet packets. They

are simply chunks of data enclosed with some identifiers so that they can be sent

to the correct destination. If there are multiple devices in a network, it is a prob-

lem to make one to one communication possible. A switched network is the most

common solution in current market which use switches as interlinked nodes to create

temporary connections between multiple devices linked to the switch. An Ethernet

3



Figure 1.2: OSI Model VS IEEE 802.3

switch in a network system transmits packet data at Ethernet standard rates. It is

functioning as the traffic control center for the LAN and managing the transmission

of Ethernet packets between multiple devices. An Ethernet switch manages all con-

nections through table lookups in order to find relevant destination addresses and

connected ports. When a packet is received by an Ethernet switch, it extracts desti-

nation MAC address information from the packet and creates a temporary connection

between source and destination MAC addresses. Hence, the data can be routed to

the destination and the connection is closed. In addition, in a LAN configuration,

each device has a specific bandwidth and connection to other devices on the network.

The advantage of this structure is that all devices can work at full capacity without

impacting other connected devices.

Nowadays, 10-Gigabit (10G) Ethernet switches are being manufactured in volume.

Higher speed (e.g.40G, 100G) switches are also introduced on the market. By 2015,

the higher speed Ethernet will have about a 25% share of network equipment ports,

4



Figure 1.3: Projected Share of Network Ports - 2015

according to Infonetics Research in Figure 1.3. In April 2013, IEEE 802.3 announced

the work group of 400G Ethernet standard and even a higher speed Ethernet standard

was on the agenda. High speed Ethernet ensures the possibility of more complicated

Ethernet applications and meanwhile it extends to more fields like automobile in-

dustry, super computers and data centres which currently have their own specialized

networks. Automobile network system, as an example, is becoming more complicated

and scaled as a result of explosion of electronic products and entertainment systems in

the car. This provides a big challenge for specialized automobile networks offered by

different vendors and requires high compatibility and fully open-ended network sys-

tems. Ethernet will obviously be a dream solution and several products are already

on the market. [4]

Due to the coming tremendous number of applications of Ethernet, the next gen-

eration of the Ethernet equipment should be able to handle vast spans of features and

performance requirements. To put this in a nut shell, it has to be flexible. On the
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current Ethernet switch market, the customer can always find products that handle

large scale processing capacity. However, an Ethernet switch for a certain specific task

is seldom introduced. Therefore, the customer has to pay extra money to purchase a

product with unnecessary functionalities.

For different network niches, the main structure of the Ethernet equipment could

be the same but different packet forwarding mechanism might be needed. From the

industry’s point of view, trivial changes in packet forwarding algorithms or switch

configurations might require a totally different custom hardware architecture design1.

Most of current switch vendors prefer to provide switches with enough complexity to

handle most packet forwarding types even though customer oriented market is almost

a blank sheet. Hence, it is a challenging and rewarding task to find a way of delivering

the needed performance and features for packet processing without resorting to a

custom RTL design. As we know, the speed of Ethernet keeps growing, new Ethernet

generation will require new network equipments. Traditional hardware design flow has

a long development cycle but we will try to reduce it dramatically. Meanwhile since

the development period is decreased, specific network equipment can be implemented

that only meet the exact requirements and consequently reduce the developing cost

and product price.

1.2 Scope of the Thesis Project

This master’s thesis is part of the Flexswitch project at PacketArc AB, aiming at

providing customer oriented and cost-effective high speed Ethernet switch solutions.

1The hardware architecture design in this report are referred to Register Transfer Level (RTL)
design.
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Imagine that as a customer there is no need for seeking appropriate Ethernet switches

in the market, just describe particular requirements in a C-like descriptive language,

and a dedicated switch for you is around the corner by transforming description via

the Flexswitch platform.

The Flexswitch project attempts to finally create a platform containing a serial

of tool chains. Based on this platform, customized high level Packet Processing

Language (PPL) is offered where packet processing can be described in a simple, yet

powerful way. The PPL can let customers define their own switch configurations and

describe their demand packet forwarding strategies easily and quickly. With the aid

of the PPL, customers have the flexibility to create customized Ethernet switches.

This tool chain works in three steps to fill in the gap between the PPL and the RTL

implementation:

1. Compile the PPL program to a intermediate model with lower level format

which can present a certain hardware behaviour.

2. Analyse the optimized low level format and generate the corresponding RTL.

3. Instantiate the customized RTL with general hardware infrastructures to obtain

the required Ethernet switch.

This master’s thesis project mainly deals with the last two steps, striving for devel-

oping an RTL generation tool that can handle various packet processing requirements.

1.2.1 Target of the Thesis Project

The target of this thesis project is to create a prototype for a 10G switch working on

Layer 2 of OSI model and run through a Field Programmable Gate Array (FPGA)

7



design flow, the design requirements as listed as follows:

• A Layer 2 switch supporting at maximum 6 ports.

• Target FPGA is Xilinx Virtex-7, part number XC7VX690T.

• Clock frequency in switch core domain is 105 MHz.2

• Scheduling used in the switch has fixed strict priority.

• Packet processing starts after getting a full Ethernet header.

The tool that needs to be developed mainly consists of one RTL generator and

certain hardware infrastructures for packet processing. The basic idea of the RTL

generator is to analyze the intermediate file format compiled from PPL in order to

generate RTL for packet forwarding algorithms automatically. Parametrized hard-

ware infrastructures are also on the design list to combine with the generated RTL

and finally form a packet processing subsystem.3

1.2.2 Organization of the Thesis Report

This report is divided into chapters explained as below:

• Chapter 2 explains subsystems of a Layer 2 switch and forwarding algorithm.

• Chapter 3 elaborates on design details for a flexible packet processing subsystem.

• Chapter 4 Presents one Layer 2 switch implementation with different configu-

rations.
2This is the calculated frequency to get a full cell rate for six 10G ports with 160-byte cell size.

When a packet is queueing in a switch and waiting for sending to its destination, it is sliced into
fixed size cells. The switch should promise to process one cell per clock cycle.

3Subsystems in a Layer 2 switch will be explained in the next chapter.
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• Chapter 5 optimizes the implemented tool chain based on results from Chapter

4.

• Chapter 6 discusses the conclusions and the future work.

9





Chapter 2

Ethernet Switch

2.1 Overview

Traditional Ethernet switches operate at Layer 2 of the OSI model. Rather than

Layer 1, which is the PHY describing electrical interfaces, it is in Layer 2 (Data link

layer) where packets are sent to a specific switch port based on MAC addresses [5]. A

Layer 2 switch can be treated as a multi port bridge which can learn new source MAC

addresses automatically after receiving packets and building a table to maintain the

decision of packet forwarding. The advantage is that multiple switching paths inside

a switch can be active simultaneously. For example, consider Figure 2.1 which is a

Layer 2 switch connecting 4 devices, A to D. If device A is sending data to device

B while device C is communicating with device D, data transmission could happen

at the same time in the switch. Each port has its own bandwidth so the speed is

promised and the collision domain in this network is divided into 4 domains by the

switch.

11



Figure 2.1: Example of a Layer 2 Switch

However, the scope of a LAN is seldom so simple. In a large LAN it is always

necessary to divided it into several sub domains which is called Virtual LAN (VLAN).

VLAN is raised in order to cut off broadcast domains. In an Ethernet network,

communication is based on MAC addresses, hence one device will frequently use

Address Resolution Protocol (ARP) request to get the MAC address of the destination

port. This request will send a packet to all ports belonging to the same broadcast

domain. In a large LAN, this costs huge amounts of unnecessary bandwidth. As

a solution, each VLAN will have its own broadcast domain and devices in different

VLANs cannot communicate through a Layer 2 switch. As in Figure 2.2, device A and

B belongs to VLAN 1 while device C and D belongs to VLAN 2. The previous scenario

which communication between device A and B or device C and D has no interaction,

12



Figure 2.2: Example of a Layer 2 Switch with two VLANs

but the Layer 2 switch cannot establish switching path between device A and C

because they belong to different VLANs. In this case, an additional router is needed.

A router is normally working on Layer 3 (network layer), the most common protocol

on this layer is Internet Protocol (IP) [6]. The router is typically connected to one

of the switch ports and do IP routing between different VLANs. In reality, a router

is also connected to Wide Area Network (WAN) (e.g. Internet) or other switches.

However, the fact that routers are mostly based on software implementations lead

to a performance bottleneck of the entire network. Therefore, Layer 3 switches are

promoted on the market which are high performance devices for network routing.

They are quite similar to routers and use the same IP routing table for fast Layer

3 forwarding. The key difference between Layer 3 switches and routers lies in the

built-in hardware of the switch. Hardware inside a Layer 3 switch bridges Layer 2

13



Table 2.1: Typical Ethernet Frame structure

Preamble Start of Frame Delimiter Header Payload Frame Check Sequence (FCS)

switches and ordinary routers, accelerates a router by replacing software logics in it

with hardware. Also, Layer 3 switches typically do not possess WAN ports as a router

has, instead the routing functionality is to route between different subnets or VLANs

of a large LAN, such as on a campus or within an enterprises [7].

In this thesis project, we focus on building Layer 2 switches to begin with. Layer

3 protocol is much more complicated than Layer 2 so Layer 3 switches require more

sophisticated hardware infrastructures. During the development, features of the Layer

3 switch will not be implemented but the capability to extend the tool chain to support

Layer 3 switches is taken into consideration.

2.2 Ethernet Frame Standard

Ethernet standard is specified by various IEEE 802.3 specifications and Table 2.1

gives a typical Ethernet frame.

Normally the header of an Ethernet frame contains all information required by a

Layer 2 switch. Based on different Ethernet standards the frame header could have

several encapsulations. During our design, the IEEE 802.3-2012 and the IEEE 802.1Q

are taken into account. Table 2.2 is IEEE 802.3-2012 packet header containing a 6-

octet destination MAC address, 6-octet source MAC address and 2-octet Ethertype

or length.

If there is an IEEE 802.1Q tag in an Ethernet packet, it means VLAN is supported.

In this case, 4-octet field will be added between the source MAC address and the

14



Table 2.2: 802.3 Ethernet Header

MAC destination MAC source Ethertype or length

6 octets 6 octets 2 octets

Table 2.3: Ethernet Header with VLAN Tag

MAC destination MAC source 802.1Q t

6 octets 6 octets 2 octets
Tag Protocol Identifier (TPID)=0x8100 Priority Code Point (PC

Ethertype/length fields as in Table 2.3.

In the 802.1Q tag, first 2 octets are TPID. It is set to 0x8100 in order to distinguish

the frame from untagged frames. The last 12 bits indicate VID, specifying the VLAN

to which the packet belongs. In between there are 3-bit PCP and 1-bit DEI.

2.3 Layer 2 switch subsystems

Figure 2.3 demonstrates a high altitude look at the data flow through a Layer 2

switch. It is exemplified using a switch with three 10G interfaces. The minimum port

bus width is calculated from the MAC based on the bandwidth and clock frequency

as shown in Equation 2.1. In our implementation, the 10G MAC is Xilinx 10G MAC

Intellectual Property core working at 156.25 MHz so the minimum bus width is 64

bits. Another bottom line is the packet rate in the switch which will get the maximum

rate when all packets are with minimum size. In the IEEE standard, the minimum

Ethernet packet size is 512 bits. The clock cycle needed for the minimum packet is

calculated by Equation 2.2 and the bit rate is in Equation 2.3.

buswidth = ceil(
bandwidth

frequency ∗ 8) ∗ 8. (2.1)
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Figure 2.3: A Bird Eye view of the data flow

cycles = ceil(
minPkt

buswidth
). (2.2)

brate = frequency ∗ buswidth. (2.3)

When it comes to the real packet transmission, there is an Inter Frame Gap (IFG)

between two packets. In the IEEE standard it is 160 bits for a 10G MAC. Therefore,

the transmission rate is shown in Equation 2.4

rate = bandwidth ∗ cycles ∗ buswidth
cycles ∗ buswidth+ ifg

. (2.4)

To ensure the speed of the switch, the transmission rate should be larger than the

bit rate, otherwise the bus width needs to be increased. As a conclusion, the port

bus width for a 10G MAC in our design is 64 bits and it is treated as the size of one

packet chunk.

From the general view in Figure 2.3 the switch could be typically divided into two

subsystems: Packet Processing and Packet Buffering. In the packet processing sub-

system, the processing unit is one packet chunk. The packet header is analysed, based
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on header properties forwarding decision such as unicast, multicast, broadcast or drop

packet is made. In the packet buffering subsystem packets are received by a fixed

cell size (in our case it is 1280 bits) and the cells are stored in memories with linked

addresses until sending to the destination ports. Between the two subsystems there is

a Serial-to-Parallel Converter (SP) which divides packets into a number (depending

on packet size) of packet cells. The packet cells from the packet buffering subsystem

will be concatenated into a stream of bytes by a Parallel-to-Serial Converter (PS) and

finally received by destination ports.

The packet processing subsystem includes 4 parts which are shown in Figure 2.4:

• Packet decoding

• Packet forwarding

• Lookup tables

• Packet modification

Packet decoding parses and analyses the packets to detect Ethernet encapsulation

and determines if the packet was VLAN tagged or not. Also, all information in

the header that is used for processing packets such as source and destination MAC

addresses will be extracted.

Packet forwarding processes packet information provided by the packet decoder

and makes forwarding decision based on table lookups. There are several lookup

tables in a switch, some containing default information of source ports while others

may be dynamic during packet processing because of learning and ageing. Learning

occurs when a packet is sent from a new source MAC address that has not been stored
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Figure 2.4: Block Diagram of Packet Processing Subsystem

in the switch. The switch will then store this address with its port number to a lookup

table and therefore the next time if this address is the destination address the switch

will know its corresponding port. However, if a switch learned some address a long

time ago that not has been needed afterwards, it might waste time searching through

stale addresses. To solve this, when the mapping of MAC addresses and port numbers

are added to the lookup table they will be attached with timestamps. If an entry has

no activity for a certain amount of time it will be freed, which is called ageing.

Packet modification is necessary if the source packet should be modified based

on forwarding result, such as remove VLAN tag, replace the MAC header, etc. Finally,

the received packets are divided by the SP into a number of cells with their forwarding

results.

The packet buffering subsystem takes packet cells as input. The cells are stored in
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buffer memories until a queue engine and packet scheduling figure out the sequences

of transmitting these cells to their destination addresses. Since the packet buffering

subsystem is not involved in this thesis project, details will not be discussed.

2.4 Packet Forwarding Algorithm

The basic packet forwarding algorithm in a Layer 2 switch is to forward packets from

source MAC address to destination MAC address. Based on this, various functionali-

ties can be added according to specific requirements. One example is Layer 2 address

learning or ageing that has been shown in the previous section. Different packet for-

warding algorithms may require different packet processing subsystems. That is the

reason of developing a flexible switch generation platform.

The packet forwarding algorithm that has been proposed initially to test the

platform is shown in Figure 2.5. The process starts with checking the VLAN tag in

the packet. If the packet is VLAN tagged, the correct VLAN information is extracted

from the VLAN field in the packet, otherwise, a lookup in specific table is performed

to find default VLAN information of the source port. Once VID and VLAN priority

is settled, two table lookups will be done in a VLAN membership table and VLAN

priority table separately to get more content. The first lookup tells the global identifier

of the packet as well as membership port mask. The second lookup gets the mapping

from VLAN priority to its relevant queue in the packet buffering subsystem. Next

check is the broadcast bit (bit 40) in the destination MAC address. If bit 40 is 1,

this packet will be sent to the every port listed in a membership port mask. If bit 40

is 0, firstly VLAN membership of the source port will be checked. If the source port
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Figure 2.5: Flowchart of Proposed Packet Forwarding Algorithm

is not a VLAN member, this packet should be dropped. Otherwise, there is a Layer

2 result table for searching destination MAC addresses. Based on the lookup result,

the packet could be either dropped or sent to the destination port.
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Chapter 3

Packet Processing Implementation

According to the project target, to implement different hardware-based packet for-

warding algorithms in switches, we firstly use PPL to describe needed algorithms,

together with other initializations or configurations belong to the packet processing

subsystem. Secondly, the PPL program needs to be compiled to a low level format

which is an intermediate stage between PPL and RTL. To figure out potential op-

tions for this intermediate stage, the first reasonable idea suggested is the assembly

program. In a processor based architecture, assembly program can be operated on

hardware directly. If we develop specific instruction sets for packet forwarding algo-

rithms, each instruction could be directly mapped to a detailed hardware structure.

As the framework in Figure 3.1 shows, the PPL that has been developed for this

project is similar to C and includes two parts, a header file and a main function. On

one side, the main function is referred to packet forwarding algorithm. The packet

forwarding algorithm is compiled to assembly codes which will be used to generate

the corresponding hardware packet forwarding block by an RTL generator. On the
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Figure 3.1: Framework of Flexswitch

other side, the header file contains all parameters and global table/register definitions.

Since the rest of the packet processing subsystem has a relatively fixed structure for

various instantiations, only different parameters are needed and the header file will

be in charge of all parameter declarations. Based on the two flows in Figure 3.1, the

proposed packet processing subsystem could be roughly divided into two parts as in

Figure 3.2:

• Packet Forwarding Pipeline (PFP): This block will be generated by the RTL

generator entirely.

• Hardware infrastructure around PFP : This part mainly contains the rest of

the blocks belonging to packet processing subsystem like Packet Decoder (PD),

Packet Modifier (PM), Packet First In First Out (FIFO) and lookup tables. All

hardware infrastructures are configurable by header file in the PPL program.
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Figure 3.2: Design division of Packet Processing Subsystem

In the following sections, this proposal will be presented and discussed in more

detail to determine if this is a reasonable solution.

3.1 Hardware Infrastructure

3.1.1 Packet Decoding

The basic requirement of packet decoding is to read certain bits from the packet frame.

The decoding part demonstrated in Figure 3.3 contains PD, Field Memory (FM) and

packet read stage in PFP. As we know, one packet will be fragmented into chunks

according to port bandwidth. When the chunk size varies, the data needed for packet

forwarding might appear either inside one chunk or continuously in several packet

chunks. The flowchart of reading one single needed packet field is demonstrated in

Figure 3.4. The required packet field is stored in a register, once all the bits are

stored, the decoding block will send this field to the FM.
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Figure 3.3: Block diagram of Packet Decoding

Figure 3.4 is an example for a single port. In reality, each source port has one

decoder and between those packet decoders and packet forwarding units, a controller

is introduced which in our case is the FM. The FM is in charge of allocating needed

packet data fields to relevant PFP stages for each source port. In addition, since

packet fields from different ports are collected in parallel and the PFP can only

process one port per clock cycle, the FM is also responsible for scheduling the visit

frequency to all ports. The FM is supposed to be intelligent enough to allocate

different priorities if port speed varies. In the initial design, since only 10G ports

exist, the scheduling here is the round robin selection [8]. Correspondingly, in the

forwarding pipeline, a new variable will be created for storing the data for every
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Figure 3.4: Flowchart of reading certain bits from one packet frame

relevant stage.

The relevant stage in the PFP is called packet read stage which refers to a particu-

lar instruction and will be introduced in Section 3.2. However, its hardware structure

differs depending on the start strategy we choose for PFP. For a particular packet

read stage, it is driven by the previous pipeline stage as well as extracted packet

data. Only when both of these two inputs are ready, the packet read stage could be

triggered. Suppose variables from previous pipeline stage and data from packet get

ready for packet read stage randomly, for each port there is a buffer inside this stage.

As a consequence, the packet read stage may have four status:

1. Ready: Data from the packet has been stored in the buffer and meanwhile, the

previous stage has provided a valid variable.
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Figure 3.5: Block diagram of packet read stage

2. Packet data ready: Data from the packet has been stored in the buffer, but

variables in the previous PFP for this source port is not ready.

3. Variable ready: Previous pipeline stage has provided variables for this source

port, but the packet data is under preparation.

4. Empty: There is no useful data in the buffer, either it has been transmitted to

the next stage or both variables and packet data are not stored in the buffer.

If we look inside this stage as in Figure 3.5, for a certain number of source ports,

same number of buffers are provided. Only when the buffer is in status Ready it could

be used for the next stage. Otherwise, the packet read stage should switch to another

port buffer with status Ready for further processing. In fact, each source port in this

stage is controlled by a Finite State Machine (FSM) shown in Figure 3.6.

However, this is under the assumption that trigger time cannot be estimated.

Actually, instead of starting the PFP as soon as new packet comes in, if the PFP

starts only after the FM has collected all required fields, buffers inside a packet
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Figure 3.6: FSM of packet read stage with single port

read stage is no longer needed. Therefore, the status of a packet read stage is only

dependent on valid variables from previous stages in the pipeline. As specified in the

project target, packet processing is started after getting a full Ethernet header, so the

scheduler inside the FM is enough to handle the status of packet read stage. But still,

different kind of hardware could be easily configured based on different requirements,

that is what the project is aiming at.

3.1.2 Packet Modification

When the forwarding decision is made in the PFP, packets will be filtered in packet

modification block as in Figure 3.7. Packet modification contains Modification Mem-

ory (MM) and PM which is similar with the components in packet decoding. Ideally,

the PM has three functionalities: packet overwrite, packet insert and packet delete.

Normally in a Layer 2 switch packets will not be modified, but we still keep this
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Figure 3.7: Block diagram of Packet Modification

structure in case of further extension. Hence for a Layer 2 implementation, packet

modification mainly plays a role of synchronizing packets from packet FIFO and for-

warding decisions from the PFP. Depending on various forwarding possibilities, the

decision out from the PFP might be out of order, so in MM, the decision order will

be sorted again and in keeping with packet FIFOs.

3.1.3 Packet Processing Interface

The interface between blocks of hardware infrastructures and the PFP can be sorted

into two groups: packet transmission interface and PFP interface. Packet trans-
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Figure 3.8: Packet Transmission Interface

mission interface (pkt interface) is used to transmit packet data and PFP interface

manages connections between the PFP, the packet decoding block and the packet

modification block.

As demonstrated in Figure 3.8, all the packet data transportation is achieved using

the pkt interface from source ports to the SP. Meanwhile, in the opposite direction

normally there is a halt signal between two modules except the interface between

the packet FIFO and the PM. The packet FIFO stores packet data when the PFP

is making the forwarding decision, so it will drive the next valid data as soon as it

is available, but it will not pop the next data to the PM until pop is set high which

means the forwarding decision for this packet has been made. Except the packet

FIFO, the rest of the modules in the pkt interface will transmit packet data to the

next module as fast as possible unless the next module cannot consume the incoming

data and send a halt flag to the previous module.

Figure 3.9 shows interfaces around the PFP. Inside the FM, there is a free block

waiting for start flags from different source ports. If start is high it means a new

packet comes in, immediately the free block will allocate an ID for this source port
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Figure 3.9: Interface of Field Memory and Modifier Memory

packet, and also send this ID to the relevant FIFO in MM for synchronization with

pkt interface.

In a single field storage block, the arbiter chooses a field from different PDs every

clock cycle if they have valid signals and stores the corresponding field data in the

memory based on the allocated ID. The counter block counts each port’s field status

separately, if there is a port with all fields stored, an inner start bit for this port will

be sent and the final arbitration will be done between inner start bit for all ports

before activating the PFP.

Considering the interface on the packet modification side, when the PFP sends

done signal (pdone), relevant ID in the valid ID list will be pulled high. Meanwhile,
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the destination port mask (pdesMask) will be stored in the mask memory. If the

decision turns to be dropping the packet, 0 will be stored in the corresponding entry.

Secondly, the first ID to be popped in each ID FIFO will check its valid status from

the valid ID list. If the valid bit is high and the PM is available for processing, this ID

will be marked as an valid ID. In the comparison block, all valid IDs are arbitrated

and one of them will be selected as pm id, its valid bit in the valid ID list will be reset

to low. Then there comes the interface between the PM and the MM, corresponding

port numbers will be found for pm id, meanwhile forwarding decision is sent to the

PM via done,destMask. As soon as the PM send pop to the MM, done for this port

will be reset, and pm id is deallocated to the free block in the FM.

3.1.4 Configurable Memory Interface

Figure 3.10 is the interface of tables, or Random Access Memory (RAM)s, which

communicate with the PFP and the CPU. A lookup stage in the packet pipeline

contains two data paths for hit and miss respectively. While reading, a RAM always

return the data of the relevant entry hence no miss branch in a RAM read stage. The

tables/RAMs here are called configurable memories since they consist of a normal

RAM and a arbitration wrapper.

All lookup stages, RAM read stages and RAM write stages should go through

an arbitrator before interacting with tables/RAMs. Access to the same table/RAM

from different pipeline branches at the same clock cycle could be an issue due to the

property of forward processing. The packet pipeline cannot be stalled to wait for the

preparation of a certain stage. If multiple stages need to occupy the same resources
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(e.g. in our structure multiple stages send access requests to tables/RAMs, or several

branches merge to the same destination), only one stage could be executed while

others stop pushing data to next stages but keep receiving data from previous stages.

In fact, for each configurable memory there are two levels of arbitration. Level

one is between CPU access and PFP access and level two is for PFP accesses which

arbitrate requests from different pipeline stages. In this proposal, we have decided

to set that CPU access has the highest priority which means before start packet

processing, there will be a table initialization phase. For accesses from different

stages, we use round robin selection.

Finally, Figure 3.11 shows an overall view of the hardware infrastructures (con-

figurable memory is not included). Since the interfaces between PFP and hardware

infrastructures are fixed and all these blocks are parametrized, there is no need to

modify their structures to adapt different PFP implementations. In the next sec-

tion, it will be explained how to generate the PFP RTL automatically from assembly

program.

3.2 Packet Forwarding Pipeline

As we know, the auto-generated packet forwarding hardware structure is based on

assembly codes which are compiled from PPL programs and the instructions in the

assembly program will be executed in a sequential order. To reflect this property in

hardware, a fully pipelined structure could be applied.

Figure 3.12 is the basic structure of the packet pipeline. It looks like a pipelined

multiprocessor structure where each processor executes a dedicated function on the
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Figure 3.11: Overall View of Hardware Infrastructures

incoming data and forwards the result to the next core in the pipeline. In fact, the

function of each core is dedicated for every implementation. That is to say, in a

pipelined multiprocessor structure new instruction could be reloaded to a instruction

core. However, in this structure each core positioned in the pipeline has a fixed func-

tion which is determined by the automatically generated assembly program. Based on

this tool, the structure in Figure 3.12 is actually implemented as in Figure 3.13. This

is an example structure generated by an assembly program containing 20 instruction

sets which have an execution order: instruction number 4,3,3...20,1,7. Correspond-

ingly, all the required instructions have their own RTL blocks in the RTL library.

The advantage of the high regularity packet forwarding is that we can develop

the instruction sets particularly to cover all the executions we need, and give each

instruction its own hardware structure.
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Figure 3.12: Structure of packet forwarding pipeline

Figure 3.13: Example of one packet forwarding pipeline implementation

3.2.1 Instruction Set

The instructions referred to as packet forwarding modules can be classified into several

categories as follows:
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Figure 3.14: Example of creation and deletion of variables

Variable Instruction

The packet forwarding pipeline contains two parts, register stages for variable man-

agement, and execution stage for functionalities.

Normally the initial input to the PFP is only the source port, but during process-

ing, some execution stages require data from packets or tables. Thus, the register

stage is not only inserting flip flops but also handling various required data for the

next execution stage.

Three kind of instructions are created for variable management:

• INT <variable name> [variable width]: create a new variable.

• DEL <variable name>: delete an unused variable.

• MOV <destination operand>, <source operand>: the destination operand is

a variable, but the source operand could be a variable or a number, if the two

operands have different width, the overflow of higher bits will be unused.

Figure 3.14 shows how to manage variables in the pipeline. All instructions are
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mapped to execution stages in the PFP except variable instructions. INT instructions

and DEL instructions are in the register stages increasing or decreasing the bus width

respectively.

Arithmetic Logical Unit Instruction

• ADD/SUB/MUL/DIV <destination operand>, <source operand 1>, <source

operand 2>: add/subtract/multiply/divide two variables together, the result is

stored in the destination operand.

• XOR/NOT/AND/OR <destination operand>, <source operand 1>, <source

operand 2>: boolean operations of two source operands.

Similar with MOV instruction, the destination operand of Arithmetic Logical Unit

(ALU) instructions should be a variable while the source operands could be variables

or numbers.

Lookup Table Instruction

This category contains instruction for table lookups.

• LKUP <table name> <source operand> <destination operand> : the source

operand is the lookup address, a lookup is based on the table name and the

result will be stored in the destination operand.

According to the PPL in this project, all tables that will be accessed in the main

function have to be defined in the header file in advance. As a special data structure

in the PPL, a table definition contains width and depth of the table, as well as
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the default values. Since the main function in the PPL program passes through

an RTL generation flow and the header file is used for the hardware infrastructure

instantiation, table lookup instructions will occupy additional interfaces to tables

outside the PFP.

Different from previous instructions, a table lookup instruction is a time-consuming

module in hardware. After sending the lookup address, this request will be firstly

accepted by an arbitrator, then the arbitrator will communicate with referred tables.

Hence, between lookup stages and tables is a handshake interface which has been

demonstrated in Figure 3.10.

Normally after a lookup stage, the data-path in the PFP will be divided in two

directions based on the lookup result like in Figure 3.15, so flow control instructions

will be needed.

Branch Instruction

The basic structure in Figure 3.12 is a single data-path pipeline. However, in a real

situation there might be lots of branches since the decisions could be different in cer-

tain stages. Thus multiple data-paths should exist in the packet forwarding including

data-path control functionalities which makes RTL generation a bit more compli-

cated. However, the branch instruction of packet forwarding has several properties

which reduce the complexity of the hardware structure.

Most importantly, all branches in the PFP are forward branches, that means a

branch cannot jump to a previous stage. This is quite obvious since the instructions

will be implemented directly with a hardware module and there is no memory to store
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Figure 3.15: Example of Branch in Packet Forwarding

program counters to call for a previous stage.

Secondly, although branches in the packet forwarding program make the PFP

spread to different paths, finally the entire program is a spindle structure and ended

either in drop the packet or send the packet to a number of ports. If we draw out the

longest processing path as the main data-path, all other branches will jump to this

master branch after certain processing except the special DROP instruction which will

drop a packet and stop further processing.

Currently five kind of branch instructions are supported.

• BEQ/BNE<source operand 1><source operand 2><destination label>: branch

to the destination label if source operand 1 and source operand 2 are equal/not

equal.
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• BGT/BST<source operand 1><source operand 2><destination label>: branch

to the destination label if source operand 1 is greater/smaller than source

operand 2.

• JMP <destination label>: unconditional branch, jump to the destination label.

Here, the source operand could be both variables and numbers. Inside the branch

instruction there is an ALU unit to make the decision.

Packet Instruction

Besides the above instructions, there are some instructions that operate on the packet

data.

• PRD <source operand 1> <source operand 2> <destination operand>: packet

read instruction, source operand 1 is the start bit and source operand 2 is the

end bit, the read data will be stored in destination operand.

• DROP: this is a instruction without operand, it means a stage that a packet

shall be dropped and not processed any further.

• SEND <destination operand>: this is the last instruction if there is no packet

drop, the destination operand is the destination port mask for the processing

packet.

The packet read instruction is responsible for creating interface between the PFP

and input packets. For each packet read instruction, there is a Finite State Machine

(FSM) inside PD which belongs to packet processing infrastructures. Instruction
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Figure 3.16: Steps of Auto RTL Generation

SEND is the ending instruction in a PFP, it contains the destination port mask which

will be sent to the packet buffering subsystem

3.2.2 RTL Generator

The RTL generator is brought up as a Python script and basically consists of three

parts: a scanner, a parser and a builder. Figure 3.16 explains generation steps of the

RTL generator, it takes assembly program as an input and outputs a Verilog module

which has fixed interface in order to be instantiated in an RTL project. As a primary

step, the assembly program is scanned and each instruction gets its own token list.

Secondly, every token list will be parsed by a parser which finds the keywords (referred

to module parameters in the hardware view) with its corresponding values. Thirdly,

these key-value pairs are transferred to the builder with an opcode which are used

to identify different RTL structures. The builder invokes RTL templates according

to ID tokens and do a multiple substitution based on key-value pairs. Finally, the

output file assembles all RTL together to form a packet forwarding module which has
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instantiation of hardware modules and wire connections.

Scanner

The scanner in the design is based on SPARK which is a toolkit for implementing

domain-specific languages in Python[9]. It does a simple lexical analysis based on

regular expressions and generates a token list for each instruction1. A token has two

attributes, type and value. New kind of tokens could be defined with the increment

of complexity. Since the processing in this generator is based on tokens, compatibility

of the tool is easily promised.

If a line starts with a white space or a hash key, then it only generates an empty

token list. However, for each non-empty token list, there always exists one token that

can describe the behaviour of that line, we call it the ID token. Normally, all the

opcodes are ID tokens. In addition, if an in-line code describes table definition, or

is marked as a branch label, the ID token will be the name of the table or label. ID

tokens are important since they will be used later for invoking RTL modules.

Parser

The parser is used for transferring information from software domain to hardware

domain. The scanner provides plenty of tokens representing information in a assembly

program. However, the tokens are not enough to reveal hardware behaviours. For

instance, the sequential scanning provides all the operations and variables, but how to

interact variables in different token lists? In a CPU instruction perspective, variables

1List is a built-in Python data structure used as a container that holds a serial of objects in a
given order.
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Table 3.1: Variable File Management Unit

List Name List Item
index 0 index 1 index 2 ...

variable name V a V b ... ...

start bit 0 6 9 ...

variable width 6 3 ... ...

are stored in cache memories with unique addresses while in a RTL design they

are stored in registers and delivered to other logic gates by wire connections. In

order to keep identical variables in the assembly problem and the RTL program, a

variable management unit called Variable File (VF) is introduced to take charge of

the variables above the sequential line scan.

The maintenance of the VF occurs when the opcode is INT or DEL and referred to

three lists shown in Table 3.1.

As listed in the table (Table 3.1), variable name, start bit and width are

assigned with the definition of every new variable. When a new variable is defined in

the assembly program, these three attributes are stored simultaneously. The idea of

the VF is mapping variables from the software domain to the hardware domain. In

the hardware domain, the VF is represented as registers with the same sum-up bit

width of all variables. Each software variable is referred to the bit extraction of a

hardware signal while start bit and data width assist to locate the field of a software

variable in the hardware wire.

After adding one particular variable (refers to INT instruction in the assembly

program) and if it is needed somewhere else in the assembly program, the RTL gen-

erator will match the variable name in the variable name list and translate it to

information with start bit and width. If the opcode is DEL, then the variable name,
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the corresponding start bit and the width are deleted in the VF together.

In a PFP RTL module, the outputs of the previous stage are used as the inputs

to the next stage. In this case, the wire width varies between input and output which

reflects the functionality of the VF in the RTL generator. For each instruction, there

is a corresponding RTL frame that includes one RTL block instantiation and one

or more wire declarations. The RTL frame has a fixed hardware interface for the

same opcode but parameter varies which is the interface for software control. The

parameters in the hardware domain are extracted as keywords from tokens in the

software domain (e.g. the start bit and the variable width). The RTL block template

for each opcode contains all the possible keywords wrapped with $. Listed below is a

RTL sample frame for opcode INT, which is used for adding a new variable:

wire [$owidth$-1:0] pip_$stage$;

BUF #(.iwidth($iwidth$),

.owidth($owidth$))

BUF_$stage$ (.iv(pip_$stage-1$),

.ov(pip_$stage$),

.clk(clk),

.rstn(rstn));

Here $iwidth$ is the total width of the old VF while $owidth$ is the total width

of the VF after adding the new variable. $stage$ counts for the identification of

different registers between stages and it is controlled by a counter and is updated

for every instantiation. In the RTL generator, all keywords are put in a Python
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dictionary data structure2 as keys and the value of these keys will be determined

by the parser. The key-value pairs are sent to the RTL builder accompanied by ID

tokens (opcodes) after been parsed.

In terms of a hardware perspective, it is a wire connection issue when there is a

branch instruction. The additional branch wire of the output should be connected

to the destination label which is implemented by an arbitrator that receives all the

incoming branches and connects to further pipeline stages. From the software per-

spective, this is a copy issue about the VF and the wire numbers. When the scanner

finds start position of the branch destination, all the branches that jump to this label

will be gathered and their wires to the input of the arbitrator in this stage will be

connected. Meanwhile, the VF for this destination stage need to be substituted with

the copy from the branch stage.

While dealing with branches in the parser of the RTL generator, two dictionaries

are designed to manage the wire connections and the VF copies respectively. The

branch labels in the assembly program will be used as keys of the dictionaries. If

there is a join stage with a label, the previous wire and the VF required here could

be searched in the dictionaries based on the label name.

As discussed in the hardware part, several branches might jump to the same place.

As a result, in the label dictionary one key can have more than one value. In simple

terms, the arbitrator will manage the selection of multiple copies of the VFs that are

merged from different branches. However, branch management in hardware is not

flexible enough and large buffers are required for synchronizing the latencies since

the processing time of each branch cannot be estimated in advance. This drawback

2Dictionary is a built-in Python data structure that maps hashable values to arbitrary objects
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brings hardware waste and will be discussed in the next chapter.

Management of tables is similar to branches as they all belong to multiple access

issues. Since the PFP has a forwarding structure, as long as a destination label exists,

a relevant hardware join stage should be added. According to the forwarding principle,

all branch instructions should be executed before their join stages and the follow-up

branch instructions cannot jump back to a previous join stage. However, in a table

access case the number of table access requests cannot be determined until the last

instruction. Hence the parser will not map table access tokens to its corresponding

table definitions tokens until token End, which means when the end of the program is

detected. As an initial step, one table dictionary is used to store the information of

table connections and when the PFP RTL module ends there will be a separate table

connection unit per table for different table access.

Builder

The final part of the RTL generator is used to assemble the PFP RTL modules.

According to the parser, for each valid line of the assembly program there will be

an ID token with dictionary. If the switch complexity grows and a new instruction

set is needed, a new ID token and relevant RTL sample frame will be defined for it.

As explained in Parser subsection, a RTL sample frame consists of an ordinary RTL

block as well as keywords wrapped with $. Multiple substitution function is applied

to search all the keywords in the sample frame, then substitute with the values in the

dictionary. Table 3.2 shows the components of the RTL builder’s output. According

to different ID tokens, it is divided into four parts and assembled together to generate
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Table 3.2: Components Created by RTL Builder

ID Token Element

”Start” Header Include files
Parameter declaration

IO declaration
Default wire declaration

Default packet buffer instantiation

”Table” Table instantiation

”Opcode” & ”Branch” Pipeline stages RTL block instantiation
Wire connection

”End” Tail Table connection
End module

a PFP RTL module.

Once the PFP RTL module is generated, it will be embedded with other hardware

infrastructures as stated in Section3.1 to finally make up a complete packet processing

subsystem.
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Chapter 4

Implementation Results

During the design of the hardware, the developing tool we use is MyHDL which

is a package turning Python into a hardware description and verification language.

One of the most significant advantages of using MyHDL is the incredible interface

management ability [10]. By the aid of Python data structures, list of signals or even

list of list of signals can be defined as a single data structure directly and MyHDL will

split them into a cluster of signals automatically while generating RTL. This property

provides the possibility to simplify the interfaces between hardware modules during

the design process. Furthermore, MyHDL offers a software testing method to test

hardware. The test-bench created by MyHDL can interact with Python directly and

hence various self tests and random tests can be created. However, since MyHDL is

not a mature language, it lacks some features also. What bothers us most is that the

generated RTL will remove all hierarchies and only one flat top file is left. It makes

hardware debugging more difficult than hierarchical RTL designs and pushes heavy

workload to place and route during synthesis.
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Table 4.1: Packet decoder ports

Name Direction Description

idata[63:0] In Packet data from MAC

ivalid bytes[3:0] In Packet valid bytes from MAC

ifirst In Packet first flag from MAC

ilast In Packet last flag from MAC

odata[63:0] Out Packet data to packet FIFO

ovalid bytes[3:0] Out Packet valid bytes to packet FIFO

ofirst Out Packet first flag to packet FIFO

olast Out Packet last flag to packet FIFO

ppp start Out Port valid flag to FM

fdone[field]
Out Field done flag to FM

(one signal per filed)

fvalid[field]
Out Field valid flags to FM

(one signal per field)

fdata[field][x:0]
Out Field data to FM

(one signal per field)

fpop[field]
In

Acknowledge signals
(one signal per field) from FM to indicate the field data is accepted

ihalt In Transmission halt signal from packet FIFO

ohalt Out Transmission halt signal to MAC

clk In System clock

rstn In Global reset

pp params Parameter A Python dictionary containing all needed parameters

In this chapter, hardware schematics are introduced and synthesis results are

presented. Finally, pros and cons of this design proposal are discussed.

4.1 Hardware Infrastructure Schematic

Figure 4.1 is the schematic of one PD and the ports are shown in Table 4.1. The

structure of each PD mainly differs based on two parameters: the number of fields

(nf in the figure) and the length of each field (x in the figure). The Field FSM is

instantiated for each field that need to be extracted. The input frange is not a signal

but a parameter indicating the start bit and end bit of this field in the packet.
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Figure 4.1: Schematic of Packet Decoder

MyHDL allows diverse parameters as inputs to a hardware module which makes

architecture configuration extremely flexible. Figure 4.2 and Figure 4.3 are schematics

of the FM and the MM respectively. These two modules bridge the PFP and packet

transmission modules and their ports are listed in Table 4.2 and Table 4.3.

Compulsory parameters in the FM and the MM are the number of ports (np),

the number of fields (nf) and the number of ids (nid). Starting with the FM, each

port with a new packet coming in will be allocated an ID from the free block and

it will not be deallocated until the decision of this packet reaches the PM. In this

case, multiple packets from the same source port can be processed simultaneously in

the PFP without collision. In the FM, the Field Storage is instantiated per field,

a RAM is encapsulated in each Field storage with all IDs as the entries. For each

source port, there is a Port counter counting the fields that have been written for

the current port ID and the PFP will not start processing this ID until all fields are
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Table 4.2: Field memory ports

Name Direction Description

pd start[port][63:0]
In New packet ready flag from PD

(one signal per port)

fvalid[port][field]
In Field valid flag from PD

(one signal per field per port)

fdata[port][field][x:0]
In Field data from PD

(one signal per field per port)

fpop[port][field]
Out

Acknowledge signals to PD
(one signal per field per port) indicating the field data is accepted

srcport[np w-1:0] Out Source port to PFP

start id[3:0] Out ID of the source port to PFP

pdata[field][x:0]
Out Field data to PFP

(one signal per field)

pstart Out Start flag to PFP

pid[field]
In Field storage read address from PFP

(one signal per field)

start push[port]
Out Push signal to the FIFO in MM

(one signal per port)

port id[port][3:0]
Out Data to the FIFO in MM

(one signal per port)

free push In Push signal from MM to the free block in FM

free id In Data from MM to the free block in FM

clk In System clock

rstn In Global reset

pp params Parameter
A Python dictionary
containing all needed parameters

written. In both ingress and egress of the FM, two (Round Robin (RR) selector)

exist for arbitrating between available ports since in one clock cycle only one ID can

write to a certain Field storage RAM and the PFP can only process sequentially.

In the MM, there are ID FIFOs for each source port to receive the IDs that have

been allocated for it. Although the order of packets for one port can be reversed in

the PFP due to various execution time cost, the sequence of the packets will be sorted

again in the MM. Those packet IDs that get decisions before the earlier sending IDs,
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Table 4.3: Modification memory ports

Name Direction Description

pdone In Valid flag from PFP

done id In ID of source port from PFP

pdest mask[np-1:0] In Destination port mask from PFP

drop In Packet drop flag from PFP

start push[port]
In

Push signal from FM
(one signal per port) to the FIFO in MM

start id[port][3:0]
In

Data from FM
(one signal per port) to the FIFO in MM

free push Out Push signal to the free block in FM

free id Out data to the free block in FM

mm done[port]
Out Ready signal to FM

(one signal per port)

dest mask[port][np-1:0]
Out destination port mask to FM

(one signal per port)

pm pop[port]
In

Acknowledge signal from PM
(one signal per port) indicating the request is accepted

clk In System clock

rstn In Global reset

pp params Parameter
A Python dictionary
containing all needed parameters

are stored in the ID bank and waiting for the ID FIFO to pop it. In the egress of

the MM, there is a buffer stage (Output buffer) which is enabled by the pop signals

(pm pop) from the PM. The PM has a schematic in Figure 4.4 with ports defined in

Table 4.2, once a source port’s PM knows the decision is available from the MM and

its packet FIFO is not empty, the destination port mask will be popped to the PM

while the first chunk of the packet is popped from the packet FIFO. The MM will not

be accessed again until the current packet has been sent through the PM entirely.
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Figure 4.4: Schematic of Packet Modifier

4.2 Testing Environment

In this section, a real testing environment is briefly introduced. With the aim of

testing the generated switch, it should be put in a wrapper to map the pins on board

and several external blocks are required to establish the testing enviroment. The

testing connection and all on board blocks are shown in Figure 4.5.

In the FPGA, a 10Gbps serial single channel PHY gives a direct connection to

Enhanced Small Form-factor Pluggable (SFP+) optical module which is used to con-

nect different 10G devices. On top of it, several kind of bus interfaces are involved

from PHY to the generated switch core. The outermost data transmission interface

is a Ten Gigabit Media Independent Interface (XGMII) between Xilinx 10-Gigabit

MAC and a 10Gbps-capable PHY provided by Xilinx 10-Gigabit Ethernet Physical

Coding Sublayer (PCS)/Physical Medium Attachment (PMA) core. On the switch
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Table 4.4: Packet modifier ports

Name Direction Description

idata[63:0] In Packet data from packet FIFO

ivalid bytes[3:0] In Packet valid bytes from packet FIFO

ifirst In New packet flag from packet FIFO

ilast In Packet end flag from packet FIFO

odata[63:0] Out Packet data to SP

ovalid bytes[3:0] Out Packet valid bytes to SP

ofirst Out New packet flag to SP

olast Out Packet end flag to SP

empty In Empty flag from packet FIFO

pkt pop Out Pop signal to packet FIFO

mm done In Ready signal from MM

pm pop Out
Acknowledge signal from PM
indicating the request is accepted

dest mask[np-1:0] In Destination port mask from MM

ihalt In Transmission halt signal from SP

clk In System clock

rstn In Global reset

pp params Parameter A Python dictionary containing all needed parameters

core side, Advanced Extensible Interface 4 (AXI4) protocol gives transmit and receive

interfaces between MACs and the switch core. Finally, AXI4-Stream is translated to

our pkt interface with a AXI4 bridge on both transmit and receive side. In addition,

a asynchronous region is attached to transfer data to the 105 MHz core clock domain

since Xilinx MAC is working under 156 MHz.

Ideally, another Peripheral Component Interconnect Express (PCIe) interface is

required to support communication to the switch. However, it turns out to be a long

term task due to its complexity. As a temporary solution, Vivado logic analyzer offers

an option to use Virtual Input/Output (VIO) instead. This is a customizable core

that can both monitor and drive internal FPGA signals in real time. Once the bit

stream is loaded to the board, all tables could be initialized using VIO as well as
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Figure 4.5: Testing Connections on Board

monitoring drop counters, FIFO status, etc.

4.3 Synthesis Result

As the primary target of this project, the tool chain we have developed can generate

completely different hardware designs. The functionality of the generated hardware

is including but not limited to a Layer 2 switch with forwarding algorithm as in

Figure 2.5. After completing the development of tool chain, a 2-port and a 6-port

Layer 2 switch are generated and synthesised with Xilinx Vivado Design Suit. Below

the results of these two configurations are presented. The timing requirement is a big

challenge especially when the number of ports increases and lots of work has been

done in infrastructures of the packet processing subsystem to finally push critical
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Table 4.5: Maximum frequency for two configurations

2 port 6 port

Maximum frequency 129.655MHz 106.205MHz

paths to the packet buffering subsystem where it is supposed to be. As in Table 4.5

both the 2-port switch and 6-port meet the 105MHz timing requirement.

The power summary of the 2-port design and the 6-port design is in Table 4.6.

The key factors affecting power consumption can be categorized as statical or dy-

namic. The static power consumption is due to leakage current when the FPGA

is powered on while dynamic power is consumed during operations on FPGA tran-

sistors. Static power consumption is mainly determined by semiconductor process

parameters and the voltage of the power supply, hence we can see from Table 4.6

that device static power is similar between 2-port design and 6-port design. Dynamic

power consumption can be modelled as Equation 4.1 which models dynamic power

with the productive switching activity of the transistors (α), clock frequency, total

capacitance and the square of the voltage supply.

Dynamicpower = α · fclk · CL · V 2
DD. (4.1)

Typically, the last three parameters are fixed so the switching activity is the key

point between different implementations.

From Table 4.7 and Table 4.8 detailed on-chip components are listed with power

consumption as well as device utilization. Generally, there is a linear relation between

power consumption and utilization for each component. It should be reflected by

resource occupations between the two designs that most of hardware infrastructures

are instantiated per port. Obviously from the tables, the number of transceivers
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Table 4.6: Power summary for two configurations

2 port 6 port

Total On-Chip Power (W) 1.955 4.030
Dynamic (W) 1.578 3.622
Device Static (W) 0.377 0.408

(GTH) is equal to the number of ports therefore the power of this component in the

6-port design is just about three times than the 2-port design. Meanwhile, utilization

of slice logics in the 6-port switch is slightly less than three times of 2-port switch, this

means between these two implementations, some shared slice logics exist so that not

all slice logic resources need to be duplicated. Furthermore, we can notice that the

occupation of block RAMs only increases 30% in the 6-port design which is on account

of the packet buffering subsystem owning most of the block RAM resources. Most of

memories used in packet processing subsystem are synthesized as distributed RAMs

to save area, only those large memories will be synthesized to block RAMs to get

better performance and routing results. Since packet buffering subsystem is a single

block shared by all ports, it will not be affected by port number configurations. The

MMCM in the table is Xilinx mixed-mode clock manager used to generate different

clocks from system clock. There are two MMCMs in the design, one for generating

clock for Xilinx MACs and one for generating 105MHz clock for the switch core.

All in all, the total on-chip power is doubled while the number of ports is tripled

which demonstrate that the resources can be shared partly between various configu-

rations.
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Table 4.7: On-chip components power report for a 2-port Layer 2 switch

On-Chip Power (W) Used Available Utilization (%)

Clocks 0.414 18 — —
Slice Logic 0.026 152421 — —
LUT as Logic 0.025 83623 433200 19.30
Register <0.001 42226 866400 4.87
CARRY4 <0.001 1697 108300 1.56
LUT as Distributed RAM <0.001 7982 174200 4.58
F7/F8 Muxes <0.001 1361 433200 0.31
LUT as Shift Register <0.001 192 174200 0.11
Others 0.000 465 — —
Signals 0.073 120034 — —
Block RAM 0.234 100 1470 6.80
MMCM 0.211 2 20 10.00
I/O 0.004 28 600 4.66
GTH 0.616 2 — —
Static Power 0.377
Total 1.955

4.4 Implementation Analysis

We conclude that the packet processing subsystem achieves the initial requirements

which is extremely flexible and fully configurable. This tool chain sets all the config-

urations under software control unlike any hardware reconfiguration which may have

redundancy logics. The final generated hardware of this tool chain includes minimum

logic units for the required applications. The switch generation process is entirely

parametrised and the interface oriented to customer consists of only several param-

eters like number of ports, the port speed, the forwarding algorithm etc. In spite of

some unsupported features in the initial version, it is quite convenient for extension.

For instance, the tool chain in this thesis project is designed only for a Layer 2 switch

which does not require packet modifications in Layer 3. It is known that the two

independent hardware modules PD and PM around PFP can be updated to have
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Table 4.8: On-chip components power report for a 6-port Layer 2 switch

On-Chip Power (W) Used Available Utilization (%)

Clocks 0.899 26 — —
Slice Logic 0.064 391084 — —
LUT as Logic 0.061 217009 433200 50.09
Register 0.002 100669 866400 11.61
CARRY4 <0.001 5050 108300 4.66
F7/F8 Muxes <0.001 2641 433200 0.60
LUT as Shift Register <0.001 564 174200 0.32
LUT as Distributed RAM <0.001 22124 174200 12.70
Others 0.000 1359 — —
Signals 0.192 302839 — —
Block RAM 0.422 132 1470 8.97
MMCM 0.211 2 20 10.00
I/O 0.004 44 600 7.33
GTH 1.830 6 — —
Static Power 0.408
Total 4.030

more compatibility to support more complicated protocols. In a Layer 2 switch the

PM is only used to synchronize the PFP and the the packet FIFO (i.e., ensure the

packet forwarding decision from the PFP and the packet chunk from the packet FIFO

belongs to the same source packet). If a packet modification is required, each part of

the tool chain can be updated simultaneously as below:

• In the instruction set, packet overwrite/insert/delete instructions will be added.

• In the RTL generator, new tokens and the corresponding RTL frame will be

created for each new instruction.

• In the hardware infrastructure PM, new control logic should be appended to

modify packet data from the packet FIFO.

Thanks to the high scalability and flexibility of the Flexswitch platform, it is

friendly in maintenance and limited in hardware consumption. However, unfortu-
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nately and inevitably, during the development, part of the design is regarded as

inappropriate and some are even critical.

First of all, a fully pipelined PFP is not efficient. As we know, normally instruction

sets are developed for processor applications. Clock frequency in a processor could

be in GHz, which is much faster than the system clock in a hardware switch. For

example, in Xilinx 10G MAC [11], the reference clock frequency is 156.25 MHz.

The fully pipelined PFP not only leads to an intolerable latency with an increase

in complexity of forwarding algorithm, but also duplicates a lot of hardware units

that could have been reused. Although it is possible to do some optimization like

executing instructions in parallel based on their dependency, finally it will turn to a

wire connection issue in hardware. Due to branch control and table access, the RTL

generator is already under pressure to cope with the wire mappings. Therefore, it

is unlikely that the instruction dependency could be handled easily if more complex

connection logics are required.

Increase in the complexity of forwarding algorithm leads to other potential prob-

lems. Because of no control flow, all branches relying on hardware arbitrators, rela-

tively simple arbitration mechanism will lead to unnecessary hardware buffers used

for synchronizing different branches in a same destination stage. However it is a ar-

duous task to develop a smart arbitration or scheduling mechanism suited for our

design.

Other drawbacks lies in hardware infrastructures. As we know, all the existing

hardware modules are parametrized. On the one hand, it gains capability for han-

dling various scenarios, while on the other hand most of the hardware infrastructures

(PD, packet FIFO and PM)are instantiated per source port. As the port number
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grows, these hardware modules are duplicated and the hardware area is multiplied.

Meanwhile, the duplicated hardware infrastructure complicates the interfaces between

modules and lead to a tough routing task. On all accounts, hardware complexity is

required in order to promise flexibility. In our case, we cut off the flexibility based

on the physical number of ports and accumulate the complexity as the port amount

increases. Instead of this solution, we can try to extract shared logic between different

ports as much as possible. Thus, reducing the hardware cost when the number of

port increases. For instance, the PD introduced in the design is allocated per port, it

provides the possibility to execute sophisticated decoding requirements with respect

to each port. However, in most cases one decoding strategy can fit for all ports.

Therefore, one PD can be shared between all source ports to reduce hardware area

and routing complexity.
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Chapter 5

Packet Processing Optimization

Based on the conclusions that we get according to the previous design, it is necessary

to find solutions to the problems resulted after the initial design. In principle we

hope to do optimizations in two aspects: find a certain way to glue instruction set and

hardware architecture closer, as well as limit the increment of hardware infrastructures

to a reasonable scope when design configuration raises complexity.

5.1 Intermediate Stage

As summarized in Section 3.3 of Chapter 3, introducing assembly language as the

intermediate stage gains some benefit while generating the RTL, but also brings trou-

blesome issues. It is important to focus in detail if there is any better intermediate

stage. Basically we expect an intermediate stage that could describe hardware be-

haviour and include data flow in it. While generating the hardware, the data flow and

the possible parallel opcodes are determined so that no further processing is needed

to get the reasonable RTL. Inspired by Data Flow Graph (DFG) which shows data
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dependency between a number of operations, we found nice properties of it to fit our

system. A DFG consists of two parts: execution nodes that refer to instructions in a

assembly program and directed edges that show control flow of the system.

DFG provides a valuable short cut to fit the gap between software and hardware.

Under this intermediate stage, the RTL generator does not need to care about branch

or table access issues anymore. Instead, the compiler is responsible for branch or table

access issues. Also the PPL program will be analysed and logical data flow will be

sorted from a high altitude. Another advantage is the flexible pipeline strategy, since

the initial DFG generated by the compiler does not contain any timing information,

there should be a post processing step to change the timeless model to a timing

model before sending it to the RTL generator. The additional processing step here is

implemented by a DFG optimizer which will estimate delays of execution nodes and

insert appropriate flip-flops when parallel execution occurs with different delay. In

addition, the DFG optimizer could prejudge area, power consumption of all nodes,

under different area or timing requirements, the initial DFG could be rearranged or

pipelined through different ways.

Both the initial DFG and the optimized DFG can be described using the GraphViz

dot file format [12] although it is possible to pass the data structure directly between

compiler and optimizer without going through an intermediate file. With the help of

GraphViz, graphs can be described in a simple text language and by default the text

file name has a suffix *.dot. Considering the basic scenario as an example i.e. node

A to node B (Figure 5.1), the two main components of a dot file are node definitions

and directed edges. One limitation of this method is that all the execution nodes

should have fixed latency, otherwise the optimizer cannot calculate required number
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Figure 5.1: Example of a GraphViz dot file

of flip flops after this node. Currently latencies of all nodes that have been developed

in packet processing are fixed, the only time consuming node is the lookup node and

the latency is one clock cycle, rest of the nodes can be treated as combinatorial nodes.

Thanks to the object oriented RTL generator, it is convenient to transform its

input from an assembly program to a dot file. The RTL generator still consists of a

scanner, a parser and a builder, but new regular expressions are used in the scanner to

capture token lists. Also in the parser and the builder, token lists containing directed

edges will be interpreted to signal assignments.

Below is a PPL fragment source code about table lookup with if statement:

bit:16 da;

bit:16 tl;

bit:16 x;
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da = pkt.read(0,15);

tl = pkt.read(96,111);

if (tl == 0’h1234)

x = l2tab[ da ];

else

x = 0’hffff;

pkt.write(16,31,x);

It contains two packet read nodes, one table lookup node, one flow control node and

one packet write node. Its DFG format is in Figure 5.2

5.2 Infrastructure around Packet Forwarding

With the aim of reducing infrastructure complexity around the PFP, we decided to

give up some adaptability and focus on necessary requirements of a Layer 2 switch.

Previously, packet processing subsystem in Figure 3.8 has a separate pkt interface

apart from the PFP. However, after changing from assembly program to DFG as the

intermediate stage, parallel execution in the PFP comes true. Furthermore, even with

the lowest pipeline depth, timing constrain is still met in PFP. In a typical Layer 2

switch, the depth is normally less then 10. Due to this fact, using pkt interface in

3.8 will not gain much in hardware cost. In the initial design, there is such a deep

pipeline in the PFP that if the packet data is passed through PFP pipeline stages

then a huge number of registers will be needed. Based on this premise, we separate

packet processing flow and packet transmission flow. Once the pipeline depth in the

PFP decreases significantly, it is worth integrating the packet transmission in the
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Figure 5.2: Example of a Graphviz DFG

PFP as well and get rid of packet FIFOs for the initial pkt interface.

Functionality of the PD is not as important as before once the packet FIFO has

disappeared since the PFP will anyhow receive every single packet chunk. These

chunks will have all the information that has to be decoded. Alternatively, merging

functionality of packet decoding into the PFP can be a beneficial option. However,

the critical issue of this proposal is caused by the location of decoding data because

required packet information may have a possibility to be located in an unpredictable
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Figure 5.3: Move the SP to the head of the PFP

chunk number as the chunk size varies. To address this problem, Ethernet protocol

must be taken into account. In a Layer 2 switch, packet decoding is actually the

Ethernet packet header decoding. The Ethernet header features destination and

source MAC addresses which have 6 octets each, the EtherType protocol identifier

field and optional IEEE 802.1Q tag. As we know, in the initial design the processing

unit in the packet processing subsystem is one packet chunk, and the SP between the

packet processing subsystem and packet buffering subsystem collects small packet

chunks to large packet cells. All in all, the size of the Ethernet header should be less

than one packet cell (in our design it is 160 bytes). Suppose we move the SP forward

and extend the input bandwidth of the PFP to one cell as shown in Figure 5.3, it is

guaranteed that the Ethernet packet header is in the first cell of a packet. That is

to say, in the new PFP module making packet forwarding decision is only triggered

when the first cell of a packet comes, otherwise, it passes the packet cell through

pipeline stages and output to the packet buffering subsystem.

The new PFP structure is shown in Figure 5.4, the entire PD is replaced by a direct

extraction block in the PFP and the first flag is used as enable for the forwarding
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Figure 5.4: Simplified Packet Forwarding Pipeline Structure

logic.

Hardware infrastructure around PFP is hence incredibly decreased and turns out

to be a structure in Figure 5.5, it is quite straightforward and has been compacted as

much as possible. Obviously this architecture sacrifices flexibility to a certain extent,

it cannot handle packet headers larger than a cell and the protocol cannot be too

complicated. However, for a traditional Layer 2 or even Layer 3 switch, we consider

it is sufficient.

Derived from software supervised DFG, the clumsy wire connection and buffer

insertion in the PFP RTL module is disappeared. Previous pkt interface can be

merged to PFP module effectively. As a consequence, the generated switch from this

tool chain becomes more compact and relieve the routing complexity.
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Figure 5.5: Simplified Packet Processing Subsystem

Table 5.1: Timing Comparison

2 port 6 port

Initial design Maximum frequency 129.655MHz 106.205MHz

Optimized design Maximum frequency 134.803MHz 110.803MHz

5.3 Optimized Implementation Result

This section compares the implementation results between the optimized design and

the initial design proposal. With the purpose of judging improvements we gained

from the optimized design, below we list the synthesis results for the optimized one

as well as the results we get for the initial design in Chapter 4. The comparison

includes timing, device utilization and power consumption.

Table 5.1 lists maximum frequency in two designs and they all meet the required

105 MHz core clock frequency to get full cell rate. Apparently when it comes to 6

port the timing slack is limited, if we are targeting more ports design, the critical

path which resides in the packet buffering system should be optimized.

72



Table 5.2: Device Utilization Comparison

2 port 6 port

Initial design Number of slice registers 4.87% 11.61%
Number of slice LUTs 19.30% 50.09%

Optimized design Number of slice registers 2.42% 5.19%
Number of slice LUTs 5.07% 12.99%

Table 5.3: Power Comparison

2 port 6 port

Initial design On-chip power 1.955 W 4.030 W

Optimized design On-chip power 1.585 W 3.427 W

Device utilization is another result that we focus on. As in Table 5.2, the area

saved from optimized design is remarkable, with a 6 port implementation, resource

occupation in the optimized design is still less then a 2 port design with initial struc-

ture. We should admit that the initial design is more flexible and leads to more

redundancy, but since we are developing a tool chain from software to hardware, we

have the capability to push flexible part under software control as much as possible

while keeping hardware structure clean. On-chip power consumption shown in Ta-

ble 5.3 is also an evaluation of the optimized design. As device utilization decreases,

the power consumption drops accordingly.

The gains we get from the optimized design are due to using DFG as the inter-

mediate format. It offers an opportunity to simplify hardware infrastructures a lot.

Firstly, low pipeline depth in the PFP allows us to merge packet transmission into

the PFP and hence the packet FIFO per port is replaced by registers in the PFP.

Since PFP is shared by all ports, the hardware resources in this part will not change

if number of port increases. Secondly, the unified packet transmission path in the

packet processing subsystem provides possibility to get rid of the complicated PDs
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in the initial design. In the original PD, extracted packet fields need to be stored in

memories in advance, the packet read instruction is in fact a RAM read operation.

In the optimized design, all the field storage logics are disappeared but a direct bit

extraction operation is left. Without the complex interface between packet decoder

and field memory, routing difficulty is reduced and device utilization is dramatically

dropped. Above all, the valuable feature we can get from the two optimizations is that

the hardware occupation of these logics are not dependent on port configurations.

74



Chapter 6

Conclusions and Future work

This chapter summarizes the thesis project, analyses worth of the project and lists

further steps to make it generating real functioning switches.

With the aid of the compiler developed by PacketArc AB, we bridge the gap be-

tween software and hardware, developed a tool chain to automatically create hardware

for Ethernet switches from a high level C-like language. This addresses the challenges

to find an efficient solution to meet different port and bandwidth requirements. With

the flexibility of high level packet processing language, the forwarding architecture

can be generated by various forwarding algorithms very quickly. The output from the

tool chain is synthesizable RTL code and based on different implement scenarios, a

corresponding wrapper is provided to fit the target board.

So far at the end of the thesis project, we implemented a 6-port 10G Layer 2 switch

with minimum forwarding functionalities. We have simulated the switch through

random test cases successfully and finally come to an on-board test. In the throughput

test 100% throughput is reached for fixed size packets and more stress tests for mixed
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size packets are in progress. At this point, we may say the architecture and the entire

tool chain has been proved feasible. Currently the tool chain is aiming at generating

a pure Layer 2 switch, since packet processing subsystem is assembled by individual

blocks, if a library with enough hardware infrastructure is established, the hardware

architecture of the target switch could be determined more aggressively and wisely.

In future work, more packet processing scenarios need to be supported, this in-

cludes tool chain update from the compiler to the RTL generator as well as new

hardware infrastructures. To easily observe the switch status like number of dropped

packet, internal overflow or underflow, a set of internal observation points is required.

Also, a user-friendly configuration interface is necessary so that the lookup tables

in the switch can be configured conveniently. Eventually, a PCIe interface shall be

hooked to the generated switch for user monitoring and switch inner control. Fi-

nally, the robustness of the switch should be guaranteed. if catastrophic error occurs

in the switch, some assertion checkers are required to be able to reset the switch

automatically.

Finally, based on this thesis project and the results that have been analysed, we

have reason to believe that it is possible to use the developed tool chain to create

efficient packet processing solutions for a broad range of requirements with less effort.
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