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Abstract

Objective: To implement a statistical atrioventricular node model which
accounts for important electrophysiological properties, and to use the model
to investigate the effect of the atrial fibrillation drugs Carvedilol, Diltiazem,
Verapamil and Metoprolol. The model uses a maximum likelihood approach
to estimate three parameters, that characterize the probability of an impulse
choosing either one of the two nodal pathways, the difference in refractory
period between these pathways and the prolongation of the refractory pe-
riods. Methods: The analysis was based on ambulatory recordings. Every
participant in the study performed five 24-hour recordings, one for each of
the drugs and one without. The model was evaluated on simulated RR in-
tervals to test the parameter estimation, and on the ambulatory ECG to test
the accuracy of the estimated PDF. Results: The model was accurate when
200 RR intervals or more were present for calculations. The results showed
that the estimated PDFs had 77 % agreement with the RR histograms from
the ECG signals. For most of the drugs it was possible to see a trend in
how they affected the parameters, even though the change was individual
for each patient. The parameters were affected differently by the different
drugs. Conclusion: This study indicates that the presented model can be
used to detect antiarrhythmic drug effect in the atrioventricular node in
atrial fibrillation patients.

Index terms - Atrial fibrillation (AF), atrioventricular (AV), atrioventric-
ular node (AVN), Carvedilol, concealed conduction, Diltiazem, dual path-
ways, Holter recordings, maximum likelihood estimation (MLE), Metopro-
lol, refractory period, RR intervals, statistical modeling, Verapamil.
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3.1.3 Clusters in the Poincaré plot . . . . . . . . . . . . . . 23
3.1.4 Time domain analysis . . . . . . . . . . . . . . . . . . 23
3.1.5 Spectral analysis . . . . . . . . . . . . . . . . . . . . . 24
3.1.6 Estimating the fibrillation frequency . . . . . . . . . . 24

3.2 Mathematical models of the atrioventricular node . . . . . . . 28
3.2.1 Non-invasive estimation models . . . . . . . . . . . . . 28
3.2.2 An invasive estimation model . . . . . . . . . . . . . . 32
3.2.3 A non-invasive simulation model . . . . . . . . . . . . 32

1



3.2.4 Invasive simulation models . . . . . . . . . . . . . . . 33
3.3 Previous studies of drugs effect on AF . . . . . . . . . . . . . 34

4 Mathematical background 36
4.1 The Poisson Process . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Maximum likelihood estimation . . . . . . . . . . . . . . . . . 38
4.3 Simulated annealing . . . . . . . . . . . . . . . . . . . . . . . 39

5 Dataset 42

6 Methods 43
6.1 The maximum likelihood estimator . . . . . . . . . . . . . . . 44

6.1.1 Probability density function . . . . . . . . . . . . . . . 44
6.1.2 Input parameters . . . . . . . . . . . . . . . . . . . . . 47
6.1.3 Optimization process . . . . . . . . . . . . . . . . . . . 50
6.1.4 Properties of the AV model . . . . . . . . . . . . . . . 51

6.2 Model modification . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Performance evaluation 54
7.1 Simulated RR series . . . . . . . . . . . . . . . . . . . . . . . 54
7.2 ECG recordings . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8 Drug analysis 57

9 Results 58
9.1 Simulated RR series . . . . . . . . . . . . . . . . . . . . . . . 58
9.2 ECG recordings . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9.3 Drug analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

10 Discussion 71

11 Conclusion 74

2



Preface

We would like to start with thanking our supervisor Leif Sörnmo for his
enthusiasm, constructive feedback and help during this study, and for pro-
viding the task to us. We would also like to thank Frida Sandberg who has
provided us with important information, the data and algorithms needed to
carry out the study and support during the process. And finally a big thank
you to Valentina Corino for an inspiring meeting in Milan about statistical
AV nodal modeling.

3



Chapter 1

Introduction

Atrial fibrillation (AF), is the most common cardiac arrhythmia, affecting
0.5-1 % of the general population. It refers to a rapid and chaotic atrial
beating of 400-700 beats/minute that causes the ventricles to beat in an
irregular way, often with a rate at 140-220 beats/minute. The quality of life
is reduced, it can cause other mortal diseases and give rise to high medi-
cal costs. The rapid and irregular rate causes the blood to flow more slowly
through the atria, and the risk for a blood clot increases, which can lead to a
stroke or other damage in the body. Patients diagnosed with AF is therefore
often prescribed with blood-thinning drugs to prevent clots from forming.
In addition, there are particularly two treatments of AF: controlling the
ventricular rhythm or restoring the sinus rhythm. The pathophysiology of
AF is complex and not completely understood. It is therefore desirable to
develop techniques to quantify AF disease and to guide the treatment. One
of the most common tools to investigate AF, or other cardiac diseases, is the
electrocardiogram (ECG) that measures the electrical activity of the heart.

Several groups have done experiments to evaluate the possibility to use sig-
nal processing to derive more information about AF. There is a variety of
methods to analyze the ECG, mostly by looking at the time between con-
secutive heart beats, i.e. the RR interval. Some methods mentioned in this
study are to analyze RR interval histograms and the Poincaré plot, which are
both used in this study to estimate interesting parameters of the atrioven-
tricular node (AVN) and to view changes in the RR interval distribution.
Estimation and simulation methods, both invasive and noninvasive, have for
example been evaluated by Glass et al. [1] and Cohen et al. [2]. This study
is based on the model and non-invasive estimation method by Corino et al.
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in 2011 [3], to some extent inspired by Cohen.

The aim of this study is to implement a statistical AVN model which ac-
counts for important electrophysiological properties, and to apply it on ECG
signals to analyze the effect of different AF drugs. The model treat the
AVN as a lumped structure where concealed conduction, relative refractori-
ness and dual nodal pathways are included. From regular non-invasive ECG
signals the RR intervals are retrieved. These are used as input when esti-
mating the AVN properties, using maximum likelihood estimation (MLE).
The ECG signals are taken from the RATAF database where patients have
taken a 24-hour Holter ECG for each of the four drugs evaluated (Metopro-
lol, Verapamil, Carvedilol and Diltiazem) and one recording without. All
these drugs control the ventricular rate by increasing the AV nodal block
and, hence, decreasing the number of atrial activations entering the ventri-
cles.

The anatomical and physiological background of the heart is described in
Sec. 2, together with a deeper explanation of the pathophysiology of AF,
with different classification schemes and treatments, in Sec. 2.2. The atri-
oventricular AVN and theories of its behavior is presented in Sec. 2.3. In
this chapter the reader is introduced to the physiological concepts that this
project are based on. In Sec. 3 earlier work with different models and tech-
niques are described. Sec. 4 gives the mathematical background, describing
the theory of Poisson processes, MLE and simulated annealing, all used in
this project.

The report continues with a description of the data in Sec. 5 and an de-
scription of the method in Sec. 6, going through the process of the Maxi-
mum Likelihood estimation and the analysis. The performance of the model
was evaluated with different techniques described in Sec. 7. Thereafter the
model is applied to analyze drug effects in Sec. 8

Finally, the results are presented in Sec. 9. Sections 10 and 11 contain
encountered problems, remarks, suggestions for future work and conclusion.
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Chapter 2

Cardiac Anatomy and
Physiology

2.1 Heart physiology

2.1.1 Anatomy

The heart is a muscle the size of a large fist [4]. It is divided into two
sides, each consisting of two chambers, the atrium and the ventricle. Its
primary purpose is to pump oxygen-rich blood throughout the body. Blood
is collected in the right atrium from all the veins in the body except from the
lungs. When the atria contract, the blood is forced into the right ventricle,
which, when filled, contracts and forces the blood into the lungs where
carbon dioxide is replaced with oxygen. The oxygenated blood then returns
to the left atrium which contracts and forces the blood into the left ventricle,
which in turn contracts and empties into the aorta and further to all the
organs in the body. The blood then returns to the right atrium through the
venous system, and the cycle is complete.
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Figure 2.1: Schematic illustration of (a) the heart’s anatomy (with arrows
showing the direction of the blood flow) and (b) its electrical conduction
system.

From an engineering point of view we can consider the heart as a closed,
electrically conducting shell of non-negligible thickness that contains electri-
cal sources [5]. The heart is composed by muscle cells with several important
properties. They can generate a dramatic change in the electrical potential
across the cell membrane, known as an action potential. They can influence
neighboring cells to also generate an action potential, producing a mov-
ing wavefront. As part of an action potential the intracellular calcium ion
concentration increases and the cell contracts. Thus, the electrical and me-
chanical properties of the heart are closely linked.

Efficient pumping of blood requires that the atria contract first, followed
almost immediately by the ventricles [4]. The contraction is trigged by
depolarization of the plasma membrane. The excitation of a cardiac cell
eventually results in the excitation of all cardiac cells. Each cardiac cycle
is composed by two phases, in electrical terms referred to as depolarization
and repolarization and in mechanical terms as contraction and relaxation.
The impulse propagates through the conduction system of the heart so that
the contraction and relaxation of the atria and ventricles can take place with
the right timing. The initial depolarization normally occurs in a small group
of cells called the sinoatrial (SA) node, which is located in the right atrium.
After depolarization and contraction of the atria the impulse is collected
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and delayed at the AVN before it enters the ventricles. The delay in the
AVN is caused by slower conduction of the impulse in the muscle cells in
this region and allows the atrial contraction to further increase the blood
volume of the ventricles before they contract. The impulse then enters the
wall between the two ventricles at the bundle of His and propagates through
rapidly conducting bundles that branches out in the left and right ventricles.
Since the electrical behavior of the AVN is of interest in this paper, it will
be described in more detail later on.

2.1.2 Electrocardiography

Measuring the electrical activity of the heart is of interest from a diagnostic
point of view, since electrical behavior of the heart can alter the contrac-
tile behavior and mechanical or chemical changes can alter the electrical
pattern [5]. A cardiac action potential generally consists of:

• a rapid activation phase during which the membrane depolarizes

• a longer interval of stable potential, the plateau phase

• a relatively slow repolarization phase during which the potential re-
covers to its resting value

Once an action potential has been initiated there is a period of time when
a new action potential cannot be initiated. This period is called the effec-
tive refractory period (ERP) of the tissue. The relative refractory period
immediately follows and is the time where initiation of a new action poten-
tial is inhibited but not impossible. With electrodes located just outside
individual cells the extracellular potential differences between regions of the
myocardium can be measured. With the electrode moved further away from
the heart, it will sense a larger amount of cardiac tissue and the shape of
the signal will change.The ECG recording describes the different electrical
phases of a cardiac cycle and represents a summation in time and space of
the action potentials generated of millions of cardiac cells. The baseline in
the ECG reflects the resting state of the cell and the waveforms corresponds
to depolarization and repolarization. Action potentials associated with dif-
ferent regions of the heart are shown in Fig. 2.2. As seen, the depolarization
waveforms are steeper and more peaked than the repolarization waveforms.
The timing relationship and the related ECG signal is also illustrated [5].
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Figure 2.2: Morphology and timing of action potentials from different re-
gions of the heart and the resulting ECG, recorded from the body surface.
Reprinted with permission from [4].

A group of cells simultaneously depolarizing can be described as an
equivalent current dipole associated with a vector. The vectors describe
the time-varying position, orientation and magnitude of the dipole and can
be summed to give a dominant vector describing the main direction of the
electrical impulse, se Fig. 2.3.

Depending on the location of the electrode the resulting wave can be
positive or negative, associated with a vector directed towards or away from
the electrode respectively. Generally, the ECG is displayed as in Fig. 2.4.
The first wave (P) is associated with atrial depolarization, the second much
larger peak (QRS) with the depolarization of the ventricles and the last
wave (T) is associated with ventricular repolarization. The R wave is larger
than the P wave since the ventricles have a larger muscle mass. The two
negative waves (Q and S) corresponds to ventricular depolarization in the
walls of the heart, resulting in a vector directed away from the electrode.
Up to twelve different leads are used when taking an ECG. Each lead is
measured between a pair of electrodes placed at different locations on the
chest or body.
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Figure 2.3: The vector associated with each group of cells in the myocardium
can be summed into a dominant vector describing the main direction of the
electrical impulse. Reprinted with permission from [4].

Figure 2.4: Wave definitions of the cardiac cycle and important intervals.
Reprinted with permission from [4]. 10



Many cardiac abnormalities cause changes in the electrical behavior, e.g.
different arrhythmias. These will alter the shape and size of regional action
potentials and cause changes in the body-surface ECG. Arrhythmias arise
from many sources and can be very dynamic in nature. The standard ECG
plays an important role in clinical medicine. From detecting the heart rate,
heart rhythm abnormalities or to find regions of abnormal conduction be-
tween the atria and ventricles. But, there are also limitations to the standard
ECG. Events in the posterior regions of the heart are not well detected due
to the location of the electrodes on the chest. And since the ECG is the
spatial integral of many simultaneous events, defects can be canceled out or
enhance.

Despite its limitations the ECG is one of the most commonly used diag-
nostic treatments in clinical practice and thus a preferable tool for deeper
analyzes of the electrical behavior of the heart.

2.2 Atrial fibrillation

Atrial flutter and AF are two types of atrial tachycardia produced by in-
creased automaticity in the atrial pacemaker cells [4], [6]. The atriums are
unsynchronized with the ventricles and beat at a much faster pace, but since
most of the impulses are conducted to the ventricles the resulting heart rate
is often 140 to 220 beats/minute. Both atrial flutter and AF are caused by
continuing reentry of an electrical impulse in the atria or by ectopic firing,
impulses initialized in other parts than the SA. It is manifested in the ECG
by an undulating baseline which replaces the P waves. Due to the rapid and
irregular rate, blood flows more slowly through the atria and the risk for
a blood clot to be produced is increased. If pumped out of the heart, the
blood clot can lead to a stroke or cause damage in other parts of the body.
Atrial flutter is the more organized arrhythmia of the two, with the atria
beating regularly at a rate of about 300 beats/minute. AF, on the other
hand, is more rapid and chaotic rhythm with 400-700 beats/minute. This
makes the ventricles beat irregularly unlike the ventricular beating during
atrial flutter.

The pathophysiology of AF is complex and not completely understood.
Genetic predisposition, structural changes and fibrosis, progression of heart
disease, inflammation, autonomic dysfunction coupled with electrophysio-
logical abnormalities of the atria, and pulmonary vein sleeves, may all act,
to various degrees, as contributors to initiation and maintenance of the fib-
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rillatory process. With evolving mapping technologies, stable or unstable
reentrant circuits with short cycle lengths, close to the pulmonary vein,
have been identified as AF drivers, giving rise to impulses bombarding the
AVN. Some of these get through to the ventricles producing a very rapid
and irregular ventricular rate.

Figure 2.5: Examples of ECG signals for different atrial and ventricular
tachycardias. (a) Atrial flutter, (b) atrial fibrillation, (c) ventricular flutter
and (d) ventricular fibrillation.

AF is the most common arrhythmia, affecting about 0.5-1% of the gen-
eral population [7]. Currently, there are two ways to manage AF: to restore
and maintain sinus rhythm or to allow AF to continue but keep the ventric-
ular rate under control. The patient selection and management is mainly
empirical and does not take the various mechanisms and patterns into ac-
count. It is therefore desirable to develop tests the quantify AF disease
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state and to guide AF management. Electrograms of fibrillatory waves, al-
terations of P wave morphology and irregular RR intervals are all considered
as expressions of the electrophysiological changes associated with AF.

2.2.1 Atrial activation and mapping

The wavelength concept has been used to describe atrial activation [6]. It is
defined as the product of conduction velocity and refractory period. Long
wavelengths give rise to larger and fewer wavefronts, while short wavelengths
result in smaller circuits that may have implications for arrhythmia suscep-
tibility and stability as well as for therapeutic effects of anti arrhythmic
drugs, cardioversion or ablation. Studies on animals as well as humans have
been done to examine structural, functional and electrophysiological require-
ments for AF induction and sustenance and are in close agreement with each
other. One common finding was progressive shortening of atrial refractori-
ness in protocols involving chronic rapid pacing or electrically maintained
AF. Daoud et al. and Yu et al. both investigated the effective refractory
period (ERP) and found a significant shortening with induced AF.

2.2.2 Classification

Today there is no common agreement on the best AF classification [8]. Sev-
eral schemes has been proposed, but none includes all different aspects of
AF. One scheme is proposed by Gallagher and Camm, and divides AF into
paroxysmal, persistent and permanent AF. The first category interrupts
spontaneous within 7 days, but often in 24-48 h, the second does not in-
terrupt spontaneously but with therapeutical interventions and the latter
where no successful interruptions have been made. AF guidelines published
in 2006 divides AF into two groups; first detected AF episode, that can
paroxysmal, persistent or permanent, and recurrent AF in the presence of
two or more relapses. The classification is important not only for a deeper
understanding but also to allow a better comparison of published studies.

2.2.3 Treatment

Some of the general treatments include prevention of thromboembolic com-
plications, control of ventricular rate and restoration of sinus rhythm [8].
Due to the inefficient pumping of blood the risk for thrombosis increases.
The thromboembolic risk increases significantly when AF duration exceeds
48 h and thus, patient management varies in relation to arrhythmia dura-
tion. Some of the most critical decisions to make in all patients with AF is
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how to perform, start and interrupt drug treatment for preventing throm-
boembolic events. Most patients with AF take anticoagulation drugs, and
those with permanent AF often have to continue with the treatment for the
rest of their lives.

Control of the ventricular rate is a crucial goal of pharmacological man-
agement of AF and drugs acting on the AVN is often used, e.g. Digoxin,
beta-blockers and calcium antagonist. Antiarrhythmic drugs or electrical
DC cardioversion can be used to restore sinus rhythm. Cardioversion is
generally applied to patients with AF duration greater than 48 h. In about
60% of patients where sinus rhythm is restored AF recurs in 6-12 months.
Prevention of AF recurrences is therefore a major objective in the treatment
of AF patients. However, this treatment suffers from limited efficacy and
relevant incidence of side effects of antiarrhythmic drugs, but new promising
strategies to evaluate AF recurrences are developing.

2.3 The atrioventricular node

The AVN is a small region of the heart that regulates the relation between
atrial and ventricular activations [9]. Over the years different ideas of how
the AVN works has been described. For example the refractoriness of this
region can be modeled in different ways.

2.3.1 Concealed conduction

One of the theories is about concealed conduction, first used by Langen-
dorf [10] in 1948 to describe how an impulse entering the AVN sometimes
fails to transmit it to the ventricles. Concealed conduction within the AVN
is often described as the reason for the irregular ventricular rate during AF.
The term was initially restricted to include partial or incomplete forms of
AV nodal block, where an impulse did not generate a distal response but had
an impact on the impulses that followed it, and abortive AV conduction of
a premature junctional impulse blocked in both directions. The concept of
concealed conduction has grown over the years to explain the relatively slow
ventricular rate during AF. It states that the ventricular rate is determined
by strength, form, number, direction and sequence of the fibrillatory im-
pulses that reach the AVN and by the electrophysiological properties of the
AVN. Long RR intervals are described as a consequence of repetitive con-
cealed anterograde AVN conduction, while short RR intervals corresponds
to the functional refractory period of he AVN.
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2.3.2 Decremental conduction

Another idea is that of decremental conduction, where an impulse fails to
transmit due to a progressive decrease of the action potential as it spreads
through the tissue. From the original studies of Hoffman, concluding that
the AVN is the site of slow but continuous conduction of electrical impulses
from the atria to the His bundle, it has been almost universally accepted
as the mechanism responsible for the slowing of conduction and block due
to repetitive premature excitation of the AVN. According to Watanabe and
Watanabe ”AV block occurs because of decremental conduction rather than
by a refractory barrier, although the resultant concealed conduction would
prolong the refractory period of distant nodal fibers and further modify the
conduction pattern.” Meijler et al. [9] states that the concept of decremental
conduction, as described by Hoffman, only can occur in homogeneous and
continuous excitable media, which is not the case for the AVN. Their work
is thus critical to this concept and concludes that ”although electrotonic
modulation of pacemaker activity may not explain some of the phenomena
associated with the AVN response to AF, the explanation of Watanabe and
Watanabe based on the concept of decremental conduction seems at least
equally unsatisfactory”.

2.3.3 Electrotonic modulation

The work of Meijler et al. [9] mainly concerns the idea of electrotonic modu-
lation in the AVN and how this idea relate to that of decremental conduction.
Electrotonic denotes the spread of current in tissues by electrical conduc-
tion, without generation of a new action potentials. They state that the
difference between these two is that in decremental conduction the ampli-
tude of the active response decreases gradually until it dissipates completely
and is unable to excite tissue ahead of it. In electrotonic transmission, on
the other hand, the action potential stops at the site of a block.

An impulse that is blocked within the AVN may induce a subthreshold
depolarization just distal to the site of the block. This is caused by elec-
trotonic current flow from depolarized to non depolarized cells and can be
manifested at appreciable distances ahead of the block. This effect can, and
has been, measured with micro electrode recordings of actions potentials in
the AVN during premature stimuli. It has been shown that electrotonic de-
polarization can have profound effect of the electrophysiological properties of
the tissue distal to the block. Experiments to demonstrate this phenomenon
has been done by different groups. Antzelevitch and Moe [11] used differ-
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ent models of isolated cardiac Purkinje fibers and concluded that concealed
conduction may be explained in terms of, what they called, electrotonic in-
hibition of excitability. Davidenko et al. [12] has also demonstrated in their
experiment that while repetitive depolarizing pulses of threshold amplitude
elicited action potentials in a 1:1 manner, single brief subthreshold pulses led
to transient decays in excitability and even complete failure of subsequent
excitation.

More recently Liu et al. [13] carried out experiments in single myocytes
from the rabbit AVN along with computer simulations to study the mecha-
nism of electrotonic inhibition and the cellular basis of concealed conduction
in the AVN. They found that electrotonic inhibition was the result of partial
inactivation of the transient calcium current and that the subthreshold re-
sponse to prevent subsequent excitation of an AVN cell was increased when
the interval between the conditioning subthreshold pulse and the succeeding
pulse was shortened, or when the amplitude of the subthreshold pulse was
increased. Their simulations with an array of AV nodal cells also showed
that an impulse that failed to traverse the AVN caused a delay or block
of the following impulse due to subthreshold depolarization that continued
downstream of the site of block.

2.3.4 Dual pathways

One property of the AV conduction system is the dual pathway AVN elec-
trophysiology. This term refers to a theory of two different wavefronts that
propagate in tandem from the atria to the His bundle. One has a shorter
effective refractory period and one has a longer, called the slow and fast
pathway, respectively. This phenomenon was first described by Moe et
al. [14] in 1950’s, but the role the two pathways play in the conduction
system of the AVN is still debatable. Moe et al. performed experiments in
dogs, turtles, sheep and cats to prove the theory of two parallel AV nodal
conduction pathways communicating with each other. Their evidence was
based on the excessive delay of very early premature responses in traversing
the node, suggesting that a slowly conducting pathway recovers earlier than
the normal ”fast” pathway. The evaluation of their individual impact on
the conduction was ambiguous since the pathway responsible of a particu-
lar beat could not be identified. Zhang et al. [15] has introduced the His
Electrogram Alternans (HEA), a recording technique that allows identifica-
tion of the dominant pathway and consequently the evaluation of the role
of each pathway. Climent et al. [16] uses the HEA technique to create a
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mathematical model of dual pathway AV nodal conduction that accurately
reproduced interactions between fast and slow pathway during regular and
irregular atrial pacing protocols.

The faster pathway is characterized by longer refractory period and faster
conduction velocity, and vice versa for the slower pathway [17]. Since the
two pathways differs in conduction and refractory properties they might be
affected differently by pharmacological intervention.
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Chapter 3

Signal processing - different
techniques and applications

In the following chapter different techniques used when analyzing ECG sig-
nals from patients with AF are presented. These techniques focus on the
AVN and those used later in this study are given more space. Earlier work
by different groups are also presented, along with selected results.

3.1 Analyzing ECG with signal processing

One way to describe what happens during AF in the AVN is through signal
processing of the ECG signals. There is a variety of methods within ven-
tricular response analysis to do this. The aim with the following paragraph
is to describe some of the modern methods of today.

3.1.1 RR interval Histograms

Constructing RR interval histograms can be of interest to evaluate AV nodal
conduction properties [8]. These histograms can be produced from ECG
recordings of patients with paroxysmal or persistent AF. They can be uni-,
bi- or multimodal, where the bimodal histogram by some is claimed to evi-
dence dual AV nodal pathways.

One technique for displaying and analyzing RR interval histograms is the
heart rate stratified histogram (HRSH) analysis . Since RR intervals span a
wide range of heart rates, this technique gives a more detailed observation of
the RR distribution at different heart rate levels. This technique can reveal
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information, e.g. bimodality, that is not visually obvious in the unstratified
histogram. Before constructing an RR interval histogram, noise and beats
not classified as normal are excluded together with the intervals directly
before and after. Premature ventricular beats and RR intervals longer than
1.5 s are also excluded.

Histograms are then constructed by dividing the analyzed ECG into seg-
ments containing a fixed number of beats. The mean heart rate of each
segment classifies the segment into a certain heart rate group. The series
are divided into overlapping sequences of length L, according to:

xL(n) = [x(n)x(n+ 1) . . . x(n+ L− 1)]T ,

xL(n+ k) = [x(n+ k)x(n+ k + 1) . . . x(n+ k + L− 1]T ,
(3.1)

where x(n) denotes the RR interval and k the distance in beats between two
consecutive sequences, thus if k < L the sequences overlap.

This technique gives one histogram for each heart rate level, for example
in range of 10 bpm, 60-70, 70-80 and so on. Smoothing can be done with
a low-pass filtering technique to erase local maxima. The histograms can
then be analyzed by visual inspection. The highest and second highest peak
are defined as dominant and nondominant. At lower heart rates the peak
corresponding to longer RR intervals is dominant and as the heart rate
increases the dominance shifts to the other peak. The heart rate at which
this occurs is called the peak dominant change. The RR values at the peaks
are called slow peak value (PVS) and fast peak value (PVF), here referring
to fast or slow RR intervals, not to be confused with the fast and slow AV
nodal pathway. The distance between the peaks is called the peak gap (PG)
and the ratio between the slow and the fast peak is called peak value ratio.
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Figure 3.1: Heart rate stratified histogram.

Even though a bimodal histogram is thought to indicate dual AV nodal
pathways, it could also be explained by conceal conduction where AV nodal
refractoriness differs between proximal and distal region. Also, a unimodal
histogram can be associated with dual AV nodal pathways. HRSH have
been used by several groups to obtain information about the AVN, some
which are mentioned later in this study.

3.1.2 The Poincaré plot

In the Poincaré plot each RR interval is plotted versus the preceding one,
which gives information about the sequence of intervals and thus the regular-
ity of the ventricular rhythm [8]. This type of information is not accessible
from the RR interval histograms, which makes this technique valuable. As
shown in Fig. 3.2 (a), during sinus rhythm each RR interval is strongly
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dependent on the preceding one and the intervals are centered around the
main diagonal forming an ellipsoid-like pattern. The organized dysfunction
of atrial flutter is shown as clusters in the Poincaré plot, Fig. 3.2 (b). The
irregularity of RR intervals during AF results in a widely scattered dis-
tribution which both indicates the disorganized atrial activity and certain
conduction properties of the AVN, Fig. 3.2 (c).

Figure 3.2: Poincaré plot.

The lower envelope is often taken as a measure of cycle length dependence
and has been evaluated using different techniques over the years. Manual
computation, linear regression and a new method based on the Hough trans-
form has been used by different groups.

The Linear regression line

To find the regression line the horizontal axis is divided into a number of
consecutive bins, each with a certain amount of points [8]. The smallest
value of each bin is determined and the lower envelope of the plot is found
by linear regression fitting to these minimal points. As an example Hayano
et al. studied segments of 512 RR intervals each. They divided the axis
into 8 bins with 64 points each. For longer segments more points per bin or
more bins can be used. The regression line weigh all points equally and is
thus not robust against outliers.
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Figure 3.3: Linear regression.

The Hough Transform

With the Hough transform a straight line is detected in an image based on
the representation of straight lines in the image space using the line equation
y = mx + c [8]. The line is characterized by the parameters (m,c) in the
Hough space and since they are unbounded they can also be described with
the parameters (ρ , θ), where ρ = x cos θ + y sin θ. To calculate the lower
envelope of the Poincaré plot, for each RR(n-1) the minimum corresponding
RR(n) value is detected. Each of these pairs determines the coordinates and
is transformed into the Hough space by

ρ(θ) = RR0 cos θ +RRmin sin θ, −π
2
≤ θ ≤ π

2
(3.2)

The maximum point in the Hough space, ρmax and θmax is converted to the
original space by

(x0, y0) = (
ρmax

cos θmax
,
ρmax

sin θmax
). (3.3)

The lower envelope line is characterized by the slope m and intercept c

(m, c) = (− y0 − 1

x0 − 1
, y0) (3.4)
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Figure 3.4: Hough transform.

With this method the lower envelope can be evaluated independently of
the number of RR intervals, and outliers are automatically excluded.

Once the lower envelope is calculated, the slope and intercept can be used
to characterize the FRP and the rate dependence of AV nodal conduction.
This technique has shown that the refractoriness and concealed conduction
of the AVN may exhibit circadian rhythm, and may therefore be used to
obtain more information about the condition of the heart.

3.1.3 Clusters in the Poincaré plot

The Poincaré plot can sometimes exhibit double sector shapes, that has
been interpreted as a representation of the dual AV nodal pathways [8].
By fitting two vertices to these sectors, the leftmost one is said to represent
the FRP of the slower pathway and vice versa. Another technique with
clustering is the histographic Poincaré plot. The number of occurrences for
each RR interval pair is represented by gray scale in the plot, where more
occurrences result in a darker gray.

There is no evidence that these techniques can be used to determine if dual
pathways are present or not, but it may be useful for evaluating drugs effects
and AVN modification on the ventricular response.

3.1.4 Time domain analysis

This type of analysis often includes the mean and standard deviation of
normal-to-normal (SDNN) intervals, root mean-square differences of succes-
sive normal-to-normal intervals (rMSSD), and percentage of interval differ-
ences of successive normal-to-normal intervals greater than 50 ms (pNN50)
[8]. The technique has been used by different groups to evaluate the effect
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of drugs. Both expected drug characteristics and properties not commonly
tested has been shown.

3.1.5 Spectral analysis

Due to the irregularity of the ventricular rhythm during AF, which in spec-
tral analysis would result in a huge number of peaks, this technique has not
been used commonly [8]. For normal sinus rhythm a noise-like downsloping
linear pattern is shown when log-power is plotted against log-frequency. For
a patient with AF the spectrum instead divides into two different regions.
At lower frequencies the pattern is similar to that of a healthy heart, but
for higher frequencies a white noise flat spectrum is shown. This suggests
that long-term regulatory mechanisms are still effective in modulating the
ventricular response.

3.1.6 Estimating the fibrillation frequency

In the diagnosis and treatment of AF it is of great interest to estimate the
frequency of the fibrillation. Due to the spectral overlap between atrial
and ventricular activity it is impossible to do a spectral analysis of the
ECG signal and cancel out the ventricular activity. To solve this problem
more advanced methods have been developed that removes the ventricular
activity from the ECG signal. From the residual, rECG, it is then possible
to estimate the frequency of the fibrillation.

Residual ECG

One of the most common methods for removing the ventricular activity is
Average Beat Subtraction (ABS), originally developed by Slocum et al [18].
In this method an average beat is constructed from the ECG by segmenting
the signal into beats, aligning the morphology of the beats in time and taking
the average value at each sample. This will cancel out the atrial activity
from the average beat, the larger number of beats the better the cancellation.
The average beat will then correspond to the ventricular activity and by
subtracting it from each beat in the original signal the resulting residual
signal will contain the AF. Before subtracting, it is important to align the
average beat with the QRST complex in time. The alignment problem can
be described by

ε2min = min
τ
‖x− Jτx‖2 (3.5)
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Figure 3.5: This plot shows an EKG where the residual after average beat
subtraction is superimposed.

where the vector x contains the N samples

x =


x(0)
x(1)

...
x(N − 1))

 (3.6)

x is the average beat and Jτ is the shift matrix

Jτ =
[
0N×(∆+τ)) IN×N 0N×(∆−τ))

]
(3.7)

The two matrices 0 and I are the zero matrix and the identity matrix re-
spectively. The minimization problem is thus solved by a grid search over τ
finding the N samples of x that gives the best fit to x. After subtraction the
resulting residual signal contains the atrial activity. In Fig. 3.5 an example
of the residual ECG is shown.

Variations in the orientation of the heart’s electrical axis, caused most
commonly by respiration, can generate changes in the QRST morphology
and the average beat will not fit accurately [19]. This can sometimes cause
large QRST residuals. The problem has led to the development of spa-
tiotemporal QRST cancellation. This method uses the multi-lead ECG and
introduces shifting and scaling of information between leads to compensate
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for these variations. Other variations in the signal has led to further de-
velopment of ABS. One method uses separate QRS complex and T wave
cancellation to compensate for the fact that the QRS complex varies more
at different heart rates.The TQ-based fibrillation signal is another method
that reduces the influence of AF to get a better estimation of scaling and
rotation parameters.

Another common method for QRST cancellation is the Principal Compo-
nent Analysis (PCA) [19]. This method uses an orthogonal transformation
to convert observed, possibly correlated variables to a set of uncorrelated
variables called principal components. PCA relies on the assumption that
the signal x is a zero-mean random process, with the correlation matrix,
Rx, being equal to the expectation of the squared signal. The principal
points are calculated by an orthogonal linear transformation of x. To com-
pute these points the eigenvector equation for Rx has to be solved. The
eigenvector corresponding to the largest eigenvalue relates to the dominant
QRST-complex morphology, and the next eigenvectors relates to the dy-
namics of the QRST complex. A following number of eigenvectors relates
to the atrial activity and the remaining eigenvectors relates to the noise
in the signal. The ventricular activity can then be subtracted as a linear
combination of the eigenvectors corresponding to the QRST complex, or the
atrial activity can be extracted with help of eigenvectors corresponding to
the atrial activity.

A novel multi-lead method for cancellation of ventricular activity during
AF was presented in a recent study by Petrenas et al [20]. The method
is based on an echo state neural network which estimates the time-varying
nonlinear transfer function between two leads. One lead with atrial activity
and one with negligible atrial activity that is used as a reference lead, which
is an essential requirement for the method. The network has different sets
of weights that define the input, hidden, and output layers of which only the
output set is adapted for every new sample to be processed. In this way the
network can ”learn” how to reproduce specific temporal patterns. In the
study this method showed better results than an average beat subtraction
method, and is presumed to be very good for QRST cancellation in ECG
signals with substantial variation in beat morphology and/or occasional ec-
topic beats.
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Frequency estimation

One way of estimating the fibrillation frequency is by estimating the power
spectrum, also known as a periodogram, of the rECG [4]. But the pe-
riodogram is a biased estimator with leakage and smearing and does not
always give reliable results. A better way is then to estimate the frequency
by using Welch’s method on the calculated residual. Welch’s method divides
the signal in the time domain into consecutive segments and then lets these
segments overlap, usually 50%. Thereafter the periodogram is calculated
for each segment. The final power spectrum from where the frequency can
be extracted is created by averaging over these periodograms [21]. By doing
this the leakage and smearing effects are markedly reduced. Example of a
Welch spectrum can be seen in Fig. 3.6

Figure 3.6: A Welch power spectrum. The AF frequency is the first peak,
and the second peak is due to network disturbance.

A drawback with using the periodogram is that it precludes the detection
of variations in the fibrillation frequency. These changes can be tracked by
the short-time Fourier transform (STFT), but the method is known to have
rather poor resolution.

Several methods based on different mathematical techniques have been
developed to detect variations in the fibrillation frequency while being robust
to noise. One a method is based on the hidden Markov model, [22], and it
will be explained a bit closer since it will be used in this study. First STFT
is performed on the rECG to obtain a sequence of observed frequency states.
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Then with an HMM it is possible to detect and exclude frequency estimates
that differ significantly from the frequency trend and instead replace them by
estimates based on adjacent frequencies. This works because of the Markov
models construction of a finite number of states that correspond to a unique
set of variables. Each state has predefined state transition probabilities,
where the likelihood of a certain state depends only on the previous state.
The states are also associated with certain observation probabilities, since
the state variables cannot be directly observed. The optimal state sequence
is then obtained using the Viterbi algorithm. This algorithm exploits the
state transition matrix, incorporating a priori knowledge on AF characteris-
tics, and the observation matrix, incorporating information of the frequency
estimation and signal-to-noise ratio. The states of the model correspond to
the underlying frequencies, while the observations are determined by the es-
timated frequency of a specific time interval of the signal. The results from
the study showed that the use of HMM improves performance by reducing
the root mean square error associated with frequency tracking.

3.2 Mathematical models of the atrioventricular
node

Signal processing is an important tool for quantifying AF patterns and prop-
erties, but also for investigating the effects of different AF drugs. Several
models have been made trying to describe the electrical properties of the
AVN and estimate different parameters. Estimation models describe the
AVN in a rough way, where only the most important physiological charac-
teristics are accounted for. The point with this is to create a model where
the parameters that the model lean upon can be estimated. Another way to
use signal processing is by trying to create a model that simulates the AVN
behavior as thoroughly as possible. Estimation and simulation models can
be based on either non-invasive or invasive measurements of the AVN. The
AVN is still not fully understood, and especially the role of its physiology
and the rate of AF waves raises questions. The following paragraph men-
tions some of the more important models along with the properties of the
AVN which they take into account.

3.2.1 Non-invasive estimation models

Cohen et al. [2] introduced a model for the genesis of RR interval fluctuations
during AF. The main concept of the model is to in a simple way account for
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the statistical characteristics of the AVN and produce quantitative results
with electrophysiological properties. They assume that the AV junction
(AVJ) is bombarded with a series of electrical impulses that arrive randomly
in time; hence these atrial impulses are mathematically characterized as a
Poisson process. All the temporal and spatial electrical activity in the cells
of the AVJ is summed into a hypothetical electrically active cell; the AVJ
equivalent cell, AVJEC. This cell has well defined electrical properties and
is a device to easier understand the input-output characteristics of the AVJ.
It is important to remember that the behavior of the AVJEC does not need
to correspond to the electrical activity in any real cell in the AVJ. The
action potential is of duration τ , during this time the AVJEC is absolutely
refractory. Thereafter the transmembrane potential increases at a constant
rate V̇4 from its resting value VR. For each atrial impulse it increases an extra
discrete amount ∆V. When it reaches its threshold value VT the AVJEC fires
initiating a new action potential. The transmembrane potential i visualized
in Fig. 3.7.

Figure 3.7: The transmembrane potential of the AVJEC according to Cohen
et al. [2].

Mathematically the transmembrane potential of the AVJEC can be de-
scribed by the following expression

Vm = VR + V̇4t
′ + n(t′)∆V (3.8)

Here Vm is the transmembrane potential, t′ is the time elapsed since the end
of the refractory period, n(t′) is the number of the of atrial impulses that
have arrived by the time t′ and ∆V is the amplitude of the atrial impulses.
As mentioned earlier the arrival of atrial impulses at the AVJ is considered
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to be a Poisson process and the probability distribution for n(t′) is given by

pn =
e−λt

′
(λt′)n

n!
(3.9)

where λ is the mean rate of arrival for the Poisson process. The criterion
for initiation of ventricular activation at time t is Vm = VT . To find the
probability distribution for t it is convenient to introduce two new variables

v = V̇4/∆V

N = (VT − VR)/∆V
(3.10)

The quantity v is the rate of spontaneous phase 4 depolarization measured
in units of ∆V . N is the number of atrial impulses required to depolarize the
AVJEC to threshold in the absence of spontaneous phase 4 depolarization
(V̇4 = 0). It is now possible to rewrite (3.8) at time t as

N = vt+ n(t) (3.11)

The probability distribution is then deduced by first calculating the proba-
bility that the time to reach the threshold is greater than t. This can only
occur when n(t) < N − vt and the cumulative probability for that is got-
ten by summing over n less than N − vt. The cumulative probability Pt(t)
that the transmembrane potential reaches threshold at or before time t is
then one minus that sum. The probability distribution pt(t) can then be
computed by differentiating Pt(t) with respect to t

pt(t) =
dPt(t)

dt

eλtλn+1tn

n!
+

N−vt∑
k=0

e−λt(λ)k

k!
∗ δ
(
t− N − k

v

)
for 0 6 t 6 N/v

(3.12)

where n is the greatest integer less than N − vt. and δ(x) represents a delta
function.

To summarize the simplest form of this model is characterized by four
parameters, and the intention was that the model might be utilized to char-
acterize a sequence of RR intervals recorded from a given individual in terms
of the numerical magnitude of these parameters:

1. λ - the mean rate at which the atrial impulses bombard the AVJEC.

2. ∆V/(VT − VR) - the relative amplitude of the atrial impulses.
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3. V̇4/(VT−VR) - the relative rate of phase 4 depolarization of the AVJEC.

4. τ - refractory period of the AVJEC.

These four parameters are the ones that are altered to compute the best
fit between the experimental RR interval histograms and the theoretical
ones. Since the refractory period depends on the preceding refractory period,
the model is modified to take that into account.

τi = τ∞(1− e−Ti−1/τ∞) (3.13)

The refractory period of the ith beat, τi, is a monotonically increasing func-
tion of Ti−1, the duration of the preceding RR interval. This modification
of the model does not alter the number of adjustable parameter, τ∞ just
replaces τ as the fundamental parameter.

To fit the purpose of the model the AVJ is considered to include not
only the AVN but also the automatic tissue of the pre-nodal atrium and
the proximal bundle of his. This model accounts for the principal statistical
features of the RR interval sequence. The finite time required for impulses
to propagate through the AVJ is not explicitly considered in the AVJEC
model during AF, with the point that a fixed or random conduction delay
will not affect the predicted RR interval since the atrial impulses themselves
arrive randomly in time. Although the model is statistical in nature, no well-
established statistical parameter estimation procedure was devised. In the
paper they used a theoretical best-fit histogram to compare their model with
real data. Unfortunately some of the deduced parameters had values that are
not physiological possible, i.e. λ was equal to 116 Hz in one histogram. In a
subsequent paper the model parameters were determined from the RR series
using an ad hoc procedure, however, the results were not very convincing [3].

A more recent model of the AVN during AF was presented by Corino et
al. 2011 [3]. This is an extension of Cohens work where further physiological
properties are modeled and a statistical ECG-based estimation method for
the parameters is presented. In [3], the AVN is treated as a lumped structure
that accounts for concealed conduction, relative refractoriness, and dual AV
nodal pathways. Atrial impulses are assumed to arrive to the AV node
according to a Poisson process. Unless the AVN is refractory each arriving
impulse results in ventricular activation (it is suprathreshold), an approach
that is different from [2]. No account is made for spontaneous depolarization.
The model accounts for dual AV nodal conduction and makes use of an AF
rate that is inferred from the ECG. Even though the different properties of
the two pathways play a prominent role in ventricular rate control, they are
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not routinely evaluated in clinical practice. The model is parsimonious as
only six parameters are embraced, which makes the computations relatively
smooth. Three of the parameters are estimated independently and three
are estimated with a maximum likelihood approach. The output of the
maximum likelihood optimization is a set of parameters that provides an
electrophysiological characterization of the AVN. All of the parameters are
estimated with a general statistical approach. The model in [3], is the base
for the study in this paper and therefore it will be described more thoroughly
later on in the method, Sec. 6.

3.2.2 An invasive estimation model

With the aim to quantitatively evaluate how a couple of drugs affects six
different physiological parameters of the AVN, Glass et al. [1] developed a
mathematical model for the AVN during AF. An ad hoc method that in-
cluded both automatic and manual detection was developed to detect the
atrial and ventricular activation times. The mathematical model includes
concealed conduction and the conduction times associated with a sequence
of conducted beats can be predicted by a simple iterative relationship. Beats
that arrive to the AVN while refractory are blocked and lead to an increase
in the refractory period that is normally distributed. The model is devel-
oped by setting parameters based on comparison between experimental and
simulated data. It is difficult to determine the values of all parameters in
a six dimensional space. Therefore three of the parameters are fixed at a
physiological reasonable value. The model then provides estimates for three
quantitative mechanisms of the AVN. The article does not provide informa-
tion of how the estimates are carried out in further detail.

3.2.3 A non-invasive simulation model

In 2006 Lian et al. [23] described a unified AF - ventricular pacing (VP)
model to demonstrate the effects of VP on the ventricular rhythm during
AF. The model can be viewed as an extension of [2]; the AVJ is still treated
as a lumped structure but more physiological aspects are taken into con-
sideration. A Poisson process simulates the random AF signals. In [23]
bidirectional conduction delays is taken into consideration. In addition to
the random AF impulses the AVJ can also be affected by retrograde waves
induced by VP. When the AVJ fires and generates an activation wave, it
also starts an antegrade or retrograde AV delay according to the direction
of activation. When both antegrade and retrograde waves are detected in
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the ventricle both waves are extinct. The effect that electrotonic modula-
tion by blocked AF impulses has on the RR intervals is also considered in
the model. In this article they set their parameters to different values to
investigate the effect of the different physiological properties in the AVN.
A simultaneous search over all model parameters is not possible, the model
consist of sixteen parameters in total. One approach that is suggested is
to derive some baseline parameters independently by an ad hoc method,
and thereafter with the reduced space dimension try to conduct a search to
achieve quantitative data. This was not carried out in the study, and it is
not sure whether it will work.

3.2.4 Invasive simulation models

Jørgensen et al. [24] developed a model that incorporates concealed conduc-
tion. They also found that a term for concealed conduction is needed to
reproduce several statistical features of the ventricular response based on
atrial activity. Starting with the input sequence of atrial activations and an
initial ventricular activation, an output sequence of ventricular activations
is generated iteratively once parameter values are set. The AV conduction
time is related to the preceding recovery time through a finite difference
equation. An ad hoc method was developed for extracting the activation
times of the atrial and ventricular activation complexes. In [2] each atrial
input that reaches the AVN during the refractory period contributes to the
depolarization of the AVN so that increased atrial stimulation would lead
to an increased ventricular response, which is in disagreement with newer
studies of the AVN [9]. This is a complement to that study. An atrial ac-
tivation that arrive at the AVN when it is refractory is blocked and lead
to an increment of the refractory period by the amount ∆. The model is
built upon five parameters. With an ad hoc approach the model output is
compared to recorded ventricular response. The parameters are found by
scanning the parameter space, a quite demanding process due to the five-
dimensional space. It is not not stated in the article which criterium that is
optimized when estimating the parameters. Important to note is that this
method was difficult to apply on AF and works better for atrial flutter.

To test the influence of electrotonic modulation in AVN conduction Mei-
jler et al. [9] computed a simplified computer ionic model of the AVN. In
this model the AVN is regarded as an area of electrical discontinuities. First
they create an oversimplified black-box model of the AV conduction that
is composed of a linear array of three excitable elements. Each described
by an ionic model of a cardiac cell; the atrium, the AVN and the ventricle.
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The conduction is stepwise with the electrotonic currents propagating from
cell to cell, with a local action potential at each step. The equations used
for the different elements are taken from earlier studies made by Luo and
Rudy [25], and Liu et al. [13]. This model was then used to establish the
rules of behavior and predictions to be tested in the more elaborated nine-
cell model. The more thorough model also consists of a linear array where
the cells are separated into the same three. The atrium, AVN and ventri-
cle are now represented by two, five and three cells respectively. The cells
were connected with coupling resistances. With proper settings the model
simulates a lot of the physiological aspects during concealed conduction and
among them electrotonic modulation.

3.3 Previous studies of drugs effect on AF

Several groups have studied the effect of drugs on the AV nodal function. In
1998 Ingemansson et al. [17] published their work where intrinsic AV nodal
properties are analyzed during the effect of magnesium (MgSO4) in com-
bination with glucose, insulin and potassium on patients with chronic AF.
They used two patient groups, all with chronic AF for at least 3 months.
In the first group pharmacological treatment had been unsuccessful and DC
conversion had not been attempted and in the second group both pharmaco-
logical treatment and DC conversion had been unsuccessful in terminating
the arrhythmia. For the first group, both control and intervention record-
ings were made unlike the second, where only intervention recordings were
performed. Both patient groups were submitted to a 24 hour infusion of
glucose, MgSO4, Actrapid and K+ supplement, the second group with a
higher dose of MgSO4 and a shorter infusion time. ECG recordings were
performed during the investigation, and after a visual inspection determin-
ing that only AF with narrow QRS complexes was included, the length of
all RR intervals were saved. The intervals were pooled in different groups in
a systematic matter and then histograms were constructed for each group of
RR intervals. The two highest peaks were classified as dominant and non-
dominant, and were associated with the two AV nodal pathways. From the
histograms different values, e.g. peak value and peak gap, were extracted
and analyzed.

The results showed a significant increase in the peak gap and the RR value
for the peak corresponding to the slower pathway, for both patient groups.
For the second group, who received a higher dose of MgSO4 PVF (short RR
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intervals) also increased, although the increase for PVS (long RR intervals)
was more pronounced. Since the only difference in infusion for the two pa-
tient groups was the concentration of MgSO4, Ingemansson et al. discussed
the possibility that the conduction delay is caused by MgSO4 alone. They
also discussed how the drugs may affect the conduction on a cellular level
and concluded that the difference for the fast and slow pathway may be
due to the possibility that these pathways consists of cells with different ion
channel density.

Glass et al. [1] examined the effects of antiarrhythmic drug therapy on AV
nodal functions during AF in their work from 2005. The aim was to in-
vestigate the effect of Metoprolol and Amiodarone on atrial and ventricular
activity in post-surgical patients using three electrodes attached to the mus-
cular part of the right and left atrium. 10 patients were investigated in their
study, where three of them did not receive any drug therapy, three received
a 24h infusion of Amiodarone, three an injection of Metoprolol and one pa-
tient a combination of Metoprolol and Amiodarone. Epicardial signals were
acquired and analyzed, and the atrial and ventricular activation times was
detected. They also computed histograms over the distribution of the in-
terbeat intervals. In all patients receiving medication the mean ventricular
interval markedly increased, while the increase in the mean atrial interval
was not as pronounced. This led to the conclusion that the changes in
ventricular activation is due to changes in AV nodal properties rather than
changes in atrial activation. Their work also indicated that the number of
atrial activations that are blocked in the AVN increased following medica-
tion, and they note the importance of developing better ways to analyze the
effect of blocked beats on the AVN properties.
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Chapter 4

Mathematical background

One of the important aspects of this study is a statistical approach to an-
alyzing the ECG signals. Therefore there are some mathematical concepts
that are good to be familiar with. The following three sections will explain
more about these.

4.1 The Poisson Process

The Poisson process is a point process that evolves without aftereffects. It
plays an important role among point processes in continuous time with dis-
crete state space [26]. The Poisson process can be used to model experiments
when the events of interests occur at independent random time points but
with constant average rate [27]. The events can occur whenever during the
given time span, an example of how they can be distributed is shown below
in Fig. 4.1.

Figure 4.1: Point events that occur randomly in time, where t is an interval
of given length.

If we let N be the number of events that take place during a given
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time length t, we are interested in the distribution of N [28]. The function
N(t) counts all events even if they occur at the same time and is a positive
increasing function starting at N(0) = 0.

The mean number of events that take place during each time unit of the
given time interval is called the intensity, λ, so during a time interval of
length t it will occur λt events. If the intensity is constant the process is
called homogeneous and if it changes during time, λ(t), the process is called
an inhomogenous Poisson process.

The general Poisson process has the following distribution:

P (n) = e−µ
(µ)n

n!
(4.1)

where µ is the mean and N(t) = n the parameter for the number of events
that has taken place [26]. The mean function of a Poisson process is:

µ(t) =

t∫
0

λ(τ)dτ, t ∈ τ (4.2)

If the time domain is [0,t] and the process is homogeneous the mean can
simply be written µ = λt.

To deduce the distribution for a time interval within the time domain
[0, t] we start with the probability law of an inhomogeneous Poisson pro-
cess [27]. It is completely characterized by the following two principles:

1. For any t1 < t2 from the time domain τ , the number of point events
in the interval (t1, t2] has the Poisson distribution with parameter
g(t2)− g(t1), where g(t), t ∈ τ , is an increasing continuous function.

2. The number of point events in non-overlapping time intervals are in-
dependent random variables.

Since g(0) = 0 it coincides with the mean function of the process. With
use of the intensity function λ(t) it is possible to write the PDF of a Poisson
process in an interval (t1, t2], where N(t2) − N(t1) = n , n = 0, 1, 2.... ,
t1 < t2 as

P (n) = e
−

t2∫
t1

λ(τ)dτ [
∫ t2
t1
λ(τ)dτ ]n

n!
(4.3)

The PDF for the homogenous process is easy to deduce by eliminating the
time dependence for λ. The superposition of several independent Poisson
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processes produces the new intensity function of all of the separate intensity
functions by simple summation.

4.2 Maximum likelihood estimation

The MLE is defined as the value of θ that maximizes p(x; θ), the likelihood
function, for x fixed [29]. θ can be either a parameter or a vector, in this
text it will denote a parameter but all the assumptions apply for a vector
as well. The maximization is performed over the allowable range of θ. Since
p(x; θ) will also be a function of x, the maximization produces a θ̂ that is
a function of x. The probability of observing x in a small volume for a
given θ is given by p(x; θ)dx. In Fig. 4.2 the PDF is evaluated for x = x0

and the plotted versus θ. The value of p(x = x0; θ)dx for each θ shows the
probability of finding x in the region RN centered around x0 with volume
dx. The possibility of observing x = x0 at θ = θ1 would be very small and
it is more likely that θ = θ2 is the true value, since that value yields a higher
probability for observing x = x0. By using a maximum likelihood approach
θ̂ = θ2 will be the estimate.

Figure 4.2: The rationale for the MLE.

In general if the PDF for p(x; θ) satisfies some regularity conditions,
then the MLE has the asymptotic properties of being unbiased, achieving
the Cramér-Rao lower bound (CRLB) on the variance of the parameters and
can be accounted for as fully efficient, and having a Gaussian PDF. It can
be said to be asymptotically optimal. In summary the MLE of the unknown
parameter θ is for large data records distributed as
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θ̂
a∼ N(θ, I−1(θ)) (4.4)

where
a∼ stands for ”asymptotically distributed according to”, and I(θ) is

the Fischer information evaluated at the true value of the unknown param-
eter(s). The regularity conditions require the existence of the derivatives of
the log-likelihood function, as well as the Fischer information being nonzero.
An analytical expression for the PDF of the MLE is usually impossible,
therefore computer simulations are required as a means to assess perfor-
mance. In practice it is seldom known in advance how large N must be in
order for (4.4) to hold and therefore this is an important aspect. Fortunately
for many cases the data record lengths are not excessive.

When a closed form expression can not be found for the MLE, a numer-
ical approach employs either a grid search or an iterative maximization of
the likelihood function. A grid search is very efficient if the interval where
the values of θ can be found is known, but if it is unknown the iterative
method is necessary. Some examples of iterative methods are the Newton-
Raphson method, the scoring approach and the expectation-maximization
algorithm. In general these methods produce the MLE if the initial guess i
close enough to the true maximum. If not, the method may not converge, or
it may converge to a local minimum. Since the solution is not known a priori
it is not known if the attained value actually is the MLE. Nevertheless these
methods can produce good results, but it is an aspect that is important to
be aware of.

4.3 Simulated annealing

The method chosen to optimize the likelihood function in this study is simu-
lated annealing [30]. Simulated annealing is a probabilistic search algorithm
that models the physical process of heating a material and then in a con-
trolled way lower the temperature to decrease defects so it reaches its optimal
state, called annealing.

The method of simulated annealing was presented by Kirkpatrick et
al. [31]. They showed how the knowledge of statistical mechanics, i.e. the
behavior of systems with many degrees of freedom in thermal equilibrium
at finite temperature, could be useful for multivariate or combinatorial op-
timization. The simulated annealing algorithm consists of first melting the
system being optimized at a high effective temperature, then lowering the
temperature by slow stages until it freezes and no further changes occur. In
their study they obtained good results with computational effort scales as
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N and even as a small power of N . A slow increase in effort with increasing
N is very attractive when dealing with optimizations in many dimensions.

The algorithm in Matlab, which is used in this project, generates a new
random point, with a distance from the current point based on a prob-
ability distribution with a scale proportional to the temperature, at each
iteration [32]. In this way the extent of the search is slowly reduced with
each iteration. All new points that lower the energy in the system are al-
lowed, but also to a certain probability, points that raise the energy. The
probability of acceptance is

1

1 + exp( ∆
max(T ))

(4.5)

where

∆ = new objective - old objective

t = current temperature

For each iteration the algorithm lowers the temperature, storing the best
point found so far. The temperature is updated according to

T = T0 · 0.95k (4.6)

where

T0 = initial temperature of component i

k = iteration number until the system reanneals

Reannealing is a part of the algorithm when a certain number of new points
have been accepted and the search starts again at a higher temperature.
The annealing parameter is thereafter calculated according to

ki = log

(
T0

Ti

maxj(sj)

si

)
(4.7)

ki = annealing parameter for component i

T0 = initial temperature of component i

Ti = current temperature of component i

si = gradient of objective in direction i times difference of bounds in
direction i
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The algorithm stops when the change in the objective function is small
enough. By accepting that some new points might raise the temperature
the algorithms explores a global search in the beginning and avoids being
trapped early in a local minima. It is still possible for the algorithm to be
trapped later on, and therefore it is important to carry out several com-
putations and compare the results to make sure that the generated result
actually is the one that minimizes the system energy. The algorithm can be
used to find both unconstrained and bound-constrained minimum to func-
tions with several variables. In this study the bound-constrained version is
used.

41



Chapter 5

Dataset

The ECG signals used in this study are taken from the RATAF database [33].
It stands for RATe control in Atrial Fibrillation and started in april 2006
at the Asker & Baerum Hospital in Norway. 60 patients were included,
both male and female, all over 18 years old and all with persistent or per-
manent AF with a ventricular rate over 80 beats/min at rest and/or over
100 beats/min average at daytime. The aim was to compare the effect of
Metoprolol 100 mg once daily (o.d.), Verapamil 240 mg o.d., Diltiazem 360
mg o.d. and Carvedilol 25 mg o.d. on reducing ventricular rate during AF.
The patients have received the drugs in a random sequence, from patient
to patient, and each one was administered for 3 weeks to ensure that a
steady-state drug concentration was attained and to provide a washout of
the previous treatment. The primary outcomes measured were ventricular
rate, working capacity and quality of life. 24-hour Holter ECG recordings
were performed for each of the drugs and one without, used as baseline. All
recordings were performed under ambulatory circumstances and three leads
taken from the chest were used for further analysis.

The drugs were either beta blockers or calcium channel blockers [34]. All
these drugs act to control the heart rate, rather than restoring the heart
rhythm, by increasing the level of block in the AVN and thus decreasing
the number of impulses conducting through the ventricles. Calcium chan-
nel blockers work by blocking voltage-gated calcium channels in the cardiac
muscle cells leading to a reduction in muscle contraction. Beta and alpha
blockers block specific receptors in the cells. Metoprolol and Carvedilol are
both beta blockers, the latter also with alpha blocking activity, Verapamil
and Diltiazem are both calcium channel blockers.
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Chapter 6

Methods

A maximum likelihood approach is applied to estimate a number of pa-
rameters from recorded ECG signals. An important aspect is that all of
the data needed for the analyze is possible to achieve non-invasively. The
parameters to be estimated are the maximal functional refractory period
of the AVN, the difference in functional refractory period between the two
pathways and and the probability for the signal to take the shorter pathway.

The scope of the project is to:

• Implement an MLE. The first step in the MLE is estimation of the
input parameters, a procedure that is already constructed by Corino
et al. [3]. The second step is the optimization of the output parameters,
which is the focus in this study. It is important that the algorithm
does not get stuck in local maxima and that the output parameters
are assigned physiologically acceptable values.

• Analyze recorded ECG signals. This part include deciding upon which
modifications that have to be done to the MLE so that the output
is reliable parameters to use for further analysis. The model has to
account for both judging input parameters and output parameters as
reliable. Within this part it is also of importance to decide which data
to be saved for the drug analysis.

The following four sections will describe the foundation and statistical
properties of the model more thoroughly, and how the estimations are per-
formed. A detailed description of how the model is applied can be found in
chapter 7 and 8.
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6.1 The maximum likelihood estimator

The model used in this paper is the model described in the work of Corino
et al. from 2011 [3]. As mentioned earlier, in their model the AVN is
treated as a lumped structure which accounts for concealed conduction,
relative refractoriness and dual pathways. From the ECG the arrival rate
of the atrial impulses λ and the minimal time for the deterministic part
of refractory period τmin1 are estimated. These parameters are then used
together with the RR intervals in the ML estimator to get the wanted output
parameters, the probability α, the time difference between the to pathways
∆τ and the maximal refractory period τmaxp .

Figure 6.1: Block diagram of the estimation model.

6.1.1 Probability density function

The atrial impulses are assumed to arrive to the AVN according to a Poisson
process with mean arrival rate λ. Each impulse is supra threshold and thus
results in ventricular activation unless it is blocked by a refractory AVN. The
length of the refractory period is defined by a deterministic part τ and a
stochastic part τp. The deterministic part can assume two values, τ1 and τ2

characterizing the to pathways. The stochastic part models the prolongation
due to concealed conduction and relative refractoriness and is assumed to
be uniformly distributed in the interval [0, τ + τmaxp ]. Where τmaxp is the
maximal prolongation, identical for both pathways.

Fig. 6.2 illustrates how the refractory period is modeled. In segment
A all arriving impulses are blocked, in segment B the probability for an
impulse to pass through is linearly increasing and in segment C all impulses
pass through to the ventricles since the refractory period is over.
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Figure 6.2: Refractoriness

The lower value 0 denotes total refractoriness and this can also be de-
scribed with the function βi(t) that characterizes the refractoriness of the i
:th pathway as

βi(t) =


0, 0 < t < τi
t− τi
τmaxp

, τi ≤ t < τi + τmaxp

1, t ≥ τmaxp

(6.1)

t denotes the time elapsed since the earlier ventricular activation and the
pathways i = 1, 2.

The probability for an impulse to take the either one of the pathways is
defined as

p(i) =

{
α, i = 1

1− α, i = 2
(6.2)

Atrial impulses that are not blocked in the AVN arrive according to a
Poisson process with the intensity function λβi (t) that characterizes the
time-dependent refractoriness. With the assumption that AV conduction is
incorporated into βi(t), a ventricular activation immediately follows a non
blocked atrial impulse. Thus, ventricular activation also occurs according
to a an inhomogeneous Poisson process with the same intensity function,
λβi(t).

The PDF that characterize the non blocked impulses is defined as
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pt(tn) =
λβ(t)

(n− 1)!

 t∫
0

λβτ

n−1

exp

−
t∫

0

λβ(τ)dτ

 (6.3)

for the arrival time of the n:th impulse, here denoted tn. Due to the fact
that ventricular activation occurs immediately after the first non blocked
atrial impulse, the PDF of the time between two consecutive ventricular
activations x is given by

px(x) = pt(t1) = λβ(x) exp

−
x∫

0

λβ(τ)dτ

 (6.4)

Since βi(t) can denote β1(t) or β2(t) depending on the pathway, the PDF is
composed by two parts

px(x) = αpx,1(x) + (1− α)px,2(x) (6.5)

where

px,i(x) = λβi(x) exp

−
x∫

0

λβi(τ)dτ

 (6.6)

When inserting (1) in (6)

px,i(x) =



0, x < τi

λ(x− τi)
τp

exp

{
−λ(x− τi)2

2τp

}
, τi ≤ x < τi + τmaxp

λ exp

{−λτmaxp

2
− λ(x− τi − τp)

}
, x ≥ τi + τmaxp

(6.7)
Since the ventricular activations are assumed to occur according to a

Poisson process, the time interval between two consecutive activations are
independent and the joint probability of a RR series is given by

px(x1, x2, ..., xM ) =

M∏
m=1

px(xm)

=

M∏
m=1

(αpx,1(xm) + (1− α)px,2(xm))

(6.8)
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where px,1(xm) and px,2(xm) is given by (7).

6.1.2 Input parameters

To be able to use the PDF for the optimization there are some parameters
that first need to be estimated. The statistical approach with the Poisson
process demands that the RR series are de-correlated, since the RR intervals
are not completely independent from each other. Taking this into consid-
eration a functional dependence of τi on the previous RR interval is also
incorporated in the model. It is enough to estimate the shortest possible
AV nodal refractory period, τmin1 . The last parameter that is estimated
independently is λ. All this is only done for the real ECG signals. The
simulated RR series have independent RR intervals and λ has a fixed mean
value.

Estimation of τmin1 and de-correlation of the RR series

Since the preceding RR interval is needed for estimation of the AV nodal
refractory period τ1 this parameter is estimated independently of the other
model parameters. The deterministic part of the refractory period depends
on the preceding RR interval, so that a longer RR interval is followed by a
longer refractory period and vice versa. In this study the lower envelope of
the Poincaré plot characterizes the functional dependence. In Fig. 6.3 the
current observed RR interval x′m is displayed versus the preceding interval
x′m−1, where x′m is defined as the time between the (m − 1)th and mth
ventricular activation.
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Figure 6.3: Poincaré plot of simulated RR intervals with λ = 7 Hz, sτ = 0.1,
τmin1 = 0.1 s, α = 0.7, ∆τ = 0.2 s and τmaxp = 0.1 s. The solid line is the
lower envelope of the plot.

To estimate the lower envelope the Hough transform to detect straight
lines in images is used. First the Poincaré plot is discretized with a bin size
of 20 ms, see Fig. 6.4. After this the edges are extracted using the Sobel
approximation of derivatives which return edges at those points where the
gradient is maximum, see Fig. 6.4

Figure 6.4: Description of the different stages in the Hough transform from
a recent article by Corino et al. [35].

In finding the lower envelope of the Poincaré plot the slope is constrained
to be within the interval [0, 0.5] and the intercept to be positive. The line
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that satisfy this criteria and is closet to the minimum points of the edge
points of the image, in a the mean square error sense, is taken as an estimate
of the minimal refractory period τmin1 and the slope of the line is denoted
sτ . With these parameters an estimate of the refractory period τ1,m of the
mth activation is possible from the linear relationship:

τ1,m = τmin1 + sτx
′
m−1 (6.9)

Estimating the longer refractory period τ2,m is identical to estimating a fixed
duration ∆τ , if we assume that sτ is identical for the two refractory periods.

τ2,m = τmin2 + sτx
′
m−1

= (∆τ + τmin1 ) + sτx
′
m−1

= ∆τ + τ1,m

(6.10)

The parameter ∆τ is one of the parameters that will be estimated later on
in this analyze. From the ECG signals it is, as mentioned above, possible to
estimate the slope of the lower envelope of the Poincaré plot for the signals,
sτ . The RR series can now be de-correlated by the following linear transform

xm = x′m − ŝτx′m−1 (6.11)

The resulting series are the ones used in the optimization. The interdepen-
dence of successive RR intervals has been reduced in the modified series xm
and the stochastic model assumption in (6.8) becomes more valid. This also
results in that the parameter τ1 in (6.7) is estimated with τmin1 and τ2 with
τmin1 + ∆τ .

Estimation of λ

The arrival rate λ is also determined independently from the estimation of
the ventricular parameters. It is derived from the ECG using spatiotemporal
QRST cancellation. The AF frequency is thereafter tracked on a short-term
basis using a method based on a hidden Markov model (HMM). A first
estimate of λ is given by the median value of the AF frequency estimates
computed over the analyzed ECG segment length, λAF . But this approach
does not account for the fact that there is a minimum time interval δ be-
tween successive impulses arriving to the AVN. This estimation produces an
underestimate value of λ and therefore the arrival rate is modified to

λ =
λAF

1− δλAF
(6.12)
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The Poisson-distributed impulses are now not allowed to arrive closer
than the interval δ and this is the parameter inserted into the log-likelihood
function in (6.15). In this study it is assumed that the atria depolarize again
after δ = 50 ms. The expression in (6.12) is easy to derive. For a Poisson
process we have that that during the interval [0, T ] with the total number of
N impulses λ = N/T . During the same time interval λAF = M/T reflects
that fewer impulses (M < N) arrive to the AVN. During the interval δ it
is expected that δλM impulses occur. The difference between N and M is
given by

λT − λAFT = δλM (6.13)

The expression given in (6.12) follows from solving λAF for (6.13). The
introduction of δ produces a right-shifted PDF for the arrivals of the atrial
impulses to the AVN. If for example δ = 50 ms and λAF = 6 Hz we have
that λ = 8.6 Hz, which is the value used later on in (6.15).

6.1.3 Optimization process

The aim with the optimization is, as mentioned above, to estimate the three
model parameters

θ = [α ∆τ τmaxp ]T (6.14)

where

α = the possibility that the signal takes the shorter pathway, τ1.

∆τ = the difference in the deterministic part of the refractory period
between the shorter, τ1, and the longer, τ2.

τmaxp = the maximal stochastic part of the refractory period.

To optimize the joint likelihood function as it is demands a lot of com-
putational effort and therefore we instead optimize the logarithm of the
likelihood function

θ̂ = arg max
θ

log px(x1, x2, ..., xM |θ; λ̂, τ̂min1 ) (6.15)

where
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log px(x1, x2, ..., xM |θ; λ̂, τ̂min1 )

= log
M∏
m=1

px(xm|θ; λ̂, τ̂min1 )

=
M∑
m=1

log(αpx,1(xm|θ; λ̂, τ̂min1 ) + (1− α)px,2(xm|θ; λ̂, τ̂min1 ))

(6.16)

In [3] no closed-form solutions could be found for θ̂ and therefore simu-
lated annealing is employed to numerically optimize the log-likelihood func-
tion in (6.16). The optimization starts globally to avoid getting stuck in
local minima at an early point, but this is still a possibility further on
in the algorithm and therefore the initial guess of a starting point mat-
ter. To avoid achieving a local minimum from our optimization the al-
gorithm was initiated with 10 different randomly chosen values for each
estimation. If the results differed the θ̂ that yielded the maximum value
of log px(x1, x2, ..., xM |θ; λ̂, τ̂min1 was chosen. A small clause was also made
in our optimization algorithm if α was assigned a value close to 0 or 1 to
remove those estimations since they aren’t reasonable. If so was the case,
the values for ∆τ were also removed but the ones for τmaxp were accounted
for as reliable.

6.1.4 Properties of the AV model

The bimodality of the PDF is due to the two pathways and is clear when
∆τ � 0 and α is not close to its limit values. If ∆τ approaches 0, the two
peaks will merge and thus, visual inspection of the PDF is not necessarily a
good way to judge if dual pathways are present or not. The amplitude and
position of the peaks are related to the probability for that pathway (α) and
the time difference (∆τ). Decreasing α results in an increasing amplitude of
the second peak and increasing ∆τ shifts the second peak to the right. In
Fig. 6.5 it is illustrated how the PDF becomes unimodal when α approaches
0 or 1, or when ∆τ is close to 0.
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Figure 6.5: Properties for the PDF of the AV model for different values of
a) τmaxp , b) λ, c) α and d) ∆τ , where x(s) is the length of the RR intervals.
When the parameters were not subject to alteration the values were set to
τmaxp = 0.1 s, λ = 7 Hz, α = 0.7 and ∆τ = 0.2 s.

λ and τmaxp affect the width of the peaks in such a way that increasing
values of τmaxp or decreasing values of λ broaden the peak. τmaxp has a
significant influence on the width, unlike λ who just have a limited effect as
long as its within the physiological range.

6.2 Model modification

The model is modified before using it on the recorded ECG signals. The
parameters that affect the modification are

λ - when estimating λ from the ECG-recordings some of the calculations
result in λ = NaN . λ is calculated for every 10 s and we use the median
for all in a 30-min segment, we set a restriction that more than 50 %
of the calculated λ is not allowed to be NaN .
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τmin1 - if this parameter cannot be estimated from the Poincaré plot then
no optimization can be done for that segment.

sτ - the same as for τmin1 but with the addition that it is not allowed to
be larger or less than µ± σ.

α - is not allowed to be larger than 0.99 or less than 0.01 since it is not
physiologically probable.

The output from the new model are the estimated parameters only for
the 30-min segments where all of these restrictions are fulfilled, which ac-
cording to us are accounted for as reliable parameters to draw conclusions
from.

53



Chapter 7

Performance evaluation

Evaluation of the model was done with both simulated and ECG-derived
RR intervals. Simulated RR intervals were used to derive how many were
necessary to get a good estimate of θ and to evaluate how changes in λ
and τmin1 affected the different output parameters. The latter analysis gives
information on how a certain error propagates.

7.1 Simulated RR series

To evaluate the model used in this project both simulated and ECG-derived
RR intervals were used. Simulated RR intervals were used to evaluate how
many intervals needed for accurate parameter estimation. 100 RR intervals,
each with the length of 30-min were simulated, with the parameters to be
estimated set to:

α = 0.7

τmaxp = 0.1 s

∆τ = 0.2 s

The input values were set to

λ = 7 Hz

sτ = 0.1

τmin1 = 0.2 s

The aim with this part of the analysis was to evaluate the MLE created
in this study and therefore sτ and τmin1 were not estimated, since that part
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is created by Corino et al. [3]. The absolute error ε of the estimates were
calculated for increasing lengths of the RR series, starting at 170 intervals
increasing to 500 in steps of 10. The RR intervals were taken randomly
from each 30-min recording and the mean of all absolute error values was
calculated. When ε dropped below a predefined threshold, here set to 0.03
for both ∆τ and τmaxp and 0.05 for λ, the estimation was judged as accu-
rate. These threshold values where chosen by [3] since they imply negligible
changes in the PDF, and the same thresholds were used in this project.

Perturbation analysis was done to evaluate how changes in the input
parameters affected the outcome. For this one 30-min segment of simulated
RR intervals was used. The inputs were set to:

λ = 7 ± 1 Hz

τmin1 = 0.2 ± 0.03 s

The range of λ was set to reflect physiological changes, whereas the
τmin1 - range was the threshold for accuracy. 100 RR series, each containing
30 min recording, were used and the mean of all the estimated values were
calculated.

Simulated RR series were also used to assess how to best carry through
the performance evaluation for ECG derived RR intervals. The goal was to
compare the models PDF with a wavelet-based density estimation calculated
from the RR intervals. Different wavelet functions were compared to the
PDF, to evaluate which gave the best fit.

7.2 ECG recordings

To evaluate how good the estimated PDF, px(x|θ̂; λ̂, τ̂1), was for modeling
different RR series, the PDF was compared to a wavelet-based estimation
of the real density function, p̃x(x). The reason for using a wavelet estima-
tion is because nothing is known about the true PDF of the ECG-derived
RR intervals, and the histogram has poor statistical properties [3]. The
RR intervals that are used to compute p̃x(x) are the ones that have been
transformed with sτ to fit (6.8).

The key idea with the wavelet transform is to reduce the density problem
to a fixed-design regression model [36]. The first step is to transform the
sample X, in this case the RR intervals x1, x2, ..., xM , into y1, y2, ..., yN using
a binning procedure whereN = M/4 and yi is the number of samples in bin i.
Then a wavelet decomposition into an optional number of levels is performed
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using fast algorithm. The wavelet coefficients are then thresholded and used
to reconstruct ỹ1, ỹ2, ..., ỹN .

We chose the Symlet-6 wavelet with four levels for our evaluation. The
six stands for the number of vanishing moments in the wavelet and the
level is the number of coefficients it is decomposed into. The coefficients
were then thresholded according to a soft data-dependent method. These
settings produce a density that is a bit irregular but follows the histogram
very thoroughly. Even though other settings gave smoother densities these
settings were the ones that had the best accuracy with the correct PDF
when we did the evaluation mentioned above. The accuracy of the estimated
PDF’s for the different RR series were evaluated in a measure of fit, U , in
terms of percentage

U = 100 ·
(

1−
∫ 3

0
|px(x|θ̂; λ̂, τ̂1)− p̃x(x)|dx

)
(7.1)

The upper limit of the integral is set to three since since it is very rarely that
RR intervals are longer than three s. To be able to compare px(x|θ̂; λ̂, τ̂1)
with the wavelet-estimated PDF, p̃x(x) was created by interpolating the
output of the wavelet estimation, ỹ1, ỹ2, ..., ỹN .

The model was evaluated on the baseline recordings for all patients used
in this analysis for each of the 30-min segments that were judged as accurate.
Which these are can be found in the next section. All in all this resulted
in 28 segments. An accuracy of U > 80% is considered to be an accurate
model fit in [3].
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Chapter 8

Drug analysis

The analysis consisted of comparing the baseline recordings from the pa-
tients with the recordings where they had taken Carvedilol, Diltiazem, Ver-
apamil and Metoprolol, respectively. As mentioned above the data consisted
of 24-hour recordings. The drugs did not affect the patients during the whole
day and therefore the span where the drugs had their maximum effect, an
interval of three hours, was chosen for further analysis. To investigate how
the different parameters varied normally during a day a comparison was
carried out for the baseline recordings between two different time intervals.

RR intervals preceding and following ectopic and wrongly detected beats
were excluded from further analysis. The method for doing so was created
by [3] using a method described in [37] and is based on heartbeat morphol-
ogy. This analysis does not take circadian rhythm into consideration because
the span is not so long that the circadian rhythm should affect the signals
significantly and because the same hours of the day are compared against
each other. The interval of interest was divided into six consecutive 30-min
segments for all patients. Each of the 30-min segments were then analyzed
with the slightly modified model where more restrictions had been added.

All patients that had recordings where at least 50 % of the segments
in the interval of interest passed the new restriction, and where one of the
recordings was the baseline measurement, were used in this study. This
resulted in four patients for the analysis of Carvedilol and five patients for
Diltiazem, Verapamil and Metoprolol respectively. The mean and standard
deviation for the optimized parameters, θ = (α,∆τ, τmaxe ), during the inter-
val was calculated for each patient for both the baseline and drug recordings.
The cumulative mean and standard deviation were also computed for each
measurement.
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Chapter 9

Results

The results for the estimated AV nodal parameters are presented in the
following chapter together with the results for the performance evaluation.
First the evaluation of the model on simulated RR intervals will be treated,
thereafter how well the estimated PDFs fit the RR interval histograms of
the analyzed ECG segments and finally how the estimated parameters are
affected by the different drugs.

9.1 Simulated RR series

In Fig. 9.1 the histogram of a segment of simulated RR intervals is displayed
with its true and estimated PDF. When only θ̂ was estimated it resulted in
values that only differed in the third decimal from the correct solution, and
a PDF that is almost identical to the true one. In the case when ŝτ and
τ̂min1 also were estimated the resulting PDF differ slightly from the true one.
The parameter differences were though still below the threshold values.
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Figure 9.1: The true (solid line) and estimated PDF (dashed line) superim-
posed on the histogram of the transformed simulated RR intervals, where
λ = 7 Hz, sτ = 0.1 s, τmin1 = 0.2 s, α = 0.7, ∆τ = 0.2 s and τmaxp = 0.1 s.

In a) only θ̂ is estimated, and in b) ŝτ , τ̂min1 and θ̂ is estimated.

To evaluate how many RR intervals that were required for getting ac-
curate estimates, 100 RR segments were simulated with defined parameter
settings (see Fig. 9.2). An average absolute error was calculated for the
parameter estimates for all these RR segments. Since 170 RR intervals at
least are needed for estimating ŝτ from the Poincaré plot, 170 was set to the
least number of intervals investigated. In this evaluation the optimization
was limited to θ̂ for assessing how accurate that part of the MLE was. The
MLE is judged to work accurately for 200 RR intervals or more. In the drug
analysis of this study 30-min segments are used which contains many more
than 200 intervals.
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Figure 9.2: The average absolute error, ε, obtained from 100 different sim-
ulated RR segments with λ = 7 Hz, α = 0.7, ∆τ = 0.2 s and τmaxp = 0.1 s.
The dashed lines represent the thresholds below which the estimations are
judged as accurate.

Since λ and τmin1 are estimated in advance it is of interest to investigate
the effect on the estimation of θ due to small errors in these parameters.
A median for θ from 100 simulated RR series, the settings for these can be
found in Fig. 9.3, with the length of 500 intervals was calculated for each
change. λ was changed ± 1 Hz and τmin1 ± 0.03 s. None of the changes
resulted in large errors. As can be seen in Fig. 9.3 all of the estimates are
within the thresholds when changing λ. Changes in τmin1 affect a bit more,
an increase of 0.03 s results in a decrease of 0.06 s τmaxp , but the changes
in α̂ and ∆τ̂ are more probable to be due to normal estimation differences
than to the change in τmin1 .
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Figure 9.3: Effects of perturbation of λ and τmin1 on the estimates of α, ∆τ
and τmaxp . The median (solid line) of the estimates were calculated from
100 simulated RR series, created using λ = 7 Hz, τmin1 = 0.1 s, α = 0.7,
∆τ = 0.2 s and τmaxp = 0.1 s. The dashed lines show within which interval

the parameters of θ̂ are judged as accurate.

9.2 ECG recordings

The distribution of how good the estimated PDFs are, U , is shown in
Fig. 9.4. The evaluation is so far done on all 30-min segments for the base-
line recordings, but will be increased to include all 30-min segments for the
study. The predefined threshold for an accurate fit is only fulfilled for 46 %
of the segments.
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Figure 9.4: Distribution of the measure of fit, U in %, evaluated for 28
different 30-min ECG segments. The mean is 77 % with standard deviation
11 %.

Figures 9.5 and 9.6 show different cases of an estimated PDF superim-
posed on a transformed RR segment. In Fig. 9.5 two visually very good
estimates are shown in (a) and (c). In (b) an example of how the PDF is
slightly shifted is shown, a problem that occurred from time to time. The
plot in (d), shows another problem that we had with our estimates, some-
times the smaller peak was missed. For a few segments the RR segments
resulted in histograms with three peaks, see Fig. 9.6 (a). Our model is de-
veloped to take one or two peaks into account and therefore these estimates
were partly inaccurate. In (b) it is shown that the PDFs adjusted well when
only one peak was present.
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Figure 9.5: Four different transformed RR segments with the estimated PDF
superimposed (dashed line) from one patient. a) An accurate estimation for
a baseline recording. b) An estimate for the next half hour of the same
recording where the PDF is slightly shifted to the right from the histogram
c) An accurate estimate for a Metoprolol recording. d) An estimate where
the second peak is missed, done for the same recording one hour later.
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Figure 9.6: Histogram of transformed RR segments from the same patient.
a) A baseline recording, problem occurred when the histogram had three
peaks. b) A Metoprolol recording, the PDF adjusted well for a single high
peak.
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9.3 Drug analysis

Figures 9.7, 9.8, 9.9 and 9.10 display the means and standard deviations
of θ̂ for each patient, for both baseline and drug recordings, and the cu-
mulative values. The analysis is done with the recordings that fulfilled the
modified MLE. This generated in four patients for the Carvedilol study and
five patients for each of the other drugs.
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Figure 9.7: Comparison between baseline (*) and Carvedilol (-) parameters.
In a)-c) the mean and standard deviation for all parameters of θ̂ are displayed
for each patient, (A, D, E and F). d) The cumulative means and standard
deviations for 1 = α̂, 2 = ∆τ̂ and 3 = τmaxp for all patients in this study.

In Fig. 9.7 the results for Carvedilol are displayed. In general all param-
eters increased when Carvedilol was active, compared to baseline, α̂ with
0.08, ∆τ̂ with 0.05 s and τ̂maxp with 0.09 s. But important to note is that
for τmaxp the standard deviation increased too.
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Figure 9.8: Comparison between baseline (*) and Diltiazem (-) parameters.
In a)-c) the mean and standard deviation for all parameters of θ̂ are displayed
for each patient, (A - E). d) The cumulative means and standard deviations
for 1 = α̂, 2 = ∆τ̂ and 3 = τmaxp for all patients in this study.

Diltiazem did not affect the average probability of choosing either path-
way,which can be seen in Fig. 9.8, for some patients the drug increased
the probability of the fast pathway and for some it decreased. Both the
means and standard deviations for ∆τ̂ and τ̂maxp increased, 0.09±0.07 s and
0.12± 0.12 s respectively.
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Figure 9.9: Comparison between baseline (*) and Verapamil (-) parameters.
In a)-c) the mean and standard deviation for all parameters of θ̂ are displayed
for each patient, (A - E). d) The cumulative means and standard deviations
for 1 = α̂, 2 = ∆τ̂ and 3 = τmaxp for all patients in this study.

The effect on θ̂ caused by Verapamil can be found in Fig. 9.9. Verapamil
lowered the probability of the signal taking the longer pathway, α̂, with 0.22.
It also lowered the mean of ∆τ̂ with 0.03 s, a trend that is visual also when
looking at the results for each patient. The drug slightly increased τ̂maxp

with 0.04 s.
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Figure 9.10: Comparison between baseline (*) and Metoprolol (-) parame-
ters. In a)-c) the mean and standard deviation for all parameters of θ̂ are
displayed for each patient, (A - E). d) The cumulative means and standard
deviations for 1 = α̂, 2 = ∆τ̂ and 3= τmaxp for all patients in this study.

It can be seen in Fig. 9.10 that the effect of Metoprolol varied from
patient to patient. It had a marked effect on patient B where all parameters
increased, α̂ with as much as 0.49 making it very probable for the signals
to take the longer pathway. For patient C on the other hand the effect was
a little bit more modest but here all parameters decreased. The cumulative
mean for all parameters of θ̂ increased, but so did also the standard deviation
and the new span included both higher and lower values than baseline.
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Figure 9.11: Comparison between baseline at 1 pm to 4 pm (*) and baseline
at 5 pm to 8 pm (-) parameters. In a)-c) the mean and standard deviation for
all parameters of θ̂ are displayed for each patient, (A - E). d) The cumulative
means and standard deviations for 1 = α̂, 2 = ∆τ̂ and 3= τmaxp for all
patients in this study.

In Fig. 9.11 the comparison between two different time intervals for the
baseline recordings is shown. It is visual that both τpmax and ∆τ were quite
stable for all patients, whereas α varied. The change of α was independent
but for most patient the trend was a decrease from the first time interval to
the second, later one.
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Figure 9.12: Histogram of RR intervals. a) Displays histogram for patient A
during baseline recordings and b) during Metoprolol. c) Displays histogram
for patient C during baseline recordings and d) during Metoprolol.

To see whether the histograms of the analyzed segments changed ac-
cording to how the change in estimated parameters would predict them to
Fig. 9.12 shows the plot for two of the patients during baseline and Metopro-
lol recordings. For patient C the histogram is shifted to the right, towards
longer RR intervals, and gets much more narrow. The histogram for patient
A has a more subtle shift towards the longer RR intervals.
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Chapter 10

Discussion

One of the largest problems encountered in this study was the large number
of λ’s not computed correctly, resulting in a large amount of NaN (Not
a Number). Since these calculations were not a part of this study, the
problem was solved by putting a threshold of acceptable number of NaNs.
This threshold was set to 50%, at least half of the λ’s in every half hour had
to have a value for the half hour to be included in the evaluation. A higher
threshold excluded too many patients, and 50 % was the lowest threshold
decided to be statistical inacceptable. The original ECG signals were briefly
examined for noise. Small fibrillary waves can sometimes disappear in noise,
but large noise could not be found in the recordings evaluated in this study.
It should be noted that these examinations where performed visually for
short segments of the ECG recordings and are not scientifically secured.

For future analysis the background to this problem should be evaluated
more thoroughly. The signals should be evaluated for noise and the QRST
cancellation should also be looked over for errors or improvements. Noise
could be due to the ambulatory conditions or bad setup of the recording
equipment. One suggestion could be to use the new method by Petrenas et
al. [20] in Sec. 3.1.6. since it has shown better results than an average beat
subtraction method.

The two other parameter that were estimated independently of the out-
put were sτ and τmin1 . Of these, sτ was not assigned any restriction. For
further studies perturbation analysis could be carried out to see how small
errors affects the result, and an analysis of how much sτ does change during
the day to evaluate whether it should be restricted or not. The restriction on
τmin1 should accept 95 % of the values, if they are normally distributed, and
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only delete outliers caused by estimation errors since the parameter does
not have a wide span of probable values and is therefore justified.

In the algorithm there is a restriction so that α is not assigned unphys-
iological values. Since the ML estimation of θ sometimes generate these
values it can be an indication that the optimization from time to time gets
stuck in local minima. One way in trying to diminish this problem could be
to run simulated annealing more times before choosing the best values or
adjust it more for the task, in this study Matlab’s default features are used.
Another way could be to look into other optimization methods.

The drugs analyzed in this study are all supposed to act by increasing the
AV nodal block that should result in longer RR intervals. Thus, a decrease
in α is expected. As seen in Fig. 6.5, a decrease in α gives a higher prob-
ability for the signal to take the fast pathway and increasing the height of
the second peak.

When evaluating the RR interval histograms for changes due to the drugs
(see Fig. 9.12), a small shift to the right is seen for both patient A and C
for recordings with Metoprolol. The two peaks clearly merges into one for
patient C, whereas a merge of the peaks are not distinct for patient A. Since
longer RR intervals are desired as a result of medication, these results are
not all in agreement. Looking at the results of perturbation analysis shown
in Fig. 6.5, a shift to the right should indicate a decrease in α resulting in
longer RR intervals. A merge of the two peaks should indicate a decrease in
∆τ , which is not desirable since an increase in ∆τ should give the possibility
for longer RR intervals. As seen in Fig. 9.10 α is decreasing for both patient
A and C and ∆τ is affected significantly.

In Fig. 9.7 it is seen that for Carvedilol, α and ∆τ increased for three out
of four patients and τmaxp increased for all of the patients. The results for α
are not in agreement with what is expected. As mentioned above an increase
in α gives a higher probability for impulses taking the slower pathway, that
results in larger amount of short RR intervals. Since the same change in α is
seen for a majority of the patients, it is excluded that these results are due
to ambulatory conditions or interference in the recording. The results for
∆τ and τmaxp though, indicates what is expected, an increased ∆τ increases
the time between the shorter and longer RR intervals and since τmin1 is fixed
the longer intervals are those who are affected. An increased τmaxp results
in a higher probability for longer RR intervals, also in agreement with the
expectations.

Almost the same results are shown for Diltiazem in Fig. 9.8 where α
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increased for three patients and decreased for two, which gave a mean of
minimal change. Note that all patients do not get the same result for these
two drugs, for example patient E where α decreases with Carvedilol but
increases with Diltiazem. Verapamil had the same effect for most patients,
as well as Carvedilol, whereas the effect of Metoprolol and Diltiazem varies
more from patient to patient. Our investigation of normal changes in the
parameters during the day showed that α varied a lot while the other two
parameters were more consistent. This indicates that the changes in α might
also be affected by daily variation, while the effect on τpmax and ∆τ is mostly
due to the drugs.

The drugs are obviously affecting the patients in different ways and with
different effect and since the recordings were ambulatory, changes due to
patients activity may occur. It is taken as an indication of how each drug
affects the parameters of interest, when the same drug effects are seen in
several patients and they are more marked than normal daily variation.

The results are accounted for as statistically reliable due to the process
of assessing them. The study started out with 12 patients from which the
AF frequency was estimated. The screening process was then applied to all
of the patients and only the ones that fulfilled the requirements where taken
further in the analysis. Because of the challenges in analyzing AF it may
be difficult to have a large patient group, and earlier studies have also been
restricted to base their studies on a few number of participants [1]. But to
get a greater certainty, more patients should be evaluated or the patients
activity during the recordings should be documented to give as good com-
parison as possible.

Our results show a strong variance in the effect of each drug for different
patients, a problem that would be desirable to solve to facilitate treatment
of AF. One interesting approach would be to evaluate more of the patients
characteristics, such as heart rate, AF durability, age etc. to see if the dif-
ferent drug effects are associated with the patients characteristics and how
to measure these.
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Chapter 11

Conclusion

In this study a statistical method for quantitatively analyzing the effects of
AF drugs is presented. The model focuses on the electrical activity in the
AVN and accounts for several physiological characteristics such as dual nodal
pathways, concealed conduction and relative refractoriness. The parameters
that are estimated and analyzed are the probability of the atrial signal to
take the longer pathway, the difference in refractory period between the two
pathways and the maximum prolongation.

A measure of fit evaluation showed that the model has a mean accuracy
of 77 %, with a standard deviation of 11 %. These values are a bit low, which
should be noted when interpreting the results. But due to the robustness in
the model for the performance evaluation the results are still accounted for
as reliable.

The statistical analysis of recorded ECG signals, for patients both under
the influence of AF drugs and without, show visual effects in all estimated
parameters. The results differ between drugs, and sometimes between pa-
tients, but for most of the drugs a trend of the changes can be made out.
The drugs mostly caused more marked effects in the parameters than normal
daily variation.

This study indicates that the model is applicable for assessing quanti-
tative results of how antiarrhythmic drugs influence AF patients. There
are certain aspects of the model that need improvement, e.g. a more ro-
bust method for estimating the fibrillation frequency and other optimization
methods.
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