

Master’s Thesis

Passive queue size estimation from a

middlebox in TCP/IP networks

by

Ángel Santiago González Pinar

Department of Electrical and Information Technology

Faculty of Engineering, LTH, Lund University

SE-221 00 Lund, Sweden

 2

 3

Abstract

The new applications and services made available on the internet in the

recent years (as P2P file sharing or VoIP applications) have dramatically

changed the usage patterns all over the network. The huge amount of users

all over the world connected to Internet makes it necessary to develop

algorithms and protocols that can provide good QoS to the customers.

The main protocols of Internet are UDP, TCP and IP. Especially TCP is the

protocol supposed to provide a reliable connection and congestion control.

Several previous studies have shown that one of the main problems

nowadays on Internet is the bufferbloating (huge latency experienced by the

packets while transmitting due to the presence of large queues in the

buffers). This situation produces that a considerable amount of packets

might suffer from a big random delay, causing big jitter as well. This issue

is even more relevant in delay-sensitive applications, applications that

require a high level of interactivity of the user as VoIP or videoconference.

A more accurate study of the Internet behaviour will help us to attack the

problem mentioned above. The solution analyzed in this thesis project is

taking advantage of one of the options offered by TCP protocol: TCP

timestamps. By activating this option, the TCP header includes the time a

packet was sent. This allows a more accurate study of the Internet traffic

behavior. A new algorithm to study the jitter, delay and queues in networks

is implemented and tested. This new algorithm using TCP timestamps

option is implemented in Python. In order to confirm its validity, it is

subjected to several tests.

The algorithm can used to measure the latency and queuing suffered in

different connections, by analyzing different data collections from real

networks, and to try to identify some patterns that can help to reduce them

in the future. The results given by the new algorithm are more accurate and

trustable than, for example, when using RTT calculation.

Our algorithm shows that it is possible to estimate time intervals, networks

and servers offering bad QoS with high probability. As this thesis provides

results based on measuring the current situation, active actions can be taken

according to them to avoid those bad QoS situations.

 4

 5

Acknowledgments

This Master’s thesis would not exist without the support and guidance of

my two supervisors: Anders Waldenborg, Senior Software Engineer at

Procera Networks, who assisted me in the technical part during the thesis

duration, by giving me very helpful advices and solutions in the several

problems I faced, and Kaan Bür, Researcher and associate teacher at Lunds

University, who guided me in the elaboration of the final report,

presentation and also helped me in the technical part as well.

I really want to thank the company Procera Networks for giving me the

opportunity to develop my Master’s thesis in collaboration with them. The

experience of being involved in a real project together with a company has

been really helpful for me and I am sure will help me in my future work

life.

Of course I want to thank to my family, for their continue support, even if

we were separated, but they always transmitted me their support.

Last but not least I would like to thank all the people who showed

interested on my thesis, or helped me in any moment within these last 5

months.

 Lund, May 2013

Ángel Santiago González Pinar

 6

 7

Table of Contents

Abstract .. 3

Acknowledgments .. 5

Table of Contents .. 7

List of Figures ... 9

1 Introduction .. 11

2 Background and relevant work ... 14
2.1 TCP: deficiencies and first modifications.. 15

2.1.1 TCP Tahoe and TCP Reno ... 16
2.1.2 TCP New Reno ... 16
2.1.3 Compound TCP ... 17
2.1.4 RED (Random Early Detection) ... 17
2.1.5 ECN (Explicit Congestion Notification) ... 18
2.1.6 Karn’s algorithm ... 18

2.2 Later developments .. 19
2.2.1 Deep Packet Inspection (DPI) ... 19

3 TCP timestamps ... 21
3.1 Calculation of timestamps .. 22
3.2 Use of timestamps to calculate RTT .. 23
3.3 Use of timestamps for Protection Against Wrapped Sequence
Numbers (PAWS) ... 23

4 Jitter and queue size estimation algorithm 24
4.1.1 Calculation of jitter .. 25
4.1.2 Calculation of queue size .. 27
4.1.3 Calculation of guard time .. 27

4.2 Files containing connection data ... 32

5 Validation of the algorithm ... 34
5.1 Netem + HTTP Server ... 34

5.1.1 No delay ... 37
5.1.2 Constant delay ... 38
5.1.3 Random delay .. 39

5.2 Python code to generate connections .. 40
5.2.1 No delay and constant delay.. 41
5.2.2 Random delay .. 42

5.3 Ns-3 ... 43
5.3.1 Constant delay model ... 44

 8

5.3.2 Random delay model .. 46

6 Real data analysis ... 48
6.1 Procedure details .. 49

6.1.1 Results when sending from a wired or wireless network 51
6.1.2 Results when accessing a certain server .. 56
6.1.3 Results for different connection times .. 59

7 Conclusions and future work .. 62

References .. 64

Appendix 1: Python libraries used .. 66

 9

List of Figures

Figure 1: Receive window in TCP .. 14

Figure 2: RED algorithm... 18
Figure 3: Timestamp field ... 22
Figure 4: RTT measurement with Timestamps... 23
Figure 5: Flow chart of the Python program ... 24

Figure 6: Packet exchange between 2 devices .. 25
Figure 7: Graphical representation of the maximum queue time 27

Figure 8: F vs packet distance for one connection 29
Figure 9: Packet margin (up) and time_margin (below) in F calculation

(zoomed) ... 30
Figure 10: CDF of packet and time margins (zoomed) 31
Figure 11: HTTP server + Netem network configuration 36

Figure 12: No delay when downloading 1MB to the left and 10 MB to the

right ... 37

Figure 13: Constant delay when downloading 1MB to the left and 10 MB to

the right: the blue lines show 1/F and -1/F.. 38
Figure 14: Random delay when downloading 1 MB to the left and 10 MB

to the right ... 39

Figure 15: No jitter generated by Python code ... 41
Figure 16: Random delay generated by Python code 42
Figure 17: Constant delay ns-3 model .. 44

Figure 18: Constant delay ns-3 ... 45
Figure 19: Random delay ns-3 model ... 46

Figure 20: Random delay ns-3 .. 47
Figure 21: CDF of packet and time margins in capture-20130404-

123423.pcap (zoomed) .. 50
Figure 22: Collection of data scheme ... 51

Figure 23: Jitter standard deviation in wired and wireless networks 52

Figure 24: Wired network’s jitter standard deviation histogram 53
Figure 25: Wireless network’s jitter standard deviation histogram 53
Figure 26: Maximum queuing time in wired and wireless networks 54
Figure 27: Wired network’s maximum queuing time histogram 55
Figure 28: Wireless network’s maximum queuing time histogram 55
Figure 29: Big jitter occurrences per server (1) .. 57
Figure 30: Big jitter occurrences per server (2) .. 57
Figure 31: Jitter standard deviation ... 58

Figure 32: Maximum queue time .. 58
Figure 33: Big jitter values over connection time (1) 59

 10

Figure 34: Big jitter values over connection time (2) 60

 11

CHAPTER 1

1 Introduction

On its journey from source to destination, a packet passes several network

components that may queue it in a buffer. The necessity of buffers in

Internet can be explained easily. When more packets are sent to the link

than this can deal with, there are packet losses and collisions. To avoid it,

the user can send packets only when the link is able to transmit without

crashing. This causes the packets to “wait” to be sent on the user’s side, so

there is a need for queuing the packets. Another common situation when

buffering happens is when connecting two different links, each of them

with a different data rate. If a packet is sent through a high-speed link and

arrives at a new link whose speed is lower, it is forced to wait in a buffer

until the new link is able to transmit it. The packet might be buffered too

when several links are multiplexed to a single one; it must wait until the

single link is able to handle it.

Some attempts to avoid packet losses have done nothing but deteriorate

even more. For example all over the network there have been set huge

buffers to avoid packet loss, but adding bandwidth can actually hurt in

terms of latency rather than help. The larger the buffer is, the worse

problems are in terms of latency and jitter. This problem is known as

bufferbloating, and it seems like it is present all over the network [1]. It can

be concluded that some packet loss is essential in order to avoid

bufferbloat. [2]. The lack of consensus about congestion algorithms (or lack

of algorithms at all in some networks) also contributes to magnify the

bufferbloating problem [3] [4]. All these problems are even worse in

asymmetric links, and this is just a very common link due to the prevalence

of ADSL. This mismatch between TCP and asymmetric networks is deeply

analyzed in [5] [6] [7] [8].

This bufferbloating problem is quite new, and even though some studies

have been done in order to test it and improve it, more accurate methods are

required [2]. By inspecting timestamp values in packets sent through a so-

called middlebox and correlating those, it is possible to calculate relative

 12

changes in propagation delay between the sender and the middlebox. These

changes can be interpreted as changes in the amount of buffering and

latency.

The previous work within the field had mainly focused on optimizing

downlink throughput, setting aside the optimization of latency. A deep

study of the latency is demanded because it can be the bottleneck of the

connection. If there is a network link with low bandwidth, just putting

several links in parallel will increase the bandwidth. However, if there is a

network link with bad latency, no topology can turn it into a link with good

latency. Even links with enough bandwidth can show a bad latency: for

example, the fastest link that exists nowadays; if it lacks of good congestion

algorithms, or if it is connected to a link with much less BW, experiences a

high latency and consequently delivers a poor QoS.

There is always a lower bound of the time that a packet needs to travel from

source to destination that can never be beaten, does not matter how small it

is. If a large amount of data is sent, this latency is not very noticeable, but if

smaller amount of data will be transmitted, then the latency is even higher

than the transmission time. Even when transferring big files the computers

have to send to each other lots of little control messages, so the

performance of small data packets directly affects the performance of

everything else on the network [9]. As internet grew, the problem of latency

has become more important. Recent studies and experiments have shown

that TCP/IP networks suffer from big latency, delays and jitter that

sometimes damage the quality of the TCP connection. That’s why taking

action to solve them is required.

The solution developed through this thesis report is based in an algorithm

which takes advantage of the TCP timestamps option in order to calculate

delays, jitters and queues in a more accurate way. When both the receiving

and sending time of a packet is available at one side, the calculation of

these figures becomes more accurate and reliable. The algorithm is coded in

a Python program. It works on previous offline collected data files, but it

should be implemented in a way that can be easily adapted to live networks

analysis. In order to confirm the validity of the code, some tests are

performed using different tools and simulators to test different scenarios

with a wide range of possibilities. The code also provides some statistics

based on the traces from real connections, about how much data and time is

required in order to deliver a good result.

 13

This Python code also runs over a representative file with a selection of real

connections. This file represents a real scenario that can be found anywhere

in TCP/IP networks. It is collected with the help of the middlebox taking

advantage of Deep Packet Inspection (DPI) to collect data traces which are

interesting for this overall analysis; it contains the widest variety of

connections, delays and jitter in order to estimate a proper pattern of QoS in

Internet. By defining events or situations that can produce big jitter in

Internet connections, it will be possible to avoid latencies in the future, as

different actions could be taken depending on which host, location or

network is accessed.

The project has been done in cooperation with Procera Networks, an

American-Swedish company focused on designing and selling middleboxes

using DPI technology to measure the QoS of the customer. We have

worked on data files delivered by Procera Networks as they have been

chosen to show a scenario as representative as possible of a random Internet

scenario. This thesis work has also been a contribution to the Celtic-Plus

project IPNQSIS (IP Network Monitoring for Quality of Service

Intelligent Support). This is a European research project whose main

objective is to develop monitoring systems in order to study and improve

the behavior of Quality of Experience (QoE) by the analysis of networks

and their impact in the final customers. [10]

 14

Figure 1: Receive window in TCP

CHAPTER 2

2 Background and relevant work

Transmission control Protocol (TCP) is one of the core protocols of

Internet, and is a protocol in the transport layer (according to the TCP

layered model which is based on, although a little different from, the OSI

model). TCP handles the establishment of a connection, the sequencing and

acknowledgment of packets (in order to order and retransmit the packet

when lost or corrupted) and the data flow (controlled by the window size).

TCP uses a sequence number to identify each byte of data so that the data

can be reconstructed in order. For every byte transmitted, the sequence

number must be incremented. A checksum field is also included. In order to

guarantee that all the bytes are received correctly and in the same order,

TCP implements positive acknowledgment (ACK) with retransmission (the

receiver answers with an ACK message as it receives the data, while the

sender keeps a record of each packet it sends). The sender also keeps a

timer in case an ACK gets lost or corrupted.

TCP uses a cumulative acknowledgment scheme (the receiver sends an

ACK meaning that it has received all data preceding the acknowledged

sequence number by asking the sender for the sequence number of the next

byte it expects to receive).

 15

TCP uses a sliding window flow control method. The receive window field

represents the amount of additional bytes that the receiver is able to buffer.

The sending host can send only up to that amount of data, and when a

receiver sends a window size of 0, the sender stops sending data. [11]

2.1 TCP: deficiencies and first modifications

The current scenario where communications are nowadays makes necessary

to modify some parts of TCP protocol (mobile Internet, fiber optic speeds,

delay-sensitive applications or hundreds of millions of users worldwide for

example), as it cannot guarantee the best QoS. That is clearly seen in the

fact that modifications have been made to the protocol that have changed

the way it reacts to losses and congestion: TCP Reno, TCP Tahoe, or

algorithms as Random Early Detection (RED) or Explicit Congestion

Notification (ECN) are just some examples that show the necessity to

improve the protocol.

The different options that TCP offers are subsequent modifications that

show the necessity of changing the protocol in some way. These are: the

TCP option to deal with window´s sizes bigger than 16 bits (window

scaling option), the SACK option, which uses selective ACK instead of

TCP normal cumulative ACK (as the recovery from losses is not either

ideal in TCP) and timestamps option, which can be used for several

improvements as it is explained throughout Chapter 3. [12]

In the TCP tail drop algorithm, a router or other component buffers as many

packets as it can, and drops the ones it cannot buffer. If buffers are

constantly full, the network is then congested. This implementation does

not provide good QoS, and that´s why some other modifications and

algorithms were created.

 16

2.1.1 TCP Tahoe and TCP Reno

To increase the congestion window, TCP uses the “slow start” mechanism.

It starts with a window of two times the maximum segment size (MSS). For

every packet acknowledged, the congestion window increases by 1 MSS.

Although the initial rate is low, it means an exponential increase. When the

congestion window surpasses a threshold, the algorithm enters the

“congestion avoidance” state: as long as non-duplicate ACKs are received,

the congestion window is increased by one MSS every round trip time. The

implementation of Tahoe and Reno differ in how they react to packet loss:

 Tahoe: Triple duplicate ACKS are considered the same as a timeout.

Tahoe sets the threshold to half the current congestion window,

reduces congestion window to 1 MSS, and resets to slow-start state.

 Reno: If three duplicate ACKs are received it reduces the

congestion window to half its value, sets the slow start threshold

equal to the congestion window, and enters a phase called “fast

recovery”. In this state, the missing packet that was signaled by

three duplicate ACKs is retransmitted, and it waits for an

acknowledgment of the entire transmit window before returning to

congestion avoidance. If there is no acknowledgment, TCP Reno

experiences a timeout and enters the slow-start state.

In case of a timeout, both algorithms reduce congestion window to 1 MSS.

[13]

2.1.2 TCP New Reno

TCP New Reno (defined in 2004) improves retransmission during the fast

recovery phase of TCP Reno: for every duplicate ACK, a new unsent

packet from the end of the congestion window is sent, to keep the transmit

window full and maintain a high throughput during the filling of the holes

process. For every ACK that makes partial progress, the sender assumes

that the ACK points to a new hole, and the next packet beyond the ACKed

sequence number is sent. This allows New Reno to fill large holes, or

multiple holes, in the sequence space. [14]

 17

2.1.3 Compound TCP

Compound TCP is a Microsoft implementation of TCP (2006). It is mainly

designed for connections with large bandwidth-delay products. It uses the

estimation of queuing delay as a measure of congestion. Compound TCP

maintains two congestion windows: the first window is increased the same

way as a TCP Reno one, and the other is a delay-based window. This

second window increases rapidly if the delay is small. Once queueing is

experienced, the delay window gradually decreases to compensate the TCP

Reno one. The size of the actual sliding window used is the sum of these

two windows. [15]

2.1.4 RED (Random Early Detection)

RED calculates the average queue size and drops packets based on

probabilities. When the buffer is almost empty, all incoming packets are

queued. As the queue grows, dropping probability will grow as well. When

the buffer is full, no more packets fit (the probability of discarding is 1) and

all incoming packets are dropped.

RED is more fair than tail drop as it does not have preference against bursty

traffic. The more a host transmits, the more probably its packets will be

dropped. [16]

 18

Figure 2: RED algorithm

2.1.5 ECN (Explicit Congestion Notification)

ECN allows end-to-end notification of network congestion without

dropping packets. ECN has to be previously configured and supported by

both sender and receiver. Once enabled, an ECN-aware router puts a mark

in the IP header instead of dropping a packet when congestion is about to

happen. The receiver of the packet echoes the congestion indication to the

sender, which reduces its transmission rate. [17]

2.1.6 Karn’s algorithm

RTT can be difficult to calculate, especially when there is high packet loss

or long periods without transmitting. Karn’s algorithm was designed to

calculate accurate estimations of the RTT when using TCP. RTT is

estimated as the difference between the time a segment was sent and the

time that its ACK returns. When packets are re-transmitted the ACK could

correspond to the first transmission or to any other.

 19

Karn's Algorithm ignores retransmitted segments when updating the round

trip time calculation. Round trip time estimation is based only on

unambiguous ACK. [18]

2.2 Later developments

Several studies have been carried out to investigate the effect of queuing

and latency in the network. In [19] a methodology to monitor the upstream

queuing delay experienced by remote hosts is proposed. A deep study on

bufferbloating was developed by [20]. It´s based on a passive measuring in

a FttH network connecting around 90 homes with a campus (1 GBps).

Packet-level traces are recorded following a certain pattern to make it as

accurate as possible. The main observations were:

- Buffering is happening to some extent.

- RTT to residential peers is generally longer than to non-residential

peers.

- 99.6% of residential RTT samples and 98.3% of non-residential

RTT samples are less than one second.

The conclusion was that the queues that impose big delays and

bufferbloating (huge buffering of packets inside the network that causes

high latency and jitter, as explained in chapter 1) were not found. However,

the studies also point at the possibility that a deeper study can indeed find

the problem.

2.2.1 Deep Packet Inspection (DPI)

DPI is a promising new tool for analyzing the network. It is a way of packet

filtering that analyzes the packets that pass through a component called

“middlebox”, searching for viruses, spam or any defined criteria, in order to

decide whether the packet should pass and with which priority. DPI-

enabled devices have the ability to look at “Link” and “Network” layers of

the TCP/IP model. DPI can also be configured to look through Layer 2-7.

In TCP/IP scenarios, network equipment only needs to analyze the IP

header, but for shallow inspection, TCP and UDP headers are also checked.

[21]. DPI can help avoiding undesired delays in those applications more

sensitive to latency by setting different priorities to the packets. That’s one

of the main focuses of the company “Procera Networks”. [22]

 20

In this thesis only packets chosen thanks to DPI are analyzed in order to

keep the confidentiality of the data (it is done by selecting only HTTPS

traffic). Doing this way the timestamps values and the rest of the

parameters are accessible, but not the data content. However DPI offers a

wide range of new possibilities to improve latency. The study by

J.Dangaard [8] precisely takes advantage of DPI; is focused on achieving

low latency during saturation of the uplink. It also demonstrates how it is

possible to achieve full downlink and uplink utilization in asymmetric links,

while at the same time supporting different delay-sensitive applications by

placing a middlebox between the PC and the network. That prioritizes

traffic in function of their “delay-sensitive” level.

Latency-sensitive and some other types of applications require allocating

and sharing the link resources between network applications according to

their service requirements. To achieve this, it is necessary to control the

different traffic that goes into the link, as so the timing and drop probability

of the packets can be fairly and efficiently implemented. Modifying the

TCP/IP stack is not an option, because is impossible to have full access to

all the devices connected to Internet, so the middlebox solution is more

convenient and simple technique. The results shown in [8] fulfill the

objective of optimizing ADSL connection in terms of interactive comfort

and maximum link utilization. Especially the latency suffered by high

priority packets has been decreased by the installation of a packet scheduler

and by prioritizing ACK packets and the traffic more sensible to latency.

Recent advances have shown that DPI is not only a way to improve latency

in TCP/IP networks, but can also provide profits. Spanish mobile operator

Yoigo is planning to charge the customers in function of the contents they

get, instead of giving flat-rate, or paying for the generated traffic: rather

than paying for a volume of data, customers will pay for a video or a song.

If the user is listening to streaming music, the price would include the usage

of the network and the content itself. [23] [24]. It can be concluded then

that DPI can both improve the latency in the network, while offering the

companies an interesting new way of pricing.

 21

CHAPTER 3

3 TCP timestamps

As it has been shown in Chapter 2, TCP does not provide good enough QoS

for modern scenarios. The changes in the application profile imply buffer

congestion and big latencies in some networks. In order to improve that,

this thesis studies the contribution that the usage of TCP Timestamps

option can have in the avoidance of latency. It is framed in a DPI scenario.

TCP timestamps provide us with the statistics needed for a better

understanding of the situation, which is the essential first step for latency

avoidance, thanks to the access to the time the packet was sent. This passive

study allows a better understanding of the latency and implementing

different active solutions according to the statistics and results delivered.

The algorithm is based on calculations at the receiver; the delay and jitter

suffered by the packets, which is interpreted as a factor to quantify the QoS

of current TCP/IP networks in terms of latency. Both the delay and jitter are

calculated taking into consideration the time a certain packet arrives at the

destination and the time it was sent (extracted from the TCP timestamp

option field). Finally, the maximum queuing time suffered in the

connection is also calculated.

This way of calculating delay, jitter and queues is more accurate than using

RTT measurement, which calculates the delay since a packet is sent and its

ACK arrives to the sender, so two packets are involved in this transmission

and it is less accurate than the algorithm which has been implemented in

this thesis.

 22

3.1 Calculation of timestamps

As stated in section 2.1 and the introduction of chapter 3, TCP timestamps

can help to solve some of the current problems of TCP protocol.

Timestamps add extra bytes, but reduce unnecessary retransmissions and

avoid wrapped sequence numbers.

The timestamp field has the following structure:

Figure 3: Timestamp field

The 2 main fields are Timestamp Value (TSval) and Timestamp Echo

Reply (TSecr). TSval contains the current timestamp value, while TSecr is

only valid if the ACK bit is set in the TCP header and it echos a timestamp

value that was sent by the remote TCP. TSecr value will generally be from

the most recent Timestamp option that was received [12]. The timestamps’

clock should not be too slow (it must tick at least once for each 2
31

bytes

sent due to the receiver’s algorithm) nor too fast (to avoid a fast wrap in the

field vaue). Based on these considerations, the timestamp clock frequency

is set in the range 1 ms to 1 sec per tick. In order to compare the timestamps

of the destination with the timestamps of the source, a known frequency is

needed. This known frequency is a multiplying coefficient “F” set into a

range of normalized values. Then, this clock value should be converted into

a 32-bits format so the different devices can deal with it, so a round-off is

also needed.

The TsVal is calculated by Equation 1:

(Equation 1)

Where Ts(n) is the time (ms) when packet “n” was sent, O is an offset and

F is a constant value used during all the connection. This F value is usually

normalized to 125, 250, 1000, 1024.

 23

3.2 Use of timestamps to calculate RTT

RTT is difficult to measure, as it can be easily miscalculated due to

retransmissions or packet losses. One solution to avoid this is using

timestamps option. The next image shows one example of this advantage:

Figure 4: RTT measurement with Timestamps

TSecr value updates averaged RTT only if it acknowledges new data. If

there is a big pause without sending anything, RTT calculation won’t be

done when receiving segment C at Terminal 2 [12].

3.3 Use of timestamps for Protection Against
Wrapped Sequence Numbers (PAWS)

It is a mechanism to reject old duplicate segments: for example segments

from old TCP connections or with a huge delay that are part of the previous

sequence range. A segment is discarded if its Timestamp is lower than any

other recently received. [12]

 24

CHAPTER 4

4 Jitter and queue size estimation
algorithm

An algorithm to extract TCP timestamps data from trace files and calculate

the delay based on that data have been developed. It has been implemented

in Python. The following flow chart shows the steps followed.

Figure 5: Flow chart of the Python program

 25

The calculation of F factor is essential in order to get the rest of the

different figures. The necessity of waiting a guard time is explained in the

following sections 4.1.1. and 4.1.3. Then the jitter and the queue size are

also calculated. Finally, these two parameters are parsed per connection in

order to analyze them, as it is explained in chapter 6.

4.1.1 Calculation of jitter

Figure 6: Packet exchange between 2 devices

Figure 6 represents the packet exchange between two devices. Ts(n)

represents the times when the packet “n” was sent from the 1
st
 device, t(n)

is the TCP timestamp for the packet “n” and Tr(n) represents the time when

the packet “n” arrives to the 2
nd

 device.

In order to calculate the delay and the jitter, we need to look at the TCP

header. The most important feature is that these calculations use the

information provided by TCP Timestamp options. The timestamp field is a

function of the sending time, modified by a constant and an offset, and its

value it is rounded off to the lower integer value.

(Equation 2)

There is a necessity to calculate the constant F in order to decode the time

where the packet was sent, as it is the sender who sets it and it is unknown

for the receiver. The algorithm implements the following equations:

 26

(Equation 3)

(Equation 4)

where are the transmission and propagation delay suffered by the

packet. The delay suffered by the nth packet (Td(n)) is the time gap

between the time where the packet has been received and the time it was

sent. However the time that the packet was sent is not directly accessible

for the receiver, while the time the packet arrives is well recorded. To

access the sending time, TCP offers the TCP timestamp option. However,

the timestamp is a function itself of the sending time, dependent of a

constant and an offset. The offset, as well as the clock synchronization

problem, can be eliminated by working with the difference between TCP

timestamps from different packets.

(Equation 5)

This calculation is more accurate as the packets are more separate in time,

as the error in the calculation due to the lower round off of the timestamp

becomes really small. The next approximation is also assumed, which will

be explained with an example in the next chapter:

(Equation 6)

because the values are small when compared to the difference

between the packets' arrival times. The constant F can then be estimated:

(Equation 7)

The jitter is the difference in delay between two consecutive packets.

(Equation 8)

 27

The value of both approximations in Equation 6 and Equation 7 is more

reliable as the packet “n” and the packet “1” chosen to calculate F factor are

more separated, because the errors due to the disregarding of the δ delay

and the lower round-off in the F calculation become less important.

4.1.2 Calculation of queue size

The algorithm to calculate the maximum queuing that any packet has

suffered in one connection is shown in the picture below:

Figure 7: Graphical representation of the maximum queue time

Each arrow represents the delay suffered by a packet transmitted in a

connection. The packet that experiences the smallest delay, is considered as

reference level (we assume that this packet did not suffered from any

queuing; it is just affected by the propagation and transmission delays). The

difference between the packet that experiences the maximum delay and the

one that presents the smallest delay is considered as the maximum queue in

the connection.

(Equation 9)

4.1.3 Calculation of guard time

As it was said in section 4.1.1, the calculation of F is more accurate as the

two packets are more separated in time, because the errors due to round-off

and disregarding of small delays become insignificant.

 28

This is why we first run our algorithm to calculate the most accurate

estimation of F, taking the first and the last packets in the .pcap file.

However, it is not possible to adopt this approach in a live network

environment, as in a live connection the last packet is never available to the

programmer, because packets are arriving at random intervals and not

ordered. Thus, a second version of the same algorithm has been developed,

which can operate in real-time. The main idea is to calculate the F for every

new single packet that arrives with respect to the first one, and keep

updating this value: this improves the calculation of F as packets that arrive

later in time are more separated to the first one. However, the first packets

that arrive drive into a miscalculation, where the F value can be far away

from the nominal one. That’s why there should be a lapse of time until the

algorithm starts to calculate it.

This interval without calculating the F and therefore without registering the

jitter and queue (guard interval) is determined by looking at several

connections and making a statistic to set a time gap from which the F factor

will be very probably very close to its nominal value, in any connection that

is studied. The guard interval can be expressed either in time or in number

of packets, depending on the situation that want to be applied.

In order to gather these statistics that determine the guard time to be waited

by the algorithm, a deep study of a collection of many different connections

was done. This collection was a file that is deeply explained in section 4.2

(many-connections.pcap). Then the F factor was calculated using the

timestamp differences between the first packet and every other one by one.

It must be noted that the F value is set individually by each end node

creating TCP packets, so it needs to be calculated per connection. The F

nominal value is the F factor when calculating it between the first and the

last packet (as the first version of the code, since the calculation using the

most separated two packets gives the most accurate result). Figure 8 shows

both the F vs. time and the error in F calculation vs. time for one sample

connection.

 29

Figure 8: F vs packet distance for one connection

Running this code over several connections, the packet margin is calculated

as the first packet that delivers an error within 5%:

The margin in time is obtained as the difference between the arrival time of

this packet and the arrival time of the first packet. Once both margins are

calculated over a considerably big number of connections (the connections

present in the file many-connections.pcap, which is explained in section

4.2), the general guard interval is calculated by looking at the statistical

distribution of these two margins.

 30

Figure 9: Packet margin (up) and time_margin (below) in F calculation (zoomed)

The mean value of both margins is not accurate to obtain the guard interval,

because a big margin in one of the connection while the others have lower

margins result in a big average margin that does not reflect the reality. So

the Cumulative Distribution Function (CDF), and the histogram of the

margins calculated for each connection, lead to a better approximation. The

CDF is determinant in order to establish the margin as accurate as possible.

Figure 10 shows the CDF function of the packet and the time margins:

 31

Figure 10: CDF of packet and time margins (zoomed)

Looking at the plot, the packet margin was decided to be 100, while the

gap time is set to 250 ms. Both red lines show the percentage of

connections that have an insignificant error in F calculation when:

- Waiting 100 packets: ~ 98 %

- Waiting 250 ms ~ 96%

It is also important to emphasize that some of the connections that have

huge packet or time margins, never deliver a proper F value, and cannot be

treated as part of the study. As working with real data, some corrupted

connections appear (for example, wrap in the TCP timestamp field can

happen). The packet margin determines that only connections with more

than 100 packets should be considered. The calculation of F factor is then

delayed 250 ms after the first packet arrived.

Once the F factor has been calculated, the next step is to get the rest of the

figures, following the process described at Figure 5.

 32

4.2 Files containing connection data

We want to cover a range of connections that can represent an Internet

environment as accurately as possible. However there are some limitations

due to confidentiality and privacy issues. Even if the focus of the project is

to improve QoS in Internet, is not possible to access the full data exchanged

in the different connections. For this reason, all the trace files contain only

HTTPS traffic (TCP port 443), as it encrypts the traffic. Looking at HTTPS

.pcap files, we can have full access to all the information required for the

algorithm (to the headers mainly) but not to the data itself. As only traffic

from the port 443 is being analyzed, some other connections are being

discarded. This analysis is more accurate in operative systems that enable

by default TCP timestamps and use HTTPS (i.e. Android) and less accurate

when these options are disabled (i.e. iOS).

The data that were used to start testing the code that analyzes the latency in

TCP/IP networks is from capture files delivered by Procera Networks.

These data contain multiple connections corresponding to the traffic going

through a middlebox at their office (equipped with the DPI technology they

develop that selected interesting traffic: for example, data exchange when

accessing both a wired and a wireless network). Several .pcap files were

taken because the study of the latency required many connections to

provide a good overview. The main file used to calculate the guard time

needed for the algorithm is called many-connections.pcap. This file

contains data from 1,809 connections, exchanging 110,682 packets. In this

file the data were selected in a way that every packet has TCP timestamps

option activated. This connection records packets for a period of 57,740

seconds (16 hours)

In order to analyze interesting real data measurements, the file capture-

20130404-123423.pcap is used. This file contains traces of connections to

both wired and wireless networks, as well as several connections to the

same host. This will be explained more in detail in Chapter 6. In this .pcap

file 6,138 connections are stored, which involve the transmission of

384,334 packets, from where 78.61 % use TCP timestamps option. The

capture file lasts for 5,392 seconds (1 hour and a half). An important fact is

that the algorithm only runs the algorithm over the packets that have TCP

timestamp option activated. The rest are not taken into consideration.

 33

Finally, the biggest collection of connections data is stored in 39 files

zipped in parsed_capture-2013*.pcap.gz. These pcap files are the ones

used to represent a normal Internet scenario. All the 39 files cover a total

amount of 109,712 connections, 18,421,426 packets, and the percentage of

packets using TCP timestamps is 34.3 %. The time duration of all the files

together is 3,630 s (one hour more or less). The most interesting feature of

these data files is that it contains traces of several connections to the same

host; the study of the correlation of these various connections will show

very useful results.

 34

CHAPTER 5

5 Validation of the algorithm

Once the algorithm is programmed in Python, it is necessary to test it

before analyzing real traffic and gathering statistics of the current Internet.

The algorithm itself is a new way of calculating delays, so it must be

proved that it is valid.

As explained in Chapter 4, the algorithm runs over previously captured data

files; the way of testing is then generating capture files according to

different configurations. The main parameters (Tr(n), Ts(n) and t(n)) are set

to well-known values, so the jitter is expected to be in certain range; once

the file is generated, the algorithm shows the results and comparing them to

the expectations according to the configuration, we can determine if the

code is working as expected. In order to isolate the tests from the way of

generating the capture file, three different ways of doing so are used, which

are explained in the next sub-sections. In this part of the Thesis, the use of

Linux OS was mandatory, as it is especially interesting for connection

issues. When the code has successfully passed all the tests, its robustness

can be confirmed and real traffic can be analyzed.

5.1 Netem + HTTP Server

Linux OS offers a simple way to connect two Linux machines by the Netem

tool, which is run from the command line. First of all, in order to connect

both machines, an Ethernet crossover cable is needed. Once they are

connected physically, the network should be configured as following:

Ifconfig eth0 <ip_adress>

This command should be executed in both machines, with different IP

addresses (10.1.1.1 and 10.1.1.2 for example). After this step, both

computers are able to start communicating with each other. This

transmission is ideal (no delay, no packet loss…) but these parameters can

be modified using Netem as follows:

 35

Add a parameter:

tc qdisc add dev <interface> root netem <parameter><value><variation><distribution>

Change a parameter previously defined:

tc qdisc change dev <interf> root netem<parameter><value><variation><distribution>

Show the parameters used:

tc qdisc show

Delete a parameter previously defined:

tc qdisc del dev <interface> root

- The <interface> field should include the one that was configured

with ifconfig command (eth0 in this case)

- <parameter> should refer one of the following:

o Delay

o Loss (%)

o Corrupt (%)

o Duplicate (%)

o Reorder (%)

- <value> is the desired parameter value

- <variation> adds a ± random value within this field to the desired

parameter value.

- <distribution> defines the distribution of the added random value.

The network is already configured as showed in Figure 11, so in order to

test it, packets should be sent from one to the other.

 36

Figure 11: HTTP server + Netem network configuration

First of all one of the computers is configured as a HTTP server as follows:

cd /tmp

dd if=/dev/zero of=1M bs=1M count=1

python –m SimpleHTTPServer 8000

This creates the server, and the other computer accesses it by typing:

wget http://10.1.1.1:8000/1M

10.1.1.1 is the IP address assigned with ifconfig command. Once the setup

is done and is running, Wireshark collects all the traffic generated in this

connection creating the capture file.

With the parameters, different setups are generated to be studied:

- No delay: the delay is set to 0. This means that every single packet

only experiences propagation delay, and it is exactly the same for all

of them, so the jitter in this simulation should be equal to 0. This is

the ideal transmission environment.

- Constant delay: using the Netem commands, the delay is set to a

constant value in the range {100, 200, 400, 700}. The jitter should

still be 0, as every packet is delayed the same, but the connection

time length should become longer as the delay is higher.

- Random delay: in this case, the delay is a random value within

certain limits. The jitter shall be present, as the delay fluctuates in

time, but it should never be > |2*<variation>| field set in Netem

command. The <variation> is set in the range {10, 30, 50, 100} ms.

http://10.1.1.1:8000/1M

 37

In order to test if the size of the connection is relevant, every simulation is

tested when accessing two different file´s length: 1M and 10M, just

changing the bs parameter. The results obtained from the three different

configurations are shown and explained below:

5.1.1 No delay

Figure 12: No delay when downloading 1MB to the left and 10 MB to the right

As expected from the theoretical study, the jitter in this case is not present.

Most of the spots show a null value (which means that the delay suffered

from consecutive packets was exactly the same, in this case only

propagation delay). However some spots are more spread, even if the delay

was set to a fixed number. This small variation has nothing to do with the

delay or jitter, but to the error made by rounding down F value due to

(Equation 7) and dismissing of the transmission and propagation delays in

(Equation 6). The two blue lines determine 1/F and – 1/F, which are the

error margins due to the round-off remains. As explained in Chapter 3, F is

a known frequency needed to compare both the sender’s and receiver’s

timestamps; consequently the inverse of this frequency is the smallest time

increment we can detect, the time resolution. All the jitter spots are framed

in the middle, so the results are as expected.

It can also be detected that the connection time without delay is quite small,

and it increases when downloading 10 MB instead of 1 MB.

 38

5.1.2 Constant delay

Figure 13: Constant delay when downloading 1MB to the left and 10 MB to the right:

the blue lines show 1/F and -1/F.

This case is very similar to the previous one. The fact that constant delay is

set to the channel means that every packet suffers the same latency.

According to (Equation 8), the jitter should not be present. As in 5.1.1, the

deviation of some spots comparing to 0 never exceeds the limits set by 1/F

and -1/F, so jitter is not distinguishable from the error we make with the

floor function, as expected.

The connection length has increased a lot comparing to the case with no

delay. This is a good example to see how in the transmission of a big

packet, even a small delay damages the QoS in terms of latency. As stated

in [9], this is because a huge amount of small control packets are exchanged

even if they are not noticed by the user. This connection length also

increases in the download of 10 MB with respect to 1 MB. Figure 13 shows

the case where the delays is set to be 700 ms; when simulating with the

other values stated in section 5.1, only the connection length changes, but

the behavior remains the same.

 39

5.1.3 Random delay

Figure 14: Random delay when downloading 1 MB to the left and 10 MB to the right

This configuration of Netem sets the delay as a randomly added value

varying within a range of ±30 ms. In this case every packet suffers from a

different delay, so the jitter must be present (spots must exceed the blue

lines). However these spots never go over ±60 ms, as this is the maximum

jitter that a packet can suffer in the extreme case that the previous one

experiences +30 ms and itself -30 ms. The connection length is again longer

when accessing a 10 MB, as expected.

A brief summary of the jitter standard deviation values are recollected in

the table below:

Case Jitter st. deviation

Random (variation = 10ms) 7.2 ms

Random (variation = 30ms) 21.4 ms

Random (variation = 50ms) 35.2 ms

Random (variation = 100ms) 78.7 ms

Table 1: Summary of results with Netem

These results show the success of the test, as they match the expectations.

 40

5.2 Python code to generate connections

Another choice to generate a controlled test connection was developing a

Python code that creates manually a .pcap file, like filling the gaps of a

usual Wireshark .pcap catch. In order to create these .pcap files, the

different parameters of the connection are set: first of all, setting TCP, IP

and Ethernet. Then assigning the source and destination IP addresses. TCP

protocol requires several parameters in order to generate properly its

header: these are source port, destination port, window size, sequence

number, ACK number or checksum enable as well as some data that is not

relevant in this study. The most important parameter that is set in TCP is

the TCP timestamp value. This is calculated as explained in 4.2.2:

O value is chosen as 123456, F = 1024, and Ts(n) is set in different ways

depending on the focus of our test connection. The time the packet is sent

(Ts(n)) always increases 0.25 seconds for every single packet with respect

to the previous one (packet generation rate). Tr(n) represents the time the

packet arrives, and it is the responsible of the presence or not of the jitter in

the connection: 3 different simulations are done according to the way of

calculation of Ts(n):

- No delay: in every packet Tr(n) = Ts(n). This is the same case as the

one in the section 5.1.1 No delay simulation, so the same result is

expected: jitter should be 0.

- Constant delay: Tr(n) = Ts(n) + constant delay value. As explained

in section 5.1.1 the jitter must be 0 as well.

- Random delay: Tr(n) = Ts(n) + random delay value. In this case, the

delay is calculated by multiplying a delay coefficient by a random

value in the range (0, 1). Jitter is present and should remain within

two times the maximum delay.

All these connections are captured by running the Python code, as it

generates the .pcap file in the destination that is indicated.

 41

5.2.1 No delay and constant delay

Figure 15: No jitter generated by Python code

The reason why “No jitter” case brings together the first two configurations

is because in this case, Tr(n) value is being set manually by the

programmer, so setting it equal to sending time (no delay), or equal to

sending time plus a constant value(constant delay), leads to the same

result. Figure 15 shows how the jitter is absolutely 0, not even propagation

delay is registered.

 42

5.2.2 Random delay

In this case the Tr(n) value is calculated by increasing

Tr(n) = Ts(n) + 20 (ms) *random(0, 1), and so, the jitter remains within ±20

ms. Figure 16 shows this behavior over a 100ms simulation.

Figure 16: Random delay generated by Python code

We have generated and sent packets at time Ts(n), put the t(n) values inside

the packet (using the Equation 2), added the delay to Ts(n) according to the

case it was being run and, finally, recorded this value as Tr(n). It has been

simulated a real analysis at the receiver side where only Tr(n) and t(n) are

accessible, and Ts(n) has to be derived from t(n) assuming certain error,

and the results shown match the reality: the study of the jitter shows the

expected results at every case, so the algorithm has successfully passed

these tests developed through section 5.2.

 43

5.3 Ns-3

The ns-3 network simulator is a very powerful tool used to simulate

networks and transmission of packets in them. In this thesis work this tool

is used to simulate simple connections, using TCP/IP protocols over

Ethernet.

First of all the nodes are created and they are connected by a CSMA

channel, in order to add the Ethernet headers. At this point the delay of the

channel is fixed. After that, the TCP/IP protocols are installed in all nodes,

with the help of TCP sockets. This may require special attention that

instead of ns-3 default TCP protocol, NscTcpL4Protocol is installed in

some of the nodes, in order to activate the TCP timestamp option in the

connection. Finally, the Application layer is defined: in one node an OnOff

client is installed (to transmit whenever it has something to transmit) and in

the other node a PacketSink server is set, that receives the information sent

from the client side.

Once the connection is configured, the data of the transmission is saved in

different files: a .pcap file with all the packets that are sent, a XML

FlowMonitor, that register all the activity in both nodes, and the server

prints in the terminal every packet that is received.

When using the ns-3 simulations we wanted to generate, the same cases as

with the previous two tools. Mainly a first case where the delay is constant

over time, and a second case where the delay fluctuates over time, so jitter

is present in the channel. However, when working with this simulator, the

way of adding delay to the channel is slightly different; once the delay is set

as a channel attribute, is not trivial to make it change over time. And the

case where this delay is a random variable was not possible to be

implemented. The solution achieved is the following: we create a CSMA

channel with a certain number of nodes; only one of these nodes is

connected to a single node by a point-to-point channel, and finally this node

is connected to another single node by another point-to-point channel. Two

cases are then generated: constant delay model and random delay model.

 44

5.3.1 Constant delay model

In this case only two nodes are connected to the Ethernet link: Node A is

the OnOff client, while Node B is connected to Node C by a point-to-point

channel. As only one client tries to access the server (Node D), no traffic or

queues are present, so the delay suffered by the packets should be the sum

of all the propagation and transmission delays in all the 3 channels. No

jitter should be present as all packets experience the same delay.

Figure 17: Constant delay ns-3 model

The figure below shows the results when running the ns-3 configuration by

the Python code.

 45

Figure 18: Constant delay ns-3

The client is accessing a server, and no more traffic is present in the

network. That is why the delay is fixed and the same for all the packets, so

no jitter appears in this simulation. As explained in section 5.1.1, the

fluctuations of the jitter within the two blue lines (that represent ± 1/F)

cannot be distinguished from noise, due to the floor function that introduces

some error into the calculations.

 46

5.3.2 Random delay model

This configuration is very similar to the previous one. However the

Ethernet link contains 7 nodes instead of only 2. The purpose of this

configuration is to install an OnOff client in every node connected to the

CSMA, whereas the server is located at Node D. During the first 8 seconds

all of the nodes are active, trying to reach the server, but as only Node B

can communicate with the server, a queue builds up, so the packets sent

from Node A should be delayed. As delay is random (or at least not

constant), jitter must be present in this simulation.

Figure 19: Random delay ns-3 model

Running this second scenario, where several clients connected to a CSMA

device try to access the server, the following plot is obtained:

 47

Figure 20: Random delay ns-3

The plot in the image shows the .pcap file at one of the nodes connected to

the CSMA. This node is transmitting during 20 seconds, while the other 6

nodes transmit only during the first 8. That means that during the first 8

seconds of the connection, collisions and traffic appear in the network, and

so random delays. All these cause jitter as shown in the Figure 20. Once the

rest of the clients are stopped, the jitter is again non-existent, as in section

5.3.1. Regarding both ns-3 tests, the results validate that the algorithm is

able to detect jitter when present.

 48

CHAPTER 6

6 Real data analysis

The code implemented and validated through chapters 4 and 5 is going to

be used to test the QoS in terms of latency on the Internet. First of all, we

are going to confirm that the guard time established in chapter 4 is enough

to give an F calculation close to its nominal value. Then we are going to run

the algorithm over different capture files depending on which case wants to

be analyzed. And the last part will be analyzing the results in order to give

conclusions on how the different cases affect the QoS.

The QoS is studied in terms of jitter standard deviation and maximum

queuing time. The reason why the jitter is studied in terms of its standard

deviation and the queue size not is that the jitter is calculated between every

pair of packets, and so an unique value must be considered for every single

connection; as it is used to study the fluctuation of the arriving packets, the

standard deviation is the factor chosen to show that dispersion (from the

mean value), while the queue algorithm only delivers the maximum queue

for every connection; calculating max queue tells that on the path the

packets in that connection travel, there is a possibility to build up that large

delays. But maximum queue size algorithm cannot tell the difference, for

example, between a connection with 9999 packets with 0ms jitter and 1

packet with 1000ms and a connection with 9999 packets with 999ms jitter

and 1 packet with 1000ms. There needs to be something that summarizes

the jitter, which is the jitter standard deviation. Measurement results are

collected and grouped into three distinct cases which we find interesting to

observe:

- Sending from a wired or a wireless network, to test if the type of

network affects the QoS.

- Accessing the same server, in order to see if there are certain

servers that show high latency when accessing them.

- The time when the connection was maintained; this case wants to

show if there are some “rush-hours” when the network is congested

and so the QoS of the connection will be very bad.

 49

These three cases are selected focusing on the influence that a certain factor

(type of network, server accessed or time the connection is established) can

have on the QoS of the connection. We found them interesting because

defining how they affect the latency, the ones that produce bigger latency

can be avoided if possible (if we can choose between a wireless and a wired

network, or if we can choose the moment to establish a connection for

example), and so the QoS can easily be improved.

The influence of sending from a wired or a wireless network, and the

correlation of these two measurements when sending from the same host

can be studied. It is also interesting to show the evolution of the jitter

standard deviation vs. the connection time. This shows if at any moment of

the access, there are a lot of jitter spots with very big values. To achieve

this, the jitter values bigger than 1 s are recorded, considered as rare cases,

together with the host and time this happened. At this point, time periods

with big jitter in the network can be detected, as well as hosts that show

high latency when accessing them.

6.1 Procedure details

First of all, the procedure used to calculate the F factor is checked to

confirm that it works when running over these new .pcap files. The figure

below shows the CDF of both packet and time margins explained in section

4.1.

 50

Figure 21: CDF of packet and time margins in capture-20130404-123423.pcap

(zoomed)

It is seen that the packet margin covers up to 99.5% of the connections

present in this file, while the time margin does in 98.5 %, so it works even

better than in the previous case where these margins were determined. Once

this issue is double checked, the data in the files are analyzed according to

the three cases mentioned above; two big .pcap files are used to gather the

results of the analysis:

- capture-20130404-123423.pcap to study the influence of accessing

a wired or a wireless network . This file’s details has been explained

in section 4.2

- parsed_capture-2013.pcap.gz: collection of text files representing a

generic Internet traffic scenario, whose details are also explained in

section 4.2

Regarding the jitter standard deviation; the algorithm calculates the jitter

between every consecutive pair of packets in every connection both at the

sender and the receiver. For every connection, the standard deviation of

these jitter values is stored together with its IP address. At the end, a series

 51

of IP addresses are obtained with their respective jitter standard deviation

values. The interesting ones are those that are accessed more than once, as

they can be studied to check whether they resemble each other in every

access. Like in the jitter standard deviation calculation, the maximum

queuing time value is stored together with the IP address of the server

accessed.

6.1.1 Results when sending from a wired or wireless
network

The capture-20130404-123423.pcap file with all the data collected when

sending from different hosts have been obtained by the following scheme:

Figure 22: Collection of data scheme

One of the most interesting features when analyzing this file is comparing

the differences between the jitter and the queuing suffered by the packets

when sending from a host which is on a wired or a wireless network.

Thanks to the middlebox provided by the company, two networks are used.

- 172.21.20.0/24 --> Wired

- 172.21.21.0/24 --> Wireless

These are IP addresses for two private networks and they are in the

middlebox, while the caption is being made from the office. So every

attempt to connect to Internet is forced to go through one of these two

ranges of IP addresses. Running the algorithm explained in chapter 4, the

following plots are obtained:

 52

Figure 23: Jitter standard deviation in wired and wireless networks

Figure 23 shows the jitter standard deviation values when sending from the

wired and wireless networks. It is clearly seen that the spots related to the

wireless host (red circles) show a bigger value than the ones related to the

wired network (blue crosses). As it was expected, it can be concluded that

the jitter is more harmful when sending from a host that is in a wireless

networks than when is in a wired one, as it deviates from the average more

and so it is more spread.

Figure 24 and Figure 25 show the jitter standard deviation histogram

regarding both hosts (with the x axis in linear scale). While the wired

network shows a jitter standard deviation around 0, with values up to 2.5

milliseconds, the wireless one is more spread, with some values up to 150

milliseconds.

 53

Figure 24: Wired network’s jitter standard deviation histogram

Figure 25: Wireless network’s jitter standard deviation histogram

 54

This confirms that the jitter fluctuates more when using a wireless host

than when using a wired one.

Like the jitter standard deviation, the maximum queuing time is expected to

be bigger in wireless than in wired hosts. The three plots below show the

results:

Figure 26: Maximum queuing time in wired and wireless networks

Figure 26 shows the spots regarding the maximum queue experienced by a

packet when sending from a wired or a wireless host. The information that

can be extracted is that when using a wireless network (red circles) the

queues are bigger and so the delays, comparing to a wired network (blue

crosses).

 55

Figure 27: Wired network’s maximum queuing time histogram

Figure 28: Wireless network’s maximum queuing time histogram

 56

Figure 27 shows that the queuing when sending from the wired host is

mostly around 0, with peaks up to 9 seconds, while Figure 28 reveals that in

some cases, the queuing in the wireless server can be huge (100’s of

seconds).

As expected, the maximum queuing analysis tells that the QoS is worse in

wireless links than in wired ones, as the jitter standard deviation did. These

two histograms show as well that the maximum queuing time is more

spread than the jitter standard deviation and so more difficult to determine.

6.1.2 Results when accessing a certain server

In this section the next case is studied: the server accessed. The aim is to

determine if there is a chance that depending which server is being

accessed, the latency can be bigger. At this point of the analysis, the

collection of parsed_capture-2013*.pcap.gz data files is used. As it was

expressed in section 4.2, this represents a real Internet scenario due to the

amount of selected data. The way this study is done is the following: first of

all, detect all the spots that correspond to a jitter bigger than 1s. For each of

these spots, the server accessed when generated is recorded. Finally a

histogram shows the number of big jitter occurrences/number of packets

per server.

The amount of data present in this collection of data files makes the

algorithm running for long periods of time. That is why all the 39 .pcap.gz

files are split in 6 groups in order to make the simulation shorter and more

efficient. The figures below are 2 examples of two of these 6 groups:

 57

Figure 29: Big jitter occurrences per server (1)

Figure 30: Big jitter occurrences per server (2)

 58

It is clearly detected that some servers show a big percentage (even higher

than 70%) of packets suffering from big jitter, while others do not show

jitter at all. This feature is studied more in detail by choosing a server that

shows big latency and another one that shows a small one.

 59.185.143.0/24  network address range accessed 23 times and

7213 packets are exchanged. It shows 77 % of packets suffering

from big jitter.

 170.126.59.0/24  network address range accessed 148 times

exchanging a total amount of 21.123 packets. It shows 3 % of

packets suffering from big jitter.

The jitter standard deviation and the maximum queue are taken as the

parameters that determine the QoS of the connection.

Figure 31: Jitter standard deviation

Figure 32: Maximum queue time

 59

In all the 4 plots above, there is a server whose jitter deviation and queue

size values are very low and concentrated (the right plots 

170.126.59.0/24), while the left ones (corresponding to 59.185.143.0/24)

show very spread values and in certain cases extremely big ones. It is very

interesting to note that the server 170.126.59.0/24 exchanges almost 4 times

more packets than server 59.185.143.0/24; nevertheless in a smaller amount

of packets, almost 80 % of them are showing a big jitter. Our conclusion is

that, when accessing certain servers, latency can be more likely to occur. In

other words, the latency experienced in a connection, as well as the QoS,

can be seriously impacted when accessing a certain server; a well-

managed server handles heavy traffic better than the other, which is a

badly-managed server that cannot even handle light traffic. By identifying

these badly-managed servers, and if possible avoiding them, the latency can

be improved.

6.1.3 Results for different connection times

Finally, the last case to be taken into consideration is the time the

connection was established. It can happen that the network is overloaded

during certain times, and the QoS in the connections established during

these busy periods can be seriously impacted.

Figure 33: Big jitter values over connection time (1)

 60

Figure 33 shows the histogram of two different .pcap files: to the left the

study of many-connections.pcap, and to the right the study of capture-

20130404-123423.pcap. The x-axis represents the time since the connection

started, and the y-axis the number of packets that experienced big jitter at

this moment. Internet latency is very random, and so trying to elaborate a

model is difficult. The plot to the right shows no trend in that connection,

so no action can be taken. However there are some connections where

during a certain period, the number of packets suffering high jitter is bigger.

The plot to the left shows how between 30 – 45 seconds, the network is

congested, and so a big amount of packets are facing big jitter.

The same behavior can be seen by looking at the next plot: it represents the

time histogram of one of the 6 groups used to analyze the file

parsed_capture-2013*.pcap.gz:

Figure 34: Big jitter values over connection time (2)

Connection time (ms)

N
u
m

b
er

 o
f

o
cc

u
rr

en
ce

s

 61

In this case the big jitter occurrences are kind of periodic (there are lapses

of 100 ms with big jitter and suddenly it becomes very small).

The conclusion from this case is that there are some periods where the

network is congested, so the QoS of the connection is impacted

depending on when it takes place. Avoiding rush hour can help the latency

to be lower. At the end is a matter of the user if the connection must be

established in this certain moment (time priority) or if it is preferred to wait

certain time in order to get a better QoS (quality priority).

The three different cases have shown how there are situations that are very

likely to produce a high latency in the network. Thanks to the algorithm

developed in this thesis, these situations have been analyzed and defined,

and in certain cases are easy to avoid. The information provided by the

algorithm may be used in future network improvements in order to take

active solutions that may focus on the avoidance of the high-latency cases.

 62

CHAPTER 7

7 Conclusions and future work

The main focus of this thesis has been to develop an algorithm taking

advantage of the TCP timestamps options in order to study the behavior of

latency in Internet. The data used to make the study have been collected by

a middlebox placed at Procera Networks, the company collaborating with

us in this thesis. These trace files contain interesting data and a

representative selection of the Internet traffic in order to make a study as

accurate as possible. The algorithm developed also derives some statistics

based on the collected data.

In order to validate the algorithm and its implementation in Python, several

test connections are generated in three different ways: using Netem Linux

tool and sniffing one computer when accessing a HTTP server in another

PC, running a Python code that fills in the gaps of the different values used

in the .pcap files, and finally, the more interesting because of the power of

the tool has been the ns-3 simulator, which is highly extended nowadays in

network analyzing. Once the Python code has been validated and works as

expected, real data is analyzed in order to find factors that have a negative

impact on the QoS in terms of latency of a connection.

The first observation we made was that latency is higher in wireless than

wired networks. So the traffic sensitive to the latency (for example, VoIP)

experiences a poorer QoS when sending from wireless networks (in general

terms). Even when accessing two different wired servers, some of them

show a higher latency. Not only the type of server (wireless/wired) is

relevant, also the specific server that is being accessed. And the last factor

affecting latency and bufferbloating in Internet is the moment the

transmission takes place. During the time the connection lasts, there are

some periods where the packets experience bigger queuing times and jitter.

This new algorithm used to study the latency and bufferbloating in Internet

has tried to provide more accurate results than previous ones thanks to TCP

timestamps option. Nevertheless, latency is a difficult parameter to avoid

 63

due to the randomness of traffic in Internet. In order to avoid the big latency

mainly in interactive applications, some studies and models can be

developed in the future; these models should focus on trying to detect

which servers are more likely to show a big latency when accessing them,

and on detecting the rush-hour in order to avoid periods where the network

is congested and so the latency will be much bigger.

Our work has been developed by analyzing previously recorded traffic

traces stored in .pcap files. This offers a good approximation, but also limits

a bit the usage of the algorithm; if the algorithm is run in live networks, all

these factors can be calculated live as well and so determine when it is a

good moment to establish the connection. Studying live networks also

offers a bigger range of connections to study, but if the .pcap file is smartly

stored, this disadvantage can be reduced.

The trace files used during the work have been collected with the help of a

middlebox, which uses DPI technology. This feature allows a big

advantage, as the traffic recorded can be easily selected to show a wide

range of different connections, while keeping the confidentiality. However,

it can be used to provide better QoS; by analyzing all the traffic coming

through the middlebox, and setting priorities, the most urgent traffic can

avoid latency. In this case, the most latency-sensitive traffic can be marked

as high priority (VoIP, streaming…), while the less interactive applications’

traffic can be set as low-priority (downloads, web-browsing…). DPI is an

important way to reduce latency in some connections, and so it must be

utilized.

As all this Master thesis is focused on a passive analysis in order to study

the current scenario, the results shown can be taken into consideration in

order to develop active procedures that can improve the latency and QoS in

Internet.

 64

References

[1] J. Gettys, V. Jacobson, N. Weaver and V. Cerf, "BufferBloat: What's

wrong with the Internet," Communications of the ACM, vol. 55, no. 2,

pp. 40-47, February 2012.

[2] J. Gettys, "Bufferbloat.net," January 2012. [Online]. Available:

http://www.bufferbloat.net/projects/bloat/wiki/Introduction. [Accessed

February 2013].

[3] J. Gettys, "Dark buffers in the Internet," Magazine Communications of

the ACM, Volume 55 Issue 1, Pages 57-65, ISSN: 0001-0782, EISSN:

1557-7317 , New York, 2012.

[4] Y. Gong, D. Rossi and C. Testa, "Interaction or Interference: can

AQM and Low Priority Congestion Control succesfully collaborate?,"

Proceedings of the 2012 ACM conference on CoNEXT student

workshop, New York, 2012.

[5] H. Balakrishnan and V. N. Padmanabhan, "How Network Asymmetry

Affects TCP," IEEE Communications Magazine, 2001.

[6] L. Kalampoukas, A. Varma and K. K. Ramakrishnan, "Two-Way TCP

Traffic over Rate Controlled Channels: Effects and Analysis,"

IEEE/ACM Transactions on Networking, Vol. 6, No. 6,, 1998.

[7] H. Balakrishnan, V. N. Padmanabhan, G. Fairhurst and M.

Sooriyabandara, "RFC3449 - TCP Performance Implications of

Network Path Asymmetry," RFC Editor, 2002.

[8] J. Dangaard, "Master thesis: Optimization of TCP/IP Traffic Across

Shared ADSL," University of Copenhaguen, Denmark, Copenhaguen,

2005.

[9] S. Cheshire, "It's the Latency, Stupid (Part 1)," Stanford University,

Stanford, 1996.

[10] Celtic-Plus, "IP Network Monitoring for Quality of Service Intelligent

Support," October 2012. [Online]. Available: http://projects.celtic-

initiative.org/ipnqsis/. [Accessed April 2013].

[11] Y. D. C. S. Vinton Cerf, "RFC 675 - Specification of Internet

Transmission Control Program," RFC Editor, 1974.

[12] V. Jacobson, B. Braden and D. Borman, "RFC 1323 - TCP extensions

for High Performance," RFC Editor, 1992.

[13] K. Fall and S. Floyd, "Simulation-based comparisons of Tahoe, Reno

and SACK TCP," ACM SIGCOMM Computer Communication

 65

Review , Volume 26, Issue 3, New York, July 1996.

[14] S. Floyd, T. Henderson and A. Gurtov, "RFC 3782 - The NewReno

Modification to TCP's Fast Recovery Algorithm," RFC Editor, April

2004.

[15] K. Tan, J. Song, Q. Zhang and M. Sridharan, "Compound TCP: A

Scalable and TCP-Friendly Congestion Control for High-speed

Networks," 4th International workshop on Protocols for Fast Long-

Distance Networks (PFLDNet), 2006.

[16] S. Floyd and V. Jacobson, "Random Early Detection Gateways for

Congestion Avoidance," IEEE/ACM Transactions on Networking,

1993.

[17] D. L. Black, S. Floyd and K. K. Ramakrishnan, "RFC 3168 - The

Addition of Explicit Congestion Notification (ECN) to IP," RFC

Editor, 2001.

[18] P. Karn and C. Partridge, "Improving Round-Trip Time Estimates in

Reliable Transport Protocols," SIGCOMM '87: Proceedings of the

ACM workshop on Frontiers in computer communications technology,

New York, 1987.

[19] C. Chirichella, D. Rossi and C. Testa, "Remotely gauging upstream

bufferbloat delays," Proceedings of the 14th international conference

on Passive and Active Measurement, pp. 250-252, 2013.

[20] M. Allman, "Comments on Bufferbloat," ACM SIGCOMM Computer

Communication Review, Berkeley, CA, USA, 2013.

[21] T. Porter, "Symantec," 19 October 2010. [Online]. Available:

http://www.symantec.com/connect/articles/perils-deep-packet-

inspection. [Accessed February 2013].

[22] Procera Networks, "Procera Networks," [Online]. Available:

http://www.proceranetworks.com/products-overview.html. [Accessed

February 2013].

[23] M. Donegan, "Spanish Mobile Challenger Wields DPI,"

www.lightreading.com, p. 1, 08 March 2011.

[24] M. Donegan, "TeliaSonera Develops New Mobile Data Model,"

www.ligthreading.com, p. 1, 28 July 2010.

 66

Appendix 1: Python libraries used

- iPython: Python shell that makes much easier programming in

Python (tab help, more graphical interface…)

- Pcapy: reading into .pcap files obtained for example from wireshark

- Impacket: reading into the packets present in the .pcap file, allowing

access to headers, the different protocol fields…

- Matplotlib: graphical tools library that resembles Matlab

programming.

- IPy: handle IP addresses in XXX.XXX.XXX.XXX/XX format

