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Abstract

The Universal Verification Methodology standard provides immense advanced automatic
techniques to the digital verification world. In fact without mechanisms like constraint
random stimulus generation, functional coverage and self-checking testbenches, func-
tional verification of today’s complex integrated circuits is not conceivable. While digital
verification benefits from all these modern methods, analog verification is still a manual
process.

This report presents a new verification approach which simulates mixed-signal designs
through utilizing sophisticated methods used in digital verification. The developed ver-
ification technique in this work makes it possible to simulate a DUT with both digital
and analog interfaces using event driven simulators. This method is compatible with
existing digital verification techniques. The aimed device under test (DUT) contains
register transfer level (RTL) and real number model (RNM) blocks.

As transaction level modeling affects digital verification to a great extent, analog trans-
action level modeling is exploited in this work to achieve more facile strategies in chal-
lenging mixed-signal verification.
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Chapter 1

Introduction

The ultimate goal of ASIC designs is to construct a chip based on highly precise speci-
fications. These predefined specifications have to be inspected during and after design
flow. In order to acquire the highest possible level of certainty in the functionality of
the design it is of vital importance to use accurate, liable verification techniques.
In design of today’s SoCs functional verification complexity rises exponentially with
hardware compelxity doubling exponentially with time [1]. Many novel, advanced and
liable methods have been introduced for digital verification (see chapter 2.4.1). However,
up to 70 % of design developement time and resources are still dedicated to functional
verification [1].
As SoCs became multifunctional more analog blocks are integretaed on a single chip.
Therefore, mixed signal verification difficulties became more visible to verification teams.
Moreover, at chip level verification, when block level verification is accomplished success-
fully, it is required to develop a technique through which analog and digital sub blocks
of a design are considered holistically.
Universal verification methodology (UVM) by offering base class libraries, brings much
automation to the digital verification world. In addition, this methodology is simula-
tor vendor independent. It is possible to create UVM components and reuse them in
different projects. Taking advantage of constraint random stimuli generation offered by
UVM, the engineering effort has been turn into building automatic checkers instead of
writing directed test. The typical approach in UVM based verification flow is to define
a test case and simulate the design under test (DUT) with constraint random stimuli to
put the design into corner cases. Automatic checkers ensure the correctness of the design
functionality according to the generated stimuli. Furthermore, coverage mechanisms are
used in order to measure the inspected specification of the DUT and to point out to the
verification closure.
The main goal of this work is to utilize the provided facilities by UVM in mixed-signal
verification environments. The proposed structure by this work highly improves the
mixed-signal verification quality in terms of verification performance with minimum hu-
man effort devoted. It is possible to generate real value input stream and drive analog
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interfaces of the design under test using automated digital verification techniques like
constraint random stimuli generation. Moreover, the utilized analog transaction level
modeling approach (first introduced in [2]) enhances full-chip verification procedure sig-
nificantly.
In this work, a UVM based mixed-signal verification environment is proposed. Tak-
ing advantage of developed technique by this work and under-developed methods for
monitoring, checking and coverage collection a DUT with both digital and real valued
interfaces can be verified at nearly digital simulation speed.

This report is structured as follows. In the second chapter an introduction to verifi-
cation is given along with a review of different verification approaches. Furthermore,
functional verification and its utilized methods in digital world are studied. Eventually
a brief study of analog circuit simulation is given. In the third chapter, after a compar-
ison between analog behavioral modeling approaches, analog transaction level modeling
is discussed. It is in chapter four where the main advantage of this work over previous
work is presented. Moreover, the implementation detail is given in this chapter. Fi-
nally, in chapter five the application of developed technique in a real world project is
described.
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Chapter 2

SoC Verification Methodologies

During last decades semiconductor industry has experienced immense advancements in
terms of integrated circuit’s capacity, complexity and fabrication technology. New tech-
nological capabilities besides increasing demand for high quality, multi functional ICs
bring about integrating more and more diverse functions on a single chip. Moore’s pre-
diction has been realized and as complexity and capacity of electronic designs grow,
production costs rise concurrently.
Costly semiconductor realization draws attention to obtain assurance of debugging all
the bugs prior to the design fabrication. Expensive design development signifies the ne-
cessity of verification in all design steps. In the absence of verification specifically from
the early stages of the design, presence of functional defects is not a far fetched.

2.1 Introduction to Verification

Design flow of a system-on-chip involves diverse steps. Data ”Transformation” when
crossing the steps is an inevitable outcome.
The design flow tasks are performable taking advantage of numerous complicated elec-
tronic design automation (EDA) tools. Large amount of data is required to be able to
apply these advanced tools properly and this is not an unlikely occurrence to face several
errors during the flow.
In spite of the fact that design automation has driven the IC implementation in a way
where human impact on it has diminished significantly, human impact is still an impor-
tant source of error.
Moreover, today’s productive SoC design flow is based on intellectual property (IP)
reuse. In order to integrate IPs more efficiently into the target system, the proposed
verification IP (VIP) by IP vendor plays an important role.
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A general verification definition can be:

”Act of checking, testing, inspecting whether a product, service or system (or set thereof)
meets its initial requirements and specifications.” [3]

The seriousness of verification has been frequently emphasized in many papers. A fi-
nancial disaster might occur for a company if a bug is discovered in an already sold
IC. Intel’s Pentium floating point division bug in 1994, imposed 480 million U.S dollar
detriment.
Although verification has been a main investigation subject between designers in recent
years, still there is wide gap between design capabilities and verification capabilities.
Today, verification is the major bottleneck of designs and between 50-70% of project
effort is dedicated to design verification.

2.2 Verification in design flow

From the early cycles of project development, it is essential to concentrate on verifica-
tion. To prevent time-to-market delay it is of vital importance to verify the design in
every steps of design flow. The sooner a bug or defect is discovered, the more unneces-
sary time to devote is redeemed.
Verification indispensability has been demonstrated through different methods and with
different purposes.

2.2.1 Formal Equivalence Checking

This technique is a prevalently used technique in integrated circuit development. This
technique is considered as a subset of Formal verification which is discussed briefly in
section 2.3.1.
In general, this method ensures that two different types of design representation show
identical behavior. Equivalence checking can be employed in different levels of design
abstraction. For instance, in order to compare the RTL code with generated Netlist after
synthesis step and before using the netlist in layout design, this technique is commonly
used.
Fig. 2.1 depicts the output comparison between design representation A and B for the
similar input.
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Design A

Design B

=?Input Result

Figure 2.1: Formal Equivalence Checking

2.2.2 Physical Verification

This technique is also known as Layout Verification and is carried out after physical
layout design. By means of layout verification, a set of recommended design rules are
inspected carefully. In addition, circuit geometry and connectivity has to be verified
regardless of behavioral expectations. These are known as Design rule checking (DRC)
and Electrical rule checking (ERC), respectively. Furthermore, checking Layout versus
Schematic (LVS) is a process whereby the layout of specific design is checked against
the original schematic.

2.2.3 Functional Verification

Increased complexity of designs in addition to growth of design size in recent years, are
making their functional verification vastly complicated. Presence of numerous test cases
to verify the functionality of a design brings ambiguity about verification closure.
A definition for functional verification can be:
”Functional verification is demonstrating the intent of a design is preserved in its imple-
mentation.” [4]
The primary goal when performing functional verification is to ensure that design intent
was captured correctly and completely by the implementation. Several challenges might
occur when verifying the functionality of a design including using random stimulus,
defining a set of desired functionalities, writing related tests that are aimed for defined
functionalities, indicating verification closure through specifying coverage metrics, writ-
ing a reference model and checking design against it and finally using simulators with
acceptable performance.

Testing versus Verification Many different views were presented to indicate differ-
ences between validation and verification. In general we test a device to ensure that it
works but we verify a design to check if it meets its predefined specification.
While testing a series of tests are applied to a DUT and for each test the output is
inspected. It is obvious that testing is not sufficient since not all design aspects are
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examined.
To be able to indicate the verification closure coverage must be collected. The process
begins with defining a verification plan, generating stimulus according to the plan and
measuring the verification progress by collecting coverage.
However testing is one way to verify a design it is not a trustworthy approach for todays
system-on-chips.

2.3 Functional Verification Techniques

The attempt, when verifying the functionality of a design, is always to answer this
question : Does this proposed design do what is intended?
Response to this question, as it has been discussed in section 2.2.3, is a complicated
task. In order to overcome the existing challenges various methods are used to verify
the functionality of a design.

2.3.1 Simulation based Verification

Simulation is still the most widely used technique between verification teams. The veri-
fication environment is constructed by composing a testbench in one of HDL languages.
To examine as much distinct functional behaviour of the design as possible, extensive
testbench simulation has to be carried out.
Without physically implementing a system, simulation can be defined as ”using a math-
ematical model to recreate a situation in order to estimate the likelihood of various
outcomes, often repeatedly.” [5]
Simulation, as a traditional verification method, promotes the verification flexibility and
is applicable in different design levels. However, building an efficient simulation en-
vironment often brings about some difficulties. Moreover, according to some inherent
restrictions in HDL’s nature, demand for Hardware Verification Languages (HVLs) has
been arisen.

Formal Verification Due to in-comprehensiveness nature of simulation based verifi-
cation, a complementary technique is always deployed to detect unrevealed, corner case
bugs in the design. Formal Verification complements simulation by discovering bugs
that are failed to be hit even in efficient simulations.
Furthermore, it is possible to examine the design for some illegal stimuli (input vectors
to the design under test which are deemed improbable) by formal verification. Conse-
quently, a solution for future possible changes in interface behaviour can be predicted.
Formal Verification can be described as ”mathematical methods used to prove or dis-
prove properties of a design” [6]. Since system specification is mathematically described
in early stages of formal verification, a System model which illustrates what actually
system does is required.
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As mentioned, formal Verification is used as a complementary technique to the simula-
tion. Existing limitations in formal verification tools bring about the necessity of also
deploying other verification tools. These limitations can be referred concisely in [6].

2.3.2 Coverage Driven Verification

Verification of integrated circuits with significant growth in terms of complexity and de-
sign size and multi functionality, brings this question up that how to achieve and ensure
the verification closure?
Reliable Verification can be accomplished by defining the verification goals meticulously.
Coverage Driven Verification (CDV) integrates the automatic test generation procedure,
self-checking capacity of the testbench and coverage metrics to highly decrease the time-
to-market of a chip. In Fig. 2.2 a testbench structure with the selfchecking ability is
depicted. This structure by automatically validating the DUT’s output, is a significant
facilitation in terms of verification task.
Taking advantage of CDV the tiresome task to generate hundreds of tests and often
repetition in running some of them can be avoided.

In CDV focus of attention is on features of the design rather than implementation de-
tails and these features are defined precisely in a comprehensible, reusable verification
plan. By quantitatively measuring the verification progress with the predefined coverage
metrics, achieving verification closure is not impossible to reach.

DUTInput 

Stimulus
Output

Expected 

Result

Compare Result

Figure 2.2: Self Checking Testbench Structure

Coverage is obtained through different approaches. Code coverage and Functional cover-
age are used as complementary methods together. Moreover, assertions based coverage
is a practical method to measure verified portions of design behaviour.

Code Coverage Code Coverage is a strong technique between verification teams. By
this technique simply, ”measuring the executed parts of code” is obtainable. In the
absence of code coverage information, portions of design might not be exercised at all.
The point to consider is inspected portions of code does not lead to this assumption that
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the code functions as intended [7]. Various types of code coverage is used in verification
procedure, bringing them up is out of the scope of this Thesis.

Functional Coverage Functional coverage is another coverage oriented approach to
collect information on the DUT’s behaviour. The primary goal of functional coverage
is to inspect if the design meets all it’s predefined specifications. Consequently, it is of
vital importance to define all the design specifications accurately.
Functional coverage collects data from specification and verification plan to indicate
whether and to what extent design functions have been exercised according to the veri-
fication plan requirements. [7]
Functional coverage data availability makes it possible to find the holes and reactively
adjust the generated stimulus to the DUT during run time of the simulation to cover
those holes. This is a significant advantage since more test scenarios can be created and
efficiency of generated stimulus can also be increased.
There are always some corner cases which are difficult to be reached by randomly gener-
ated tests. In this case, direct testing could help undoubtedly to achieve more coverage.
Fig. 2.3 shows the paths to achieve complete coverage.

Many runs

Identify holes

Functional Coverage

Minimal Code Modification

Add 

Constraints

Constrained random tests

Directed tests

Figure 2.3: Coverage Convergence [8]

Functional coverage and Code coverage each aim for particular goals in the process of
verification. Both methods are adequately considered by verification engineers since full
coverage in one, does not mean that the DUT has been verified properly.

Assertion Coverage Similar to coverage driven verification flow where code coverage
is a powerful technology to estimate the verification closure, in Assertion based verifica-
tion flow, assertion coverage performance indicates the completeness of assertions. [9]
Assertion based verification brings about the possibility to detect and debug design bugs
more effectively. Taking advantage of assertion based methodology a design intent is cap-
tured and the correctness of it is verified through various verification technologies. Both
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dynamic methods like simulation or static methods thorough formal verification are ap-
plicable to ensure the correctness of defined condition in an assertion. A user-specific
action can be defined to occur in case of either correctness or falseness of assertion’s
condition.
Some of hardware verification languages, like SystemVerilog, support assertions. Vali-
dation of specific design behaviour can be proved by writing an assertion.

2.4 Digital Verification Methodologies

To have a robust, dependable and comprehensive verification environment kernel, exis-
tence of a methodology is of fundamental importance. Methodology helps us to perform
tasks in a reliable system, taking advantage of rich, predefined and detailed set of rules.
Standard libraries offered by a methodology are highly valuable in testbench construc-
tion.
Towards successful market competition, adaptation to standard methodologies is an es-
sential requirement for companies. In this manner they can utilize third parties facilities
in order to improve their products.

Various Methodologies have been introduced to the semiconductor industry to verify
digital integrated circuits. Verification engineers have been encountered numerous chal-
lenges towards verification of vastly complicated digital circuits. As a consequence digital
verification has been developed also along by the digital design.

2.4.1 Digital Verification Maturity

Digital verification has experienced vast progression in terms of reliability, reusability
and automation. Highly developed design technologies require mature verification tech-
niques. Otherwise, with traditional verification technologies it is not possible any longer
to inspect all different activities of designs.
Before the occurrence of exponential growth in terms of design size and complexity, it
was designers responsibility to verify the Register Transfer Level (RTL) code by writ-
ing tests and testbenches in one of hardware description languages (HDLs). The natural
limitations of HDLs, had raised the demand for hardware verification languages (HVLs).
Various HVLs have been introduced to the industry in recent years including OpenVera,
e, SystemC and SystemVerilog. These languages are comparable to high level program-
ming languages like C++ and contain required features to fill the existing verification
holes. Taking advantage of HVLs capabilities, the demand for high quality, bug free
semiconductors in shorter project schedules has been satisfied. [10]
The necessity of using HVLs and the required proficiency in building a test environment
brought about the demand of a verification team on each project.
Using standard, industry-wide verification methodologies between verification teams also
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became a vital necessity to accelerate testbench construction. Distinct methodologies
from different EDA companies have been released to enhance verification process. Table
2.1 depicts theses methodologies.

Table 2.1: Verification Methodologies

Vendor Year HVL

e Reuse methodology (eRM) Cadence 2002 e

Reference Verification Methodology (RVM) Synopsys 2003 Vera

Advanced Verification Methodology (AVM) Mentor 2004 SV/SC

Universal Reuse Methodology (URM) Cadence 2006 SV/e

Verification Methodology Manual (VMM) Synopsys 2004 SV

Open Verification Methodology (OVM) Cadence/Mentor 2008 SV

Universal Verification Methodology (UVM) Accellera 2011 SV/e

Due to the high demand for interoperability and reusability of verification IPs between
projects and companies, a unified verification methodology, UVM, was introduced by
Accellera. One of the key features of UVM is that it is simulator vendor independent.
It was tested on multiple simulators to ensure its interoperability.
Built-in-automation, coverage driven verification, constrained random stimulus gener-
ation and transaction level modelling are some of the added accelerations to digital
verification today.

2.5 Metric Driven Verification (MDV)

A great level of automation including automated stimulus generation, independent check-
ing and coverage collection obtained through utilizing UVM. One of the important limi-
tations of coverage driven verification (CDV) was covered by introducing the concept of
metric driven verification (MDV). Although the collected coverage via CDV is of signif-
icant importance for the verification engineer to find the uncovered holes in the design,
still without checking mechanism it is not easy to predict the verification closure. The
term ”metric” in MDV is used to determine the end of verification. Verification metrics
are defined through coverage, checks and assertions.

Furthermore, another MDV preference over CDV is the ability to build an executable
verification plan(vPlan). In vPlan a list of prioritized design specification helps the engi-
neer in efficiently utilizing the captured data. A successful verification project is highly
dependent on building a comprehensive and accurate vPlan. It is possible to precisely
measure the verification progress based on design specifications which are defined in
vPlan.
To be able to cover all design specifications it is necessary to run several simulations in
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parallel. It is possible to augment verification throughput if automatic stimulus gener-
ation and self-checking mechanisms are utilized practically. Intelligent testbenches with
these highly automatic mechanisms are able to generate meaningful stimulus to the DUT
based on predefined specifications in vPlan and also perform DUT output sampling in
order to prove or disprove the correctness of the DUT behaviour. This can be accom-
plished by comparing the DUT’s output samples with expected output. [11]
Moreover, by utilizing the MDV approach in the universal verification methodology
(UVM), an open loop verification process converts to a closed loop verification cycle
including plan, construct, execute, measure. This closed loop cycle is depicted in Fig.
2.4. As it is shown in Fig. 2.4, MDV is not specific to particular verification engine and
different tools support this approach.

2.6 UVM Verification Environment

A typical UVM based verification environment contains three main building blocks :
UVM component (UVC), UVM env (environment) and UVM test. Fig. 2.5 shows this
UVM verification architecture. Universal verification methodology was released based
on OVM and VMM methodologies by Verification Intellectual Property Technical Sub-
Committe (VIP TSC).

UVM test UVM test block is derived from UVM component base class and it is used
as the base class for user-defined test classes. User can define multiple test classes and

Plan

Execute

Measure Construct

System

Simulation

AMS

Formal

Figure 2.4: MDV Closed-Loop Verification Cycle [11]
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DUT

Scoreboard

UVM ENV

UVM TEST

UVM Agent 1 UVM Agent 2

Figure 2.5: Typical UVM environment

randomly select them via command line. In top-level module, the global run test() task
is invoked together with DUT instantiation and interface definition (DUT and testbench
interface) and the test which is defined in UVM TESTNAME via simulator command
line starts the simulation.

UVM env The UVM env class is instantiated in UVM test and is derived from UVM
component. As it is shown in Fig. 2.5 this block is used in order to encapsulate and

configure agents (also known as UVM verification components (UVCs)). It includes one
or more agents and it has capability to define them as an active agent or passive agent
depending on configuration. It is environment class main task to generate meaning-
ful random stimulus, sampling and monitoring DUT’s result, validating the result and
collecting coverage [12].

UVM agent A UVM agent typically includes three main blocks: Driver, Sequencer
and Monitor. All these sub blocks communicate using transaction level modelling (TLM)
connections. It is through SystemVerilog virtual interface that agent communicates with
DUT. Another agent’s property is configuration which indicates either it is an active or
passive agent. User can define any other control parameters using agent configuration.
Active and passive mode architectures of UVM agent are shown in Fig. 2.6.

Scoreboard Scoreboard is build on top of the monitor and performs analysis on the
data stream received from monitor. Scoreboard has a significant role in self-checking
verification environments. Functional behaviour of the design under test is analysed by
this component. Scoreboard at least contains two analysis import including an import
to receive input data stream to the DUT, and another import to convey monitored
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activities on the DUT’s output pins (see Fig. 2.6).
Scoreboard component contains a golden model through which performs a comparison
between actual results of DUT (sampled by monitor) and expected results of DUT
(Golden model’s output in response to the same input vector to the DUT).

Scoreboard

Monitor

DriverSequencer

MonitorDUT

Sequence item Sequence item

Sequence 

item

Agent A

Is_active

Agent B

Is_passive

Figure 2.6: UVM agent: in active and passive mode

A typical active agent contains all three subcomponents and in one hand generates ran-
dom stimulus and drives the DUT pins through driver, and on the other hand samples
DUT’s input pins (drived by the agent’s driver) via monitor. This monitor converts data
stream back to transaction level and send it out to other analysis components.

A typical passive agent, without driving the pins of a DUT only performs monitoring of
the generated result of a sample DUT. This means that only the monitor component is
instantiated in a passive mode agent. Agent in this mode is used for coverage collection
and checking operations.
In Fig. 2.6, agent A is depicted with the is active as a configuration property, while the
same flag in agent B is set to is passive. As it is depicted the same passed sequence item
by the sequencer to the driver, is generated again by the monitor later. In this way, the
DUT input pins are driven by the driver component and are sampled by the monitor
component of an active agent. This is a reliable practice to ensure that the incoming
sequence item to the driver is properly converted to signal level activities and DUT is
driven with desired stimuli.

2.6.1 Transaction Level Modelling

In order to increase verification productivity and manage complex system-on-chips ver-
ification, higher abstraction level of the design is strongly requested. In an abstraction
level higher than RTL, interfaces are defined in terms of transactions.
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”In transaction-level-model (TLM), the details of communication among computation
components are separated from the details of computation components.” [13]

While the DUT communicates with verification environment at signal-level, it has been
proved that it is necessary to handle most of verification tasks such as stimulus genera-
tion or coverage collection at transaction level [12]. In this abstraction level, complicated
data transferring between units is managed at a higher level.
Many UVM components communicate to each other using TLM. In this way, components
are isolated from other component’s modifications. In order to handle the communica-
tion between DUT and verification environment which is at signal-level, it is required
to provide a layer in the testbench in which UVM components are able to convert
transaction-level activity to signal-level activity and vice versa.
Moreover, it is through TLM that encapsulated, reusable verification components can
be obtained and whereby verification environment construction is facilitated.
In UVM base class libraries, a base class called UVM sequence item for all user-defined
transactions is declared. This class is extended from UVM transaction and ultimately
is inherited from UVM object.

TLM communication in basic level is depicted in Fig. 2.7. Transaction is generated
by the producer which holds a port (square). Transaction is consumed by the consumer
which holds an export (circle). A basic definition of a transaction states that the pro-
ducer puts a transaction and consumer gets it.

Producer Consumer

Figure 2.7: Simple producer consumer [12]

Transaction level communication between two components might happen in two different
situations as it is shown in Fig. 2.8. If data and control flow are in the same direction,
it is producer which puts transaction into consumer (a). While in other situation, when
data and control flow directions disagree, it is the consumer which requests transaction
from the producer via get port (b). However, it is export (circle), which implements the
transaction in both situations. [14]

Producer (a)

(b)Producer

Consumer

Consumer

Figure 2.8: Put versus Get
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Transaction-level models are utilized in UVM environment efficiently. A UVM based
verification environment holds four basic transaction-level components.

Sequencer Sequencer creates transaction-level traffic and pass it to the driver. Ex-
tending from UVM sequencer base class, the sequencer is able to communicate with
driver in a parametrized way. These parameters are of same type and are called request
and response. User can specify a user-defined transaction type to these parameters.
Otherwise, they have the default UVM sequence type type.
Upon a request from driver, sequencer selects a sequence from listed sequences and passes
it to the driver. A sequence is a group of transactions. Multiple sequences together per-
form a planned scenario. Basically, sequencer’s arbiter role controls the flow of these
sequences from multiple generators.
Through sequencer’s seq item export data items (transactions) are sent to driver’s seq item
port. In Fig. 2.9 basic interactions between a driver and a sequencer to shape a trans-

action model is shown. In this model the following tasks are executed in depicted order.

First, a transaction is created in sequence using UVM create (req) method. By call-
ing wait for grant method, sequencer blocks any activity until the driver asks for the
next item through calling get next item method. Only after driver’s request, the trans-
action can be randomized optionally. Next step is to send the transaction via UVM send
(req). The retrieved transaction by driver is consumed and converted to signal level ac-
cording to the application specification. Driver raises the item done (rsp) flag to send a
response back to the sequencer (this is an optional step). Finally, wait for item done ()
method in sequence, which is a blocking method, gets unblocked.

Driver Driver component is responsible for driving DUT’s pins. As it was mentioned
in this section, driver is a component which is located in the layer in which transaction-
level activities are converted to signal-level activities. In other words, driver retrieves
transactions from sequencer and translate them to a signal value. This signal drives
DUT’s pins via SystemVerilog virtual interface.
In UVM base class libraries, the UVM driver is defined as a base class for user defined
drivers. When driver’s connectivity to sequencer via seq item port and to the DUT
via virtual interface are implemented, it can obtain the next available data item from
sequencer. Driver can also use another port called rsp port to send a response back to
the sequencer.

Monitor DUT’s output pins activity is monitored and sampled by monitor component
in order to determine if it behaves correctly. Monitor’s performance is in opposition to
the driver. In Fig. 2.10 the location of monitor and driver in a mediator layer between
DUT and verification environment is depicted. In order to verify DUT’s behaviour,
it is monitor’s duty to extract pin-level activities of the DUT and translate them into
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task body ()

uvm_create(req);

wait_for_grant();

req.randomize();

uvm_send(req);

wait_for_item_done();

end

begin

task run ()

get_next_item(req);

{Consuming the 

transaction and 

converting to signal 

level}

item_done(rsp);

end

begin
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SequencerSequence Driver

Figure 2.9: Sequence and Driver communication

Transaction level activities

Driver

Signal level activities 

DUT

Monitor

Figure 2.10: Driver and Monitor in mediate layer

transaction level and send it to other components for analysis. Monitor’s main tasks
can be count as basic monitoring and coverage collection. DUT’s functional behaviour
is verified by other high level components like Scoreboard.
Virtual interface, is the way through which monitor collects data from information bus.
Collected data might be used in coverage collection or exported to analyser components
via UVM analysis port.

16



TLM analysis communication is a different approach from the mentioned put/get TLM
communication approach in section 2.6.1. The major difference is that in put/get ap-
proach, no matter if it is put or get, presence of a component with export connection
is necessary to implement the transaction. While, in TLM analysis communication re-
gardless of target’s presence it is important to generate transactions and send it through
analysis port. In other words, this port is not dependent on export connection. The
transaction simply returns in the absence of any export connection.

A base class named UVM monitor, preserves all basic features of user-defined moni-
tors. Monitor checks the observed data format and generates UVM reports, accordingly.
A print function is defined in UVM transactions which can be called by monitors in
order to print out the transaction’s content.

2.6.2 UVM phasing

To have an ordered execution flow in an UVM based verification environment, eight stan-
dard UVM phases are introduced in order to arrange the major steps of the simulation
process. It is from the top level module where the run test() task is called and pre run
phases build(), connect(), end of elaboration(), start of simulation() all execute at time
0. After completing the pre run phases its time to start the run() phase. All simulation
related tasks are fulfilled at run() phase. Post run() phases extract(), check(), report()
are execute when run () phases stops.
In this section a brief description of each UVM different phases is declared. It is im-
portant to notice that all UVM standard phases except run() phase are execute in zero
time.

Build phase This phase is executed at the start of the simulation and builds the
testbench components hierarchy from the top to the down. It other words, it is only
after the execution of parent component build() method that the child component build
method is executed. It is also possible to configure the low level component construction
from the higher level components.

Connect phase This phase is executed after the build phase and is in reverse direction
i.e from bottom upwards. All UVM component connections are established in this phase
importantly TLM ports and exports of the TLM components.

End of elaboration Before start of the simulation the final configuration and con-
nectivity tuning of the existing components is done bottom up during this UVM phase.
Besides, connections are validated during the end of elaboration phase.
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Start of simulation phase This phase is the last phase before the beginning of the
only time consuming UVM phase(run phase). It is possible to print the entire testbench
topology at the end of this phase.

Run phase This phase is implemented as a task and therefore consumes time. During
this phase all run tasks of UVM components are executed in parallel. This phase is
used by transactors. User defined stimulus is generated during this phase and DUT
is simulated. Reset, configure, main and shutdown phases are all executed during the
run phase.

Extract phase Clean up phase starts with extract phase and gathers data on the final
DUT status. The data is gathered from scoreboard and monitors.

Check phase During this phase the correctness of the extracted data from DUT is
examined against the expected result. This phase is used by analysis components.

Report phase The simulation results from analysis components are reported and
printed out.

2.6.3 Base class libraries

UVM common base class libraries (CBCL) enable users to build a modular, scalable,
reusable and interoperable test environment. Fig. 2.11 shows the UVM base classes
hierarchy.
All UVM data classes derive from UVM object base class which contains common data
operations methods like create, compare, copy, print and record.

UVM transaction base class is the root class for transaction classes like UVM sequence
item class. User defined transaction classes drive from UVM sequence item and inherit

UVM transaction methods, indirectly.
UVM component base class is the root class for UVM components. UVM components
are defined as ”quasi-static objects”. It is possible to obtain a structural hierarchy
through UVM components like modules hierarchy. [16]

2.7 Analog Circuit Simulation

Analog integrated circuits are simulated using analog simulators, like SPICE, over the
last decades. SPICE (simulation program with integrated circuit emphasis) is the most

18



uvm_transaction

uvm_sequence_item

uvm_sequence

uvm_object

uvm_eventuvm_report_object

uvm_component

uvm_test

uvm_driver

uvm_env uvm_subscriber

uvm_agent

uvm_scoreboard

uvm_tlm_fifo

uvm_monitor

uvm_sequencer

Data

Structure

Figure 2.11: UVM base classes hierarchy [15]
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well known tool for analog simulation. SPICE simulation before manufacturing the in-
tegrated circuits is a common task for designers to ensure the correctness of the design.
The tool was first developed at the University of California at Berkeley as a class project
about 40 years ago and since then it became a worldwide standard circuit simulator.
SPICE simulation covers wide range of components from simple passive to complicated
active devices like MOSFETs. By writing a text-description of a component, the SPICE
simulation model of it is achievable and it’s behaviour is predictable. SPICE like simula-
tors are suitable for detailed design analysis, when the design is constructed in transistor-
level [17]. Even for a small portion of a design SPICE simulation might take a week or
more to be accomplished. SPICE simulation performance was improved to speed up the
simulation at about 2-4 orders of magnitude over the last years. Although this improved
simulation speed was achieved at the expense of loosing simulation accuracy [18].

In order to provide higher levels of productivity, it is of significant importance to utilize
various simulation tools during all steps of design development. For an analog circuit
designer to gain better productivity it is crucial to model the circuit in a higher level of
abstraction and verify its functionality. This is how designers can simply detect some
functional defects prior to devoting time to design to the transistor level.
Moreover in chip level verification when the design is going to be checked in context
of the whole system and verification aim is more to check system level behaviour or
interconnectivity between blocks, detailed results of SPICE models are not requested.

As it is discussed in details in [18], a top-down approach in analog and mixed-signal

Analog

Analog
Analog
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Analog

Analog

Analog

Analog

entity _dig is

port (

);

end _dig;

entity lp_filter is

port( stdby in :std_logic;

quantity v_in:real;

quantity v_out:real);

end entity lp_filter;

VHDL / Verilog

VHDL AMS

M2 3 4A N_12 _ck N_456 _GVSS nNCFx65LP w=1.75u

M4 5 5A N_789 N_457 _ck N_456 _GVDD nPCHx65LP w=1.9u L=0.07u 

M2 5 5A N_163 N_8905  N_537 _GVSS nNCHx65LP w=5.1u L=0.07u

M2 5 7A N_783 _NCK N_400 _GVSS rNCHx65LP w=1.3u L=0.07u

SPICE

Figure 2.12: Top down approach in analog centric designs [19]

designs inhibits from facing wrong assumptions after dedicating considerable amount
of time and effort to design to transistor level. To overcome the increasing complexity
of analog centric integrated circuits, an abstract model in the beginning of the design
process is very much helpful. This abstract model as it is shown in Fig. 2.12 might con-
tain digital blocks (modeled using HDLs), more repetitive analog blocks (modeled using
analog mixed signal (AMS) languages) and other analog blocks(modeled with SPICE
netlists).

While the mentioned approach suits well for analog centric designs with vastly domi-
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entity _dig is

port (

);

end _dig;

entity simple_amplifier is

generic(

diff_gain :real:=1000.0;

dc_offset :real:=0.0);

port(

V_inp, V_inm :in  real:=0.0;

V_out:out  real:=0.0);

end simple_amplifier;

architecture a of simple_amplifier is

begin

V_out<=dc_offset+diff_gain*(v_inp- v_inm);

end a;

VHDL / Verilog

VHDL real

Figure 2.13: bottom up approach in digital centric designs [19]

nant analog content, for digital centric designs a traditional bottom-up approach can be
a better solution. In this approach analog blocks are designed according to the defined
specifications and are verified against these specifications using SPICE like simulators.
Chip level verification of digital centric designs can be performed using behavioural mod-
els of analog portions. For instance, Fig.2.13 depicts a dominant digital content design
where digital blocks are defined using HDLs and analog part of the design is modelled us-
ing Real Number Modelling (RNM). The most significant achievement of this approach
is that it provides the possibility to use event driven simulators in chip level verification.

To conclude, since analog and mixed-signal integrated circuit simulation and verification
became a challenging task, using only SPICE like simulators is not anymore a rational
choice. While digital verification is heavily automated, still analog verification progress
cannot satisfy the demanded requirements. Moving forward from chips with thousands
of transistors to the chips with millions of transistors, several useful approaches have
been deployed in digital verification (see chapter 2.4.1). In order to enrich analog and
mixed-signal verification quality as well, using abstract models of analog circuits is in-
evitable. These abstract models are utilized in different levels and design steps. The
time-to-market for leading semiconductor companies has been highly decreased taking
advantage of abstract models in either bottom-up or top-down manner.
It is significantly important to slightly abandon the detailed results of SPICE level
simulations in some levels of verification process and use a concise but comprehensive
simulation model instead. In this manner, beneficial digital like strategies are employ-
able in analog circuit verification.
One of the prominent advancements of digital verification is transaction level modelling.
As it is discussed in section 2.6.1, TLM provides an abstract view from protocol imple-
mentation in the verification process. The aim of this work is to investigate on a way to
utilize the concept of transaction in analog circuits verification. The Analog Transaction
concept is introduced in section 3.
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Chapter 3

Analog Transaction Level
Modelling

Todays design methodologies are highly affected in two different directions. In one hand,
it is required to inspect electrical behavior of the design to avoid physical defects and
later product respins. Detailed design representation is necessary in order to verify it in
this level. On the other hand, time-to-market pressure forces designers to use abstract
representation to be able to overcome the challenging task of complex mixed signal
circuit verification.
Today between 70% and 80% of designs are mixed signal designs and therefore mixed
signal verification takes enormous amount of time to be accomplished [19]. To be able
to use digital like simulators and therefore speed up the verification process, it is crucial
to consider analog and digital portions of the design holistically. This highlights the
demand for novel strategies in order to verify an analog IP in the SoC context.
The aim of this project is to improve the existing mixed signal verification methodologies
to enhance this holistic design consideration.

3.1 Mixed-Signal Verification Challenges

As it has been recorded, more than 50% of design respins at 65 nanometer and below are
the overcome of mixed-signal designing [20]. The consequent wasted time and high costs
of product respin, bring about the demand of new strategies for SoC verification. It is
not possible any more to simply assume the practicality of old strategies in SoC level
mixed-signal verification. To have an overview of old mixed-signal SoC level verification
strategies, brief description of two of them are stated in this section.

Black Box Approach One of the common methods to verify a mixed-signal design
with dominant digital content is called black box verification. In this approach a pre-
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verified analog block is integrated into a bigger design using its highly abstracted model.
The abstract model contains the interface description only in many cases. This is how
simulation speed degradation can be avoided but this problem arises that verification
quality degrades instead. Today’s mixed-signal SoCs are not only more complex in terms
of added analog blocks, but also in terms of complicated interconnections and feedback
loops between analog and digital portions of the design. It is not reliable any more to
replace analog portions of the design with a black box model and perform SoC level
verification. [20]

Capture and Replay Approach In this approach after clearly specifying analog
portions of the design, the boundary of the analog portion from the SoC simulation
is extracted during some particular simulation time. The extracted waveform is then
replayed back as an input to analog/mixed-signal (AMS) simulation of the analog por-
tion. Although it is possible to detect some functional errors in design using capture
and replay approach, it is still not reliable since reactive feedback between analog and
digital parts of the design is missed. Moreover the process is carried out manually which
brings about limitations in generating test cases. [21]

3.2 Mixed signal Verification Facilitation

SoC level verification of mixed-signal ICs has been getting more attention in last years.
Several approaches has been proposed by researchers in order to enhance the verifica-
tion process. Since digital verification teams were able to build highly automated test-
benches, it was time to introduce more digital like and consequently more automated
techniques for analog and mixed-signal circuits verification. Although analog verification
with SPICE is still a golden standard and cannot be ignored, to achieve better simula-
tion speed, different levels of design abstraction are used to model an analog subsystem.
Taking into account SPICE and fast SPICE simulation next level of abstraction, analog
behavioural modelling (with Verilog-AMS and VHDL-AMS), improved simulation speed
significantly. Furthermore, Real Number Modelling (RNM) and pure digital models are
the other approaches to describe the analog subcircuits in higher levels of abstraction
and therefore to achieve higher simulation performance. Moreover, another crucial fac-
tor to choose an appropriate abstract model is the required effort to build a simulation
environment. To clarify more a comparative chart is shown in Fig. 3.1.
The chart shows the distinction between mentioned approaches in terms of required effort
for simulation setup in (a) and performance trade off in (b). As depicted in this figure,
although RNMs or pure digital models are less accurate models but less effort is required
to build a simulation environment using these models than AMS models. Therefore this
is the most apparent advantage of these models in full-chip verification.
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Figure 3.1: A comparison between different modelling approches in mixed-signal verifi-
cation in terms of required effort and performance [22]
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Analog behavioural modelling In general analog behavioural modelling approach
is used to create a module which encapsulates high-level behavioural description of an
analog or mixed-signal subsystem. In order to enable designers to write this behavioural
models some specific languages were created like Verilog-AMS, Verilog-A and VHDL-
AMS. These analog mixed-signal (AMS) languages offer both continuous-time and event-
driven semantics for verification task. Apparently analog designers are the best choice to
write the analog behavioural models. Although they are familiar with their own analog
design, they usually lack Verilog or VHDL knowledge to write these models. Similarly,
digital designers with enough knowledge of these languages are not able to write an
accurate model since they know less about the analog circuits [22]. As it is clearly
depicted in Fig. 3.1, AMS model simulation needs most set up effort. In one hand, it is
possible to write these models to gain more simulation speed, at the sacrifice of accuracy.
On the other hand as it is shown in Fig.3.1 they have the capability to be modelled with
the accuracy close to SPICE like simulators depending on the application. However it
is important to notice that over-idealized models can bring about convergence issues for
unskilled modellers. [23]

Real Number Modelling ”In real number modelling, also known as real value mod-
elling (RVM), values are continuous -floating-point(real)numbers- as in the analog world.
However, time is discrete, meaning the real signals change values based on discrete
events” [23].
It is possible to achieve simulation performance near digital simulation speed taking
advantage of RNM. In chip level verification, where it is usually in an abstract level and
therefore not deep in implementation details, at the expense of loosing some accuracy,
time and costs can be highly reduced using RNM. This approach is restricted to signal
flow and therefore benefits from the absence of troublesome convergence issues. From
Fig. 3.1 it is possible to notice that in compare to AMS models, this approach requires
less effort and provides higher performance when verification goal is apart from im-
plementation details (accuracy).
Three HDL languages support RNM such as VHDL (with real type), SystemVerilog
(with real type) and Verilog-AMS (with wreal type)
Simulation performance comparable to what is already exist in digital verification tech-
niques, makes it possible to apply highly automated digital techniques like verification
planning, random test generation, coverage and assertions in analog verification area by
using real number models. This is the most well-liked verification capability which can
be achieved in analog mixed-signal verification.

3.3 Analog Transaction

A sample DUT with RNM blocks and RTL blocks is presented in Fig. 3.2. In this
case the DUT has both digital and real-valued pins. The existing approach to drive
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real-valued pins of DUT, is to hard code stimuli in the test (direct way). However in [2]
the proposed technique leads to a way in which analog pins of the DUT are driven using
constrained random stimulus generation.

Digital 

Circuit

Analog 

Circuit

Analog 

Circuit

Digital 

interface

Analog 

interface

Digital 

interface

Analog 

interface

Figure 3.2: A mixed-signal design with analog and digital sub-circuits interfacing with
each other and outside world

The proposed method in [2] to drive analog pins of depicted sample DUT in Fig. 3.2
resulted in a new concept which is Analog Transaction. Transaction concept is defined
in section 2.6.1 and to clarify more it is noticeable that transaction is a data structure
containing parameters. In a UVM based testbench, data fields within transaction are
randomized and are used in driver which implements the protocol separately and wiggles
the DUT pins.
To be able to extend the concept of transaction in analog domain, a term replacement
from ”protocol” in digital world to ”shape” in analog world was suggested in [2]. Analog
signals can have different shapes for example harmonic, linear or cubic spline. To be
able to describe or generate these analog shapes besides the name of the shape we have
to define parameters. This brings about a request to use analog transactions to generate
analog waves with defined parameters and consequently in TLM way. In other words in
a UVM based testbench data structure including parameters is pass to the driver and
according to the specific numerical algorithm driver reflects those parameters to generate
the desired analog wave.

3.4 MDV adoption to Analog environment

UVM, as a popular verification methodology, enhanced the verification process of com-
plex SoCs. The most efficient aspect of this methodology is the application of metric
driven verification. In order to enhance analog verification one should think about MDV
techniques and the possibility of adopting them to an analog environment. There are
some limitations in this process which are explained in [24]. In this section some of the
most important limitations are discussed briefly.

Analog vPlan and Coverage Planning for verification (vPlan) is a beneficial tech-
nique which is more complicated when talking about analog features. As vPlan must
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capture the defined features of the design, it has to be richer to adopt analog features
as well. Moreover, measuring those analog features could be a sophisticated task. This
is because analog properties including amplitude, gain, frequency or some other similar
values are different than logic values naturally.

Simulation performance In order to adopt MDV and therefore, take advantage of
its ability to a run large number of simulations automatically, analog designs have to be
modelled using AMS languages or RNM. This is because the SPICE level simulation is
slow in comparison to digital simulation.

Constrained random stimulus To explore DUT different behaviours it is required to
generate both digital and analog random stimulus. Efficient randomization of analog in-
puts to the design is a major request when adopting MDV to analog environment.

Self-checking A self checking testbench can determine that the design behaves as
planned or not. In digital designs this is carried out by monitoring the output pins of
DUT and comparing with expected output in Scoreboard. This process is more com-
plicated when checking an analog design. For further studies on limitations of adopting
MDV to analog design it is suggested to study [24].
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Chapter 4

Testbench Implementation

The goal of this work is the improvement of existing verification methodology and test-
bench structure of mixed-signal designs. In order to do so, a testbench structure is
proposed in which analog interfaces of the depicted DUT in Fig. 3.2 are driven taking
advantage of transaction level modelling. The proposed testbench structure is responsi-
ble for generating random stimulus in order to shape various analog waves and sending
them to the DUT’s analog interface automatically.
The aim is to generate more different analog waves in transaction based manner in which
the driver component receives transactions from sequencer and drives DUT pins. The
diver is implemented to behave independent of the defined algorithm in transaction. In
other words, regardless of what is intended by the user for the ”shape” of analog wave
driver reflects the received transaction and eventually generates the intended shape at
the inputs of the DUT.
Moreover, generated components in the proposed verification environment can support
and deliver transactions with various data structures. This enables the user to imple-
ment the application specific algorithm and reuse the generated SystemVerolog library
in testbench environment.
In future studies, implementation of a testbench with self-checking capability is of vital
importance.
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4.1 Related Work

In this thesis work the goal is to design a UVM based testbench through which analog
input pins of a sample DUT are driven using the same strategy as digital input pins.
Since different verification methodologies are used to verify digital and analog blocks, it
is crucial to have a holistic view of both digital and analog sub-blocks of the design at
chip level verification.
As it was presented in [2], to be able to use advanced verification techniques like ran-
domization and therefore to avoid writing analog real-valued input stimulus in a directed
way, transaction level modeling is extended into analog domain.
In [2], analog transaction was introduced for the first time. The proposed technique in [2]
generates analog stimulus through passing data structures to the driver. As it is dis-
cussed in section 3.3 transactions are data structures containing particular parameters.
Via sequencer and driver communication transactions are passed to the driver. Driver
wiggles DUT’s pins according to the specified protocol and by decoding parameters
within a received transaction. Hence ”transactions offer abstraction of the protocol.” [2]

UVM seq item class holds parameters which are required to define an analog wave (like
slope and value of a certain point in time for a linear signal). During run task of the
driver, when it sends a request to the sequencer for a new sequence item, those parame-
ters within sequence item will get randomized. As an example, generation of a harmonic
analog signal was presented in [2]. The randomized spectrum of signal was delivered
by the UVM seq item class and the harmonic signal was obtained through performing
Inverse Fourier Transformation in driver class.

It is SystemVerilog’s Direct Programming Interface (DPI) which provides the possi-
bility to use various algorithms written in C language. SystemVerilog like many other
modern languages provides the feasibility of interconnection with libraries written in C.
SystemVerilog layer and foreign language layer are completely isolated. Communication
between these two layers is through function calls between languages.
In proposed structure in [2] from SystemVerilog layer driver calls a C wrapper for
FFTW [25]. It was through DPI that driver passed the randomized spectrum to the
foreign language library (FFTW) and received transformed data subsequently. Fourier
transform implementation in C is more easy and efficient than writing it in SystemVer-
ilog. The transformed data which was received from C layer was the signal representation
in time domain and was sent to the pins of DUT by driver component. The connection
between driver in SystemVerilog layer and FFTW in the foreign language layer is shown
in Fig. 4.1.
The most important advantage of proposed method in [2] is that by randomly generating
complex analog stimulus, it is possible to detect design bugs much faster than writing
direct tests.
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Figure 4.1: Driver communication in SV layer with FFTW in foreign language layer

4.2 Key features of this work : Extendibility and Separa-
bility

In this section the main purpose of this work is illustrated. Based on the information
from previous work in this area, described in section 4.1, the aim of this work is to build
a testbench which is fully reusable in different projects when other shapes of analog wave
are required to drive a DUT.
UVM classes in proposed structure in [2] were implemented to perform an algorithm (like
inverse fourier transformation) with its specification. To clarify more, UVM seq item
class was implemented to hold parameters which are required to generate a specific
analog wave. In described example in section 4.1 to generate a harmonic signal, signal
spectrum is needed. In one hand parameters within UVM seq item class were defined to
deliver signal’s spectrum. In other words, spectrum was used as sequence item field and
was sent to driver from sequencer. This means that sequence item field was designated
to a complex valued dynamic array describing the spectrum of a signal.
On the other hand, driver class is responsible to decode the received transaction via
seq item port. Driver and sequencer are parametrized in order to use a specific trans-
action type for communication. They communicate through sending REQ and RSP of
type seq item class. In described example in section 4.1, the transaction type was defined
to be signal spectrum. It contained a complex valued array field and duration period
field. These fields were decoded in driver class (using SystemVerilog DPI it was possible
to perform the inverse fourier transformation using fftw) and eventually the transformed
signal was sent to DUT pins through virtual interface. The implemented driver was able
to decode those defined fields within the transaction exclusively. This brought limitation
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in terms of flexibility and usability.

In this work, the main focus is to implement a UVM based testbench in which trans-
action type is independent from algorithm specification. Moreover, with this algorithm
independent transaction type, driver class is also implemented in a generic way. In this
manner it is possible to generate various analog signal shapes like linear, cubic spline or
any other shapes using the same structure. This is how mentioned limitations (flexibility
and usability) in proposed structure in [2] can be resolved. In many verification projects
it is required to generate different shapes of analog waves. To have a fully flexible test-
bench with the ability of generating different shapes of analog waves it is necessary to
define an unconstrained transaction level communication between UVM components.
For more illumination, in Fig. 4.2 three different approaches are illustrated. In this fig-
ure (a) is a digital driver class. It receives a sequence item from sequencer and decodes
it using a state machine. Sequence item class contains application specific data fields.
According to the defined protocol, driver uses sequence item fields and generates the
digital wave. The proposed structure in [2] is shown in (b). The driver class is shown
with basic arithmetic operations. This means that driver performs a particular numeric
algorithm to generate the output analog signal. In this work, basic arithmetic operations
are used to represent an algorithm. Driver receives application specific sequence item

SEQ

SEQ

SEQ

Driver
SI

SI

SI

Driver

Driver

  χ+ - ÷ 

  ᵪ+- ÷   ᵪ+- ÷   ᵪ+- ÷ 

  ᵪ+ - ÷ 

(a)

(b)

(c)

Figure 4.2: UVM based verification environment (a) digital, (b) proposed structure in [2],
(c) improved structure
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fields and performs the decoding process based on the user defined algorithm. Desired
analog output wave is generated eventually.

The proposed structure in this work resolves the limitations in (b) by using the (c)
structure. Here, the sequence item class is implemeted to hold different data structures.
It allows all kinds of algorithms with different required data structure to be plugged in
to the algorithm layer. A new filed in sequence item class plays a key role when the
driver receives the transaction: Algorithm name. The algorithm name indicates which
algorithm is selected in the test. Driver communicates with the intended algorithm
subsequently.
It is important to mention that the driver is independent of user defined algorithm.
For decoding process SystemVerilog DPI provides the accessibility to foreign language
algorithms. Driver in communication with algorithm specific classes remains independet
and gets the generated stimulus and drives the DUT.
Key features of this structure can be enumerated as extendibility and separability.

Extendibility In order to save time and therefore meet the project deadlines it is
always beneficial to reuse the code between projects. In mixed-signal verification projects
it is not far fetched to need the analog wave to simulate the design from one project to
another. By using improved structure in (c) it is easily possible to define and add a new
demanded algorithm to the algorithm layer. In this manner, code reuse between mixed-

  ᵪ+- ÷   ᵪ+- ÷   ᵪ+- ÷ 

  ᵪ+ - ÷   ᵪ+ - ÷   ᵪ+- ÷ 

Data Structure class

  ᵪ+ - ÷   ᵪ+ - ÷   ᵪ+- ÷ 

Driver algorithm class

Algorithm Layer

New 

algorithm

(3)

(1) (2)

ᵪ+- ÷ 

Application specific layer

Developed SystemVerilog Library

Figure 4.3: Key features of this work : Extendibility, Separability
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signal verification projects is possible since this structure is fully extendible. This feature
is shown in Fig. 4.3. When it is required to add a new algorithm it is possible by adding
algorithm-specific files (user defined components) to the environment. The developed
SystemVerilog library shown in this figure is compatible with all SystemVerilog supporter
event driven simulators. The interface through which SV library communicates with
algorithm layer is predefined and enables the verification engineer to access every new
defined algorithm in algorithm layer. This is the aimed extendibility feature of this
work.

Separability Code reuse between projects is an essential requirement and is achievable
through accurately separating project-specific components and fixed components. When
it is time to reuse a code the less time to devote for updating facilitates the process. In
Fig. 4.3 fixed components will remain unchanged when adding user-defined components.
This is the planned separability feature in this structure.
Three layers are shown in Fig. 4.3 : algorithm layer, application specific layer and
developed SystemVerilog Library. User who intends to add a new algorithm has to do
the following tasks:

1. Add algorithm specific data structure class to application specific layer.

2. Add algorithm specific Driver algorithm class to application specific layer.

3. Add the algorithm to the algorithm layer (or a C wrapper for those algorithms
implemented in other languages).

4.3 Class diagram

To have a comprehensive inspection of the whole verification environment, a class dia-
gram of the generated environment is shown here. The verification environment classes
and the interrelation between them is shown in Fig. 4.4. Moreover, Fig. 4.5 shows the
data item classes that are processed by the verification environment.
According to described patterns in the book Design Patterns: Elements of Reusable
Object-Oriented Software [26], Fig. 4.4 includes the strategy pattern. This pattern is
applicable when different algorithms are available to use by the user but only one is used
at different times. Different classes can be used to encapsulate different algorithms and
the encapsulated algorithm in a class is called strategy.
Using the strategy pattern it is possible to define many classes with different behaviours.
It is necessary to introduce a common interface to call/configure classes through it. In
Fig. 4.4 this common interface is the UVM driver algorithm virtual class. UVM driver
uses this interface to call user defined algorithms supported by the interface. It has a
reference to UVM driver algorithm class.
Strategy pattern provides various conveniences for the designer. Although there is a
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Figure 4.4: Verification environment class diagram, Strategy pattern [26] is used in class
design
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possibility to create several UVM driver classes using inheritance and therefore sup-
port several algorithms, the result will not be flexible and extendible. In addition, the
code will be a mix of driver code and algorithm implementation which makes it com-
plicated and hard to understand. Using strategy pattern and algorithm encapsulation
brings about the possibility to extend the algorithm classes independent of driver class.
Moreover, this way dynamically changing the algorithms is achievable.

uvm_object

data_structure{virtual}

-algorithm_specific_parameters

algorithm_data_str

uvm_transaction

uvm_seq_item

-data_str:data_structure

-algorithm_name:string

sequence_item

uvm_sequence

+body()

algorithm_default_sequence

+pre_body()

+post_body()

algorithm_base_sequence {virtual}

sequence_item

+pre_body()

+post_body()

base_sequence{virtual}

uvm_seq_item

+body()

my_test_sequence

1

1..*

1

Figure 4.5: Data item class diagram
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The class diagram shown in Fig.4.5 depicts transaction classes. On one hand my
test sequence class is the sequence which is invoked from the test and on the other

hand algorithm default sequence class is defined by the user. Upon a request an algo-
rithm default sequence item is created. An instance of algorithm data str class lives in
algorithm default sequence class which holds algorithm specific parameters and supports
implementation of algorithms with different data structures.

4.4 Driver

The driver class as a subclass of UVM driver base class is a fixed component. This
means that by adding more and more algorithms, the alike driver code is still reusable.
Driver class together with driver algorithm class are fundamental components in order to
accomplish thesis scopes. Improvement and generalization of existing techniques are ac-
complished by implementing an algorithm independent driver component which contains
a variable of type driver algorithm class. The algorithm selector class is also declared in
driver and delivers the registered algorithm to the driver upon request.
During the run task of the driver, a request for the next transaction is sent to the
sequencer. The virtual protected drive transfer task is responsible for converting trans-
action level activities to signal level activities. The received transaction during the
run task is passed to the drive transfer task. The input argument to drive transfer task
is of type seq item class.

Drive transfer task This task of the driver class plays an important role and wig-
gles the DUT pins via a virtual interface. First and foremost it is necessary to retrieve
one of the fields within the transaction. This field indicates the registered name of the
algorithm and is called algorithm name. When a user intends to generate a new analog
wave the desired algorithm name has to be registered in algorithm selector class. By
invoking the algorithm selector class in drive transfer task it is possible to retrieve the
created object of the algorithm class to which algorithm name is pointing. The retrieved
algorithm from algorithm selector class is assigned to a variable of type driver alforithm
class. Through this step all the instances of registered algorithms in algorithm selector
class are accessible.
It is highly important to notice that the instance of all algorithms in the algorithm li-
brary have to be created and entered in an associative array. This array is defined in
algorithm selector class. A UVM fatal is generated in case the algorithm is not regis-
tered.
A variable of type driver algorithm class provides communication between the driver and
the instance of the algorithm defined within the transaction. This variable provides the
access to the methods of the algorithm class. Algorithm classes all have similar methods
since they are all extended from a same virtual parent class [4.6].
Furthermore, the pre process method is invoked from the algorithm class and the data

36



structure is passed to it without manipulation. Data structure holds required algorithm
specific parameters to generate a new analog wave.
Eventually, through invoking the get real method the real valued data is acquired. These
real valued data is used to drive DUT pins through a virtual interface subsequently.

4.5 Data Structure Class

The data structure class is a virtual class extended from UVM object base class. This
virtual class is overridden by user defined data structure classes. In other words, a
new algorithm needs a data structure specific class which is extended from virtual data
structure class. Data structure class plays a key role in achieving algorithm independent
structure of verification environment.
To clarify more about the importance of this class, it is necessary to have a short review
of a related work. In [24] a similar verification environment was implemented and a sine
wave was generated. It was controlled by defined signal properties in sequence item class.
Signal frequency, amplitude, phase and DC bias of the signal were defined as sequence
item fields. Eventually a sine wave was generated by the driver in wire UVC and was
connected to real value ports of the DUT.
The main advantage of data structure class implemented in this work over proposed
structure in [24] is that by using data structure class it is possible to generate much
more complicated algorithms and generate various analog waves that might be required
in different verification projects. Sine wave and other similar simple algorithm imple-
mentations are accomplished in this work besides more complex algorithms like Inverse
Fourier Transformation. In addition, implementation of even more complicated algo-
rithms than IFT can be achieved using data structure class.
To achieve this, object oriented programming concepts like inheritance and polymor-
phism are used to implement this class and its subclasses.
User who intends to update this verification environment with a new algorithm has to
write the algorithm specific data structure class which is a child class of data structure
virtual class. This user defined class inherits all defined attributes within the parent
class. Therefore data structure class is the parent class or super class of all user defined
algorithm dependent data structure classes. However, the virtual data structure class is
only an empty prototype definition. Each subclass of this class defines algorithm specific
attributes. Hence, a variable of type data structure class can hold different objects of
user defined data structure classes.

Taking advantage of polymorphism it is possible to have different objects belonging
to different types and responding to method, field or property calls of the same name.
Algorithm specific data structure is defined by the user in the inherited child class and
its corresponding parameters can be assigned to fixed or randomized values when an
object of the class is generated.
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4.6 Driver algorithm class

Driver algorithm class is a virtual class which is inherited from UVM object base class.
A variable of type driver algorithm class exists in driver class and holds an instance of
user defined algorithm. Driver algorithm virtual class, as a parent class, includes two
pure methods pre process and get real. All user defined algorithms have to override these
two methods in their definition. Extension from this class brings about the possibility
to have different instances of different types and invoke their methods using the same
variable.
In an algorithm specific driver algorithm class, pre process function receives an input
argument from driver class. This input argument is the algorithm related data structure
class.
For instance, in order to generate a sine wave signal period and amplitude are defined as
properties of sine data structure class. These properties are totally different in another
algorithm specific subclass of data structure class. The pre process function within sine
driver algorithm class receives all those properties. This function is responsible for data
preprocessing. A variable of type sine data structure class is defined in this class and in
pre process function received properties are put into this local variable. A fault report
is generated if received data structure is empty.

Moreover, in some algorithms like cubic spline preprocessing is done in a broader way.
To be able to generate a cubic spline analog wave cubic spline specific data structure is
an input argument to the pre process function. The related C algorithm processes an
array of time value elements during two steps. In other words, by calling DPI C interface
in pre-process function, C code receives data from SV code and transfers the processed
data back.

Only after preprocessing it is possible to call DPI C interface within get real function.
Local variables holding preprocessed data are output arguments and are passed to the
algorithm layer in get real function. Return argument is real valued data structure to
be consumed by driver class.

As it is shown in Fig.4.3 this class is in application specific layer which is a mediate
layer between SystemVerilog layer and algorithm layer. It is through this layer, and
specifically through subclasses of driver algorithm class, that SystemVerilog code is con-
nected to the foreign language environment. User who intends to add a new algorithm
to the algorithm layer, has to add an algorithm specific driver algorithm class to the ap-
plication specific layer. DPI interface is defined specifically in each subclass and allows
inter language function calls. By calling a C function through DPI, actual data object
which needs to be processed by the algorithm is passed by its reference (pointer). Input
arguments with only small values can be passed by value. Obviously DPI declaration in
this class is optional as long as algorithm is not implemented in a foreign language.
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4.7 Algorithm selector class

The Algorithm selector class is an extension of UVM object base class. To add a new
algorithm to the algorithm library it is necessary to register it via algorithm selector
methods. Otherwise, driver cannot retrieve the created instance of the algorithm after-
wards.
This class contains two methods : register algorithm function and select function and an
associative array in order to store all user defined algorithms. An associative array is the
best choice to store a number of dynamically changing elements. The associative array
within algorithm selector class gets index of type string which is the algorithm name.
This algorithm name is passed down to this class from upper classes in the class hierarchy.

It is first in the env class that a new algorithm has to be declared and constructed.
The constructed instance of the algorithm is passed down to a particular agent dur-
ing the connect phase. In fact the created instance of the algorithm and its name are
passed to the function register algorithm. It is through algorithm selector type variable
in driver class that the agent invokes the register algorithm function and transfers the
received algorithm to this function.

In register algorithm function a new algorithm is registered in an associative array using
the algorithm name as an index. An instance of all existing algorithms can be created
and put into the associative type array.
Furthermore, in driver class the select function is invoked in order to retrieve the cor-
responding instance of the algorithm within the associative array. The input argument
to the select function is the string type algorithm name. The exists() method of the
associative array checks if the received string exists within the stored indices of the ar-
ray. A UVM fatal message is generated if the input algorithm name is not registered via
algorithm selector class yet.
It is important to mention that since all user defined algorithm classes are subclasses
of driver algorithm virtual class, it is possible to store all into a single associative ar-
ray. Taking advantage of polymorphism, through superclass variable (driver algorithm),
subclass properties and methods are accessible. This is a powerful method in object
oriented programming techniques.

4.8 Algorithm Layer

In this work several algorithms are examined in order to inspect the impact of differences
between them. There are many existing algorithms mostly written in C and through
SystemVerilog direct programming interface it is simply possible to reuse them and gen-
erate various analog waves. DPI by following the so called black box approach brings
about an absolute separation between specification and implementation. Through DPI
declaration in driver algorithm class, it is possible to invoke a C function and pass Sys-
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temVerilog algorithm specific data structure to the C code. The processed data can be
retrieved from the C code afterwards.
To inspect the proposed verification structure different interpolations have been imple-
mented and added to the algorithm layer. Linear, Cubic Spline and Rational interpola-
tions are all accessible through DPI. Interpolation algorithms are written in C language
and randomized data structure required for these interpolations are passed to them
from SV code. To perform an interpolation required data structure is a set of points.
A SystemVerilog point array (containing time, value real type pairs) is generated in a
randomized manner and the algorithm in C receives it subsequently.
The proposed verification environment has been inspected for more complicated algo-
rithms as well. The fastest Fourier transformation in west (FFTW) is a C subroutine
library for Discrete Fourier Transformation computation. An Inverse Fourier Transfor-
mation is implemented using this library. To review FFTW advantages concisely it is
important to enumerate its speed, particularly for purely real value data. To perform
this transformation a C wrapper is used and algorithm specific data structure class is
defined. In the data structure class a complex value array is defined to generate signal
spectrum. The typical way in UVM based testbenches is to randomize the stimulus
which is used to drive the DUT pins. In this example, the complex value data gets
randomized and the randomized spectrum is transferred to the FFTW C code via a
C wrapper. The C Wrapper is called within Inverse Fourier Transformation algorithm
class. The transformed data is returned to get real function afterwards.
Moreover, to investigate more algorithms with different data structures the algorithm
layer is extended to also include MATLAB environment. This time a completely new
algorithm is chosen to be implemented in MATLAB. In this algorithm the generated
signal is the transfer function of a finite impulse response (FIR) filter. To generate this
signal the FIR data structure class is defined. This class includes filter order, filter
cut frequency and input stream.
As it is also mentioned in section 4.5 the strength point of this work, in compare to pre-
vious works in this area, is the development feasibility of algorithm layer with entirely
different data structures. It is possible to notice that each of these added algorithms to
the algorithm layer requires different data structure. A set of time value pairs is needed
for interpolations, an array of complex values is required for IFT algorithm and to see
the transfer function of an FIR filter it is necessary to define filter’s sepecification.

4.9 SystemVerilog, MATLAB Integration

MATLAB as a powerful numerical computing system provides wide range of toolboxes
and built-in functions and therefore a proper tool for algorithm development. Due to the
fast algorithm developement in MATLAB, integration of SystemVerilog and MATLAB
can accelerate the verification process significantly. Combining the power of MATLAB
in signal generation, spectral analysis and image processing with SystemVerilog random
stimulus generation, highly strengthens the verification procedure. The co-simulation is
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achieved through building a C wrapper around MATLAB Engine and DPI coupling of
SystemVerilog and the C wrapper. The co-simulation structure is illustrated in Fig. 4.6.

SystemVerilog 

Environment
MATLAB

MATLAB 

Engine

C Wrapper

DPI_C

Figure 4.6: Co-simulation between SystemVerilog and MATLAB workspace

4.9.1 MATLAB Engine Library

It is possible to call MATLAB from C environment using MATLAB Engine library and
employ MATLAB’s computational capacity. MATLAB processing is operational as a
separate process from C programme while data and commands can be send to and from
MATLAB. MATLAB Engine library offers several routines all starting with the prefixeng
and provides MATLAB environment controllability from a C /C++ programme.

Since MATLAB is generated to work only with single type data, MATLAB arrays, the
C wrapper is responsible to manipulate the received SV array and put it into MATLAB
workspace. The generated MATLAB specific array by C code has a mx prefix and is
called mxArray. Data transferring from C to MATLAB is accomplished using the com-
mand engPutVariable(Engine *ep, const char *name, const mxArray *pm) with ep as an
Engine pointer, name of mxArray in MATLAB workspace and pm for mxArray pointer
respectively. engGetVariable is a similar command to read from MATLAB workspace.
Other useful Engine library routines are attached to the appendix 1 of this document.

4.9.2 C Wrapper

SystemVerilog direct programming interface (DPI) is an interface between SystemVer-
ilog and a foreign programming language. It consists of two separate layers: SV layer
and foreign language layer [27].
Although the only foreign language which is currently supported by the SV is C lan-
guage, it is possible to extend the foreign language layer to also include the MATLAB
workspace. Data transfer between SystemVerilog and MATLAB workspace is realized in
two layers: from SV code to a generated C wrapper and from C wrapper to MATLAB
workspace. The opposite direction is also supported.
In this work a Sine wave is generated in MATLAB and the MATLAB array containing
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real values of the Sine wave is retrieved by the driver class in SystemVerilog layer. Sine
specification like magnitude and period are part of the transaction which driver receives.
User defined data structure class contains these two fields and during the run time of
the simulation, a fixed or random value is assigned to them. Through DPI connection
in Sine diver algorithm class generated data is sent to the C wrapper.
Furthermore a pointer to the MATLAB workspace is created. Data has to be manipu-
lated in C environment in order to be traversed to MATLAB workspace. The wrapper
generates mxArrays and copies the magnitude and period values to distinct mxArrays,
consecutively. Once the Sine wave is generated in MATLAB workspace, the result is
obtained and copied to a dedicated mxArray. The MATLAB engine can be closed and
mxArrrays are destroyed in order to release the memory subsequently. The communica-
tion between SV environment and MATLAB workspace is depicted in Fig. 4.7 in detail.
In Fig.4.8 the IFT output wave is shown and the resulted Sine wave from MATLAB is
the adjacent wave.
SystemVerilog, MATLAB integration allows the utilization of effective algorithm imple-
mentation in MATLAB environment. It is also eligible to implement golden models in
MATLAB and link them to SystemVerilog environment.

Figure 4.8: IFT and Sine wave in wave form window of Questasim simulator
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Chapter 5

Application of the developed
technique in a real world
project

The technique in this project is applied in a real world project to ensure the applicability
of the developed verification structure.
The project is a three phase motor drive IC for automotive applications. The device is
used together with an external micro controller and drives the gate source terminals of
6 external N channel MOSFETs. This is how it controls both speed and direction of the
motor. In Fig. 5.1 a high-level view of the device is depicted.
This device works in two basic operation modes:

1. Motor mode: in this mode motor driver amplifies the digital input signal Hx (x
refers to the number of corresponding phase) and generates HGx and HSx signals
to drive the gate and source terminals of high side transistors, respectively. In
addition, LGx and LSx output signal are also generated through amplification of
digital Lx input signal in order to control the low side transistors. This way current
flow from battery to the motor is controlled by the micro controller.

2. Generator mode: in this mode the current flow direction is reversed. The device
in this mode switches the transistors to reload the battery. Therefore, this mode
is also called recuperation mode. The resulted technique of this work is used to
verify the device in generator mode.

In generator mode the generated voltages by the motor are sensed by three ADCs (Analog
to Digital cenverters). The input voltage to the ADC block is generated using proposed
approach by this work. To verify the motor driver chip, the shown voltage sequence in
Fig. 5.2 is applied to the real value interface of the device and the ADC behaviour is
inspected.
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Figure 5.1: An abstract view of the application of the DUT used to qualify the achieved
verification technique in this work. Current flow to the motor is controlled by the
external micro controller.

The depicted voltage sequence is applied to the real number models of ADCs at chip
level verification. To do so a new algorithm is added to the algorithm library which
contains a C wrapper and the actual implementation of the algorithm is in MATLAB.
Driver algorithm and data structure classes (two application specific components, see
Fig. 4.3) are defined and the created UVC is able to drive the ADC interface using
TLM.
The shown voltage sequence in Fig. 5.2 is generated using three parameters. The
shown parameters are defined in data structure class. Upon a request from driver, these
parameters can be randomized or directly filled. These parameters are what we need
to apply the transaction concept and generate constraint random stimulus. This means

T

A

B

Figure 5.2: Voltage sequence of one phase generated by the motor. T is the half period
of the phase, A is the amplitude and a is the overshoot.
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Figure 5.3: Generated input stimulus to the ADC model in wave form window of Ques-
tasim simulator

that by changing the shown parameters different behaviour of the motor can be modeled
and ADC reaction to that can be inspected. This method offers a great acceleration in
verifying RNMs of analog blocks in this verification project. Algorithm developement
in MATLAB environment is rapidly obtainable and can be also used in selfchecking
components. The generated sequence in Questasim simulator is shown in Fig.5.3.
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Chapter 6

Conclusion and Outlook

In this project a novel verification technique is introduced in order to improve the ver-
ification procedure of mixed-signal SoCs. The proposed method undertakes the real
value stimulus generation using transaction level modeling for the designs with analog
interface to the outside world. The verification environment is built taking advantage
of UVM standard which highly automates digital verification. The resulting testbench
provides the possibilty of real value stimulus randomization in transaction level.
Through defining parameters in order to describe an anlog wave a transaction can be
generated. The generated transaction in an UVM based environment facilitates the
verification procedure. The developed library in this work supports transactions with
potentially different types of parameters. The library is application independent and
easily extendible. This means that new application specific components can be inserted
to the generated environment to form a new analog wave.
This introduced technique together with under-developed techniques for monitoring,
checking and coverage collection enables the user to stay within the digital simulation
environment and verify a mixed-signal design.

In order to develope the existing verification techniques study of many new proposed
featurs in SystemVerilog 2012 standard is the focus of this thesis in future work. New
language capabalities like interface classes can impressively affect our verification struc-
ture. Taking advantage of multiple inheritance offered by interface classes the goal
is to simplify the implementation of proposed technique and implement more robust
verification environment [28].
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Figure 1: MATLAB engine controlling routines [29]

48



Bibliography

[1] A. Molina and O. Cadenas, “Functional verification: approaches and challenges,”
Latin American applied research, vol. 37, no. 1, pp. 65–69, 2007.

[2] A. Rath, V. Esen, and W. Ecker, “Analog transaction level modeling,” in High
Level Design Validation and Test Workshop (HLDVT), 2011 IEEE International.
IEEE, 2011, pp. 82–82.

[3] ANSI/ASQC A3, Quality systems terminology. American Society for Quality Con-
trol, 1978.

[4] A. Piziali, Functional verification coverage measurement and analysis. Springer,
2004.
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