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Abstract

Mobile phone communication today is carried out in all kinds of environ-
ments that exhibit background noise, affecting the speech intelligibility for
the near end user. An interesting approach to solve this issue would be to
implement an active noise control (ANC) system on the mobile phone. The
aim of this thesis is to discuss the feasibility of implementing such a system
on a handheld mobile phone. A simulation environment was created based
on measurements using a model of a phone and an artificial head. The simu-
lation aim to model implementations of different ANC-methods and adaptive
algorithms. The stability of the system was analysed, displaying sensitivity
to alterations in position of the phone. Feedforward and feedback ANC was
analyzed, with and without secondary path compensation, filtered-x. LMS,
nLMS, leaky nLMS and RLS was used as adaptive algorithms. The filtered-x
feedforward method was superior to the other ANC methods, and a deeper
analysis was conducted for this method. Leaky nLMS turned out to be the
most efficient algorithm for both stationary and nonstationary signals regard-
ing attenuation of noise and stability. The RLS algorithm might however be
preferable if there are high demands on having lower order filters in the sys-
tem. In conclusion it is feasible to implement ANC on a mobile phone, as
long as some demands are fullfilled by the user, holding the phone in a steady
position, pressed towards the ear. Which algorithm is to be used depends on
what decision algorithms and what computational power is available. If the
filter order of the adaptive filter is allowed to be of higher order the leaky
nLMS is preferable, with the highest attenuation of noise.
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Nomenclature

A/D Analog to Digital

AA Adaptive Algorithm

ANC Active Noise Control

CSS Composite Synthesis Signal

D/A Digital to Analog

DSP Digital Signal Processing

EIT Electrical and Information Technology

ERM Error Reference Microphone

ES External Sound Source

FIR Finite Impulse Response

GUIDE Graphical User Interface Design Environment

HATS Heads and Torso Simulator

IIR Infinite Impulse Response

IS Internal Sound Source

LMS Least Mean-Squares

nLMS Normalized Least Mean-Squares

NRM Noise Reference Microphone
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PSD Power Spectral Densities

PSM Primary Speech Microphone

RLS Recursive Least Squares

SNR Signal to Noise Ratio

SPL Sound Pressure Level

SVD Singular Value Decomposition

WGN White Gaussian Noice

WSS Wide Sense Stationary
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Chapter 1

Introduction

1.1 Background

Communication have evolved through the years to the point where it today is
possible to talk to virtually anyone from anywhere. The mobile phone usage
is widespread and takes place in a vast variety of environments, some which
are quiet, some that are noisy. Low frequency noise has a masking effect on
speech, which degrades speech intelligibility for the the near end user, refer-
ring to the person in the noisy environment. In recent years noise reduction
has been considered for mobile phones because of the increasing interest from
mobile phone manufactures to incorporate it in their phones. One common
approach is to try to ‘cancel’ noise by means of superposition, i.e. destructive
interference of sound fields. Experiments on superpositioning of sound fields
have been conducted since the end of the 19th century and this principal is
what Active Noise Control (ANC) is based upon[12]. ANC can be performed
using both analog and digital control, where as the latter is more common.
The ANC using digital control used to be hard to implement, primarily be-
cause of lack in processing power, but as technology evolves, more and more
fields are applicable to ”digital” ANC solutions. Currently ANC is widely
integrated into headsets of different types, taking advantage of the insulation
that earplugs or headphone muffs accommodates. A handheld mobile phone
lacks this luxury, which is the main reason why it is tough to implement ANC
solutions, in such applications. Lack of insulation creates more variables for
the ANC to handle, suggesting a need for systems that can handle large
computation complexity, which has been a limiting factor in mobile phones.
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Naturally this raises the question: Is it feasible to implement an ANC sys-
tem on a handheld mobile phone using the technology available today? In
order to investigate this a simulation environment is to be designed. To run
simulations ST Ericsson constructed a mobile phone model, which will be
used for estimating the channels that constitute the simulation environment.
The ANC systems performance and stability properties will be examinated
using different ANC setups and adaptive algorithms.

1.2 Objectives

The purpose of the project is to investigate the possibilites of implementing
an ANC system on a handheld mobile phone. To decide whether or not it
is helpful to implement and run ANC, this project aims to examine the al-
gorithms and conditions required for adequate noise control using measured
data. How much reduction can the system attain, and under what circum-
stances?

1.3 Methodology

The thesis is divided into three different parts, spanning seven chapters. The
first part of the thesis lays the foundation for understanding the concepts of
ANC, describing different approaches for implementing an ANC system and
the underlying mathematical tools needed. The second part focuses on the
measurements necessary to construct an ANC-system. The third and final
part deals with the construction of the simulation environment followed by
a performance analysis of the different ANC-algorithms leading up to the
conclusion.

1.4 Thesis Outline

• Chapter 2: Active Noise Control
This chapter aims to give an understanding of ANC on a theoretical
level. Feedforward and Feedback ANC-systems will be discussed, ac-
companied by a few different methods to improve the performance.

• Chapter 3: Filter Design, Adaptive Algorithms and Signal
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Analysis
Lays the foundation of signal processing and moves on to define the
different adaptive algorithms used in this thesis.

• Chapter 4: Signal Analysis
Presents tools for analyzing the signals to be measured.

• Chapter 5: Measurements and Modeling of a Mobile Phone
A description of the different acoustic and electroacoustic paths dealt
with in the model, followed by the procedure of initial calibration and
measurements. An outline of the noise signals used and finally the
preparation and syntax of the resulting audio files.

• Chapter 6 Design and Evaluation of the ANC-system
A description of the process of estimating channels from the noise mea-
surements to design a virtual model of the ANC-system followed by a
performance analysis of the different algorithms available in the simu-
lation environment.

• Chapter 7: Conclusion
This chapter aims to summarize the work through the thesis and what
conclusions were drawn.
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Chapter 2

Active Noise Control (ANC)

In Handbook Of Acoustical Measurements And Noise Control [9] acoustic
noise is defined as unwanted sound. In any acoustic environment such noise
may be interfering, in some cases to a point where it is desired to dampen or
completely remove the noise from the environment. The methods for doing
so are many but can all be summed up in one phrase: Noise Control. By
applying noise control, one aims to obtain an acceptable noise environment.
Acceptable in this context means that it satisfies the requirements set for
the system it is applied to. There are two main methods of controlling noise
— passive and active noise control[11]. Passive noise control aims to mod-
ify the environment that the noise source operates in, and does not need
a source of power in order to operate[11]. A common method in passive
noise control is the use of insulators, absorbers and reflectors in order to
reach an acceptable noise environment. The other method is Active Noise
Control (ANC), active in the sense that it uses a power source in order to
achieve an acceptable noise environment[13, 1]. There are numerous differ-
ent methods of performing Active Noise Control, and in this chapter some
of these methods will be discussed. In Chapter 1 the problem with noisy
environments for a handheld mobile phone was introduced. To perform Pas-
sive Noise Control on such a size-constrained system is not feasible, and thus
this concept will not be discussed in detail here. For more information about
Passive Noise Control see Active Noise Control Primer [11], and to find out
more about what materials are commonly used, how and why, see Modern
Recording Techniques [15]. ANC is a general concept that can be applied
to various systems with different complexity. Because of the characteristics
of the mobile phone, only single-input/single-output ANC systems will be
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discussed in the thesis. The concepts in these sections can however also be
applied to multiple-input/multiple-output systems, see Active Noise Control:
A Tutorial Review [2] or Active Control Of Sound [12] for more information
regarding this.

2.1 Superposition of waves

Sound is longitudinal waves travelling through a medium, oscillating the
molecules along the line of propogation[16]. In Physics For Scientist and
Engineers [16] waves in general and superpositioning of waves is discussed.
Superpositioning of waves means essentially that two waves traveling in the
same or different directions will additively interact[16, 12]. In figure 2.1 this
concept is illustrated, with the following explanation: Suppose there is two
sine waves travelling the same direction. One of the sine waves x1(t) has a
constant amplitude, while the other, an inverse of x1(t), x2(t) has a varying
amplitude. Suppose both the signals can be observed independently, as well
as the resulting signal x3(t) at an arbitrary position. When the inverted
signal has the same amplitude as the non-inverted signal the resulting wave
will be zero, the two waves completely cancel each other out. If however
the amplitudes of the signals differ, the resutling wave will be a dampened
version of the signal with the highest amplitude, which can be seen in the
bottom of figure 2.1. This is called the principle of destructive interference.
ANC is a method derived from this principle, using destructive interference of
sound fields. By generating and transmitting an inverted signal of observed
noise, ANC aims to ideally cancel the observed noise. It is important to
consider what happens if a signal is subject to interference with an inverse
of the signal, but with higher magnitude or a different phase, since this may
result in an even more noisy soundfield. In theory complete cancelation of a
whole soundfield is possible, but in reality the wave properties of sound will
cause the complete cancelation to only apply to a single point in space.
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Figure 2.1: Superposition of waves. Top: x1, sine wave with constant amplitude,
Middle: x2, inverted sine wave with varying amplitude, Bottom: x3, resulting wave
after superpositioning of x1 and x2

2.2 General ANC Concepts

There exists a lot of litterature discussing ANC, and there are a number of
fields it can be applied to[1]. In this thesis ANC on acoustic systems will
be discussed. Active Noise Control aims to actively dampen the noise in a
noisy environment. Since the ANC using digital control will be the main
focus of this thesis, the following discussion will be from a digital point of
view. Consider the system described in figure 2.2. The input signal x(n) can
be considered acoustic noise, that is passed through an arbitrary acoustic
path, resulting in the acoustic noise signal d(n). The aim of the single chan-
nel ANC system is to dampen d(n), using a reference sensor that picks up
x(n) alternatively estimates it. The unknown channel in the figure, is in this
thesis referred to as the primary path, thus denoted P (z) in the z-domain.
Time-frequency transformations and z-transforms will be used frequently in
order to describe the different systems and signals[6, 4].

The ANC system aims to sense the noise before the primary path to estimate
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Unknown Channel-x(n) -d(n)

1

Figure 2.2: Unknown channel with input x(n) and output d(n)

the desired signal, d(n), in order to output an inverted version of d(n), ideally
resulting in complete cancellation. The signal that is used to cancel out or
dampen d(n) will be referred to as anti-noise signal. This basic model of
the ANC system is fairly simple but when more aspects of the system are
considered the model quickly increases in complexity. Initially consider an
ANC system, with a constant primary path. To be able to generate the anti-
noise signal, a finite impulse response (FIR)[17] filter W (n) will be utilized.
The reference signal x(n) is then passed through this filter to generate the
estimate of d(n), y′(n)[1, 2] via the secondary path, see figure 2.3. The
Secondary channel, S(z), is an electroacoustic system that brings the signal
y(n) into the acoustic domain, resulting in y′(n)[12]. The difference between
this signal and the acoustic noise d(n) is referred to as the error signal,
denoted e(n). There are two types of noice that are commonly discussed
in relation to ANC: Narrowband noise and Broadband noise. Narrow band
noise is noise consisting primarily of one frequency or a narrow frecuency
band when observed in the frequency domain. The other type is broadband
noise, characterized by having a broad frequency band. Theses types of noise
will be differently damped, depending on the ANC system used. There are
two types of general ANC methods: Feedforward ANC and Feedback ANC,
and these two approaches will be discussed in the following sections.
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Figure 2.3: Basic ANC setup with input x(n) and output d(n)

2.3 Feedforward ANC

Acoustic feedforward ANC utilizes a noise reference microphone, a loud-
speaker and an error reference microphone to suppress noise passed though
the primary path as depicted in figure 2.4. In its simplest form the ref-
erence signal x(n) is passed through W (z), a model of the primary path,
P (z), in order to generate an anti-noise signal y(n)[1, 2]. This signal is then
subtracted from the desired signal d(n) resulting in the error signal e(n).
The filter is based on a common system identifier used to model the channel
P (z)[2]. The identifier uses an adaptive algorithm that adjust the filter taps
of W (z), w(n) = [w0(n), . . . , wM(n)]T using the error signal with the refer-
ence signal[1]. There are numerous adaptive algorithms that can be applied
to the ANC system in order to adjust the coefficients w(n), these algorithms
will be discussed later in chapter 3.2. For now an arbitrary adaptive algo-
rithm (AA) will be used to adjust the coefficients w(n). Ideally this system
completely cancels the noise. When an adaptive filter algorithm is used to
adjust the coefficents w(n), the error sensed by the error reference micro-
phone becomes essential for adaptive performance. The error signal recieved
in the electric domain is affected by the transfer from the output of the filter,
W (z), to the input of the ANC control system. This path, commonly referred
to as the secondary path may have some serious effects on the performance
of the ANC system[1].
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Figure 2.4: A Feedforward ANC system for a handheld mobile phone

2.3.1 Secondary Path

The secondary path is not only the analog signal path from the loudspeaker
to the error microphone[2]. It also includes all analog and digital compo-
nents the signal passes through such as analog to digital (A/D) and digital
to analog (D/A) converters, filters and amplifiers[25]. Here the loudspeaker
and microphone affects the signal and may introduce delays, alter the fre-
quency content as well as introduce nonlinear distortion[9]. This may cause
the anti-noise signal to be less correlated to the reference signal, affecting
the performance of the ANC system and may even cause instability. Using
adaptive feedforward control without compensating for the secondary path,
the controller filter W (z) will try to estimate

W (z) =
P (z)

S(z)
.

This may require W (z) to be a very long FIR filter or an infinite impulse
response (IIR) filter[1]. None of these two options are very practical, since
this requires the secondary path to be time invariant, which in most cases
it is not. It is therefore common to try to compensate for the secondary
path effects using other methods. There are two general ways of addressing
the effects of the secondary path. The first is to connect an inverse of the
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secondary path in series with it, and the second alternative is to compensate
for the effects the secondary path have on the error signal, by filtering the
reference signal with a estimate of the secondary path before it is passed to
the adaptive algorithm[2, 1]. These methods will be explained in more detail
in the following sections.

Inverse modeling

A direct method for dealing with the problems introduced by the secondary
path is to model the inverse[1] and connecting it in series with the channel
itself. Theoretically this should efficiently cancel out the effects of the sec-
ondary path. There are however a few problems involved with using this
modeling technique. Suppose that the transfer function of the secondary
path has a number of zeroes in it. These zeroes will become poles in a in-
verse of the transferfunction. To represent poles one need to either use an
IIR filter, or approximate it with a high order FIR filter. The second is not
very practical to use, since it will be heavy computationally and increase the
delay in the ANC system. Implementing an IIR filter is generally not a good
idea either, since IIR filters usually have stability issues when implemented
in a fixed point environment[3]. Another major issue with this method is
that the the secondary path is not guaranteed to be invertible at all, since
the secondary path often is time varrying and not minimum phase[2].

Feedforward filtered-x ANC

The filtered-x method[1] is a common way of compensating for the effects of
the secondary path. In figure 2.5 the filtered-x ANC block diagram is shown.
The reference signal is filtered through a estimate of the secondary path,
Ŝ(z), ideally affecting it in the same way as the real secondary path S(z). As
seen in equation (2.2) the filtered reference signal vector, x′(n) is the result
of convolving the impulse response of the secondary paths estimate ŝ with
the reference signal vector x(n). This will increase the correlation between
the reference signal and the error signal[1], which are the two signals used to
update the adaptive filter coefficients w(n), and this will therefore generally
improve the ANC performance. It is important that the secondary channel
does not introduce more delay than the system can handle. The delay of
the primary path must be longer or equal to the delay the adaptive filter
and secondary channel introduce together[1]. The filtered-x ANC system is
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tolerant to errors in the estimate of the secondary channel, and can handle
phase errors of up to nearly 90 degrees between the real channel S(z) and the

estimated channel Ŝ(z), under slow adaption[2, 23]. For faster convergence
a smaller phase error of less than 50 degrees is recommended[23]. The ANC
system is also sensitive to magnitude changes in the frequency response of
the secondary path. A larger error in magnitude between the estimated
secondary path and the real secondary path will make the tolerance of phase
error decrease[23]. The equations for this filtered-x feedforward system are
provided below.

e(n) = d(n)− s(n) ∗ [wT (n) · x(n)] (2.1)

x′(n) = ŝ(n) ∗ x(n) (2.2)

w(n+ 1) = AA(w(n),x′(n), e(n)) (2.3)

P(z) Σ

W(z) S(z)

AA

Ŝ(z)

-qx(n)

-q
?

-x′(n)

-d(n)

-y(n)

6

y′(n)

−

+ -e(n)

�

q

�

���

1

Figure 2.5: The Filtered-x Feedforward ANC, with arbitrary adaptive algorithm

2.3.2 Acoustic Feedback

When generating an anti-noise signal to reduce the primary noise, some of the
anti-noise signal might leak back to the reference microphone. This acous-
tic feedback can greatly affect the performance of the system and should

17



Σ

W (z) S(z)

AA
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Figure 2.6: Feedback neutralization implemented in a Filtered-x Feedforward
ANC system

be considered depending on the requirements of the system. There are nu-
merous ways of dealing with the acoustic feedback. Some of the methods
introduce new hardware such as loudspeakers and microphones to deal with
the feedback[1]. However, the most common way to deal with the effects
of the acoustic path F (z) is to apply feedback neutralization or sometimes
called feedback cancellation[12].

Feedback Neutralization

The concept of feedback neutralization is to model the acoustic feedback
path with a filter, F̂ (z), see figure 2.6 for a block diagram of the feedback
neutralisation. The anti-noise signal is passed through the model of the
feedback channel and subtracted from the reference signal[12, 1]. Ideally this
will completely cancel the feedback. This filter can be implemented using
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either a fixed or adaptive filter, depending on the system requirements. Since
the channel is subject to changes, it is common to use some sort of adaptive
implementation. The model can usually be estimated offline, however, since
the acoustic feedback path occupies the same space as the primary path, the
acoutic feedback path might be subject to similar variations as the primary
path. In these case the model might have to be estimated online. If the
feedback neutralization filter F̂ (z) is modeled online, the filter will however
not stop to adapt even when all the feedback is cancelled, and the filter will
consequently try to remove the reference signal from the input. This could
become a problem that would have to be considered if online estimation is
to be used[1, 25].

2.4 Feedback ANC

ANC

@@

��

Speaker

� e(n)

Error microphone

y(n)

-

acoustic domainelectric domain

1

Figure 2.7: Conceptual Feedback ANC on a mobile phone.

Feedforward ANC works very well when a coherent reference signal is available[1].
In some cases, for practical reasons, a coherent reference signal is not avail-
able to the reference sensor. In feedback ANC the reference signal is instead
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Figure 2.8: Block diagram of non-adaptive feedback ANC.

synthesized from estimations based on the anti-noise signal y(n) and the er-
ror signal e(n)[1, 2]. A schematic picture of a feedback ANC system is shown
in Figure 2.7. An important feature of the Feedback ANC is that an acoustic
feedback path from the loudspeaker to reference sensor does not exist[1]. The
most basic setup uses a non adaptive filter W (z) as a controller to generate
the anti-noise signal, as seen in Figure 2.8. The output of the controller,
y(n) passes through the secondary channel. This signal is then inverted and
added to the primary noise d(n). The error sensor measures the remaining
residual noise e(n), which is fed back to the controller. The feedback ANC
aims to predict the primary noise and can thus be interpreted as a predictor.
The z-transform of the error signal can be expressed as

E(z) = D(z)− S(z)W (z)E(z)⇒ E(z) =
D(z)

1 + S(z)W (z)
(2.4)

This concept can then be extended to deal with adaptive algorithms for
updating the filter coefficients of W (z). As previously stated in section 2.3.1
the secondary path is an important aspect to take under consideration. The
feedforward filtered-x ANC system was discussed as a good way to deal with
the effects of the secondary path. This method of filtering the reference signal
can also be applied to the feedback ANC[2].
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Figure 2.9: Block diagram adaptive feedback ANC.

2.4.1 Feedback filtered-x ANC

By filtering the output of the controller and then adding it with the error
signal, an estimate of the filtered primary noise is synthesized[1]. This signal
is then used as the reference signal, and is filtered through the model of the
secondary path before it is fed to the adaptive block, AA, as can be seen in
Figure 2.10. The filtered reference signal can then be expressed as[2]

X ′(z) = X(z)Ŝ(z) (2.5)

X(z) ≡ D̂(z) = E(z) + Ŝ(z)Y (z) (2.6)

2.4.2 Feedback ANC Performance

Feedback ANC has a few flaws as well as a few advantages in comparison to
feedforward ANC. Feedback ANC does not need a reference sensor, imply-
ing that there is no need for the coherence between the signals sensed with
different sensors[1]. As previously mentioned in section 2.4, since there is no
reference sensor, there is no risk of acoustic feedback. On the other hand,
since the feedback ANC can be interpreted as a predictor it works best for
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Ŝ(z) Ŝ(z)
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Figure 2.10: ANC filtered-x feedback set-up with arbitrary adaptive algorithm
for finding the filter coefficients W (z). Anti-noise signal y(n) and estimated refer-
ence signal x(n) are passed through an estimation of the secondary channel Ŝ(z).

predictable signals, i.e. narrow band noise, and cannot attenuate wide band
noise very well[1]. Another aspect one need to take under consideration is
that the delay in the system heavily influences the performance and sets a
constraint for how high frequencies it can handle[1].

2.5 Hybrid ANC

For some applications neither the feedback nor the feedforward approach
satisfies the requirements for the system. In these cases it may be of inter-
est to use a combination of both, that utilizes the positive characteristics
of both methods. In Active Noise Control Systems — Algorithms and DSP
Implementations [1], Kuo and Morgan suggest such a system called Hybrid
ANC. This ANC system is however quite complex and has a high computa-
tional complexity. However it might be of interest to further investigate for
future applications, as technology keep evolving. Moore’s law predicted in
the 1960’s that the numbers of transistors that can be integrated on a single
die would grow exponentially with time, which has proven to hold, and the
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computational power has increased with it. With this said, it might soon
be feasible to implement a hybrid system on a mobile phone, however it is
out of scope for this thesis which will be limited to examine the previously
mentioned forms of ANC - feedforward and feedback.

2.6 ANC comparison

This is a short summary of the pros and cons of feedforward and feedback
ANC systems. The table is an extract taken from Active Noise Control
Systems–Algorithms and DSP Implementations p.212 Table 6.2[1]. A block-
diagram illustrating plant noise can be seen in figure 2.11. Plant noise is
additive noise v(n) uncorrelated with the reference signal, introduced along
the primary path.

Table 2.1: Adaptive ANC comparison

Feedforward ANC Feedback ANC

Filter order Moderate High

Spectral Capability Broadband
& narrowband Narrowband only

Plant Noise Not canceled Good cancelation

Noise field Coherent only Coherent and
coherence incoherent

P(z)-x(n) - -d(n)
Σ

+

+?

v(n)

1

Figure 2.11: Block diagram showing how plant noise v(n) is added to the desired
signal d(n) along the primary path P (z)
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2.7 On the Market

Currently their are no handsets on the market to be found utilizing ANC
to reduce background noise as previously described. It is important to differ
between noise canceling on the sender and receiver side of the communication.
There are many products available for the speech microphone on the sender
side of the transmission, but none that operates on the loudspeaker on the
receiver end of the communication link. Such technology primarily exists in
hands-free headsets[26] where it is in combination with passive ANC. These
typically use a feedback algorithm to cancel the noise that leak through the
passive ANC[26]. After extensive search no handsets were found implanting
any kind of ANC on the reciever side of the communication.

24



Chapter 3

Filter Design and Adaptive
Algorithms

In order to design an efficient ANC system it is important to choose a well
suited algorithm to perform the adaptation. This chapter will examine opti-
mal filter designs and some important adaptive algorithms.

3.1 Optimal Solutions Signal Processing

It is very common that an desired signal is not directly observable[3], in
which case it has to be estimated based on some other observable signal.
In order to produce the best estimate of the desired signal, a filter has to
be designed–an optimal filter. In ”Statistical Digital Signal Processing and
Modelling”[3], different methods for finding the optimal filter, in particular
the FIR and IIR Wiener solutions are discussed. In the following section the
basic concepts of finding these optimal solutions are described.

3.1.1 FIR Wiener filter

The wiener filter was designed to produce the optimal estimate of a signal
measured or observed in a noisy environment[3]. x(n) is the observed signal,
and the wiener solution aims to find the optimal channel estimate that will
give a signal as close to the desired signal, d(n) as possible when x(n) is
passed through an unknown channel, see figure 3.1

25



Unknown Channel

W(z)

-x(n)

-x(n)

-d(n)

-d̂(n)

1

Figure 3.1: W(z) is the wiener solution, the optimal solution for identifying the
unknown channel

The wiener solution assumes that both the observed signal x(n) and the
desired signal d(n) are Wide Sense Stationary (WSS)[7]. Further the cross-
correlation rdx(k), and the autocorrelations rd(k) and rx(k) have to exist and
be known. The system function of the Wiener filter W (z) with order p − 1
is defined in equation (3.1)[3]

W (z) =

p−1∑

k=0

w(k)z−k. (3.1)

The estimate of the desired signal is the result of convolving the wiener filter
coefficients with the observed or measured signal.

d̂(n) =

p−1∑

k=0

w(k)x(n− k). (3.2)

The difference between the desired signal and the estimate of the desired
signal is known as the error e(n). By minimizing the mean-square error
ξ = E(|e(n)|2) an optimal solution for the wiener filter can be found[3]. The
optimal solution is given by

p−1∑

l=0

w(l)rx(k − l) = rdx(k), k = 0, 1, ..., p− 1, (3.3)

where rx(k) and rdx(k) are the auto and cross-correlations, defined in chapter
4. This is known as the Wiener-Hopf equations, and can be written more
concisely as[3]:
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Rxw = rdx, (3.4)

where Rx is a p× p positive-semidefinite Hermitian Toeplitz matrix of auto-
correlations, w is the filter coefficients and rdx is the cross-correlation between
the observed and desired signal. The minimum mean-square error is given
by

ξmin = rd(0)− rHdxw. (3.5)

The correlations are not always known and sometimes they have to be esti-
mated from the signal. Using the definition of auto- and cross-correlation as
well as the property of WSS signals, these correlations can be computed as
seen in equations (3.6) and (3.7)[3]

rx(k) = E[x(n)x∗(n− k)] (3.6)

rdx(k) = E[d(n)x∗(n− k)], (3.7)

where E[·] is the expectation value operator[7]. This solution yields the
causal FIR wiener filter. In some cases the correlation matrix Rx may be
singular or close to singular, i.e it has eigenvalues that are equal to, or close
to zero. In these cases it is not feasible to take the inverse of Rx. Instead one
can use a pseudo-inverse of Rx: R†x[6]. This is accomplished using singular
value decomposition.

Singular Value Decomposition

Singular Value Decomposition (SVD) and how it is used to find a pseudo
inverse is a useful tool in signal processing. In ”Mathematical Methods and
Algorithms for Signal Processing”[6], Moon describes SVD thoroughly. The
following section is a summary of the concepts described by Moon.

A matrix A ∈ Cm×n can be factored using SVD

A = UΣVH (3.8)

where U ∈ Cm×m,V ∈ Cn×n are unitary matrices. Σ ∈ Rm×n is a diagonal
matrix containing the singular values σi of A. Usually the singular values
are ordered by size such that
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Σ = diag(σ1, σ2, ...., σp) (3.9)

σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0 (3.10)

with p = min(m,n).

Given a system of the form Ax = b, where one aims to solve for x, the
system can then be re-written using SVD as UΣVHx = b and

UΣVHx = b⇔ UHUΣVHx = UHb = ΣVHx.

To find the solution for x the inverse of Σ needs to be computed as

Σ−1 = diag(1/σ1, 1/σ2, ...., 1/σp). (3.11)

However if the singular values are close or equal to zero the equations are
poorly conditioned and computing the inverse is not feasible. Instead a
pseudo-inverse of Σ can be used to approximate the solution. By defining
a bound σbound for how small singular values are allowed and setting all the
non-allowed singular values to zero the pseudo inverse can be computed as
follows:

σr ≥ σbound ≥ σr+1 ⇒ Σ̂ = diag(σ1, σ2, ...σr, 0, ..., 0) (3.12)

Σ̂† = diag(1/σ1, 1/σ2, ...1/σr, 0, ..., 0). (3.13)

With the equation system defined previously this yields the approximate
solution for x

Ax = b = UΣVHx⇔ (3.14)

⇔ ΣVHx = UHb⇒ (3.15)

⇒ x̂ = VΣ̂†U
H

b. (3.16)

This will generate a robust approximation of x with minimum norm error. By
applying this method to ill-conditioned equation systems, an approximation
of the optimal wiener solution can be computed even when the correlation
matrix is not invertible. The selection of the bound is problem-dependent[6].
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3.1.2 IIR Wiener filter

Another form of solution is the noncausal IIR Wiener solution[3] given by

H(z) =
∞∑

n=−∞

h(n)z−n. (3.17)

The Wiener-Hopf equations for the noncausal IIR filter are[3]

∞∑

l=−∞

h(l)rx(k − l) = rdx(k), −∞ < k <∞ (3.18)

which consequently can be expressed as

rdx(k) = h(k) ∗ rx(k). (3.19)

In the frequency domain this convolution becomes a multiplication, which
yields an expression for the IIR Wiener filters frequency response as shown
below[3]

F(h(k) ∗ rx(k)) = H(ejω)Px(e
jω) = F(rdx(k)) = Pdx(e

jω)⇒ (3.20)

⇒ H(ejω) =
Pdx(e

jω)

Px(ejω)
,

where Px(e
jw) is the power spectral density of x(n) and Pdx(e

jw) is the cross
power spectral density of x(n) and d(n), defined in chapter 4.

3.2 Adaptive Algorithms

In order to adjust the filter coefficients of an impulse response, an adaptive
algorithm may be utilized. In this section some of the most common adaptive
algorithms are covered. There are two main methods for adaptive filtering,
a stochastic gradient method and a deterministic method[5]. The stochastic
gradient method uses least mean-square error estimations to estimate the gra-
dient and update the filter coefficients[5]. The least mean-squares algorithms
performance are dependent on some statistical properties of the signals as
it follows directly from the wiener solution, which assumes that the signals
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are WSS[3]. In a lot of cases the gradient is estimated using instantaneous
estimates of the ensembles averages[3] see equation (3.21).

Ê[e(n)x∗(n− k)] = e(n)x∗(n− k) (3.21)

Sometimes this method leads to slow convergence or a too large excessive
error. In these cases a deterministic approach might be more suitable. The
Least Squares method does not depend on any assumptions regarding statis-
tical properties and it aims to minimize the sum of the squares of the error[5],
more on this in section 3.2.5.

3.2.1 Steepest Decent

The method of Steepest Descent is a recursive method, using known statis-
tics, Rx and rdx, to find the Wiener filter coefficients. The method saves
computation time by using the Wiener-Hopf equations recursively so that no
inversion of Rx is needed[5]. This is done by defining a cost function J(w(n)
and a constraint on the cost function that is J(wo) ≤ J(w(n)) ∀n[5]. wo is
the optimal wiener solution and w(n), is the filter coefficients after n itera-
tions. For simplicity reasons J(w(n)) will be denoted J(n). The definition
of the cost function can be seen in equation (3.23). The gradient of the
cost function ∇wJ(n) is used to find the direction in which the cost function
decreases most rapidly. The recursive update equation for the filter as well
as the gradient of the cost function is shown in equations (3.24) and (3.25)
respectively[5]. As seen in equation (3.25) the filter coefficients are updated
by taking a step towards the opposite direction of ∇wJ(n) with step size µ.

e(n) = d(n)−wH(n)x(n) (3.22)

J(n) = E[e(n)e(n)∗] = E[e(n)(d(n)− x(n)ŵH(n))] (3.23)

∇wJ(n) = 2E[−e(n)x∗(n)] = −2rdx + 2Rxw(n) (3.24)

w(n+ 1) = w(n)− 1

2
µ∇wJ(n), (3.25)

By repeating this the least mean-square error is reduced successively and the
optimum filter coefficient is approached. This method works well with known
statistics, but cannot operate on signals with unknown statistics[5].
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Figure 3.2: Left :Steepest descent Right :LMS. Example of how gradient noise
perturbs the convergence path for the LMS algorithm. w0 is the optimal wiener
solution.

3.2.2 Least Mean-Squares

The Least Mean-Squares (LMS) algorithm is based on the same concept as
the Method of Steepest Descent, however it uses estimated statistics to ob-
tain the optimal filter and is hence used when the statistics are not known[5].
Since the algorithm is dependent on updated estimates of the signal, the al-
gorithm will adapt to changes in the signal. Since Rx and rdx are not known,
these have to be estimated. The LMS algorithm uses minimum mean-squared
error estimations to approximate the gradient. The cost function J(n) can
then be summarized to equation (3.29)[5]. The update equation (3.28) show
how the estimated gradient is used to update the filter coefficients. This
step is sometimes called stochastic gradient descent[6], since the gradients
are based on estimates. The convergence rate is governed by the stepsize
applied to the algorithm, and it will converge in mean with a stepsize within
the bounds set in equation (3.26)[5], where λmax is the maximum eigenvalue
of Rx.

0 < µ <
2

λmax
(3.26)
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e(n) = d(n)−wH(n)x(n) (3.27)

w(n+ 1) = w(n)− µ

2
∇wJ(n) (3.28)

The LMS algorithm suffers from gradient noise. In every iteration the LMS
algorithms takes a step towards the optimal solution, the optimal solution
that the algorithm see however changes depending on the estimates of the
statistics. The gradient noise will cause the convergence path to become
noisy, see figure 3.2 and also prevent the LMS algorithm from complete
convergence[5]. When the number of iterations, n, tends towards infinity,
the LMS-algorithms cost functions will reach a constant final value J(∞).
The distance between this and the minimum error Jmin is the excess mean-
square error Jex(∞)[5]. This relation is decribed by equation (3.31).

J(n) = |e(n)|2 (3.29)

∇wJ(n) = −2e(n)x∗(n) (3.30)

J(∞) = Jmin + Jex(∞) (3.31)

3.2.3 nLMS

The LMS algorithm suffers from whats called a gradient noise amplification
problem[5]. This means that when the energy in the input signal of the
system changes, it will greatly effect the performance of the algorithm. A
constant step size will thereby cause slow convergence rate when µ is small in
comparison to the upper bound in equation (3.26) and may cause instability
when µ is close to or above this upper bound [8]. Since real signals commonly
are non stationary, it would be beneficial to use a time varying step size that
adapts to the input signals energy. Normalized LMS achieves this by nor-
malizing the step size using the energy of the input signal. The derivation
of this algorithm follows from the the principle of minimal disturbance. In
Adaptive Filter Theory [5] p.321 this is described as follows ”From one iter-
ation to the next, the weight vector of an adaptive filter should be changed
in a minimal manner, subject to a constraint imposed on the updated filter’s
output”. Equation (3.32) show the weight norm that is formulated by this
principle, and equation (3.33) the constraint. For a detailed derivation see
Adaptive Filter Theory [5]. The weight vector and the constraint result in the
cost function seen in equation (3.34). Minimizing this to find the optimum
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value of the update multiplier λ is done by taking the derivative of the cost
function with repect to the new weight vector w(n + 1), and then setting
the result to zero, see equation (3.35). Solving for λ results in the optimum
update multiplier seen in equation (3.36)[5]. Where || · ||F , is the euclidean
norm operator[6]

δw(n+ 1) = w(n+ 1)−w(n) (3.32)

wH(n+ 1)x(n) = d(n) (3.33)

J(n) = (w(n+1)−w(n))H(w(n+1)−w(n))+Re[λ∗(d(n)−wH(n + 1)x(n))]
(3.34)

δJ(n)

δw(n+ 1)
= 2(w(n+ 1)−w(n))− λ∗x(n) = 0 (3.35)

λ =
2e(n)

||x(n)||2F
(3.36)

By combining the weight vector equation (3.35) with the optimal update mul-
tiplier equation (3.36), the equation for updating the adaptive filter is formu-
lated, see equation (3.37). µ̃ is the normalized step size, which is introduced
in order to control the size of each step without disturbing the direction[5].
In order for the nLMS algorithm to be stable in the mean-square error sense,
the nLMS step size is bounded by (3.38)[5, 3].

w(n+ 1) = w(n) +
µ̃

||x(n)||2F
x∗(n)e(n) (3.37)

0 < µ̃ < 2 (3.38)

This however introduces a new problem. If the energy in the input tends to
zero, the step size tends towards infinity. One way to deal with this is to
introduce a small constant ε and add to the norm of the input signal in the
update equations which yileds a more stable version of nLMS, see equation
(3.39)[3]. The computation cost for each iteration when using nLMS opposed
to LMS is not very high[3], which is why nLMS is preferrable, especially for
input signals with unknown energy.
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w(n+ 1) = w(n) +
µ̃

||x(n)||2F + ε
x∗(n)e(n) (3.39)

3.2.4 Leaky LMS

In some cases the the autocorrelation matrix of the input signal x have zeros
in the eigenvalues. In [3], Hayes describes this problem and the implications
it may have on the adaptive algorithms performance. The convergence rate of
the LMS algorithm depends on initial value of filter coefficients and eigenvalue
spread of the autocorrelation matrix, χ(Rx) defined in equation 3.40[5].

χ(Rx) =
λmax
λmin

(3.40)

The algorithm converges much slower in the directions of the small eigenval-
ues, compared to the directions of the larger ones. When an eigenvalue of the
autocorrelation matrix is zero, there will be no convergence in this direction.
This may cause the filter to drift in the directions of the zero eigenvalue, and
can cause instability[5]. For a more detailed explanation see [5] or [24].
Leaky LMS compensates for this drift by introducing a leakage factor that
leaks energy from the impulse response of the adaptive filter[5]. This leakage
can easily be seen in the cost function, equation (3.41), that consists of two
contributing terms, the mean-square error and the filter coefficients[5]. If
the solution starts to drift, the filter coefficients’ contribution will be very
large, and the cost will be very high. This eventually leads to divergence. By
introducing a leakage factor, α to penalize the filter coefficients’ contribution
to the cost function, the cost function can be stabilized and thereby the
filter[5]. Minimizing the cost shown in equation (3.41) eventually leads to to
the update equation (3.42). For simpler control of the leakage, the leakage
factor (1− µα) is represented with γ, and for better convergence properties,
the step size is normalized as in section 3.2.3, yielding equation (3.43)[3]. The
leakage factor should be relatively close to 1, for good adaptive properties.

J(n) = e(n)2 + α||w(n)||F (3.41)

w(n+ 1) = (1− µα)w(n) + µx∗(n)e(n) (3.42)
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w(n+ 1) = γw(n) +
µ̃

||x(n)||2F
x∗(n)e(n) (3.43)

3.2.5 Recursive Least Squares

Recursive Least Squares (RLS) uses the the method of least squares, an ap-
proach where the difference between a desired and estimated signal is squared
and summed in order to find a best fit. This concept can be extended to adap-
tive filtering. In Adaptive Filter Theory [5], Haykin discusses Least Squares
and Recursive Least Squares adaptive filtering. RLS uses a deterministic
approach to adaptively find a best fit filter for the system[18]. Since RLS
is deterministic, it does not depend on assumptions ragarding the statistics
of the signals. The cost function, C(n), that aims to be minimized can be
seen in equation (3.44). β(n, i) is a weighting factor introduced to penalize
old data[5]. With no weighting factor the RLS algorithm would have infinite
memory and thus not adapt very well to changes in the system. A com-
mon forgetting factor to use is λ, known as an exponential forgetting factor
defined in equation (3.45)[5].

C(n) =
n∑

i=1

β(n, i)|e(i)|2 (3.44)

λn−i = β(n, i), i = 1, 2, .., n (3.45)

The RLS algorithm is initialized by setting the initial filter taps to zero as
well as defining P(0), where P is the recursively computed inverse of the
correlation matrix, see equation (3.46) and (3.47). δ is a perturbation factor,
called the regularization parameter, that should be set to a small positive
constant for high signal to noise ratio (SNR) and a large positive constant
for low SNR[5]. k(n) is referred to as the gain vector, similiar to step size
in the LMS adaptive algorithms. The RLS algorithm uses a priori error to
update the filter equation, see equation (3.51) which is the error that would
be produced if the filter coefficients were not updated[3]. This is opposed to
the a posteriori error : the error used in the LMS approach.

Inititialization
ŵ(0) = 0 (3.46)

P(0) = δ−1I (3.47)
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Iterations
n = 1, 2, ... (3.48)

g(n) = P(n− 1)x(n) (3.49)

k(n) =
g(n)

λ+ xH(n)g(n)
(3.50)

ξ(n) = d(n)−w(n− 1)Hx(n) (3.51)

w(n) = w(n− 1) + k(n)ξ∗(n) (3.52)

P(n) = λ−1P(n− 1)− λ−1k(n)xH(n)P(n− 1) (3.53)

The convergence rate of the RLS algorithm are typically faster than those
of the LMS algorithms. This is achieved by recursively using the inverse
of the correlation matrix of the input signal in order to update the filter[5],
basically by calculating the LS solution for the filter coefficient vector in each
iteration.

3.2.6 Convergence and Stability Comparison of Adap-
tive Algorithms

When deciding what algorithm to use, it is important to understand what
sets them apart. The RLS and LMS algorithms use two different methods to
solve the same problem and these two methods have some pros and cons. The
RLS method typically have an order of magnitude faster convergence rate
than the LMS algorithm, and does not theoretically depend on the eigenvalue
spread of the input signal[5]. When the RLS have a stationary input signal
the excess error will tend towards 0 resulting in good convergence. The
regularization parameter, δ can be compared to the stepsize µ in the LMS
algorithms, since δ heavily affects the dependence on the input signal. When
δ−1 is large the algorithm will be less robust, and similar if µ is large the LMS
algorithm will be less robust[5]. The normalized LMS algorithm uses the
input signal’s energy to update the stepsize continously, which will improve
the robustness and convergence, especially for dynamic signals. When the
system is subject to non stationary input signals, a leakage factor can be of
importance. The γ paramter in the leaky normalized LMS algorithm and
λ in the RLS algorithm aims to serve this purpose, and will increase the
robustness for the two algorithms.
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Chapter 4

Signal Analysis

In order for the simulations to run properly it is important that the mea-
surement data is being processed accurately. The signals should be observed
and analyzed in the frequency domain, which implies that a time/frequency
transform will be used. The signals power spectral densities (PSD) and cross
power spectral densities need to be observed in order to identify disturbances
and nonlinearities. Suppose a system is described by equation (4.1), where
d(n) is the output, x(n) is the input signal and h(n) is the system impulse
response. The transfer function can then be described by equation (4.2).
The corresponding auto and cross correlations are shown in equation (4.3),
assuming weak stationarity[3].

d(n) = x(n) ∗ h(n)⇔ D(z) = H(z)X(z) (4.1)

H(z) =
D(z)

X(z)
(4.2)

rxx(k, l) = E[x(k)x∗(l)] (4.3)

rdx(k, l) = E[x∗(k)d(l)] = E[x∗(k)x(l) ∗ h(l)] = rxx(k, l) ∗ h(l)

In ”Modern Spectral Estimation–Theory & Application”[10], the definition of
the discrete power spectral density, and the cross power spectral density are
stated, these definitions can be seen in equation (4.4) and (4.5) respectively,
where f denotes the discrete frequency.
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Pxx(f) = F(rxx) =
∞∑

k=−∞

rxx(k)e−j2πfk (4.4)

Pdx(f) = F(rdx) =
∞∑

k=−∞

rdx(k)e−j2πfk (4.5)

If this is applied to the system described above in equation (4.1), then the
cross power spectral density can be rewritten as displayed in equation (4.6),
which means that the transferfunction can be written as the cross power
spectral density divided by the power spectral density of the input signal.

Pdx(f) = Pxx(f)H(f)⇔ H(f) =
Pdx(f)

Pxx(f)
(4.6)

Another interesting property to look at is the coherence of the system. Sup-
pose the system is perturbed by additive noise v(n) uncorrelated with x(n),
see equation (4.7). In this case y(n) and x(n) are assumed to be WSS. The
coherence between the two signals is defined in equation (4.8)[1] and will
give a measure of the how much of the signal x(n) can be directly related to
y(n). It is desirable to have a constant coherence for different input ampli-
tudes, and that the coherence is 1 or close to 1 over the designated frequency
interval, i.e that the additive noise have as little impact on the system as
possible[1].

d(n) = x(n) ∗ h(n) + v(n)⇔ D(z) = H(z)X(z) + V (z) (4.7)

Cxd(f) =
|Pxd(f)|2

Pxx(f)Pdd(f)
=

|Pxx(f)H(f)|2
Pxx(f)(Pxx(f)H(f)2 + Pv(f))

(4.8)

A rough estimate of the the best possible performance of the ANC system
can be conducted by looking at the coherence[1]. The error functions power
spectral density is given by equation (4.9)[1]. The optimum filter minimizing
the error power spectral density is given by equation (4.10) W (f), which
gives the minimal error shown in equation (4.11)[1].

Pee(f) = (1− Cdx(f))Pdd +

∣∣∣∣W (f)− Pdx(f)

Pxx(f)

∣∣∣∣
2

Pxx(f) (4.9)
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Wo(f) =
Pdx(f)

Pxx(f)
(4.10)

Pee(f) = (1− Cdx(f))Pdd(f) (4.11)

An estimate of the best possible reduction by the ANC system at frequency
f will therefor be given by equation (4.12)[1]

PSDANCperformance(f) = −10log10(1− Cdx(f)) (4.12)

4.1 Spectral Estimation

Periodogram spectral estimator, P̂PER(f), is a common tool for estimating
the PSD[3]. The periodogram spectral estimation is defined in equation
(4.13). The variance of the PSD using the periodogram spectral estimator
can sometimes become an issue. There are however numerous methods of
how to estimate the PSD using the concept of periodogram but with dif-
ferent windows and averaging techniques to remove uncertainties from the
estimation. Welch metod of averaging periodograms[3, 10] averages win-
dowed periodograms with an desired overlap to reduce the variance of the
estimated PSD. The PSD estimate using Welch’s method P̂W (f) can be ex-
pressed as seen in equation (4.14), where N is the total number of samples,
L is the block length, K is the number of sequences and D is the overlap in
samples. W is the applied window, and WE denotes the average energy in
the window, see equation (4.15).

P̂PER(f) =
1

N

∣∣∣∣∣
N−1∑

k=0

x(k)e−jk2πf

∣∣∣∣∣

2

(4.13)

P̂W (f) =
1

NLWE

K−1∑

i=0

∣∣∣∣∣
L−1∑

k=0

w(n)x(k + iD)e−jk2πf

∣∣∣∣∣

2

(4.14)

WE =
1

L

L−1∑

k=0

|w(k)|2 (4.15)

The overlap used in Welch’s method is typically 50%[3]. Choice of windows
depend on the type of signal that is to be measured, it is usually desirable
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to have high attenuation in the sidelobes for a more accurate broadband
noise PSD. More on windowing techniques can be found in [20, 3]. The
resolution of the PSD is given by FS

L
. Since the blocklength directly affects

the resolution, the length should be decided such that the desired resolution
is attained. There is however a tradeoff between resolution and variance of
the PSD, which have to be considered. Chosing a too short window size will
also result in biasing error of the PSD estimate. See figure 4.1 for an example
of PSD with different block sizes.
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Figure 4.1: PSD of noise recorded at 96kHz. Blocksizes: 512, 8192, 81920
samples
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Chapter 5

Measurements and Modelling
of a Mobile Phone

When performing measurements on acoustical vibrations i.e. sound, a few
questions have to be considered. Inspiration for setting up the measurements
was found in ”Handbook of Acoustical Measurements and Noise Control”[9]

• What data is required, what quantities are to be measured and to what
accuracy?

• Are there influential ambient noise and other interfering sources?

• What is the dimensions and characteristics of the main noise source and
measuring microphones? How are these affecting the emission/recording?

• What are the directional characteristics of the source and microphones?

• What instruments are to be used, what are their operating ranges?

The following sections will propose answers to these questions.

5.1 Measurement Setup

The purpose of these measurements is to gather data needed to run an ANC
simulation of a handheld mobile phone, following the concept displayed in
figure 5.1. In order to measure the data two plastic dummy phones were
construced at ST Ericsson. The constructions can be seen in figure 5.2 and
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5.3. These will be used to measure the acoustic and electroacoustics path
in the ANC system using Head Acoustics Head and Torso Simulator(HATS)
with artificial ear version 3.3. The HATS head is 16 cm from ear to ear, 20
cm deep and 20 cm tall. The height including the torso is 40 cm.

�

-

Loudspeaker

?

-

Noise Reference
Microphone

Primary Speach
Microphone

Error Reference
Microphone

1

Figure 5.1: Head Acoustics HATS and dummy phone for recording noise, dis-
playing the loudspeaker and microphones placements.

The channels that needs to be estimated are:

• Primary Path (P)
The acoustic path between Noise reference microphone and the Error
reference microphone needs to be estimated since this path will set
important physical limitations to our ANC system. The channel may
vary depending on position that the mobile phone is held in, and should
be estimated and evaluated for different position in order to acquire the
necessary information concerning the dynamic properties.
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Figure 5.2: Model 1. Front-Top microphone denoted: Error Reference Micro-
phone, lower microphone dentoted: Primary Speech Microphone, loudspeaker de-
noted: Loudspeaker. Back -Microphone dentoed: Noise Reference Microphone

Figure 5.3: Model 2. Front-Top microphone denoted: Error Reference Mi-
crophone, Lower microphone dentoted: Primary Speech Microphone. Back -
Microphone denoted: Noise Reference Microphone
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• Secondary Path (S)
The channel between the loudspeaker and the error microphone (includ-
ing the effects of the microphone and the loudspeaker themselves with
filters, amplifiers and converters) is required to be estimated both for
the feedforward and the feedback ANC performance evaluation. This
path should be estimated for a number of different holding positions
of the dummy phone in order to acquire information concerning the
dynamic properties of the secondary path for these different positions.

• Acoustic Echo Path (E)
The acoustic echo path is the channel between the loudspeaker and
the primary speech microphone. Acquiring data regarding this channel
is of special importance for echo canceling considerations. The path
should be estimated for a number of different holding positions of the
dummy phone in order to acquire information concerning the dynamic
properties of the acoustic echo path for these different positions.

• Acoustic feedback path (F)
Estimate of the acoustic feedback between loudspeaker and Noise ref-
erence microphone. Knowledge of dynamic properties of this path may
affect the selection of controller structure. This path should be esti-
mated for a number of different holding positions of the smart phone
model in order to acquire information concerning the dynamic proper-
ties of the acoustic feedback path for the different positions.

In order to estimate these channels, a few different measurement setups will
be needed. The basic layout of the ANC system is shown in figure 5.5.
In this block diagram no feedback or echo is presented. There will be two
main sources available in order to conduct the measurements; an external
source simulating background noise, and the loudspeaker in the dummy
phone Model 1. In figure 5.4, the setup using external speakers is shown.
The measurements are carried out at ST Ericssons acoustic lab in Lund.
The primary channel P will be estimated using the external source, while all
the other channels will be estimated using the dummy phones loudspeaker,
see figure 5.6 for measurement setups. For more advanced performance anal-
ysis, measurements have to be made in real-time when the ANC system is
online, since the channels may vary a lot when a person is holding it. These
measurements are however out of scope for this project, but should naturally
be conducted before implementation.
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Figure 5.4: Conceptual picture of ST Ericssons acoustic laboratory displaying
placement of external speakers and dummy doll for measurements

5.2 Initial Calibration and Measurements

The microphones used in the dummy phone are Panasonic Omnidirectional
Back Electret Condenser Microphones from the WM-61A series. The mi-
crophones have a fairly smooth frequency response and should probably not
introduce any issues. The loudspeaker used in the dummy phones is a Philips
16mm MALT SPEAKER with spring contacts. The frequency response for
this loudspeaker was observed in the data sheet. It is not designed for the
low frequency range and has large attenuation for low frequencies, but since
it is part of the secondary path, it should not introduce any issues, unless
there are non linearities in the response. The signals used for estimating
the primary path both experience the same effect from the microphones fre-
quency response, thus their influence in the estimate of the primary path
can be neglected. In order for the signals to be as accurate as possible it
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Figure 5.5: Block diagram of feedforward setup. x(n) is the reference signal,
recorded with the noise reference microphone. P is the primary path. d(n) is the
desired signal, recorded with the error reference microphone. y(n) is the anti-noise
signal, generated using the loudspeaker. ANC-block for generating the anti noise
signal, and e(n) is the error signal, the resulting signal after interference between
the desired signal and the anti-noise signal.

is recommended to set the gain so that the signals digital representations
are as resolute as possible. As the measurements are performed in a sound
insulated environment, ambient noise sources should not influence the results
significantly. It is also important for accurate estimations that there are no
other interfering noise sources. For analysis purposes it may however be in-
teresting to look at the ambient noise level during the measurements, which
could be recorded as an initial measurement.

5.3 Noise signals for ANC evaluation

In order to identify the five paths, two different kinds of measurements will
be needed: The first is when the output is recorded using the dummy phones
loudspeaker and the second measurements is when the signal is recorded using
a background noise generator. All measurement will be done using 96kHz
sampling rate and 16 bit word length, which is the highest sampling rate
the sound card can handle. In order to collect all the necessary data some
measurements are to be performed. Every measurement should be performed
at three different sound pressure levels. This is to observe what effects the
sound pressure level (SPL) have on the linearity of the transfer functions at
three different realistic phone application sound levels. For instance a relative
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Figure 5.6: Measurement setups: a) Block diagram for estimating the primary
path P , from x to d. External source recorded with Noise Reference Microphone
and Error Reference Microphone. b) Block diagram for estimating secondary path
S, from y to y′. Anti noise signal through loudspeaker recorded with Error Ref-
erence. c) Block diagram for estimating acoustic echo path E, from y to a. Anti
noise signal through loudspeaker recorded with Primary Speech Microphone. d)
Block diagram for estimating acoustic feedback path F , from y to x. Anti noise
signal through loudspeaker recorded with Noise Reference Microphone.
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volume of -10dB, 0 dB, +10dB will be used for the internal loudspeaker. The
SPL was measured 1 cm from the internal loudspeaker, setting the reference
level 0dB as 63dB SPL. When the noise is generated and passed through
the external loudspeaker, the sound pressures 58.3 dB SPL, 68.3 dB SPL
and 78.3 dB SPL was used. That is a relative gain, again of -10dB, 0 dB,
+10dB. The dummy phone can be set to be pressed towards the ear with
different pressure, how this perturbs the system is also important to evaluate.
The pressure towards the ear is usually tested for around 2N and 8N at
ST Ericsson, representing relaxed respectively normal pressure of the phone
towards the ear. The third pressure of 0N towards the ear, was tested to
see how barely touching the ear would affect the acoustic and electroacoustic
paths. Different positions of the phone in relation to the head will also be
recorded and evaluated. The angle describes the angular difference from a
straight line from the ear to the mouth with the ear as axis. A positive angle
is down towards the throat and a negative angle is up towards the forehead.
The microphones that will be recorded are:

• Noise Reference Microphone: NRM

• Error Reference Microphone: ERM

• Primary Speech Microphone: PSM

The two different sound sources will be called

• External Sound Source: ES

• Internal Sound Source: IS

The channels will be estimated using WGN but to evaluate the performance
of the ANC model some other signals will be used. The following list de-
scribes the signals of interest. A detailed measurement list is available in
Appendix B.1.

Signals for channel estimations:

• White Gaussian Noise (WGN)

Signals for ANC performance evaluation
Stationary:

• WGN
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Non-Stationary:

• Café noise

• Chirp signal: Sweeping sinusoid between 100 and 1100 Hz

5.4 Preparation and Syntax

The sound interface used for these measurements is Edirol FA-101 Sound card
- 192 kHz - 24-bit. Input 1 and 2 have microphone preamps, and will not be
used, instead Input 3, 4 and 5 will be used. A schematic picture of how the
measurement equipment is connected can be seen in figure 5.7. The noise for
the measurements using the internal speaker was generated in Matlab and
passed through the external Sound Card to the Secondary Source. When per-
forming measurements using the built in loudspeaker, delay from the Sound
Card and computer was introduced to the system, currently measured to 73
samples. This system delay will be removed from the measurements used in
the analysis. When generating sound fields using the external speakers, Head
Acoustics Head Auto EQ was used. The noise signals were measured for 1
minute, and after recording, 2 seconds were cut off from begining and end
of the data, resulting in 56 seconds of data with a sampling rate of 96kHz.
The simulation tools have been designed to handle .wav files to set up the
channel estimations. The estimations can then be saved in a .mat Matlab
file from the Estimation GUI, see appendix A, so that the desired simulation
setups can be saved and re-loaded.
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Figure 5.7: Layout of measurement setup and signal paths. 1: NRM to input
3 on sound card; 2: ERM to input 4 on soundcard; 3: PSM to input 5 on sound
card; 4: Noise signal from computer to input 6 on sound card. The noise was
outputted from the headphone jack on the soundcard to the loudspeaker.
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Chapter 6

Design and Evaluation of the
ANC-system

The object of the measurements described in chapter 5 is to provide sufficient
information about the mobile phone’s acoustic and electroacoustic behavior,
so that simulations of an ANC system can be performed. In order to run these
simulations and further analyze the results, a simulation tool was created us-
ing the graphical user interface design environment (GUIDE) in Matlab.
Description and manual for the simulation tool can be found in appendix A.
The simulation tool uses models of the channels to pass sound signals with
various characteristics through the ANC system. Different methods and algo-
rithms can be applied to evaluate how much noise attenuation is achievable.
In Active Noise Control Systems – Algorithms and DSP Implementations [1]
a general hierarchy of levels of performance analysis of an ANC system are
suggested and these are listed below.

• Fundamental limitations

• Practical constraints that limit performance

• Performance balanced with complexity

• How to design a practical architecture

The scope of this thesis deals primarily with the first two evaluation levels.
The ANC performance will also be evaluated but only little attention will
be given complexity. The architectural design will not be discussed. This
chapter aims to describe the methods used for collecting the necessary data
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needed to set up appropriate simulations and to discuss and evaluate different
aspects of the ANC system.

Frequency domain

For evaluation purposes, signals as well as impulse responses will often be
displayed in the frequency domain. The frequency domain representations
are computed using Welch’s method of averaged periodograms, with a 50%
overlap and a hanning window. The window size was derived by looking at
PSD graphs for different signals, observing the tradeoff between resolution
and variance of the PSD. The data signals were 56 seconds long, which gives
a sequence length of 5376000 samples. A block size of 32000 samples was
chosen, resulting in 334 averaged periodograms. To validate this choice of
block size, a comparison of different block sizes were performed for a signal
with five times longer sequence length. The same observations could be made
in this case, and 32000 seemed to be the most fitting block size. With this
confirmed, this set of parameters will be used in all frequency transforms,
unless otherwise stated, to guarantee that the results are consistent.

Standard Case

The measurements described in chapter 5 are all based around one standard
setup: The phone is pressed towards the ear with pressure 8N, 0 degrees
deviation from the line between the ear and the mouth, using 0dB relative
gain. This setup represents a natural holding position of the phone and will
be used as the standard case.

6.1 Fundamental Limitations

In chapter 5 the channels involved with the dummy phone were identified
and described. The measured signals described in the measurement list in
appendix B.1 will give important information about the system. Initially
the recorded signals PSD and time domain representation are observed to
ascertain that the signals look accurate. In figure 6.1 an example of a signal
in the time domain is shown, and figure 6.2 shows the estimated PSD for the
same scenario.
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Figure 6.1: Time domain representation of the noise reference signal x(n) and
the desired signal d(n) measured with the error reference microphone to estimate
the primary path, for the measurement setup; 0 degrees, 0dB, 8N.
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Figure 6.2: Frequency domain representation of the noise reference signal x(n)
and the desired signal d(n) measured with the error reference microphone. These
signals are used to estimate the primary path for the measurent setup; 0 degrees,
0dB, 8N.
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6.1.1 Coherence Analysis

To determine what fundamental limitations in terms of frequency range the
system imposes, the coherence of the system can be used as described in
chapter 4. The channels that will primarily limit the performance are the
primary and secondary path. In order for the ANC system to work properly
the coherence in these channels should be close to one in the desired frequency
range. By looking at what frequencies the coherence is lost, the system can
be frequency bounded to only operate in the designated range.

Frequency Limits

The coherence dependent on relative loudness for the secondary path and
the primary path is displayed in figure 6.3 for frequencies 0 Hz to 10000 Hz.
The frequency interval where there is good coherence on the primary path is
limited to a maximum frequency of around 1100Hz, where there is a big dip in
the spectrum. The secondary path have bad coherence for low frequencies,
setting a lower limit for the system at around 100-200Hz. For practical
purposes the graphs in the frequency domain will therefore be limited to
display the range 100Hz to 1500Hz. The coherence of the different channels
were thoroughly examined by holding some of the parameters defining the
measurement setup fixed, while comparing the effects of changing the other
parameters. The ANC system was set to operate in the frequency range
100Hz < F < 1100Hz. At 1100 Hz the wavelenght is around the same length
as the broadness of the head and freaquencies above this will be subject to
diffraction[16].
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Figure 6.3: Coherence of the primary path and the secondary path dependent
on relative gain; 0 degrees deviation and 8N pressure towards the ear.

Attenuation Limits

As mentioned in chapter 4, one can use the coherence to get a rough estimate
of the maximum attenuation that can be achieved in the ANC system. In
figure 6.4 this estimate is shown for the secondary path and the primary path
over all the setups described in the measurement list in appendix B.1 for 0dB
relative gain. The system has a frequency interval between 400 Hz and 1000
Hz where around 10dB attenuation is likely achieved. The coherence for the
higher frequencies are lost in the primary path, and the secondary path set
a limit for the lower frequencies. Overall attenuation between 5dB and 15dB
in the interval 100Hz to 1100Hz is likely attainable.
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Figure 6.4: Rough esitmation of achievable attenuation.

6.2 Practical Constraints

Practical constraints primarily describes the limitations imposed on the ANC
system by the mobile phone. This includes transfer functions and character-
istics of electrical components involved in the ANC system.

6.2.1 Loudspeaker

The loudspeaker sets some constraint on the model of the secondary path.
As stated in section 5.2, the loudspeaker is not designed for low frequencies.
This notion is strengthened by the transfer function for the secondary path,
see figure 6.6, where there is almost 40dB attenuation at 100 Hz and between
20dB and 5dB attenuation at 1100Hz. The order of the secondary channel
model have to be high enough to account for the coloring of the noise.

6.2.2 Delay

The delay in the primary path sets a practical constraint on the ANC system.
There is a peak in the correlation function for the primary path estimated
to be delayed by 6 samples. This delay turned out to be important for ANC
performance, implying that the electroacoustic path should have less delay
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than this. 6 samples delay corresponds to around 62.5 µs at 96 kHz sampling
rate. The dummy phone is 3 cm thick, which should correspond to 8-9
samples at 96 kHz sampling rate for sound travelling through air, when the
angle of incidence is perpendicular to the surface of the back of the dummy
phone. However in a soundfield this incidence angle is not guaranteed, and
may be the reason for the correlation peak being delayed by only 6 samples.
The inside of the dummy phone is more hollow than a real phone, which may
also affect the delay since the microphones are omni-directional. The dummy
phone is much thicker than the common phone on the market, which means
that the delay in reality is probably even less. This will set an important
limitation to the system when implemented on a real phone. It however
does not affect the simulation results. The highest correlation peak should
therefore be detected for the specific phone in which an ANC system shoul
be implemented, and for good performance the delay in the ANC system
have to be less than the delay to this correlation peak.

6.2.3 Stationarity of Channels

The channels in the system may be subject to non stationarities, that is if
the physical environment changes, the channels will change as well. For good
performance the changes that might occur in the primary path, secondary
path and acoustic feedback path have to be considered. Coherence describes
how much of a signal can be directly linearly related to another signal, which
is why high coherence is desirable for good ANC performance. Low coherence
does however not necessarily indicate non-linearities in the transfer function
between the signals, but can also be due to plant noise, which is why the
transfer functions are important to examine.

Transfer Functions

The transfer functions were estimated using Matlab’s tfestimate function,
which uses the PSD of the signals as described in section 4. Transfer function
in this thesis denotes the estimated frequency response function between two
signals. By comparing the transfer functions under the different conditions
from the measurements, the channels stationarities can be examined. De-
pending on how stationary a channel is, generalizations regarding the channel
can be used to simplify the simulation environment.
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Primary Path

In figure 6.5 all the transfer functions for the primary path at 0dB relative
gain can be observed, in order to investigate how it is affected by the en-
vironment. It shows that in a stationary environment the channel is more
or less stationary, independent of the different measurement setups. This
will primarily aid in setting up a simplified model. In reality it will change
depending on position in a room or when walking through a door, from one
environment to another. Since the adaptive filter of the ANC systemsis heav-
ily dependentn on the primary path it should be able to track changes in this
path. Different adaptive algorithms have different tracking properties which
will affect the tracking. How well the system adapts naturally depends on
how big the change in the channel and noise to be reduced is. The primary
path is further described by complementary coherence and transfer function
graphs in appendix B.3.1.
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Figure 6.5: Frequency Transfer Function Primary Path, for all measurement
positions and 0dB relative gain.
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Secondary Path

For good performance it is desirable to have a secondary path estimate with
phase and magnitude that does not change too much from the real secondary
path while the ANC system is active. Table 6.1 show the phase differences
with the standard scenario as reference. The table aims to describe how
much change from the standard case the system can be subject to, whithout
loosing its convergence properties, even though some of the changes may
seem a little irrational.

Table 6.1: Maximum phase difference on Secondary Channel at different mea-
surement setups between 100 and 1100Hz, given in degrees

Angle/Position Sound Pressure Pressure
0N 2N 8N No HATS

-20 degrees -10dB -31.4365 -22.4296 -41.1718 -131.9693

0dB -28.1517 -19.5398 -21.2693 -87.8989

10dB -23.8259 -28.0584 -24.8032 -87.5547

-10 degrees -10dB -35.2193 -61.8703 41.8085

0dB -25.6890 -35.0092 -28.2380

10dB -34.2778 -28.8293 -25.9952

0 degrees -10dB -29.8045 -42.9961 -44.1494

0dB -31.1968 -41.2014 0

10dB -27.7226 -26.2590 -25.7852

10 degrees -10dB 45.4673 -44.9902 -58.1687

0dB -31.9929 -28.3456 -27.4931

10dB -24.3471 -24.3434 -25.3996

20 degrees -10dB -62.4760 -59.0574 -50.3101

0dB -61.8601 -58.6121 -50.3443

10dB -61.7920 -58.5452 -50.2660

As can be seen there is quite a lot of phase variation between different sce-
narios. As described in section 2.3.1 a small phase error is acceptable for the
secondary path estimate, but for good convergence it should be less than 50
degrees, with no convergence at 90 degrees phase error. The phase is de-
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pendent on angular placement, pressure and sound level with some angular
differences well over 50 degrees. Even worse is the scenario with no HATS
where the phase difference at -10dB is as high as 132 degrees. This is an
unacceptable scenario for ANC convergence but very realistic, for instance
if the user takes the phone away from the ear. For these cases, some sort of
decision algorithm is needed to turn on and off the ANC system. Further,
a dynamic solution for the secondary path estimate should help the perfor-
mance. This can be realized using a filter bank in combination with a decision
making algorithm or slowly converging adaptive algorithms. To be able to
apply ANC on the mobile phone, some demands on the user is necessary.
For good ANC performance the phone should preferably be pressed towards
the ear, in a stationary position so that an isolated acoustic environment is
created and maintained between phone and ear.
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Figure 6.6: Frequency Transfer Function Secondary Channel for six different
cases at 0dB relative gain. -20 degrees of angular position for 0N and 8 N, 0
degrees of angular position for 0N and 8N as well as 20 degrees of angular poistion
for 0N and 8N.

As a complement to the table of phase differences, the transfer functions for
six different cases are displayed in figure 6.6. The figure displays a difference
in magnitude of around 15dB at 1100Hz between two of the extreme cases,
indicating that the system would be even more sensitive to phase errors
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between model and reality going from one extreme case to the other. The
secondary path is further described by complementary coherence and transfer
function graphs in appendix B.3.2.

Acoustic Feedback Path

The acoustic feedback path can impose some problems for the ANC system.
By analyzing this channel, some conclusions regarding the effect it has on the
ANC performance can be drawn. The coherence for the acoustic feedback
path can be observd in figure 6.7. For the lower SPL levels the coherence is
very bad.
To ensure that this did not have to do with non-linearities, the noise floor’s
magnitude was measured. This magnitude was compared to the magnitude
of the noise with -10dB relative gain passed through the internal loudspeaker
and recorded with the NRM. This signal had around 1-2dB higher magnitude
than the measured noisefloor, and for some frequencies the difference was
even less. A general limitation to performance is always the uncorrelated
background noise. The lower the measurement signal is compared to the
noise floor, the more it will affect the coherence.
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Figure 6.7: Coherence Acoustic Feedback Path dependent on relative gain and
pressure towards the ear of the HATS.
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The transfer function for the acoustic feedback path can be observed in 6.8.
The figure shows a transfer function with around 40dB attenuation for more
or less all frequencies in the interval of interest. Due to the high attenuation
in this channel, the feedback path does not likely affect the performance of the
ANC-system noticeably. This theory is strengthened by running simulations
to examine how much the feedback would degrade the ANC performance,
compared to being compensated with a perfect feedback neautralization fil-
ter. Perfect in this context means that the same estimate is used for both
model and compensating filter. The result from this simulation is shown in
figure 6.9. As can be seen the the effect of the feedback path is more or less
negligible. Implementing a feedback compensator could actually degrade the
performance more than it helps, because of errors in the model, round off
errors and an increase in computation complexity. The acoustic feedback
path is further described by complementary coherence and transfer function
graphs in appendix B.3.3.
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Figure 6.8: Frequency Transfer Function Acoustic Feedback Path for five differ-
ent cases with 0 degrees angular position.
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Figure 6.9: Comparison of attenuation with and without feedback compensation,
using nLMS with stepsize 0.001, adaptive filter order 120, and estimated secondary
channel order 120.

The Echo Path

The echo path should be treated separately since it will serve no purpose to
model this channel for ANC performance. The effect of the echo path can
become a source of interference for the two way communication, and it is im-
portant that the signal from the secondary source does not leak too much of
the anti noise signal into the primary speech microphone, which will degrade
the speech intelligibility. For this purpose the coherence and transfer function
of this channel was analyzed. The transfer function dependence on pressure
and relative gain can be observed in figure 6.10. The transfer function of the
acoustic echo path looks similar to the transfer function of the acoustic feed-
back path with an attenuation of around 40dB for all frequencies. Today’s
mobile phones have pretty complex noise reduction systems using at least
two microphones to deal with unwanted noise and echo that is introduced
on the transmission line. These already implemented noise reduction tools
should provide sufficient noise attenuation of the noise transferred via the
acoustic echo path. This conclusion will thereby end the discussion of the
acoustic echo path. Coherence plots and transfer function graphs describing
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the echo path can however be found in appendix B.3.4.
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Figure 6.10: Frequency Transfer Function Acoustic Echo Path for five different
cases with 0 degrees angular position.

6.3 Channel Estimation and Model Design

In order to analyze the feasibility of implementing ANC-algorithms in a hand-
held mobile phone a simulation environment is needed to model all relevant
aspects of the phone. Creating such an environment will allow performance
analysis of the different ANC-algorithms without having to set up the actual
measurement systems, making it possible to evaluate performance in a more
controlled environment. This section will focus on how to design such an
environment.

Designing a model is the first, and one of the most important steps to cre-
ating an actual simulation environment. The channels to be modeled are
covered in chapter 5 and these will together constitute a complete simulation
environment. The accuracy of the each separate channel model will affect all
simulations using it, hence the models have to be as close to reality as possi-
ble. To ensure a good simulation the model has to be compared to ‘reality’,
which in this thesis will be portrayed with a transfer function, estimated us-
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ing Welch’s method of averaged periodograms, as described in the beginning
of this chapter.

With the ‘reality’ in check, the next step is to determine how to estimate the
model of the channel. Since the input signals for estimating the channels are
WGN, they are assumed to be WSS. Therefore optimal FIR wiener filters,
covered in section 3.1.1, are used to represent the channels. In order to get a
correct representation of reality the filter order have to be of an appropriate
length. A too short filter will cause inaccuracy, while too long filters will be
difficult to handle computationally. A good way to determine an appropriate
filter length is to first look at the cross correlation of the signals defining
the channel. In figure 6.11 this is shown for the primary path at standard
conditions.
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Figure 6.11: Cross correlation of the NRM and ERM for standard conditions.

As can be observed, the correlation starts out quite volitile and rings out
after around 3000 samples which gives a good idea of the needed filter length.
After this is determined, the filter is estimated using different filter lengths.
The filters ability to model the real transfer function can be evaluated by
looking at the energy of the error between the estimate and the real transfer
in the desired frequency range. In figure 6.12 the energy of the error can be
seen for different filter lengths. It is clearly visible that for orders of around

65



2000-3000 and higher, the error is quite stable, while relatively high for lower
filter orders. By looking at the correlation function and the error between
the model and the estimated real frequency response, the filter order of the
estimated channel was set to 3000, which should give a good representation
of reality.
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Figure 6.12: Energy of the error (deviation) from the transfer function for dif-
ferent orders of Wiener FIR estimates of the primary path at standard conditions.

This procedure is performed for each channel since they have different corre-
lation properties. When the proper filter length for each channel model have
been decided, the final estimations of the different paths can be done. After
examinating the different channels, it was concluded that an filter order of
3000 was suitable for all channels. An estimation GUI, simEst was designed
for this purpose and is described in detail in appendix A.2. Once all electroa-
coustic and acoustic channels are modelled, the filters for the ANC algorithm
have to be estimated as well. These should have lower filter order than the
simulation models. The length of these filters are part of the evaluation of
the ANC performance, and will be discussed in the following section.
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6.4 Performance of the ANC-system

Once the fundamental limitations to the ANC-system are set, and all the
necessary channels have been defined and estimated, different adaptive al-
gorithms can be compared and evaluated in terms of performance. The
simulation tool, described in appendix A.1, is designed to handle different
ANC setups combined with different adaptive algorithms and can simulate
the following ANC-systems.

• Feedforward ANC (FF)

• Feedforward ANC utilizing filtered-x (FFFX)

• Feedback ANC (FB)

• Feedback ANC utilizing filtered-x (FBFX)

These can be evaluated using LMS, nLMS, nLeaky-LMS and RLS adaptive
algorithms. The feedforward ANC is subject to acoustic feedback from the
loudspeaker, initially this path is set to zero in order to simulate a simplified
model. In section 6.2.3 the effect of the feedback path was discussed, and
the conclusion drawn was that the effects it has on the ANC performance is
negligible. With this notion the simplified model was used to evaluate the
Feedforward ANC system. Simulations will be run using WGN to compare
the results using different filter lengths, step sizes and algorithms. By apply-
ing WGN noise on the input, the ANC systems ability to attenuate broad-
band stationary noise will be tested. The results from these simulations will
then be used to inspect how well the system performs with different noise
characteristics on the input signal.

Attenuation Evaluation

The most interesting parameter to study for an ANC-system is the level of
noise attenuation the system can achieve. To be able to evaluate perfor-
mance, the frequency band 100Hz-1100Hz where the comparison takes place,
was split into two sub bands: 100Hz-600Hz and 600Hz-1100Hz. Average at-
tenuation at each frequency over these bands will be presented in tables to
give an initial idea of the achievable performance. The tables present the
attenuation in terms of the two frequency intervals: L : (100 < F < 600),
H : (600 < F < 1100). When the setup completely fails to attenuate the
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noise, attenuation is presented as not available (N/A). The different sim-
ulations are noted as follows: ANC system is defined by feedback (FB) or
feedforward (FF), followed by (FX) if the filtered-x method is applied. M de-
fines the adaptive filter order for W (z), K defines the order of the secondary

path estimate Ŝ(z), and the adaptive algorithm is referrred to by the pre-
viously defined abbreviations, followed by the parameters and their values.
Leaky nLMS is denoted lnLMS. The sequences used to simulate the ANC
performance are 10 seconds long, considering this being a resonable time to
give the algorithms to converge. In order to examine the best possible ANC
setup some initial analysis was performed.

6.4.1 Initial analysis

Secondary path compensation

The feedforward ANC system was compared to the feedforward filtered-x sys-
tem to examplify how much the secondary path compensation can improve
the performance. The best results attained can be seen in table 6.2. The
filter order for both secondary path estimate and adaptive filter is 120. The
attenuation properties for the filtered-x system outperforms the system with-
out secondary path compensation, and is less likely to diverge. Especially for
non stationary noise on the input, where the ANC without secondary path
compensation fails to converge. The reason why was discussed previously
in section 2.3.1. Because of the superiority in performance of the filtered-
x system, only the systems using this method will be further investigated.
The blockdiagrams of the feedforward and feedback filtered-x systems are
displayed in figure 6.13 and 6.14 respectively.

Table 6.2: The table show the average attained attenuation over the two fre-
quency intervals L : (100 < F < 600, H : (600 < F < 1100)

Noise ANC simulation M K Frequency interval
L H

WGN 0dB FFnLMS, µ = 0.015 120 120 5.0354 1.3610
Café FFnLMS, µ = 120 120 N/A N/A
WGN 0dB FFFXnLMS, µ = 1.07 120 120 12.8064 19.7869
Café FFFXnLMS, µ = 0.625 120 120 12.6927 11.5736
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Figure 6.13: Block diagram of feedforward filtered-x ANC system for simulations,
utilizing arbitrary adaptive algorithm for finding the filter coefficients W (z).. The
Feedback Path and Feedback neutralization are not modeled for all simulations
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Figure 6.14: Block diagram for simulations of feedback filtered-x ANC system
for simulations, utilizing arbitrary adaptive algorithm for finding the filter coeffi-
cients W (z). Anti-noise signal y(n) and estimated reference signal x(n) are passed
through an estimate of the secondary path Ŝ(z).

Feedback filtered-x

In table 6.3, results from the feedback filtered-x system compared to the
feedforward filter-x system simulations are presented. The feedback filtered-
x system is not very good at handling the broadband noise on the input.
Most of the achievable attenuation was located in the higher frequency range,
600Hz < F < 1100 Hz, with a maximum average attenuation at around 9.3
dB for WGN on the input. When the input was non stationary noise, namely
the Café noise, the gainable attenuation was much worse. The maximum
attenuation gained with adaptive filter order 120 and secondary path estimate
order 120, was 1.2556 dB over the high frequency interval. Tests with a
sinusoid added to WGN showed that feedback have good attinuation for
narrow banded signals while failing to adequately attenuate the rest of the
frequencies.
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Table 6.3: The table show the average attained attenuation over the two fre-
quency intervals L : (100 < F < 600, H : (600 < F < 1100)

Noise ANC simulation M K Frequency interval
L H

WGN 0dB FBFXnLMS, µ = 0.0007 120 120 N/A 9.3555
WGN 10dB FBFXnLMS, µ = 0.0007 120 120 N/A 9.3491
Café FBFXnLMS, µ = 0.000051 120 120 1.4321 2.4000
WGN 0dB FFFXnLMS, µ = 1.07 120 120 12.8064 19.7869
WGN 10dB FFFXnLMS, µ = 1.07 120 120 13.0819 20.0498
Café FFFXnLMS, µ = 0.625 120 120 12.6127 11.5736

These initial results have been produced to examplify the theory, and exclude
some of the ANC setups from the more thourough investigation. The nLMS
algorithm and RLS algorithms will be compared for stationary inputs and
non stationary inputs on the feedforward filtered-x sytem, with and without
leakage factors.

6.4.2 Feedforward filtered-x

This section aims to present and evaluate the performance of a feedforward
filtered-x ANC system. The system will be examined using different input
noises, starting with a thourough examination of stationary noise, i.e WGN.
To be able to limit the number of simulations, the filter orders were generally
tested for up to 120, with some higher order simulations. The simulations
were run in such a way that best possible performance and stability bounds
were assessed, using different combinations of filter orders and adaptive filter
parameters.

Stationary Performance

In table 6.4 some important results from simulating the feedforward filtered-
x ANC system are shown. Best performance is around 32 dB attenuation
for the higher frequency subband and up to almost 23.5 dB for the lower
frequency subband. The best attenuation performance for the high subband
600Hz-1100Hz was achieved with an order of 120 on the Secondary Channel
estimate and using the leaky nLMS algorithm. There are some interesting
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properties that can be concluded from the results. The mean-squares al-
gorithms have a distinguishable connection between performance and filter
orders used to estimate the primary path. The best performance for the
nLMS algorithm was found with both secondary path estimate order and
adaptive filter order of 120, and µ = 1.1. Introducing a leakage factor al-
lowed the algorithms stepsize to be pushed further, giving results of up to
32 dB of attenuation for the higher frequency band. The leakage factor helps
the nLMS distinvtively, however if the stepsize is pushed too hard, artifacts
will be introduced to the resulting error signal. This will set the limit for the
attenuation attainable for the leaky nLMS. Decreasing the order of the esti-
mate of the secondary path does not seem to degrade the results noticeably.
A very important result is the attenuation gained when using an adaptive
filter order of 120 and a filter order of only 10 for the estimate of the sec-
ondary path. WIth this setup, the leaky nLMS was still able to attain very
good noise reduction. The adpative filter order however have more impact
on the system, but balancing the amount of leakage with the appropraite
step size for the leaky nLMS algorithm, allows for bigger steps since a bigger
portion of the enegy intoduced into the system is leaked out stopping the
algorithm from diverging. This is true for larger filterorders, but when the
filter orders become small, the stepsize will have to be small, and there is
no longer much to gain from leaking out the energy in the filter. This is
examplified by the performance of nLMS and leaky nLMS for adaptive filter
order 10 and secondary path estimate of order 10. The RLS algorithm is
not as dependent on filter size, and give more stable results for the different
filter orders. In fact the RLS and the leaky nLMS give similar results for an
adaptive filter order of 80 and secondary path estimate of order 10, and for
filter orders lower than this, the RLS outperforms the nLMS and leaky nLMS.

To show the superiority of the nLMS algorithm over the LMS algorithm, the
LMS best performance was compared to the nLMS, using the same filter or-
ders. The result show, that even in a somewhat stationary environment, the
LMS can not reach the same attenuation as the nLMS. The nLMS algorithm
outperforms the LMS algorithm in every aspect, and the LMS algorithm will
not be examined further for this reason.
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Table 6.4: The table show the average attained attenuation for filtered-x feed-
forward ANC over the two frequency intervals L : (100 < F < 600, H : (600 <
F < 1100)

Noise ANC simulation M K Frequency interval
L H

WGN 0dB FFFXLMS, µ = 1344 120 120 9.8279 14.4508
WGN 10dB FFFXLMS, µ = 108.65 120 120 9.103 13.8646
WGN 0dB FFFXnLMS, µ = 1.3 200 200 14.1621 18.1631
WGN 0dB FFFXnLMS, µ = 1.07 120 120 12.8064 19.7869
WGN 0dB FFFXnLMS, µ = 1.7 120 120 -1.5909 6.5610
WGN 0dB FFFXnLMS, µ = 0.01 20 10 3.7126 6.1288
WGN 0dB FFFXnLMS, µ = 0.01 10 10 3.7976 6.2978
WGN 0dB FFFXlnLMS, µ = 1.07, γ = 0.985 120 120 19.3117 27.7191
WGN 0dB FFFXlnLMS, µ = 1.75, γ = 0.986 120 120 23.1146 32.0092
WGN 0dB FFFXlnLMS, µ = 1.75, γ = 0.985 120 120 23.2250 31.8153
WGN 0dB FFFXnLMS, µ = 1.1 120 50 9.8903 17.6289
WGN 0dB FFFXlnLMS, µ = 1.7, γ = 0.985 120 50 22.9546 31.6293
WGN 0dB FFFXlnLMS, µ = 1.7, γ = 0.985 50 120 13.3011 18.6982
WGN 0dB FFFXlnLMS, µ = 1.4, γ = 0.985 120 10 22.0039 30.8459
WGN 0dB FFFXlnLMS, µ = 1.4, γ = 0.985 100 10 21.8864 30.9450
WGN 0dB FFFXlnLMS, µ = 0.65, γ = 0.96 80 10 15.3575 18.172
WGN 0dB FFFXlnLMS, µ = 0.3γ = 0.96 60 10 10.7723 13.6728
WGN 0dB FFFXlnLMS, µ = 0.3γ = 0.97 50 10 8.2579 13.1908
WGN 0dB FFFXlnLMS, µ = 0.025γ = 0.98 20 10 1.9125 2.2016
WGN 0dB FFFXlnLMS, µ = 0.0045γ = 0.96 10 10 2.6670 2.8739
WGN 0dB FFFXRLS, δ = 1e− 11, λ = 1 120 120 13.6055 20.3759
WGN 0dB FFFXRLS, δ = 1e− 12, λ = 1 120 120 14.1534 20.9769
WGN 0dB FFFXRLS, δ = 1e− 11, λ = 1 120 50 13.1727 20.1883
WGN 0dB FFFXRLS, δ = 5e− 12, λ = 1 120 10 13.4304 19.4325
WGN 0dB FFFXRLS, δ = 1e− 11, λ = 1 100 10 13.1185 19.9541
WGN 0dB FFFXRLS, δ = 1e− 11, λ = 1 80 10 12.9189 20.1618
WGN 0dB FFFXRLS, δ = 1e− 11, λ = 1 50 10 11.4467 18.7489
WGN 0dB FFFXRLS, δ = 1e− 12, λ = 1 20 10 11.1503 16.9449
WGN 0dB FFFXRLS, δ = 1e− 12, λ = 1 10 10 9.8611 15.5266
WGN 10dB FFFXRLS, δ = 1e− 12, λ = 1 10 10 9.9712 15.6441
WGN 10dB FFFXRLS, δ = 1e− 12, λ = 1 15 10 -5.2319 0.7973
WGN 10dB FFFXRLS, δ = 1e− 12, λ = 1 20 10 11.4129 17.0722
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For the RLS, higher attenuation is gained by lowering the regularization pa-
rameter, until the stability bound is reached and the system diverges. For
the nLMS there is a distinct peak in performance where higher stepsize even-
tually leads to divergence, and lower stepsize yields better attenuation when
using longer sequence lengths. The divergence limit for the nLMS can be
pushed using a leakage factor, which is one of the reasons for it’s high at-
tenuation results. Evidently, there is a tradeoff between the adaptive filter
order and the convergence properties of the filter. Lower order filters for the
nLMS moves the stability bound of the stepsize towards 0, while lower order
filters for the RLS moves the stablity bound for the regularization parame-
ter towards 1. The bound of the RLS does not move as distinctively as the
nLMS, however the best performance of the RLS is always dangerously close
to the stability bound. This notion is illustrated in figure 6.15.

RLS, FilterLength=120,N=960000:10sec
f=100:1100Hz, Sest 50 samples

Figure 6.15: Attenuation dependent on regularization parameter δ for the RLS
algorithm. Simulated with feedforward filtered-x ANC and WGN as input signal

There is also an interesting occurrence that happens for the RLS algorithm
with secondary estimate of order 10. When the filter order of the adaptive
filter of 10, 15 and 20 were compared, both order 10 and 20 outperforms
a filter order of 15, for which the system does not converge. This is an
interesting property cause it displays that the filter length of the secondary
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path estimate carefully needs to be matched with the filterlength of the
adaptive filter, in order to optimize performance.
The results in the table point towards better performance for the leaky nLMS
algorithm, both in attenuation and stability. The parameters invovled in
designing the appropriate algorithm are deeply entangled, meaning that pa-
rameters that diverges using one set of filter orders, does not necessarily
diverge for another set. This is part of why evaluation of the algorithms is
a complex matter. If there are any demands on filter sizes or computational
power, these have to be matched with the right set of parameters to optimize
the system performance.

Table 6.5: The table show the average attained attenuation over the two fre-
quency intervals L : (100 < F < 600, H : (600 < F < 1100)

Noise ANC simulation M K Frequency interval
L H

Café FFFXlnLMS, µ = 1.85, γ = 0.99 120 120 25.711 29.4657
Café FFFXlnLMS, µ = 1.85, γ = 0.99 120 50 25.3715 28.7225
Café FFFXlnLMS, µ = 1, γ = 0.99 120 50 20.6036 24.0761
Café FFFXlnLMS, µ = 1.6, γ = 0.96 120 10 23.0919 24.6541
Café FFFXlnLMS, µ = 0.7, γ = 0.96 100 10 17.4722 17.5687
Café FFFXlnLMS, µ = 0.25, γ = 0.96 80 10 10.7517 11.3984
Café FFFXlnLMS, µ = 0.14, γ = 0.96 50 10 6.9024 7.3476
Café FFFXlnLMS, µ = 0.045, γ = 0.96 20 10 2.9819 2.3514
Café FFFXlnLMS, µ = 0.025, γ = 0.96 10 10 2.2286 1.6534
Café FFFXRLS, δ = 1e− 12, λ = 1 120 120 16.2485 16.1366
Café FFFXRLS, δ = 1e− 13, λ = 1 120 50 15.7399 16.2352
Café FFFXRLS, δ = 1e− 12, λ = 0.999999 120 50 13.4493 13.1671
Café FFFXRLS, δ = 1e− 12, λ = 1 120 10 15.3682 16.2213
Café FFFXRLS, δ = 1e− 13, λ = 1 100 10 14.5098 14.6355
Café FFFXRLS, δ = 1e− 12, λ = 1 80 10 14.3958 14.1960
Café FFFXRLS, δ = 1e− 12, λ = 1 50 10 12.9895 11.7539
Café FFFXRLS, δ = 6e− 14, λ = 1 20 10 11.4900 11.2607
Café FFFXRLS, δ = 5e− 14, λ = 1 10 10 11.1278 10.5852
Chirp FFFXlLMS, µ = 1.7, γ = 0.9 120 50 23.1233 22.3092
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Non Stationary Performance

As seen in table 6.5 the leaky nLMS algorithm has the best performance for
both cafe noise and a chirp signal. Best results were achieved with a step
size of 1.75 and a leakage factor of 0.985. This was however close to the di-
vergence limit. The RLS does not perform poorly, but looking at maximum
attenuation, it does not manage to compete with the leaky nLMS. When
exposed to a chirp sound, the RLS algorithm does not converge at all. As
expected, the leaky nLMS algorithm really shows its advantage here. Its
ability to keep the algorithm stable while tracking changes in the environ-
ment produces very good attenuation results, over 20dB in both frequency
intervals. It is interesting to note that RLS still seem to be less dependent
on filter order, achieving better results with low filter orders than the leaky
LMS. These results are highly relevant if implemented on a mobile phone.
Some more simulation results can be found in table B.2 in appendix B. In
figure 6.16 a graph displaying the PSD of the best performing cases for RLS
and leaky nLMS is shown in order to conclude the presented results.
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Noise at ERM without reduction

Noise after RLS ANC, δ = 1e−12, λ=1

Noise after leaky nLMS ANC, µ=1.75, γ=0.985

Figure 6.16: The PSD of the error signals without ANC and for the best per-
forming ANC setups for leaky nLMS and RLS respectively.
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6.5 General Discussion

Leaky nLMS seems to be the winning candidate when it comes to the adap-
tive algorithms. But is it really? It was shown in the previous section that
the leaky nLMS needed higher orders of the filters in order to attain the
same or higher attenuation as the RLS. The RLS algorithm on the other
hand operates using matrices, while the LMS algorithms uses vectors. The
RLS algorithm uses much larger amounts of memory compared to the leaky
nLMS algorithms. The RLS might converge after fewer iterations, but each
iteration takes longer time to preform. In ANC, speed is of the essence, espe-
cially when working with such short delays as on a handheld mobile phone,
which could be a weakness for the RLS algorithm. One could argue that the
gain from using a lower filter order is lost in the complexity of the algorithm.
It really depends on the computational power of the mobile phone. The leaky
nLMS is much lighter computationally but takes more iterations to converge
and needs larger filter orders to gain the same results as the low order RLS
implementations.

The simulation model constructed in the simulation environment is a good
representation of the dummy phone. This has been confirmed by analyzing
transfer functions, phase and coherence plots using a suitable block size to
get a good balance between variance and bias. To avoid nonlinear areas, the
signals were prefiltered using a bandpass filter between 100 and 1100 Hz. The
prefiltering is applied in order to only observe the frequency interval where
good performance is attainable. In a real application the input signal and
error signal would have to be filtered in the same way, which will add to the
delay in the system.

Overall the simulations show the attenuation limits using different methods
under optimal circumstances. These attenuations are most probably unre-
alistic, since the system is subject to continuous changes and stability is
crucial. The results were derived pushing the system to it’s maximum, and
it is usually not recommended to be this close to the divergence limits when
implemented on a real application. Further, a real application in a mobile
phone would commonly use a fixed point implementation. This means that
there will be round of errors on signals and filter coefficients, which will de-
grade the systems performance. The destructive interference can create a
silent point in space. It is also possible that the sound the user hear does
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not have as good attenuation as the ANC system displays. This will need to
be considered for real performance evaluation. With this in mind, will the
attenuation gained in the frequency interval the ANC system operates in be
enough to give noticible difference for speech intelligibility? In order for it to
work on a real mobile phone, the decision algorithms governing the system
have to be carefully considered. To ensure a properly working system, some
demands should be set on the user. Preferably, one should not move around
too much, or change the position of the phone. It should also be pressed
pretty hard towards the ear to create a closed stable acoustic environment.
This may seem like a lot to demand from the user, but given the situation
that one is talking in a very noisy environment, it is not so farfetched that
the user would press the phone towards the ear and not move around too
much. With this the ANC system could give adequate noise reduction for
speech intelligibility.

78



Chapter 7

Conclusions and Further Work

In chapter 1, the question was raised whether or not it is feasible to imple-
ment ANC on a handheld mobile phone. During the course of this project
some limitations and demands for ANC performance has been established,
and these conclusions are summed up in this chapter.

ANC can be implemented on a handheld phone, working on a frequency lim-
ited band. The frequency band should be from around 100/150 Hz up to
1100 Hz, where the lower bound is set by the secondary path and the upper
bound by the primary path.

For good ANC performance the filtered-x method should be implemented.
In a comparison of feedforward and feedback systems, the feedforward ANC
system outperforms the feedback system by far, with broad band attenua-
tions of more than 20 dB for some frequencies. Higher frequencies 600 Hz to
1100 Hz can attain more attenuation than the lower frequencies, 100 Hz to
600 Hz. It was also shown that the acoustic feedback path had negligible af-
fect on the ANC system, and compensating for this would probably degrade
the system more than help it.

There are two candidates for algorithms performing the adaption, and they
both have some pros and cons. These are RLS and leaky nLMS. RLS have
a way faster convergence rate, but does not attain as much attenuation as
the leaky nLMS algorithm. RLS can manage to perform adequately with
small filter orders on both secondary path estimate and adaptive filter, while
the leaky nLMS performance is much more dependent on the adaptive filter
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order. The RLS algorithm can adapt to some changes in the system, but
the leaky nLMS have much better tracking abilities, which can be crucial
since the system itself is subject to non stationarities. The best results were
attained using the leaky nLMS.

The reults from the simulations also show another important aspect of the
system, there need to be some demands set on the user. For good noise
reduction the user should not move around too much, keep the mobile phone
in a steady position and press it towards the ear. If this set of directions are
fullfilled, the system will be more or less stationary, giving the ANC system
the best possible conditions for reducing the noise.

The analysis have given some basic ideas of how an ANC system would
have to be designed in order to work on a handheld mobile phone. The
performance analysis give some information on how to set the parameters for
the algorithm, but this will be one of the major obstacles in implementing it
on a real mobile phone. In order to do so, decision making algorithms have
to be designed. These have to be able to turn on and off the ANC system
depending on the environment–when the ANC system will help or not help
the speech intelligibility. It also have to be able to adjust to some minor
changes in the system, where either a online estimation for the secondary
path have to be designed, or a decision algorithm choosing the appropriate
estimate from a filter bank. Further analysis could also include examining
hybrid solutions if there is enough computation power available. Overall the
next step in realizing ANC on a handheld mobile phone would be to acquire
specifications and limitations for the actual implementation. What order of
filters are reasonable, what clock frequency will the algorithm work with,
how much memory and computation power will be available? These answers
have to be put in context with the systems and algorithms described in this
thesis, and only then will the answer to the question arise; Is it feasible to
implement an ANC system? The results from this projects says yes, it could
be implemented, and yes it could help speech intelligibility, but there is still
a lot of work to be done.

80



Appendix A

Simulation Tools

In order to analyze the the ANC system with different parameters and set-
tings a simulation environment is needed that can handle all relevant proper-
ties of the ANC system. To achieve this two simulation tools were developed
in Matlab. This chapter will serve as a description of these tools, as well
as a manual for operating them.

A.1 simGUI.m

The simulation environment itself is called simGUI.m and is the main pro-
gram. The graphical user interface (GUI) is shown in figure A.1. On start
up, the GUI is loaded with simple default filters.
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Figure A.1: Graphical user interface for simulation tool: simGUI.

A.1.1 Noise

Noise Generator

The noise section of the interface is for choosing what type of noise to feed
the algorithm with. The noise generator can be set to either generate WGN,
a sine wave with configurable frequency, or a mix controlled by the amplitude
faders. The sequence length in number of samples can be set it its designated
text box.

Load Noise

If some other noise is desirable a few other types of noise are available in the
simulation environment. The following noise types are available by default:

• Chirp

• Cafe’ Noise
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• Street Noise

• Chirp

The noise file is chosen by simply checking load noise and marking the desired
file.

A.1.2 Adaptive Algorithm

There are four different adaptive algorithms available for estimating the pri-
mary path. They are configured as follows:

• LMS

– µ: Step size

• nLMS

– µ̃: Normalized step size

• leakyLMS

– µ̃: Normalized step size

– γ: Leakage factor

• RLS

– δ: Regularization factor

– λ: Expential forgetting factor

The desired filter size is set in its designated text box.

A.1.3 ANC method

There are six different ANC methods available:

• Feed Forward ANC:
A simple feed forward algorithm without any extras.

• Filtered-x Feed Forward ANC:
The feed forward algorithm with added filtered-x filter.
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• Inverse Modeling Feed Forward ANC:
Feed Forward ANC with an inverse secondary channel filter instead of
the filtered-x approach to compensate for the secondary channel.

• Feedback ANC:
A simple feedback algorithm without any extras.

• Filtered-x Feed Feedback ANC:
The feedback algorithm with added filtered-x filter and feedback com-
pensation filter.

• Inverse Modeling Feedback ANC:
Feedback ANC with an inverse secondary channel filter instead of the
filtered-x approach to compensate for the secondary channel.

A.1.4 Plot Options

There are two different axes in the GUI operating a little differently de-
pending on which plot option is chosen. To analyze the results of the ANC-
algorithm there are three different plot options. The block size for the fre-
quency transforms can be set in its designated text box.

Power Spectral Density

Calculates and plots the PSD of the input signal and the error signal using
the previously set block size. The figure is plotted on the upper axes. On
the lower axes the corresponding figure from the previous run is displayed.

Error and Coefficients

Displays the error signal at each iteration on the upper axes, used to see the
convergence of the algorithm. On the lower axes the estimated coefficients
from the final iteration is shown.

Frequency and Phase

On the upper axes the frequency response of the estimated filter is displayed.
On the lower axes is the corresponding phase angle is shown.
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The plot can be held to the next run by checking the “Hold prev. plot”
check box.

A.1.5 Inspect Channels

Each channel in the simulation environment can be studied by pressing its
corresponding button. The channels impulse response will then show up on
the upper axes.

A.1.6 Main Buttons

Estimate Channels

This button is used to reach the estimation utility simEst.m which will be
discussed in next section. Here the different channels can be estimated based
on external sound files.

Load Simulation File

A simulation file saved in simEst.m can be loaded directly into the simula-
tion environment using this button. All channels will be replaced with the
channels stored in the simulation file.

Run Simulation

When all channels are loaded and parameters are set, the simulation is started
by pressing this button. The simulation may take some time depending on
the parameters chosen for the simulation.

A.2 simEst.m

In order to estimate models of the channels in the simulation environment
simEst.m was created. By loading two correlated sound files, simEst.m es-
timates the channel between them. Included are also a few analysis tools to
analyze the sound files prior to the estimation as well as for analyzing the
resulting channel filter. The graphical user interface is shown in figure A.2
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Figure A.2: Graphical user interface for estimating channels: simEst.

A.2.1 Choose Channel

There are seven different channels that can be estimated:

• P - Primary Channel
The channel uses the NRM as input x and ERM as output d. Both
signals recorded using the external noise source.

• S - Secondary Channel
The channel uses the anti noise signal generated in Matlab as input
x and ERM recorded using the internal source as output d.

• Shat - Est Sec Channel
Estimation filter to the ANC-algorithm to use with “filtered-x ANC” in
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simGUI. The channel uses the anti noise signal generated in Matlab
as input, x and ERM recorded using the internal source as output d.

• E - Echo Channel
The channel uses the anti noise signal generated in Matlab as input
x and PSM recorded using the internal source as output d.

• F - Feedback Channel
The channel uses the anti noise signal generated in Matlab as input
x and NRM recorded using the internal source as output d.

• Fhat - Est Feedback Channel
The estimated feedback compensation filter for the ANC-algorithm.
The channel uses the anti noise signal generated in Matlab as input
x and NRM recorded using the internal source as output d.

A.2.2 Load Signals

The signals x and d, defined in the “Choose Channel” section, can be chosen
here. The audio files imported have to be .wav files.

A.2.3 Signal Analysis

This area handles the pre-estimation analysis of the signal. Displays the
current sampling rate, Fs, and enables the user to set desired block size. The
current frequency resolution is shown in its designated text box.

Plot Options

Decides what to display on the axes. The following are available:

• Pxx
Calculates and plots the PSD of the signal x using the user-defined
block size.

• Pdd
Calculates and plots the PSD of the signal d using the user-defined
block size.
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• Pxd
Calculates and plots the cross-PSD of the signals x and d, using the
user-defined block size.

• Coherence
Calculates the coherence of the channel between signals x and d using
the user-defined block size.

• Correlation
Calculates the cross correlation between the signals x and d. Displays
the number of lags that is set at the plot window. For removal of system
delay, check the corresponding check box at the plot window.

• ANC limits
Calculates the maximal theoretical dampening for the ANC-system by
taking −10log10(1− coherence).

A.2.4 Estimation Filter

Settings for the filter to be estimated. The desired filter order is entered in
the designated text box. The user have the choice between a Wiener FIR
solution or a nLMS solution. If the latter is chosen, the desired step size
should be entered in its designated text box. The possible system delay can
be removed by checking the box at the plot window.

A.2.5 Plot

Displays desired figures on its axes. The number of samples to display can
be set in its designated text box. The buttons at the bottom of the area
chooses what property of the estimated filter to show.

A.2.6 Frequency Limitations

Sets the frequency limits to the signals and filters by band pass filtering the
two signals x and d.
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A.2.7 Main Buttons

• Estimate
Starts the estimation of the selected channel with entered settings.

• Reset to Default
Resets all channels to initial values received from the main program.

• Cancel
Discards changes and returns to the main program.

• Save
Opens a save dialog to save all channels and relevant settings to a
.m-file. This can later be imported in the main program.

• Done
Returns to the main program with the estimated channels and loads
them.

A.3 Audio Files

The audio files recorded during the measuring sessions in the lab are available
on request. The files are organized in a file tree as follows:

→ Angle
→ Pressure to ear

→ Sound level
How the audio files are named is covered in B.1.
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Appendix B

Complementary Graphs and
Data

B.1 Detailed Measurement List

The audio files was saved as:
’Noise Signal’ ’Angle/Position’d ’SoundPressure’dB ’Pressure’N
’Microphone’ ’Sound Source’ 96kHz.wav
example: WGN 0d 0dB 2N ERM ES 96kHz.

To perform all these measurements the plan described by table B.1, was cre-
ated. The measurements should be performed in groups defined by the color
dots in the table. For each dot the following need to be recorded/generated:

• Anti-noise Signal for output through Secondary Source

• NRM Using External Source - Estimating Primary Path

• ERM Using External Source - Estimating Primary Path

• NRM Using Internal Source - Estimating Acoustic Feedback

• ERM Using Internal Source - Estimating Secondary Path

• PSM Using Internal Source - Estimating Echo Channel
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Table B.1: Desired Measurements Position

Angle/Position Noise signal Sound Pressure Pressure
0N 2N 8N no HATS

0 degrees WGN -10dB • • • •
0dB • • • •
10dB • • • •

Chirp -10dB • • • -

0dB • • • -

10dB • • • -

Pink Noise 0dB - • - -

Car Noise 100km/h 0dB - • - -

Café Noise 0dB - • - -

Street Noise 0dB - • - -

Wind 0dB - • - -

-20 degrees WGN -10dB • • • -

0dB • • • -

10dB • • • -

-10 degrees WGN -10dB • • • -

0dB • • • -

10dB • • • -

10 degrees WGN -10dB • • • -

0dB • • • -

10dB • • • -

20 degrees WGN -10dB • • • -

0dB • • • -

10dB • • • -
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Table B.2: The table show the average attained attenuation for filtered-x feed-
forward ANC over the two frequency intervals L : (100 < F < 600, H : (600 <
F < 1100). The results in this table serves as complementary results to those
presented in chapter 6.4.

Noise ANC simulation M K Frequency interval
L H

WGN 0dB FFFXnLMS, µ = 1.1 50 120 6.0555 19.6927
WGN 0dB FFFXnLMS, µ = 0.1 50 50 5.1248 14.2685
WGN 0dB FFFXnLMS, µ = 0.2 50 50 4.6514 14.9574
WGN 0dB FFFXnLMS, µ = 1.1 50 50 N/A N/A
WGN 0dB FFFXnLMS, µ = 1.1 30 50 N/A N/A
WGN 0dB FFFXnLMS, µ = 0.01 30 10 3.8433 7.7282
WGN 0dB FFFXnLMS, µ = 0.02 30 10 4.0552 7.69987
WGN 10dB FFFXnLMS, µ = 0.01 20 10 3.3557 6.0240
WGN 0dB FFFXlnLMS, µ = 0.25γ = 0.985 60 10 6.6381 16.9594
WGN 0dB FFFXlnLMS, µ = 0.65, γ = 0.985 80 10 8.6898 18.2437
Café FFFXlnLMS, µ = 0.1, γ = 0.99 30 30 4.2292 6.0851
Café FFFXlnLMS, µ = 0.2, γ = 0.95 30 30 8.5285 5.3061
Café FFFXlnLMS, µ = 0.2, γ = 0.95 50 30 9.8424 9.4786
Café FFFXlnLMS, µ = 0.2, γ = 0.95 50 50 9.5405 8.9598
Café FFFXlnLMS, µ = 0.2, γ = 0.95 120 50 10.0865 10.0756
Café FFFXlnLMS, µ = 0.5, γ = 0.99 120 50 15.5211 18.8103
Café FFFXlnLMS, µ = 1.9, γ = 0.99 120 50 N/A N/A
WGN 0dB FFFXRLS, δ = 1e− 9, λ = 1 50 120 10.7941 18.5905
WGN 0dB FFFXRLS, δ = 1e− 9, λ = 1 50 50 10.7760 18.2023
WGN 0dB FFFXRLS, δ = 1e− 12, λ = 1 50 50 12.2553 19.7693
WGN 0dB FFFXRLS, δ = 1e− 12, λ = 1 30 30 11.9206 19.9047
WGN 0dB FFFXRLS, δ = 1e− 12, λ = 1 50 30 11.8148 19.5936
WGN 0dB FFFXRLS, δ = 1e− 12, λ = 1 30 20 11.8303 19.8663
WGN 0dB FFFXRLS, δ = 1e− 12, λ = 1 30 10 11.2582 17.7280
WGN 0dB FFFXRLS, δ = 1e− 11, λ = 1 60 10 11.5931 18.9980
WGN 0dB FFFXRLS, δ = 1e− 13, λ = 1 120 120 N/A N/A
Café FFFXRLS, δ = 5e− 14, λ = 1 120 50 N/A N/A
Café FFFXRLS, δ = 1e− 12, λ = 1 50 50 13.2597 13.2306
Café FFFXRLS, δ = 1e− 12, λ = 1 50 30 13.0699 13.4576
Café FFFXRLS, δ = 1e− 12, λ = 1 30 30 13.4338 15.0906
Café FFFXRLS, δ = 5e− 13, λ = 1 30 30 13.7137 15.1181
Café FFFXRLS, δ = 1e− 13, λ = 1 30 30 14.1421 15.1641
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B.2 Complementary Simulation Results

In order to find the best performance a number of simulations were run.
This table displays some of the more interesting results as a complent to
those presented in chapter 6.4.

B.3 Complementary Graphs

In this section some complementary graphs are displayed. The following
sections will aim to further describe the acoustic and electro-acoustic paths
invovled in the ANC system, as well as compare these paths to the models
used in the simulations. The paths will be illustrated with coherence graphs
and transfer functions. The transfer functions for the standard case described
in chapter 6 will be compared to the models used in the simulation. To
estimate the channels for the model a special Graphical User Interface was
designed in Matlab. To identify the channels necessary for setting up the
simulation environment, optimal wiener solutions were used. The tool for
estimating the channels is described in appendix A.2.

B.3.1 Primary Path

The primary path is one of the most crucial paths in the ANC system. With
a somewhat stationary primary path the adaptive filter will be able to track
diffrences in the environment. In this section graphs describing the primary
path are presented as a compliment to those presented in the thesis.

Coherence

As illustrated by the following graphs, the system is quite stationary and does
not heavily depend on either SPL, pressure to the ear or angular placement.
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Figure B.1: Coherence primary path dependent on relative gain and pressure
towards the ear of the HATS.
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Figure B.2: Coherence Primary Path with different angular placements of the
dummy phone.
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Transfer Function

The stationarity dependent on SPL of the channel is further described by
analysing the transfer function.
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Figure B.3: Frequency Transfer Function Primary Channel, displaying depen-
dency of relative gain
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Model of Channel for Simulations

As can be seen, the model is a pretty rough estimate of the primary path,
but t is able to identify most od the details in the path’s frequency response.
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Figure B.4: Frequency Transfer Function of the Primary Path for model and
estimated path

B.3.2 Secondary Path

The secondary path is one of the most crucial paths in the ANC system.
With a somewhat stationary secandary path the adaptive filter will be able
to track diffrences in the environment. In this section graphs describing
the secondary path are presented as a compliment to those presented in the
thesis.

Coherence

The stationarity of the secondary path is described by the following plots.
The dependency on SPL was deducted to primarily an effect of interferrence
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from plant noise. It is also notable that the pressure towards the ear seem
to affect the path distinctly with better coherence for higher pressure.
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Figure B.5: Coherence Secondary Path dependent on relative gain and pressure
towards the ear of the HATS.
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Figure B.6: Coherence Secondary Path with different angular placements of the
dummy phone
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Transfer Function

The nonstationarity of the secondary path is further described by the devi-
ations in the frequency transfer function.
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Figure B.7: Frequency Transfer Function Secondary Path
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Model of Channel for Simulations

The model of the secondary path follows the real estimated frequency re-
sponse very well. It is however noteable that the channel itseft suffers from
nonstationarities, and the estimation presented is not general, but show the
estimation for the standard case.
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Figure B.8: Frequency Transfer Function of the Secondary Path for model and
estimated path of the standard case

B.3.3 Acoustic Feedback Path

The acoustic feedback path describes how much of the signal sent out the
secondary source is being fed back into the noise reference sensor. This path
may be an obstacle in attaining good ANC performance and should therefore
be considered. In this section graphs describing the acoustic feedback path
are presented as a compliment to those presented in the thesis.
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Coherence

The coherence plot describes the feedback path as rather stationary for dif-
ferent angular placements. The transfer of noise from the secondary source
is so little that the coherence is heavily affected by the noise floor.
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Figure B.9: Coherence Acoustic Feedback Path with different angular placements
of the dummy phone
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Transfer Function

The transfer function confirms the stationarity of the channel. For 20 degrees
angular displacement the phase differse from the other scenarios with about
30 degrees. This should however not affect the adaption much.
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Figure B.10: Frequency Transfer Function Acoustic Feedback Path
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Model of Channel for Simulations

The model of the feedback path is a pretty good estimation of the real path.
The cariations in the real frequency responce is probably connected to the
noise floor.
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Figure B.11: Frequency Transfer Function of the Acustic Feedback Path for
model and estimated path

B.3.4 Acoustic Echo Path

The acoustic echo path, describes how much of the anti-noise signal is being
fed into the speech and onto the transmission line. If th.is path has a high
transfer it might become an obstacle. In this section graphs describing the
acoustic echo path are presented as a compliment to those presented in the
thesis.

Coherence

The coherence show a rather stationary acoustic echo path. The only major
variations is caused by SPL and is heavily affected by the noise floor.
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Figure B.12: Coherence Acoustic Feedback Path dependent on relative gain and
pressure towards the ear of the HATS.
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Figure B.13: Coherence Acoustic Echo Path. Comparison 2

Coherence Acoustic Echo Path with different angular placements of the
dummy phone
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Transfer Function

The transfer function of the acoustic echo path is pretty stationary, and
has an attenuation around -40dB from 100Hz to about 1000Hz. For higher
frequencies the channel attenuates less. This however will not be an issue if
the frequency rages chosen to 100-1100Hz.
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Figure B.14: Frequency Transfer Function Acoustic Echo Path
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