
Pa
ra

b
o

lic Sy
n

th
e

sis a
n

d
 N

o
n

-Lin
e

a
r In

te
rp

o
latio

n

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, January 2015.

Parabolic Synthesis
and Non-Linear Interpolation

Adeel Muhammad Hashmi

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2015-422

http://www.eit.lth.se

A
d

e
e

l M
u

h
am

m
a

d
 H

a
sh

m
i

Master’s Thesis

Master’s Thesis

Parabolic Synthesis

and

Non-Linear Interpolation

By

Adeel Muhammad Hashmi

Department of Electrical and Information Technology

Faculty of Engineering, LTH, Lund University

SE-221 00 Lund, Sweden

i

Abstract

Computation and implementation of unary functions such as

trigonometric, logarithmic and exponential function have a vital

importance in modern applications, e.g., Digital Signal Processing,

computer graphics, wireless systems and virtual reality simulations.

Over the past few years many software solutions have been used,

which provide extreme precision but take a lot of computation time

for real-time applications. As compared to the software routines, a

hardware implementation of unary function is found to be a best

solution for real-time applications where fast and numerically

intensive solutions are required.

This thesis work presents an approximation of trigonometric

functions, i.e. Sine and Cosine using Parabolic Synthesis combined

with Non-Linear Interpolation. The architecture for the

approximation is designed and implemented in the stm65 CMOS

technology. There is a high degree of parallelism in the design

which makes it faster than other methodologies to calculate unary

functions. The same design can be used to implement various kinds

of unary function like logarithmic and exponential etc. with the

same architecture.

The design is compared, with respect to power consumption, area

and maximum speed, with the existing methodologies like the

CORDIC, Parabolic Synthesis, and the Parabolic Synthesis with

Linear Interpolation. It is found that the architecture has better

performance in terms of chip area, speed and power consumption.

ii

iii

Acknowledgments

I would like to begin to express my sincere thanks and gratitude

towards Prof. Peter Nilsson and Erik Hertz, Supervisor, to

provide me with this opportunity to experiences this research

oriented MS Thesis entitled: “Parabolic Synthesis & Non-

Linear Interpolation”, in the field of Digital ASIC. I would

appreciate their explicit guidance, prolific command and

remarkable knowledge about efficient algorithms for

computation and implementation of unary functions using

innovative techniques. Without their continuous help and

guidance this thesis work would not have been possible.

Next, I would like to cordially thank Pia Bruhn, Program

Coordinator EIT Department, Lund University, for being a

guardian and helping me during my studies tenure. She was

really marvelous to tackle problems and difficulties that a

newcomer faces when they arrive in a new country; guided and

helped me out with the administrative issues in the best possible

manner whenever I requested for intervention and assistance.

My thanks and warm regards also goes to Anna Carlqvist and

Helene Von Wachenfelt, the International Master’s

Coordinators, for their help and guidance in study administration

and residence permit issues.

Then I wish to continue by thanking Dr. S.M. Yasser Sherazi

and Dr. Taimoor Abbas for providing me there sincere guidance

of how to tackle problems step-by-step and move forwards

towards progressive development. Also these two people have

iv

been a really good resource when it came to technical

discussions and knowledge sharing.

Now I will concentrate my attention to express my gratitude

towards my friends and colleagues here at Lund University,

without whom the time spent here in Sweden would not have

been joyful. I would appreciate whole heartedly my friends

Waqas Shafiq and Karrar Rizvi to help me out in the basic

understanding and developing my competencies and skill set

and giving me a push to complete this Thesis Work, while being

part of this Master’s Degree. I would like to thank Shabraiz

Muhammad for proof reading my thesis and guiding me with

Technical Report Writing Skills. I would gladly express my

gratitude towards colleagues Shoaib, Adnan, Naveed, Azhar,

Farhan, Sardar Sulaman, Aadil and Rizwan for the group

activities, bar-be-cues and evening gatherings. I would also like

to thank Jovita, Minna, Erica and Justyna for their love, care and

affection during my stay in Sweden and so on.

Last but the most important of all, I would like to thank my

family, especially my mother for all her love, care, affection,

support and prayers.

Adeel Muhammad Hashmi

i

Table of Contents

ABSTRACT I

ACKNOWLEDGMENTS III

1 INTRODUCTION 1

2 PARABOLIC SYNTHESIS AND NON-LINEAR INTERPOLATION 5

2.1 Parabolic Synthesis 5

2.1.1 Normalization 6

2.1.2 First sub-function 6

2.1.3 Second sub-function 8

2.1.4 Sub-functions for 9

2.2 Interpolation 12

2.2.1 Linear Interpolation 12

2.2.2 Non-linear Interpolation 14

2.3 Parabolic Synthesis Combined with Interpolation 16

3 HARDWARE ARCHITECTURE 19

3.1 Preprocessing 20

3.2 Processing 20

3.2.1 Parabolic Synthesis 20

3.2.2 Parabolic Synthesis with Non-Linear Interpolation 22

3.3 Post processing 23

4 ERROR EVALUATION 25

4.1 Error Metrics 26

ii

4.1.1 Maximum Absolute Error 26

4.1.2 Mean Error 26

4.1.3 Standard Deviation 26

4.1.4 Median Error 27

4.1.5 Root-Mean-Square 27

4.2 Error Distribution 27

5 ARCHITECTURE AND COEFFICIENTS APPROXIMATION 29

5.1 Architecture 29

5.1.1 Preprocessing 30

5.1.2 Processing 31

5.1.3 Post Processing 32

5.2 Coefficients Approximation 34

5.2.1 Linear part 35

5.2.2 Non-linear part 36

6 HARDWARE DESIGN 39

6.1 Preprocessing 40

6.2 Processing 40

6.3 Post Processing 44

6.4 Final Architecture 45

6.5 Word Lengths 46

7 IMPLEMENTATION AND ERROR BEHAVIOR 51

7.1 Optimization 52

7.2 Truncation 53

iii

7.3 Error Behavior 53

8 RESULTS 57

8.1 Synthesis 57

8.1.1 Area Results 57

8.1.2 Timing/Speed Results 60

8.1.3 Power Results 61

8.2 Existing Algorithms 64

9 CONCLUSIONS 69

10 FUTURE WORK 71

REFERENCES 73

LIST OF FIGURES 75

LIST OF TABLES 79

LIST OF ACRONYMS 81

1

Chapter 1

1 Introduction

With the advent of Chip Technology the size of technical equipments and

electronics hardware have reduced significantly. This is being perceived as

the future of Next Generation Technologies. In olden days, canon sized

devices were used for complex computations and calculations.

Nowadays digital circuits and devices of mere existence possessing the

ability to perform similar objectives by utilizing these limited resources

namely: memory, time of execution and power.

We can observe in our surroundings that there is increase in demand for

ultra-low weight, less power consuming and super-efficient devices over

the past few years. General public is unaware of the challenges faced by the

researchers in order to attain these said objectives. The researchers try to

make ends meet by working to devise ways and methods to produce

equipments that can provide the optimum performance with effective

utilization of the aforementioned limited resources. This Master’s Thesis

comprises of a study and comparative analysis conducted to ensure usage of

the Parabolic Synthesis and Non-Linear Interpolation. It also provides the

knowledge about how this next generation computational methodology can

be fruitful, if their architectures are implemented in real time systems.

Computation and implementation of unary functions such as trigonometric,

logarithmic and exponential function have a vital importance in modern

applications, e.g., Digital Signal Processing (DSP), computer graphics

(2D/3D), wireless systems and virtual reality simulations. Over the past few

2

years many software solutions have been used, which provide extreme

precision but take a lot of computation time for real-time applications. As

compared to the software routines, a hardware implementation of unary

function is found to be a best solution for real-time applications where fast

and numerically intensive solutions are required.

There are different methods that are employed for hardware implementation

of unary functions. The easiest method is by using look-up table [1] [2]. It

is an efficient method for low precision computations where the input

word-length is between 12-16 bits which corresponds to a table size of

4096-65536 words.

 (1.1)

Where n is the input word-length.

It can be seen in (1.1) that the table size will increase exponentially with the

increased number of input word-length. Therefore for high precision

applications the execution time will be large and unacceptable in certain

cases.

With the evolution of the various industrial sectors like DSP, Robotics,

Communication Systems, there has been an increase in demand of high

speed hardware implementations. A variety of solutions have been

proposed ranging from implementation of algorithms that utilize the lookup

tables for low precision computations [9]. Various other hardware

approaches have been implemented e.g. CORDIC [9] & Polynomial based

approximation e.g. Taylor Series Implementation [9] [14].

Polynomial based approximation is another method that is being used for

computing the unary functions. It has an advantage of being table-less but it

introduces large number of computational complexities since it is

performed with multipliers and adders. The computational complexity of

3

this method can be reduced by combining it with look-up table methods.

Taylor polynomial is an example of such scheme [3]. Designing an efficient

approximation for the function to be approximated is the key in polynomial

based approximations [4].

COordinate Rotation DIgital Computer (CORDIC) is a widely used

algorithm for hardware implementation of basic elementary function like

logarithmic, trigonometric, exponential etc. It was proposed by Jack

E.Volder in 1959 to provide the real-time digital solution for navigational

computations [5] [6]. It is an iterative method that requires simple shift and

add operation together with a small look-up table [7]. Therefore it is used in

designs where different design aspects like critical speed, low area and low

power consumption are of vital importance. Since it is an iterative method,

it produces one extra bit of accuracy in each rotation [8]. For higher

accuracy applications, CORDIC method will require more iterations in

order to get better resolution. That will increase the execution time of the

operation therefore it will be insufficient for very high speed applications.

A new methodology Parabolic Synthesis has recently been proposed by

Erik Hertz and Peter Nilsson to perform the realization of unary functions

like trigonometric, logarithms as well as division and square-root functions

in hardware [9] [10]. The parallel architecture of this method increases the

performance and decrease the power, area and speed limitations compared

to previously mentioned algorithms including CORDIC. The main feature

of parabolic architecture is that it can be used for the realization of different

unary functions. Only the coefficients need to be changed for different

functions but the hardware will remain fixed. Thus the design will remain

the same and can be directly used without any changes for other

applications [8].

In this thesis, a methodology is presented by combining parabolic synthesis

with non-linear interpolation for the realization of trigonometric functions

sine and cosine. Parabolic methodology is a synthesis of second order

functions which provides accuracy depending on the number of second

order functions [7]. In the combined methodology, the accuracy depends on

4

the number of intervals in the non-linear interpolation. Furthermore, the

behavior and optimization of coefficients for the implementation of

trigonometric functions, sine and cosine, is discussed.

The proposed architecture is designed using two stages of parabolic

synthesis [11] where the second stage is implemented as a non-linear

interpolation in the stm65 CMOS technology. The design is simulated and

compared for accuracy, power consumption and performance. The core

area is also estimated. Synthesized VHDL is used in the project. Low

Power High VT and Low Power Low VT transistors are used, in separate

designs. Three different supply voltages, VDD = {1.00, 1.10, 1.20} volts

are used. The power and energy consumption, both static and dynamic, are

estimated. The design is compared, with respect to power consumption,

area and maximum speed, with the existing methodologies like CORDIC,

Parabolic Synthesis, and Parabolic Synthesis with Linear Interpolation.

5

Chapter 2

2 Parabolic Synthesis and Non-Linear

Interpolation

2.1 Parabolic Synthesis

The Parabolic Synthesis Methodology is a Hardware Approach proposed by

Erik Hertz and Peter Nilsson in order to develop functions to perform

approximation in the hardware [9]. The implementation involves a parallel

architecture for providing solution to the complex computational problem

to reduce execution time. In parabolic synthesis methodology an

approximation of unary functions in hardware is dealt with.

This methodology is based on second order parabolic functions, called sub-

functions sn(x) [7]. These sub-functions are multiplied together to found the

original function forg(x) as shown in (2.1) [14]. The original function is the

product of all sub-functions, when the number of sub-functions approaches

infinity. The sub-function must satisfy that the function is limited to the

range and

 (2.1)

In order to gradually develop sub-functions, we need to determine the first

help function. First help function is the ratio of original function and first

sub-function, i.e. .

6

 (2.2)

The individual help functions can be generalized to be evaluated as:

 (2.3)

These help functions are in turn used to compute the values of sub functions

by performing normalization. These sub-functions are constructed as

second or polynomials depicting the parabolic functions [14].

2.1.1 Normalization

First the function to be approximated has to be normalized according to the

parabolic synthesis methodology. Normalization limits the function in a

numerical range to facilitate the hardware implementation. It must satisfy

that the function is limited to the range and

Starting and ending coordinate should be (0,0) and less than (1,1)

respectively [14].

2.1.2 First sub-function

In order to develop the first sub-function, , the original function,

 , should cross two points i.e., (0,0) and (1,1) as shown in the Fig.

2.1.

7

Figure 2.1: Comparison of original function, , with straight line x=y

The first sub-function, , is a second order parabolic function as define

by the (2.4).

 (2.4)

The starting point, , of first sub-function, , is calculated to be zero as

it crosses (0,0). As the function lies between the points, (0,0) and (1,1), the

slope is 1 [7] [9] [16]. Therefore, the first sub-function can be simplified

as shown in (2.5).

 (2.5)

The coefficient is computed according to (2.6).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

forg(x)

x = y

8

 (2.6)

2.1.3 Second sub-function

In order to make the total error smaller, the second sub-function, , is

developed to approximate the value of first help function, . A strictly

convex or concave first help function, , can be developed from

original function, , using (2.2) [16].

The second sub-function, , can be defined as shown in (2.7).

 (2.7)

Figure 2.2: A strictly convex first help function, .

 As it can be seen in Fig. 2.2 that the second sub-function starts at a point

(0,1) and finishes at (1,1), so the starting point, , of second sub-function is

1 and the slope, , of the function is 0. Therefore the equation for second

sub-function can be reduced as shown in (2.8).

 (2.8)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.02

1.04

1.06

1.08

1.1

x

f1
(x

)

9

Figure 2.3: Comparison of first help function, , with second sub-function,

 .

In order to develop and verify second sub-function, it must cross the

starting point, middle point and the end point of the help function as shown

in Fig. 2.3.

2.1.4 Sub-functions for

In order to develop further sub-functions, for , same

methodology is applied as given in (2.2) and (2.3). However, the functions

will not be strictly convex or concave in the range of 0 to 1. For example,

the function, , shown in fig. 2.4 is a pair of convex and concave

functions. The first function is in the range and the second

function is in the range .

Therefore the second help function can be expressed as (2.9).

 (2.9)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.02

1.04

1.06

1.08

1.1

f1(x)

s2(x)

10

Figure 2.4: Second help function, , pair of opposite convex and concave

functions.

The approximation of a function which is composed of two parabolic

curves can be performed by normalizing each curve in the interval 0 to 1 on

x axis. In order to map the input x to the normalized parabolic curve, x can

be replaced with x’ as shown in (2.10).

 (2.10)

The approximation of each parabolic curve is performed as described in

Section 2.1.3. In order to approximate the third sub-function, is

calculated when

 and is calculated when

 as

given in (2.11).

 (2.11)

0 0.2 0.4 0.6 0.8 1
0.996

0.997

0.998

0.999

1

1.001

1.002

1.003

x

f 2(x
)

11

A larger number of n results in higher number of convex and concave

functions. The methodology can be generalized to calculate the n
th

 help

function as shown in (2.12).

 (2.12)

Using these partial help functions, the corresponding sub-function are

developed. The sub-function is also divided into partial sub-functions as

given in (2.13).

 (2.13)

In the same way, the input x is substituted by xn to map the input to the

normalized parabolic curve.

 (2.14)

Similar to the second sub-function given in (2.8), the start value of each of

the partial help function is 1 and the end value of each partial help function,

 , interval is also 1. Therefore, the gradient, , of each sub-

function is 0. This enables to reduce the sub-function as shown in (2.15).

 (2.15)

The coefficients, , are calculated in such a way to satisfy the quotient

between help function, , and the partial sub-function, , is

equal to 1, when xn is equal to 0.5.

12

 (2.16)

2.2 Interpolation

Interpolation is a method of finding new data points from a set a known

data points.

2.2.1 Linear Interpolation

Linear interpolation is the simplest method of interpolation. It takes two

data points to construct the value of new data points. The classical linear

interpolation for two data points is shown in (2.17).

 (2.17)

In (2.17), is the starting and is the ending breakpoint of

each interval. and are the respective value at these

breakpoints [14]. Linear interpolation using two intervals is shown in Fig.

2.5. It can be seen that
 for first interval and

for the second interval. Equation (2.18) shows the corresponding values.

 (2.18)

More intervals can be used for better accuracy, e.g. four intervals, that give

the breakpoint values as shown in (2.19). For the sake of hardware

architecture, breakpoints are always the power of number 2 [14].

 (2.19)

For more intervals, equation (2.17) can be modified as shown in (2.20).

13

Figure 2.5: Linear interpolation of a normalized function

 (2.20)

Where is the number of intervals. For example, for we get (2.21)

 (2.21)

Or (2.22)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Original Function

Interpolated Function

Second Interval

First Interval

14

(2.22)

A good property of (2.22) is that the denominator is always “1” as division

is not suggested for a hardware design. It is appreciated for other more

hardware reasons as well. For intervals, the linear interpolation is shown

in (2.23) [14].

 (2.23)

2.2.2 Non-linear Interpolation

This thesis work is about parabolic synthesis and non-linear interpolation.

The non-linear interpolation follows the same idea as the linear

interpolation, with the difference that the approximations in the intervals

are parabolic functions [14].

 (2.24)

15

The second stage (2.24) is a non-linear interpolation of the first help

function, where index stands for the intervals in which the interpolation

is performed. The interval index is a power of 2, which gives the number

of intervals, i.e. 1, 2, 4, 8, 16 and so on. For instance, in the case of 2, there

will be two intervals, the first and the second

 in a normalized space .

The index , in (2.24), shows that the term in the interpolation stage is

dependent in the number of intervals used in the interpolation. The term

is affected in such a way that when two intervals () are used in the

interpolation then the most significant bit is thrown away. When four

intervals () are used in the interpolation then the two most significant

bits are thrown away in the x term. The second sub-function can be divided

into two parts, a linear part shown in (2.25) and a non-linear part as shown

in (2.26) [14].

 (2.25)

 (2.26)

In (2.25) there are two coefficients for interpolation in each interval, a

starting point, , and a gradient, . The starting point of an interval for

the interpolation can be calculated by placing the value of x for the starting

point of the interval , to the first help function, [14].

 (2.27)

The second coefficient, , is the gradient of the interval in which the

interpolation is being performed. The gradient is calculated by subtracting

the end point value, , from the start point value, , of the

interval [14].

 (2.28)

As it is mentioned before that the intervals are normalized, so there is no

denominator needed.

16

In (2.26), is calculated in advance so that the second sub-function,

 , for the corresponding interval cuts the first help function, , in

the middle of the interval i. therefore it satisfies the middle point, ,

for , as shown in (2.29) [14].

 (2.29)

In (2.30) we have a simplification of (2.24). This simplification reduces an

adder in hardware implementation.

 (2.30)

Where

 (2.31)

2.3 Parabolic Synthesis Combined with Interpolation

The drawback with parabolic synthesis is that if we want to increase the

accuracy of the approximated function, the number of sub-function needs to

be increased which in the result will increase the complexity of the

hardware. In this thesis work, Parabolic Synthesis is combined with non-

linear interpolation. In this case, only two sub-functions are required to get

the same accuracy as in parabolic synthesis. So the equation (2.1) can be

reduced to equation (2.32).

 (2.32)

This will decrease the hardware significantly. Another benefit of combining

the parabolic synthesis with non-linear interpolation is that this approach

will make it easy to adjust the error behavior of the approximation [7].

Therefore the first sub-function, , is used to calculate the initial value

17

of approximation and second sub-function, , is used to get the desired

accuracy depending on the number of intervals used in the interpolation.

The approximation of the function can be implemented with two stages.

The first stage is implemented according to first sub-function as shown in

(2.5). The second stage can be implemented using non-linear interpolation

as shown in (2.24). The first sub-function, is constructed as parabolic

synthesis as described in section 2.1.2 and second sub-function, will

be constructed as non-linear interpolation as described in section 2.2.2. The

original function (2.32) will become (2.33).

(2.33)

In (2.33), 2,i index represents the interval in which the interpolation is

performed. The interval index, i, is a power of 2, which results in the

number of intervals equal to 1, 2, 4, 8, and so on. The index w shows that

the x term in the interpolation stage is dependent on the number of

intervals. The x term is modified in such a way that when four intervals are

used in the interpolation, then the two most significant bits are thrown away

in the x term, i.e. 2 left shifts in the hardware. The truncation in (2.34) is

performed in order to normalize the interval for second sub-function.

 (2.34)

The removed integer part is used to decode in which interval of second sub-

function the interpolation is performed. This integer part is used as an

address to fetch the corresponding coefficients in the specific interval in the

hardware.

The second sub-function is divided in partial sub-functions as shown in

(2.35).

18

 (2.35)

As it can be seen that x is changed to , which means that the partial sub-

function of second sub-function, , have equal range.

19

CHAPTER 3

3 Hardware Architecture

The hardware architecture of the methodology can be divided into three

parts i.e., preprocessing, processing, and post processing. It was introduced

by P.T.P Tang [1]. The preprocessing and post processing is the

transformation stages and in processing part, the original function, ,

is calculated [16].

Processing

Postprocessing

Preprocessing

v

x

y

z

Figure 3.1:Three stage Architecture

20

3.1 Preprocessing

In the preprocessing part, the input signal v is normalized to prepare it for

the processing part. For example an input signal sin(v) that lies between the

interval 0 to

, will be normalized and converted into an output x that lies

between the interval 0 to 1. This is performed by multiplying it with

 [16].

3.2 Processing

In the processing part, the original function, , is approximated that

results in an output y. In this section the processing part for parabolic

synthesis will be discussed first and then parabolic synthesis with non-

linear interpolation will be discussed.

3.2.1 Parabolic Synthesis

Fig. 3.2 shows the basic architecture of the loop unrolled parabolic

synthesis with four sub-functions. This architecture has an advantage of fast

computation speed at the cost of large chip area [7].

s1(x)

S2(x)

S3(x)

S4(x)

x

x

x

x

y

Figure 3.2: Basic hardware for loop unrolled architecture

21

The detailed hardware architecture of loop unrolled parabolic synthesis

with four sub-functions is given in Fig. 3.3.

X2

X3
2 x

x

x

x

y

x+

x

+

c1

X4
2

c2

+

1

x+ +

c3,1i

X3

X3
2 1

x+ +

c4,hh

X4

X4
2 1

-

-

Figure 3.3: Detailed hardware architecture for 4 sub-function parabolic synthesis

In this architecture, (x-x
2
) part is same for both first sub-function and

second sub-function. The output of this part is multiplied with for first

sub-function, , and with for second sub-function, [7]. In the

first sub-function, , after the multiplication with , the x-value is

added to it. However, in the second sub-function, , after the

multiplication with , a 1 is added. A special squaring unit is designed to

calculate the partial products of x3
2

and x4
2
. The latency and chip area can

22

be significantly reduced by designing this squaring unit, in comparison to

using separate multipliers for each product. The index i, in the Fig. 3.3, are

the most significant bits which help to determine the coefficient for the

interval. Similarly, the index h in the fourth sub-function is the two most

significant bits of x and it helps as an address for value of coefficients

in the four intervals. The value of first and second sub-function is

multiplied in parallel with the third and fourth sub-functions. The result of

these two multiplications is multiplied with each other to compute the value

of y [7].

3.2.2 Parabolic Synthesis with Non-Linear Interpolation

The processing part of parabolic synthesis combined with non-linear

interpolation can be graphically visualized in Fig. 3.4. This architecture is

designed to calculate a single function.

 X2

x

xw

xw
2

-

-

c2,i

j2,i

l2,i

c1

x

x

x

x

+

+

+

+

y

Figure 3.4: Architecture of parabolic synthesis with non-linear interpolation

23

The result of is multiplied with in the first sub-function, ,

and the result is added to . As mentioned before, second sub-function is

implemented as non-linear interpolation and it consists of three look-up

tables, i.e. , and for each interval . The coefficient is

multiplied with which is the normalized value for corresponding

interval. The results of this multiplication is added to . The partial

product of , i.e.
 is multiplied with . The result of this

multiplication is subtracted from the result of addition of

[14]. The results of both sub-functions are multiplied with each other to

compute the value of y.

The design contains four adders, four multipliers and one squarer block.

Instead of using a multiplier a squarer block is specially designed to

produce all the partial products needed to compute and
 [14]. A

simplified version of a 6-bit squarer block can be seen in Fig. 3.5.

x5 x4 x3 x2 x1 x0

x5 x4 x3 x2 x1 x0

x5x4 x5x3 x5x2 x5x1 x5x0 x4x0 x3x0 x2x0 x1x0 0 x0

x5 x4x3 x4x2 x4x1 x3x1 x2x1 x1

x4 x3x2 x3x2 x2

Figure 3.5: Specially designed 6-bit squarer

3.3 Post processing

The post processing stage is used to transform the value z from the output

of processing stage i.e., y to the desired format in order to fulfill the

approximation.

24

25

CHAPTER 4

4 Error Evaluation

The performance of any algorithm is characterized by its error behavior.

Since the parabolic synthesis is an approximation based method, the error

behavior holds a vital importance. An example of the error behavior for

sine function using Parabolic Synthesis methodology is shown in Fig. 4.1.

Figure 4.1: Error behavior for Parabolic Synthesis

There are five different metrics that can be used to characterize the error

behavior [13] [14]. These metrics are as follow.

 Maximum Absolute Error

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-4

-3

-2

-1

0

1

2

3

4
x 10

-5

E
rr

or

x

26

 Mean Error

 Standard Deviation

 Root-Mean-Square

 Median Error

4.1 Error Metrics

A brief description of the error metrics are given below. For detailed study,

readers are referred to [12][13].

4.1.1 Maximum Absolute Error

The difference between the approximated value and the actual value is

called the absolute error . Absolute error is shown in (4.1).

 (4.1)

It is the maximum value that is calculated in the interval where the error is

investigated [14].

4.1.2 Mean Error

For numbers of separate values in a specific sequence of errors, the mean

error can be seen in (4.2).

 (4.2)

In other words, it is the average of the absolute error of a sequence of

numbers [14].

4.1.3 Standard Deviation

The standard deviation is used to calculate the amount of change in a value

from its expected value. The difference between standard deviation and

average deviation is that the average value is calculated with power instead

27

of amplitude. In order to calculate the standard deviation, the deviations are

squared before averaging. It is defined in (4.3) [14].

 (4.3)

4.1.4 Median Error

The median error is used to calculate the middle value for a given

sequence of errors. If the sequence contains odd number of samples the

median error is the middle sample and if the sequence contains even

number or samples, median error is the mean of the two middle samples.

For example, for a sequence , the median error can be

calculate as (4.4) and (4.5) [14].

 If is odd (4.4)

 If is even (4.5)

4.1.5 Root-Mean-Square

In order to calculate the deviation of a sinusoidal signal, Root-Mean-Square

(RMS) value is used. This error metric is widely employed in electronics

where both AC and DC values of a signal need to be measured. It is the

square root of the average of squared difference between the approximated

value and the actual value [14].

 (4.6)

4.2 Error Distribution

There are two development strategies that can be employed while

developing an approximation. These are least square approximation and

least maximum approximation. Least squares approximation is used to

28

minimize the average error and least maximum approximation is used in

order to minimize the maximum error. Least square approximations are

suitable when the approximated function is to be used in a series of

computations. It is also important to investigate the error distribution so that

the error of approximation is not of unilateral polarity [13] [14].

In order to evaluate error distribution evenness, standard deviation is

compared with RMS. The error distribution is even if both the values are

equal. The error behavior of sine function in Fig. 4.2 provides a good

example of the error behavior methodologies explained in this Chapter. The

manner of error distribution shows that the approximated value oscillates

around the original function and is evenly distributed around zero [12] [13].

A diagram to visualize the error distribution is shown in Fig. 4.2.

-3.2e-05 0.0e-05 3.2e-051.6e-05-1.6e-05

Figure 4.2: The distribution of error between original function and the

approximation

29

CHAPTER 5

5 Architecture and Coefficients

Approximation

The objective of this thesis work is to design and implement the

approximation of the sine and cosine functions in all quadrants i.e., 360˚.

The approximation is implemented using two stages of parabolic synthesis.

The first stage is implemented using parabolic synthesis methodology and

second stage is implemented as a non-linear interpolation as described in

section 3.2. In this chapter, the hardware architecture to implement sine and

cosine functions using parabolic synthesis and non-linear interpolation

technique will be discussed. A methodology is also described to calculate

the coefficients for the second stage of approximation, i.e. non-linear

interpolation.

5.1 Architecture

As described in chapter 3, the hardware architecture of the methodology

consists of three parts i.e., preprocessing, processing, and post processing.

This architecture will compute the sine and cosine functions based on the

input signal v and produce the output z sine and z cosine. The block diagram of

the architecture is given in Fig. 5.1.

30

Output conversion for sine
(post processing)

x

 ysin

v

zsine

Approximation
(Processing)

Output conversion for
cosine

(post processing)
zcosine

 Ɵ0

 Ɵ1Ɵ0

Output
Multiplexers

13 12 1114 2 1 0

 Ɵ1 Ɵ0 ysos

 ysin’

 ycos’

...
v

x

Figure 5.1: Block diagram of the architecture

As shown in the Fig. 5.1 the normalized input signal v in the interval, 0 to

2 , converted into the input x. The two most significant bits, , of the

input signal, v, are taken away and used as an enable signal for the output

multipliers and two’s conversions. The rest of the bits are used as input

signal, x, for the approximation (processing) block. The processing block

performs the approximation and multiplications for the sub-functions of

sine and cosine approximations. The approximated output, ysin and ycos,

from the processing block goes to the output multiplexers and new, ysin’ and

ycos’, are chosen depending on the input quadrant. The sign of the new, ysin’

and ycos’, values are changed in the output conversion blocks by using,

 , as enable signals to produce the output , zsin and zcos.

5.1.1 Preprocessing

A normalized input to the system, v, is expressed in 15 bits, which means

that the input signal is divided in 0 to 2
15

– 1 steps. The maximum input to

the system is ‘1111111111111112’ which corresponds to a normalized

angle of 3.99999 in decimal. Therefore, the function of pre-processing

block is to remove the two MSBs (integer part) and send the rest of the bits

as x value to the processing part.

31

13 12 11 1014 8 7 6 59 3 2 1 04

v

x Ɵ1 Ɵ0

Figure 5.2: Pre processing block

5.1.2 Processing

In the processing part, the original function, , is approximated that

results in output ysin and ycosine. In this architecture, only two sub-functions

are required to get the same accuracy as in parabolic synthesis. Therefore

the equation (2.1) can be reduced to (5.1).

 (5.1)

The approximation of sine and cosine functions is given in (5.2) and (5.3).

The angle is the normalized fractional part of . It can be seen that only

the first sub-function, , differs for both sine and cosine functions [14].

 (5.2)

 (5.3)

32

The original function, , for both sine and cosine will become as

shown in (5.4) and (5.5) respectively.

 2 (5.4)

 2 (5.5)

It can be seen that both the first and second sub-functions for sine and

cosine are identical. There is one extra subtraction in the first sub-function

for cosine. The second sub-functions for sine and cosine are similar and the

only difference in second sub-functions is that they use different set of

coefficients. Therefore both the sub-functions can be combined in parallel.

The multiplications of these sub-functions with their corresponding sub-

functions produce the result for sine and cosine functions simultaneously.

In this way, the hardware for a multiplier, adder and another special squarer

can be saved.

5.1.3 Post Processing

In the post processing block, the output from the processing block is

converted in order to get the desired results. The output of the processing

block, ysin and ycos, are the approximated result from the processing stage in

the range 0 to 1 for an input x. However, the actual quadrant of any output

is unknown since the computations are performed in first quadrant. The

output, ysin and ycos, has to be transformed back to their actual values in

their respective quadrants which is determined using bits that come

from preprocessing block.

In order to change the output from processing block to its corresponding

quadrant, for both sine and cosine, output multiplexers are used that

determine the new, ysin’ and ycos’, values based on the input quadrant. The

33

input quadrant is determined using, , as enable signal for multiplexers.

The sign of the new, ysin’ and ycos’, values needs to be changed as well. The

sine function is positive in first and second quadrant, therefore, no

conversion is needed. However, it is negative is third and fourth quadrant,

therefore the sign needs to be changed. This is achieved by a two’s

complement conversion at the final stage, where is used as an enable

signal for two’s complement conversion.

Similarly, cosine function is positive in first and the fourth quadrant and

negative in second and third quadrant, therefore, we need to change the sign

of the ycos’ value for the second and third quadrants. This conversion can

easily be performed by using as a control signal for the sign

conversion in the respective quadrants. The Table I shows when we need to

transform the outputs for sine and cosine depending on the integer part,

 , coming from the preprocessing stage [14].

TABLE I: OUTPUT TRANSFORMS

Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4

Sine + + - -

Cosine + - - +

The architecture of two’s complement conversion for sine function is

shown in Fig. 5.3. Half adders (HAs) and XOR gates are used in the

architecture. For example, in order to calculate the z value for trigonometric

identities, a control signal or will be used for the conversion

of sine or cosine function respectively [14].

34

HA HA HA HA HA

Figure 5.3: Two’s complement architecture for sine function

5.2 Coefficients Approximation

In order to implement the approximation of trigonometric functions, sine

and cosine, we need to develop the first help function. The first help

function, , is the function from which the non-linear interpolation is

developed from. The first help function, for the sine function, is developed

according to (5.6).

 (5.6)

35

Figure 5.4: First help function, .

5.2.1 Linear part

The linear part of the interpolation consists of two coefficients for each

interval, a starting point, , and a gradient, . In (2.24), is the starting

point of an interval of the interpolation, which is computed by inserting the

value of for the starting point of the interval, , in the first help

function [14].

 (5.7)

In (2.24), is the gradient for an interpolation interval. The gradient

for an interval is computed as the end point value of the function ,

subtracted with the start point value of the function of an

interval. Since the interval is normalized to one, no denominator is needed,

as shown in (5.8) [14].

 (5.8)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

x

f 1(x
)

36

The coefficients for the linear part of the interpolation are calculated

according to (5.7) and (5.8) for four intervals, i.e. . The result of linear

interpolation is shown in Fig. 5.5.

Figure 5.5: First help function and the linear interpolation of the first help

function.

5.2.2 Non-linear part

In (2.24), is pre-computed so that the sub-function for the interval ,

 , cuts the function , in the middle of the interval when

 , which satisfies the point for , as shown in (5.9).

 (5.9)

If we subtract the linear interpolation of first help function from the first

help function, it will generate a function with a parabolic looking function

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

x

f 1
(x

)

First help function

Linear Interpolation

37

in each interval as shown in Fig. 5.6. The coefficients for the non-linear

part of the interpolation are calculated in according to (5.9).

Figure 5.6: Approximation of the difference of first help function subtracted with

the linear interpolation of first sub-function

The peak value of each curve represents the corresponding coefficients

of each interval. The rest of the coefficients, i.e. , , and are also

calculated using the equations (5.7), (5.8), and (5.9) . Similarly, the

coefficients for cosine function can also be calculated in Matlab [14]. The

approximated coefficient values for both sine and cosine function are listed

in Table II and Table III respectively.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8
x 10

-3

x

f 1(x
)

-
Li

ne
ar

 I
nt

er
po

la
tio

n

C
2,4

C
2,3

C
2,1

C
2,2

38

TABLE II: COEFFICIENT VALUES FOR SINE FUNCTION

Coefficients Value in decimal

 0.0199535148492645, 0.0237052129326976,

 0.0267498465570153, 0.0289774221630130

 1.000000000000000, 1.071895094550420,
 1.100234394764010, 1.078018196966255

 0.287477578201686, 0.113380000854360,
 -0.088843391191025, -0.312024187865020

TABLE III: COEFFICIENT VALUES FOR COSINE FUNCTION

Coefficients Value in decimal

 0.0289774221630130, 0.0267498465570153,

 0.0237052129326976, 0.0199535148492645

 1.000000000000000, 1.078018196966255,
 1.100234394764010, 1.071895094550420

 0.312024187865020, 0.088843391191025,
 -0.113380000854360, -0.287477578201686

These coefficients are used to approximate the sine and cosine functions.

The design and hardware implementation of these functions using the

coefficients values given in Table II and Table III is explained in chapter 6.

39

CHAPTER 6

6 Hardware Design

In this thesis work, Parabolic Synthesis is combined with non-linear

interpolation to implement the approximation of sine and cosine functions.

The design is implemented using two stages of parabolic synthesis, i.e.,

parabolic synthesis and non-linear interpolation as discussed in chapter 5.

In this chapter, the hardware structure of the combined methodology is

discussed. There are two sub-functions that are used to get the same

accuracy as in parabolic synthesis. Therefore the equation for original

function, , can be written as

 (6.1)

The first sub-function, , is constructed as parabolic synthesis as

described in section 2.1.2 and second sub-function, , will be

constructed as non-linear interpolation as described in section 2.3.

The hardware design is divided into three different parts, i.e. preprocessing,

processing and post processing. In the preprocessing part the two most

significant bits are removed from the signal. The implementation of

approximation of the original function, , is performed in processing

part. In this part, the parabolic synthesis is combined with non-linear

interpolation [14]. In the post processing part, the output from the

processing block is converted back to its original value.

40

6.1 Preprocessing

The parabolic synthesis uses the already normalized input v. As described

in section 5.1.1, the input transformation is performed in the pre processing

block where the integer part i.e., two most significant bits, , are taken

away. is used as an input for the multiplexer to select the corresponding

output for the multiplexer depending on the input quadrant. This integer

part, , is also used as an enable signal to determine the two’s

complement transformation in the post processing stage.

xv
13 12 1114 2 1 0

 Ɵ1 Ɵ0

...
v

x

Figure 6.1: Pre processing block

6.2 Processing

When performing the approximation of the sine and cosine functions only

the approximation of first quadrant needs to be done. In order to design the

whole unit circle, the first quadrant of function can be reused with some

additional hardware. The first help function, , for sine and cosine is

shown in equation (6.2) and (6.3) [14].

 (6.2)

 (6.3)

41

It can be seen that both the sub-functions can be combined in parallel to

produce the result for sine and cosine functions simultaneously. It should be

noted that the coefficient for both sine and cosine is same. The

architecture for calculating the first sub-function for sine and cosine

functions based on parabolic synthesis methodology is shown in Fig. 6.2.

x+

+

+

 x2

+

1

 c1

x -

sine s1

cosine s1

-

Figure 6.2: First sub-function architecture for sine and cosine

The calculation of the first coefficient for the since function is shown in

(6.4) [14].

 (6.4)

The multiplication in Fig. 6.2, uses a fixed multiplier so it can be

replaced with simple shift and add operations. In the same way, the addition

of “1” is simply a matter of routing wire in hardware [14].

Since we have power of two numbers, we can use the left fractional bits as

address bits to look-up-table for the coefficient selection. The bits can be

separated by AND no-of-bits. However, in hardware it is simply a

question of routing wires. For example, if we have two intervals, we

separate one bit only, i.e. if the fractional MSB bit is “0”, the left interval is

addressed and if the MSB is “1”, the right interval is used. For four

42

intervals, we get the four addresses “00”, “01”. “10”, and “11”, e.g. if

we have , the third interval will be addressed [14].

The remaining bits are used as a new “x-value”, which is ,

where t is the two MSBs of x. For the above example, , we

thus get , which are the remaining bits of shifted two times

to the right. The t bits will be used as address bits for the coefficient i.e.,

 , , and tables.

The second help function for both sine and cosine will remain the

same and is shown in (6.4) and (6.5).

 (6.4)

 (6.5)

The term
 is the square of partial product which comes from the special

squarer designed in the project to produce the outputs x
2
 and

simultaneously. Similar to first sub-function, the hardware of second sub-

function can also be joined to share some part of hardware. In this way, the

area for an adder can be saved. Fig. 6.3 shows the second sub-function in

the improved architecture, based on non-linear interpolation [14].

43

+

++

l2,ic

c2,is

sine s2

cosine s2

 xw

 i

x

x

+

l2,is

c2,ic

j2,ic

j2,is

x
+

-

x

xw
2

 i

 i

 i

 i

 i

 i

Figure 6.3: Hardware design for combined second sub-function

Finally, the outputs from first sub-function block and second sub-function

block are multiplied together to calculate the output of processing block for

both sine and cosine simultaneously.

x

Sine s1

Sine s2

x

cosine s1

cosine s2

sine q1

cosine q1

Figure 6.4: Multiplication of outputs from first and second sub-function blocks

44

6.3 Post Processing

As explained in section 5.1.3, all the calculations are performed in first

quadrant. Therefore the output needs to be transformed back to their actual

quadrants. This is achieved by transforming the outputs sineq1 and cosineq1

from the processing to their original quadrant. This is done by using a

multiplexer and using as an enable signal as shown in Fig. 6.5. the sign

of the output from these multiplexers is changed by performing two’s

complement conversion. For the cosine output is used as an

enable signal to ensure that the cosine output is positive in first and fourth

quadrant and negative in second and third quadrant. Similarly, is used as

an enable signal for the two’s complement conversion for the sine signal

which ensures that the sine is positive for sign of the output is positive in

first and second quadrant and negative in third and fourth quadrant.

Two’s

Compl

sine q1

cosine q1

cosine(x)

Two’s

Compl

sine q1

cosine q1

sine(x)

Figure 6.5: Post processing architecture for all four quadrants

45

6.4 Final Architecture

In order to compute the sine and cosine approximations, the architecture in

Fig. 6.6 is used in the thesis work [14].

v
13 12 1114 2 1 0

 Ɵ1 Ɵ0

...
v

x

cosine(x)

Two’s

Compl
sine(x)

x

x

Two’s

Compl

+

++

l2,ic

c2,is

 x2

 i

x

x

+

l2,is

c2,ic

k2,ic

k2,is

x
+

-

x

xw
2

 i

 i

 i

 i

 i

 i

x+

+

+

 x2

+

1

c1

-

x

x

Figure 6.6: The final architecture

The architecture consist of multipliers, one special squarer block, adders,

two two’s conversion converters, and two multiplexers. The input, x, from

preprocessing block goes to first and second sub-function blocks i.e., the

processing part. The output for first sub-function for both sine and cosine

functions is multiplied with the respective output from the second sub-

function block. These multiplications produce intermediate results, sineq1

and cosineq1 from processing block. These intermediate values need to be

converted into the desired results, which depends on the transformation of

the quadrant in preprocessing stage. Therefore, two multiplexers are used

the convert them into their respective quadrants and two’s complement

46

conversion is performed in order to change their signs, in the post

processing stage, to get the final results.

The critical path of the design is given in Fig. 6.7.

Figure 6.7: Critical path of the design

The critical path of the hardware goes through

 One squarer

 Two multipliers

 Two adders

 One Multiplexer

 One two’s conversion converter

6.5 Word Lengths

The input word length for the hardware design is 15 bits. As shown in (6.6),

all possible input values should be tested at the end.

47

 (6.6)

For hardware design, these integer values are not longer than 15 bits and

they are not needed to be truncated. However, the values needs to be scaled

down to a 0 to 90 degree scaled as shown in (6.7) [14].

 (6.7)

Since 90 degrees are not allowed, the maximum input value is shown in

(6.8).

 (6.8)

All the operations in VHDL are performed in floating point and the

numbers are expressed as signed. Therefore it will add an extra bit to all the

signals going to adders. Fig. 6.8 shows the internal word lengths of all the

signals in the hardware design.

48

v
13 12 1114 2 1 0

 Ɵ1 Ɵ0

...
v

x

cosine(x)

Two’s

Compl
sine(x)

x

x

Two’s

Compl

+

++

l2,ic

c2,is

 x2

 i

x

x

+

l2,is

c2,ic

k2,ic

k2,is

x
+

-

x

xw
2

 i

 i

 i

 i

 i

 i

x+

+

+

 x2

+

1

c1

-

x

x

15 bits

15 bits

15 bits

14 bits

14 bits

16 bits 16 bits

16 bits

16 bits

17 bits

17 bits

17 bits

18 bits
18 bits 18 bits

18 bits

18 bits

18 bits

18 bits

18 bits

18 bits

11 bits

11 bits

12 bits

12 bits
12 bits

12 bits

12 bits

13 bits

13 bits

14 bits

Figure 6.8: Internal word lengths of the design

The word lengths of the coefficients in Table II and Table III can also be

optimized. The coefficients are greater than 1 so there will be 16 bits

needed to express them in binary numbers plus an extra bit for signed

number. However, when these numbers are truncated and converted into

binary number there are many zeroes in the LSBs. These zeroes can be

ignored in hardware which leaves 12 bits representation for coefficients.

A 15-bit signed representation is used for coefficients and

coefficients are expressed in 11-bit signed numbers. This will help greatly

to reduce the area for multipliers and adders. The optimized and truncated

coefficient values for sine and cosine functions are given in Table IV and

Table V respectively.

49

TABLE IV: TRUNCATED COEFFICIENT VALUES FOR SINE

FUNCTION

Coefficients Value in decimal

 0.570556640625

 0.01953125, 0.0234375,

 0.0263671875, 0.02880859375

 1.0000000000, 1.07177734375,
 1.1009765625, 1.07763671875

 0.287506103515625, 0.1134033203125,
 -0.088836669921875, -0.312042236328125

TABLE V: TRUNCATED COEFFICIENT VALUES FOR COSINE

FUNCTION

Coefficients Value in decimal

 0.570556640625

 0.02880859375, 0.0263671875,

 0.0234375, 0.01953125

 1.00000000000000, 1.0780029296875,
 1.10020446777344, 1.07186889648438

 0.312042236328125, 0.088836669921875,
 -0.1134033203125, -0.287506103515625

50

51

CHAPTER 7

7 Implementation and Error Behavior

Based on the methodology described in Chapter 2, 3, 5, and 6, a reference

model for the approximation is implemented in MATLAB and

implemented in hardware using VHDL. In this way the functional behavior

is of the design is verified. The coefficients in Table IV and Table V are

used in the design. Fig. 7.1 shows the approximated sine and cosine

functions and their error behavior in decibel.

Figure 7.1: Approximation of sine and cosine functions and the error

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5

0

0.5

1

Sinus

Cosinus

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-250

-200

-150

-100

-50

E
rr

o
r

S
in

u
s
:

-9
1

Sinus Error in dB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-250

-200

-150

-100

-50

E
rr

o
r

C
o
s
in

u
s
:

-9
0

Cosinus Error in dB

52

7.1 Optimization

In order to increase the accuracy of the approximation, the coefficients, ,

 , and in the second sub-function, , need to be optimized. The

optimization helps to characterize the behavior of the error. The

optimization must be performed in parallel with the truncation and the

evaluation of word lengths. For a better understanding, truncation effects

are not taken into consideration in this section.

The second sub-function is given in (7.1).

 (7.1)

The optimization strategy can be performed on all 12 coefficients of the

second sub-function, , using four intervals. Since the coefficients

through adjust the height of the parabolic part of the second sub-

function, the optimization is primarily performed on these coefficients.

Figure 7.2: The absolute accuracy in bits of approximation, before and after

optimization

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10

15

20

25

B
it

s
o

f
A

c
c
u

ra
c
y

x

After Optimization Before Optimization

53

As it can be seen in Fig. 7.2, there is a reduction of a half bit for the largest

error in the interval, . However, there is a negligible

improvement in terms of largest error of approximation. During the

hardware design, the optimization is performed on bit level [7].

7.2 Truncation

All the coefficients and signals in the MATLAB reference model need to be

truncated since it is implemented exactly like the hardware architecture

implemented in VHDL. The word length of the coefficients can be

optimized in such a way that the system does not lose its precision. All the

signal need to be truncated in such a way that the MATLAB model is an

exact mirror of ASIC implementation. For example, a calculation

Should be implemented like this

7.3 Error Behavior

In order to provide the greater resolution and better understanding of the

results, a logarithmic scale is used. The logarithmic unit is decibel (dB) and

the binary numbers can be related to each other as shown in (7.2).

 (7.2)

This shows that 6dB is equal to 1 bit of resolution. For example, an error of

0.001 is same as 20log (0.001) = 20*(-3) = -60dB. We can transform it into

bits, which gives the error 60/6 = 10 bits or less [14].

54

The error behavior of the Parabolic Synthesis combined with Non-Linear

Interpolation can be seen in Fig. 7.3. The error is calculated by subtracting

the sine function approximation from the original sine function after the

truncation.

Figure 7.3: Error behavior of sine function after truncation

It should be noted that the approximated value oscillates around the original

function in the desired manner and it confirms that the error is evenly

distributed around zero.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-4

-3

-2

-1

0

1

2

3

4
x 10

-5

E
rr

o
r

S
in

u
s
:
-8

9
.0

7
9

1

55

TABLE VI: THE ERROR METRICS FOR THE TRUNCATED AND

OPTIMIZED IMPLEMENTATION

Error Metrics Value Bits

Maximum Absolute Error 0.00003600399789538 14.84

Mean Error -0.0000006352127232 20.65

Median -0.0000018745591403

Standard Deviation 0.00001891092717920

Root Mean Square 0.00001891104738872

Table VI shows that the resolution of the algorithm is almost 14.84 bits,

which is very close to the required resolution for this thesis work. The mean

error is very small. It should be noted that the standard deviation and root

mean square values are almost identical which indicates that the error of

approximation is evenly distributed around zero.

56

57

CHAPTER 8

8 Results

The approximation for Parabolic Synthesis and Non-Linear interpolation is

implemented in stm65 CMOS technology. The design is simulated and

compared for speed, area, and power consumption. The design is

implemented in VHDL and the synthesized code is simulated for different

standard libraries in Design Vision. Low Power High (LPHVT) and Low

Power Low (LPLVT) transistors are used in with different supply

voltages, = volts. This chapter describes the speed,

area, and power consumption of the system and comparison with other

methodologies.

8.1 Synthesis

The synthesis is performed in a design tool called Design Vision by

Synopsis. During the synthesis a gate level netlist is generated from the

VHDL design using STMicroelectronics 65nm Technology. This netlist is

analyzed for speed, area, and power consumption. The results of different

parameters are described below.

8.1.1 Area Results

The minimum area of the design is estimated by setting the area design

constraint to zero in Design Vision. The minimum area results of the design

for different libraries of Low Power High (LPHVT) and Low Power

Low (LPLVT) for supply voltages, = volts are

given in the Table VII.

58

TABLE VII: MINIMUM AREA RESULTS FOR LPHVT AND

LPLVT

 LPHVT LPLVT

Voltage (V) 1.00 1.10 1.20 1.00 1.10 1.12

Area () 15953 15974 15966 16132 16592 17056

Figure 8.1: Minimum area results in a bar graph

The area for different sub-functions and output multiplier can be seen in the

Table VIII: The Area Results for Individual Blocks in Design for LPHVT

@ 1.2 Volts. The synthesis is performed with Low Power High

(LPHVT) library at a supply voltage of = 1.2 volts.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1.00 V 1.10 V 1.20 V 1.00 V 1.10 V 1.20 V

LPHVT LPLVT

Area (μm²)

Area (μm²)

59

TABLE VIII: THE AREA RESULTS FOR INDIVIDUAL BLOCKS IN

DESIGN FOR LPHVT @ 1.2 VOLTS

Block Area (μm²) Percentage (%)

First Sub-function 2433 15.23

Second Sub-function 8448 52.91

Output Multipliers 3992 25

Output Conversions 575 3.6

In/out Registers 518 3.24

Total 15966 100

For better understanding the individual blocks can be identified in Fig 8.2.

+

++

l2,ic

C2,is

x

 x2

 i

x

x

+

l2,is

C2,ic

k2,ic

k2,is

x
+

-

x

xw
2

 i

 i

 i

 i

 i

 i

x+

+

+

 x2

+

1

 C1

-

cosine(x)

Two’s

Compl
sine(x)

x

x

Two’s

Compl

Second Sub-function

First Sub-function

Output Multiplier

Output Conversion

Figure 8.2: Different modules in the design

60

For the sake of comparison with previous work, we can approximate the

area needed to calculate single function e.g., sine from the Table VIII. A

rough calculation is given in Table IX.

TABLE IX: APPROXIMATED AREA FOR SINGLE FUNCTION

Module Approximated area (μm²)

First Sub-function 2400

Second Sub-function 4224

Output Multipliers 2000

Two's Conversions 300

In/out DFFs 300

Total 9224

Figure 8.3: Approximated area for one function

8.1.2 Timing/Speed Results

The maximum speed of the design is calculated by setting the timing

constraint in design vision to 1 ns. This gives an x value of negative slack

26%

46%

22%

3%

3%

First Sub-function

Second Sub-function

Output Multipliers

Two's Conversions

In/out DFFs

61

for the critical path. The x value is added to 1 ns and the simulation is

performed again unless the slack is zero.

TABLE X: SPEED RESULTS FOR LPHVT AND LPLVT AT

NORMAL CONSTRAINST

 LPHVT LPLVT

Voltage (V) 1.00 1.10 1.20 1.00 1.10 1.20

Speed (MHz) 30.91 42.51 52.96 73.52 86.50 100.20

Time (ns) 32.35 23.52 18.88 13.60 11.56 9.98

Figure 8.4: Frequency results for LPHVT and LPLVT

It can be seen that LPLVT transistors are considerably faster than LPHVT

transistors. The maximum frequency using LPHVT transistor is 135.5 MHz

at 1.20 volts of supply voltage where as in case of LPLVT transistors it is

265.25 MHz at the same voltage.

8.1.3 Power Results

The power dissipation in a CMOS transistor consists of two sources given

by (8.1).

0

20

40

60

80

100

120

1.00 V 1.10 V 1.20 V 1.00 V 1.10 V 1.20 V

LPHVT LPLVT

Frequency (MHz)

62

 (8.1)

The dynamic power is the total switching power and the internal power. It

depends on the charging and discharging of the capacitances, switching

activity, supplied voltage and the operating frequency as given in (8.2).

 (8.2)

where

 = Switching activity

 C = Capacitance

 V = Supplied voltage

 f = Clock frequency

The power consumption for the Parabolic Synthesis and Non-Linear

Interpolation is simulated using the PrimeTime tool at a frequency of

10MHz at the supply voltages mentioned above. In order to analyze the

power consumption of the design a Value Change Dump (VCD) file is

generated in ModelSim using the netlist file generated during the synthesis

process. The power results for both LPHVT and LPLVT are given below.

TABLE XI: POWER ANALYSIS USING LPHVT LIBRARIES AT

DIFFERENT VOLTAGES

 LPHVT
Voltage (V) 1.00 1.10 1.20

Net Switching Power (μW) 11.26 13.87 16.65

Cell Internal Power (μW) 12.04 14.74 17.63

Cell Leakage Power (nW) 23.35 33.5 48.96

Total Power (μW) 23.32 28.64 34.33

63

TABLE XII: POWER ANALYSIS USING LPLVT LIBRARIES AT

DIFFERENT VOLTAGES

 LPLVT
Voltage (V) 1.00 1.10 1.20

Net Switching Power (μW) 12.16 15.16 18.32

Cell Internal Power (μW) 13.11 17.05 21.95

Cell Leakage Power (μW) 4.20 6.54 9.83

Total Power (μW) 29.47 38.75 50.10

Figure 8.5: Total power comparison for LPHVT and LPLVT at the frequency

10MHz

The cell leakage power increases with increased supply voltage. It should

be noted that static power dissipation (cell leakage power) is considerably

high in LPLVT transistors as compared to LPHVT.

0

10

20

30

40

50

60

1.00 V 1.10 V 1.20 V 1.00 V 1.10 V 1.20 V

LPHVT LPLVT

Total Power (μW)

64

8.2 Existing Algorithms

In this section, the area, speed and power results of the Parabolic Synthesis

combined with Non-Linear Interpolation are compared to other algorithms

like the CORDIC and previous thesis work on Parabolic Synthesis

methodology like ‘Sine Function Approximation using Parabolic Synthesis

and Linear Interpolation’ [15] and “Hardware Implementation of Logarithm

function using improved parabolic synthesis”[16]. However, it is not

possible to compare the results precisely, since the above mentioned

algorithms were implemented for different functions, e.g., sine or logarithm

and the operating frequency of the design to find the power dissipation is

not mentioned clearly.

The implementation results compared in this section are taken from the

thesis work sine function implementation by Madhubabu Nimmagadda and

Surendra Reddy Utukuru[15], Improved Parabolic Synthesis by Jingou

Lai[16] and Logarithmic and exponential function implementation by

Peyman Pouyan[8]. As mentioned before that the Parabolic Synthesis

methodology can be used to implement different unary functions using the

same architecture with different set of coefficients. Hence it is possible to

compare the results of different implementations. However, the CORDIC

algorithm has a simple hardware to implement the trigonometric and

logarithmic functions. It is implemented by using simple shift and add

operations and a look-up table (LUT). In order to get a precision of 15 bits,

more than 15 iterations will be required, which will increase its

computation time considerably. However, almost the same resolution is

achieved in this thesis work by combining Parabolic Synthesis with Non-

Linear Interpolation.

The chip area result for different methodologies is given in the Table XIII.

65

TABLE XIII: AREA ANALYSIS OF ASIC IMPLEMENTATION FOR

DIFFERENT METHODOLGIES(LPHVT @ 1.20V)

Methodology Area

()

CORDIC 19048
1

Parabolic Synthesis 25249
1

Parabolic Synthesis with Linear Interpolation 11397
2

Parabolic Synthesis with Non-Linear Interpolation 15982

Improved Parabolic Synthesis 5894
1 The results are with pads

2 The analysis is done at 1.25 volts

Figure 8.6: ASIC synthesis analysis for area

The parabolic synthesis combined with non-linear interpolation occupies

less area compared to the CORDIC and it can be used to implement

different unary functions like the logarithmic, exponential, division and

square-root function. Only the set of coefficients in the look-up table (LUT)

are needed to be changed to implement a different unary function with the

main architecture unchanged [8]. On the other hand, the CORDIC

algorithm needs a different architecture and extra iterations in order to

implement logarithmic function.

0
5000

10000
15000
20000
25000
30000

CORDIC Parabolic
Synthesis

Parabolic
Synthesis with

Linear
Interpolation

Parabolic
Synthesis with

Non-Linear
Interpolation

Improved
Parabolic
Synthesis

Area (μm²)

66

TABLE XIV: FREQUENCY FOR THE ASIC IMPLEMENTATION OF

DIFFERENT METHODOLOGIES (LPHVT @ 1.20V)

Methodology Frequency

(MHz)

Critical Path Delay

(ns)

CORDIC 11.5 86.72

Parabolic Synthesis 47.5 21.47

Parabolic Synthesis with

Linear Interpolation

58.82
3
 18.18

3

Parabolic Synthesis with Non-

Linear Interpolation

53.99 18.52

Improved Parabolic Synthesis 83.33 12.00
3 The analysis is done at 1.15 volts

Figure 8.7: Frequency for the ASIC implementation of different methodologies

The ASIC implementation shows that the parabolic Synthesis combined

with non-linear interpolation is 4.6 times faster than the CORDIC, 1.16

times faster than the non-pipelined Parabolic Synthesis. It should be noted

that this design uses an extra multiplexer and two’s complement conversion

at the output for output transforms, which adds up to increase the critical

0

20

40

60

80

100

CORDIC Parabolic
Synthesis

Parabolic
Synthesis with

Linear
Interpolation

Parabolic
Synthesis with

Non-Linear
Interpolation

Improved
Parabolic
Synthesis

Frequency (MHz)

67

path. These results are compared for LPHVT implementation at a supply

voltage of 1.20 Volts.

Table XV shows the estimated power consumption for different

methodologies with a LPHVT implementation at a frequency of 10 MHz

using the PrimeTime tool.

TABLE XV: POWER ANALYSIS FOR DIFFERENT

METHODOLOGIES (LPHVT @1.20V)

Methodology Power @ 10 MHz

(μW)

CORDIC 99.79

Parabolic Synthesis 98.08

Parabolic Synthesis with Linear Interpolation 39.4(@1.25V)

Parabolic Synthesis with Non-Linear Interpolation 34.33

Improved Parabolic Synthesis 17.38

Figure 8.8: Power dissipation analysis for different algorithms

Since the design occupies less area and there is a lower switching activity

the Parabolic Synthesis combined with Non-Linear Interpolation therefore

0
20
40
60
80

100
120

CORDIC Parabolic
Synthesis

Parabolic
Synthesis with

Linear
Interpolation

Parabolic
Synthesis with

Non-Linear
Interpolation

Improved
Parabolic
Synthesis

Power (μW)

68

uses less power as compared with CORDIC and Parabolic Synthesis. It is

not possible to fairly compare the power results since the other algorithms

were implemented to approximate only one function however, in this

design is used to implement two trigonometric functions i.e. sine and cosine

at the same time.

69

CHAPTER 9

9 Conclusions

The approximation of the trigonometric identities i.e., sine and cosine was

designed and implemented in the same architecture using Parabolic

Synthesis combined with Non-Linear Interpolation. Four intervals were

used in the interpolation part which leads to a set of 12 coefficients for both

functions i.e., sine and cosine.

The truncation changes the error behavior. In order to compensate for that,

the coefficients need to be optimized manually. This should be done by

changing one set of coefficients at a time.

The architecture was carefully designed to have high degree of parallelism

therefore it has short critical path and fast computation speed. The design is

suitable for high speed applications since it is much faster than the

CORDIC and other implementations for the same resolution.

Certain simplifications were done in the architecture that includes designing

a special squarer to find and
 using the same architecture, which

makes the area less as compared to the Parabolic Synthesis with Linear

Interpolation.

The resolution of the approximation is almost 15 bits, which is according to

the required resolution for this thesis work. The error behavior indicates

that the error of approximation is evenly distributed around zero.

70

71

CHAPTER 10

10 Future Work

The error behavior can be improved by using more intervals in the second

sub-function, . It will increase the look-up table (LUT) size but there

can be a compromise between area and accuracy.

The architecture of the approximation can be made faster by introducing

pipelining at different stages.

The same architecture can be used to calculate different unary functions

including various trigonometric, logarithmic, exponential, division and

square-root function by only changing the set of coefficients used.

72

73

References

[1] P. T. P. Tang, “Table-lookup algorithms for elementary functions and

their error analysis,” in Proc. of the 10th IEEE Symposium on Computer

Arithmetic ISBN: 0-8186-9151-4, pp. 232 - 236, Grenoble, France, June

1991.

[2] J. M. Muller, “Elementary Functions: Algorithm Implementation,” in

second edition Birkhauser, ISBN 0-8176-4372-9, Birkhauser Boston, c/o

Springer Science+Business Media Inc., 233 Spring Street, New York, NY

10013, USA.

[3] Ateeq Ur Rahman Shaik, “Hardware Implementation of the exponential

function using Taylor series and Linear Interpolation”, Lund University

Mater Thesis, April 2014.

[4] Erik Hertz, “Parabolic Synthesis”, Thesis for the degree of Licentiate in

Engineering, Lund University, 2011.

[5] Ray Andraka, “A survey of CORDIC algorithms in FPGA based

computers”, Andraka Consulting Group, Inc. North Kingstown, USA.

[6] Muhammad Waqas Shafiq and Nauman Hafeez, “Design of FFTs using

CORDIC and Parabolic Synthesis as an alternative to Twiddle Factor

Rotations”, Lund University, Master Thesis, 2011.

[7] Erik Hertz , Bertil Svensson, and Peter Nilsson, “Combining the

Parabolic Synthesis Methodology with Second-Degree Interpolation”.

Centre for Research on Embedded Systems, Halmstad University,

Halmstad, Sweden, Electrical and Information Technology Department,

Lund University, Lund, Sweden.

[8] Peyman Pouyan, Erik Hertz, and Peter Nilsson, “A VLSI

Implementation of Logarithmic and Exponential Functions Using a Novel

74

Parabolic Synthesis Methodology Compared to the CORDIC Algorithm”,

20th European Conference on Circuit Theory and Design (ECCTD), 2011.

[9] E. Hertz and P. Nilsson, “A Methodology for Parabolic Synthesis,” a

book chapter in VLSI, In Tech, ISBN 978-3- 902613-50-9, pp. 199-220,

Vienna, Austria, September 2009.

[10] E. Hertz and P. Nilsson, “Parabolic Synthesis Methodology

Implemented on the Sine Function,” in Proc. of the 2009 International

Symposium on Circuits and Systems (ISCAS’09), Taipei, Taiwan, May 24-

27, 2009.

[11] Parabolic Synthesis. http://www.intechopen.com/articles/show/title/a-

methodology-for-parabolic-synthesis

[12] J.-M. Muller, Elementary Functions: Algorithm Implementation,

second ed. Birkhauser, ISBN 0-8176-4372-9, Birkhauser Boston, c/o

Springer Science+Business Media Inc., 233 Spring Street, New York, NY

10013, USA, 2006.

[13] A. A. Giunta and L. T. Watson, “A Comparison of Approximation

Modeling Techniques,” American Institute of Aeronautics and

Astronautics, AIAA-98-4758, Blacsburg, USA, September 1998.

[14] Personal discussion and helping material provided by Peter Nilsson

and Erik Hertz.

[15] Madhubabu Nimmagadda and Surendra Reddy Utukuru, “Sine

Function Approximation using Parabolic Synthesis and Linear

Interpolation”, Master Thesis, Lund University,2011.

[16] Jingou Lai, “Hardware Implementation of the Logarithm Function

using Improved Parabolic Synthesis”, Master Thesis, Lund University,

2013.

75

List of Figures

Figure 2.1: Comparison of original function, , with straight line x=y 7

Figure 2.2: A strictly convex first help function, 8

Figure 2.3: Comparison of first help function, , with second sub-

function, . .. 9

Figure 2.4: Second help function, , pair of opposite convex and concave

functions. ... 10

Figure 2.5: Linear interpolation of a normalized function 13

Figure 3.1:Three stage Architecture.. 19

Figure 3.2: Basic hardware for loop unrolled architecture 20

Figure 3.3: Detailed hardware architecture for 4 sub-function parabolic

synthesis .. 21

Figure 3.4: Architecture of parabolic synthesis with non-linear interpolation

 ... 22

Figure 3.5: Specially designed 6-bit squarer ... 23

Figure 4.1: Error behavior for Parabolic Synthesis 25

Figure 4.2: The distribution of error between original function and the

approximation ... 28

76

Figure 5.1: Block diagram of the architecture .. 30

Figure 5.2: Pre processing block ... 31

Figure 5.3: Two’s complement architecture for sine function 34

Figure 5.4: First help function, . .. 35

Figure 5.5: First help function and the linear interpolation of the first help

function. .. 36

Figure 5.6: Approximation of the difference of first help function subtracted

with the linear interpolation of first sub-function 37

Figure 6.1: Pre processing block ... 40

Figure 6.2: First sub-function architecture for sine and cosine 41

Figure 6.3: Hardware design for combined second sub-function 43

Figure 6.4: Multiplication of outputs from first and second sub-function

blocks .. 43

Figure 6.5: Post processing architecture for all four quadrants 44

Figure 6.6: The final architecture .. 45

Figure 6.7: Critical path of the design... 46

Figure 6.8: Internal word lengths of the design .. 48

Figure 7.1: Approximation of sine and cosine functions and the error....... 51

77

Figure 7.2: The absolute accuracy in bits of approximation, before and after

optimization .. 52

Figure 7.3: Error behavior of sine function after truncation 54

Figure 8.1: Minimum area results in a bar graph .. 58

Figure 8.2: Different modules in the design ... 59

Figure 8.3: Approximated area for one function... 60

Figure 8.4: Frequency results for LPHVT and LPLVT 61

Figure 8.5: Total power comparison for LPHVT and LPLVT at the

frequency 10MHz ... 63

Figure 8.6: ASIC synthesis analysis for area .. 65

Figure 8.7: Frequency for the ASIC implementation of different

methodologies ... 66

Figure 8.8: Power dissipation analysis for different algorithms 67

78

79

List of Tables

Table II: Output Transforms ... 33

Table III: Coefficient Values for Sine Function ... 38

Table IV: Coefficient Values For Cosine Function 38

Table V: Truncated Coefficient Values for Sine Function 49

Table VI: Truncated Coefficient Values For Cosine Function 49

Table VII: The Error Metrics for the Truncated and Optimized

Implementation ... 55

Table VIII: Minimum Area Results for LPHVT and LPLVT 58

Table IX: The Area Results for Individual Blocks in Design for LPHVT @

1.2 Volts .. 59

Table X: Approximated Area for Single Function 60

Table XI: Speed Results for LPHVT and LPLVT at Normal Constrainst .. 61

Table XII: Power Analysis Using LPHVT Libraries at Different Voltages 62

Table XIII: Power Analysis Using LPLVT Libraries at Different Voltages

 ... 63

Table XIV: Area Analysis of ASIC Implementation for Different

Methodolgies(LPHVT @ 1.20V) ... 65

80

Table XV: Frequency for the ASIC Implementation of Different

Methodologies (LPHVT @ 1.20V) .. 66

Table XVI: Power Analysis for Different Methodologies (LPHVT

@1.20V) .. 67

81

List of Acronyms

CMOS Complementary Metal Oxide Semiconductor

DSP Digital Signal Processing

CORDIC COordinate Rotation DIgital Computer

VHDL VHSIC Hardware Design Language

VHSIC Very High Speed Integrated Circuit

RMS Root Mean Square

MUX Multiplexer

AC Alternating Current

DC Direct Current

MSB Most Significant Bit

LPLVT Low Power Low

LPHVT Low Power High

VCD Value Change Dump

LUT Look-Up Table

Pa
ra

b
o

lic Sy
n

th
e

sis a
n

d
 N

o
n

-Lin
e

a
r In

te
rp

o
latio

n

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, January 2015.

Parabolic Synthesis
and Non-Linear Interpolation

Adeel Muhammad Hashmi

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2015-422

http://www.eit.lth.se

A
d

e
e

l M
u

h
am

m
a

d
 H

a
sh

m
i

Master’s Thesis

