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Abstract  
 

Computation and implementation of unary functions such as 

trigonometric, logarithmic and exponential function have a vital 

importance in modern applications, e.g., Digital Signal Processing, 

computer graphics, wireless systems and virtual reality simulations. 

Over the past few years many software solutions have been used, 

which provide extreme precision but take a lot of computation time 

for real-time applications. As compared to the software routines, a 

hardware implementation of unary function is found to be a best 

solution for real-time applications where fast and numerically 

intensive solutions are required.  

This thesis work presents an approximation of trigonometric 

functions, i.e. Sine and Cosine using Parabolic Synthesis combined 

with Non-Linear Interpolation. The architecture for the 

approximation is designed and implemented in the stm65 CMOS 

technology. There is a high degree of parallelism in the design 

which makes it faster than other methodologies to calculate unary 

functions. The same design can be used to implement various kinds 

of unary function like logarithmic and exponential etc. with the 

same architecture.  

The design is compared, with respect to power consumption, area 

and maximum speed, with the existing methodologies like the 

CORDIC, Parabolic Synthesis, and the Parabolic Synthesis with 

Linear Interpolation. It is found that the architecture has better 

performance in terms of chip area, speed and power consumption. 
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Chapter 1 

 

1 Introduction 

With the advent of Chip Technology the size of technical equipments and 

electronics hardware have reduced significantly. This is being perceived as 

the future of Next Generation Technologies. In olden days, canon sized 

devices were used for complex computations and calculations. 

Nowadays digital circuits and devices of mere existence possessing the 

ability to perform similar objectives by utilizing these limited resources 

namely: memory, time of execution and power. 

We can observe in our surroundings that there is increase in demand for 

ultra-low weight, less power consuming and super-efficient devices over 

the past few years. General public is unaware of the challenges faced by the 

researchers in order to attain these said objectives. The researchers try to 

make ends meet by working to devise ways and methods to produce 

equipments that can provide the optimum performance with effective 

utilization of the aforementioned limited resources. This Master’s Thesis 

comprises of a study and comparative analysis conducted to ensure usage of 

the Parabolic Synthesis and Non-Linear Interpolation. It also provides the 

knowledge about how this next generation computational methodology can 

be fruitful, if their architectures are implemented in real time systems. 

Computation and implementation of unary functions such as trigonometric, 

logarithmic and exponential function have a vital importance in modern 

applications, e.g., Digital Signal Processing (DSP), computer graphics 

(2D/3D), wireless systems and virtual reality simulations. Over the past few 
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years many software solutions have been used, which provide extreme 

precision but take a lot of computation time for real-time applications. As 

compared to the software routines, a hardware implementation of unary 

function is found to be a best solution for real-time applications where fast 

and numerically intensive solutions are required.  

There are different methods that are employed for hardware implementation 

of unary functions. The easiest method is by using look-up table [1] [2]. It 

is an efficient method for low precision computations where the input 

word-length is between 12-16 bits which corresponds to a table size of 

4096-65536 words. 

                  (1.1)  

  
 

Where n is the input word-length. 

It can be seen in (1.1) that the table size will increase exponentially with the 

increased number of input word-length. Therefore for high precision 

applications the execution time will be large and unacceptable in certain 

cases. 

With the evolution of the various industrial sectors like DSP, Robotics, 

Communication Systems, there has been an increase in demand of high 

speed hardware implementations. A variety of solutions have been 

proposed ranging from implementation of algorithms that utilize the lookup 

tables for low precision computations [9]. Various other hardware 

approaches have been implemented e.g. CORDIC [9] & Polynomial based 

approximation e.g. Taylor Series Implementation [9] [14]. 

Polynomial based approximation is another method that is being used for 

computing the unary functions. It has an advantage of being table-less but it 

introduces large number of computational complexities since it is 

performed with multipliers and adders. The computational complexity of 
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this method can be reduced by combining it with look-up table methods. 

Taylor polynomial is an example of such scheme [3]. Designing an efficient 

approximation for the function to be approximated is the key in polynomial 

based approximations [4]. 

COordinate Rotation DIgital Computer (CORDIC) is a widely used 

algorithm for hardware implementation of basic elementary function like 

logarithmic, trigonometric, exponential etc. It was proposed by Jack 

E.Volder in 1959 to provide the real-time digital solution for navigational 

computations [5] [6]. It is an iterative method that requires simple shift and 

add operation together with a small look-up table [7]. Therefore it is used in 

designs where different design aspects like critical speed, low area and low 

power consumption are of vital importance. Since it is an iterative method, 

it produces one extra bit of accuracy in each rotation [8]. For higher 

accuracy applications, CORDIC method will require more iterations in 

order to get better resolution. That will increase the execution time of the 

operation therefore it will be insufficient for very high speed applications. 

A new methodology Parabolic Synthesis has recently been proposed by 

Erik Hertz and Peter Nilsson to perform the realization of unary functions 

like trigonometric, logarithms as well as division and square-root functions 

in hardware [9] [10]. The parallel architecture of this method increases the 

performance and decrease the power, area and speed limitations compared 

to previously mentioned algorithms including CORDIC. The main feature 

of parabolic architecture is that it can be used for the realization of different 

unary functions. Only the coefficients need to be changed for different 

functions but the hardware will remain fixed. Thus the design will remain 

the same and can be directly used without any changes for other 

applications [8].  

In this thesis, a methodology is presented by combining parabolic synthesis 

with non-linear interpolation for the realization of trigonometric functions 

sine and cosine. Parabolic methodology is a synthesis of second order 

functions which provides accuracy depending on the number of second 

order functions [7]. In the combined methodology, the accuracy depends on 
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the number of intervals in the non-linear interpolation. Furthermore, the 

behavior and optimization of coefficients for the implementation of 

trigonometric functions, sine and cosine, is discussed. 

The proposed architecture is designed using two stages of parabolic 

synthesis [11] where the second stage is implemented as a non-linear 

interpolation in the stm65 CMOS technology. The design is simulated and 

compared for accuracy, power consumption and performance. The core 

area is also estimated. Synthesized VHDL is used in the project. Low 

Power High VT and Low Power Low VT transistors are used, in separate 

designs. Three different supply voltages, VDD = {1.00, 1.10, 1.20} volts 

are used. The power and energy consumption, both static and dynamic, are 

estimated. The design is compared, with respect to power consumption, 

area and maximum speed, with the existing methodologies like CORDIC, 

Parabolic Synthesis, and Parabolic Synthesis with Linear Interpolation. 
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Chapter 2 
 

2 Parabolic Synthesis and Non-Linear 

Interpolation 

2.1 Parabolic Synthesis 

The Parabolic Synthesis Methodology is a Hardware Approach proposed by 

Erik Hertz and Peter Nilsson in order to develop functions to perform 

approximation in the hardware [9]. The implementation involves a parallel 

architecture for providing solution to the complex computational problem 

to reduce execution time. In parabolic synthesis methodology an 

approximation of unary functions in hardware is dealt with.  

This methodology is based on second order parabolic functions, called sub-

functions sn(x) [7]. These sub-functions are multiplied together to found the 

original function forg(x) as shown in (2.1) [14]. The original function is the 

product of all sub-functions, when the number of sub-functions approaches 

infinity. The sub-function must satisfy that the function is limited to the 

range        and             

                                      (2.1)

   

In order to gradually develop sub-functions, we need to determine the first 

help function. First help function is the ratio of original function and first 

sub-function, i.e.      . 
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                         (2.2) 

The individual help functions can be generalized to be evaluated as: 

       
       

     
                                  (2.3) 

These help functions are in turn used to compute the values of sub functions 

by performing normalization. These sub-functions are constructed as 

second or polynomials depicting the parabolic functions [14]. 

2.1.1 Normalization 

First the function to be approximated has to be normalized according to the 

parabolic synthesis methodology. Normalization limits the function in a 

numerical range to facilitate the hardware implementation. It must satisfy 

that the function is limited to the range        and             

Starting and ending coordinate should be (0,0) and less than (1,1) 

respectively [14]. 

2.1.2 First sub-function 

In order to develop the first sub-function,      , the original function, 

       , should cross two points i.e., (0,0) and (1,1) as shown in the Fig. 

2.1. 
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Figure 2.1: Comparison of original function,        , with straight line x=y  

The first sub-function,      ,  is a second order parabolic function as define 

by the (2.4). 

                       
     (2.4) 

The starting point,   , of first sub-function,      , is calculated to be zero as 

it crosses (0,0). As the function lies between the points, (0,0) and (1,1), the 

slope    is 1  [7] [9] [16]. Therefore, the first sub-function can be simplified 

as shown in (2.5). 

                  
     (2.5) 

The coefficient    is computed according to (2.6). 
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         (2.6) 

2.1.3 Second sub-function 

In order to make the total error smaller, the second sub-function,     , is 

developed to approximate the value of first help function,      . A strictly 

convex or concave first help function,      , can be developed from 

original function,        , using (2.2) [16]. 

The second sub-function,      , can be defined as shown in (2.7). 

                       
     (2.7) 

 

 

Figure 2.2: A strictly convex first help function,      . 

 As it can be seen in Fig. 2.2 that the second sub-function starts at a point 

(0,1) and finishes at (1,1), so the starting point,   , of second sub-function is 

1 and the slope,   , of the function is 0. Therefore the equation for second 

sub-function can be reduced as shown in (2.8). 

                 
      (2.8) 
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Figure 2.3: Comparison of first help function,      , with second sub-function, 

     . 

In order to develop and verify second sub-function, it must cross the 

starting point, middle point and the end point of the help function as shown 

in Fig. 2.3. 

2.1.4 Sub-functions for      

In order to develop further sub-functions,       for     , same 

methodology is applied as given in (2.2) and (2.3). However, the functions 

will not be strictly convex or concave in the range of 0 to 1. For example, 

the function,      , shown in fig. 2.4 is a pair of convex and concave 

functions. The first function is in the range             and the second 

function is in the range             . 

Therefore the second help function can be expressed as (2.9). 

        
                           

 

 

                       
 

 
    

   (2.9) 
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Figure 2.4: Second help function,      , pair of opposite convex and concave 

functions. 

The approximation of a function which is composed of two parabolic 

curves can be performed by normalizing each curve in the interval 0 to 1 on 

x axis.  In order to map the input x to the normalized parabolic curve, x can 

be replaced with x’ as shown in (2.10). 

               (2.10) 

The approximation of each parabolic curve is performed as described in 

Section 2.1.3. In order to approximate the third sub-function,          is 

calculated when      
 

 
 and          is calculated when 

 

 
     as 

given in (2.11). 

        
                            

 

 

                        
 

 
    

   (2.11) 

0 0.2 0.4 0.6 0.8 1
0.996

0.997

0.998

0.999

1

1.001

1.002

1.003

x

f 2(x
)



11 

 

A larger number of n results in higher number of convex and concave 

functions. The methodology can be generalized to calculate the n
th

 help 

function as shown in (2.12). 

       

 
 
 

 
                                              

 

    

                                         
 

    
   

 

    

 

                                         
      

    
     

 
 

 
 

 (2.12) 

Using these partial help functions, the corresponding sub-function are 

developed. The sub-function is also divided into partial sub-functions as 

given in (2.13). 

       

 
 
 

 
                                              

 

    

                                         
 

    
   

 

    
 

                                         
      

    
     

 
 

 
 

 (2.13) 

In the same way, the input x is substituted by xn to map the input to the 

normalized parabolic curve. 

                  (2.14) 

Similar to the second sub-function given in (2.8), the start value of each of 

the partial help function is 1 and the end value of each partial help function, 

         , interval is also 1. Therefore, the gradient,     , of each sub-

function is 0. This enables to reduce the sub-function as shown in (2.15). 

                                   
   

                                                   
     (2.15) 

The coefficients,     , are calculated in such a way to satisfy the quotient 

between help function,          , and the partial sub-function,        , is 

equal to 1, when xn is equal to 0.5. 
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      (2.16) 

 

2.2 Interpolation 

Interpolation is a method of finding new data points from a set a known 

data points.  

2.2.1 Linear Interpolation 

Linear interpolation is the simplest method of interpolation. It takes two 

data points to construct the value of new data points. The classical linear 

interpolation for two data points is shown in (2.17). 

                           
              

              
   (2.17) 

In (2.17),       is the starting and         is the ending breakpoint of 

each interval.       and         are the respective   value at these 

breakpoints [14]. Linear interpolation using two intervals is shown in Fig. 

2.5. It can be seen that         
    for first interval and       

      

for the second interval. Equation (2.18) shows the corresponding    values.  

     
 

  
         (2.18) 

More intervals can be used for better accuracy, e.g. four intervals, that give 

the breakpoint values as shown in (2.19). For the sake of hardware 

architecture, breakpoints are always the power of number 2 [14]. 

        
                    (2.19) 

For more intervals, equation (2.17) can be modified as shown in (2.20). 
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Figure 2.5: Linear interpolation of a normalized function 

 

                               
              

                   
   (2.20) 

Where   is the number of intervals. For example, for     we get     (2.21) 

                               
              

                   
   (2.21) 

 

Or (2.22) 
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(2.22) 

                               
              

              
   

                               
              

              
   

 

A good property of (2.22) is that the denominator is always “1” as division 

is not suggested for a hardware design. It is appreciated for other more 

hardware reasons as well. For   intervals, the linear interpolation is shown 

in (2.23) [14]. 

                                                 
 (2.23) 

2.2.2 Non-linear Interpolation 

This thesis work is about parabolic synthesis and non-linear interpolation. 

The non-linear interpolation follows the same idea as the linear 

interpolation, with the difference that the approximations in the intervals 

are parabolic functions [14]. 

                                     
    (2.24) 
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The second stage (2.24) is a non-linear interpolation of the first help 

function, where     index stands for the intervals in which the interpolation 

is performed. The interval index   is a power of 2, which gives the number 

of intervals, i.e. 1, 2, 4, 8, 16 and so on. For instance, in the case of 2, there 

will be two intervals, the first            and the second         

     in a normalized space           .   

The index  , in (2.24), shows that the   term in the interpolation stage is 

dependent in the number of intervals used in the interpolation. The   term 

is affected in such a way that when two intervals (   ) are used in the 

interpolation then the most significant bit is thrown away. When four 

intervals (   ) are used in the interpolation then the two most significant 

bits are thrown away in the x term. The second sub-function can be divided 

into two parts, a linear part shown in (2.25) and a non-linear part as shown 

in (2.26) [14]. 

                 (2.25) 

              
    (2.26) 

In (2.25) there are two coefficients for interpolation in each interval, a 

starting point,     , and a gradient,     . The starting point of an interval for 

the interpolation can be calculated by placing the value of x for the starting 

point of the interval         , to the first help function,       [14]. 

                 (2.27) 

The second coefficient,   , is the gradient of the interval in which the 

interpolation is being performed. The gradient is calculated by subtracting 

the end point value,           , from the start point value,             , of the 

interval [14]. 

                              (2.28) 

As it is mentioned before that the intervals are normalized, so there is no 

denominator needed.  
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In (2.26),     is calculated in advance so that the second sub-function, 

      , for the corresponding interval cuts the first help function,      , in 

the middle of the interval i. therefore it satisfies the middle point,          , 

for      , as shown in (2.29) [14]. 

                                  (2.29) 

 

In (2.30) we have a simplification of (2.24). This simplification reduces an 

adder in hardware implementation. 

                               
   (2.30) 

Where 

                 (2.31) 

2.3 Parabolic Synthesis Combined with Interpolation 

The drawback with parabolic synthesis is that if we want to increase the 

accuracy of the approximated function, the number of sub-function needs to 

be increased which in the result will increase the complexity of the 

hardware. In this thesis work, Parabolic Synthesis is combined with non-

linear interpolation. In this case, only two sub-functions are required to get 

the same accuracy as in parabolic synthesis. So the equation (2.1) can be 

reduced to equation (2.32). 

                         (2.32) 

This will decrease the hardware significantly. Another benefit of combining 

the parabolic synthesis with non-linear interpolation is that this approach 

will make it easy to adjust the error behavior of the approximation [7]. 

Therefore the first sub-function,      , is used to calculate the initial value 
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of approximation and second sub-function,      , is used to get the desired 

accuracy depending on the number of intervals used in the interpolation. 

The approximation of the function can be implemented with two stages. 

The first stage is implemented according to first sub-function as shown in 

(2.5). The second stage can be implemented using non-linear interpolation 

as shown in (2.24). The first sub-function,       is constructed as parabolic 

synthesis as described in section 2.1.2 and second sub-function,       will 

be constructed as non-linear interpolation as described in section 2.2.2. The 

original function (2.32) will become (2.33). 

                     
                                      

     

(2.33) 

In (2.33), 2,i index represents the interval in which the interpolation is 

performed. The interval index, i, is a power of 2, which results in the 

number of intervals equal to 1, 2, 4, 8, and so on. The index w shows that 

the x term in the interpolation stage is dependent on the number of 

intervals. The x term is modified in such a way that when four intervals are 

used in the interpolation, then the two most significant bits are thrown away 

in the x term, i.e. 2 left shifts in the hardware. The truncation in (2.34) is 

performed in order to normalize the interval for second sub-function. 

                   (2.34) 

The removed integer part is used to decode in which interval of second sub-

function the interpolation is performed. This integer part is used as an 

address to fetch the corresponding coefficients in the specific interval in the 

hardware. 

The second sub-function is divided in partial sub-functions as shown in 

(2.35). 
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 (2.35) 

As it can be seen that x is changed to   , which means that the partial sub-

function         of second sub-function,      , have equal range. 
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CHAPTER 3 
 

3 Hardware Architecture 

The hardware architecture of the methodology can be divided into three 

parts i.e., preprocessing, processing, and post processing. It was introduced 

by P.T.P Tang [1]. The preprocessing and post processing is the 

transformation stages and in processing part, the original function,        , 

is calculated [16]. 

Processing

Postprocessing

Preprocessing

v

x

y

z

 

Figure 3.1:Three stage Architecture 
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3.1 Preprocessing 

In the preprocessing part, the input signal v is normalized to prepare it for 

the processing part. For example an input signal sin(v) that lies between the 

interval 0 to 
 

 
, will be normalized and converted into an output x that lies 

between the interval 0 to 1. This is performed by multiplying it with 
 

 
 [16].  

3.2 Processing 

In the processing part, the original function,        , is approximated that 

results in an output y. In this section the processing part for parabolic 

synthesis will be discussed first and then parabolic synthesis with non-

linear interpolation will be discussed. 

3.2.1 Parabolic Synthesis 

Fig. 3.2 shows the basic architecture of the loop unrolled parabolic 

synthesis with four sub-functions. This architecture has an advantage of fast 

computation speed at the cost of large chip area [7]. 

s1(x)

S2(x)

S3(x)

S4(x)

x

x

x

x

y

 

Figure 3.2: Basic hardware for loop unrolled architecture 
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The detailed hardware architecture of loop unrolled parabolic synthesis 

with four sub-functions is given in Fig. 3.3. 

X2

X3
2 x

x

x

x

y

x+

x

+

c1

X4
2

c2

+

1

x+ +

c3,1i

X3

X3
2 1

x+ +

c4,hh

X4

X4
2 1

-

-

 

Figure 3.3: Detailed hardware architecture for 4 sub-function parabolic synthesis 

In this architecture, (x-x
2
) part is same for both first sub-function and 

second sub-function. The output of this part is multiplied with    for first 

sub-function,      , and with    for second sub-function,       [7]. In the 

first sub-function,      , after the multiplication with   , the x-value is 

added to it. However, in the second sub-function,      , after the 

multiplication with   , a 1 is added. A special squaring unit is designed to 

calculate the partial products of x3
2 

and x4
2
. The latency and chip area can 
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be significantly reduced by designing this squaring unit, in comparison to 

using separate multipliers for each product. The index i, in the Fig. 3.3, are 

the most significant bits which help to determine the      coefficient for the 

interval. Similarly, the index h in the fourth sub-function is the two most 

significant bits of x and it helps as an address for value of      coefficients 

in the four intervals. The value of first and second sub-function is 

multiplied in parallel with the third and fourth sub-functions. The result of 

these two multiplications is multiplied with each other to compute the value 

of y [7]. 

3.2.2 Parabolic Synthesis with Non-Linear Interpolation 

The processing part of parabolic synthesis combined with non-linear 

interpolation can be graphically visualized in Fig. 3.4. This architecture is 

designed to calculate a single function.  

   X2
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Figure 3.4: Architecture of parabolic synthesis with non-linear interpolation 
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The result of        is multiplied with    in the first sub-function,      , 

and the result is added to  . As mentioned before, second sub-function is 

implemented as non-linear interpolation and it consists of three look-up 

tables, i.e.     ,      and      for each interval  . The coefficient      is 

multiplied with    which is the normalized value for corresponding 

interval. The results of this multiplication is added to     . The partial 

product of   , i.e.   
  is multiplied with     . The result of this 

multiplication is subtracted from the result of addition of                   

[14]. The results of both sub-functions are multiplied with each other to 

compute the value of y. 

The design contains four adders, four multipliers and one squarer block. 

Instead of using a multiplier a squarer block is specially designed to 

produce all the partial products needed to compute    and   
  [14]. A 

simplified version of a 6-bit squarer block can be seen in Fig. 3.5. 

x5 x4 x3 x2 x1 x0

x5 x4 x3 x2 x1 x0

x5x4 x5x3 x5x2 x5x1 x5x0 x4x0 x3x0 x2x0 x1x0 0 x0

x5 x4x3 x4x2 x4x1 x3x1 x2x1 x1

x4 x3x2 x3x2 x2

 

Figure 3.5: Specially designed 6-bit squarer 

3.3 Post processing 

The post processing stage is used to transform the value z from the output 

of processing stage i.e., y to the desired format in order to fulfill the 

approximation. 
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CHAPTER 4 
 

4 Error Evaluation 

The performance of any algorithm is characterized by its error behavior. 

Since the parabolic synthesis is an approximation based method, the error 

behavior holds a vital importance. An example of the error behavior for 

sine function using Parabolic Synthesis methodology is shown in Fig. 4.1.  

 

Figure 4.1: Error behavior for Parabolic Synthesis 

There are five different metrics that can be used to characterize the error 

behavior [13] [14]. These metrics are as follow. 
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 Mean Error 

 Standard Deviation 

 Root-Mean-Square 

 Median Error 

4.1 Error Metrics 

A brief description of the error metrics are given below. For detailed study, 

readers are referred to [12][13]. 

4.1.1 Maximum Absolute Error 

The difference between the approximated value     and the actual value    is 

called the absolute error      . Absolute error is shown in (4.1). 

                    (4.1) 

It is the maximum value that is calculated in the interval where the error is 

investigated [14]. 

4.1.2 Mean Error 

For   numbers of separate values in a specific sequence of errors, the mean 

error    can be seen in (4.2). 

    
 

 
          
 
        (4.2) 

In other words, it is the average of the absolute error of a sequence of   

numbers [14]. 

4.1.3 Standard Deviation 

The standard deviation is used to calculate the amount of change in a value 

from its expected value. The difference between standard deviation and 

average deviation is that the average value is calculated with power instead 
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of amplitude. In order to calculate the standard deviation, the deviations are 

squared before averaging. It is defined in (4.3) [14]. 

     
 

 
           
 
        (4.3) 

4.1.4 Median Error 

The median error    is used to calculate the middle value for a given 

sequence of errors. If the sequence contains odd number of samples the 

median error    is the middle sample and if the sequence contains even 

number or samples, median error    is the mean of the two middle samples. 

For example, for a sequence             , the median error can be 

calculate as (4.4) and (4.5) [14]. 

       
 
     If   is odd     (4.4) 

        
 
     

 
      If   is even    (4.5) 

4.1.5 Root-Mean-Square 

In order to calculate the deviation of a sinusoidal signal, Root-Mean-Square 

(RMS) value is used. This error metric is widely employed in electronics 

where both AC and DC values of a signal need to be measured. It is the 

square root of the average of squared difference between the approximated 

value     and the actual value    [14]. 

       
 

 
           
 
       (4.6) 

4.2 Error Distribution 

There are two development strategies that can be employed while 

developing an approximation. These are least square approximation and 

least maximum approximation. Least squares approximation is used to 
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minimize the average error and least maximum approximation is used in 

order to minimize the maximum error. Least square approximations are 

suitable when the approximated function is to be used in a series of 

computations. It is also important to investigate the error distribution so that 

the error of approximation is not of unilateral polarity [13] [14]. 

In order to evaluate error distribution evenness, standard deviation is 

compared with RMS. The error distribution is even if both the values are 

equal. The error behavior of sine function in Fig. 4.2 provides a good 

example of the error behavior methodologies explained in this Chapter. The 

manner of error distribution shows that the approximated value oscillates 

around the original function and is evenly distributed around zero [12] [13]. 

A diagram to visualize the error distribution is shown in Fig. 4.2. 

-3.2e-05 0.0e-05 3.2e-051.6e-05-1.6e-05

 

Figure 4.2: The distribution of error between original function and the 

approximation 
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CHAPTER 5 
 

5 Architecture and Coefficients 

Approximation 

The objective of this thesis work is to design and implement the 

approximation of the sine and cosine functions in all quadrants i.e., 360˚. 

The approximation is implemented using two stages of parabolic synthesis. 

The first stage is implemented using parabolic synthesis methodology and 

second stage is implemented as a non-linear interpolation as described in 

section 3.2. In this chapter, the hardware architecture to implement sine and 

cosine functions using parabolic synthesis and non-linear interpolation 

technique will be discussed. A methodology is also described to calculate 

the coefficients for the second stage of approximation, i.e. non-linear 

interpolation.  

5.1 Architecture 

As described in chapter 3, the hardware architecture of the methodology 

consists of three parts i.e., preprocessing, processing, and post processing. 

This architecture will compute the sine and cosine functions based on the 

input signal v and produce the output z sine and z cosine. The block diagram of 

the architecture is given in Fig. 5.1. 
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Figure 5.1: Block diagram of the architecture 

As shown in the Fig. 5.1 the normalized input signal v in the interval, 0 to 

2 ,  converted into the input x. The two most significant bits,     , of the 

input signal, v, are taken away and used as an enable signal for the output 

multipliers and two’s conversions. The rest of the bits are used as input 

signal, x, for the approximation (processing) block. The processing block 

performs the approximation and multiplications for the sub-functions of 

sine and cosine approximations. The approximated output, ysin and ycos, 

from the processing block goes to the output multiplexers and new, ysin’ and 

ycos’, are chosen depending on the input quadrant. The sign of the new, ysin’ 

and ycos’, values are changed in the output conversion blocks by using, 

    , as enable signals to produce the output , zsin and zcos.  

5.1.1 Preprocessing 

A normalized input to the system, v, is expressed in 15 bits, which means 

that the input signal is divided in 0 to 2
15 

– 1 steps. The maximum input to 

the system is ‘1111111111111112’ which corresponds to a normalized 

angle of 3.99999 in decimal. Therefore, the function of pre-processing 

block is to remove the two MSBs (integer part) and send the rest of the bits 

as x value to the processing part. 
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Figure 5.2: Pre processing block 

5.1.2 Processing 

In the processing part, the original function,        , is approximated that 

results in output ysin and ycosine. In this architecture, only two sub-functions 

are required to get the same accuracy as in parabolic synthesis. Therefore 

the equation (2.1) can be reduced to (5.1). 

                         (5.1) 

The approximation of sine and cosine functions is given in (5.2) and (5.3). 

The angle   is the normalized fractional part of  . It can be seen that only 

the first sub-function,      , differs for both sine and cosine functions [14]. 

                        
   

                                            
      (5.2) 

                                 

 

                          
   

                                            
     (5.3) 
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The original function,        , for both sine and cosine will become as 

shown in (5.4) and (5.5) respectively. 

                         
                                 

       2           (5.4) 

                                                  

       2          (5.5) 

It can be seen that both the first and second sub-functions for sine and 

cosine are identical. There is one extra subtraction in the first sub-function 

for cosine. The second sub-functions for sine and cosine are similar and the 

only difference in second sub-functions is that they use different set of 

coefficients. Therefore both the sub-functions can be combined in parallel. 

The multiplications of these sub-functions with their corresponding sub-

functions produce the result for sine and cosine functions simultaneously. 

In this way, the hardware for a multiplier, adder and another special squarer 

can be saved. 

5.1.3 Post Processing 

In the post processing block, the output from the processing block is 

converted in order to get the desired results. The output of the processing 

block, ysin and ycos, are the approximated result from the processing stage in 

the range 0 to 1 for an input x. However, the actual quadrant of any output 

is unknown since the computations are performed in first quadrant. The 

output, ysin and ycos, has to be transformed back to their actual values in 

their respective quadrants which is determined using      bits that come 

from preprocessing block.  

In order to change the output from processing block to its corresponding 

quadrant, for both sine and cosine, output multiplexers are used that 

determine the new, ysin’ and ycos’, values based on the input quadrant. The 
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input quadrant is determined using,   , as enable signal for multiplexers. 

The sign of the new, ysin’ and ycos’, values needs to be changed as well. The 

sine function is positive in first and second quadrant, therefore, no 

conversion is needed. However, it is negative is third and fourth quadrant, 

therefore the sign needs to be changed. This is achieved by a two’s 

complement conversion at the final stage, where   is used as an enable 

signal for two’s complement conversion. 

Similarly, cosine function is positive in first and the fourth quadrant and 

negative in second and third quadrant, therefore, we need to change the sign 

of the ycos’ value for the second and third quadrants. This conversion can 

easily be performed by using           as a control signal for the sign 

conversion in the respective quadrants. The Table I shows when we need to 

transform the outputs for sine and cosine depending on the integer part, 

    , coming from the preprocessing stage [14]. 

TABLE I: OUTPUT TRANSFORMS 

 

Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4 

Sine + + - - 

Cosine + - - + 

 

The architecture of two’s complement conversion for sine function is 

shown in Fig. 5.3. Half adders (HAs) and XOR gates are used in the 

architecture. For example, in order to calculate the z value for trigonometric 

identities, a control signal    or           will be used for the conversion 

of sine or cosine function respectively [14]. 
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Figure 5.3: Two’s complement architecture for sine function 

5.2 Coefficients Approximation 

In order to implement the approximation of trigonometric functions, sine 

and cosine, we need to develop the first help function. The first help 

function,      , is the function from which the non-linear interpolation is 

developed from. The first help function, for the sine function, is developed 

according to (5.6).  

       
    

 

 
    

    
 

 
             

    (5.6) 
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Figure 5.4:  First help function,      . 

5.2.1 Linear part 

The linear part of the interpolation consists of two coefficients for each 

interval, a starting point,    , and a gradient,     . In (2.24),      is the starting 

point of an interval of the interpolation, which is computed by inserting the 

value of   for the starting point of the interval,         , in the first help 

function      [14].  

                     (5.7) 

In (2.24),      is the gradient for an interpolation interval. The gradient    

for an interval is computed as the end point value of the function           , 

subtracted with the start point value of the function              of an 

interval. Since the interval is normalized to one, no denominator is needed, 

as shown in (5.8) [14]. 

                                (5.8) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

x

f 1(x
)

 

 



36 

 

The coefficients for the linear part of the interpolation are calculated 

according to (5.7) and (5.8) for four intervals, i.e.    . The result of linear 

interpolation is shown in Fig. 5.5. 

 

Figure 5.5:  First help function and the linear interpolation of the first help 

function. 

5.2.2 Non-linear part 

In (2.24),      is pre-computed so that the sub-function for the interval  , 

      , cuts the function      , in the middle of the interval   when 

      , which satisfies the point           for       , as shown in (5.9). 

                                          (5.9) 

If we subtract the linear interpolation of first help function from the first 

help function, it will generate a function with a parabolic looking function 
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in each interval as shown in Fig. 5.6. The coefficients for the non-linear 

part of the interpolation are calculated in according to (5.9).  

 

Figure 5.6: Approximation of the difference of first help function subtracted with 

the linear interpolation of first sub-function  

The peak value of each curve represents the corresponding      coefficients 

of each interval. The rest of the coefficients, i.e.     ,     , and      are also 

calculated using the equations (5.7), (5.8), and (5.9) . Similarly, the 

coefficients for cosine function can also be calculated in Matlab [14]. The 

approximated coefficient values for both sine and cosine function are listed 

in Table II and Table III respectively.  
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TABLE II: COEFFICIENT VALUES FOR SINE FUNCTION 

Coefficients Value in decimal 

                         

     
      0.0199535148492645,                          0.0237052129326976, 

      0.0267498465570153,                          0.0289774221630130 

     
      1.000000000000000,         1.071895094550420,  
      1.100234394764010,                                 1.078018196966255  

     
      0.287477578201686,                           0.113380000854360, 
     -0.088843391191025,                             -0.312024187865020  

 

TABLE III: COEFFICIENT VALUES FOR COSINE FUNCTION 

Coefficients Value in decimal 

                         

     
      0.0289774221630130,                        0.0267498465570153, 

     0.0237052129326976,                        0.0199535148492645 

     
      1.000000000000000,                           1.078018196966255,  
      1.100234394764010,                                1.071895094550420  

     
      0.312024187865020,                           0.088843391191025, 
     -0.113380000854360,                             -0.287477578201686  

 

These coefficients are used to approximate the sine and cosine functions. 

The design and hardware implementation of these functions using the 

coefficients values given in Table II and Table III is explained in chapter 6. 

 
  



39 

 

CHAPTER 6 
 

6 Hardware Design 

In this thesis work, Parabolic Synthesis is combined with non-linear 

interpolation to implement the approximation of sine and cosine functions. 

The design is implemented using two stages of parabolic synthesis, i.e., 

parabolic synthesis and non-linear interpolation as discussed in chapter 5. 

In this chapter, the hardware structure of the combined methodology is 

discussed. There are two sub-functions that are used to get the same 

accuracy as in parabolic synthesis. Therefore the equation for original 

function,        , can be written as 

                         (6.1) 

The first sub-function,      , is constructed as parabolic synthesis as 

described in section 2.1.2 and second sub-function,      , will be 

constructed as non-linear interpolation as described in section 2.3.  

The hardware design is divided into three different parts, i.e. preprocessing, 

processing and post processing. In the preprocessing part the two most 

significant bits are removed from the signal. The implementation of 

approximation of the original function,        , is performed in processing 

part. In this part, the parabolic synthesis is combined with non-linear 

interpolation [14]. In the post processing part, the output from the 

processing block is converted back to its original value. 
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6.1 Preprocessing 

The parabolic synthesis uses the already normalized input v. As described 

in section 5.1.1, the input transformation is performed in the pre processing 

block where the integer part i.e., two most significant bits,     , are taken 

away.    is used as an input for the multiplexer to select the corresponding 

output for the multiplexer depending on the input quadrant. This integer 

part,     , is also used as an enable signal to determine the two’s 

complement transformation in the post processing stage. 

xv
13 12 1114 2 1 0

 Ɵ1 Ɵ0

...
v

x

 

Figure 6.1: Pre processing block  

6.2 Processing 

When performing the approximation of the sine and cosine functions only 

the approximation of first quadrant needs to be done. In order to design the 

whole unit circle, the first quadrant of function can be reused with some 

additional hardware. The first help function,      , for sine and cosine is 

shown in equation (6.2) and (6.3) [14]. 

                     
      (6.2) 

                         
      (6.3) 
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It can be seen that both the sub-functions can be combined in parallel to 

produce the result for sine and cosine functions simultaneously. It should be 

noted that the    coefficient for both sine and cosine is same. The 

architecture for calculating the first sub-function for sine and cosine 

functions based on parabolic synthesis methodology is shown in Fig. 6.2. 

x+

+

+

 x2

+

1

 c1

x -

sine s1

cosine s1

-

 

Figure 6.2: First sub-function architecture for sine and cosine 

The calculation of the first coefficient    for the since function is shown in 

(6.4) [14]. 

          

    
 

 
      

 
     

 

 
     (6.4) 

The    multiplication in Fig. 6.2, uses a fixed multiplier so it can be 

replaced with simple shift and add operations. In the same way, the addition 

of “1” is simply a matter of routing wire in hardware [14]. 

Since we have power of two numbers, we can use the left fractional bits as 

address bits to look-up-table for the coefficient selection. The bits can be 

separated by   AND no-of-bits. However, in hardware it is simply a 

question of routing wires. For example, if we have two intervals, we 

separate one bit only, i.e. if the fractional MSB bit is “0”, the left interval is 

addressed and if the MSB is “1”, the right interval is used. For four 
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intervals, we get the four addresses    “00”, “01”. “10”, and “11”, e.g. if 

we have           , the third interval will be addressed [14]. 

The remaining bits are used as a new “x-value”, which is          , 

where t is the two MSBs of x. For the above example,           , we 

thus get          , which are the remaining bits of   shifted two times 

to the right. The t bits will be used as address bits for the coefficient i.e., 

    ,     , and      tables. 

The second help function       for both sine and cosine will remain the 

same and is shown in (6.4) and (6.5). 

                                            
   (6.4) 

                                            
   (6.5) 

The term   
  is the square of partial product which comes from the special 

squarer designed in the project to produce the outputs x
2
 and   

  

simultaneously. Similar to first sub-function, the hardware of second sub-

function can also be joined to share some part of hardware. In this way, the 

area for an adder can be saved. Fig. 6.3 shows the second sub-function in 

the improved architecture, based on non-linear interpolation [14]. 
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Figure 6.3: Hardware design for combined second sub-function 

Finally, the outputs from first sub-function block and second sub-function 

block are multiplied together to calculate the output of processing block for 

both sine and cosine simultaneously. 
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Figure 6.4: Multiplication of outputs from first and second sub-function blocks 
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6.3 Post Processing 

As explained in section 5.1.3, all the calculations are performed in first 

quadrant. Therefore the output needs to be transformed back to their actual 

quadrants. This is achieved by transforming the outputs sineq1 and cosineq1 

from the processing to their original quadrant. This is done by using a 

multiplexer and using    as an enable signal as shown in Fig. 6.5. the sign 

of the output from these multiplexers is changed by performing two’s 

complement conversion. For the cosine output          is used as an 

enable signal to ensure that the cosine output is positive in first and fourth 

quadrant and negative in second and third quadrant. Similarly,    is used as 

an enable signal for the two’s complement conversion for the sine signal 

which ensures that the sine is positive for sign of the output is positive in 

first and second quadrant and negative in third and fourth quadrant. 

Two’s

Compl

sine q1

cosine q1

cosine(x)

Two’s

Compl

sine q1

cosine q1

sine(x)

 

Figure 6.5: Post processing architecture for all four quadrants 
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6.4 Final Architecture 

In order to compute the sine and cosine approximations, the architecture in 

Fig. 6.6 is used in the thesis work [14]. 
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Figure 6.6: The final architecture 

The architecture consist of multipliers, one special squarer block, adders, 

two two’s conversion converters, and two multiplexers. The input, x, from 

preprocessing block goes to first and second sub-function blocks i.e., the 

processing part. The output for first sub-function for both sine and cosine 

functions is multiplied with the respective output from the second sub-

function block. These multiplications produce intermediate results, sineq1 

and cosineq1 from processing block. These intermediate values need to be 

converted into the desired results, which depends on the transformation of 

the quadrant in preprocessing stage. Therefore, two multiplexers are used 

the convert them into their respective quadrants and two’s complement 
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conversion is performed in order to change their signs, in the post 

processing stage, to get the final results.  

The critical path of the design is given in Fig. 6.7. 

 

Figure 6.7: Critical path of the design 

The critical path of the hardware goes through 

 One squarer 

 Two multipliers 

 Two adders 

 One Multiplexer 

 One two’s conversion converter 

6.5 Word Lengths 

The input word length for the hardware design is 15 bits. As shown in (6.6), 

all possible input values should be tested at the end. 
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                            (6.6) 

For hardware design, these integer values are not longer than 15 bits and 

they are not needed to be truncated. However, the values needs to be scaled 

down to a 0 to 90 degree scaled as shown in (6.7) [14]. 

                   (6.7) 

Since 90 degrees are not allowed, the maximum input value is shown in 

(6.8). 

      

   
                                         (6.8) 

All the operations in VHDL are performed in floating point and the 

numbers are expressed as signed. Therefore it will add an extra bit to all the 

signals going to adders. Fig. 6.8 shows the internal word lengths of all the 

signals in the hardware design. 
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Figure 6.8: Internal word lengths of the design 

The word lengths of the coefficients in Table II and Table III can also be 

optimized. The      coefficients are greater than 1 so there will be 16 bits 

needed to express them in binary numbers plus an extra bit for signed 

number. However, when these numbers are truncated and converted into 

binary number there are many zeroes in the LSBs. These zeroes can be 

ignored in hardware which leaves 12 bits representation for      coefficients. 

A 15-bit signed representation is used for      coefficients and      

coefficients are expressed in 11-bit signed numbers. This will help greatly 

to reduce the area for multipliers and adders. The optimized and truncated 

coefficient values for sine and cosine functions are given in Table IV and 

Table V respectively. 
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TABLE IV: TRUNCATED COEFFICIENT VALUES FOR SINE 

FUNCTION 

Coefficients Value in decimal 

      0.570556640625 

     
      0.01953125,                                                            0.0234375, 

      0.0263671875,                                                       0.02880859375 

     
      1.0000000000,       1.07177734375,  
      1.1009765625,                                                       1.07763671875  

     
      0.287506103515625,          0.1134033203125, 
     -0.088836669921875,                             -0.312042236328125  

 

TABLE V: TRUNCATED COEFFICIENT VALUES FOR COSINE 

FUNCTION 

Coefficients Value in decimal 

      0.570556640625 

     
      0.02880859375,                                                 0.0263671875, 

      0.0234375,                                                           0.01953125 

     
      1.00000000000000,           1.0780029296875,  
      1.10020446777344,                                      1.07186889648438  

     
      0.312042236328125,                      0.088836669921875, 
     -0.1134033203125,                                  -0.287506103515625  
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CHAPTER 7 
 

7 Implementation and Error Behavior 

Based on the methodology described in Chapter 2, 3, 5, and 6, a reference 

model for the approximation is implemented in MATLAB and 

implemented in hardware using VHDL. In this way the functional behavior 

is of the design is verified. The coefficients in Table IV and Table V are 

used in the design. Fig. 7.1 shows the approximated sine and cosine 

functions and their error behavior in decibel. 

 

Figure 7.1: Approximation of sine and cosine functions and the error 
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7.1 Optimization 

In order to increase the accuracy of the approximation, the coefficients,    , 

    , and      in the second sub-function,      , need to be optimized. The 

optimization helps to characterize the behavior of the error. The 

optimization must be performed in parallel with the truncation and the 

evaluation of word lengths. For a better understanding, truncation effects 

are not taken into consideration in this section. 

The second sub-function is given in (7.1). 

                                     
     (7.1) 

The optimization strategy can be performed on all 12 coefficients of the 

second sub-function,       , using four intervals. Since the coefficients      

through      adjust the height of the parabolic part of the second sub-

function, the optimization is primarily performed on these coefficients.  

 

Figure 7.2: The absolute accuracy in bits of approximation, before and after 

optimization 
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As it can be seen in Fig. 7.2, there is a reduction of a half bit for the largest 

error in the interval,          . However, there is a negligible 

improvement in terms of largest error of approximation. During the 

hardware design, the optimization is performed on bit level [7]. 

7.2 Truncation  

All the coefficients and signals in the MATLAB reference model need to be 

truncated since it is implemented exactly like the hardware architecture 

implemented in VHDL. The word length of the coefficients can be 

optimized in such a way that the system does not lose its precision. All the 

signal need to be truncated in such a way that the MATLAB model is an 

exact mirror of ASIC implementation. For example, a calculation  

                
   

Should be implemented like this 

              

           
   

              

                

7.3 Error Behavior 

In order to provide the greater resolution and better understanding of the 

results, a logarithmic scale is used. The logarithmic unit is decibel (dB) and 

the binary numbers can be related to each other as shown in (7.2). 

                           (7.2) 

This shows that 6dB is equal to 1 bit of resolution. For example, an error of 

0.001 is same as 20log (0.001) = 20*(-3) = -60dB. We can transform it into 

bits, which gives the error 60/6 = 10 bits or less [14]. 
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The error behavior of the Parabolic Synthesis combined with Non-Linear 

Interpolation can be seen in Fig. 7.3. The error is calculated by subtracting 

the sine function approximation from the original sine function after the 

truncation.  

 

Figure 7.3: Error behavior of sine function after truncation 

It should be noted that the approximated value oscillates around the original 

function in the desired manner and it confirms that the error is evenly 

distributed around zero. 
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TABLE VI: THE ERROR METRICS FOR THE TRUNCATED AND 

OPTIMIZED IMPLEMENTATION 

Error Metrics Value Bits 

Maximum Absolute Error 0.00003600399789538 14.84 

Mean Error -0.0000006352127232 20.65 

Median -0.0000018745591403  

Standard Deviation 0.00001891092717920  

Root Mean Square 0.00001891104738872  

 

Table VI shows that the resolution of the algorithm is almost 14.84 bits, 

which is very close to the required resolution for this thesis work. The mean 

error is very small. It should be noted that the standard deviation and root 

mean square values are almost identical which indicates that the error of 

approximation is evenly distributed around zero. 
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CHAPTER 8 
 

8 Results 

The approximation for Parabolic Synthesis and Non-Linear interpolation is 

implemented in stm65 CMOS technology. The design is simulated and 

compared for speed, area, and power consumption. The design is 

implemented in VHDL and the synthesized code is simulated for different 

standard libraries in Design Vision. Low Power High    (LPHVT) and Low 

Power Low    (LPLVT) transistors are used in with different supply 

voltages,    =                  volts. This chapter describes the speed, 

area, and power consumption of the system and comparison with other 

methodologies. 

8.1 Synthesis 

The synthesis is performed in a design tool called Design Vision by 

Synopsis. During the synthesis a gate level netlist is generated from the 

VHDL design using STMicroelectronics 65nm Technology. This netlist is 

analyzed for speed, area, and power consumption. The results of different 

parameters are described below. 

8.1.1 Area Results 

The minimum area of the design is estimated by setting the area design 

constraint to zero in Design Vision. The minimum area results of the design 

for different libraries of Low Power High    (LPHVT) and Low Power 

Low    (LPLVT) for supply voltages,    =                  volts are 

given in the Table VII. 
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TABLE VII: MINIMUM AREA RESULTS FOR LPHVT AND 

LPLVT 

 LPHVT LPLVT 

Voltage (V) 1.00 1.10 1.20 1.00 1.10 1.12 

Area (   ) 15953 15974 15966 16132 16592 17056 

 

 

Figure 8.1: Minimum area results in a bar graph 

The area for different sub-functions and output multiplier can be seen in the 

Table VIII: The Area Results for Individual Blocks in Design for LPHVT 

@ 1.2 Volts. The synthesis is performed with Low Power High    

(LPHVT) library at a supply voltage of     = 1.2 volts. 
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TABLE VIII: THE AREA RESULTS FOR INDIVIDUAL BLOCKS IN 

DESIGN FOR LPHVT @ 1.2 VOLTS 

Block Area (μm²) Percentage (%) 

First Sub-function 2433 15.23 

Second Sub-function 8448 52.91 

Output Multipliers 3992 25 

Output Conversions 575 3.6 

In/out Registers 518 3.24 

Total 15966 100 

For better understanding the individual blocks can be identified in Fig 8.2. 
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Figure 8.2: Different modules in the design 
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For the sake of comparison with previous work, we can approximate the 

area needed to calculate single function e.g., sine from the Table VIII. A 

rough calculation is given in Table IX. 

TABLE IX: APPROXIMATED AREA FOR SINGLE FUNCTION 

Module Approximated area (μm²) 

First Sub-function 2400 

Second Sub-function 4224 

Output Multipliers 2000 

Two's Conversions 300 

In/out DFFs 300 

Total 9224 

 

 

Figure 8.3: Approximated area for one function 

8.1.2 Timing/Speed Results 

The maximum speed of the design is calculated by setting the timing 

constraint in design vision to 1 ns. This gives an x value of negative slack 
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for the critical path. The x value is added to 1 ns and the simulation is 

performed again unless the slack is zero.  

TABLE X: SPEED RESULTS FOR LPHVT AND LPLVT AT 

NORMAL CONSTRAINST 

 LPHVT LPLVT 

Voltage (V) 1.00 1.10 1.20 1.00 1.10 1.20 

Speed (MHz) 30.91 42.51 52.96 73.52 86.50 100.20 

Time (ns) 32.35 23.52 18.88 13.60 11.56 9.98 

 

 

Figure 8.4: Frequency results for LPHVT and LPLVT 

It can be seen that LPLVT transistors are considerably faster than LPHVT 
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8.1.3 Power Results 
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                           (8.1) 

The dynamic power is the total switching power and the internal power. It 

depends on the charging and discharging of the capacitances, switching 

activity, supplied voltage and the operating frequency as given in (8.2). 

                  (8.2) 

where 

   = Switching activity 

 C = Capacitance 

 V = Supplied voltage 

 f =  Clock frequency 

 

The power consumption for the Parabolic Synthesis and Non-Linear 

Interpolation is simulated using the PrimeTime tool at a frequency of 

10MHz at the supply voltages mentioned above. In order to analyze the 

power consumption of the design a Value Change Dump (VCD) file is 

generated in ModelSim using the netlist file generated during the synthesis 

process. The power results for both LPHVT and LPLVT are given below. 

TABLE XI: POWER ANALYSIS USING LPHVT LIBRARIES AT 

DIFFERENT VOLTAGES 

 LPHVT 
Voltage (V) 1.00 1.10 1.20 

Net Switching Power (μW) 11.26 13.87 16.65 

Cell Internal Power   (μW)   12.04 14.74 17.63 

Cell Leakage Power  (nW)   23.35 33.5 48.96 

Total Power   (μW)  23.32 28.64 34.33 
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TABLE XII: POWER ANALYSIS USING LPLVT LIBRARIES AT 

DIFFERENT VOLTAGES 

 LPLVT 
Voltage (V) 1.00 1.10 1.20 

Net Switching Power (μW) 12.16 15.16 18.32  

Cell Internal Power   (μW)   13.11 17.05   21.95    

Cell Leakage Power  (μW)   4.20 6.54   9.83  

Total Power   (μW)  29.47 38.75 50.10 

 

 

Figure 8.5: Total power comparison for LPHVT and LPLVT at the frequency 

10MHz 

The cell leakage power increases with increased supply voltage. It should 

be noted that static power dissipation (cell leakage power) is considerably 

high in LPLVT transistors as compared to LPHVT. 
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8.2 Existing Algorithms 

In this section, the area, speed and power results of the Parabolic Synthesis 

combined with Non-Linear Interpolation are compared to other algorithms 

like the CORDIC and previous thesis work on Parabolic Synthesis 

methodology like ‘Sine Function Approximation using Parabolic Synthesis 

and Linear Interpolation’ [15] and “Hardware Implementation of Logarithm 

function using improved parabolic synthesis”[16]. However, it is not 

possible to compare the results precisely, since the above mentioned 

algorithms were implemented for different functions, e.g., sine or logarithm 

and the operating frequency of the design to find the power dissipation is 

not mentioned clearly. 

The implementation results compared in this section are taken from the 

thesis work sine function implementation by Madhubabu Nimmagadda and 

Surendra Reddy Utukuru[15], Improved Parabolic Synthesis by Jingou 

Lai[16] and Logarithmic and exponential function implementation by 

Peyman Pouyan[8]. As mentioned before that the Parabolic Synthesis 

methodology can be used to implement different unary functions using the 

same architecture with different set of coefficients. Hence it is possible to 

compare the results of different implementations. However, the CORDIC 

algorithm has a simple hardware to implement the trigonometric and 

logarithmic functions. It is implemented by using simple shift and add 

operations and a look-up table (LUT). In order to get a precision of 15 bits, 

more than 15 iterations will be required, which will increase its 

computation time considerably. However, almost the same resolution is 

achieved in this thesis work by combining Parabolic Synthesis with Non-

Linear Interpolation. 

The chip area result for different methodologies is given in the Table XIII. 
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TABLE XIII: AREA ANALYSIS OF ASIC IMPLEMENTATION FOR 

DIFFERENT METHODOLGIES(LPHVT @ 1.20V) 

Methodology Area 

(   ) 

CORDIC 19048 
1
 

Parabolic Synthesis 25249 
1
 

Parabolic Synthesis with Linear Interpolation 11397 
2
 

Parabolic Synthesis with Non-Linear Interpolation 15982 

Improved Parabolic Synthesis 5894 
1 The results are with pads 

2 The analysis is done at 1.25 volts 

 

Figure 8.6: ASIC synthesis analysis for area 

The parabolic synthesis combined with non-linear interpolation occupies  

less area compared to the CORDIC and it can be used to implement 

different unary functions like the logarithmic, exponential, division and 

square-root function. Only the set of coefficients in the look-up table (LUT) 

are needed to be changed to implement a different unary function with the 

main architecture unchanged [8]. On the other hand, the CORDIC 

algorithm needs a different architecture and extra iterations in order to 

implement logarithmic function. 
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TABLE XIV: FREQUENCY FOR THE ASIC IMPLEMENTATION OF 

DIFFERENT METHODOLOGIES (LPHVT @ 1.20V) 

Methodology Frequency 

(MHz) 

Critical Path Delay 

(ns) 

CORDIC 11.5 86.72 

Parabolic Synthesis 47.5 21.47 

Parabolic Synthesis with 

Linear Interpolation 

58.82 
3
 18.18 

3
 

Parabolic Synthesis with Non-

Linear Interpolation 

53.99 18.52 

Improved Parabolic Synthesis 83.33 12.00 
3 The analysis is done at 1.15 volts 

 

 

Figure 8.7: Frequency for the ASIC implementation of different methodologies 

The ASIC implementation shows that the parabolic Synthesis combined 

with non-linear interpolation is 4.6 times faster than the CORDIC, 1.16 
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path. These results are compared for LPHVT implementation at a supply 

voltage of 1.20 Volts.  

Table XV shows the estimated power consumption for different 

methodologies with a LPHVT implementation at a frequency of 10 MHz 

using the PrimeTime tool. 

TABLE XV: POWER ANALYSIS FOR DIFFERENT 

METHODOLOGIES ( LPHVT @1.20V) 

Methodology Power @ 10 MHz 

(μW) 

CORDIC 99.79 

Parabolic Synthesis 98.08 

Parabolic Synthesis with Linear Interpolation 39.4(@1.25V) 

Parabolic Synthesis with Non-Linear Interpolation 34.33 

Improved Parabolic Synthesis 17.38 

 

 

Figure 8.8: Power dissipation analysis for different algorithms 

Since the design occupies less area and there is a lower switching activity 
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uses less power as compared with CORDIC and Parabolic Synthesis. It is 

not possible to fairly compare the power results since the other algorithms 

were implemented to approximate only one function however, in this 

design is used to implement two trigonometric functions i.e. sine and cosine 

at the same time. 
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CHAPTER 9 

9 Conclusions 

The approximation of the trigonometric identities i.e., sine and cosine was 

designed and implemented in the same architecture using Parabolic 

Synthesis combined with Non-Linear Interpolation. Four intervals were 

used in the interpolation part which leads to a set of 12 coefficients for both 

functions i.e., sine and cosine. 

The truncation changes the error behavior. In order to compensate for that, 

the coefficients need to be optimized manually. This should be done by 

changing one set of coefficients at a time.  

The architecture was carefully designed to have high degree of parallelism 

therefore it has short critical path and fast computation speed. The design is 

suitable for high speed applications since it is much faster than the 

CORDIC and other implementations for the same resolution. 

Certain simplifications were done in the architecture that includes designing 

a special squarer to find    and   
  using the same architecture, which 

makes the area less as compared to the Parabolic Synthesis with Linear 

Interpolation. 

The resolution of the approximation is almost 15 bits, which is according to 

the required resolution for this thesis work. The error behavior indicates 

that the error of approximation is evenly distributed around zero. 
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CHAPTER 10 
 

10 Future Work 

The error behavior can be improved by using more intervals in the second 

sub-function,      . It will increase the look-up table (LUT) size but there 

can be a compromise between area and accuracy. 

The architecture of the approximation can be made faster by introducing 

pipelining at different stages. 

The same architecture can be used to calculate different unary functions 

including various trigonometric, logarithmic, exponential, division and 

square-root function by only changing the set of coefficients used. 
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LPHVT  Low Power High    

VCD  Value Change Dump 

LUT  Look-Up Table 

  

 

 

 



Pa
ra

b
o

lic Sy
n

th
e

sis a
n

d
 N

o
n

-Lin
e

a
r In

te
rp

o
latio

n

Department of Electrical and Information Technology, 
Faculty of Engineering, LTH, Lund University, January 2015.

Parabolic Synthesis
and Non-Linear Interpolation

Adeel Muhammad Hashmi

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2015-422

http://www.eit.lth.se

A
d

e
e

l M
u

h
am

m
a

d
 H

a
sh

m
i

Master’s Thesis


