
Im
p

ro
vin

g
 a

n
 o

p
e

n
 so

u
rce g

e
o

co
d

in
g

 se
rve

r

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, February 2015.

Improving an open source
geocoding server

Víctor García

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2015-430

http://www.eit.lth.se

V
ícto

r G
arcía

Master’s Thesis

Master’s Thesis

Improving an open source geocoding

server

By

Víctor García

Department of Electrical and Information Technology

Faculty of Engineering, LTH, Lund University

SE-221 00 Lund, Sweden

2

Abstract

A common problem in geocoding is that the postal addresses as requested by

the user differ from the addresses as described in the database. The online,

open source geocoder called Nominatim is one of the most used geocoders

nowadays. However, this geocoder lacks the interactivity that most of the

online geocoders already offer. The Nominatim geocoder provides no

feedback to the user while typing addresses. Also, the geocoder cannot deal

with any misspelling errors introduced by the user in the requested address.

This thesis is about extending the functionality of the Nominatim geocoder

to provide fuzzy search and autocomplete features. In this work I propose a

new index and search strategy for the OpenStreetMap reference dataset.

Also, I extend the search algorithm to geocode new address types such as

street intersections. Both the original Nominatim geocoder and the proposed

solution are compared using metrics such as the precision of the results,

match rate and keystrokes saved by the autocomplete feature. The test

addresses used in this work are a subset selected among the Swedish

addresses available in the OpenStreetMap data set.

The results show that the proposed geocoder performs better when compared

to the original Nominatim geocoder. In the proposed geocoder, the users get

address suggestions as they type, adding interactivity to the original

geocoder. Also, the proposed geocoder is able to find the right address in the

presence of errors in the user query with a match rate of 98%.

3

Popular science article

The demand of geospatial information is increasing during the last years.

There are more and more mobile applications and services that require from

the users to enter some information about where they are, or the address of

the place they want to find for example. The systems that convert postal

addresses or place descriptions into coordinates are called geocoders. How

good or bad a geocoder is not only depends on the information the geocoder

contains, but also on how easy is for the users to find the desired addresses.

There are many well-known web sites that we use in our everyday life to find

the location of an address. For example sites like Google Maps, Bing Maps

or Yahoo Maps are accessed by millions of users every day to use such

services. Among the main features of the mentioned geocoders are the ability

to predict the address the user is writing in the search box, and sometimes

even to correct any misspellings introduced by the user. To make it more

complicated, the predictions and error corrections these systems perform are

done in real time. The owners of these address search engines usually impose

some restrictions on the number of addresses a user is allowed to search

monthly, above which the user needs to pay a fee in order to keep using the

system. This limit is usually high enough for the end user, but it might not be

enough for the software developers that want to use geospatial data in their

products.

There is a free alternative to the address search engines mentioned above

called Nominatim. Nominatim is an open source project whose purpose is to

search addresses among the OpenStreetMap dataset. OpenStreetMap is a

collaborative project that tries to map places in the real world into

coordinates. The main drawback of Nominatim is that the usability is not as

good as the competitors. Nominatim is unable to find addresses that are not

correctly spelled, neither predicts the user needs. In order for this address

search engine to be among the most used the prediction and error correction

features need to be added.

In this thesis work I extend the search algorithms of Nominatim to add the

functionality mentioned above. The address search engine proposed in this

thesis offers a free and open source alternative to users and systems that

require access to geospatial data without restrictions.

4

Resumen:

Alumno: Víctor García Paje

Título: Mejora de un sistema de geolocalización de código libre

Tutor: Maria Kihl

Institución: Lund Tekniska Högskola, Lund, Suecia

Fecha de defensa del proyecto: 26-01-2015

La demanda de información geoespacial está aumentando en los últimos

años. Cada vez existen más aplicaciones y servicios móviles que requieren

de los usuarios introducir información acerca de dónde están, o la dirección

del lugar que quieren encontrar por ejemplo. Los sistemas que convierten las

direcciones postales a coordenadas y viceversa se llaman geocodificadores.

Cómo de bueno o malo es un geocodificador no sólo depende de la

información que el geocodificador contiene, sino también en lo fácil que es

para los usuarios encontrar las direcciones deseadas.

Existen muchos sitios web conocidos que utilizamos en nuestra vida

cotidiana para encontrar la ubicación de una dirección. Por ejemplo, sitios

como Google Maps, Bing Maps o Yahoo Maps son accedidos por millones

de usuarios cada día. Entre las principales características de los

geocodificadores se encuentran la capacidad de predecir la dirección que el

usuario está escribiendo en el campo de búsqueda y, a veces incluso de

corregir los errores ortográficos introducidos por el usuario. Para hacerlo más

complicado, las predicciones y las correcciones de errores en estos sistemas

se realizan en tiempo real. Los propietarios de estos motores de búsqueda de

direcciones generalmente imponen restricciones en la cantidad de

direcciones que se permite buscar a un usuario en un plazo de tiempo,

generalmente un mes, por encima del cual el usuario tiene que pagar una

cuota para poder seguir usando el sistema. Este límite suele ser lo

suficientemente alto para el usuario final, pero tal vez no sea suficiente para

desarrolladores de software que quieran utilizar datos geoespaciales en sus

productos.

Hay una alternativa de código libre a los motores de búsqueda de direcciones

mencionadas anteriormente llamado Nominatim. Nominatim es un proyecto

de código libre cuyo propósito es buscar direcciones entre el conjunto de

datos de OpenStreetMap. OpenStreetMap es un proyecto colaborativo que

intenta asignar lugares en el mundo real a coordenadas. El principal

inconveniente de Nominatim es que la usabilidad del sistema no es tan buena

5

como la de los competidores. Nominatim no puede encontrar las direcciones

que no están escritas correctamente, ni predice las búsquedas de los usuarios.

Para que este motor de búsqueda de direcciones pueda estar entre los más

utilizados se deben agregar las funciones de corrección de errores y de

predicción.

En este proyecto mejoro los algoritmos de búsqueda de Nominatim para

añadir la funcionalidad mencionada anteriormente. El principal objetivo del

proyecto consiste en estudiar técnicas de corrección de errores y predicción

de búsquedas. Posteriormente diseñar un sistema de indexado para realizar

estas funciones de forma eficiente y en tiempo real. Por último, implementar

el sistema y testearlo para ser comparado con el sistema original llamado

Nominatim. El motor de búsqueda de direcciones propuesto en esta tesis

ofrece una alternativa de código libre a usuarios y sistemas que requieren

acceso a datos geoespaciales sin restricciones.

6

Acknowledgements
This Master’s thesis would not exist without the invaluable support and

guidance of my supervisor and examiner Dr. Maria kihl. Also, I would like

to thank to my family for the not to be underestimated mental support.

Víctor García Paje

7

Table of Contents
Abstract ... 2

Acknowledgements ... 6

Table of Contents .. 7

1 Introduction ... 9

1.1 Introduction ... 9

1.2 Research questions .. 11

1.3 Methodology ... 12

1.4 Goals ... 12

1.5 Limitations .. 13

1.6 Outline of the thesis .. 13

2 Relevant work ... 14

2.1 Geocoding ... 14

2.1.1 Sources of error in the geocoding process 16

2.2 Information retrieval ... 17

2.2.1 Fundamentals of prefix and fuzzy search 23

2.2.2 Document Similarity and TF-IDF 25

2.2.3 Text indexing ... 27

2.3 Evaluation metrics... 28

3 OpenStreetMap and Nominatim ... 31

3.1 OpenStreetMap ... 31

3.1.1 OSM data model .. 31

3.2 Nominatim .. 34

3.2.1 Usage and statistics ... 35

3.2.2 Database overview .. 36

3.2.3 Processing OSM data .. 37

3.2.3.1 Processing feature names .. 37

3.2.3.2 OSM Administrative boundaries 39

3.2.3.3 OSM features hierarchy .. 40

3.2.3.4 Index example ... 41

3.2.4 Search algorithm .. 43

3.2.5 Address computation ... 44

4 Proposed geocoder .. 45

4.1 Elasticsearch.. 46

4.2 Proposed system software stack .. 47

4.3 Online geocoding service .. 48

4.4 Address indexing... 48

4.4.1 Address type computation ... 51

4.5 Searching addresses .. 52

8

4.5.1 Query processing ... 52

4.5.2 Basic search ... 54

4.5.3 House number .. 56

4.5.4 Street intersections .. 56

4.5.5 Searching streets by postal code .. 58

4.5.6 Building the addresses ... 58

4.5.7 Scoring the addresses .. 62

4.5.8 Filtering out addresses by relative score 63

4.6 Proposed solution of a distributed geocoder service 64

5 Test results .. 66

5.1 Evaluation methodology and tools .. 66

5.1.1 Server specifications and configuration 66

5.1.2 Random address generator .. 66

5.1.3 Random text error generator .. 67

5.1.4 Test setup ... 67

5.1.5 Web test interface .. 69

5.2 Results ... 73

5.2.1 Proposed geocoder results ... 73

5.2.2 Nominatim geocoder ... 73

5.2.3 Results discussion .. 74

6 Conclusions and future work .. 77

6.1 Conclusions ... 77

6.2 Future work ... 78

References ... 79

List of Figures ... 83

List of Tables .. 84

List of Acronyms .. 85

A.1 Glossary.. 86

9

CHAPTER 1

1 Introduction

1.1 Introduction

Geocoding is the activity of assigning geospatial codes to text based postal

addresses [26]. Addresses can be seen as textual descriptions of real world

places, in such a way that they are easy to understand for human beings.

However, geospatial information given in textual form is not easy to analyze

by computers or humans. That is why addresses are usually converted to

geographic references. Figure 1 represents the activity of geocoding

performed by an online geocoder server.

The use of information containing geospatial references is widespread

among many disciplines such as criminology, medicine and public health,

epidemiology, geography, history or general information retrieval among

others. The geospatial information used by these or other disciplines can be

of many and heterogeneous forms. Geocoding tools are commonly utilized

to provide initial data processing so these data can be used to their fullest

potential in the process of scientific inquiry by associating a much-needed

spatial footprint to otherwise seemingly spatial data [26].

Figure 1: Geocoding

10

Imagine a Taxi company that wants to make some predictions about the

workload at a specific future time in different areas of a city, based on the

workload history of the company. Taxi dispatchers and users usually provide

the pickup location by giving the textual based postal address representation

of a real world place. The way the user or dispatcher writes the address is not

standardized, and nothing ensures the validity of the address. These

addresses are not suitable to be analyzed for example in terms of density of

jobs in different areas. To do so, the text addresses have to be converted to

geographical coordinates first. And then the resulting coordinates need to be

processed in order to obtain the desired predictions.

Systems which translate textual based postal addresses to geospatial

coordinates are called Geocoders. The inverse operation is called reverse

geocoding, i.e. given some geospatial code, assigning an address to it that is

understandable by human beings. Whether or not a system performs one or

both operations, it is commonly called Geocoder. Nowadays, there are many

commercial geocoders. Some geocoders are offered in the form of software

packages, in which the user is in charge of providing the reference geospatial

data, maintaining the database that will hold the data, and adjusting the

parameters of the geocoding process, as is the case of ArcView and

Automatch [4]. There are also online geocoding services, accessible through

the network, like Google Maps geocoding service, Bing maps offered by

Microsoft or Yahoo! Maps geocoding service among others [4]. The

geocoders in the latter category have the advantage of making the geocoding

process easier to the end user, since the only thing the user needs to do is to

feed the geocoding service with a user query.

In principle, the basic operation a geocoder performs is to return a geocode

for the input text address provided by the user. To do so, the geocoder

matches the user query with the addresses available in a reference dataset,

rank the reference addresses depending on how similar they are to the user

query and return a sorted list of addresses in descending similarity. However,

this is not as simple as it seems. A multitude of problems can make the

geocoder fail while trying to match the user query against the addresses

available in the reference dataset. Some of these possible scenarios include:

typing errors, lack of knowledge about the right spelling of the address, or

even database errors and inconsistencies [27]. For all these reasons geocoders

need to support fuzzy search.

11

Fuzzy search is the activity of matching text strings approximately. A

geocoder user trying to find the address “Professorsgatan” in Lund, might

enter a query such as “profesorgatan” or “professor gatan”, and it is the task

of the geocoder to find relevant addresses to the query in the reference dataset

and provide the associated geocodes. Fuzzy string matching is part of a

broader discipline called Information retrieval (IR). IR is the activity of

extracting information relevant to a user query from a reference dataset. It

relies in a set of theories and techniques for string matching and document

ranking given a user query. Among others, these techniques include, prefix

search, different approaches for string approximation, word and phrase string

matching, and metrics to sort the matching documents by relevance given a

user query, like edit distance, and cosine similarity [1, 2, 9, 11, 22].

Traditionally geocoders, and more generally, information retrieval systems

return answers after a user submits a complete query. Users often feel “left

in the dark” when they have limited knowledge about the underlying data,

and have to use a try-and-see approach for finding information. Many

systems are introducing various features to solve this problem. One of the

commonly used methods is autocomplete, which predicts a word or phrase

that the user may type based on the partial query the user has entered. As an

example, almost all the major search engines nowadays automatically

suggest possible keyword queries as a user types in partial keywords [28].

This is not the case of Nominatim [29], an open source geocoder that has

become the reference geocoder for OpenStreetMap (OSM) data [6]. It

powers the search feature of the online geocoding service offered by

OpenStreetMap. However, the current search capabilities provided by

Nominatim are getting obsolete compared to the ones offered by other online

geocoders mentioned before. The two main lacking features in Nominatim

are, first, the lack of support for fuzzy search, and second, the real time

autocomplete feature. The main objective of this thesis is to add this missing

functionality to the Nominatim geocoder.

1.2 Research questions

This thesis tries to answer the following questions:

1. How to add support for autocomplete to Nominatim geocoder?

2. How to add support for fuzzy search to Nominatim geocoder?

3. Can fuzzy search and autocomplete be done in real time, so that the

user experiences an “instant” response?

12

4. How can the search algorithm in the existent solution be improved?

Can the algorithm be extended to find intersections? Or suggest

addresses under a postcode?

5. Nominatim computes postal addresses by simply concatenating all

the names of the parents of a place. Can this be improved so only

relevant parent names appear in the suggested addresses?

1.3 Methodology

The thesis is divided in two parts. The first part explores the paradigm of

geocoding, geocoding process, address models, and geocoding errors. It also

provides a background in fuzzy and prefix search and document scoring

within the paradigm of Information retrieval.

In the second part a new address index strategy to provide support for prefix

and fuzzy search to the Nominatim geocoder is proposed. A new geocoder is

implemented using Elasticsearch, a text search engine written in JAVA, and

Jersey, a JAVA library for building web services on top of the web service

container Tomcat. And finally the added functionality of this geocoder is

tested and evaluated using some predefined metrics, commonly used to

assess geocoders.

1.4 Goals

The goals of this thesis are described in Figure 2. They are divided in four

groups, each one addressing one or more research questions listed in section

1.2. Text matching strategies tries to answer questions 1 and 2, realistic

match rate values are in between 70 and 90 percent. The search time

constraint of 100ms system response relates to question 3. Extended search

capabilities refer to question 4 and last, address computation refers to

question 5.

Figure 2: Goals

13

1.5 Limitations

The proposed solution is based on the following limitations:

1. Only Swedish addresses are indexed and searchable.

2. Addresses are not searchable by their type, for example, “bus stop in

Lund”, only by name.

3. Addresses without a name are not searchable.

4. Non adaptive algorithms. The machines do not learn about previous

searches.

5. The system response is invariant respect to the geographical position

of the user.

6. It is assumed that geospatial data attached to the OSM elements is

right, and thus, never considered a source of error in our study.

7. The accuracy of the derived geospatial information, is not considered

a source of error (i.e. house numbers geocoded by interpolation or

street intersections).

8. The only possible source of error is the one caused by a miss match

between the address requested by the user and the suggestions offered

by the geocoder.

1.6 Outline of the thesis

The remainder of the thesis is structured as follows. The next section gives a

brief background on geocoding concepts, fuzzy search within the paradigm

of Information retrieval and lists a set of metrics to evaluate geocoders and

search engines in general. Chapter 3 gives an overview of how the current

geocoder, Nominatim, works. Chapter 4 explains in detail the proposed and

implemented geocoding solution, i.e. software architecture, index structure

and search algorithms. Chapter 5 shows the results of the tests performed

against the proposed solution. And the last chapter shows the conclusions

and future work.

14

CHAPTER 2

2 Relevant work

2.1 Geocoding

Literally, geocoding means “to assign a geographic code.” This definition

stems from the two root words: geo, from the Latin for earth, and coding,

defined as “applying a rule for converting a piece of information into

another”. A more technical description is: the activity of assigning a

geographic code (e.g., coordinates) to a given place name by comparing its

description to the descriptions of location-specific elements in the reference

database [4]. Notice that these definitions do not imply nor constrain in any

way the input to the geocoding system, the processing of the input data, the

data sources used to assign the geographic code, or even what the geographic

code returned as output must be [13]. Figure 3 is a more detailed graphical

description of the process of geocoding.

Jones and Purves [11], give a detailed explanation of the geospatial

information retrieval system (GIR) search process. First, the geographic

Figure 3: Geocoding process overview

15

references have to be recognized and extracted from the user’s query or a

document. Second, place names are not unique and the GIR system has to

decide which interpretation is intended by the user. Third, geographic

references are often vague; typical examples are vernacular names like

“historic center” and fuzzy geographic footprints. Fourth, and in contrast to

classical text based search, documents also have to be indexed according to

particular geographic regions. Finally, geographic relevance rankings extend

existing relevance measures with a spatial component. I.e., the relevance of

a place given a user query might be affected by the geographical position of

that place. For example, if a user wants to find “restaurants near the historic
center of Stockholm”, the geocoder would rank the places not only based on

thematic aspects, e.g., the restaurants, but it would also give higher ranks to

the restaurants closer to the historic center.

Goldberg et al. [13], characterize the geocoding system in terms of its

fundamental components: the input, output, processing algorithm and

reference dataset. The input is the locational reference the user wishes to have

geographically referenced that contains attributes capable of being matched

to some datum that has been previously geographically coded.

The output is the geographically referenced code determined by the

processing algorithm to represent the input. In most situations, the output is

a simple geographic point, but nothing forbids it from being any valid type

of geographic object, like polygons, lines or combinations of them. The

proposed solution offers a 2D representation of the output besides the

centroid (lat/lon geocode), when available.

The processing algorithm determines the appropriate geographic code to

return for a particular input based on the values of its attributes and the values

of attributes in the reference dataset.

The reference database contains geographical reference elements used by the

geocoding algorithm to derive the output. Several address models exist for

building the reference database, such as the street network data model, the

geographic unit model or the parcel boundaries data model (e.g., postal

codes, counties, cities, census enumeration areas), and the address point data

model [4, 16].

In the last decade online geocoding services have gained popularity. An

online geocoding service is a network-accessible component, sometimes a

16

module of a GIS, which automatically performs the geocoding process. It is

usually available on the Internet by utilizing a Web service interface. The

data entry, such as a place name, street address, or zip code, is passed over

the Internet using a communication protocol to the geocoding service. The

overall process usually takes less than a few seconds per data entry. The

geocoding service converts an entry into coordinates and then delivers the

result, which includes the coordinates, the address used in geocoding, and

the level of accuracy back to the user over the Internet. The underlying

algorithm and reference database used by the service are transparent to the

user [4].

2.1.1 Sources of error in the geocoding process

During the process of geocoding, it is important to identify the error sources

and quantify the error, if possible. Even simply defining what the error of the

geocoding process is presents an arduous task. For example, when speaking

of geocoding error, do we refer to the positional accuracy of the returned

geographic object, the probability that the feature returned is the one that was

desired, or the validity of one or more assumptions used by the geocoding

algorithm? Goldberg et al. [13], give a classification of the error causes and

the possible effects on the output. The classification is shown in Table 1.

Matching errors refer to the errors that might happen while matching the

search terms to the index terms. The cause of these errors are usually caused

by the relaxation of the conditions imposed to determine if two terms match

or not. Derivation errors are those the geocoder introduces while calculating

geocodes based on assumptions. For example, the house numbers of a street

that are given as a range (even house numbers 2 to 20 along the street line)

instead of providing the coordinates of each house number in the reference

dataset. The geocoder might assume that the house numbers are equally

spaced along the street, but this is not necessarily true. Reference data errors

are those introduced in the reference data itself. I.e. Data which does not

described the features in the real world accurately.

Stage Cause of error Effect of error

Matching

 Attribute relaxation Incorrect feature

 Probabilistic confidence

level

Incorrect feature

Derivation

17

 Parcel homogeneity

assumption

Wrong distribution

 Address range

existence assumption

Wrong number

Reference data

 Spatial accuracy Results inaccurate

 Temporal accuracy Results inaccurate

Table 1: Common causes and effects of errors of the geocoding process

In the case of our study, we only take into account those errors caused by

attribute relaxation, i.e. approximate string matching. We do not study the

accuracy of the underlying dataset used as reference (original OSM reference

data), neither what error Nominatim introduces while creating the derived

dataset when it calculates house numbers of a street by interpolation given a

house number range (derivation).

The simplest way a geocoder works is by matching the description of a place

or address given in the user query, with the addresses available in the

reference dataset. The reference addresses are composed by:

1. Text based address

2. A geocode

The geocoder finds matches between the user query and the reference

addresses, and score the reference addresses as a function of the user query.

The activities of text matching and scoring are part of a broader discipline

called Information retrieval.

2.2 Information retrieval

Information retrieval (IR) is a broad and interdisciplinary research field

including information indexing, relevance rankings, search engines,

evaluation measures such as recall and precision, as well as robust

information carriers and efficient storage [10].

The meaning of information retrieval can be very broad, a good and general

definition can be found in [1], in which Information retrieval is defined as:

18

the activity of finding relevant information (usually documents) of an

unstructured nature (usually text) that satisfies an information need, formally

described in the user query, from within large collections (usually stored on

computers).

Although Information retrieval has traditionally referred to unstructured

data, in reality almost no data is unstructured, since often documents have

title, headings, paragraphs and footnotes [1]. Ed Greengrass [5] sort the target

documents of an Information retrieval system in three groups, based on the

degree of order into the information they contain. He states that documents

can be structured, unstructured, semi structured or a mix of these types. A

document is structured if it consists of named components, and organized

according to some well defined syntax (e.g. all rows in a table of a relational

database will have the same columns). By contrast, in a collection of

unstructured natural language documents, there is no well-defined syntactic

position where a search engine could find data with a given semantics. In

between there is the case of semi structured documents, in which documents

share some common structure and semantics. The set of documents subject

of an information retrieval system is called collection, corpus or reference

dataset interchangeably.

Hai Dong [2] categorized the traditional Information retrieval models into set

theoretic models, algebraic models and probabilistic models. Further, he

presents a subdivision for each one of these three models. This subdivision

is shown in Figure 4.

The general idea of these models is to represent the documents in the

reference dataset by a set of identifiers, called index terms. The same idea is

Figure 4: Information retrieval models classification

19

applied to the user query, which is represented by identifiers called search

terms. During the search (information retrieval phase), the index terms are

compared to the user query search terms, and those documents with more

terms in common with the user query, are said to be relevant to that query.

The index terms for each document are precomputed and stored in the index,

a data structure that organizes the index terms in such a way that it is easy to

perform the search later on. The set of index terms is called (index)

dictionary. Nothing is said about the nature of the documents, the user query

or the index/search terms. They could be text documents, images, audio files,

or any other type of information.

Set-theoretic models

Set-theoretic models represent documents as sets of words or phrases.

Similarities are usually derived from set-theoretic operations on those sets.

The Boolean model is based on Set theory and Boolean algebra. A set is a

collection of abstract objects, where each object is the member of this set.

Boolean algebra is a set of logical operations between two sets, such as

conjunction, disjunction and complement.

In the Boolean model, whether an index term appears in a document or not

determines the value of the weight between the index term and the document,

which is a binary value. A query normally consists of several index terms

connected by a set of logical operations, and it can be translated to a

conjunctive form which is composed of a number of conjunctive components

[8].

For example, we have a reference dataset with the documents shown in Table

2:

Doc id Document Index terms

1 “Central station, Lund” [central, station, lund]

2 “Gunnesbo station, Lund” [gunnesbo, station, lund]

3 “Central station, Malmö” [central, station, malmö]

Table 2: Document collection example and the associated index terms

A query like this: “central station” → (conjunctive form) → “central AND

station” will give the results shown in Table 3.

20

Doc id Match query?

1 Yes

2 No

3 Yes

Table 3: Example of document matching using Boolean model

Since documents 1 and 3 are the only ones that contain both terms, central
and station.

If instead the query is “central station lund”, combining the terms with the

AND operator, we would only get document number 1, since it is the only

one that matches the query. Boolean model do not rank the results in any

way, just spot the documents that fulfills the requirements given in the query.

Algebraic models

Algebraic models represent documents and queries usually as vectors,

matrices, or tuples. The similarity of the query vector and document vector

is represented as a scalar value. These models let us rank the documents by

similarity. An example of algebraic model is the Vector space model [31,

32], in which each document is represented as a vector, and each dimension

of the vector corresponds to a term of the indexed terms as in Figure 5.

Figure 5: Vector space model example

21

If a term appears in a document, a weight is assigned to the corresponding

dimension in the vector. Similarly the user query can also be represented as

a vector with corresponding search terms. The relevance of a document given

a query can be calculated as the cosine of the angle between the two vectors

[8]. Depending on how the index terms are assigned, the documents in the

collection will be more or less similar to each other. Good index terms are

those that occur unevenly among the documents in the reference dataset. The

extreme case is an index term that appears only in one document, because a

query containing that term can only refer to one document. The reverse is

true for the bad index terms [33]. For instance, the word “the” is one of the

most commonly words found in English documents, therefore, the election

of “the” as vector dimension to represent documents, does not seem a good

choice to find individual documents among a collection. Figure 6 shows

graphically what happens after assigning an unevenly distributed index term.

After the assignment, the documents represented as vectors in the vector

space model are further from each other. Thus it is easier to identify them.

Using the document collection in Table 2, for the user query “central

station”, and assuming the algorithm assigns a constant weight of 1 to the

search and index terms, we would get these results shown in Table 4. In this

example, the dimensions of the vector space are {central, station, lund,

gunnesbo, malmö}. The query vector representation is (1,1,0,0,0). The

ranking is calculated using the cosine similarity between each document and

the query vector. Cosine similarity is explained later in section 2.2.2.

Figure 6: Vector space model, effect of assigning index terms

22

Doc id Doc. vector Ranking

1 (1,1,1,0,0)

2 (0,1,1,1,0) 0.577

3 (1,1,0,0,1) 0.816

Table 4: Example of document ranking using the Vector model and the cosine

similarity

The Extended Boolean model extends the Boolean model with the function

of term weighting, which is a hybrid model to combine the Boolean model

and the vector space model [19]. By weighting the association between a

document and a query term, the similarity between a conjunctive query, a

disjunctive query and a document can be calculated [9].

The query “central station”, would give the results shown in Table 5 for the

document collection in Table 2. The rankings are calculated using the cosine

similarity as in the previous example, but only for those documents which

fulfill the conditions imposed by the Boolean model. In this case the

document number 2 does not match the query, so it is discarded as a relevant

result for the query used in this example.

Doc id Match query? Ranking

1 Yes 0.816

2 No -

3 Yes 0.816

Table 5: Example of document ranking using the Extended Boolean model

Probabilistic model

Last, the fundamental of Probabilistic models is that they try to improve the

probabilistic description of the ideal answer set of documents relating to a

query by a series of iterations [8]. Given a user query and a document in a

collection, the probabilistic model tries to estimate the probability that the

user will find the interesting document. The model assumes that this

probability of relevance depends on the query and the document

representations only. Furthermore, the model assumes that there is a subset

of the documents which the user prefers as the answer set for the query. Such

23

an ideal answer set should maximize the overall probability of relevance to

the user. Documents in the ideal set are predicted to be relevant to the query,

and documents out of this set are predicted to be non-relevant [9].

2.2.1 Fundamentals of prefix and fuzzy search

The problem of devising algorithms and techniques for automatically word

prediction and correction in texts has been a main research challenge since

the early 1960s [21]. Traditional systems have used word frequency lists to

correct or complete words that the user has already started spelling out. Some

of the most extended techniques to predict and correct words are minimum

edit distance, n-grams and phonetic representations of words.

Minimum edit distance

By far the most studied spelling correction algorithms are those that compute

a minimum edit distance between a misspelled string and a dictionary entry.

The term minimum edit distance or Levenshtein distance was defined by

Vladimir Levenshtein [1965] as the minimum number of editing operations

(i.e., insertions, deletions, and substitutions) required to transform one string

into another [30].

Mathematically, the distance between two strings a and b is given by

 where:

()

() ()

()
()
() ()

.1

1

a,b

a,b

a,b

a,b
ai j

max i, j if min i, j = 0,

lev i 1, j +1
lev i, j =

otherwisemin lev i, j +1

lev i 1, j +1
b

ì
ï

ìï -ï ï
í ï

-íï
ïï - -ïï ¹îî

()jia b¹1 is the indicator function, which is equal to 0 when ai = bj and equal

to 1 otherwise.

In general, minimum edit distance algorithms require m comparisons

between the misspelled string and the dictionary, where m is the number of

the dictionary entries [21].

24

N-grams

Given a string s, i.e. a sequence of characters, and n-gram is any substring of

s of some fixed length n. A simple similarity measure between two strings is

to choose n and count the number of n-grams the two strings have in common

[22]. Given the strings “abc” and “bcd” with n=2, then the strings’ 2-grams

are:

String 2-grams

“abc” {“ab”, “bc”}

“bcd” {“bc”, “cd”}

A problem with this approach is that some information about the string is

lost. As we see in the example above, both strings have one 2-gram in

common, even though they are clearly not the same string.

A variation of the basic n-gram scheme allows efficient word prediction or

prefix search. The idea is to represent a word by its variable length n-grams,

always computed from the first character of the word. For instance, the word

“Sweden” can be represented by its variable length edge-gram set:

word Edge-grams

sweden [s, sw, swe, swed, swede, sweden]

Phonetic techniques

Phonetic models are a subtype of similarity key techniques. The notion

behind similarity key techniques is to map every string into a key such that

similarly spelled strings will have identical or similar keys. Thus, when a key

is computed for a misspelled string it will provide a pointer to all similarly

spelled words (candidates) in the lexicon [21]. Probably the best-known

phonetic algorithm is SOUNDEX [22], invented in 1918. SOUNDEX uses

codes based on the sound of each letter to translate a string into a canonical

form of at most four characters, preserving the first letter [22]. With time

some other models appeared that improve the phonetic accuracy of this

algorithm, such as METAPHONE and later DOUBLE METAPHONE,

which take into account other languages than English, and generates at most

two codes for each input, being the second an alternative code. There is more

information about how METAPHONE and DOUBLE METAPHONE work

in the original paper written by Lawrence Phillips [23].

25

2.2.2 Document Similarity and TF-IDF

In vector space model, documents and queries are represented as vectors,

where each component of the vector is the weight assigned to a term of the

document. The terms of the documents could be, depending on the type of

search the system is intended to support, phrases (ordered list of words),

single words (being a document represented by the words in that document),

or any other term resulting from the processing of the document words (for

instance, n-grams or metaphone code of a word) as described in the previous

section, 2.2.1.

“Term frequency–inverse document frequency” (tf–idf) is one of the most

commonly used term weighting schemes in today’s information retrieval

systems [20]. Tf-idf is a numerical statistic that is intended to reflect how

important a word is to a document in a collection or corpus.

The tf-idf weighting scheme assigns a weight to term t in document d given

by the product of term frequency in the document and the inverse document

frequency:

tdt,dt, idf tf = idf-tf ×

Tf provides a direct estimation of the occurrence probability of a term in the

document. The more occurrences of a term in a document the more relevant

that term is for the given document. Term frequency can be defined as:

, Number of ocurrences of term in document t dtf t d=

Or the normalized form:

,

Number of ocurrences of term in document

Total number of terms in document
t d

t d
tf

d
=

Raw term frequency suffers from a critical problem: it does not take into

account the frequency of the term among the documents in the collection.

Terms that occur to often in the collection have very little or none

discriminating power.

Idf is a mechanism for attenuating the effect of terms that occur too often in

the collection. An immediate idea is to scale down the term weights of terms

with high collection frequency (cft), defined to be the total number of

26

occurrences of a term in the collection. The idea would be to reduce the tf

weight of a term by a factor that grows with its collection frequency. It is

more commonplace to use for this purpose the document frequency (dft),

defined to be the number of documents in the collection that contain a term.

Idf is usually defined as:

 = logt

t

N
idf

df

æ ö
ç ÷
è ø

N is the size of the collection. Idft can be interpreted as ‘the amount of

information’ in conventional information theory, given as the log of the

inverse probability [20].

For example, imagine a document collection of N=10, in which every

document of the collection contains the word “the”. No matter what the term

frequency is, the idft will be zero, idft = log(1) = 0. Therefore, the weight

assigned to the vector component that represents the term “the” will be zero

for all the vectors representing the documents. Intuitively, since the term

“the” appears in all the documents in the collection, this term is not good for

searching criteria. Let’s say now that the term “geocoding” appears only in

one document once, the term frequency for “geocoding”, in that document

will be 1, while it will be 0 in the rest documents. The idft will be in this case

equal to log(10/1)=1. Tf-idf assigns a high weight to that term since

“geocoding” appears only in one document of the collection.

In other words, tf-idf assigns a weight w to the term t in document d that is:

1. higher when t occurs many times within a small number of

documents (thus lending high discriminating power to those

documents)

2. lower when the term occurs fewer times in a document, or occurs in

many documents (thus offering a less pronounced relevance signal)

3. lowest when the term occurs in virtually all documents.

Cosine similarity

Vector space model represents each document as a vector in which each

vector dimension corresponds to a term in the index dictionary, together with

a weight for each component that is given by the tf-idf value. For dictionary

terms that do not occur in a document, this weight is zero.

27

In the same way, queries can also be represented as vectors. The advantage

of this strategy is that, since both queries and documents are seen as vectors,

we can use some measure of similarity between vectors to score documents

given a user query. One possible solution is to use the cosine similarity of

their vector representations [1]. Given the query vector v(q) and a document

vector representation v(d), the cosine similarity is calculated as [31]:

() () () ()
()| | ()| |qvdv

qvdv
=v(d)v(q),cosine=dq,similarity

rr

rr

×
×

2.2.3 Text indexing

The previous section introduced the paradigm of information retrieval, as

well as techniques for fuzzy and prefix search. The documents of the

collection and user query are represented by a set of identifiers, called

index/search terms. These terms can be anything from phrases, words, to n-

grams or metaphone codes. The way these terms are computed and stored

affects the search speed as well as the way the user can search for documents.

In order to make the search efficient, index terms are usually stored in data

structures called inverted indexes. An inverted index maps index terms to

documents, or document ids. That way, when a user wants to find the

documents relevant to a user query, the IR system does not need to read

through all the documents in the collection, it only needs to extract the

document id:s from the index whose documents contain the search terms of

the query.

If we use the document collection in Table 2, the inverted index for such a

collection would look like Table 6.

Index term Document ids Term freq Document freq

Central [1,3] [1: 1, 3: 1] 2

Station [1,2,3] [1: 1, 2:1, 3: 1] 3

Lund [1,2] [1: 1, 2: 1] 2

Gunnesbo [2] [2: 1] 1

Malmö [3] [3: 1] 1

Table 6: Inverted index for a document collection

28

Table 6 represents the inverted index, together with the term frequencies and

document frequencies of each term, used to assign weights to the document

terms as described in section 2.2.2.

This index strategy is efficient for searches such as “central station lund”.

However, a search like “centrl station” will return no results, since there is

no mechanism for correcting errors. The same applies for a prefix search like

“centr”, in this case the system would need to find index terms among the

dictionary following the pattern given by “centr*”, an expensive operation.

We could instead, create a reverse index in which the index terms are n-

grams of the document words, or metaphone codes to approximate the words

by their sound. In this case a match would be found if the metaphone codes

match or the number of n-grams in common is over a certain limit for

instance.

A more detailed description of text indexing, and inverted index tables can

be found in [1, 31, 32].

2.3 Evaluation metrics

The two elementary metrics to evaluate correctness in Information Retrieval

are [9, 18]:

Precision (positive predictive value): Percentage of retrieved documents that
is relevant to the user.

Recall (sensitivity): Percentage of the documents relevant to the user query
that are successfully retrieved.

relevant documents retrieved documents
recall =

relevant documents

Ç

Besides these measures, geocoding systems can be evaluated taking into

account the geospatial properties of the documents. Common metrics for

evaluating the quality of geocoding results are completeness (or match rate),

positional accuracy, and repeatability [16]. In general, the geocoding quality

relevant documents retrieved documents
precision =

retrieved documents

Ç

29

depends on several factors such as geographic areas of addresses, quality of

the reference databases, match scores, and geocoding algorithms [4].

The match rate is a statistical metric commonly used to measure the

geocoder’s ability to successfully determine a geocode for a given set of text

addresses. High match rates (above 90%) are possible, however there are

always street addresses that are difficult to geocode. Match rates typically

vary from 70% to over 90%. Match rates can be a good metric, but can be

misleading [14].

If we assume that for each query, the user expects to get one and only one

relevant result, being the result the geocode of the place the user is trying to

find, then the match rate can be defined as the average recall over a number

of n geocoding requests.

Match rate: Percentage of correctly geocoded places by the geocoding
system.

Number of geocoded places
match rate =

Total geocoding requests

For systems with auto-complete features, keystroke saving can be a good

measure (percentage of keystrokes eliminated by integrating the prediction

method) [22]. However, keystroke saving highly depends on the format and

length of the addresses being tested.

Absolute keystroke saving: Difference between the original address length,
and the query length when the address is found by the geocoder.

length lengthkeystroke saving = address - query

Relative keystroke saving (or keystroke saving percentage): Absolute
keystroke saving divided by the original address length.

length length

length

address - query
relative keystroke saving =

address

30

Last, it is important to know how much time it takes a system to perform an

action. In the case of a geocoder, that would be the time it takes to execute

the geocoding algorithm. This times does not take into account the round trip

time or the client side code intended to present the results of the geocoding

request, for example the JavaScript code.

31

CHAPTER 3

3 OpenStreetMap and Nominatim

This chapter describes the geospatial reference dataset used in the project,

OpenStreetMap, and the open source geocoder in which this project is based,

Nominatim.

3.1 OpenStreetMap

OpenStreetMap [6] is an editable map of the world, released with an open

content license, and created by volunteers. Everyone is free to contribute by

adding new geographical data to the map, and it is the origin of many projects

in different fields, such as geocoding, semantic analysis, map browsers and

map renderers, map editing tools.

The map data and map images are free to use for everyone, released with

OpenStreetMap license, and supported by the OpenStreetMap foundation,

which is an organization that performs fund raising in order to provide

servers to host the OpenStreetMap project, but it does not control the project

or own the data. It is dedicated to encouraging the growth, development and

distribution of free geospatial data and to providing geospatial data for

anybody to use and share [6].

3.1.1 OSM data model

The OSM data model consists of three different element types or data

primitives, plus a type to store metadata about the three data primitives:

· Nodes: points with a geographic position, they represent features

without a size.

· Ways: ordered list of nodes representing polylines or polygons if

closed. Used to represent features with linear shapes like rivers, and

areas like forests, parks, Etc.

· Relations: they are an ordered list of nodes, ways and other relations,

they represent relations between the elements they contain.

32

· Tags: they are key/value pairs used to store metadata about the map

features like names, type, physical properties. Tags are not free-

standing, but attached to one of the previous features.

OSM data elements represent physical features on the ground (e.g., roads or

buildings) using tags attached to its basic data structures (nodes, ways, and

relations). Each tag describes a geographic attribute of the feature being

shown by that specific node, way or relation.

OpenStreetMap's free tagging system allows the map to include an unlimited

number of attributes describing each feature. The community agrees on

certain key and value combinations for the most commonly used tags, which

act as informal standards. However, users can create new tags to improve the

style of the map or to support analyses that rely on previously unmapped

attributes of the features.

Most features can be described using only a small number of tags, such as a

path with a classification tag such as highway=footway, and perhaps also a

name using name=[name identifying the path]. But, since this is a

worldwide, inclusive map, there can be many different feature types in

OpenStreetMap [34].

OpenStreetMap data is usually distributed in XML format, and each feature

is described with an XML element (<node>, <way> and <relation>) [7]. Text

1 is a small portion of the OSM data file for Sweden. The relation in this code

snippet corresponds to the definition of the Electronic building (E-huset), in
Lunds Tekniska Högskola:

33

Table 7 lists the common attributes in each OSM element.

name value description

id integer

Used for identifying the element. Element types have

their own ID space, so there could be a node with

id=100 and a way with id=100, which are unlikely to

be related or geographically near to each other.

user string
The display name of the user who last modified the

object. A user can change their display name

uid integer
The numeric user id of the user who last modified the

object. The user id number will remain constant.

<?xml version='1.0' encoding='UTF-8'?>

<osm version='0.6' upload='true' generator='JOSM'>

 <bounds minlat='55.7101169' minlon='13.2088387'

maxlat='55.7119181' maxlon='13.2123256' />

 …

 <way id='89001056' timestamp='2010-12-11T08:29:00Z'

uid='31450' user='sanna' visible='true' version='1'

changeset='6619970'>

 <nd ref='1032852252' />

 …

 </way>

 <relation id='1315684' timestamp='2013-10-07T08:46:15Z'

uid='13957' user='Grillo' visible='true' version='5'

changeset='18225042'>

 <member type='way' ref='89001056' role='inner' />

 <member type='way' ref='89001057' role='outer' />

 <member type='way' ref='89001059' role='inner' />

 <member type='way' ref='89001058' role='inner' />

 <tag k='addr:city' v='Lund' />

 <tag k='addr:country' v='SE' />

 <tag k='addr:housenumber' v='3' />

 <tag k='addr:street' v='Ole Römers väg' />

 <tag k='building' v='yes' />

 <tag k='name' v='E-Huset' />

 <tag k='operator' v='Lunds Tekniska Högskola' />

 <tag k='type' v='multipolygon' />

 </relation>

 …
</osm>

Text 1: Example of OSM data in XML format

34

timestamp

W3C Date

and Time

Formats

time of the last modification

visible
"true"

"false"

whether the object is deleted or not in the database, if

visible="false" then the object should only be

returned by history calls.

version integer

The edit version of the object. Newly created objects

start at version 1 and the value is incremented by the

server when a client uploads a new version of the

object. The server will reject a new version of an

object if the version sent by the client does not match

the current version of the object in the database.

changeset integer
The changeset in which the object was created or

updated.

Table 7: OSM element, common attributes

In addition, tags, and also a full editing history of every element is stored [6].

3.2 Nominatim

This project is based on an open source geocoding solution called

Nominatim. Nominatim is an online geocoder written in PHP and it uses

OSM data as reference dataset.

Nominatim stores the OSM elements into postgreSQL, a relational database,

with PostGIS extension, a library of geospatial tools and types. The tool to

read and import OSM data in XML format into the database is called

Osm2pgsql.There is very little or no documentation on the implementation

and algorithms Nominatim uses, all the information have to be obtained from

the source code.

We could have chosen to create our index from the raw OSM data instead of

relying on Nominatim to make a first data processing. These are the

advantages and disadvantages of using Nominatim index over raw OSM

data.

Disadvantages:

· Nominatim index process takes several days, using the hardware that

runs the Nominatim project. The index time is around 250 hours, plus

2 days of the initial import process [6].

35

· Nominatim import process is lossy, meaning that some features are

not imported into the database. For example, Nominatim drops

coastlines and manipulates the data in a way that routing relationships

are lost [6].

Advantages:

· Nominatim calculates the parents of a place.

· Nominatim provides a database with geospatial indexes.

· Nominatim calculates information like country code, street and

postcode of OSM postal addresses if the information is missing.

· Nominatim assigns an address rank to each place.

· Nominatim (optionally) calculates a search rank to each place at

index time, based on the number of entries in Wikipedia that refers to

that place. This can be used to sort suggestions.

· Nominatim classifies the map features by class and type based on the

set of tags that identifies a feature.

· Nominatim provides tools to maintain the database.

3.2.1 Usage and statistics

The most recent Nominatim usage statistics were presented in the annual

conference, “OpenStreetMap. State of the map” in September 2013, in

Birmingham [17]. By that time, the server was handling 100 requests per

second, where 10% of the requests were search queries and 90% reverse

queries.

They also provided some numbers on the state of the database (Table 8).

Address type Number of entries in the database

(x106)

House number 60

Streets 47

POIs 12

Administrative areas 5

Water bodies 1.5

Total 130

Table 8: Database entries by type

36

3.2.2 Database overview

This section is meant to be an overview of the main database relations

involved in the geocoding process in Nominatim. This chapter is not a

detailed view of the entire database structure. It focuses mainly on those

tables that contain the reverse index and/or are used to compute the address.

Figure 7 shows the tables used during the search process in Nominatim.

The dictionary of the inverted index is stored in the relation word (the term

word here is misleading, since what is stored in the word table can be actually

several words per entry. We will show an example later). During the import

process, for each new term to be indexed, a new entry is inserted. The word

column contains the original string, word_token contains the normalized

string, and search_name_count is the frequency of that word in the data set.

Each word gets assigned a word id word_id. The rest of the columns in this

table are used for filtering, like finding places by country code or Nominatim

class and type.

Search_name maps place id:s to word id:s. Nominatim classifies the index

terms for each place into two different lists, name_vector and

nameaddress_vector (the reason for this is to assign higher weight to the

tokens that are present in the name than the ones in the address). name_vector

Figure 7: Tables involved in the address search and computation process

37

contains the word id:s of the words that appear in the name of the place. In

the same way, nameaddress_vector contain the id:s of the words that appear

in the place parents. So, in the case of “E-Huset, Lund, Sweden”,

name_vector contains the word id corresponding to token “e huset” and

nameaddress_vector the word id:s of tokens “lund”, and “sweden”.

Placex stores the OSM elements, together with their tags, rank, parent id, and

class and type. It contains all the information needed to compute the address

string for a place given the place id and the preferred language. Placex.name
contains a map of key/value pairs, each value being a different name or a

name in a different language. Keys for names in a specific language looks

like name:*, where the wildcard corresponds to a two-letter language code

defined in the standard ISO-639 [38]. So the translation of Göteborg in

English would be mapped in OSM and Nominatim like

name:en=>Gothemburg (if the translation exists). Nominatim also stores the

geometry and centroid of the element into this table. We will use this table

to compute the address of a place and retrieve the geometry and other

information as a response to a geocoding request.

During the import of new OSM data, Nominatim uses three intermediate

tables, osm_nodes, osm_ways and osm_relations. These tables contain raw

OSM nodes, ways and relations.

3.2.3 Processing OSM data

This section explains how Nominatim processes OSM data, which element

tags are processed, and how the index is built.

As explained before, OSM elements have associated tags with information

about the element, a subset of these tags contain information about the name

and address of the element. Nominatim processes the values of these tags to

compute the index terms associated to each OSM feature.

3.2.3.1 Processing feature names

For each OSM element, Nominatim processes the values of the tags in the

list as possible names for that element. It also processes the language variants

of the tags following the pattern [tag_name]:[language code in ISO 639-1].

For example, the OSM element corresponding to the city of Lund, Skåne län,
Sweden, has an associated tag name=>Lund, and an additional tag
name:ru=>Лунд which corresponds to the translation of Lund into Russian.

38

· name

· name:[lang]

· int_name

· common_name

· loc_name

· nat_name

· alt_name

· place_name

· official_name

· reg_name

· short_name

· old_name

· ref

· iata*

· icao*

· operator

*iata and icao are two especial tags to uniquely identify most major
airports across the globe

Nominatim also processes the address tags associated with the element, i.e.

tags of the form addr:*. This is used to provide postal information for a

building or facility. Some possible tags are:

· housenumber

· housename

· street

· place

· postcode

· city

· province

· country

· ...

A complete list of these tags can be found in the OSM wiki [6] in the
subsection map feature.

Before being indexed, each of the tags’ values listed above is normalized and

tokenized. The normalization process is as follows:

1. The tag value is lowercase

2. Diacritics are removed

3. The text is transliterated, text converted to Latin letters

4. Text words are transformed to common abbreviations

Once the tag value is normalized, Nominatim calculates the index terms by

which the element will be identified.

1. The normalized tag value is split using space character

2. The result of splitting the tag value is a list of tokens, some of these

tokens are too common to add any information to the index,

consequently are removed (for example the word “the” in English

texts)

3. The result is the index terms for that element

 Figure 8 represents the different steps taken to process the tags.

39

3.2.3.2 OSM Administrative boundaries

Administrative boundaries [15] are subdivisions of areas, territories, or

jurisdictions recognized by governments or other organizations for

administrative purposes. Administrative boundaries range from large groups

of nation states right down to small administrative districts and suburbs.

OSM allows to specify the administrative level of the map features by adding

the tag boundary=administrative and admin_level = [1 to 10].

For example, the map feature representing the Swedish national borders is

assigned admin level 2. The Swedish administrative regions, like Skåne Län
or Örebro Län, are assigned admin level 4. Last, the city areas, like

Stockholm or Malmö, are tagged as admin level 9. The admin levels are

used differently from country to country, the complete list can be found in

the OSM admin levels site [15].

Figure 8: Nominatim import: normalization and tokenization

40

3.2.3.3 OSM features hierarchy

All indexed features are converted to a simple hierarchy (rank) of importance

with points scored between 0 and 30 (where 0 is most important). Rank takes

account of differences in interpretation between different countries but is

generally calculated as:

Address type rank

Administrative boundaries: admin_level * 2 4–22

Continent, sea 2

Country 4

State 8

Region 10

County 12

City 16

Island, town, moor, waterways 17

Village, hamlet, municipality, district, borough,

airport, national park
18

Suburb, croft, subdivision, farm, locality, islet 20

Hall of residence, neighborhood, housing estate,

landuse (polygon only)
22

Airport, street, road 26

Paths, cycleways, service roads, etc. 27

House, building 28

Postcode
11–25 (depends on

country)

Other 30

Table 9: Address rank

For each feature down to level 26 (street level) a list of parents is calculated

using the following algorithm:

1. All polygon/multi-polygon areas which contain this feature (in order

of size).

2. All items by name listed in the is_in are searched for within the

current country (in no particular order).

41

3. The nearest feature for each higher rank, and all others within 1.5

times the distance to the nearest (in order of distance).

The tags of each parent of the element are also indexed and consequently,

used to find that element.

Buildings, houses and other lower than street level features (i.e., bus stops,

phone boxes, etc.) are indexed by relating them to their most appropriate

nearby street.

The street is calculated as:

1. The street member of an associatedStreet relation

2. If the node is part of a way:

2.1. If this way is street level, then that street

2.2. The street member of an associatedStreet relation that this way

is in

2.3. A street way with 50/100 meters and parallel with the way we

are in

2.4. A nearby street with the name given in addr:street of the feature

we are in or the feature we are part of

2.5. The nearest street (up to three miles)

2.6. Not linked

All address information is then obtained from the street. As a result addr:*

tags on low level features are not processed [24].

For interpolated ways simple numerical sequences are extrapolated (alpha

numerical sequences are not currently handled) and additional building

nodes are inserted into the way by duplicating the first (lowest) house number

in the sequence [6].

3.2.3.4 Index example

For each index term, i.e., a term which does not appear in the dictionary,

Nominatim creates a new entry into the word table. Table 10 shows a partial

view of the word table, with some of the indexed terms for “E-Huset, Lunds
Tekniska Högskola, Lund, Sweden”.

42

word_id word_token search_name_count

2069 huset 206

17303 lunds 157

85819 tekniska 115

18403 hogskola 0

115540 lunds tekniska hogskola 0

312900 e huset 0

Table 10: Example of index terms in word table

The index terms in Nominatim are the normalized address words. These

index terms are later matched against the user query by Nominatim. The

consequences are:

· User can only search for full words, i.e., if a user query contains the

term lund, this will not be matched to the word id 17303, which

corresponds in the example to the term lunds.
· The geocoder cannot correct any misspelling.

· There is no information about the language this index term

corresponds to, meaning that Nominatim does not split the index by

language, having to look up the whole index when trying to find a

match.

The same strategy is applied to the address tags of every OSM named

element, the tags addr:[housenumber/street/postcode/...] and so on. This

table forms the dictionary of the retrieval system, but it contains no reference

to the actual OSM places.

Nominatim maintains a map of index terms to place ids in search_name.
Table 11 is a partial view of search_name for the entry mapping E-huset

building in LTH

place_id name_vector nameaddress_vector

1513474 [2069,312900] [17303, 85819, 18403, 115540,

place_id(Lund), place_id(Sweden)]

Table 11: Search name relation in Nominatim database

43

Finally, all the information about the element with id 1513474, E-Huset, can

be found in the relation placex, the geocoder uses this table to build the

localized address of that place. Table 12 is a partial view of the placex table

showing some of the information about the feature “E-Huset”.

place_id parent_place_id class type name ...

1513474 place_id(LTH) place house name=>'E-Huset',

name:en=>'Electronics

department'

...

Table 12: Placex relation in Nominatim database

3.2.4 Search algorithm

The search algorithm in Nominatim is written in PHP, and its extension is

around one thousand lines of code, plus some SQL functions. Nominatim

search algorithm finds matches between the user query search terms and

index terms obtained from the name and address tags of map elements and

its parents. The search algorithm can be described as follows.

1. The user query is normalized and split into tokens, commas help

finding address parts (This is the same process as the one described

in Figure 4)

2. Remove tokens, or token combinations that are not into the dictionary

(The dictionary is stored in the table word in the database).

3. Each valid token (or combination of tokens) is given a meaning,

either name, address or special term like OSM class, type, house

number, Etc.

4. A new search is executed for each token combination/meaning. i.e.,

guessing the token is part of the place name, or place address, or the

token is a house number etc.

5. After all searches are done, Nominatim has a collection of places,

these places are sorted by a) how many the terms from the search

query appear in the place name. Nominatim does not use any of the

mathematical models described in section 2.2, b) rank based on place

coordinates (if the user uses the web site, Nominatim assigns a

slightly higher relevance to the places located in the region of the map

the user is looking at) and c) importance assigned by Nominatim at

index time.

6. Addresses for each found place is computed, this includes address

translation to the requested language. See next section: Address

computation

44

7. Response is sent to the client.

3.2.5 Address computation

An address can be defined as a description of a real world place. Addresses

in Nominatim are not calculated and stored in the database beforehand, but

computed when a map feature is requested. Since each map feature has a

reference (parent_place_id) to its parent element, Nominatim simply

concatenates the place name of each parent in descending rank order.

Nominatim does not have any criteria to discern the representative parts of

an address, therefore, it often computes long address strings. The address

string returned by Nominatim for E-Huset in LTH is:

“E-Huset, 3, Ole Römers väg, Olshög, Tuna, Lund, Lund Municipality,
Skåne län, Götaland, 224 64, Sweden”

The relevant parts of an address vary from country to country. In the example

above the address parts: Olshög, Tuna, Lund Municipality and Götaland can

be removed and the address text would identify the E-Huset map feature

uniquely.

45

CHAPTER 4

4 Proposed geocoder

This chapter proposes an extension to the Nominatim geocoder. The main

problem with the Nominatim geocoder is that, due to the indexing strategy,

there is very little flexibility in the way users can access the data. The

geocoder does not allow any spelling errors, neither get any feedback while

the user is typing the address. The reason for this is that addresses are

represented in the index by the address words, therefore, the search fails each

time one or more words are misspelled.

The proposed solution adds autocomplete and error correction functionality

to the Nominatim search module. It does not modify the way OSM map

features are imported into the Nominatim database, how these features are

later updated or how Nominatim classify them by class and type.

A naive approach would be for example to use the Levenshtein distance to

find addresses in the database similar to a user query, and rank the addresses

according to this distance. However, this approach is completely inefficient

since the Levenshtein distance needs to be calculated for each entry in the

database. We need a more scientific approach like the one described in

section 2.2.

In order to make autocomplete and error correction efficient, i.e. interactive

from the user perspective, a new index is designed. The proposed index

represents the addresses using n-grams and phonetic codes instead of words

(See section 2.2.1). This new approach of representing the addresses needs a

smarter way to evaluate the similarity with the user queries. The proposed

solution uses the Extended Boolean model for this purpose.

I build the proposed solution over a general-purpose search engine called

Elasticsearch [35]. As a general purpose search engine, Elasticsearch can be

setup to index documents in a variety of ways, for example using n-grams.

Also, Elasticsearch uses Extended Boolean model and Tf-idf to compute the

46

similarity between the user query and the indexed addresses. Elasticsearch

relies internally in Lucene [36]. Lucene is a general-purpose java library for

information retrieval which contains the implementation of the Extended

Boolean model, vector component weighting schemes like the Tf-idf

approach and functionality to calculate similarity between documents.

I used Elasticsearch to move from the original ad-hoc solution implemented

in Nominatim, to a more mathematical and scientific approach for indexing,

and searching addresses.

4.1 Elasticsearch
Elasticsearch is an open source search engine first release in 2010. It is

available under the Apache 2 license, one of the most flexible open source

licenses [35]. The main features of Elasticsearch are:

· Full text search: Elasticsearch uses Java Lucene, a Java library for

Information retrieval. Lucene uses the Extended Boolean model to

build indexes and search for documents.

· Distributed: designed to grow horizontally as the size of reference

dataset grows. The index is distributed among several servers,

increasing the performance and robustness of the system.

· API driven: Elasticsearch is accessible from an API using JSON data

over HTTP protocol.

· Schema free: Elasticsearch allows to index JSON documents without

following any predefined schema. Later you can apply your domain

specific knowledge of your data to configure how the data is indexed.

47

4.2 Proposed system software stack

The proposed geocoder service architecture is described in Figure 9. The top

level is Apache 2 web server which serves static user web pages, and acts as

a security layer in the system. This way, the rest of the components are not

exposed to the outside but Apache (reverse) proxies the requests to them

when needed.

In the second layer there are three different modules:

1. Tomcat: This is the web service container that runs the proposed

geocoder system. The geocoder communicates with:

1.1. The Elasticsearch master node(s), which manages the

address index and do the actual search on it.

1.2. The database through the data access object (DAO).

Hibernate [37] is a library that maps relations in a database

to Java objects. It is used to access the relational database.

The DAO layer isolates the internals of the persistence layer,

in this case the database used to store the OSM/Nominatim

data from the geocoder logic. All it does is, given a place id

or set of places ids, it returns information about that place id

stored in the database. The way it does it, it is transparent to

the geocoding logic.

Figure 9: Proposed geocoder software stack

48

2. Elasticsearch: Contains the index that gives support for fuzzy and

prefix search.

3. SQL database: PostgreSQL database with PostGIS extension. This

is the original Nominatim database, without any change.

The database contains the reference dataset, i.e. the map features

indexed by Nominatim. It is accessed to retrieve the geospatial

information of the requested address and compute the address

string.

4.3 Online geocoding service

The proposed solution is meant to work as an extension to the original

Nominatim geocoder. This means that the URL's pattern for the resources

and the request parameters and response formats are the same as in the

original Nominatim service. The URL’s structure is shown in Figure 10.

The web service offers 3 public resources: search, details and reverse, to

request a geocode operation (search), request a reverse geocode operation

(reverse), or get the details of an address. There is also a set of sub-resources

under the main resource “admin”. This set of sub-resources is useful for

indexing addresses, debugging and testing the system.

4.4 Address indexing

In order to support fuzzy and prefix search, Elasticsearch is setup to analyze

and compute more advance index terms than the ones used in the original

Nominatim geocoder.

Figure 10: Online service: URL pattern

49

During the index process, the proposed geocoder extracts one by one all the

Nominatim entries stored in the original database, and performs the next

operations on each one of them:

1. The geocoder calculates the index values of the index_name, i.e.

individual words from the name:* tags assigned to that OSM map

feature.

2. It computes and stores the Double metaphone values of these words

into values_dm.

3. It extracts the parents of the Nominatim entry from the database

(Nominatim offers a SQL function to obtain the parent id:s given a

place id). Each parent is assigned an address type depending on the

Nominatim class, type and admin_level OSM tag if it was assigned

to that entry. The possible address types that the proposed geocoder

uses are {housenumber, street, city, postcode, state, country,
unknown}. If a parent matches an address type, its id is added to the

list of parent id:s used to build the address at search time. Otherwise

the address type is set to unknown. This is explained in more detail

in section 4.4.1.

4. The geocoder calculates the individual words of the names of the

parents that have been assigned an address type and their Double

metaphone codes.

5. Finally, the JAVA object containing the data calculated in the

previous steps is serialized in JSON format and sent to Elasticsearch.

The JSON object in Text 2 corresponds to the address “E-Huset, Lund
Tekniska Högskola, Lund”.

50

Elasticsearch is setup to process each JSON field as explained in Table 13.

For instance, the address names are represented in the index by their n-grams

of minimum length 3, and also by the metaphone codes. The postal code field

is represented in the index by its edge-grams.

Document field Index strategy

place_id Unique id, the same as in Nominatim

database.

indexed_parent_ids Stored in Elasticsearch but not

indexed (they are not searchable).

{
 "place_id":1513474,
 "osm_type":"R",
 "osm_id":1315684,
 "class":"place",
 "type":"house",
 "indexed_parent_ids":[515119,1513602,1517827],
 "importance":0.0,
 "address":{
 "index_name":{
 "short_terms":["E"],
 "values":[" E Huset Lunds Tekniska Högskola"],
 "values_dm":["LNTS","HST","KSKL","TKNS"]
 },
 "index_road":{
 "values":["Ole Römers väg"],
 "values_dm":["FK","RMRS","AL"]
 },
 "index_city":{
 "translation_map":{"ru":"Лунд"},
 "values":["Lund"],
 "values_dm":["LNT"]
 },
 "index_state":{
 "translation_map":{"ru":"Сконе"},
 "values":["Skåne Län”],
 "values_dm":["SKN", “LN”]
 },
 "index_postcode":"22464",
 "index_country_code":"se"
 },
 "centroid":[13.211050073039036,55.7110348],
 "calculated_address_type":"PLACE"
}

Text 2: Example of serialized address into JSON

51

index_[name/road/city/state].values Analyzed using n-grams of minimum

size equals to 3. Any word shorter

that 3 chars is ignored.

index_[name/road/city/state].values
_dm

This property contains the double

metaphone values of the tokens in

[name/road/city].values. The length

of these tokens varies between 2 and

4.

They are analyzed using edge-grams

(n-grams starting always from the

first character).

index_[name/road/city/state].short_t
erms

For short address tokens which will

be ignored (length <3 characters).

Indexed as it is.

index_postcode Analyzed using edge-grams.

index_country_code Not analyzed, indexed as it is, for

filtering by country code.

centroid Indexed as a geo-point type, for

spatial filtering.

Table 13: Document field index strategy

4.4.1 Address type computation

The address type of the Nominatim entries is computed using the class and

type attributes of the entry and the OSM administrative level if assigned

(admin_level attribute, see section 3.2.3.2). Table 14 shows the criteria to

assign the address type to a Nominatim entry.

Address type Condition(s)

House number class = place AND type = house

Street class = highway OR bridge OR tunnel

City class = place AND (type = city OR town OR village

OR hamlet)
OR admin_level = city admin level

Postal code (class = place AND type = postcode) OR (class =

boundary AND type = postal_code)

52

State admin_level = state admin level

Country class = place AND type = country_code
OR admin_level = country admin level

Unknown otherwise

Table 14: Criteria to assign the address type to the Nominatim entries

4.5 Searching addresses

The proposed geocoder relies on Elasticsearch to perform the search of

relevant addresses given a user query. Elasticsearch makes use of the

Boolean model to extract relevant documents given a user query. And then,

it ranks the relevant documents by representing documents and query as

vectors, and computes the similarity among the query and each document.

Elasticsearch provides a full query domain specific language (query DSL)

based on JSON to define queries. Elasticsearch queries specify what must be

searched and in which document fields must be found. However, the user

provides only a text query, and probably some extra information to apply

filters on the results. For this reason the user query needs to be processed and

translated to Elasticsearch queries.

4.5.1 Query processing

The query processor purpose is to assign some meaning to some parts of the

user query and to translate the user query into one or more Elasticsearch

queries (Figure 11). The input of the query processor is a formal query in text

format, expressing the user needs, for example if the user need is “to know

where the Electronics building in LTH is”, the associated query would be

something like “E-Huset, LTH, Lund”. The output of the processor is one or

more Elasticsearch queries, in which some of the words of each query might

have been given some meaning.

For instance, to find street intersections, the geocoder needs to find first the

streets to intersect. The query processor splits the user query in two

subqueries. The proposed geocoder split the queries at “?” character. Then,

the geocoder assigns a meaning to each subquery. In this case each subquery

is interpreted as the name of a street. The user query “Bytaregatan ? Knut

den stores gatan, Lund” will be interpreted by the proposed geocoder in the

following way: a request for finding the intersection of the streets

“Bytaregatan” and “Knut den stores gatan” in “Lund”.

53

The query processing is as follows:

1. The query is converted to lowercase.

2. Split the query in punctuation and space letter.

3. For each token which does not contain numeric characters, it

computes the double metaphone code.

4. Tokens whose length is 2 or lower are marked as short tokens.

5. Tokens containing numeric characters, these tokens might have a

special address meaning, like house number or postcode. These

tokens are analyzed as follows

5.1. If the query contains only one token, it is considered a postcode.

5.2. If the query contains more than one token, then tokens with

numeric characters have three possible interpretations, since they

can be part of the name, house number or postcode.

Last, after processing the query, the geocoder decides which type of search

it needs to perform. The search types are divided in four categories, basic

search, intersections, house numbers and addresses by postcode. The system

decides the search type following the next rules:

1. If the query contains the intersection character, the search type is set

to intersection, and then the geocoder search for addresses of type

street and derive the intersection geocode by finding the intersection

of the street line geometries.

2. If the query does not contain the intersection character, then the

system will behave as follows:

2.1. The geocoder search for addresses matching the words in the

user query.

2.2. If any of the search terms was marked as possible house number,

the system will try to find children of the addresses in the

previous step, matching such house number(s)

2.3. In the special case of having only one search term, that could be

a postcode, the geocoder find streets whose parent is the given

postcode.

Figure 11: Query processor input and output

54

4.5.2 Basic search

The diagram in Figure 12 shows the geocoding process, from the user query

to the final geocoded places response. First, the user query is processed and

translated into Elasticsearch queries. Second, the system searches into

Elasticsearch/Lucene index, and optionally apply filters, like spatial filter if

the user provided a search area. The output is a sorted list of place ids and

parent ids for each place. Last, the geocoder extracts the geocodes

corresponding to each place id and builds the address strings using the OSM

data stored in the Nominatim database.

55

Figure 12: Search algorithm

56

4.5.3 House number

House number search (Figure 13) is executed if any of the query terms was

identified as possible house number by the query processor. After the basic

search against Elasticsearch/Lucene index, if the system found any place of

type street, it will try to find children of those streets whose house number is

the one in the query.

This house number search is done against the Nominatim SQL database

using scanning, since as mentioned before, house numbers are not indexed

into Elasticsearch. After searching for streets, the system does not return

more than a few tens of places, so the scanning does not affect the response

time.

4.5.4 Street intersections

Street intersections are the only case of derived place returns. By derived we

mean that intersections are not precomputed at indexing time.

Street intersections are calculated in the following way (Figure 14). First, the

user query is divided into two subqueries, one per street. Next the geocoder

makes two independent searches against Elasticsearch, meaning that the

result of the first subquery will not affect the second search. On each search

Elasticsearch tries to find indexed places of type street by the name, and

maybe additional information like city, provided in the subquery. After this,

the geocoder has two lists of streets, or better, the place ids of these streets.

So next is to retrieve the geospatial information and name/address

Figure 13: House number search

57

information from the Nominatim SQL database. Once the geospatial

information is available, the system computes the intersections among the

streets in results #1 and results #2. Most of the intersection operations will

return an invalid intersection, meaning that there is no real intersection

between those street geometries, but some will return a point of intersection.

These are the relevant places the user is interested in. Next the geocoder

removes the invalid intersections and reevaluate the scores of the valid

intersections as the sum of the scores of intersected streets. Last it calculates

the address of each intersection as:

intersection address = [street 1 address] [intersection char ’?’] [street 2 address]

For example, if a user wants to find the corner of “Bytaregatan” with “Knut

den stores gatan” in “Lund”, the geocoder finds first streets by these names

located in “Lund” using Elasticsearch. Then it retrieves the geometries of

the found streets from the Nominatim database. Last it computes the

intersection of the geometries. If the intersection is not null, it’s a valid

intersection, and the final score is the sum of the individual scores assigned

by Elasticsearch for each street search. Otherwise it is removed from the

results.

Figure 14: Street intersections

58

4.5.5 Searching streets by postal code

This section introduces a new search type, addresses under a postcode. Postal

codes are used in some countries to divide geographical areas, stablish billing

strategies or as a way to narrow down the search of a postal address under a

postcode.

For example in the UK, taxi dispatchers usually search streets by typing first

the postcode they belong to. The goal of this search type is to find addresses

that are under a postcode. The original Nominatim geocoder returns instead

the centroid coordinates of the area a postcode refers to, being this

information of little value for the users.

Another example. The taxi business in UK, and especially in London,

charges their customers depending on their pickup and drop off postcode

addresses, which means that the postcode is the most used type of geocoding.

By presenting the user the addresses under that postcode, which in turn

correspond to a specific area of the city, we improve the user experience.

Due to the structure of the original Nominatim database, in which each of the

OSM map features indexed is assigned a parent id, the implementation of

this type of search is rather simple. Nominatim entries indexed in

Elasticsearch contains a postcode field, the geocoder just search for places

whose postcodes match or prefix match the (partial) postcode given in the

search query. The geocoder does not try to correct any possible mistake in

the postcode given by the user.

4.5.6 Building the addresses

The proposed geocoder follows the same strategy as Nominatim when

computing the address of a place. It calculates addresses by concatenating

the names of the place parents, but instead of taking one parent from each

address rank, and concatenate its name to the address, it concatenates the

names following a pattern defined for each country.

During the index process, the geocoder calculated a list of parent ids that is

now used to compute the address (see section 4.4). The geocoder uses this

list now to retrieve only the needed parents to build the address. This reduces

the amount of information the geocoder needs to extract from the database.

In addition, since a user will frequently search for places in a delimited

geographical region, the suggestions returned by the geocoder will have

59

common parents, reducing even more the information needed to compute the

addresses for all the suggestions. Imagine the query q gives as a result a set

of suggested places {s1, s2, s3}. Together with these suggestions,

Elasticsearch gives a list of parent id:s needed to compute the address of each

place (previously computed and stored), like the ones shown in Table 15.

Place id Parent id:s

s1 p1, p2, p3, p5

s2 p1, p2, p4, p5

s3 p2, p3, p5

Table 15: Example of parent id lists used to compute the place addresses

Next, the geocoder computes the union of parent id:s:

1 1 22 3 5 2 4 5 3 5 1 2 3 4 5p , p , p , p p , p , p , p p , p , p = p , p , p , p , pÈ È

These are all the Nominatim entries the geocoder needs to retrieve from the

Nominatim database in order to build the addresses for the response to the

query q.

We can define one address pattern for each country(i.e. the order in which

the different parts of the address are concatenated), since every Nominatim

entry has an associated country code with it, the geocoder will concatenate

the address parts following the pattern that matches the country code, or a

fallback if none is found. Table 16 shows the address pattern I defined for

Swedish addresses.

Country code Address pattern

fallback name, housenumber, street, city, postcode, country

SE name, housenumber, street, postcode, city, state, country

Table 16: Address pattern used for Sweden (SE)

Last the geocoder computes the addresses of each suggestion by

concatenating the names of the Nominatim entry and the parents, following

60

the pattern. Each address part is translated to the preferred language l
indicated by the user, if a translation for that language exists.

address(r1, l) = name(p1, l), name(p2, l), name(p3, l)

The address computation process of the proposed geocoder is described in

the diagram in Figure 15.

61

This way of building the addresses is the answer offered to the research

question number 5 in section 1.2. I.e. how to improve the address

computation algorithm so the final address is shorter and contains only

relevant parent names.

We get two improvements compared to the original implementation in

Nominatim:

Figure 15: Address computation of a set of

places

62

1. The geocoder computes shorter addresses. The addresses contain

only the names of the parents whose address type appear in the

address pattern (patterns like the ones defined in Table 16).

2. The order of the address parts is defined in the pattern.

The motivation to assign an address pattern per country code is that address

formats usually differ from country to country. In some countries the house

number is written before the street name or vice versa. Also, in some

countries the state might be an important part of the address, while in others

it might be redundant information bloating the map feature.

Table 17 shows an example of the address calculated by the original

Nominatim geocoder and the proposed geocoder for the “E-huset” building

in LTH.

Geocoder Computed Address

Nominatim E-Huset, 3, Ole Römers väg, Norra universitetsområdet,
Norr, Lund, Lund municipality, Skåne län, Götaland,
22464, Sverige

Proposed

geocoder

E-Huset, 3, Ole Römers väg, 22464, Lund, Skåne län,
Sverige

Table 17: Example of computed addresses by the Nominatim and proposed geocoder

The address given by the Nominatim geocoder contains address parts that

provide little information to the user, like “Norra universitetsområdet, Norr,
Lund, Lund municipality”, since the place can be identified uniquely even

without these address parts. On the contrary, the address computed by the

proposed solution is more clear and concise.

4.5.7 Scoring the addresses

Each address returned by the geocoder gets a score calculated in several

steps. First, Elasticsearch, using the concepts of Vector space model and

cosine similarity, calculates a score which is basically a function of the index

terms and query terms. The more query terms matching the index terms of

an address, the higher the score.

Then, the score is boosted by adding the importance which Nominatim

computes for each place at index time. This importance (a value between 0

and 1) is a function of:

1. Number of links in Wikipedia that relates to this place.

63

2. If no entry is found in Wikipedia about this place, a weighted value

of the inverse of the rank_address property of each map feature.

0.75
40

rank address
importance=

æ ö-ç ÷
è ø

Finally the score is optionally boosted depending on the search type.

1. For intersections, the final score is calculated as the sum of the scores

of each street.

2. Since house numbers are not indexed in Elasticsearch, but the

geocoder performs a second lookup in the Nominatim database,

house number matches are not boosted in the original score. The

geocoder boosts the score of the found children matching the

requested house number.

()final elasticsearch Nominatimscore = score +importance + optional boost

4.5.8 Filtering out addresses by relative score

The proposed geocoder filters out addresses whose score is lower than a

fraction of the highest score of the suggested addresses. In the proposed

geocoder I use 0.8 as threshold. I.e. given a list of suggested addresses, all

the addresses whose score is lower than 0.8 times the highest score are

removed from the suggestions.

For example, if we have a list of suggestions calculated by the proposed

geocoder in which the highest score is 100 and another result has been scored

with 10, since 10/100 = 0.1 < 0.8 that result is removed from the returned

suggestions.

The reason to impose this condition in the results list is that even if the user

query and an arbitrary address are “very different”, they might have an n-

gram (section 2.2.1) in common. Therefore Elasticsearch assigns a score

greater than zero, but that score might be too low compared to the highest

score found in the results offered by the proposed geocoder. As a

consequence, the precision (See section 2.3 for a definition of precision) of

the proposed geocoder increases, since it returns fewer results.

64

4.6 Proposed solution of a distributed geocoder service

The number of addresses indexed in Sweden is around 400K. If we were to

index the whole world, the number of Nominatim entries to index would

amount to several millions. For such a big collection, Elasticsearch allows to

split the index in different chunks also called shards. Each shard can be

maintained by one or more Elasticsearch nodes (for redundancy). This is a

convenient approach for a geocoder to offer global results, since each data

node needs to manage a small part of the index and the searches are computed

in parallel by the different data nodes. In the proposed solution, described

graphically in Figure 16, the top level Elasticsearch node works as a load

balancer, it knows the state of the master nodes and routes the query to the

less loaded. The master nodes coordinate the data nodes to perform a

distributed search, and aggregate the results returned by each data node.

Also, this solution offers reliability and a better performance, since the search

can be done in any of the shard replicas (Figure 16 shows an index with two

replicas, each replica assigned to a different node, for robustness)

Notes in the Figure 16:

1. Top level Elasticsearch node: This node acts as a "search load

balancer". It routes the search requests that arrive to the geocoder to

the less loaded master node.

Figure 16: Distributed geocoder, proposed solution

65

2. PostgreSQL database: It hosts the Nominatim data stored. The

geocoder accesses this database to index Nominatim places and to

compute the place addresses.

3. Elasticsearch master nodes: their task is to coordinate the distributed

search among the Elasticsearch data nodes and aggregate the results

return by each data node.

4. Elasticsearch data nodes: These are the nodes hosting the data. The

index is spread among 5 primary shards, hosted in one of the data

nodes. Each primary shard (in the picture represented as shards S1 to

S5) is copied into a replica hosted in a different data node

(represented as S1R1 and S1R2 for replicas 1 and 2 of shard S1 and

so on).

5. Index shards: They are small parts of the index maintained by the data

nodes. Each one of the 5 shards in which the index is divided is

replicated twice among the data nodes. If a data node is down, the

master node knows about it and it routes the search to another data

node hosting a replica.

66

CHAPTER 5

5 Test results

5.1 Evaluation methodology and tools

In order to evaluate the proposed geocoder, a set of tools and test resources

was implemented. These include a random address generator, a random text

error generator to simulate misspelled addresses, a set of tests written in Java

to evaluate the system and a web to adjust the test parameters and show the

test results.

5.1.1 Server specifications and configuration

The geocoding server was tested in a machine with the next specifications:

Processor Intel Core I7 – 2.2Ghz (x4 cores)

Memory 8GB RAM

Hard disk SSD 80 GB

Table 18: Server specifications

5.1.2 Random address generator

The addresses used to test the system are selected randomly among the

reference dataset, i.e. the OSM places stored in the Nominatim database. The

sub-resource .../admin/test/testFile/{size}/{lang} builds files containing lists

of size “size” of addresses which are used later as user queries to geocode.

The addresses can be translated optionally to the language defined by the

path parameter “lang”.

A file with 100 addresses was generated to test the system. The addresses

were computed without any translation, resulting in addresses written in

Swedish. Each Nominatim entry, identified by its Nominatim place_id,

contains the text address computed by the Nominatim geocoder and the

proposed geocoder (Text 3).

67

Since we aim to evaluate the fuzzy and prefix search in the proposed solution,

map features whose only name is of type reference (“ref:*” tags) in the

Nominatim database are not included in this file. The reason for this is that

references are in most cases a single letter or a letter and a number such as

“E 4”, the highway between Malmö and Stockholm.

5.1.3 Random text error generator

The goal of the error generator is to simulate a user which, while typing an

address, makes a mistake and misspells the address. The error generator takes

as input a text string. This is the address the user sends to the geocoder to

find the location of the address. The error generator alters the input address

by applying one of these operations on a single character: change, delete or

insert a character. The number of alterations can be defined in the test

settings. As a result, the output of the error generator is a modified text string

whose difference with the original text string can be measured using the edit

distance (See section 2.2.1).

For example, a user might be trying to geo locate “Bytaregatan 4c, Lund,
Skåne län, Sweden”. The user expects to see suggestions in a dropdown box

offered by the geocoder while the user types in new characters. But it might

happen that he makes a mistake while typing in and he sends a query like

“Bytaregtan” to the geocoder. In this example, the user is missing an “a”

character. The mission of the error generator is to model the user errors.

5.1.4 Test setup

I designed the test algorithm in a way that it simulates the behavior of a user

that tries to find the location of an address. The behavior is modeled by these

rules:

1. The user knows more or less accurately how to spell the names of the

address.

...
"518439" : {
 "elasticsearch" : "Hotel Scandic Triangeln, Föreningsgatan, 21145, Malmö, Skåne län,
 Sverige",
 "nominatim" : "Hotel Scandic Triangeln, Föreningsgatan, Rådmansvången, Norr,
 Malmö, Skåne län, Götaland, 21145, Sverige"
},
...

Text 3: Extract of the test addresses file

68

2. The user types in one character after another. Sometimes, either

because the user don’t know exactly the spelling of the address, or

because he or she makes a mistake typing the character, the user

introduces an error in the address text.

3. With each new character added to the user query, the geocoder

returns a list of places that prefix match the user query. The user

keeps typing characters until the desired address appears in the

suggestions of the geocoder response.

4. Once the desired address is among the suggestions, the user needs no

longer to keep typing new characters. The address is considered to be

found and the user has saved typing n characters, being n the

difference between the address text length and the user query length.

The test process simulates the user behavior described above. It tries to find

the addresses in the test address file. For each address in the file, the test

process adds characters at the end of query and requests the geocoder (either

Nominatim or the proposed geocoder) until the desired address appears in

the suggestions. When the geocoder returns the desired address, the test

process calculates various metrics for that search: precision, keystroke

saving, time spent, Etc. (the metrics definitions can be found in section

2.2.3). When all the addresses have been tested, the average values of the

metrics are computed. The described procedure is repeated 10 times for each

number of errors introduced. The resulting values are used later to compare

the geocoders.

The tests are setup using the parameters listed in Table 19:

Parameter Values

Geocoding service {Proposed geocoder, Nominatim geocoder}

Number of addresses 100

Number of errors in query [0, 4]

Number of addresses in the

response

{1, 5}

Number of executions 10

Table 19: Test parameters

The geocoder sorts the suggestions by similarity with the user query,

therefore the more similar addresses appear first in the suggestions list. The

more suggestions the geocoder can return per request (Number of addresses

69

in the response), the sooner the user will find the address among the

suggestions, and the less characters the user needs to type in. In the other

hand, if the geocoder returns too many suggestions it will be difficult for the

user to find the desired address among the suggestions, and the user will need

to keep typing to filter out suggestions.

5.1.5 Web test interface

Illustration 1 is a snapshot of the test user interface to evaluate the system. In

the left panel (panel number 1, Illustration 2) it is possible to select the file

containing the test addresses in JSON format, turn on and off different parts

of the search engine, such as phonetic search or n-grams search, and adjust

weights assigned to these searches. The central panel (panel number 2,

Illustration 3) shows the results after the tests are executed, percentage of

addresses found, average time the search engine spent per search, precision

and so on. Last, the right panel (panel number 3, Illustration 4) shows the

raw JSON response sent with the test results, this is useful in case someone

wants to see more detailed information like failed searches, query used for

such searches or the response time of a single search.

Illustration 1: Web test interface

70
Illustration 2: Detailed view of the panel number 1

71

Illustration 3: Detailed view of the panel number 2

72

Illustration 4: Detailed view of the panel number 3

73

5.2 Results

5.2.1 Proposed geocoder results

Table 20 shows the results of geocoding 100 addresses using the proposed

geocoder, with a maximum number of results returned set to 1. The number

of errors introduced in the prefix query varies from 0 to 4.

Table 21 shows the results of geocoding 100 addresses using the proposed

geocoder. In this case the maximum number of results returned is set to 5.

The number of errors introduced in the prefix query varies from 0 to 4.

5.2.2 Nominatim geocoder

Nominatim was only tested without errors in the user query since it does not

support fuzzy search. Prefix search is not supported either so Nominatim

returns addresses when there are no word prefixes in the query. Table 22

Table 21: Elasticsearch test results for max 5 addresses returned

max results: 5

of errors 0 1 2 3 4

search time (ms) 20,90 19,94 16,94 15,24 15,07

match rate % 100,00 99,30 98,68 98,66 98,33

precision % 47,09 51,24 55,55 61,53 64,56

address length 49,60 49,63 49,76 49,76 49,87

query length 8,60 9,88 11,72 13,91 13,91

keystroke saving 41,00 39,75 38,04 35,85 35,96

keystroke saving % 82,66 80,09 76,45 72,05 72,11

max results: 1

of errors 0 1 2 3 4

search time (ms) 23,37 18,54 15,85 13,87 14,33

match rate % 98,00 98,00 98,00 97,34 96,64

precision % 100,00 100,00 100,00 100,00 100,00

address length 49,66 49,66 49,66 49,88 50,00

query length 11,15 12,21 13,71 15,91 18,71

keystroke saving 38,51 37,45 35,95 33,97 31,29

keystroke saving % 77,55 75,41 72,39 68,10 62,58

Table 20: Elasticsearch test results for max 1 address returned

74

shows the results of the tests using the Nominatim geocoder, set to return 1

and 5 addresses per request.

5.2.3 Results discussion

Search time

The average search time is well below 100ms. The proposed geocoder, using

Elasticsearch as the core of the search engine, provides better search times

than the Nominatim geocoder, even though it implements a more advance

search algorithm.

The search time is lower the longer the user query. The reason for this is that

longer queries provide more information to the search engine (Elasticsearch)

about the address the user is looking up. Thus Elasticsearch is able to filter

out more results using the Boolean model, and needs to compute fewer scores

before passing the ids of the suggested addresses to the geocoder.

In a production server it would be more interesting to see the average round-

trip time, which includes the search time, network time and JavaScript time.

A maximum round-trip time around 300 ms lets the user experience an

interactive response [28].

Match rate

The test results in Nominatim gives as best 88% match rate (See section 2.3),

in the case of retrieving the top 5 addresses per request. If Nominatim only

retrieves the highest scored address, the match rate drops to 72%.

The results are much better in the proposed geocoder, in which the match

rate never falls below 96% even with 4 errors introduced in the user query.

Table 22: Nominatim test results for max 1 and 5 addresses returned

max results: 1 5

of errors 0 1 0 1

search time (ms) 33,29 - 37,98 -

match rate % 72,00 - 88,00 -

precision % 100,00 - 60,00 -

address length 85,43 - 86,66 -

query length 13,98 - 12,00 -

keystroke saving 71,45 - 74,66 -

keystroke saving % 83,64 - 86,15 -

75

We observe that when the number of errors in the user query increases, the

user needs to type in more characters to find the address. I.e. the user needs

to provide more information about the address.

Precision

Due to the definition of precision (See section 2.3), this metric offers no

information for max addresses = 1, since the precision is measured when the

right address is found, and the geocoders do not suggest more than one

address. Consequently the precision is 100% when max addresses = 1.

Looking at the results when the number of suggested addresses is 5, and no

errors are introduced in the query, Nominatim (60%) has a slight advantage

over the proposed geocoder (47%). But the query needed to find the place

with Nominatim is longer than the query sent to the proposed geocoder. I.e.

the Nominatim geocoder needs more characters to find the right address

among the suggestions, these extra characters added to the query of course

increase the average precision.

Looking at Table 20 and Table 21, we observe that the proposed geocoder

needs more characters to find the right address the more errors are

introduced. The extra characters added to compensate the errors also helps

to identify better the address being looked up. Thus increasing the precision

of the suggestions.

Address length

The addresses computed by the proposed geocoder (49-50 characters) are in

average shorter than the Nominatim addresses (86-87 characters) since the

addresses calculated by the proposed solution only contain the parents

specified in the address pattern as described in section 4.5.6. On the contrary,

Nominatim builds the addresses by concatenating the names of all the parents

of a place. However, the proposed geocoder still offers better match rate with

shorter queries. The reason for this is that much of the information provided

in the Nominatim addresses is irrelevant to identify them. How to improve

the address computation algorithm was in fact one of the research questions

stated in section 1.2.

Relative keystroke saving

The relative keystroke saving (See section 2.3) in Nominatim is higher than

in the proposed geocoder. However as said in the section above (address

lengths), the addresses in Nominatim are longer, but much of the text in the

76

addresses is irrelevant. Consequently Nominatim queries need a lower

percentage of characters of the original Nominatim addresses to find the

relevant address.

In the proposed geocoder, the keystroke saving varies with the maximum

number of addresses returned. As expected, when the geocoder returns more

suggestions per request, the user needs to type fewer characters in the query

to find the desired address. If no errors are introduced and the maximum

number of addresses = 5, the proposed geocoder needs only 9 characters

(82.7% keystroke saving) to suggest the address the user is interested in,

whereas in the case of returning only 1 address the geocoder needs 12

(77.55% keystroke saving) characters in average to find that same address.

If the number of addresses returned is set to 5, the keystroke saving decreases

as the errors in the query increases. As explained before, the reason is that if

the user makes a mistake while typing the address, then the geocoder needs

more information (longer query) to find that address.

Extra resources needed

The new features added to the geocoder have an associated extra cost in terms

of resources needed. The size of the index to support fuzzy search and

autocomplete for the Swedish OSM addresses is around 100MB.

The original size of the PostgreSQL database used by Nominatim after

indexing and storing the Swedish OSM address dataset is around 1 GB, so

the new index increases the storing requirements by 10%. This estimation

matches the approximated overhead given in the Elasticsearch

documentation [35].

77

CHAPTER 6

6 Conclusions and future work

6.1 Conclusions

This thesis adds two must have features to the Nominatim geocoder that

many of the main online geocoders support already, fuzzy search and

autocomplete. The proposed geocoder is an extension to the Nominatim

geocoder, in which I based my work. The solution offered in this thesis

answers the research question of how to improve the search algorithm in the

Nominatim geocoder by applying mathematical models commonly used in

information retrieval systems. In practice, this is done by combining the

general purpose search engine called Elasticsearch with the Nominatim

geocoder.

Applying mathematical models to the reference dataset of the proposed

geocoder leads to a more flexible and interactive search algorithm than the

original search algorithm implementation in Nominatim. With the proposed

solution, the users get suggestions as they type searching for addresses. The

geocoder suggests the right addresses even if the user makes any misspelling

and/or typing error. During the tests, the proposed geocoder successfully

found the right addresses even with up to 4 errors in the query in a 98% of

the cases for the case of 5 addresses returned.

Besides the main contributions, fuzzy search and autocomplete, the proposed

geocoder also offers a solution to return more concise addresses than the ones

returned by the original Nominatim geocoder. Having tested one 100

addresses, the addresses computed by the proposed geocoder are a 42%

shorter than the ones provided by Nominatim (The proposed geocoder

average address length is 50 characters vs 87 characters average length of the

Nominatim addresses).

Also, the algorithm to build the address is more flexible than in the original

version, allowing to build the addresses based on patterns. These patterns can

78

be specified one for each country, depending on how the addresses are

usually written for each country.

6.2 Future work

There are many things that can improve the proposed geocoder system.

Some features that are still not implemented in the geocoder are search by

categories, i.e. searching addresses or places by the type of the place, for

instance “restaurants in Lund”, categories are not indexed yet into the

proposed geocoder. This could also help to index and search places without

a name, or possibly only a reference, as in many bus stops for instance, in

which the only information available besides the category is a 1 character

reference in many instances.

Also, the system needs to be tested against addresses in other languages. This

thesis only uses Swedish addresses as reference dataset. It would be

interesting to evaluate the geocoder with addresses written in an alphabet

different than Latin.

In the thesis, two new search types were added to the geocoder: addresses

under a postcode and street intersections. However, the proposed solution

does not allow many other types of addresses being used nowadays in some

countries. For instance, in Colombia, addresses can be given as relative to an

intersection, as in “50 meters from the intersection between [street 1 and

street 2]”.

The ranking algorithm can be improved to take into account the distance

from the user to the suggested addresses, or by boosting the relevance of the

suggested addresses that appear within the part of the map the user is

currently looking at.

Another possible future work could be the evaluation of the distributed

geocoder. In the simple case of this research, the number of documents was

small enough to index them all in the same node. Indexing the whole set of

map features in OSM is a much harder task. It can be solved by dividing the

index in different servers. This arises multiple questions such as, how is the

distributed index divided, and how does this affect the search performance?

79

References

[1] Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze.

Introduction to information retrieval. Vol. 1. Cambridge: Cambridge

university press, 2008.

[2] Dong, Hai, Farookh Khadeer Hussain, and Elizabeth Chang. "A survey

in traditional information retrieval models." (2008).

[3] Goldberg, Daniel W. "Improving Geocoding Match Rates with

Spatially Varying Block Metrics." Transactions in GIS 15.6 (2011): 829-

850.

[4] Roongpiboonsopit, Duangduen, and Hassan A. Karimi. "Comparative

evaluation and analysis of online geocoding services." International
Journal of Geographical Information Science 24.7 (2010): 1081-1100.

[5] Greengrass, Ed. "Information retrieval: A survey." (2000).

[6] OpenStreetMap wiki [Online]. http://wiki.openstreetmap.org/wiki

[7] Ramm, Frederik, Jochen Topf, and Steve Chilton. OpenStreetMap:
using and enhancing the free map of the world. Cambridge: UIT

Cambridge, 2011.

[8] Ogawa, Yasushi, Tetsuya Morita, and Kiyohiko Kobayashi. "A fuzzy

document retrieval system using the keyword connection matrix and a

learning method."Fuzzy sets and systems 39.2 (1991): 163-179.

[9] Baeza-Yates, Ricardo, and Berthier Ribeiro-Neto. Modern information
retrieval. Vol. 463. New York: ACM press, 1999.

[10] Janowicz, Krzysztof, Martin Raubal, and Werner Kuhn. "The

semantics of similarity in geographic information retrieval." Journal of
Spatial Information Science 2 (2014): 29-57.

[11] Jones, Christopher B., and Ross S. Purves. Geographical information
retrieval. Springer US, 2009.

80

[12] Robertson, Stephen, and Hugo Zaragoza. The probabilistic relevance
framework: BM25 and beyond. Now Publishers Inc, 2009.

[13] Goldberg, Daniel W., John P. Wilson, and Craig A. Knoblock. "From

text to geographic coordinates: the current state of geocoding." Urisa
Journal 19.1 (2007): 33-46.

[14] Hutchinson, Matthew, and B. Veenendall. "Towards using intelligence

to move from geocoding to geolocating." Proceedings of the 7th Annual
URISA GIS in Addressing Conference. 2005.

[15] OSM Admin boundaries [Online].

http://wiki.openstreetmap.org/wiki/Key:admin_level#admin_level

[16] Zandbergen, Paul A. "A comparison of address point, parcel and street

geocoding techniques." Computers, Environment and Urban Systems 32.3

(2008): 214-232.

[17] Hoffmann, Sarah. “OpenStreetMap. State of the map, Nominatim

behind the scenes”. OSM annual conference. Microsoft PowerPoint file.

September 2013

[18] Saini, Balwinder, Vikram Singh, and Satish Kumar. "Information

Retrieval Models and Searching Methodologies: Survey." Information
Retrieval 1.2 (2014).

[19] Salton, Gerard, Edward A. Fox, and Harry Wu. "Extended Boolean

information retrieval." Communications of the ACM 26.11 (1983): 1022-

1036.

[20] Aizawa, Akiko. "An information-theoretic perspective of tf–idf

measures."Information Processing & Management 39.1 (2003): 45-65.

[21] Kukich, Karen. "Techniques for automatically correcting words in

text." ACM Computing Surveys (CSUR) 24.4 (1992): 377-439.

[22] Zobel, Justin, and Philip Dart. "Phonetic string matching: Lessons

from information retrieval." Proceedings of the 19th annual international
ACM SIGIR conference on Research and development in information
retrieval. ACM, 1996.

81

[23] Philips, Lawrence. "The double metaphone search algorithm." C/C++
users journal 18.6 (2000): 38-43.

[24] Wikipedia: List of postal codes format by country [Online].

http://en.wikipedia.org/wiki/List_of_postal_codes

[25] OpenStreetMap wiki: address format [Online].

http://wiki.openstreetmap.org/wiki/Addresses

[26] Goldberg, Daniel W. "Advances in geocoding research and

practice."Transactions in GIS 15.6 (2011): 727-733.

[27] Jin, Liang, and Chen Li. "Selectivity estimation for fuzzy string

predicates in large data sets." Proceedings of the 31st international
conference on Very large data bases. VLDB Endowment, 2005.

[28] Ji, Shengyue, et al. "Efficient interactive fuzzy keyword

search." Proceedings of the 18th international conference on World wide
web. ACM, 2009.

[29] Nominatim geocoder wiki [Online].

http://wiki.openstreetmap.org/wiki/Nominatim

[30] Levenshtein, Vladimir I. "Binary codes capable of correcting

deletions, insertions and reversals." Soviet physics doklady. Vol. 10. 1966.

[31] Salton, Gerard, and Christopher Buckley. "Term-weighting approaches

in automatic text retrieval." Information processing & management 24.5

(1988): 513-523.

[32] Faloutsos, Christos, and Douglas W. Oard. "A survey of information

retrieval and filtering methods." (1998).

[33] Salton, Gerard, Anita Wong, and Chung-Shu Yang. "A vector space

model for automatic indexing." Communications of the ACM 18.11 (1975):

613-620.

[34] OpenStreetMap wiki: map features [Online].

http://wiki.openstreetmap.org/wiki/Map_Features

82

[35] Elasticsearch [Online]. http://www.elasticsearch.org/

[36] Apache Lucene [Online]. http://lucene.apache.org/

[37] Hibernate [Online]. http://hibernate.org/

[38] ISO 639 [Online].

http://www.iso.org/iso/home/standards/language_codes.htm

83

List of Figures
Figure 1: Geocoding.. 9

Figure 2: Goals .. 12

Figure 3: Geocoding process overview ... 14

Figure 4: Information retrieval models classification 18

Figure 5: Vector space model example ... 20

Figure 6: Vector space model, effect of assigning index terms 21

Figure 7: Tables involved in the address search and computation process 36

Figure 8: Nominatim import: normalization and tokenization 39

Figure 9: Proposed geocoder software stack... 47

Figure 10: Online service: URL pattern .. 48

Figure 11: Query processor input and output.. 53

Figure 12: Search algorithm .. 55

Figure 13: House number search .. 56

Figure 14: Street intersections ... 57

Figure 15: Address computation of a set of places 61

Figure 16: Distributed geocoder, proposed solution 64

Figure 17: Distributed geocoder ... 64

84

List of Tables
Table : Common causes and effects of errors of the geocoding process 17

Table : Document collection example and the associated index terms 19

Table : Example of document matching using Boolean model 20

Table : Example of document ranking using the Vector model and the

cosine similarity .. 22

Table : Example of document ranking using the Extended Boolean model22

Table : Inverted index for a document collection 27

Table : OSM element, common attributes .. 34

Table : Database entries by type ... 35

Table : Address rank ... 40

Table : Example of index terms in word table .. 42

Table : Search name relation in Nominatim database 42

Table : Placex relation in Nominatim database .. 43

Table : Document field index strategy .. 51

Table : Criteria to assign the address type to the Nominatim entries 52

Table : Example of parent id lists used to compute the place addresses 59

Table : Address pattern used for Sweden (SE) ... 59

Table : Example of computed addresses by the Nominatim and proposed

geocoder .. 62

Table : Server specifications ... 66

Table : Test parameters ... 68

Table 20: Elasticsearch test results for max 1 address returned 73

Table 21: Elasticsearch test results for max 5 addresses returned 73

Table 22: Nominatim test results for max 1 and 5 addresses returned 74

85

List of Acronyms

API Application programming interface

BM Boolean model

DAO Data access object

Df Document frequency

DSL Domain specific language

ES Elasticsearch

GIR Geographical Information retrieval

GIS Geospatial information system

HTTP Hypertext transfer protocol

Idf Inverse document frequency

IR Information retrieval

ISO International Organization for Standardization

JSON JavaScript object notation

OSM OpenStreetMap

Tf Term frequency

URL Uniform resource locator

VSP Vector space model

XML Extended markup language

86

Appendix 1

A.1 Glossary

Boolean retrieval model

The Boolean retrieval model is a model for information retrieval in which we

can pose any query which is in the form of a Boolean expression of terms,

that is, in which terms are combined with the operators AND, OR, and NOT.

The model views each document as just a set of words [1]

Collection or Corpus

The group of documents over which we perform retrieval [1]

Dictionary/Vocabulary/Lexicon

The set of indexed terms [1]

Document

Any piece of information the information retrieval system is built over [1]

Document frequency

Measure related to a term which says the number of documents which

contain that term [1]

Geocoding

Geocoding is the process of converting postal address data into geographic

coordinates, i.e. latitude and longitude pairs [3] .The software performing the

geocoding process is called a geocoder, which can be divided into four

components: input, output, processing algorithm, and reference database [4]

Index

Data structure containing mapping of terms to documents, whose purpose is

to avoid linearly scanning documents for each retrieval operation [1]

Information need

Information need is the topic about which the user desires to know more [1]

87

Information retrieval

Information retrieval (IR) is finding material (usually documents) of an

unstructured nature (usually text) that satisfies an information need from

within large collections (usually stored on computers) [1]

Posting

An item in the posting list which records that a term appeared in a document

[1]. In the simplest case, a posting is a pair of the form (term, doc Id)

Precision

Precision is the fraction of retrieved documents that are relevant to a user

query

Online geocoding

An online geocoding service is a network-accessible component, sometimes

a module of a GIS, which automatically performs the geocoding process. It

is usually available on the Internet by utilizing a Web service interface. The

data entry, such as a place name, street address, or zip code, is passed over

the Internet using a communication protocol to the geocoding service [4]

Query

The information the user conveys to the computer in an attempt to

communicate with it [1]. It can also be defined as a formal statement of the

user information need.

Recall

Recall is the fraction of relevant documents that are retrieved [1]

Relevant document

A document is relevant if it is one that the user perceives as containing

information of value with respect to their personal information need [1]

Retrieval

It is the activity of finding and providing documents from within the

collection that are relevant to a user information need [1]

Term frequency

The number of times a term appeared in a document [1]

88

Term

The indexed units [1], if documents are of text nature, they can be

sentences, words, or any other char chain resulting from processing the

document (one possible document processing activity is tokenization).

Token

A token is an instance of a sequence of characters in some particular

document that are grouped together as a useful semantic unit for processing

[1]

Tokenization

Given a document (text document), tokenization is the task of splitting the

document into pieces, called tokens [1]

Vector space model

Information retrieval model in which documents and queries are

represented as vectors, and each dimension of the vector corresponds to a

term in the vocabulary [2]

Im
p

ro
vin

g
 a

n
 o

p
e

n
 so

u
rce g

e
o

co
d

in
g

 se
rve

r

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, February 2015.

Improving an open source
geocoding server

Víctor García

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2015-430

http://www.eit.lth.se

V
ícto

r G
arcía

Master’s Thesis

