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Abstract

This thesis is based on a project which is provided by Mälardalen Real-Time Re-
search Centre (MRTC) at M̈alardalen University. It stems from two separate existing
works: ProCom and Mode Switch Logic (MSL). Both works are strongly related to
Component-Based Software Engineering (CBSE).

Since traditional software development is becoming increasingly large and com-
plex, to solve this problem, CBSE becomes a rapidly developing discipline and more
efficient method compared with classical approaches to producing high quality soft-
ware both in academia and industry. It is being more and more applied to industrial
strength and mission-critical software. CBSE has already been endorsed by many
industrial applications.

ProCom, the PROGRESS Component Model for real-time embedded systems,
is developed at MRTC in the PROGRESS project funded by the Swedish Foun-
dation for Strategic Research (SSF), focusing on component-based development of
real-time embedded systems. ProCom targets the domains of vehicular systems,au-
tomation and telecom. It takes the advantage of both CBSE and Model-DrivenEn-
gineering (MDE). In terms of CBSE, it embodies component reusability. In terms of
MDE, it supports automatic code generation and allows system analysis at anearly
stage. A system can be designed by reusable components, which can be mapped on
a physical node in a subsequent deployment phase.

MSL, also developed at MRTC, handles the mode switch of component-based
systems. In contrast to CBSE, an alternative to reduce system complexity is topar-
tition the system behavior into different operational modes. A multi-mode system
can switch between different modes when some condition changes. If a multi-mode
system is component-based, its mode switch is not a trivial problem. MSL provides
an effective mode switch mechanism for component-based systems.

The contribution of this thesis is that it presents how to implement MSL in the
ProCom component model. ProCom does not support multiple modes and mode
switch. Therefore, in order to implement MSL, ProCom must be extended. In this
thesis, we present our solutions to achieving such an implementation.



iv



v

Acknowledgement

I would like to express my heartfelt gratitude and acknowledgement to the people
who have helped, encouraged and supported me while I was doing my masterproject
and writing the thesis. I really want to say that it is truly hard to take the thesis project
at night and at weekends together with my full time working in Sony Mobile since
the beginning of this year, however, I am so lucky and appreciate that I have all of
you around me till the final stage of this thesis.

Foremost, I am grateful to my examiner, Professor Peter Nilsson, at LundUni-
versity for his continuous care and support for my thesis. I not only enjoyed his
lectures but also am so proud of being one of his master students. Without his im-
parting knowledge to us and what I have learned at Lund University, I would never
have completed this thesis.

Special thanks to my another examiner Professor Hans Hansson, co-supervisor
PhD student Hang Yin, and Doctor Jan Carlsson at Mälardalen Real-Time Research
Centre at M̈alardalen University, for their long-standing support, guidance and in-
valuable help during the whole period of this master project. They always point out
the right direction and provide generous suggestions to me. I also want to say thanks
to Professor Hans who allows me to take this thesis in parallel with my work at Sony
Mobile.

Many thanks go to my colleagues in Companion Products of Sony Mobile in
Lund, where I have ever worked for two years. My best regards goto my colleagues
in the Department of Business Management, Business Control & Planning and Sup-
ply & Demand planning, where I serviced and supported these three departments.
They treat me as an intimate friend and help me when I am in trouble, bringing joy
into my life so that I could get my energy fully charged focus on my study after
work. Also, I appreciate the director of Creation, Planning, Business and Global
Marketing in Companion Products of Sony Mobile, Michael Henriksson forhiring
me into this great company.

I also would like to give my thanks to my classmates at Lund University, and
my friends from all over the world, who strongly believe in me and treasure our
friendship. You make my life colorful and delightful in Sweden! My deepest
gratitude to my parents and my twin brother, who always tell me that I have a warm
and sweet home no matter what happens and the door is always open for me, and
then my heart with pleasure fills.

Lund, November 6th, 2012
Hongwan Qin



vi



Contents

Abstract iii

Acknowledgements v

List of Tables ix

List of Figures x

Acronyms xiii

1 Introduction 1
1.1 Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Component-Based Software Engineering . . . . . . . . . . 2
1.1.2 The ProCom component model . . . . . . . . . . . . . . . 2
1.1.3 The Mode Switch Logic (MSL) . . . . . . . . . . . . . . . 2

1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 The Mode Switch Logic 5
2.1 The mode-aware component model . . . . . . . . . . . . . . . . . . 5
2.2 The mode mapping mechanism . . . . . . . . . . . . . . . . . . . . 6
2.3 The mode switch runtime mechanism . . . . . . . . . . . . . . . . 8

2.3.1 Mode switch propagation . . . . . . . . . . . . . . . . . . . 8
2.3.2 Mode switch dependency rule . . . . . . . . . . . . . . . . 9

3 The ProCom component model 11
3.1 The ProCom development process . . . . . . . . . . . . . . . . . . 11
3.2 The ProCom component model overview . . . . . . . . . . . . . . 13



viii CONTENTS

4 Implementing MSL in ProCom 17
4.1 Multi-mode ProSave and ProSys components . . . . . . . . . . . . 17
4.2 Integrating the mode switch runtime mechanism . . . . . . . . . . . 19

4.2.1 The MSL components at the ProSave level . . . . . . . . . 19
4.2.2 The MSL component at the ProSys level . . . . . . . . . . . 26
4.2.3 Mode mapping . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Multi-mode component connections . . . . . . . . . . . . . . . . . 31
4.3.1 Merging component connection at the ProSave level . . . . 31
4.3.2 Merging component connection at the ProSys level . . . . . 34

5 A pedagogical example 37
5.1 System description . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Developing the system in ProCom . . . . . . . . . . . . . . . . . . 38
5.3 Implementing the mode switch runtime mechanism . . . . . . . . . 39
5.4 Merging component connections . . . . . . . . . . . . . . . . . . . 42

6 Conclusions 45



List of Tables

4.1 The mode mapping table ofci . . . . . . . . . . . . . . . . . . . . 30

5.1 The mode mapping table ofTop . . . . . . . . . . . . . . . . . . . 38
5.2 The mode mapping table ofb . . . . . . . . . . . . . . . . . . . . . 38



x LIST OF TABLES



List of Figures

1.1 A component-based multi-mode system . . . . . . . . . . . . . . . 3

2.1 The mode-aware component model . . . . . . . . . . . . . . . . . . 6
2.2 Mode mapping and Mode Mapping Automata (MMA) . . . . . . . 7
2.3 The Mode Mapping Automaton ofb . . . . . . . . . . . . . . . . . 8
2.4 The Mode Mapping Automaton ofd . . . . . . . . . . . . . . . . . 8
2.5 The mode switch process . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 The ProCom development process . . . . . . . . . . . . . . . . . . 12
3.2 The ProCom development process . . . . . . . . . . . . . . . . . . 12
3.3 A ProSys component . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 A ProSave component . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Common connectors for the communication between ProSave components 15
3.6 A ProSys component composed by ProSave components . . . . . . 16

4.1 The automatic generation flow . . . . . . . . . . . . . . . . . . . . 17
4.2 Multi-mode ProSave and ProSys components . . . . . . . . . . . . 18
4.3 The pair of ProSave MSL subcomponents ofci . . . . . . . . . . . 20
4.4 MSLA

ci
, MSLB

ci
and component connections . . . . . . . . . . . . . . 22

4.5 The ProSys MSL subcomponent ofci . . . . . . . . . . . . . . . . 27
4.6 MSLci and component connections . . . . . . . . . . . . . . . . . . 28
4.7 Merging component connections at the ProSave level . . . . . . . . 34
4.8 Merging component connections at the ProSys level . . . . . . . . . 35

5.1 Component connections at all levels . . . . . . . . . . . . . . . . . 38
5.2 The ProCom component hierarchy of the system . . . . . . . . . . . 39
5.3 The inner component connections ofTopat the ProSys level . . . . 39
5.4 The inner component connections ofb at the ProSave level . . . . . 40
5.5 The MSL subcomponent ofTop . . . . . . . . . . . . . . . . . . . 40



xii LIST OF FIGURES

5.6 The pair of MSL subcomponents ofb . . . . . . . . . . . . . . . . 42
5.7 The merged inner component connections withinTop . . . . . . . . 43
5.8 The merged inner component connections withinb . . . . . . . . . 44



List of Acronyms

CBSE Component-Based Software Engineering

MSL Mode Switch Logic

CBMMS Component-Based Multi-Mode System

DDM Dominant Default Mode

MMA Mode Mapping Automata

MSS Mode Switch Source

MSDM Mode Switch Decision Maker

MSR Mode Switch Request

MSI Mode Switch Instruction

MSC Mode Switch Completion

CBD Component-Based Development

RTOS Real-Time Operating System



xiv LIST OF FIGURES



Chapter 1
Introduction

This first chapter outlines the theoretical background of this thesis, including
Component-Based Software Engineering (CBSE), the ProCom component model
and the Mode Switch Logic (MSL) which serve as the input of this thesis. We then
point out the methodology of this thesis. Finally, an overview of the thesis is intro-
duced by briefly describing its structure.

1.1 Theoretical background

Embedded systems are computer systems dedicated to specific functionalities, often
with limited constraints. Along with the progress of time and the technical devel-
opment, embedded systems have spread themselves everywhere around our life and
work. While embedded systems are providing more and more advanced functional-
ities, their software complexity has as a consequence been raised significantly. To
handle this complexity, a typical approach is to partition the system behavior into
different operational modes. Moreover, another approach to reducing software com-
plexity is Component-Based Software Engineering (CBSE). Combining thesetwo
techniques, a multi-mode system can be developed in a component-based manner. A
challenge of doing this is the mode switch handling. The mode switch of a system
can be considered as the change of its configuration in one mode to a different con-
figuration in another mode. The theoretical foundation of mode switch handling for
such kind of systems has been built by the Mode Switch Logic (MSL) [1]. The goal
of this thesis is to implement MSL in the ProCom component model. ProCom [2] is
a component model for real-time and embedded systems, particularly targetingthe
domains of vehicular and telecommunication applications, developed at Mälardalen
Real-Time Research Centre (MRTC) at Mälardalen University.
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1.1.1 Component-Based Software Engineering

Component-Based Software Engineering (CBSE) has become recognized as a new
technology of building software focusing on the component aspects of software de-
velopment. This promising design paradigm is used for the development of complex
systems from reusable software components. CBSE emerged from the failure of
object-oriented development to support reuse effectively [3]. Components can be
grouped with different explicit goals to allow them to be generalized and reused. A
component is a software unit whose functionality and dependencies are completely
defined by its interfaces. A component model defines a set of standardsthat com-
ponent providers and composers should follow [4]. Apart from complexity manage-
ment, CBSE can also increase productivity, reduce the time to market and improve
the software quality.

1.1.2 The ProCom component model

Developed within the PROGRESS project, the ProCom component model aims for
the software development of real-time and embedded systems, in particular, vehicu-
lar and telecommunication systems. ProCom has been supported by its development
tool PRIDE [5] which can generate codes from components. ProCom is organized
in two distinctive layers: the top layer ProSys and the lower layer ProSave.ProSys
is used to model subsystems that can execute concurrently. The communication at
the ProSys layer is realized by asynchronous message passing. In contrast, ProSave
is dedicated to the detailed design of each subsystem. Components at the ProSave
layer follow the pipe-and-filter architectural style. Data and control flowsare clearly
separated. All ProSave components follow the same execution pattern: (1)Read all
input data when the associated trigger port is activated; (2) Become active and per-
form the computation; (3) Produce the output data and activate the associated output
trigger port. And then the component becomes passive again. A ProSavecompo-
nent can have multiple services providing different functionalities, and a variety of
connectors have been defined for the communication between ProSave components.
Both the ProSys and ProSave layers are hierarchical and it is allowed to compose a
ProSys component by ProSave components. Moreover, the behavior of a ProSave
component at the bottom level is implemented as a C function.

Currently, ProCom does not support multi-mode components and mode switch.
In this thesis, ProCom will be extended for the handling of mode switch.

1.1.3 The Mode Switch Logic (MSL)

A multi-mode system exhibits different behaviors in different operational modes.
Such kind of system is supposed to switch to the most suitable mode when some
condition changes. A mode switch can be triggered by a particular event ortim-
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ing. An example of multi-mode system is the control software of an airplane which
normally runs intaxi mode,taking off mode,flight mode andlanding mode. So
far not so much attention has been paid to the integration of multi-mode systems
and CBSE. Traditional component models do not include handling of operational
modes, and traditional handling of operational modes does not assume system built
from reusable components. Combining both types of systems into one will intro-
duce a new type of system, which we call Component-Based Multi-Mode System
(CBMMS), i.e. a multi-mode system built by reusable components. In order to
explain what a CBMMS is and how it works, an example is presented in Fig. 1.1,
which illustrates the hierarchical component structure of a typical CBMMS inthe
left part. Meanwhile, the component connections of the same system is shown in the
right part. This system is composed by three components:a, b, andc. Component
b consists of two subcomponents:d ande. Since the component hierarchy has a
tree structure, hereb is the parent whiled ande are the children ofb. According
to the terminology of CBSE, Componenta, c, d, ande are primitive components,
which are directly implemented by software codes and cannot be decomposed into
other components; ComponentTop andb are composite components, which con-
sist of other components. Furthermore, the system supports two modes:mTop1 and
m2

Top. In mTop1, Componentc is not running and Componenta is executing a mode-
specific behavior (indicated by the black color in Fig. 1.1); inm2

Top, c is activated but
e becomes deactivated, anda changes its behavior (indicated by the grey color). In
addition, the right part of Fig. 1.1 depicts the component connections further.

Figure 1.1: A component-based multi-mode system

The mode switch of a CBMMS is characterized by the joint mode switches of
different components. Since the mode switches of different components can be ei-
ther independent or correlated, the challenge comes from the synchronization and
coordination of the mode switches of related components. The Mode Switch Logic
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(MSL) [1], developed at M̈alardalen Real-Time Research Center at Mälardalen Uni-
versity, intends to provide efficient solutions for the mode switch handling ofCB-
MMSs. MSL proposes a mode-aware component model which enables the com-
position of multi-mode components and mode switch. Besides, a mode mapping
mechanism is used to specify which mode each component should switch to once a
mode switch is triggered. Furthermore, MSL includes a mode switch runtime mech-
anism that is able to efficiently handle the mode switch of a CBMMS at runtime.

1.2 Methodology

In this thesis, our prime aim is to provide the essential theories for the implementa-
tion of MSL in ProCom. First, our work starts from the reading of literatures related
to both ProCom and MSL. This plays an important role in understanding the purpose
of this thesis. After that we try to grasp the key features of both background works
and find out the possibilities of extending ProCom to support MSL. Different solu-
tions have been investigated and evaluated by trying them out on small examples.
Moreover, regular discussions with Hang Yin, Jan Carlson and Hans Hansson from
Mälardalen University have contributed a lot to the progress of this work.

1.3 Thesis layout

We divide this thesis into six parts. Chapter 1 provides the general theoretical back-
ground for this thesis. Chapter 2 gives a brief introduction of MSL. In Chapter 3,
the ProCom component model is explained. As the main contribution of the thesis,
Chapter 4 describes the implementation of MSL in ProCom in detail. The central
ideas presented in Chapter 4 will then be demonstrated by a pedagogical example in
Chapter 5. Finally, we summarize the thesis and discuss future work in Chapter 6.



Chapter 2
The Mode Switch Logic

How can we handle the mode switch of a Component-Based Multi-Mode System
(CBMMS)? One solution to this is the Mode Switch Logic (MSL) [1]. In this sec-
tion we provide a detail introduction of MSL and its major elements, including the
mode-aware component model, the mode mapping mechanism, and the mode switch
runtime mechanism. Since MSL is still not mature enough, MSL will be extended
to handle additional aspects in the future.

2.1 The mode-aware component model

The mode-aware component model defines the essential features that a component
model should have to support multi-mode and mode switch. A multi-mode compo-
nent should include a set of unique configurations associated with its unique behav-
iors in each mode. Different components should be able to exchange mode switch
information with each other either directly or indirectly because the mode switch of
one component may imply the mode switches of other components. Fig. 2.1 illus-
trates the mode-aware component model. In general, a multi-mode component sup-
ports multiple modes, each mode being associated with a configuration. The mode
switch of such a component is realized by its reconfiguration, i.e. the switch from the
configuration in the old mode to another configuration in the new mode. The mode
switch is controlled by the mode switch runtime mechanism implemented in the
component. The configuration and mode switch runtime of primitive components
and composite components are different, and more details can be found in [1]. Just
like most other port-based component models, the mode-aware component model
defines a number of input ports and output ports which are used to communicated
with other components. Besides, a primitive multi-mode component has a dedicated
mode switch port (represented bypMSX in Fig. 2.1) for exchanging mode switch
information with its parent. A composite component multi-mode component has
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two dedicated mode switch ports. Apart frompMSX, pMSX
in is used for a composite

multi-mode component for exchanging mode switch information with its children.
The portpMSX

in in Fig. 2.1 is marked in grey to indicate that it is only included in a
composite multi-mode component.

Since the mode-ware component model is not dependent on any existing com-
ponent models, it can guide many existing component models for the mode switch
extension.

Figure 2.1: The mode-aware component model

2.2 The mode mapping mechanism

Usually a multi-mode component is independently developed without assuming the
context where it will be used. When several multi-mode components are collected to
compose a bigger component, it is most likely that their supported modes are differ-
ent. This mode incompatibility problem is solved by the mode mapping mechanism
of MSL [6]. Mode mapping has two major purposes: (1) To map the modes of a
parent and its children; (2) To define the new modes of each component when it is
asked to switch mode. The mode mapping mechanism is proposed by adhering to
the following principles:

• Each component (primitive or composite) knows its supported modes, its ini-
tial mode and its current mode,but knows nothing about the mode information
of other components in the system.

• Additionally, composite components know the entire mode information of
their subcomponents, but they have no mode information of components at
deeper nested levels.

According to the mode mapping mechanism, each composite component has a
number of mode mapping rules for the mode mapping between itself and its subcom-
ponents. These mode mapping rules can be further divided into static mode mapping
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rules and dynamic mode mapping rules. Static mode mapping rules define the mode
mapping in stable modes and they can be represented by themode mapping table[1].
Dynamic mode mapping rules define the Dominant Default Modes (DDMs) for each
component. When a component is asked to switch mode, it must know which new
mode to switch to, and this new mode is called the DDM. In order to represent both
static and dynamic mode mapping rules, Mode Mapping Automata (MMA) is de-
signed. The mode mapping rules of a composite component are representedby a set
of MMA including the MMA of the composite component and the MMA of its sub-
components. Each MMA has locations and transitions. Each location corresponds to
a supported mode of the component. Each transition corresponds to a mode switch.
A transition is triggered by an input signal and it can produce output signals. A signal
can be either internal or external. An internal signal is used to synchronize different
MMA and an external signal is used for a parent and its subcomponents toexchange
mode switch information. Fig. 2.2 illustrates the mode mapping of Componentb
of the system introduced in Fig. 1.1. The mode mapping rules ofb is represented
by MMAb, MMA d and MMAe, with all MMAs located in Componentb. Figures
2.3 and 2.4 show MMAb and MMAd [7] which are internally synchronized. More
information about MMA can be found in [7].

Figure 2.2: Mode mapping and Mode Mapping Automata (MMA)
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Figure 2.3: The Mode Mapping Automaton ofb

Figure 2.4: The Mode Mapping Automaton ofd

2.3 The mode switch runtime mechanism

The mode switch runtime mechanism serves as the most important part of MSL.
It handles the mode switch of the system and each component at runtime. In this
thesis, we focus on the two most fundamental elements of the mode switch runtime
mechanism: the MS propagation mechanism and the mode switch dependency rule.

2.3.1 Mode switch propagation

The Mode Switch (MS) propagation mechanism defines two special roles: the Mode
Switch Source (MSS) and the Mode Switch Decision Maker (MSDM). An MSS
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can actively detect a mode switch event and request to switch mode. It is upto the
MSDM, which is usually another component at a higher level, to either approve or
reject the request from the MSS. The purpose of the MS propagation mechanism
is to propagate the mode switch request from an MSS to all the other components
which must switch mode as a consequence.

Two primitives are introduced for the mode switch propagation: Mode Switch
Request (MSR) and Mode Switch Instruction (MSI). An MSR is issued by an MSS
(sayci) as a mode switch event is detected and the MSS requests to switch mode. The
MSR from the MSS is first propagated to its parentc j . If the MSR implies no mode
switch ofc j , c j will be the MSDM and directly approve the MSR by issuing an MSI
to its subcomponents which must switch mode. If the MSR implies the mode switch
of c j whose current state does not allow such mode switch,c j will be the MSDM
and directly reject the MSR by doing nothing. If the MSR implies the mode switch
of c j whose current state allows such mode switch,c j will forward the MSR to its
parent which will make further decisions. When an MSDM approves an MSR, the
MSI from the MSDM will be propagated downstream to all the components which
must switch mode. An MSI can never be rejected and it will trigger the mode switch
of its recipient.

According to the MS propagation mechanism, the mode switch propagation is
divided into two phases: the upstream MSR propagation and the downstream MSI
propagation. If the top component happens to be an MSS, the first phasewill be
skipped as it can directly issue an MSI when it detects a mode switch event. Other-
wise, if the MSR from an MSS is rejected by the corresponding MSDM, the second
phase will be skipped.

Fig. 2.5 demonstrates the mode switch process of the system in Fig. 1.1, assum-
ing Componenta is an MSS. Whena detects a mode switch event, it will issue an
MSR to its parentTop, which approves the MSR by sending an MSI to its subcom-
ponentsa, b, andc. This indicates that the mode switch ofa also implies the mode
switches ofb andc. Componentb further propagates the MSI to its subcomponent
d. Componente is not affected in this mode switch scenario, thus the MSI is not sent
to e.

2.3.2 Mode switch dependency rule

The mode switch dependency rule guarantees the mode consistency between differ-
ent components after each mode switch. It prevents the inconsistent mode problem
that some component, which is supposed to run in the new mode after the system
mode switch, is still running in the old mode.

After receiving an MSI (and propagating the MSI further if necessary), a com-
ponent will start its reconfiguration. The mode switch dependency rule requires that
a component having received an MSI from its parent must send a primitiveMode
Switch Completion (MSC) back after completing its mode switch. The mode switch
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Figure 2.5: The mode switch process

of a composite component is completed only after its reconfiguration and the mode
switch completion of all its subcomponents.

The mode switch dependency rule is also demonstrated in Fig. 2.5 where compo-
nent reconfiguration is represented by black bars. An MSC must be sent in response
to the MSI after mode switch. White bars mean that a composite component has
completed its reconfiguration but has to wait for the MSC from its subcomponents,
which temporarily blocks its mode switch. The system mode switch is completed
when the MSDM,Top, completes its mode switch.



Chapter 3
The ProCom component model

According to Component-based Development (CBD), a component shouldcomply
with a component model. There are currently quite a lot of different component
models [8], among which a number of component models are suitable for the devel-
opment of embedded systems [9], including Rubus [10], Koala [11], AUTOSAR [12]
and ProCom [2]. In this thesis, we select the ProCom component model asthe target
for the MSL implementation. In this chapter, we provide a general introductionof
the ProCom component model.

3.1 The ProCom development process

The ProCom development process [13], depicted in Fig. 3.1, is partitionedinto the
concerns of modelling and synthesis. Both concerns are further partitioned into four
stages. The modelling addresses how to get and express deployment related design
decisions, for example, how to distribute functionality over the nodes of the system.
ProSave and ProSys in Fig. 3.1 are used to model the functional architecture of the
system. ProSys is at a higher level than ProSave, as a ProSys component can be
composed of ProSave components but not the other way round.

The deployment is performed in two steps. First ProSys subsystems are allocated
to virtual nodes with the many-to-one mapping, defined as an intermediate levelin
the allocation of functional units to the physical nodes of the system. Then virtual
nodes are allocated to physical nodes, also with the many-to-one mapping. The
advantage of doing this is that virtual nodes preserve real-time propertiesand can
be analyzed independently from the rest of the system. Please note that thefour
stages of the deployment process can be overlapping rather than being taken in a
fixed order.

The synthesis is a process of generating concrete runnable representations of
different modelling elements. Different from the deployment process, thesynthesis
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process must follow a specific order because each step requires the output from the
previous step. As is shown in Figure 3.1, the synthesis starts with C files which
implement primitive ProSave components and ends with runnable binary images on
different physical nodes. ProSys runnables and runnable virtual nodes are interme-
diate artefacts.

Figure 3.1: The ProCom development process

Fig. 3.2 is the typical system structure developed by ProCom. Hardware is at the
bottom level. Above the hardware is the Real-Time Operating System (RTOS).The
component layer is built on the RTOS, including ProSys and ProSave components.
In the component layer, different applications can be built based on the reuse and
composition of ProSys and ProSave components.

Figure 3.2: The ProCom development process
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3.2 The ProCom component model overview

In this section we will provide an overview of the ProCom component model, in-
cluding its application domains, ProSys and ProSave layers, port types, and connec-
tors. ProCom uses two related but distinct layers to solve the different concerns at
different levels of granularity, both layers built by different components whose in-
formation is stored in the repository, including requirements, textual documentation
and models of the behavior and resource usage [2].

As the upper layer, ProSys allows the hierarchical composition of components as
a ProSys component can be constructed from smaller ProSys components(a ProSys
component is also called a ProSys subsystem in ProCom). A ProSys component is
used to model a subsystem and has input and output message ports as its external
interface. Fig. 3.3 depicts the external view of a ProSys subsystem with one input
message port and two output message ports. The communication between ProSys
components is realized by asynchronous message passing. The handlingof a new
message is flexible and depends on the receiving ProSys component. A message
can be transmitted from one output message port of one ProSys component to one
input message port of another ProSys component through a message channel which
supports ”many-to-many” communication.

A ProSys component is active since it can have its own thread and no external
activation is required to trigger its execution. Compared with ProSave, a ProSys
component usually supports more complex functionality.

Figure 3.3: A ProSys component

ProSave is the lower layer of ProCom. Similar to ProSys, a composite ProSave
component can be composed by smaller ProSave components. A primitive ProSave
component is at the bottom level of the hierarchy and can be implemented in C lan-
guage. Usually the functionality provided by a ProSave component is less complex
compared with a ProSys component.

A unique feature of ProSave is that a ProSave component can provide one or
moreservices, each of which corresponds to a particular functionality supported by
the component. Fig. 3.4 depicts the external view of a ProSave component with two
servicesS1 andS2. Each service is associated with a single input port group and
a set of output port groups. Since control flow and data flow are separated in the
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ProSave layer, each port group consists of one trigger port (denoted by dark blue
triangles in Fig. 3.4) and a set of data ports (denoted by dark blue squares in Fig.
3.4). For instance, in Fig. 3.4, the serviceS1 has one input port group consisting of
one input trigger port and one input data port, and one output port group consisting
of one output trigger port and two output data ports. In contrast,S2 has one input
port group and one output port group, both port groups consisting of one trigger
port and one data port. Different from ProSys, a ProSave component is passive and
needs external activation to trigger its execution. A ProSave component has very
strict execution semantics: for each service, when the input trigger portis activated,
the service will become active and the component will read input data from all its
input data ports belonging to this service and performs its execution. After that
it will produce output at its output data ports of this service and then activate the
corresponding output trigger ports in an atomic manner.

Figure 3.4: A ProSave component

The communicating between ProSave components is of pipe-and-filter style.
One output trigger port of a ProSave component can be directly connected to one
input trigger port of another ProSave component. Likewise, one outputdata port of
a ProSave component can be directly connected to one input data port ofanother
ProSave component. However, this direct connection can only be one-to-one. More
advanced connection for ProSave components is achieved by the use ofconnectors.
Fig. 3.5 lists the most commonly used connectors:

• Control Or: It has at least two input trigger ports and one output triggerport.
Its output trigger port is activated when any one of its input trigger ports is
activated.

• Control Join: It has at least two input trigger ports and one output trigger
port. Its output trigger port is activated only when all its input trigger portsare
activated. It can also be presented by a small circle graphically.

• Control Fork: It has one input trigger port and at least two output trigger
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ports. When its input trigger port is activated, all its output trigger ports will
be activated. It can also be presented by a thick dot graphically.

• Data Or: It has at least two input data ports and one output data port. Thedata
arriving at any one of its input data port will be forwarded to its output data
port.

• Data Fork: It has one input data port and at least two output data ports.The
data arriving at its input data port will be duplicated and produced at all its
data ports. Just like Control Fork, it can also be presented by a thick dot
graphically.

• Selection: It has one input trigger port, at least one input data port andat least
two output trigger ports. When its input trigger port is triggered, it will activate
exactly one of its output trigger ports according to the data written to its input
data port(s).

Figure 3.5: Common connectors for the communication between ProSave compo-
nents

The ProSys and ProSave layers are integrated as a ProSys componentthat is
internally composed by ProSave components (see Fig. 3.6). A unique element within
such a special ProSys component is theClock which provides periodical activation
for its ProSave subcomponents or its output message ports.
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Figure 3.6: A ProSys component composed by ProSave components



Chapter 4
Implementing MSL in ProCom

In this chapter, our theoretical guidance of implementing MSL in the ProCom com-
ponent model is explained in detail. The main purpose is to integrate MSL into
ProCom with a minimum modification of ProCom. As is shown in Fig. 4.1, we
realize our goal in three steps:

1. Extending ProCom components into multi-mode components

2. Integrating the mode switch runtime mechanism of MSL into ProCom

3. Merging component connections in different modes

Figure 4.1: The automatic generation flow

In the following sections, we shall explain these steps in detail.

4.1 Multi-mode ProSave and ProSys components

Currently, the ProCom component model does not support multi-mode and mode
switch. Therefore, ProCom must be extended to be mode-aware, preferably with



18 Implementing MSL in ProCom

minimum modification. As one of the contributions in this thesis, both ProSave and
ProSys components are extended to support MSL without modification. According
to the mode-aware component model of MSL, a multi-mode should have a clear
separation between its behavior in each mode and its mode switch handling, and
have dedicated mode switch ports to exchange mode switch information with the
parent or the subcomponents.

By taking advantage of the support of multiple services of a ProSave component,
we use a dedicate service calledSmode for the mode switch handling of a ProSave
component. The serviceSmode has one input port group consisting of one input
trigger portpmst

i and one input data portpms
i , and one output port group consisting

of one output trigger portpmst
o and one output data portpms

o . These two port groups
function as the dedicated mode switch ports of the ProSave component. Fig. 4.2
(a) shows a typical multi-mode ProSave componentci consisting of two services.
The upper service is dedicated to its regular operation while the lower service Smode

is dedicated to the mode switch handling. The serviceSmode has dedicated mode
switch ports marked in purple. It should be noted that a ProSave component can
have arbitrary number of regular services. The number of data ports ofthe input port
group of each service can be manually defined. The number of output port groups
of each service and the number of output data ports of each output portgroup can
also be manually defined. In contrast, the ports ofSmodeare fixed. The incoming and
outgoing connections ofSmodewill be introduced in later sections.

Figure 4.2: Multi-mode ProSave and ProSys components

A multi-mode ProSys component is a bit different compared to the multi-mode
ProSave component presented above. Since a ProSys component hasno services and
does not distinguish trigger and data ports, there is no need to introduce a dedicated
service for handling mode switch. Instead, a dedicated internal thread can be used
for handling mode switch and another pair of input and output message ports, pms

i
and pms

o , can be added as the dedicated mode switch ports. Figure 4.2 (b) shows a
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typical multi-mode ProSys componentci which has a number of input message ports
and output message ports, as well as a pair of input and output message ports dedi-
cated to mode switch (marked in purple in the figure). The incoming and outgoing
connections of its dedicated mode switch ports will be introduced in later sections.

Moreover, a multi-mode component should have unique configurations in differ-
ent modes. For a multi-mode ProSave component, its configurations can be defined
in its serviceSmode; for a multi-mode ProSys component, its configurations can be
defined in the dedicated internal thread. However, the main focus of component
configuration in this thesis is on the running status of a component and component
connections, which will be explained in later sections.

Our extension of ProSave and ProSys components can be easily implemented
in the development environment of ProCom: PRIDE [5]. When a new component
is built in PRIDE, one should specify if a ProSave or ProSys component should be
single-mode or multi-mode. If multi-mode is specified, the dedicated mode switch
ports and services should be automatically generated.

4.2 Integrating the mode switch runtime mechanism

The second contribution of this thesis is integrating the mode switch runtime mech-
anism of MSL in ProCom. Guided by MSL, the mode switch of a component is
controlled by its mode switch runtime mechanism (and its local mode mapping if it
is a composite component). For a primitive ProSave or ProSys component directly
implemented by C code, its mode switch runtime mechanism has to be integrated
in the code itself, interacting with its dedicated mode switch ports. We here focus
more on integrating the mode switch runtime mechanism in a composite ProSave
or ProSys component. Since a composite ProCom component has none of itsown
behavior, but is only a composition of its subcomponents, we propose the use of
particular subcomponents of a composite ProSave or ProSys component for the in-
tegration of the mode switch runtime mechanism. This section also presents the
integration of the mode mapping mechanism of MSL in a composite ProSave or
ProSys component.

4.2.1 The MSL components at the ProSave level

For a multi-mode composite ProSave component or a multi-mode composite ProSys
component composed by ProSave components, sayci , we introduce two special sub-
components ofci for its mode switch handling: MSLAci

and MSLB
ci

, both of which
can interact with theSmodeservice of eachc j ∈ SCci and can be synchronized with
each other.

Let ci .p denote the portp of componentci . Also, letSCci = {c1
j ,c

2
j , · · · ,c

n
j} (n∈

N) denote the set of the subcomponents ofci , excluding MSLAci
and MSLB

ci
. Fig. 4.3
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illustrates the ports of MSLAci
and MSLB

ci
. Component MSLAci

has a single service and
has an input port group consisting of the following input ports:

• pt
i : the input trigger port whose activation makes MSLA

ci
active.

• pmsx
i : an input data port for receiving a downstream primitive (i.e. MSI ac-

cording to the MS propagation mechanism of MSL) during the mode switch
propagation.

• psync
i : an input data port connected to MSLB

ci
for synchronization.

Figure 4.3: The pair of ProSave MSL subcomponents ofci

Besides, MSLAci
also has an output port group consisting of the following output

ports:

• pt
o: the output trigger port activated after MSLA

ci
completes its current instance

of execution.

• Pmsx
o = {p1

o, p
2
o, · · · , p

n
o} (n= |SCci |): a set of output data ports where for each

pk
o ∈ Pmsx

o (k= [1,n]), pk
o is connected tock

j .p
ms
i (ck

j ∈ SCci ).

• ps
o: an output data port indicating the current mode ofci . It is particularly

used for merging component connections defined in separate modes and will
be further explained later on.

• psync
o : an output data port connected to MSLB

ci
for synchronization.

The ports of MSLBci
is quite symmetrical to MSLAci

. If the port ps
o of MSLA

ci
is

removed and then the input and output ports of MSLA
ci

are swapped, the resulting
port layout will resemble MSLBci

, which has an input port group consisting of the
following input ports:

• pt
i : the input trigger port whose activation makes MSLB

ci
active.

• Pmsx
i = {p1

i , p
2
i , · · · , p

n
i } (n = |SCci |): a set of input data ports for receiving

upstream primitives such as MSR or MSC, where for eachpk
i ∈ Pmsx

i (k =
[1,n]), pk

i is connected tock
j .p

ms
o (ck

j ∈ SCci ).
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• psync
i : an input data port connected to MSLA

ci
for synchronization.

Besides, MSLBci
has an output port group consisting of the following ports:

• pt
o: the output trigger port activated after MSLB

ci
completes its current instance

of execution.

• pmsx
o : an output data port for forwarding an upstream primitive (i.e. MSR

or MSC according to the MS propagation mechanism and the mode switch
dependency rule of MSL) during a mode switch.

• psync
o : an output data port connected to MSLA

ci
for synchronization.

The component connections between MSLA
ci

, MSLB
ci

andck
j ∈ SCci (k = [1,n])

can be demonstrated by Fig. 4.4. The ports of other services ofci has been omit-
ted for simplicity. The input trigger port MSLAci

.pt
i is directly connected toci .pmst

i
and it is eventually connected to a clock residing at the intermediate level between
ProSave and ProSys. This clock can periodically trigger MSLA

ci
, MSLB

ci
andSmode

of all ProSave components at all levels. We use such a dedicated clock because the
mode switch handling should be separated from other regular services rather than
Smode. The input data port MSLAci

.pmsx
i is directly connected toci .pms

i . The output
trigger port MSLAci

.pmst
o is connected to allck

j .p
mst
i (ck

j ∈ SCci ,k = [1,n]). Likewise,
for each output data port MSLA

ci
.pk

o (k= [1,n]), MSLA
ci
.pk

o is connected to the corre-
sponding input data portck

j .p
ms
i (ck

j ∈ SCci .
The input trigger port MSLBci

.pt
i can be activated by anyck ∈ SCci (k = [1,n])

and this is why aControl Or connector is used. For each input data port MSLB
ci
.pk

i
(k = [1,n]), pi is connected tock

j .p
ms
o (ck

j ∈ SCci ). The output trigger port MSLBci
.pt

o

is directly connected toci .pmst
o , while its output data port MSLBci

.pmsx
o is directly

connected toci .pms
o . MSLA

ci
and MSLB

ci
are connected via their synchronization ports,

i.e. psync
i andpsync

o .
Let Pci define the parent of a componentci . Regardingci in Fig. 4.4, let’s assume

ci receives an MSI fromPci . The MSI will arrive at its input data portpmsx
i . Then

according to the MS propagation mechanism,ci will propagate the MSI to 2SCci (any
possible subset ofSCci ) based on its mode mapping, i.e. by sending an MSI to the
components amongSCci which need to switch mode. Forck

j ∈ SCci (k = [1,n]), if
ck

j needs to switch mode for this mode switch scenario, an MSI will be sent from
MSLA

ci
.pk

o to ck
j .p

ms
i (ck

j ∈ SCci ). If ck
j is composite, it should have the same internal

structure asci so that the MSI can be further propagated. Next let’s consider an MSR
coming fromck

j (k= [1,n]), then the MSS must be withinck
j . The MSR is sent from

ck
j .p

ms
o will arrive at MSLB

ci
.pk

i via theControl Or connector. Ifci decides to forward
the MSR further toPci , an MSR will be sent from MSLBci

.pmsx
o to ci .pms

o . Component
Pci should have the same internal structure asci , thus the MSR sent fromci to Pci can
be treated in the same manner as the MSR sent fromck

j to ci .
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The reason why two MSL components are used to jointly handled the mode
switch of a component is that ProCom prohibits the circular connection between two
neighboring components. For instance, MSLA

ci
.pt

o is connected to∀k= [1,n],ck
j .p

mst
i .

This enables the downstream MSI propagation. To enable the upstream MSR propa-
gation or MSC transmission,ck

j .p
mst
o is supposed to be connected to MSLA

ci
.pt

i . How-
ever, this is not allowed because MSLA

ci
andck

j are triggering each other. For this
reason, MSLBci

is introduced to avoid mutual triggering. Since MSLA
ci

and MSLB
ci

are
supposed to share the same mode information, they must be synchronized frequently
and that is why they both have synchronization ports.

Figure 4.4: MSLA
ci

, MSLB
ci

and component connections

Both MSLA
ci

and MSLB
ci

are primitive ProSave components and the mode switch
runtime mechanism of MSL can be implemented by them. Algorithms 1 and 2
describe the mode switch handling of MSLA

ci
and MSLB

ci
respectively, where a few

notations are explained as follows:

• switching: A boolean variable set to true whenci is switching mode.

• ModeMapping: A function implementing the mode mapping ofci based on
the mode mapping mechanism of MSL.

• Reconfiguration: A function reconfiguringci to its configuration in the new
mode. However, if the new mode ofci is the same as its current mode, no
reconfiguration will be taken.

• DummyData: A ProSave component must provide data at all its output data
ports when the output trigger port in the same service is activated. Dummy
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data can be written to those output data ports where no data is expected to be
sent out.

• Con f(ci): The configuration ofci in its current mode.

• MSCall: A boolean variable set to true when MSLB
ci

has completed its MSC
collection fromSCci .

• UpdateConf(Con f(ci)): A function updating the old configuration ofci to
Con f(ci). Compared with the functionReconfiguration, this function pro-
duces the same result, though in a different way (the new configuration is
provided from the input synchronization port for this function, while the new
configuration has to be additionally derived in the functionReconfiguration).

Please notice that these algorithms have abstracted many details for the sake of
simplicity. For instance,Pmsx

o := MSI means thatci sends an MSI to 2SCci based on
its mode mapping. Hence, it implies that the MSI may not be sent to∀pk

o ∈ Pmsx
o .

The two algorithms presented here implicitly require that a primitive multi-mode
ProSave component should send dummy data via its portpms

o if it receives dummy
data from its portpms

i while being triggered. Next let’s demonstrate how the mode
switch runtime mechanism works withinci by a typical mode switch scenario. Sup-
pose an MSR is issued fromc1

j andci approves the MSR by issuing an MSI that is
propagated downstream. Taking algorithms 1 and 2 and Fig. 4.4 into account,we
get the following procedures:

1. An MSR is sent fromc1
j .p

ms
o to MSLB

ci
.p1

i . Meanwhile, MSLBci
.pt

i is activated
by c1

j and MSLB
ci

will do its mode mapping and approves the MSR according to
its mode mapping result and current state. Then MSLB

ci
will change its current

mode toswitchingand send an MSI to MSLAci
via MSLB

ci
.psync

o .

2. MSLA
ci

receives the MSI from its portpsync
i and checks its mode mapping

which should be equal to MSLB
ci

. After that, MSLA
ci

will change its mode
to switchingand start its reconfiguration. After its reconfiguration, it will send
an MSI to its portPmsx

o based on the mode mapping result and also send its
new configuration to MSLBci

via its portpsync
o .

3. Forck
j ∈SCci (k= [1,n])which receives the MSI from MSLAci

, if ck
j is primitive,

it can immediately start its reconfiguration and then send an MSC to MSLB
ci

.
If ck

j is composite, its internal behavior will be the same asci . Eventually,
ck

j will send an MSC to MSLBci
which collects from MSC fromSCci . When

MSLB
ci

completes its MSC collection, it will read the data from its portpsync
i

which must be the new configuration already sent from MSLA
ci

. Thus MSLBci

will update its configuration, update its current mode fromswitchingto the
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Algorithm 1 MSLA
ci

loop
if pt

i then
if (pmsx

i = MSI ∨ psync
i = MSI) ∧ mci 6= switchingthen

ModeMapping;
mci := switching;
Reconfiguration;
Pmsx

o := MSI;
ps

o := DummyData;
psync

o :=Con f(ci);
end if
if psync

i = MSCall ∧ mci = switchingthen
mci := mnew

ci
;

Pmsx
o := DummyData;

ps
o := mnew

ci
;

psync
o := DummyData;

end if
if pmsx

i = DummyData∧ psync
i = DummyDatathen

Pmsx
o := DummyData;

ps
o := mci ;

psync
o := DummyData;

end if
pt

i := f alse;
pt

o := true;
end if

end loop
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Algorithm 2 MSLB
ci

loop
if pt

i then
if pk

i = MSR∧ mci 6= switching(pk
i ∈ Pmsx

i ,k= [1,n]) then
ModeMapping;
if Approvethen

mci := switching;
pmsx

o := DummyData;
psync

o := MSI;
else ifRejectthen

pmsx
o := DummyData;

psync
o := DummyData;

else
pmsx

o := MSR;
psync

o := DummyData;
end if

end if
if pk

i = MSC∧ mci = switching(pk
i ∈ Pmsx

i ,k= [1,n]) then
if MSCall then

UpdateConf(Con f(ci));
mci := mnew

ci
;

pmsx
o := MSC;

psync
o := MSCall;

else
pmsx

o := DummyData;
psync

o := DummyData;
end if

end if
if Pmsx

i = DummyData∧ psync
i = DummyDatathen

pmsx
o := DummyData;

psync
o := DummyData;

end if
pt

i := f alse;
pt

o := true;
end if

end loop
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new mode, sending an MSC toPci via its port pmsx
o and sendingMSCall to

MSLA
ci

via its portpsync
o .

4. MSLA
ci

receivesMSCall from its portpsync
i and then changes its current mode

to the new mode. Besides, MSLA
ci
.ps

o is updated to the new mode as well. The
mode switch ofci is completed.

Due to the rigorous execution semantics of ProSave components, the mode
switch scenario above requires at least four cycles of the clock in Fig. 4.4. No parallel
reconfiguration among ProSave components are allowed as component reconfigura-
tion must be taken one after another by following their triggering order. Algorithms
1 and 2 do not consider the case whenci is the top component or an MSS. Ifci is the
top component, it will never forward an upstream MSR upwards and we only need
to remove the corresponding session of Algorithm 2. Ifci is an MSS but not the top
component, it can actively issue an MSR toPci when it detects a mode switch event
and this can be performed by MSLB

ci
. If ci is an MSS and also the top component,

it can actively issue an MSI that is propagated downstream when it detectsa mode
switch event. The MSI can be handled in the same way as the MSI whenci receives
from Pci .

4.2.2 The MSL component at the ProSys level

The mode switch runtime mechanism of MSL is implemented at the ProSys level in
a similar way as ProSave level. For a multi-mode composite ProSys componentci ,
we introduce a special subcomponent ofci for its mode switching handling: MSLci

which plays an equal role as the pair of MSLA
ci

and MSLB
ci

described in the last
subsection. The major difference includes:

• Message passing between ProSys components is more flexible than the pipe-
and-filter communication pattern at the ProSave level. Circular connection is
allowed, i.e. two neighboring components can send messages to each other via
different ports, therefore, one MSL subcomponent ofci is sufficient to handle
its mode switch.

• A ProSys component does not distinguish control and data flow.

• Since a message channel allows many-to-one communication, theControl Or
connector at the ProSave level can be removed.

Still, let SCci = {c1
j ,c

2
j , · · · ,c

n
j} (n∈ N) denote the set of the subcomponents of

ci , excluding MSLci . Fig. 4.5 illustrates the ports of MSLci , which has the following
ports:

• pmsx
i : an input message port for receiving an MSI.
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• Pi = {p1
i , p

2
i , · · · , p

n
i } (n = |SCci |): a set of input message ports for receiving

an MSR or MSC, where for eachpk
i ∈ Pmsx

i (k = [1,n]), pk
i is connected to

ck
j .p

ms
o (ck

j ∈ SCci ).

• ps
o: an output message port indicating the current mode ofci . It will be further

explained later on.

• Po = {p1
o, p

2
o, · · · , p

n
o} (n= |SCci |): a set of output message ports for sending an

MSI to 2SCci , where for eachpk
o∈Po (k= [1,n]), pk

o is connected tock
j .p

ms
i (ck

j ∈
SCci ).

• pmsx
o : an output message port for forwarding an MSR or sending an MSC to

Pci .

Figure 4.5: The ProSys MSL subcomponent ofci

The component connections between MSLci andck
j ∈ SCci (k = [1,n]) can be

demonstrated by Fig. 4.6. The input message port MSLci .p
msx
i is directed connected

to ci .pms
i for receiving an MSI. The input message portsp1

i , p
2
i , · · · , p

n
i are connected

to the pms
o of the corresponding subcomponents ofci : c1

j ,c
2
j , · · · ,c

n
j for receiving

an MSR or MSC. The output message portsp1
o, p

2
o, · · · , p

n
o are connected topms

i of
c1

j ,c
2
j , · · · ,c

n
j for sending an MSI. In addition, The output message port MSLci .p

msx
o

is directly connected toci .pms
o for sending an MSR or MSC toPci .

MSLci is a primitive ProSys component where the mode switch runtime mech-
anism ofci is implemented. The mode switch handling of MSLci is described in
Algorithm 3. A mode switch scenario can be used for demonstration. Still, let’s
assume that an MSR is issued fromc1

j andci approves the MSR by issuing an MSI
that is propagated downstream. Taking Algorithm 3 and Fig. 4.6 into account,we
get the following procedures:

1. An MSR is sent fromc1
j .p

ms
o to MSLci .p

1
i .

2. MSLci refers to its mode mapping, changes its mode toswitchingand then
propagates an MSI to 2SCci based on the mode mapping result.
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Figure 4.6: MSLci and component connections

3. Forck
j ∈SCci (k= [1,n])which receives the MSI from MSLci , if ck

j is primitive,
it can immediately start its reconfiguration and then send an MSC to MSLci

via its port pms
o . If ck

j is composite, its internal behavior will be the same as
ci . Eventually,ck

j will send an MSC to MSLci which collects from MSC from
SCci . When MSLci completes its MSC collection, it will reconfigure itself if
its new mode is different from its current mode. It will also change its current
mode and its output data at portps

o to the new modemnew
ci

. Finally, an MSC is
sent toPci via its portpmsx

o .

Since MSLci requires no additional clock to trigger its execution and there is no
synchronization problem between MSLA

ci
and MSLB

ci
, the mode switch handling at

the ProSys level is much easier than at the ProSave level.

4.2.3 Mode mapping

Algorithms 1-3 all include the functionModeMapping, which implements the mode
mapping mechanism of MSL. The approaches proposed in this thesis allow thepair
of ProSave component MSLA

ci
and MSLB

ci
and the ProSys component MSLci to be au-

tomatically generated for a specific given component hierarchy. However, the mode
mapping ofci has to be manually specified to meet the expectation of the designer
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Algorithm 3 MSLci

loop
if pmsx

i = MSI ∧ mci 6= switchingthen
ModeMapping;
mci := switching;
Po := MSI;

end if
if pk

i = MSR∧ mci 6= switching(pk
i ∈ PSC,k= [1,n]) then

ModeMapping;
if Approvethen

mci := switching;
Po := MSI;

else ifRejectthen
return ;

else
pmsx

o := MSR;
end if

end if
if pk

i = MSC∧ mci = switching(pk
i ∈ PSC,k= [1,n]) then

if MSCall then
Reconfiguration;
mci := mnew

ci
;

ps
o := mnew

ci
;

pmsx
o := MSC;

end if
end if

end loop
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and customer. This section presents aMode Mapping Wizardfor guiding the mode
mapping specification in ProCom. For each composite componentci , theMode Map-
ping Wizardconsists of four steps: (1) Defining the mode mapping table ofci ; (2)
Generating the skeleton of the Mode Mapping Automata (MMAs) ofci andSCci ;
(3) Editing the MMAs; and (4) MSS and mode switch scenario specification. Since
theMode Mapping Wizardcan automatically generate the basic parts of MMAs in
a graphical manner, the mode mapping specification ofci can be much more conve-
nient than using a particular specification language from scratch. Next let’s briefly
explain each step of theMode Mapping Wizard.

Step 1: Mode Mapping Wizard
For a composite componentci , the basic mode mapping betweenci andSCci can be
presented by amode mapping table. TheMode Mapping Wizardis able to generate a
blankmode mapping tableshown in Table 4.1. The first column of Table 4.1 listsci

andSCci . Besides, Table 4.1 hasK additional columns, wheren= max{|Mci |, |Mck
j
|}

(ck
j ∈ SCci ,k= [1,n], n is the number of subcomponents ofci , andMci denotes the set

of supported modes ofci). Among theseK columns, each cell should be filled with
one supported mode of the component in the same row. This can be either manually
input or selected from a mode selection list. Forci , the mode selection list includes
all its pre-defined supported modes, while forck

j , the mode selection list includes
all its pre-defined supported modes plus ”Deactivated”, asci may deactivate certain
subcomponents in certain modes. One can also merge cells horizontally to specify
more complex mode mapping.

Component Supported modes

ci · · ·

c1
j ∈ SCci · · ·

c2
j ∈ SCci · · ·

... · · ·

cn
j ∈ SCci · · ·

Table 4.1: The mode mapping table ofci

Step 2: Automatic generation of MMAs
As is introduced in Section 2.2, an MMA [7] consists of locations and transitions
between locations. The locations, including the deactivated states, of eachMMA
can be automatically generated based on themode mapping table. Transitions of
each MMA can also be automatically generated by considering all possible mode
switch scenarios. However, the definition of Dominant Default Modes (DDMs) is
beyond the expression ofmode mapping table. Therefore, some transition labels of
an MMA may not be complete.
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Step 3: Editing MMAs
The main task in this step is to complete the undefined transition labels generated in
Step 2. This is realized by defining the DDMs for each component for all possible
mode switch scenarios. The locations and transitions of an MMA can also be man-
ually edited, added or deleted. Any operation violating the semantics of MMA will
cause a syntax error that warns the designer so as to avoid incorrect mode mapping.

Step 4: MSS and mode switch scenario specification
In Step 2 and Step 3, all possible mode switch scenarios are considered for better
component reuse. However, for a particular system, only some mode switchscenar-
ios could happen. All Mode Switch Sources (MSSs) in the system should bedefined
and a mode switch scenario can be defined as: an MSSck requests to switch from
mi

ck
to mj

ck (mi
ck
,mj

ck ∈ Mck).
The four steps above completes the mode mapping specification ofci .

4.3 Multi-mode component connections

As is indicated in Fig. 1.1 at the very beginning of this thesis, the inner compo-
nent connection of a composite componentci can be different whileci is in different
modes. Of course it is quite easy to define the inner component connection of ci

separately for each mode ofci , however, merging component connections in differ-
ent modes becomes a tricky problem in ProCom. As the third contribution of this
thesis, we provide a solution which can automatically generate the complete com-
ponent connection based on component connections separately defined in different
modes with minimum extension of ProCom. Depending on the current mode of a
component, only activated components and active component connectionsare se-
lected. Next our solution will be presented at the ProSave level and the ProSys level,
respectively.

4.3.1 Merging component connection at the ProSave level

Consider a multi-mode ProSave component or a multi-mode ProSys component
composed by ProSave components, sayci , whose inner component connection is
mode-dependent. The basic idea of automatically generating the merged component
connection withinci is to packaging eachck

j ∈ SCci (k = [1,n],n= |SCci |) with ad-
ditional connectors. A connector is attached to each port ofck

j except its dedicated
mode switch ports of the serviceSmode, i.e. pmst

i , pms
i , pmst

o andpms
o . General speak-

ing, aControl Or connector is attached to an input trigger port; aData Or connector
is attached to an input data port; aSelectionconnector is attached to an output trigger
port; aData Selectionconnector is attached to an output data port. TheData Selec-
tion connector does not exist in the current ProCom component model, however, it
can be easily developed as its execution semantics is very similar toSelection. A
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Data Selectionconnector has two input data ports:pd
i andps

i and at least two output
data ports. Based on the value of the data at portps

i , this connector forwards the data
from pd

i to exactly one of its output data ports. The number of the input ports of
Control Or andData Or, and the number of the output ports ofSelectionandData
selectiondepend on the number of modes supported by the parent componentci .

Let ci be a composite multi-mode ProSave component with the set of supported
modesMci = {m1

ci
,m2

ci
, · · · ,mq

ci}(q ≥ 1). For each modemk
ci

(k = [1,q]), the inner
component connection ofci has been provided separately. Componentci has a num-
ber of subcomponentsc1

j ,c
2
j , · · · ,c

n
j (n= |SCci |). For eachck

j ∈ SCci (k= [1,n]),

• Let Pt
i be the set of input trigger ports ofck

j of all its services exceptSmode.

• Let Pd
i be the set of input data ports ofck

j of all its services exceptSmode.

• Let Pt
o be the set of output trigger ports ofck

j of all its services exceptSmode.

• Let Pd
i be the set of output data ports ofck

j of all its services exceptSmode.

Let pt
i ∈ Pt

i denote an arbitrary port belonging toPt
i and the same is true of

pd
i ∈ Pd

i , pt
o ∈ Pt

o and pd
o ∈ Pd

o . Connectors are automatically generated aroundck
j

based on the following rules:

• For eachpt
i ∈ Pt

i of ck
j , a Control Or connectorA is generated, with a set of

input trigger portsPt
i = {pt1

i , p
t2
i , · · · , p

tq
i }(q = |Mci |) and one output trigger

port pt
o. The incoming connection toA.ptl

i (l = [1,q]) follows the pre-defined
connection whileci is in modeml

ci
. The output trigger portA.pt

o is directly

connected tock
j .p

t
i .

• For eachpd
i ∈ Pd

i of ck
j , a Data Or connectorB is generated, with a set of

input data portsPd
i = {pd1

i , pd2
i , · · · , pdq

i }(q = |Mci |) and one output trigger
port pd

o. The incoming connection toB.pdl
i (l = [1,q]) follows the pre-defined

connection whileci is in modeml
ci

. The output data portB.pt
o is directly

connected tock
j .p

d
i .

• For eachpt
o ∈ Pt

o of ck
j , a SelectionconnectorC is generated, with one input

trigger portpt
i , one input data portps

i and a set of output trigger portsPt
o =

{pt1
o , p

t2
o , · · · , p

tq
o }(q= |Mci |). The input trigger portC.pt

i is directly connected
to ck

j .p
t
o. The input data portC.ps

i is connected to MSLAci
.ps

o (see the previous
section). The outgoing connection fromC.ptl

o (l = [1,q]) follows the pre-
defined connection whileci is in modeml

ci
according to the value of the data at

C.ps
i : If the data read fromC.ps

i returnsml
ci
(l = [1,q]), C.ptl

o will be triggered.
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• For eachpd
o ∈ Pd

o of ck
j , a Data SelectionconnectorD is generated, with one

input data portpd
i , and the other input data portps

i and a set of output data
portsPd

o = {pd1
o , pd2

o , · · · , pdq
o }(q= |Mci |). The input data portD.pd

i is directly
connected tock

j .p
d
o. The input data portD.ps

i is connected to MSLAci
.ps

o (see
the previous section). The outgoing connection fromD.pdl

o (l = [1,q]) follows
the pre-defined connection whileci is in modeml

ci
according to the value of

the data atD.ps
i : If the data read fromD.ps

i returnsml
ci
(l = [1,q]), the data

read fromD.pd
i will be forwarded exactly toD.pdl

o .

The above presented rules are illustrated in Fig. 4.7 and should be applied toall
subcomponents ofci . Moreover, the input and output ports ofci itself deserve special
care. Let’s reuse the definitionPt

i , Pd
i , Pt

o andPd
o of ck

j for ci , then,

• For eachpt
i ∈ Pt

i of ci , aSelectionconnector (the same asC defined above) is
generated and connected to it withinci , consideringci .pt

i as an output trigger
port (not belonging to the serviceSmode) of a subcomponent ofci .

• For eachpd
i ∈ Pd

i of ci , a Data Selectionconnector (the same asD defined

above) is generated and connected to it withinci , consideringci .pd
i as an out-

put data port (not belonging to the serviceSmode) of a subcomponent ofci .

• For eachpt
o ∈ Pt

o of ci , aControl Or connector (the same asA defined above)
is generated and connected to it withinci , consideringci .pt

o as an input trigger
port (not belonging to the serviceSmode) of a subcomponent ofci .

• For eachpd
o ∈ Pd

o of ci , aData Or connector (the same asB defined above) is
generated and connected to it withinci , consideringci .pd

o as an input data port
(not belonging to the serviceSmode) of a subcomponent ofci .

It is also important to note that some component connections may remain un-
changed whileci is switching mode, thus the merged component connections within
ci can be optimized by removing redundant generated connectors and redundant con-
nections. In practice, the merged component connection may still look rathercom-
plex even after optimization, however, they are automatically generated by following
simple rules. Therefore, the visual complexity will not be a problem. A desired func-
tion in PRIDE with MSL support would be to allow the user to view the component
connection in a particular mode while hiding the component connections in other
modes.

4.3.2 Merging component connection at the ProSys level

Like at the ProSave level, component connections in different modes canalso be
merged and automatically generated. The central idea is similar to that at the ProSave
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Figure 4.7: Merging component connections at the ProSave level

level. Since no connectors are supported at the ProSys level, we do notneed to
generate any connectors. Instead, we can generate primitive ProSys components
functioning as the four types of connectors generated at the ProSave level. Since an
input message port can receive messages from multiple message channels, there is no
need to generate ProSys components with the same function as connectorsControl
Or or Data Or. Actually, we only need to generate a primitive ProSys component
Selectionthat plays the same role as the combination ofSelectionandData Selection
at the ProSave level.

Let ci be a composite multi-mode ProSys component composed by ProSys com-
ponents. Componentci has the set of supported modesMci = {m1

ci
,m2

ci
, · · · ,mq

ci}(q≥
1). For each modemk

ci
(k = [1,q]), the inner component connection ofci has been

provided separately. Componentci has a number of subcomponentsc1
j ,c

2
j , · · · ,c

n
j

(n= |SCci |). For eachck
j ∈ SCci (k = [1,n]), let Pi be the set of input message ports

of ck
j exceptck

j .p
ms
i , and letPo be the set of output message ports ofck

j exceptck
j .p

ms
o .

Then a primitive ProSys component calledSelectionand denoted asS is generated.
ComponentE has two input message ports,pi and ps, and a set of output message
portsPo = {p1

o, p
2
o, · · · , p

q
o}(q = |SCci |). For eachpo ∈ Po of ck

j , ck
j .po is connected

to E.pi . The input message portE.ps is connected to MSLci .p
s
o. The outgoing

connection fromE.Pl
o (l = [1,q]) follows the pre-defined connection whileci is in

ml
ci

according to the value of the data atE.ps: If the data read fromE.ps
i returns

ml
ci
(l = [1,q]), the data read fromE.pi will be forwarded toE.pl

o.
The connection betweenck

j andE can be illustrated in Fig. 4.8. Moreover, let
ci .Pi denote the set of input message ports ofci exceptci .pms

i . Then for eachpi ∈
Pi of ci , a primitive ProSysSelectioncomponent (the same asE defined above) is
generated and connected to it withinci , consideringci .pi as an output message port
(excluding the portpms

o ) of a subcomponent ofci . The merged component connection
at the ProSys level can also be optimized in the same way as at the ProSave level.
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Figure 4.8: Merging component connections at the ProSys level
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Chapter 5
A pedagogical example

This chapter demonstrates our approaches of implementing MSL in ProCom bya
conceptual example for pedagogical purpose. First, the general system description
of this example is provided. Then we show how the system can be developedin
ProCom guided by MSL, including multi-mode ProSys and ProSave components,
MSL components implementing the mode switch runtime mechanism, and merging
component connections.

5.1 System description

The system discussed in this chapter has the same component hierarchy asthe system
in Fig. 1.1, introduced at the beginning of this thesis. The system, i.e. Component
Top, consists of componentsa, b, andc. And Componentb is further composed byd
ande. However, the supported modes of different components and their connections
are different from the system in Fig. 1.1.

The supported modes of each component and the basic mode mapping at each
level are presented in tables 5.1 and 5.2. It has been stated that a more powerful
expression of the mode mapping ofTop andb is using Mode Mapping Automata
(MMA). However, specifying the MMA is beyond the scope of this thesis and more
details can be found in [7].

Fig. 5.1 shows the component connections of the system based on tables 5.1and
5.2. Black and grey colors are used to represent different mode-specific behaviors.
For instance,a has two mode-specific behaviors whiled has three mode-specific
behaviors, represented by white, black and grey, respectively in Fig.5.1. Besides,c
andd can be deactivated when their parents are in certain modes.
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Component Supported modes

Top m1
Top m2

Top

a m1
a m2

a

b m1
b m3

b m2
b

c Deactivated m1
c

Table 5.1: The mode mapping table ofTop

Component Supported modes

b m1
b m2

b m3
b

d m1
d m2

d m3
d Deactivated

e m1
e

Table 5.2: The mode mapping table ofb

Figure 5.1: Component connections at all levels

5.2 Developing the system in ProCom

Now let’s design the system introduced in the previous section in ProCom, where
MSL has been implemented. In order to cover both ProSys and ProSave layers, we
defineTop, a, b andc as ProSys components, and defined andeas ProSave compo-
nents. According to Section 4.1, the first step is to generate multi-mode components
at both ProSys and ProSave levels based on the system specification.

Fig. 5.2 displays the ProCom component hierarchy of the system. All compo-
nents have been developed as multi-mode components. Compared with the single-
mode version, a multi-mode component has additional dedicated mode switch ports
marked in purple in Fig. 5.2. Among the multi-mode ProSys components, including
Top, a, b andc, each of them has an input message portpms

i and an output message
port pms

o dedicated to mode switch. Among the multi-mode ProSave components, in-
cludingd ande, each of them has a dedicated mode switch serviceSmode, which has
four dedicated mode switch ports:pmst

i , pms
i , pmst

o andpms
o . All components conform

to the definition illustrated in Fig. 4.2.
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Figure 5.2: The ProCom component hierarchy of the system

In addition, referring to the inner component connections ofTop while Top is
in m1

Top andm2
Top, Fig. 5.3 shows the inner component connections ofTop at the

ProSys level. Similarly, Fig. 5.4 shows the inner component connections ofb at the
ProSave level, where the control flow and the data flow are separate. Itis assumed
that the inner component connection of a composite component for a specific mode
can be independently specified without knowing the component connections in its
other modes.

Figure 5.3: The inner component connections ofTopat the ProSys level

5.3 Implementing the mode switch runtime mecha-
nism

Section 4.2 has indicated that the mode switch runtime mechanism of MSL can be
implemented by a pair of MSL subcomponents at the ProSave level, and an MSL
subcomponent at the ProSys level. In this section, we shall apply the same ideas to
composite componentsTopandb of this pedagogical system.

Since bothTopand its subcomponents are ProSys components, the mode switch
runtime mechanism ofTop can be implemented by a primitive ProSys component
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Figure 5.4: The inner component connections ofb at the ProSave level

MSLTop ∈ SCTop, which can be automatically generated, given the mode mapping
betweenTopand its subcomponents.

Fig. 5.5 presents MSLTop as its ports explained as follows:

• pmsx
i : an input message port ofTop for receiving an MSI. However, sinceTop

has no parent, this port will not be used in this system.

• Pi = {pa
i , p

b
i , p

c
i }: a set of input message ports ofTopfor receiving an MSR or

MSC from its subcomponentsa, b andc.

• ps
o: an output message port ofTop indicating its current mode. It will be used

for merging the inner component connections ofTop in m1
Top andm2

Top.

• Po = {pa
o, p

b
o, p

c
o}: a set of output message ports ofTop for sending an MSI to

its subcomponentsa, b andc.

• pmsx
o : an output message port for forwarding an MSR or sending an MSC to

the parent. SinceTophas no parent, this port will not be used in this system.

Figure 5.5: The MSL subcomponent ofTop

The internal mode switch behavior of MSLTop will follow Algorithm 3 described
in Section 4.2.2.
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At one level down, sinceb is a multi-mode ProSys component composed by
ProSave components, its mode switch runtime mechanism can be implemented by
a pair of MSL subcomponents ofb, i.e. MSLA

b and MSLB
b , both of which can be

automatically generated, given the mode mapping betweenb and its subcomponents.
Fig. 5.6 presents MSLAb and MSLB

b and their ports. MSLAb has the following
ports:

• pt
i : the input trigger port whose activation makes MSLA

b active.

• pmsx
i : an input trigger port for receiving an MSI fromTop.

• psync
i : an input data port connected to MSLB

b for synchronization.

• pt
o: the output trigger port activated after MSLA

b completes its current instance
of execution.

• Pmsx
o = {pd

o, p
e
o}: a set of output data ports for sending an MSI to the subcom-

ponents ofb, i.e. d ande.

• ps
o: an output data port indicating the current mode ofci . It is used for merging

the inner component connections ofb whenb is in m1
b, m2

b andm3
b.

• psync
o : an output data port connected to MSLB

b for synchronization.

MSLB
b has the following ports:

• pt
i : the input trigger port whose activation makes MSLB

b active.

• Pmsx
i = {pd

i , p
e
i }: a set of input data ports for receiving an MSR or MSC from

the subcomponents ofb, i.e. d ande.

• psync
i : an input data port connected to MSLA

b for synchronization.

• pt
o: the output trigger port activated after MSLB

b completes its current instance
of execution.

• pmsx
o : an output data port for forwarding an MSR or sending an MSC toTop,

i.e. the parent ofb.

• psync
o : an output data port connected to MSLA

b for synchronization.

The internal mode switch behaviors of MSLA
b and MSLB

b will follow algorithms
1 and 2 described in Section 4.2.1.
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Figure 5.6: The pair of MSL subcomponents ofb

5.4 Merging component connections

In Section 4.3, we have introduced our solution to merging component connections
in different modes at both ProSys and ProSave levels. In this section, wedemonstrate
our approach by merging the inner component connections ofTopandb respectively.

Fig. 5.7 illustrates the automatically generated view of merging the inner compo-
nent connections ofTop in m1

Top andm2
Top which are specified separately in Fig. 5.3.

The ports of MSLTophave been described in Fig. 5.5, and are thus not displayed here.
It can be observed that MSLTop and six primitive ProSysSelectioncomponents have
been automatically generated. For each subcomponent ofTop, each regular output
message port (excluding the dedicated output message put) has an outgoing connec-
tion to a generatedSelectioncomponent. Besides, Each input message port (exclud-
ing the dedicated input message port) ofTop also has an outgoing connection to a
generatedSelectioncomponent. AllSelectioncomponents have two output message
ports becauseTopsupports two modes. Furthermore, allSelectioncomponents have
an input message port, marked in red in Fig. 5.7, that has in incoming connection
from MSLTop.ps

o. Based on the current mode ofTop, indicated by the message from
MSLTop.ps

o, eachSelectioncomponent will forward the data received from its pre-
ceding component to the corresponding output message port. Except MSLTop.ps

o, all
the other ports of MSLTop are connected to the dedicated mode switch message ports
of Topand its subcomponents, strictly following the connection pattern described in
Fig. 4.6.

Similarly, Fig. 5.8 illustrates the automatically generated view of merging the
inner component connections ofb in m1

b, m2
b andm3

b which are specified separately
in Fig. 5.4. The ports of the pair of MSLA

b and MSLB
b have been described in Fig.

5.6, thus not displayed here. Apart from MSLA
b and MSLB

b , a number of connec-
tors have been automatically generated. For each subcomponent ofb, each regular
input trigger port has an incoming connection to a generatedControl Or connector;
each regular input data port has an incoming connection to a generatedData Orcon-
nector; each output trigger port has an outgoing connection to a generatedSelection
connector; and each output data port has an outgoing connection to a generatedData
Selectionconnector. Besides, each input trigger port ofb (excludingb.pmst

i ) has an
outgoing connection to a generatedSelectionconnector and each input data port of
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Figure 5.7: The merged inner component connections withinTop

b) (excludingb.pms
i ) has an outgoing connection to a generatedData Selectioncon-

nector. All Control Or andData Or have three input ports and allSelectionand
Data Selectionhave three output ports, becauseb supports three modes. Besides,
all SelectionandData Selectionhave a special input data port, marked in red in Fig.
5.8, that has in incoming connection from MSLA

b .p
s
o. Based on the current mode

of b, indicated by the data from MSLA
b .p

s
o, eachSelectionwill activate the corre-

sponding output trigger port, and eachData Selectionwill forward the data received
from its preceding component to the corresponding output data port. Theincoming
and outgoing connections of MSLA

b and MSLB
b strictly follow the connection pattern

described in Fig. 4.4.
Furthermore, sinceb is a ProSys component composed by ProSave components,

a clock dedicated to mode switch is used to periodically trigger all ProSave compo-
nents.
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Figure 5.8: The merged inner component connections withinb



Chapter 6
Conclusions

This thesis has presented an approach for implementing the Mode Switch Logic
(MSL) in the ProCom component model. Both MSL and ProCom are developed by
Mälardalen Real-Time Research Center (MRTC) at Mälardalen University. In Chap-
ter 1, a basic introduction of the background and motivation of this thesis is provided.
Chapters 2 and 3 describe the essentials of MSL and ProCom respectively. Then
Chapter 4, the core of the thesis, explains our central ideas of implementing MSL in
ProCom, including three major contributions: (1) the definition of multi-mode Pro-
Com components; (2) implementing the mode switch runtime mechanism of MSL
in ProCom; and (3) merging the connections between ProCom components in dif-
ferent modes. Since ProCom has two distinguished layers, i.e. ProSys and ProSave,
which are quite different, each contribution considers both ProSys and ProSave lay-
ers which must be treated differently. Our approach only requires a minormodifi-
cation (the introduction of theData Selectionconnector) of the ProCom model in
order to support MSL. Finally, in Chapter 5, our approach is further demonstrated
by a pedagogical example.

As future work, our approaches of implementing MSL in ProCom shall be ap-
plied to the ProCom development tool PRIDE. Since our approach allows most of the
MSL-related parts to be automatically generated, the development of Component-
Based Multi-Mode Systems (CBMMSs) in PRIDE is expected to be relatively con-
venient and straightforward.
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