y A)
\ ¥V 4

LUND UNIVERSITY

MASTER OF SCIENCE THESIS

The Mode Switch Logic implementation in the
ProCOM component model

By
Hongwan Qin
mas09hgi@student.lu.se

Supervised by
Mr. Hang Yin, Malardalen University
Prof. Hans Hansson, 8ardalen University
Examined by Prof. Peter Nilsson, Lund University

MALARDALEN REAL-TIME RESEARCHCENTRE
MALARDALEN UNIVERSITY
&
DEPARTMENT OFELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING, LTH, LUND UNIVERSITY

Lund 2012

The Department of Electrical and Information Technology
Lund University

Box 118, S-221 00 LUND

SWEDEN

This thesis is set in Times New Roman 11pt,
with the BTEX Documentation System

(©Hongwan Qin 2012

Printed in Sweden by Tryckerite E-huset, Lund.
Nov 2012

Abstract

This thesis is based on a project which is provided talavidalen Real-Time Re-
search Centre (MRTC) at 8ardalen University. It stems from two separate existing
works: ProCom and Mode Switch Logic (MSL). Both works are stronglgted to
Component-Based Software Engineering (CBSE).

Since traditional software development is becoming increasingly largecand c
plex, to solve this problem, CBSE becomes a rapidly developing discipline ared mor
efficient method compared with classical approaches to producing hajityogoft-
ware both in academia and industry. It is being more and more applied to iadlustr
strength and mission-critical software. CBSE has already been eddoysmany
industrial applications.

ProCom, the PROGRESS Component Model for real-time embedded systems,
is developed at MRTC in the PROGRESS project funded by the Swedisi Fou
dation for Strategic Research (SSF), focusing on component-bagelbpiment of
real-time embedded systems. ProCom targets the domains of vehicular sysiems,
tomation and telecom. It takes the advantage of both CBSE and Model-[Hiven
gineering (MDE). In terms of CBSE, it embodies component reusability.rimgef
MDE, it supports automatic code generation and allows system analysisatign
stage. A system can be designed by reusable components, which capedmoa
a physical node in a subsequent deployment phase.

MSL, also developed at MRTC, handles the mode switch of componend-base
systems. In contrast to CBSE, an alternative to reduce system complexitgds-to
tition the system behavior into different operational modes. A multi-mode system
can switch between different modes when some condition changes. If amugds-
system is component-based, its mode switch is not a trivial problem. MSlidasv
an effective mode switch mechanism for component-based systems.

The contribution of this thesis is that it presents how to implement MSL in the
ProCom component model. ProCom does not support multiple modes and mode
switch. Therefore, in order to implement MSL, ProCom must be extendrethid
thesis, we present our solutions to achieving such an implementation.

Acknowledgement

I would like to express my heartfelt gratitude and acknowledgement to theepeo
who have helped, encouraged and supported me while | was doing my pragéet
and writing the thesis. | really want to say that itis truly hard to take the thesjeqtr
at night and at weekends together with my full time working in Sony Mobile since
the beginning of this year, however, | am so lucky and appreciate treatd &ll of
you around me till the final stage of this thesis.

Foremost, | am grateful to my examiner, Professor Peter Nilsson, at Unird
versity for his continuous care and support for my thesis. | not onlyyedjdis
lectures but also am so proud of being one of his master students. Witlksaot-h
parting knowledge to us and what | have learned at Lund Universitguladvnever
have completed this thesis.

Special thanks to my another examiner Professor Hans Hanssonpeadsor
PhD student Hang Yin, and Doctor Jan Carlsson atdvtlalen Real-Time Research
Centre at Milardalen University, for their long-standing support, guidance and in-
valuable help during the whole period of this master project. They alwans @at
the right direction and provide generous suggestions to me. | also waay thanks
to Professor Hans who allows me to take this thesis in parallel with my work at Sony
Mobile.

Many thanks go to my colleagues in Companion Products of Sony Mobile in
Lund, where | have ever worked for two years. My best regards gay colleagues
in the Department of Business Management, Business Control & Planningug
ply & Demand planning, where | serviced and supported these threetohepas.
They treat me as an intimate friend and help me when | am in trouble, bringing joy
into my life so that | could get my energy fully charged focus on my study after
work. Also, | appreciate the director of Creation, Planning, BusinedsGlobal
Marketing in Companion Products of Sony Mobile, Michael Henrikssorhiiong
me into this great company.

| also would like to give my thanks to my classmates at Lund University, and
my friends from all over the world, who strongly believe in me and treasure o
friendship. You make my life colorful and delightful in Sweden! My dedpes
gratitude to my parents and my twin brother, who always tell me that | havera war
and sweet home no matter what happens and the door is always open, fandne
then my heart with pleasure fills.

Lund, November 6th, 2012
Hongwan Qin

vi

Contents

[Abstract i
lAcknowledgements v
[List of Tabled ix
[List of Figured X
[acronymd xiil
[1_Introduction 1
[1.1 _Theoretical background oo 1
l1.1.1 Component-Based Software Engineering 2
11.1.2__The ProCom componentmddel 2
1.1.3 The Mode Switch Logic (MSL) 2
[1.2 Methodolody oo 4
[1.3 Thesislayolit 4
[2__The Mode Switch L ogi¢ 5
[2.1__The mode-aware componentmédel 5
[2.2__The mode mapping mechanism 6
[2.3__The mode switch runtime mechanism 8
2.3.1__Mode switch propagation 8
2.3.2__Mode switch dependencyfule 9
[3The ProCom component modél 11

viii CONTENTS

List of Tables

LIST OF TABLES

List of Figures

- i- tem
[2.1 _The mode-aware componentmédel
2.2__Mode mapping and Mode Mapping Automata (MMA)

5.1 __Component connections atalllevels

I5.2__The ProCom component hierarchy of the system

14

[5.3 The inner component connectionsTopat the ProSys level 39

Xii

LIST OF FIGURES

List of Acronyms

CBSE Component-Based Software Engineering
MSL Mode Switch Logic

CBMMS Component-Based Multi-Mode System
DDM Dominant Default Mode

MMA Mode Mapping Automata

MSS Mode Switch Source

MSDM Mode Switch Decision Maker

MSR Mode Switch Request

MSI Mode Switch Instruction

MSC Mode Switch Completion

CBD Component-Based Development

RTOS Real-Time Operating System

Xiv LIST OF FIGURES

Chapter

Introduction

This first chapter outlines the theoretical background of this thesis, imgjud
Component-Based Software Engineering (CBSE), the ProCom comporetel
and the Mode Switch Logic (MSL) which serve as the input of this thesis. &fe th
point out the methodology of this thesis. Finally, an overview of the thesis -intr
duced by briefly describing its structure.

1.1 Theoretical background

Embedded systems are computer systems dedicated to specific functiondtiies, o
with limited constraints. Along with the progress of time and the technical devel-
opment, embedded systems have spread themselves everywhere anolifiechod
work. While embedded systems are providing more and more advanceibhatc
ities, their software complexity has as a consequence been raised sighjifida
handle this complexity, a typical approach is to partition the system behavior into
different operational modes. Moreover, another approach to imgiaoftware com-
plexity is Component-Based Software Engineering (CBSE). Combining these
techniques, a multi-mode system can be developed in a component-basent.mann
challenge of doing this is the mode switch handling. The mode switch of a system
can be considered as the change of its configuration in one mode to amliften-
figuration in another mode. The theoretical foundation of mode switch hanidiin
such kind of systems has been built by the Mode Switch Logic (MSL) [1¢ ddel

of this thesis is to implement MSL in the ProCom component model. ProCom [2] is
a component model for real-time and embedded systems, particularly tartfeting
domains of vehicular and telecommunication applications, developedlardhlen
Real-Time Research Centre (MRTC) aébrdalen University.

2 Introduction

1.1.1 Component-Based Software Engineering

Component-Based Software Engineering (CBSE) has become reco@sizenew
technology of building software focusing on the component aspectdtafese de-
velopment. This promising design paradigm is used for the developmentpier
systems from reusable software components. CBSE emerged from thre fafilu
object-oriented development to support reuse effectively [3]. Commpsncan be
grouped with different explicit goals to allow them to be generalized anskigeuA
component is a software unit whose functionality and dependenciesr@eately
defined by its interfaces. A component model defines a set of stanithatdsom-
ponent providers and composers should follow [4]. Apart from corifylenanage-
ment, CBSE can also increase productivity, reduce the time to market andvenpro
the software quality.

1.1.2 The ProCom component model

Developed within the PROGRESS project, the ProCom component model aims fo
the software development of real-time and embedded systems, in partielayv
lar and telecommunication systems. ProCom has been supported by its dexetop
tool PRIDE [5] which can generate codes from components. ProConganized
in two distinctive layers: the top layer ProSys and the lower layer ProSaesSys
is used to model subsystems that can execute concurrently. The commumatatio
the ProSys layer is realized by asynchronous message passingtrastoProSave
is dedicated to the detailed design of each subsystem. Components at theeProS
layer follow the pipe-and-filter architectural style. Data and control flavesclearly
separated. All ProSave components follow the same execution patteReddl)all
input data when the associated trigger port is activated; (2) Become actil/per-
form the computation; (3) Produce the output data and activate the assomigput
trigger port. And then the component becomes passive again. A ProSmmo-
nent can have multiple services providing different functionalities, anariety of
connectors have been defined for the communication between ProSaperaents.
Both the ProSys and ProSave layers are hierarchical and it is allowetjpose a
ProSys component by ProSave components. Moreover, the beh&ad?ProSave
component at the bottom level is implemented as a C function.

Currently, ProCom does not support multi-mode components and mode switch
In this thesis, ProCom will be extended for the handling of mode switch.

1.1.3 The Mode Switch Logic (MSL)

A multi-mode system exhibits different behaviors in different operationadleso
Such kind of system is supposed to switch to the most suitable mode when some
condition changes. A mode switch can be triggered by a particular eveim-or

1.1 Theoretical background 3

ing. An example of multi-mode system is the control software of an airplanehwhic
normally runs intaxi mode,taking off mode,flight mode andanding mode. So
far not so much attention has been paid to the integration of multi-mode systems
and CBSE. Traditional component models do not include handling of bpeaa
modes, and traditional handling of operational modes does not assutemdyslt

from reusable components. Combining both types of systems into one will intro-
duce a new type of system, which we call Component-Based Multi-Mode 18yste
(CBMMS), i.e. a multi-mode system built by reusable components. In order to
explain what a CBMMS is and how it works, an example is presented ir_Fig. 1.1
which illustrates the hierarchical component structure of a typical CBMMtBén

left part. Meanwhile, the component connections of the same system ig dhdve

right part. This system is composed by three componexnts; andc. Component

b consists of two subcomponentd:ande. Since the component hierarchy has a
tree structure, herb is the parent whiled ande are the children ob. According

to the terminology of CBSE, Componeatc, d, ande are primitive components,
which are directly implemented by software codes and cannot be decodniptse
other components; Componefip andb are composite components, which con-
sist of other components. Furthermore, the system supports two muoggs: and
m%op. In mropl, Component is not running and Componeais executing a mode-
specific behavior (indicated by the black color in [Eig] 1.1);ri'ﬁ,p, cis activated but

e becomes deactivated, anchanges its behavior (indicated by the grey color). In
addition, the right part of Fidg. 1.1 depicts the component connectionsefurth

Figure 1.1: A component-based multi-mode system

The mode switch of a CBMMS is characterized by the joint mode switches of
different components. Since the mode switches of different componantsecei-
ther independent or correlated, the challenge comes from the syiwdtion and
coordination of the mode switches of related components. The Mode Switgib Lo

4 Introduction

(MSL) [1], developed at Mlardalen Real-Time Research Center @ldidalen Uni-
versity, intends to provide efficient solutions for the mode switch handlingR
MMSs. MSL proposes a mode-aware component model which enablesmfe c
position of multi-mode components and mode switch. Besides, a mode mapping
mechanism is used to specify which mode each component should switchetaonc
mode switch is triggered. Furthermore, MSL includes a mode switch runtime mech-
anism that is able to efficiently handle the mode switch of a CBMMS at runtime.

1.2 Methodology

In this thesis, our prime aim is to provide the essential theories for the implementa-
tion of MSL in ProCom. First, our work starts from the reading of literatuedsted

to both ProCom and MSL. This plays an important role in understanding tipege

of this thesis. After that we try to grasp the key features of both backgrawrks

and find out the possibilities of extending ProCom to support MSL. Diffeselu-

tions have been investigated and evaluated by trying them out on small esample
Moreover, regular discussions with Hang Yin, Jan Carlson and Hansdda from
Malardalen University have contributed a lot to the progress of this work.

1.3 Thesis layout

We divide this thesis into six parts. Chapter 1 provides the general thextedick-
ground for this thesis. Chapter 2 gives a brief introduction of MSL. laiér 3,

the ProCom component model is explained. As the main contribution of the,thesis
Chapter 4 describes the implementation of MSL in ProCom in detail. The central
ideas presented in Chapter 4 will then be demonstrated by a pedagogicglexn
Chapter 5. Finally, we summarize the thesis and discuss future work in Cléapte

Chapter

The Mode Switch Logic

How can we handle the mode switch of a Component-Based Multi-Mode System
(CBMMS)? One solution to this is the Mode Switch Logic (MSL) [1]. In this sec-
tion we provide a detail introduction of MSL and its major elements, including the
mode-aware component model, the mode mapping mechanism, and the mode switch
runtime mechanism. Since MSL is still not mature enough, MSL will be extended
to handle additional aspects in the future.

2.1 The mode-aware component model

The mode-aware component model defines the essential features tmapanent
model should have to support multi-mode and mode switch. A multi-mode compo-
nent should include a set of unique configurations associated with itsaubefav-

iors in each mode. Different components should be able to exchange made s
information with each other either directly or indirectly because the mode swfitch o
one component may imply the mode switches of other components_Hig. 2.1 illus-
trates the mode-aware component model. In general, a multi-mode compopent s
ports multiple modes, each mode being associated with a configuration. The mode
switch of such a component is realized by its reconfiguration, i.e. the switchthe
configuration in the old mode to another configuration in the new mode. The mode
switch is controlled by the mode switch runtime mechanism implemented in the
component. The configuration and mode switch runtime of primitive components
and composite components are different, and more details can be fourjd Jugi

like most other port-based component models, the mode-aware compongsit mo
defines a number of input ports and output ports which are used to comateahic
with other components. Besides, a primitive multi-mode component has a dedicate
mode switch port (represented p)'SX in Fig.[2.1) for exchanging mode switch
information with its parent. A composite component multi-mode component has

6 The Mode Switch Logic

two dedicated mode switch ports. Apart frqpS*, pMSX is used for a composite
multi-mode component for exchanging mode switch information with its children.
The portpMSXin Fig.[2 is marked in grey to indicate that it is only included in a
composite multi-mode component.

Since the mode-ware component model is not dependent on any existirig co
ponent models, it can guide many existing component models for the mode switch

extension.

pMSX (p'\,’lsx
T .
Ph [ki (] R
lConlml
Mode 1: Mode k:
Configuration 1 ‘ ______ ‘ Configuration k ‘
P [| [Ru

Figure 2.1: The mode-aware component model

2.2 The mode mapping mechanism

Usually a multi-mode component is independently developed without assuming the
context where it will be used. When several multi-mode components areteal
compose a bigger component, it is most likely that their supported modesfare dif
ent. This mode incompatibility problem is solved by the mode mapping mechanism
of MSL [6]. Mode mapping has two major purposes: (1) To map the modes of a
parent and its children; (2) To define the new modes of each comporent ivis

asked to switch mode. The mode mapping mechanism is proposed by adhering to
the following principles:

e Each component (primitive or composite) knows its supported modes, its ini-
tial mode and its current mode,but knows nothing about the mode information
of other components in the system.

e Additionally, composite components know the entire mode information of
their subcomponents, but they have no mode information of components at
deeper nested levels.

According to the mode mapping mechanism, each composite component has a
number of mode mapping rules for the mode mapping between itself and its subcom-
ponents. These mode mapping rules can be further divided into static mogexqap

2.2 The mode mapping mechanism 7

rules and dynamic mode mapping rules. Static mode mapping rules define the mode
mapping in stable modes and they can be represented byatie mapping tablg].
Dynamic mode mapping rules define the Dominant Default Modes (DDMsyfdr e
component. When a component is asked to switch mode, it must know which new
mode to switch to, and this new mode is called the DDM. In order to represtnt bo
static and dynamic mode mapping rules, Mode Mapping Automata (MMA) is de-
signed. The mode mapping rules of a composite component are reprelsgatedt

of MMA including the MMA of the composite component and the MMA of its sub-
components. Each MMA has locations and transitions. Each location pon@sto

a supported mode of the component. Each transition corresponds to a witaie s

A transition is triggered by an input signal and it can produce output sigAaignal

can be either internal or external. An internal signal is used to synderdifferent

MMA and an external signal is used for a parent and its subcomponesishange
mode switch information. Fid. 2.2 illustrates the mode mapping of Compdnent
of the system introduced in Fig._1.1. The mode mapping ruldsisfrepresented

by MMA,, MMA 4 and MMA, with all MMAs located in Componert. Figures

2.3 and 2.4 show MMA and MMAyq [7] which are internally synchronized. More
information about MMA can be found in][7].

Figure 2.2: Mode mapping and Mode Mapping Automata (MMA)

8 The Mode Switch Logic

b.E(m?) && CONDITION 1/[.d I(ma2), $]
T

b E(me3)/[¢h.d.1(D).B]

¢)/1@.d.I(ma1), @]
b E(my!)/[@ .d I(mat)

b E(my2)/[¢.d I(ma2),$]

IT(me->me) Il d I(me->m)/[@, D, @]

Figure 2.3: The Mode Mapping Automaton df

d.I(D)/[d.E(D)]

Figure 2.4: The Mode Mapping Automaton af

2.3 The mode switch runtime mechanism

The mode switch runtime mechanism serves as the most important part of MSL.
It handles the mode switch of the system and each component at runtimds In th
thesis, we focus on the two most fundamental elements of the mode switch runtime
mechanism: the MS propagation mechanism and the mode switch dependency ru

2.3.1 Mode switch propagation

The Mode Switch (MS) propagation mechanism defines two special rokeMdde
Switch Source (MSS) and the Mode Switch Decision Maker (MSDM). An MSS

2.3 The mode switch runtime mechanism 9

can actively detect a mode switch event and request to switch mode. Itasthg
MSDM, which is usually another component at a higher level, to either appp
reject the request from the MSS. The purpose of the MS propagatiohamism

is to propagate the mode switch request from an MSS to all the other contponen
which must switch mode as a consequence.

Two primitives are introduced for the mode switch propagation: Mode Switch
Request (MSR) and Mode Switch Instruction (MSI). An MSR is issuedrbW&S
(sayci) as a mode switch event is detected and the MSS requests to switch mode. The
MSR from the MSS is first propagated to its parentlf the MSR implies no mode
switch ofc;j, ¢; will be the MSDM and directly approve the MSR by issuing an MSI
to its subcomponents which must switch mode. If the MSR implies the mode switch
of ¢; whose current state does not allow such mode swigchyill be the MSDM
and directly reject the MSR by doing nothing. If the MSR implies the mode switch
of ¢j whose current state allows such mode switghwill forward the MSR to its
parent which will make further decisions. When an MSDM approves aRMise
MSI from the MSDM will be propagated downstream to all the componentsihwhic
must switch mode. An MSI can never be rejected and it will trigger the modelswitc
of its recipient.

According to the MS propagation mechanism, the mode switch propagation is
divided into two phases: the upstream MSR propagation and the downdil&h
propagation. If the top component happens to be an MSS, the first plhiade
skipped as it can directly issue an MSI when it detects a mode switch evert- Oth
wise, if the MSR from an MSS is rejected by the corresponding MSDM, tbersk
phase will be skipped.

Fig.[2.5 demonstrates the mode switch process of the system [n Fig. 1.1, assum-
ing Componenga is an MSS. Whera detects a mode switch event, it will issue an
MSR to its parenfop, which approves the MSR by sending an MSI to its subcom-
ponentsa, b, andc. This indicates that the mode switchatlso implies the mode
switches ofb andc. Componenb further propagates the MSI to its subcomponent
d. Componentis not affected in this mode switch scenario, thus the MSI is not sent
toe.

2.3.2 Mode switch dependency rule

The mode switch dependency rule guarantees the mode consistencyrbdiffere
ent components after each mode switch. It prevents the inconsistent moddenp
that some component, which is supposed to run in the new mode after the system
mode switch, is still running in the old mode.

After receiving an MSI (and propagating the MSI further if necegsaryom-
ponent will start its reconfiguration. The mode switch dependency rgléres that
a component having received an MSI from its parent must send a pririvibae
Switch Completion (MSC) back after completing its mode switch. The mode switch

10 The Mode Switch Logic

Modg¢ switch
completion I Reconfiguration [] Blocked

Figure 2.5: The mode switch process

of a composite component is completed only after its reconfiguration and the mode
switch completion of all its subcomponents.

The mode switch dependency rule is also demonstrated ih Fig. 2.5 where-compo
nent reconfiguration is represented by black bars. An MSC must bénseisponse
to the MSI after mode switch. White bars mean that a composite component has
completed its reconfiguration but has to wait for the MSC from its subconmisne
which temporarily blocks its mode switch. The system mode switch is completed
when the MSDM,Top, completes its mode switch.

Chapter

The ProCom component model

According to Component-based Development (CBD), a component shomigly
with a component model. There are currently quite a lot of different compon
models|[8], among which a number of component models are suitable forthk de
opment of embedded systems [9], including Rubus [10], Kboala [11], BBAR [12]
and ProCom([2]. In this thesis, we select the ProCom component motied tegrget
for the MSL implementation. In this chapter, we provide a general introduction
the ProCom component model.

3.1 The ProCom development process

The ProCom development process![13], depicted in[Eig. 3.1, is partitiobethe
concerns of modelling and synthesis. Both concerns are further pagttiato four
stages. The modelling addresses how to get and express deploymestt dalsign
decisions, for example, how to distribute functionality over the nodes ofyters.
ProSave and ProSys in Fig. B.1 are used to model the functional archeteétine
system. ProSys is at a higher level than ProSave, as a ProSys cormpandre
composed of ProSave components but not the other way round.

The deployment is performed in two steps. First ProSys subsystems aaedio
to virtual nodes with the many-to-one mapping, defined as an intermediaterievel
the allocation of functional units to the physical nodes of the system. Theralir
nodes are allocated to physical nodes, also with the many-to-one mappireg. T
advantage of doing this is that virtual nodes preserve real-time proparttkesan
be analyzed independently from the rest of the system. Please note tHatithe
stages of the deployment process can be overlapping rather than besnginaa
fixed order.

The synthesis is a process of generating concrete runnable reptasen of
different modelling elements. Different from the deployment processsyththesis

12 The ProCom component model

process must follow a specific order because each step requirestpig foom the
previous step. As is shown in Figure 3.1, the synthesis starts with C files which
implement primitive ProSave components and ends with runnable binary images o
different physical nodes. ProSys runnables and runnable viragdsare interme-
diate artefacts.

“.\ ProSys Virtual nodes Physical nodes
‘ = [—
=0T 80

Modelling <\ <\ <\
Synthesis L\f X\7 &7

g c—= 0 —= Jd—= 1

C files ProSys Runnable Binary
runnables virtual nodes images

Figure 3.1: The ProCom development process

Fig.[3.2 is the typical system structure developed by ProCom. Hardwarthis a
bottom level. Above the hardware is the Real-Time Operating System (RTQ8).
component layer is built on the RTOS, including ProSys and ProSave c@n{so
In the component layer, different applications can be built based oretise rand
composition of ProSys and ProSave components.

Real-Time
Operationg System

Hardware

Figure 3.2: The ProCom development process

3.2 The ProCom component model overview 13

3.2 The ProCom component model overview

In this section we will provide an overview of the ProCom component model, in
cluding its application domains, ProSys and ProSave layers, port typgbspanec-
tors. ProCom uses two related but distinct layers to solve the differeecas at
different levels of granularity, both layers built by different compadsemhose in-
formation is stored in the repository, including requirements, textual doctatiem
and models of the behavior and resource usage [2].

As the upper layer, ProSys allows the hierarchical composition of cormp®as
a ProSys component can be constructed from smaller ProSys compmBntSys
component is also called a ProSys subsystem in ProCom). A ProSys cemp®n
used to model a subsystem and has input and output message ports &exital ex
interface. Fig[313 depicts the external view of a ProSys subsystem watimpnt
message port and two output message ports. The communication betw&ss Pro
components is realized by asynchronous message passing. The harfdingw
message is flexible and depends on the receiving ProSys component. sAgaes
can be transmitted from one output message port of one ProSys conpoose
input message port of another ProSys component through a messemelcivhich
supports "many-to-many” communication.

A ProSys component is active since it can have its own thread and noaxter
activation is required to trigger its execution. Compared with ProSave, @yBro
component usually supports more complex functionality.

Input message port
D Output message port

Figure 3.3: A ProSys component

ProSave is the lower layer of ProCom. Similar to ProSys, a composite ProSave
component can be composed by smaller ProSave components. A primitiavero
component is at the bottom level of the hierarchy and can be implemented in C lan
guage. Usually the functionality provided by a ProSave component is desglex
compared with a ProSys component.

A unique feature of ProSave is that a ProSave component can pravedero
moreserviceseach of which corresponds to a particular functionality supported by
the component. Fig. 3.4 depicts the external view of a ProSave compoitle tivey
servicesSl andX2. Each service is associated with a single input port group and
a set of output port groups. Since control flow and data flow areragguhin the

14 The ProCom component model

ProSave layer, each port group consists of one trigger port (cekhgtelark blue
triangles in Fig[Z34) and a set of data ports (denoted by dark blue sqmaFég.
[3.4). For instance, in Fi@. 3.4, the servigk has one input port group consisting of
one input trigger port and one input data port, and one output paupgronsisting
of one output trigger port and two output data ports. In cont@has one input
port group and one output port group, both port groups consisfirane trigger
port and one data port. Different from ProSys, a ProSave comp@passive and
needs external activation to trigger its execution. A ProSave compoasnidry
strict execution semantics: for each service, when the input triggerspactivated,
the service will become active and the component will read input data fhoits a
input data ports belonging to this service and performs its execution. Afer th
it will produce output at its output data ports of this service and then &etthe
corresponding output trigger ports in an atomic manner.

» Trigger port
_ Data port

Figure 3.4: A ProSave component

The communicating between ProSave components is of pipe-and-filter style.
One output trigger port of a ProSave component can be directly ctathéx one
input trigger port of another ProSave component. Likewise, one odgiatport of
a ProSave component can be directly connected to one input data orotbler
ProSave component. However, this direct connection can only be emgetdMore
advanced connection for ProSave components is achieved by the cmenefctors
Fig.[3.5 lists the most commonly used connectors:

e Control Or: It has at least two input trigger ports and one output trigget.
Its output trigger port is activated when any one of its input trigger ports is
activated.

e Control Join: It has at least two input trigger ports and one output trigge
port. Its output trigger port is activated only when all its input trigger parés
activated. It can also be presented by a small circle graphically.

e Control Fork: It has one input trigger port and at least two output érigg

3.2 The ProCom component model overview 15

ports. When its input trigger port is activated, all its output trigger ports will
be activated. It can also be presented by a thick dot graphically.

e Data Or: It has at least two input data ports and one output data portatae
arriving at any one of its input data port will be forwarded to its outputida
port.

e Data Fork: It has one input data port and at least two output data pidrés.
data arriving at its input data port will be duplicated and produced at all its
data ports. Just like Control Fork, it can also be presented by a thick dot
graphically.

e Selection: It has one input trigger port, at least one input data poratedst
two output trigger ports. When its input trigger port is triggered, it will satigyv
exactly one of its output trigger ports according to the data written to its input
data port(s).

- Control - Control Control -
: or : Join b2 P Fork :
Lo P L
2 [] Data Data .

: Or L] [] Fork : :
L] L] !

Figure 3.5: Common connectors for the communication between ProSave compo-
nents

The ProSys and ProSave layers are integrated as a ProSys comi@iaat
internally composed by ProSave components (se€Elg. 3.6). A unique ¢hitien
such a special ProSys component is @leck which provides periodical activation
for its ProSave subcomponents or its output message ports.

16

The ProCom component model

Figure 3.6: A ProSys component composed by ProSave components

Chapter

Implementing MSL in ProCom

In this chapter, our theoretical guidance of implementing MSL in the ProCam co
ponent model is explained in detail. The main purpose is to integrate MSL into
ProCom with a minimum modification of ProCom. As is shown in [Eigl 4.1, we
realize our goal in three steps:

1. Extending ProCom components into multi-mode components
2. Integrating the mode switch runtime mechanism of MSL into ProCom

3. Merging component connections in different modes

[Multi-mﬂde ProCom component9

Y
Integrating the mode switch runtime mechanism

y
Merging component connections in different modes

Figure 4.1: The automatic generation flow

In the following sections, we shall explain these steps in detail.

4.1 Multi-mode ProSave and ProSys components

Currently, the ProCom component model does not support multi-mode add mo
switch. Therefore, ProCom must be extended to be mode-awarerghigfevith

18 Implementing MSL in ProCom

minimum modification. As one of the contributions in this thesis, both ProSave and
ProSys components are extended to support MSL without modificatiorordiog
to the mode-aware component model of MSL, a multi-mode should have a clear
separation between its behavior in each mode and its mode switch handling, and
have dedicated mode switch ports to exchange mode switch information with the
parent or the subcomponents.

By taking advantage of the support of multiple services of a ProSave awnpo
we use a dedicate service call§gyqe for the mode switch handling of a ProSave
component. The servicBnhoqe has one input port group consisting of one input
trigger portp™tand one input data po™, and one output port group consisting
of one output trigger popT™t and one output data popfl'>. These two port groups
function as the dedicated mode switch ports of the ProSave componenf_ZFig. 4
(a) shows a typical multi-mode ProSave comporgrdonsisting of two services.
The upper service is dedicated to its regular operation while the lower s &yige
is dedicated to the mode switch handling. The ser8ggic has dedicated mode
switch ports marked in purple. It should be noted that a ProSave comnipcaen
have arbitrary number of regular services. The number of data pdtis afput port
group of each service can be manually defined. The number of outpgugnooips
of each service and the number of output data ports of each outpugnooit can
also be manually defined. In contrast, the portSgfseare fixed. The incoming and
outgoing connections @&yoqeWill be introduced in later sections.

pi ms pnl'll 5

; H an.\'l

pimst
pims

Poms

(a) A multi-mode ProSave component (b) A multi-mode ProSys component

Figure 4.2: Multi-mode ProSave and ProSys components

A multi-mode ProSys component is a bit different compared to the multi-mode
ProSave component presented above. Since a ProSys componeotkasces and
does not distinguish trigger and data ports, there is no need to introd eckcaekd
service for handling mode switch. Instead, a dedicated internal threelecased
for handling mode switch and another pair of input and output messatge po?
and p{'s, can be added as the dedicated mode switch ports. Higdre 4.2 (b) shows a

4.2 Integrating the mode switch runtime mechanism 19

typical multi-mode ProSys componentwvhich has a number of input message ports
and output message ports, as well as a pair of input and output mességdequli-
cated to mode switch (marked in purple in the figure). The incoming and outgoing
connections of its dedicated mode switch ports will be introduced in later section
Moreover, a multi-mode component should have unique configurationdeén-dif
ent modes. For a multi-mode ProSave component, its configurations cafirexde
in its serviceSyge for a multi-mode ProSys component, its configurations can be
defined in the dedicated internal thread. However, the main focus of ammnpo
configuration in this thesis is on the running status of a component and cempon
connections, which will be explained in later sections.
Our extension of ProSave and ProSys components can be easily implemented
in the development environment of ProCom: PRIDE [5]. When a new coargon
is built in PRIDE, one should specify if a ProSave or ProSys compotentid be
single-mode or multi-mode. If multi-mode is specified, the dedicated mode switch
ports and services should be automatically generated.

4.2 Integrating the mode switch runtime mechanism

The second contribution of this thesis is integrating the mode switch runtime mech-
anism of MSL in ProCom. Guided by MSL, the mode switch of a component is
controlled by its mode switch runtime mechanism (and its local mode mapping if it
is a composite component). For a primitive ProSave or ProSys componectiydir
implemented by C code, its mode switch runtime mechanism has to be integrated
in the code itself, interacting with its dedicated mode switch ports. We here focus
more on integrating the mode switch runtime mechanism in a composite ProSave
or ProSys component. Since a composite ProCom component has nonewefi its
behavior, but is only a compaosition of its subcomponents, we propose ¢hefus
particular subcomponents of a composite ProSave or ProSys componémg n-
tegration of the mode switch runtime mechanism. This section also presents the
integration of the mode mapping mechanism of MSL in a composite ProSave or
ProSys component.

4.2.1 The MSL components at the ProSave level

For a multi-mode composite ProSave component or a multi-mode composite ProSys
component composed by ProSave components;; saxe introduce two special sub-
components o€; for its mode switch handling: M%}and MSLE, both of which
can interact with th&yoqeservice of eacltj € SG; and can be synchronized with
each other.

Let c;.p denote the porp of component;. Also, letSG, = {cj,cf,---,cl} (ne
N) denote the set of the subcomponents;péxcluding MSlg and MSLg. Fig.[4.3

20 Implementing MSL in ProCom

illustrates the ports of MStand MSLE. Component MSE has a single service and
has an input port group consisting of the following input ports:

e p': the input trigger port whose activation makes I\/iisactive.

e p* an input data port for receiving a downstream primitive (i.e. MSI ac-
cording to the MS propagation mechanism of MSL) during the mode switch
propagation.

e p’™ an input data port connected to MSEor synchronization.

pit Pot

pimSX po‘

pisyne Pommsx
Posyne

pit
}Pom“z{pol JPo,....p ()”}(H=ISCci|)
Pimsx={pil pi2,...,pi" }(n=ISCil)
pos
posyne pisyne

Figure 4.3: The pair of ProSave MSL subcomponentgiof

Besides, MS@I also has an output port group consisting of the following output
ports:

e p: the output trigger port activated after M§bompletes its current instance
of execution.

o PNS*={pl p2 ... pbl (n=|SG,|): a set of output data ports where for each
pk € P"S*(k = [1,n]), pf is connected ta¥. p™ (¢ € SG;).

e p3: an output data port indicating the current modeciof It is particularly
used for merging component connections defined in separate modeslland w
be further explained later on.

e po’': an output data port connected to MSfor synchronization.

The ports of MSE is quite symmetrical to MSE. If the port p§ of MSL? is
removed and then the input and output ports of I@%Ire swapped, the resulting
port layout will resemble MS@I, which has an input port group consisting of the
following input ports:

e pi: the input trigger port whose activation makes MSactive.

o P™X={pl p? ... p"} (n=|SG|): a set of input data ports for receiving
upstream primitives such as MSR or MSC, where for eptk P™SX (k =
[1,n]), pkis connected ta. pJ’® (¢t € SG,).

4.2 Integrating the mode switch runtime mechanism 21

Sync

e D an input data port connected to M§[or synchronization.

Besides, MSE. has an output port group consisting of the following ports:

e pl: the output trigger port activated after M$bompletes its current instance
of execution.

e Py’ an output data port for forwarding an upstream primitive (i.e. MSR
or MSC according to the MS propagation mechanism and the mode switch
dependency rule of MSL) during a mode switch.

sync

e Do . anoutput data port connected to I\/(Stor synchronization.

The component connections between MSMSLE and ck € SG (k=1[1,n])
can be demonstrated by F[g. 4.4. The ports of other serwceshzfs been omit-
ted for simplicity. The input trigger port ML p! is directly connected to;. p*
and it is eventually connected to a clock residing at the intermediate level dretwe
ProSave and ProSys. This clock can periodically trigger @YLSNASLE and Snode
of all ProSave components at all levels. We use such a dedicated clomldacthe
mode switch handling should be separated from other regular servibes than
Snode The input data port MS@_ p"**is directly connected tg;.p">. The output
trigger port MSIZ. pi*is connected to alrtk pmnst (ck € SQ k=[1,n]). Likewise,
for each output data port M$Lpo k=11, n]) MSLZ. pK is connected to the corre-
sponding input data pod. p™ (¢ € SG;.

The input trigger port MSE pl can be activated by any € SG, (k= [1,n])
and this is why &Control Or connector is used. For each input data port I@l$11_
(k=[1,n)), pi is connected ta¥.pJ (c € SG,). The output trigger port MSE. pf,
is directly connected ta;. pmSt, while its output data port MSt pJ'*is directly
connected ta;.pJ's. MSLAi and MSLE are connected via their synchronization ports,
ie. plsyncand psync

Let P, define the parent of a componentRegarding;; in Fig.[4.4, let's assume
¢ receives an MSI fronf;. The MSI will arrive at its input data pogg™* Then
according to the MS propagation mechanisnwill propagate the MSI to %% (any
possible subset #C,) based on its mode mapping, i.e. by sending an MSI to the
components amon§GC; which need to switch mode. ch‘ € SG (k=1[1,n]), if
c'j‘ needs to switch mode for this mode switch scenario, an MSI will be sent from
MSLE.pf to ck.p™ (ck € SG,). If cXis composite, it should have the same internal
structure as; so that the MSI can be further propagated. Next let's consider an MSR
coming fromc'j‘ (k=[1,n]), then the MSS must be With'n:‘f. The MSR is sent from

c'j‘.p[,“swill arrive at MSLE.p}‘ via theControl Or connector. Ifc; decides to forward

the MSR further td®;, an MSR will be sent from MSE. pJ'*to c;. pj'>. Component
P should have the same internal structure;athus the MSR sent from to P, can
be treated in the same manner as the MSR sentdjfdmci.

22 Implementing MSL in ProCom

The reason why two MSL components are used to jointly handled the mode
switch of a component is that ProCom prohibits the circular connection batime
neighboring components. For instance, I\@Sﬂﬁ, is connected tok = [1,n], c'j‘. pmst
This enables the downstream MSI propagation. To enable the upstre&pidpBa-
gation or MSC transmission'j‘. pMstis supposed to be connected to I\/j;Sp} How-
ever, this is not allowed because l\/@bnd c'j‘ are triggering each other. For this
reason, MSE is introduced to avoid mutual triggering. Since MSand MSLE are
supposed to share the same mode information, they must be synchroemqaeitly
and that is why they both have synchronization ports.

Figure 4.4: MSLZ, MSLE and component connections

Both MSLé and MSLE are primitive ProSave components and the mode switch
runtime mechanism of MSL can be implemented by them. Algorithms 1[and 2
describe the mode switch handling of I\/@land MSLE respectively, where a few
notations are explained as follows:

e switching A boolean variable set to true whenis switching mode.

e ModeMapping A function implementing the mode mapping gfbased on
the mode mapping mechanism of MSL.

e Reconfiguration A function reconfiguringg; to its configuration in the new
mode. However, if the new mode of is the same as its current mode, no
reconfiguration will be taken.

e DummyData A ProSave component must provide data at all its output data
ports when the output trigger port in the same service is activated. Dummy

4.2 Integrating the mode switch runtime mechanism 23

data can be written to those output data ports where no data is expected to be
sent out.

e Conf(c;): The configuration o€; in its current mode.

e MSCall: A boolean variable set to true when M$has completed its MSC
collection fromSG; .

e UpdateCon{Conf(c;)): A function updating the old configuration af to
Conf(cg)). Compared with the functioReconfigurationthis function pro-
duces the same result, though in a different way (the new configuration is
provided from the input synchronization port for this function, while teevn
configuration has to be additionally derived in the functReconfiguratioh

Please notice that these algorithms have abstracted many details for thé sake o
simplicity. For instanceP"*:= MSI means that; sends an MSI to %% based on
its mode mapping. Hence, it implies that the MSI may not be sevipfas P"SX

The two algorithms presented here implicitly require that a primitive multi-mode
ProSave component should send dummy data via itsgdrif it receives dummy
data from its portp™s while being triggered. Next let's demonstrate how the mode
switch runtime mechanism works with@nby a typical mode switch scenario. Sup-
pose an MSR is issued fron% andc; approves the MSR by issuing an MSI that is
propagated downstream. Taking algoritHmhs 1 [and 2 and Fiy. 4.4 into acecant,
get the following procedures:

1. An MSR is sent front}.pg'to MSLg . pf. Meanwhile, MSIE.p! is activated
byc1 and MSLE will do its mode mapping and approves the MSR according to
its mode mapping result and current state. Then @/I@IJI change its current
mode toswitchingand send an MSI to M3t via MSLE o

2. MSL@i receives the MSI from its porp; " and checks its mode mapping
which should be equal to M$L After that, MSLZ will change its mode
to switchingand start its reconfiguration. After its reconfiguration, it will send
an MSI to its portP)"*based on the mode mapping result and also send its
new configuration to MSE via its portpy’ ™

3. Forc‘f € SG, (k= [1,n]) which receives the MSI from M, if c‘j‘ is primitive,
it can immediately start its reconfiguration and then send an MSC togl\/ISL
If c'j‘ is composite, its internal behavior will be the samecasEventually,
c'j‘ will send an MSC to MSE which collects from MSC fronS8G,. When
MSLE completes its MSC collection, it will read the data from its paitt™
which must be the new configuration already sent from ISThus MSLS
will update its configuration, update its current mode frewitchingto the

24 Implementing MSL in ProCom

Algorithm 1 MSLZ

loop
if pt then

if (p"SX=MSI v p¥"°=MSI) A m, # switchingthen
Mode Mapping
mg, := switching
Reconfiguration
P"SX:= MSI;
ps := DummyData
Py’ "= Conf(g);

end if

if pY"°=MSCall A mg = switchingthen
mg, = Mg,
P"$*:= DummyData
Pg = me"
py’":= DummyData

end if

if p"*= DummyDataA p¥"“= DummyDatahen
P"$X:= DummyData
Pg = Mg;

‘= DummyData

end loop

4.2 Integrating the mode switch runtime mechanism

Algorithm 2 MSLS

loop
if p! then

if pK=MSRA m, # switching(pk € P™ k =

Mode Mapping

if Approvethen
mg, = switching
pg's*:= DummyData
p"¢:= MSI;

else ifRejectthen
po's*:= DummyData

sync. _

po = DummyData
else
pg's*:= MSR
py’"¢:= DummyData
end if
end if
if pk=MSC A m = switching pk € P" k =
if MSCall then
UpdateConfConf(c;));
n}; . ew.
pmsx n:\g/lsc
po’"¢:= MSCall;
else
py's*:= DummyData
py’"¢:= DummyData
end if
end if

1,

[1,n]) then

n|) then

if P™*= DummyDataA p¥"“= DummyDatahen

pg‘sx. DummyData
pa’"“:= DummyData
end if
pt = false
pt = true;
end if
end loop

26 Implementing MSL in ProCom

new mode, sending an MSC B, via its portpg'**and sendingSCall to

MSLZ via its portpg’™

4. MSL receivesMSCall from its portp;”"“and then changes its current mode
to the new mode. Besides, M§Lp§, is updated to the new mode as well. The
mode switch of; is completed.

Due to the rigorous execution semantics of ProSave components, the mode
switch scenario above requires at least four cycles of the clock in Elgh® parallel
reconfiguration among ProSave components are allowed as comporanfigara-
tion must be taken one after another by following their triggering order. #lyos
[and2 do not consider the case wlteis the top component or an MSS dfis the
top component, it will never forward an upstream MSR upwards and \Wwenaed
to remove the corresponding session of Algorifim 2; i an MSS but not the top
component, it can actively issue an MSRRpwhen it detects a mode switch event
and this can be performed by MgLIf ¢ is an MSS and also the top component,
it can actively issue an MSI that is propagated downstream when it detectsle
switch event. The MSI can be handled in the same way as the MSI evneceives
fromP,.

4.2.2 The MSL component at the ProSys level

The mode switch runtime mechanism of MSL is implemented at the ProSys level in
a similar way as ProSave level. For a multi-mode composite ProSys comppnent
we introduce a special subcomponentpofor its mode switching handling: MSL
which plays an equal role as the pair of MSland MSLS described in the last
subsection. The major difference includes:

e Message passing between ProSys components is more flexible than the pipe-
and-filter communication pattern at the ProSave level. Circular connection is
allowed, i.e. two neighboring components can send messages to eachather v
different ports, therefore, one MSL subcomponent;a$ sufficient to handle
its mode switch.

e A ProSys component does not distinguish control and data flow.

e Since a message channel allows many-to-one communicatio@ottteol Or
connector at the ProSave level can be removed.
Still, let SG, = {cll,cjz, ---,c"} (n € N) denote the set of the subcomponents of
ci, excluding MSl,. Fig.[4.5 illustrates the ports of M3L-which has the following
ports:

e pM* an input message port for receiving an MSI.

4.2 Integrating the mode switch runtime mechanism 27

e P={php?--,p"} (n=|SG|): a set of input message ports for receiving
an MSR or MSC, where for eachf € P™* (k = [1,n]), p¥ is connected to
ck.pls (¢ € SG,).

e p3: an output message port indicating the current moadg. df will be further
explained later on.

o Po={p} pZ,--,pl} (n=|SG,|): aset of output message ports for sending an
MSI to 2°%, where for eaclpt € P, (k= [1,n]), p is connected ta*. p™ (ck
SG).

e Py’ an output message port for forwarding an MSR or sending an MSC to
P

pimsx Pot

Pi={pi! ,pi2,....pin }(n=ISCkeil) { }Pa:{pol,po2,...,poﬂ}(n=|SCci|)

pOIHSX

Figure 4.5: The ProSys MSL subcomponent@f

The component connections between NSind c'j‘ € SG (k= [1,n]) can be
demonstrated by Fig. 4.6. The input message port MBL>*is directed connected
to ¢. p"*for receiving an MSI. The input message pautsp?, - -, pf' are connected
to the pg'® of the corresponding subcomponentscof c-l,clz,--- ,c" for receiving
an MSR or MSC. The output message p@gspZ,--- , ph are connected tp"s of
cjl,cjz,--- ,c for sending an MSI. In addition, The output message port MBL*
is directly connected to;.pg's for sending an MSR or MSC th; .

MSLg, is a primitive ProSys component where the mode switch runtime mech-
anism ofc; is implemented. The mode switch handling of MSIs described in
Algorithm[3. A mode switch scenario can be used for demonstration. Still, let's
assume that an MSR is issued frau}nandci approves the MSR by issuing an MSI
that is propagated downstream. Taking Algorithm 3 and[Fid. 4.6 into acceent,
get the following procedures:

1. An MSR s sent front}. p}'*to MSL,.p}.

2. MSL, refers to its mode mapping, changes its modswitchingand then
propagates an MSI to>& based on the mode mapping result.

28 Implementing MSL in ProCom

Figure 4.6: MSL and component connections

3. Forc'j‘ € SG, (k=[1,n]) which receives the MSI from MSY, if c'j‘ is primitive,
it can immediately start its reconfiguration and then send an MSC toMSL
via its portpd's. If c‘f is composite, its internal behavior will be the same as
G. Eventually,c'j‘ will send an MSC to MSE, which collects from MSC from
SG . When MSL, completes its MSC collection, it will reconfigure itself if
its new mode is different from its current mode. It will also change its ciirre
mode and its output data at pq3 to the new moden®". Finally, an MSC is
sent toR; via its portpg'sX

Since MSIg, requires no additional clock to trigger its execution and there is no
synchronization problem between M&Sland MSLS, the mode switch handling at
the ProSys level is much easier than at the ProSave level.

4.2.3 Mode mapping

Algorithms[1E3 all include the functiomMode Mapping which implements the mode
mapping mechanism of MSL. The approaches proposed in this thesis allpaithe

of ProSave component M$;Land MSL\E‘i and the ProSys component Mgto be au-
tomatically generated for a specific given component hierarchy. Howtineemode
mapping ofc; has to be manually specified to meet the expectation of the designer

4.2 Integrating the mode switch runtime mechanism

Algorithm 3 MSLg,

loop
if pMSX=MSI A m, # switchingthen
Mode Mapping
m, := switching
P, := MSI;
end if
if p<=MSRA m, # switching(pk € Psc,k = [1,n]) then
Mode Mapping
if Approvethen
mg, := switching
P, := MSI;
else ifRejectthen
return ;
else
PG5 >:=MSR
end if
end if
if p=MSC A m, = switching pk € Psc, k= [1,n]) then
if MSCall then
Reconfiguration
Mg i= mge™,
Po = Mg
po's*:= MSG
end if
end if
end loop

30 Implementing MSL in ProCom

and customer. This section presentdlade Mapping Wizardor guiding the mode
mapping specification in ProCom. For each composite companeheMode Map-
ping Wizardconsists of four steps: (1) Defining the mode mapping tablg;dR)
Generating the skeleton of the Mode Mapping Automata (MMAsg; aind SG;;

(3) Editing the MMAs; and (4) MSS and mode switch scenario specificatimmeS
the Mode Mapping Wizaradan automatically generate the basic parts of MMAS in
a graphical manner, the mode mapping specificatiory cin be much more conve-
nient than using a particular specification language from scratch. Néxbraefly
explain each step of thdode Mapping Wizard

Step 1: Mode Mapping Wizard

For a composite componeqt the basic mode mapping betwegrandSC, can be
presented by mode mapping tableTheMode Mapping Wizarés able to generate a
blankmode mapping tablshown in Tablé€ 4]1. The first column of Tablel4.1 lists
andSGC, . Besides, Table 4.1 h&sadditional columns, whene= max{|M |, \MC?]}

(c'j‘ € SG, k= [1,n], nis the number of subcomponentsopfandM,, denotes the set

of supported modes a@f). Among thes&K columns, each cell should be filled with
one supported mode of the component in the same row. This can be eithalipanu
input or selected from a mode selection list. Egithe mode selection list includes
all its pre-defined supported modes, while ﬁ'j’)r the mode selection list includes
all its pre-defined supported modes plus "Deactivated¢; asay deactivate certain
subcomponents in certain modes. One can also merge cells horizontally ify spec
more complex mode mapping.

| Component]| Supported modes \
Ci

ci € SG

cf € SG,

ESG 1]
Table 4.1: The mode mapping table of

Step 2: Automatic generation of MMAs

As is introduced in Section 2.2, an MMAI[7] consists of locations and transitions
between locations. The locations, including the deactivated states, oMddéh

can be automatically generated based onntteele mapping table Transitions of
each MMA can also be automatically generated by considering all possible mode
switch scenarios. However, the definition of Dominant Default ModesMIBDis
beyond the expression afode mapping tableTherefore, some transition labels of

an MMA may not be complete.

4.3 Multi-mode component connections 31

Step 3: Editing MMAs

The main task in this step is to complete the undefined transition labels generated in
Step 2. This is realized by defining the DDMs for each component for alipte

mode switch scenarios. The locations and transitions of an MMA can alsoibe ma
ually edited, added or deleted. Any operation violating the semantics of MMA will
cause a syntax error that warns the designer so as to avoid incorréetmapping.

Step 4: MSS and mode switch scenario specification

In Step 2 and Step 3, all possible mode switch scenarios are consideieetter
component reuse. However, for a particular system, only some mode sweénhr-
ios could happen. All Mode Switch Sources (MSSs) in the system shoudfbesd
and a mode switch scenario can be defined as: an 8/$&guests to switch from

m, to mé, (Mg, mé, € Mg,).
The four steps above completes the mode mapping specificatmn of

4.3 Multi-mode component connections

As is indicated in Fig[_1l1 at the very beginning of this thesis, the inner compo-
nent connection of a composite compongrdan be different while; is in different
modes. Of course it is quite easy to define the inner component connetttn o
separately for each mode gf however, merging component connections in differ-
ent modes becomes a tricky problem in ProCom. As the third contribution of this
thesis, we provide a solution which can automatically generate the complete com-
ponent connection based on component connections separatelyddefuliferent
modes with minimum extension of ProCom. Depending on the current mode of a
component, only activated components and active component conneat®ss-
lected. Next our solution will be presented at the ProSave level and tisy®level,
respectively.

4.3.1 Merging component connection at the ProSave level

Consider a multi-mode ProSave component or a multi-mode ProSys component
composed by ProSave components, saywhose inner component connection is
mode-dependent. The basic idea of automatically generating the mergedrearhpo
connection withing; is to packaging eacdlf € SG, (k= [1,n],n = |SG;]|) with ad-
ditional connectors. A connector is attached to each pocf akcept its dedicated
mode switch ports of the serviGode i-e. P, p™S, pI'stand pI's. General speak-

ing, aControl Or connector is attached to an input trigger porData Or connector

is attached to an input data portSalectiorconnector is attached to an output trigger
port; aData Selectiortonnector is attached to an output data port. Dha&a Selec-

tion connector does not exist in the current ProCom component modelyhgvite

can be easily developed as its execution semantics is very simiggléction A

32 Implementing MSL in ProCom

Data Selectiortonnector has two input data porpﬁ andp® and at least two output
data ports. Based on the value of the data at ptthis connector forwards the data
from pf’ to exactly one of its output data ports. The number of the input ports of
Control Or andData Or, and the number of the output ports®¢lectiorandData
selectiondepend on the number of modes supported by the parent comppnent

Let ¢; be a composite multi-mode ProSave component with the set of supported
modesM¢, = {mg,ng, - ,md}(q>1). For each modaan‘éi (k=1[1,q]), the inner
component connection af has been provided separately. Compomghas a num-
ber of subcomponent#, 7,000,C] (n=[SG|). For each:'j‘ € SG (k=[1,n]),

e LetP! be the set of input trigger ports o‘f of all its services exce@node

o Let F’id be the set of input data ports dj‘fof all its services exce@node

e LetP! be the set of output trigger ports djfof all its services exce@node

o Let F’iOI be the set of output data portsd{fof all its services exce@node

Let E} € P! denote an arbitrary port belonging B and the same is true of

pd e P, ph e Py and pd € PS. Connectors are automatically generated aratfnd
based on the following rules:

e For eachp! € P' of c'j<, a Control Or connectorA is generated, with a set of
input trigger portsP* = {ptt, pi?, .- ,p,q}(q = [Mg|) and one output trigger
port pi. The incoming connection ta.p!! (I = [1,q]) follows the pre-defined
connection whileg; is in modem'ci. The output trigger porA.p is directly
connected ta¥. pf.

e For eachpi,OI € Pd of c" a Data Or connectorB is generated, with a set of

input data portsPOI = {pI ,pl R pidq}(q = |[M|) and one output trigger
port pd. The incoming connection ®.p' (I = [1,q]) follows the pre-defined
connection whileg; is in moden’Li. The output data porB.p. is directly

connected ta¥.pd.

e For eachpf € P} of ck a SelectionconnectolC is generated, with one input
trigger portp,, one |nput data porp? and a set of output trigger porl =
{pL, P2, -, ps'} (g = [Mg|). The input trigger por€.p! is directly connected
to c'J‘pT) The input data poi€.p} is connected to MS@I. pg (see the previous
section). The outgoing connection frotpl (I = [1,q]) follows the pre-
defined connection whilg is in mode«;TLJC according to the value of the data at
C.p}: If the data read fron®. p? returnsmy, (I = [1, q)), C.pY will be triggered.

4.3 Multi-mode component connections 33

e For eachp?, € Pg' of c'j‘, aData SelectiorconnectoD is generated, with one
input data poripid, and the other input data popf and a set of output data
portsPd = {pdl pd2 ... p3%(q=|Mg]|). The input data poid.p is directly
connected ta:'j‘.ig. The input data porD.p} is connected to MS@_. ps (see
the previous section). The outgoing connection fidrpd' (1 = [1,q]) follows
the pre-defined connection whitgis in modem'Ci according to the value of
the data aD.p: If the data read fronD.p? returnsn, (I = [1,q]), the data
read fromD. p¢ will be forwarded exactly t®.pd".

The above presented rules are illustrated in[Eid. 4.7 and should be appdiéd to
subcomponents @f. Moreover, the input and output ports@itself deserve special
care. Let's reuse the definitid®, PY, P andP§ of c* for ¢, then,

e For eachﬁ} € P! of ¢, aSelectiorconnector (the same &sdefined above) is

generated and connected to it witlgn considerings; H} as an output trigger
port (not belonging to the servi& .49 of a subcomponent af.

e For eachpTOI € F’iOl of ¢;, a Data Selectiorconnector (the same & defined

above) is generated and connected to it witthjrconsiderings; pT’ as an out-
put data port (not belonging to the servigg,q9 of a subcomponent ag.

e For eachpf € P} of ¢;, aControl Or connector (the same @sdefined above)
is generated and connected to it witkjpconsideringsi. pl, as an input trigger
port (not belonging to the servi@,q9 Of a subcomponent af.

e For eachpd € P9 of ¢;, aData Or connector (the same &sdefined above) is
generated and connected to it witltinconsidering:;. pd as an input data port
(not belonging to the servic&nqq9 Of a subcomponent af.

It is also important to note that some component connections may remain un-
changed while; is switching mode, thus the merged component connections within
¢ can be optimized by removing redundant generated connectors amdlegigon-
nections. In practice, the merged component connection may still look i@ther
plex even after optimization, however, they are automatically generated dyifog
simple rules. Therefore, the visual complexity will not be a problem. A dé $inec-
tion in PRIDE with MSL support would be to allow the user to view the component
connection in a particular mode while hiding the component connections in other
modes.

4.3.2 Merging component connection at the ProSys level

Like at the ProSave level, component connections in different modesalsarbe
merged and automatically generated. The central idea is similar to that at Severo

34 Implementing MSL in ProCom

Pi= {p(‘ IT; & - pita} { o g 12 Setection }P o'={Po't, P, ... » Pola}
q=Mal) = 7SR (g=IMal)
‘P‘- Pyt
Py o~
Pi={pdl. pi2, .. pdq} B Dain g s - ‘\pd Data Pot={padl, pot, ..., pota}
(q:‘ML“ Selex mmn (q—\M 1)

Figure 4.7: Merging component connections at the ProSave level

level. Since no connectors are supported at the ProSys level, we dweedtto
generate any connectors. Instead, we can generate primitive Pro@ymicents
functioning as the four types of connectors generated at the ProSaVe3@ce an
input message port can receive messages from multiple message chisvenels no
need to generate ProSys components with the same function as con@Gartin
Or or Data Or. Actually, we only need to generate a primitive ProSys component
Selectiorthat plays the same role as the combinatioSeliectiorandData Selection
at the ProSave level.

Let c; be a composite multi-mode ProSys component composed by ProSys com-
ponents. Component has the set of supported moddg = {mt,m¢,--- ,md }(q >
1). For each mode (k= [1,q]), the inner component connection @fhas been

provided separately. Componerithas a number of subcomponenﬁscz,--- ,c?

(n=|SG,|). For each:‘f € SG, (k=[1,n]), let R be the set of input message ports
of ¢ exceptck. p™, and letR, be the set of output message ports'oéxceptct. pj'*.
Then a primitive ProSys component callgdlectiorand denoted aSis generated.
Componen€ has two input message porgg,and ps, and a set of output message
portsP, = {p&, p2,--, pa}(q = |SG|). For eachp, € P, of c ck o is connected
to E.p;. The input message poHE.ps is connected to MS(L,_p0 The outgoing
connection fromE.P, (I = [1,q]) follows the pre-defined connection whibeis in
nt_ according to the value of the dataftps: If the data read fronk.p} returns
m, (I = [1,q]), the data read fror&. p; will be forwarded toE. p,.

The connection betweerﬂ[andE can be illustrated in Fid. 4.8. Moreover, let
¢i.R denote the set of input message portgiaéxceptc;.p™. Then for eaclp; €
R of ¢, a primitive ProSysSelectioncomponent (the same &defined above) is
generated and connected to it witltin considerings;. i as an output message port
(excluding the porp™) of a subcomponent @f. The merged component connection
at the ProSys level can also be optimized in the same way as at the ProS#ve lev

4.3 Multi-mode component connections

35

Selection

_ } Pn:{pu‘ s pnz- ey Pﬂq}
i (q=IMal)

Figure 4.8: Merging component connections at the ProSys level

36

Implementing MSL in ProCom

Chapter

A pedagogical example

This chapter demonstrates our approaches of implementing MSL in ProCa@m by
conceptual example for pedagogical purpose. First, the genetahsgescription

of this example is provided. Then we show how the system can be devedloped
ProCom guided by MSL, including multi-mode ProSys and ProSave compgnents
MSL components implementing the mode switch runtime mechanism, and merging
component connections.

5.1 System description

The system discussed in this chapter has the same component hierahehgyatem

in Fig.[1.1, introduced at the beginning of this thesis. The system, i.e. Compone
Top, consists of componengs b, andc. And Componenb is further composed by
ande. However, the supported modes of different components and theiectons

are different from the system in Fig.1.1.

The supported modes of each component and the basic mode mapping at eac
level are presented in tables 5.1 5.2. It has been stated that a madubow
expression of the mode mapping ©p andb is using Mode Mapping Automata
(MMA). However, specifying the MMA is beyond the scope of this thesid mrore
details can be found in[7].

Fig.[5.1 shows the component connections of the system based ori taldesl 5.1
[5.2. Black and grey colors are used to represent different modgfisgeehaviors.
For instancea has two mode-specific behaviors whdehas three mode-specific
behaviors, represented by white, black and grey, respectively ilbElgBesides
andd can be deactivated when their parents are in certain modes.

38 A pedagogical example

| Component]| Supported modes \
Top Mop Mo
a m m
b mo [om m
c Deactivated mg

Table 5.1: The mode mapping table dbp

| Component]| Supported modes |
b my | g m
d my | m§ | mi | Deactivated
e me

Table 5.2: The mode mapping table of

Figure 5.1: Component connections at all levels

5.2 Developing the system in ProCom

Now let's design the system introduced in the previous section in ProComewhe
MSL has been implemented. In order to cover both ProSys and ProSavs, lae
defineTop, a, b andc as ProSys components, and defilende as ProSave compo-
nents. According to Sectidn 4.1, the first step is to generate multi-mode contpone
at both ProSys and ProSave levels based on the system specification.

Fig.[5.2 displays the ProCom component hierarchy of the system. All compo-
nents have been developed as multi-mode components. Compared with the single
mode version, a multi-mode component has additional dedicated mode switsh por
marked in purple in Fid. 512. Among the multi-mode ProSys components, including
Top, a, b andc, each of them has an input message p8ftand an output message
port pg'° dedicated to mode switch. Among the multi-mode ProSave components, in-
cludingd ande, each of them has a dedicated mode switch seSjgge Which has
four dedicated mode switch portgf™, p™, pJ'stand p'. All components conform
to the definition illustrated in Fig. 4.2.

5.3 Implementing the mode switch runtime mechanism 39

Figure 5.2: The ProCom component hierarchy of the system

In addition, referring to the inner component connectiondayd while Top is
in mt,, andnk,, Fig.[5.3 shows the inner component connection3ay at the
ProSys level. Similarly, Fid. 514 shows the inner component connectiomatathe
ProSave level, where the control flow and the data flow are separaseadsumed
that the inner component connection of a composite component for a spaoifie
can be independently specified without knowing the component conngdtiats
other modes.

Figure 5.3: The inner component connectionsTafpat the ProSys level

5.3 Implementing the mode switch runtime mecha-
nism

Section4.P has indicated that the mode switch runtime mechanism of MSL can be
implemented by a pair of MSL subcomponents at the ProSave level, and an MSL
subcomponent at the ProSys level. In this section, we shall apply the saateta
composite componeni®pandb of this pedagogical system.

Since bothlTopand its subcomponents are ProSys components, the mode switch
runtime mechanism ofop can be implemented by a primitive ProSys component

40 A pedagogical example

Figure 5.4: The inner component connectionskoét the ProSave level

MSLtop € SGrop, Which can be automatically generated, given the mode mapping
betweenTopand its subcomponents.
Fig.[5.5 presents MSi,, as its ports explained as follows:

e pS* an input message port ddpfor receiving an MSI. However, sinCeop
has no parent, this port will not be used in this system.

e B={p p}’, pf}: a set of input message portsTdpfor receiving an MSR or
MSC from its subcomponengs b andc.

e pZ: an output message port dbpindicating its current mode. It will be used
for merging the inner component connectiongopin mclrop andm%op.

e P,={pd pd, pS}: a set of output message portsTaipfor sending an MSI to
its subcomponents, b andc.

e pP'* an output message port for forwarding an MSR or sending an MSC to
the parent. Sinc&@ophas no parent, this port will not be used in this system.

Figure 5.5: The MSL subcomponent diop

The internal mode switch behavior of M§,, will follow Algorithm Bldescribed
in Sectior{ 4.2.2.

5.3 Implementing the mode switch runtime mechanism 41

At one level down, sincd is a multi-mode ProSys component composed by
ProSave components, its mode switch runtime mechanism can be implemented by
a pair of MSL subcomponents &f i.e. MSL and MSLE, both of which can be
automatically generated, given the mode mapping betWwesa its subcomponents.

Fig.[5.6 presents M3} and MSLE and their ports. MS has the following
ports:

e p': the input trigger port whose activation makes I\/@SHJ:tive.

e p* an input trigger port for receiving an MSI frofifop.

e p"% an input data port connected to M&for synchronization.

e pL: the output trigger port activated after M§t:ompletes its current instance
of execution.

o P*= {pd pel: a set of output data ports for sending an MSI to the subcom-
ponents ob, i.e. d ande.

e pZ: anoutput data port indicating the current mode;oft is used for merging
the inner component connectionstofvhenb is in mt, mg andng.

e Py’ an output data port connected to MBSlor synchronization.

MSLE has the following ports:

e p: the input trigger port whose activation makes I\E&ctive.

PMsX= {pd pf}: a set of input data ports for receiving an MSR or MSC from
the subcomponents of i.e. d ande.

pY"% an input data port connected to M&tor synchronization.

p: the output trigger port activated after MBtompletes its current instance
of execution.

pg's* an output data port for forwarding an MSR or sending an MSTofg
i.e. the parent ob.

e po’"™ an output data port connected to MSlor synchronization.

The internal mode switch behaviors of MSand MSLE will follow algorithms
[Mand2 described in Sectibn 4.2.1.

42 A pedagogical example

Pot

Pod pit
Pee pid
po’ pi
posyne pisyne

Figure 5.6: The pair of MSL subcomponents bf

5.4 Merging component connections

In Sectior{ 4.B, we have introduced our solution to merging component cone
in different modes at both ProSys and ProSave levels. In this sectialemenstrate
our approach by merging the inner component connectiofspdndb respectively.
Fig.[5.7 illustrates the automatically generated view of merging the inner compo-
nent connections ofopin mlrOIO andm%opwhich are specified separately in Hig.15.3.
The ports of MSk,p have been described in Fig. b.5, and are thus not displayed here.
It can be observed that MSk, and six primitive ProSySelectiorcomponents have
been automatically generated. For each subcomponéfdpiach regular output
message port (excluding the dedicated output message put) has an gouiec-
tion to a generate8electiorcomponent. Besides, Each input message port (exclud-
ing the dedicated input message port)Top also has an outgoing connection to a
generated®electiorcomponent. AllSelectiorcomponents have two output message
ports becaus&op supports two modes. Furthermore, 8#llectiorcomponents have
an input message port, marked in red in [Figl] 5.7, that has in incoming cormectio
from MSLrop. p5. Based on the current mode Tdp, indicated by the message from
MSLtop. p5, €achSelectioncomponent will forward the data received from its pre-
ceding component to the corresponding output message port. Excégt M, all
the other ports of MSt,p are connected to the dedicated mode switch message ports
of Topand its subcomponents, strictly following the connection pattern described in
Fig.[4.6.
Similarly, Fig.[5.8 illustrates the automatically generated view of merging the
inner component connections bin mi, ng andmg which are specified separately
in Fig.[5.4. The ports of the pair of Mi'gLand MSLE have been described in Fig.
5.6, thus not displayed here. Apart from MSand MSLE, a number of connec-
tors have been automatically generated. For each subcompongntaxth regular
input trigger port has an incoming connection to a gener@wurol Or connector;
each regular input data port has an incoming connection to a gené&xatiz®r con-
nector; each output trigger port has an outgoing connection to a ged&election
connector; and each output data port has an outgoing connectionneratgeData
Selectionconnector. Besides, each input trigger porbgéxcludingb.p™) has an
outgoing connection to a generat8dlectionconnector and each input data port of

5.4 Merging component connections 43

?

Figure 5.7: The merged inner component connections witfop

b) (excludingb.p™) has an outgoing connection to a generddadh Selectiorcon-
nector. All Control Or and Data Or have three input ports and dlelectionand
Data Selectiorhave three output ports, becaussupports three modes. Besides,
all SelectiormandData Selectiorhave a special input data port, marked in red in Fig.
[5.8, that has in incoming connection from Mgspg. Based on the current mode
of b, indicated by the data from M3LpS, eachSelectionwill activate the corre-
sponding output trigger port, and edbhta Selectiowill forward the data received
from its preceding component to the corresponding output data portintbming
and outgoing connections of Mﬁland MSLE strictly follow the connection pattern
described in Fid._4]4.

Furthermore, sinckbis a ProSys component composed by ProSave components,
a clock dedicated to mode switch is used to periodically trigger all ProSaveczomp
nents.

44

A pedagogical example

Figure 5.8: The merged inner component connections within

Chapter

Conclusions

This thesis has presented an approach for implementing the Mode Switch Logic
(MSL) in the ProCom component model. Both MSL and ProCom are dewelope
Malardalen Real-Time Research Center (MRTC) atavidalen University. In Chap-
terld, a basic introduction of the background and motivation of this thesisvided.
Chapters 2 anf] 3 describe the essentials of MSL and ProCom resfyeciien
Chaptef 4, the core of the thesis, explains our central ideas of implemen8hgrivi
ProCom, including three major contributions: (1) the definition of multi-mode Pro-
Com components; (2) implementing the mode switch runtime mechanism of MSL
in ProCom; and (3) merging the connections between ProCom componerits in d
ferent modes. Since ProCom has two distinguished layers, i.e. Pro&yraBave,
which are quite different, each contribution considers both ProSys ier&hie lay-

ers which must be treated differently. Our approach only requires a mmnodifi-
cation (the introduction of th®ata Selectiorconnector) of the ProCom model in
order to support MSL. Finally, in Chapter 5, our approach is furthenatestrated

by a pedagogical example.

As future work, our approaches of implementing MSL in ProCom shall be ap
plied to the ProCom development tool PRIDE. Since our approach allowsaftbe
MSL-related parts to be automatically generated, the development of Contpone
Based Multi-Mode Systems (CBMMSSs) in PRIDE is expected to be relativaly co
venient and straightforward.

46

Conclusions

Bibliography

[1] Y. Hang, J. Carlson, and H. Hansson. Towards mode switch handlin

in component-based multi-mode systems. Pimceedings of 15th Interna-
tional ACM SIGSOFT Symposium on Component Based Software Erigineer
(CBSE’12) pages 183-188, June 2012.

[2] T.Bures, J. Carlson, I. Crnkoti S. Sentilles, and A. Vulgarakis. ProCom - the

Progress component model reference manual, version 1.0. TecRapalt
ISSN 1404-3041 ISRN MDH-MRTC-230/2008-1-SE AMrdalen University,
June 2008.

[3] V. K. Sharma and N. P. Gupta. Component-based software develdpme

[4]

[5]
[6]

[7]

[8]

IJCSNS International Journal of Computer Science and NetworkrBgcu
10(11):132-134, November 2010.

I. Sommerville. Software Engineering (9th EditionAddison Wesley, March
2010.

Pride.ntt p: // ww. 1 dt . ndh. se/ pri de/ ?i d=home.

Y. Hang and H. Hansson. A mode mapping mechanism for componesetiba
multi-mode systems. IRroceedings of 4th Workshop on Compositional The-
ory and Technology for Real-Time Embedded Systems (CRT$ddgs 38—
45, November 2011.

Y. Hang. Mode switch for component-based multi-mode systdotentiate
thesis, Malardalen University, ¥steas, Sweden, December 2012.

I. Crnkovit, S. Sentilles, A. Vulgarakis, and M. R. V. Chaudron. A classi-
fication framework for software component modellEEE Transactions on
Software Engineeringd7(5):593-615, October 2011.

http://www.idt.mdh.se/pride/?id=home

48 BIBLIOGRAPHY

[9] P. HaSek, T. Pop, T. Buig P. Hrétynka, and M. Malohlava. Comparison of
component frameworks for real-time embedded systemSomponent-Based
Software Engineeringvolume 6092 ofLecture Notes in Computer Science
pages 21-36. 2010.

[10] K. Hanninen, J. Mki-Turja, M. Nolin, M. Lindberg, J. Lundixck, and
K. Lundback. The Rubus component model for resource constrained real-time
systems. IrProceedings of 3rd International Symposium on Industrial Embed-
ded Systems (SIES'Q®ages 177 —183, June 2008.

[11] R. V. Ommering, F. V. D. Linden, J. Kramer, and J. Magee. Thel&oampo-
nent model for consumer electronics softwaemputey 33(3):78 -85, March
2000.

[12] Autosar GbR: Autosar-technical overview. Technical repodT®SAR GbR.
http://ww. aut osar. or g/ 1 ndex. php?p=3&up=1&uup=0.

[13] J. Carlson, J. Feljan, J. &ki-Turja, and M. Spdin. Deployment modelling
and synthesis in a component model for distributed embedded systems. In
Proceedings of 36th Euromicro Conference on Software Engineeriddidn
vanced Applications (SEAA'1Beptember 2010.

http://www.autosar.org/index.php?p=3&up=1&uup=0

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Acronyms
	Introduction
	Theoretical background
	Component-Based Software Engineering
	The ProCom component model
	The Mode Switch Logic (MSL)

	Methodology
	Thesis layout

	The Mode Switch Logic
	The mode-aware component model
	The mode mapping mechanism
	The mode switch runtime mechanism
	Mode switch propagation
	Mode switch dependency rule

	The ProCom component model
	The ProCom development process
	The ProCom component model overview

	Implementing MSL in ProCom
	Multi-mode ProSave and ProSys components
	Integrating the mode switch runtime mechanism
	The MSL components at the ProSave level
	The MSL component at the ProSys level
	Mode mapping

	Multi-mode component connections
	Merging component connection at the ProSave level
	Merging component connection at the ProSys level

	A pedagogical example
	System description
	Developing the system in ProCom
	Implementing the mode switch runtime mechanism
	Merging component connections

	Conclusions

