
Prediction of Intradialytic Hypotension using

Photoplethysmography

Erik Wallenborg
Department of Electrical and Information Technology

December 22, 2011



Abstract

Acute intradialytic hypotension is the most common complication during
a hemodialysis treatment. In the doctoral dissertation “Signal Modeling and
Detection in Nephrologic and Cardiac Applications” [1], a method for pre-
diction of this complication using photoplethysmography is demonstrated.
This thesis will implement and evaluate this method on a larger database.

It will be shown that the database gathered at Lund University Hospital
in 2010 can not be used for the prediction of acute intradialytic hypotension
with this method. Because of this, the method itself could not be evaluated.
It will also be shown that there are clear differences between the signals from
the Nonin Medair Life Sense and the wireless Nonin 4100 pulse oximeter
sensors.
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Chapter 1

Introduction

1.1 Dialysis

The kidneys have three main functions: (i) removing excess fluid and waste
products, (ii) regulating the electrolyte level and the acid-base balance, and
(iii) production of hormones such as renin (blood pressure regulator) and
EPO (red blood cells regulator). All of these abilities makes the loss of kid-
ney function a very serious medical condition with fatal outcome if untreated
[2].

Today there are three treatments for kidney failure; transplanting a new
kidney, peritoneal dialysis (PD) and hemodialysis (HD). A transplant is the
desired treatment but can not always be done immediately or sometimes
not at all, depending on when and if a matching kidney can be found. Most
kidney failure patients will therefore need some sort of dialysis, where the
kidney functions are mimicked for the patient. A patient requires dialysis
treatment 3 times a week lasting 3 to 5 hours. Since the kidneys can no
longer handle the removal of excess fluid (peeing), the treatment will remove
about 2 liters of fluid, depending on treatment settings. Removal of more
than 3% of the patients bodyweight in fluids might lead to complications.
The major difference between the two dialysis types is where the blood is
treated [2].

In PD you fill the peritoneal cavity (the cavity around your stomach and
intestines) with a solution. The membranes between the blood vessel and
the solution works as a filter allowing the transport of waste products and
excess fluid to the solution by diffusion and osmotic pressure. The dirty
solution can then be drained (see Figure 1.1) [2].

In HD a machine is instead used to pump the blood outside the body,
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Figure 1.1: Peritoneal dialysis with the solution (green) being filled into the
peritoneal cavity. Reproduced from [2].

past a filter (dialyzer) and back to the patient (see Figure 1.2). In the
dialyzer a solution on the other side of the filter membrane attracts waste
and excess fluid by diffusion and osmotic pressure. The treatment is set up
with the amount of excess fluid that needs to be removed, tempature of the
returning blood (if it is cold the patient can be heated via the machine) and
several other parameters [2].
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Figure 1.2: Simple schematic diagram of the blood (red) and solution (green)
flow during hemodialysis. Reproduced from [2].
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1.2 Hypotension

Symptomatic hypotension (low blood preassure followed by nausea, vomit-
ing or even fainting) is the most common complication during a HD treat-
ment [2]. The cause of hypotension can be one of many, such as infec-
tions, bleeding, allergic reaction, heart failure, or the loss of fluid during
a HD treatment [3]. Hypotension is not only unpleasant, it can also be
life-threatening if left untreated as vital organs may not get enough oxygen
[4]. It has been shown that the speed of the excess fluid removal during a
HD treatment correlates to the number of patients that suffer from acute
hypotension [2]. Detecting hypotension in advance and enabling interuption
of the HD treatment is therefore very useful.

1.3 Photoplethysmography

Photoplethysmography (PPG) is an optical technique that can be used for
detection of blood volume changes in the microvascular bed of tissue. A
near infrared light emitting diode together with a photodetector is used to
measure the perfusion in either a toe, earlobe or finger. The PPG signal con-
sists of a pulsatile (AC) part following the heartbeats and a slowly varying
(DC) part attributed to respiration, sympathetic nervous system activity
and thermoregulation (see Figure 1.3) [5]. The shape of a PPG pulse can
also vary with health and age (see Figure 1.4) [1]. The technique has several
uses such as, but not limited to, measurement of oxygen saturation, blood
pressure, heartrate and cardiac output. A wide range of medical devices has
PPG sensors. One of the more common is the pulse oximeter that measures
heartrate and oxygen saturation [5].
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Figure 1.3: PPG signal measured at the finger. Two components can be
observed: an “AC” component related to the heart rate (1.27 Hz), and a
“DC” component related to respiration (0.19 Hz). Reproduced from [1].

Figure 1.4: Normalized PPG pulse shape recorded from the finger of a young
and healthy person (a) and an old renal patient (b). Reproduced from [1].
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1.4 Thesis Introduction

In the doctoral dissertation “Signal Modeling and Detection in Nephrologic
and Cardiac Applications” [1], Solem demostrates a method for prediction
of acute intradialytic hypotension using a pulse oximeter. The source of
intradialytic hypotension is considered to be volume depletion due to the
ultrafiltration rate (the amount of excess fluid being drained from the pa-
tient) being too high. Volume depletion causes reduction in blood volume
which in turn causes less blood to reach the capillaries (in e.g. fingers).
By monitoring the change in signal amplitude from a pulse oximeter, acute
hypotension could be predicted on average 38 min in advance [1].

The method’s performance evaluation was done on 25 dialysis treatments
among 11 hypotension-prone patients. A total of 7 acute symptomatic hy-
potensive episodes occurred in 5 treatments (with 2 treatments having dou-
ble blood pressure drops). The patients were monitored during their treat-
ments and the hand used for PPG measurements was kept still and close
to the heart level [1]. Though being enough to show the potential of the
method, it is not a very large patient group and further study is needed.

This thesis will implement and evaluate the method in [1] on a larger
patient group with over 120 dialysis treatments in total. The treatments
are normal without extra supervision. The patient group consists of both
hypertension-prone and resistant patients.
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Chapter 2

Data and Equipment

2.1 Database

The patient group consists of 26 patients (20 men, 6 women) between 41
and 88 years of age. Each patient had up to 5 treatments for a total of
125 treatments in the patient group. Connection errors during the data
collection made 5 recordings unusable. In total, 120 treatments could be
used though 14 of these recordings, also due to connection errors, miss data
from parts of the whole treatment. 12 out of the 26 patients are prone to
hypotension but no hypotensive episodes occurred during any of the treat-
ments.

The data used in this thesis was collected at the dialysis clinic Filialen
at Lund University Hospital during the spring of 2010. Nurses at the clinic
were instructed in the setup and usage of a computer that recorded the
signal from the pulse oximeters. Treatment notes were also filled in for
each treatment. This information contains placement and ID number of
the pulse oximeter, start and stop times for the treatment, blood pressure
before, during and after the treatment and treatment settings such as pump
speed and ultrafiltration rate. On the treatment notes certain events are
also recorded such as food intake and complications. The complications can
consist of the pulse oximeter needing to be adjusted for a better connection
or that the treatment had to be stopped due to dialysis machine alarms.

2.2 Equipment

Five wireless Nonin 4100 pulse oximeters (see Figure 2.1), numbered 1 to
5, with a sampling rate of 75 Hz were used for the PPG measurement on
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the patients. The sensors where connected via bluetooth to a laptop with
a recording program in Labview and the data from the sensors was saved,
without processing, as binary files. All treatments were done with Gambro
AK 200 S HD dialysis machines (see Figure 2.2).

Figure 2.1: Wireless Nonin 4100 pulse oximeter sensor number 2.
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Figure 2.2: The Gambro AK 200 S hemodialysis dialysis machine.
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Chapter 3

Methods

3.1 Data Extraction

The binary data from the treatments needed to be processed before it could
be used in Matlab. The first problem was that of synchronization. At times
the logging computer would loose and then re-establish the wireless contact
with the pulse oximeters. The data is sent in packages (see Figure 3.1) of
125 bytes (25 frames with 5 bytes each) with the first byte in each frame as a
status byte, indicating quality and usability of the signal. In this status byte
there is a synchronization bit indicating the beginning of each package with
a one (the rest holds zeros). We can therefore remove all packages that start
with a one but holds less then 24 zeros in the synchronization bit (as a one
should be sent every 25 th status byte). This will create gaps in the data,
but since each package also contains a timestamp this is not a problem [6].

Synchronization errors are not the only reason for loss of data. The
sensor itself will indicate when the signal is unusable for heartrate or oxygen
saturation. This is indicated in the heartrate signal with the fixed value of
511 beats per minute or with a oxygen saturation of 127 percent [6]. These
parts of the signal were also removed.

In addition, the status byte also contains other indicators of an unusable
signal such as sensor disconnections, artifacts and sensor faults [6]. After
analysis, the size of these unusable sequences is shown to be either very short
(1-2 data points) or quite long (more than 25 data points, which is roughly
one third of the pulse period). These parts of the signal were also removed.

In [6] we also note that the way the sensor and Matlab handles most
and least significant bytes (MSB, LSB) differ, and this needs to be handled.
Also, the order of the bits needs to be rearranged before they can be read.
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Figure 3.1: The data structure of one package with 25 frames of binary data.
Reproduced from [6].

The table below (from [6]) shows the generic format for the bits of the pulse
(denoted HR0-8) signal.

7 6 5 4 3 2 1 0

HR MSB x x x x x x HR8 HR7

7 6 5 4 3 2 1 0

HR LSB x HR6 HR5 HR4 HR3 HR2 HR1 HR0

A Matlab script was written for opening, processing and saving the bi-
nary PPG data as .mat files (see appendix A.1). The script took over an
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hour to run but saved a lot of time since all the corrections made above
only needed to be performed once. Included in the data processing was the
task of transferring all relevant non-binary data from the treatment notes by
hand. The start and end of the treatment was saved with each PPG .mat
file as well as all blood pressure measurements. The sensor identification
number was also noted.

3.2 Prediction Algorithm

As described in [1], the method for prediction of acute intradialytic hy-
potension is the calculation of the relative magnitude of the capillary pulse
(RMCP) (i.e. the pulse measured from the finger capillaries). As mentioned,
photoplethysmography can be used for detection of blood volume changes
in the microvascular bed of tissue [5]. Therefore the RMCP should decrease
as less blood reach the extremities when volume depletion occurs.

The method for prediction of hypotension with the RMCP can be di-
vided into three steps; baseline correction, RMCP computation and alarm
evaluation.

3.2.1 Preprocessing

As previously could be seen in Figure 1.3, the PPG signal consists of a
pulsatile AC and a slowly varying DC part. To make an alarm prediction
the RMCP signal is required (which should only be effected by the AC part)
and therefore the DC part of the signal needs to be removed [1].

To be able to apply a filter there must not be any gaps in the data as
there are due to the data processing. When the gaps are small (i.e. 1-2 data
points), as many are, linear interpolation in between is sufficient. In the
case of larger gaps (one third of a pulse up to several pulses) the shape and
amplitude of the missing data can not be reconstructed. We therefore linear
interpolate over all gaps and save the positions of all reconstructed data. If
we later get a false alarm due to this, we can ignore it since we know the
alarm is caused by missing data.

To remove the DC part the signal is first downsampled (see Figure 3.2)
from 75 Hz to 3 Hz, as this increases the numerical robustness and speed of
digital low-pass filtration. This is followed by forward and backward filtering
with a second order low-pass Butterworth filter with cutoff frequency of 0.5
Hz. This gives a good estimate of the slow baseline variation, or DC part of
the signal. This estimate is then upsampled back to 75 Hz and subtracted
from the original signal.
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Figure 3.2: The method for removing the DC part of the PPG signal. The
PPG signal is downsmapled, filtered with a low-pass butterworth filter, up-
sampled and finaly substracted from the original PPG signal.

3.2.2 Computation of Relative Magnitude of Capillary Pulse

To compute the RMCP one of several methods can be used. The peak-to-
peak amplitude can be used, another method is to compute the envelope.
In [1], a third method is used which is to compute the integral of the PPG
signal. In the case of a finite number of data points, the integral can be
computed by the summation of the absolute values of the PPG signal. As
the algrorithm needs to be used in real time and we want to allow time for
RMCP computation and evaluation, and since changes in magnitude of the
capillary pulse should be slow, computation of the RMCP more frequently
than every 5 s is not needed. The RMCP signal variation increases as the
length of summation window is decreased. The length of the summation
window, L, is therefore set to 1 min. Every Ts = 5 s the signal RMCP, x(n),
is therefore calculated according to

x(n) =

nK∑
k=nK−L+1

|p(k)|, (3.1)

where K = 375 (i.e. 5 s ·75 Hz), L = 4500 (i.e. 60 s ·75 Hz), and p(k)
the baseline filtered PPG signal.

3.2.3 Hypotension Prediction

The RMCP signal (3.1) varies from patient to patient and should therefore
be normalized (RMCPnorm). The median of the RMCP signal of the first
10 min of recorded treatment is used as the normalization factor. Since the
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RMCP is not expected to drop, a healthy patient should have a RMCPnorm

of almost 1 during the the whole treatment (as seen in Figure 3.3).
In [1] it is described how to evaluate if the RMCP signal has had a

significant change by using statistical methods. The aim is to maximize
the probability for detection given a certain probability of false alarm. The
following test statistic is introduced (p. 188 in [1]),

G(x) = 1 +
1

N

N−1∑
n=0

(|x(n)− xmed| − |x(n)− 1|) < γ′, (3.2)

with N being the number of RMCP values evaluated and xmed as the median
over the samples evaluated, and decides that hypotension is approching if
the value of G(x) goes below a certain threshold γ′. In [1] it is also shown
that G(x) can be replaced by the function

xmed(m) = median{x(m), x(m− 1), ..., x(m−N + 1)}, (3.3)

with N = 60, i.e. the median of the last 5 min of the RMCP signal (the last
60 values as RMCP is computed every 5s), with just as good effect. This
saves computational power as (3.3) is much faster to compute than (3.2).

In [1] it was shown that if xmed(m) goes below the threshold γ′, hy-
potension will occur. The threshold set to γ′ = 0.54 gave a prediction rate
of 100%, and at the same time a false alarm rate of 0% [1]. In Figure 3.4
and 3.5 the method is shown predicting hypotension (compare with a patient
with stable blood pressure in Figure 3.3). The Matlab script for prediction
algorithm can be seen in appendix A.2.

16



Figure 3.3: A patient with stable blood pressure during a hemodialysis
treatment. (a) Systolic and diastolic blood pressure, BP (mmHg). (b)
RMCPnorm, xmed(m) (solid line) and G(x(m)) (dashed line). (c) Oxygen
saturation, O2-Sat (%). Reproduced from [1].
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Figure 3.4: A patient during a hemodialysis treatment with hypotension oc-
curing at the dotted line (144 min). (a) Systolic and diastolic blood pressure,
BP (mmHg). (b) RMCPnorm, xmed(m) (solid line) and G(x(m)) (dashed
line). (c) Oxygen saturation, O2-Sat (%). Reproduced from [1].
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Figure 3.5: A patient during a hemodialysis treatment with hypotension oc-
curing at the dotted lines (157 & 176 min). (a) Systolic and diastolic blood
pressure, BP (mmHg). (b) RMCPnorm, xmed(m) (solid line) and G(x(m))
(dashed line). (c) Oxygen saturation, O2-Sat (%). Reproduced from [1].
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Chapter 4

Results

In our database the first thing we notice is the unstable nature of the RMCP
signal, which still persists after a 5 min median filtration as can be seen in
Figure 4.1. The raw RMCP signal is displayed in green with the 5 min
median filtration in blue. In the Figure both the systolic (red dashed line)
and the diastolic (blue dashed line) blood pressure is displayed in 1/100 th
of the mmHg value (e.g. in Figure 4.1 the blood pressure is about 150/60
mmHg). The start and end of the treatments are indicated by vertical purple
lines. In the lower part of the Figure the number of missing data points can
be seen. With the 5 min median filtration up to 22000 data points can be
missing before we notice an effect. The reason for this is the data length of
the median filter. With a sample rate of 75 Hz, 5 minutes is equal to 22500
data points. In Figure 4.2 we can see the effect of too much missing data at
the 200 and 300 minute mark.

These two Figures are typical for all treatments. Some have large parts
of missing data and almost none are nice and smooth like the results that
was produced in [1]. The problem is to explain why we can not replicate
those results. However, some of irregularities can be explained. In Figure
4.3 we notice a big reduction in the RMCP signal 7 or 8 minutes after the
start of the treatment. At this time, according to the treatment notes, the
PPG sensor is moved from the index finger to the middle finger. But if the
amplitude would be normalized again at this time we would still get a drop
below 0.54 at the 50 minutes time mark. Also there are reductions in other
treatments without an explanation in the treatment notes.

The first thing that could explain these results is the patient control.
In [1] the patient’s arm was held in place and the whole treatment was
supervised. In this study the patients were free to move around with their
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arms. Sometimes resting, reading a book, scratching etc.. These activities
could all influence the RMCP signal. The second thing is the sensor type.
Although both this and the study in [1] uses Nonin PPG sensors, the sensors
were of different types. In [1] a Nonin Medair Life Sense sensor was used
while the database in this study used the wireless Nonin 4100.

To test how body position, arm activity and type of sensor influence the
RMCP signal, two simple pulse oximeter comparison tests were done.
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Figure 4.1: A patient during a hemodialysis treatment. (top) RMCPnorm

(green) as a function of time, with the 5 min RMCPnorm median (blue) on-
top. The Systolic (red dashed line) and diastolic blood pressure (blue dashed
line) is displayed as 1/100 th of mmHg. (bottom) The number of removed
data points in a row as a function of time. In both Figures the vertical purple
lines indicate the start and end of the treatment (in this treatment the end
time was never noted).
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Figure 4.2: A patient during a hemodialysis treatment. (top) RMCPnorm

(green) as a function of time, with the 5 min RMCPnorm median (blue) on-
top. The Systolic (red dashed line) and diastolic blood pressure (blue dashed
line) is displayed as 1/100 th of mmHg. (bottom) The number of removed
data points in a row as a function of time. In both Figures the vertical purple
lines indicate the start and end of the treatment.
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Figure 4.3: A patient during a hemodialysis treatment. (top) RMCPnorm

(green) as a function of time, with the 5 min RMCPnorm median (blue) on-
top. The Systolic (red dashed line) and diastolic blood pressure (blue dashed
line) is displayed as 1/100 th of mmHg. (bottom) The number of removed
data points in a row as a function of time. In both Figures the vertical purple
lines indicate the start and end of the treatment. 8 minutes after treatment
start the sensor is moved from the index to the middle finger.
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Chapter 5

Comparing Pulse Oximeters

5.1 Nonin Medair Life Sense vs. Nonin 4100

5.1.1 Method and Equipment

The PPG sensor from the study in [1], a Nonin Medair Life Sense (se Fig-
ure 5.1), with a sample rate of 22 Hz as well as the sensor used in this study,
the wireless Nonin 4100, were attached to the index finger and middle finger
of my left arm. While keeping this arm and myself as still as possible the
following activities were donefor 20 minutes each in order:

• sitting (hand on armrest)

• sitting (holding hand high)

• lying down (hand on armrest)

Then with moving arms:

• sitting (restless)

• sitting (scratching on sensors)

• sitting (tinkering with mobile)

The position of the sensors was then swapped to eliminate the effect of
finger placement and the whole sequence repeated.

The data was processed and analysed in the same way as described in
Chapter 3.
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Figure 5.1: A Nonin Medair Life Sense PPG sensor.

5.1.2 Results

The resulting RMCP signal for both sensors can be seen in Figures 5.2-5.5.
In the first sequence (Figures 5.2-5.3) there is a clear difference between
the RMCP signals. The Nonin Life Sense sensor gives a much smoother
and expected result (compare with Figure 3.3). The only time there is a
reduction in amplitude is after 20 minutes when the arm is raised. Not
even tinkering and fiddling with the sensor gives an amplitude change in the
RMCP signal. On the other hand the Nonin 4100 sensor’s result is anything
but expected. It starts quite smooth but as the arm is raised the amplitude
increases fast. In the second sequence when the sensors had swapped fingers
(Figures 5.4-5.5) we notice that the Nonine Life Sense sensor gives almost
the same result as in the first sequence, as expected. The Nonin 4100 sensor
however does not. This might indicate that the Nonin 4100 sensor lacks
consistency. Also worth noticing is that in both sequences the Nonin 4100
has very few and short periods of missing data, which shows that connection
errors are not the cause.
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Figure 5.2: First sequence. (top) RMCPnorm (green) as a function of time,
with the 5 min RMCPnorm median (blue) ontop. (bottom) The number of
removed data points in a row as a function of time. In both Figures the
vertical purple lines indicate the start and end of the test.
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Figure 5.3: First sequence. (top) RMCPnorm (green) as a function of time,
with the 5 min RMCPnorm median (blue) ontop. (bottom) The number of
removed data points in a row as a function of time. In both Figures the
vertical purple lines indicate the start and end of the test. The only major
change in amplitude occurs at 20-40 min where the arm is raised.

28



Figure 5.4: Second sequence. (top) RMCPnorm (green) as a function of
time, with the 5 min RMCPnorm median (blue) ontop. (bottom) The number
of removed data points in a row as a function of time. In both Figures the
vertical purple lines indicate the start and end of the test.
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Figure 5.5: Second sequence. (top) RMCPnorm (green) as a function of
time, with the 5 min RMCPnorm median (blue) ontop. (bottom) The number
of removed data points in a row as a function of time. In both Figures the
vertical purple lines indicate the start and end of the test. The only major
change in amplitude occurs at 20 min where the arm is raised.
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5.2 Nonin 4100 Consistency

5.2.1 Method and Equipment

Two wireless Nonin 4100 PPG sensors, numbered 1 and 3, were tested for
consistency. Sensor number 1 was attached to my index finger and number
3 to my middle finger. While making sure I kept this arm and myself as still
as possible I did the following activities in this order:

• sitting 20 min (hand on armrest)

• sitting 20 min (holding hand high)

• sitting 10 min (hand on armrest)

The sensor placement was then swapped and the procedure repeated:

• sitting 20 min (hand on armrest)

• sitting 20 min (holding hand high)

• sitting 10 min (hand on armrest)

The data was processed and analysed the same way as described in
Chapter 3.

5.2.2 Results

The RMCP signal for both sensors can be seen in Figures 5.6-5.7. At the 50
minute mark we notice the missing data as the sensor positions are swapped.
Appart from amplitude differences in certain areas, the shape of the RMCP
signal is clearly consistent (see Figure 5.8) as they both show an increase at
the same points. We also notice that the signal amplitude is higher for both
sensors when they are attached to the middle finger compared to the index
finger. As we noted before, there may be amplitude differences between
fingers.

However, the main problem with an unstable RMCP signal can still be
seen in both sensors.
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Figure 5.6: Sensor number 1. (top) RMCPnorm (green) as a function of
time, with the 5 min RMCPnorm median (blue) ontop. (bottom) The number
of removed data points in a row as a function of time. In both Figures the
vertical purple lines indicate the start and end of the test.
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Figure 5.7: Sensor number 3. (top) RMCPnorm (green) as a function of
time, with the 5 min RMCPnorm median (blue) ontop. (bottom) The number
of removed data points in a row as a function of time. In both Figures the
vertical purple lines indicate the start and end of the test.
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Figure 5.8: The RMCP signal from sensor number 1 (blue, dashed) and
sensor 3 (red) as a function of time. The vertical purple lines indicate the
start and end of the test. The first 50 min, sensor 1 (blue, dashed) is attached
to the index finger and sensor 3 (red) to the middle finger. At the 50 min
mark the placements are swapped.
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Chapter 6

Discussion and Conclusions

6.1 Discussion

During the work on this thesis it was first very surprising that the results
in [1] could not be reproduced. It was hypothesized that patient control
was the reason for this. As the patients in [1] had been supervised but the
patients in this thesis had not, it was believed that the Nonin 4100 sensors
were touched, moved and fiddled with too much, making the prediction
algorithm unuseable during real treatments. One idea was to re-normalize
the RMCP signal every time the sensor was moved, if this was done too
often however, the purpose would be countered as amplitude changes in the
RMCP signal over longer periods of time is what we are looking for.

After the two comparison tests (see chapter 5), it was clear that if the
study had used the Nonin Medair Life Sense sensor the results might have
been quite diffrent. With the current results the Nonin 4100 sensor can not
be used for prediction of hypotension as it does not give a stable RMCP
signal from a healthy patient, not in treatment, just sitting still. There
are clear differences between the two sensors, though the nature of those
diffrences is currently unknown. Nonin has been contacted regarding the
sensor diffrences but no answear has been given yet.

Also, the database in this treatment does not contain a single occurance
of acute intradialytic hypotension, although several of the patients were
prone for hypotension. Even if the same sensor was used (as in [1]) there
would be nothing to predict, making an good evaluation of the method
impossible.
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6.1.1 Further Study

Since it has been shown that the database used in this thesis could not be
used for evaluation of the prediction algorithm, a new database must be
gathered. The choice of PPG sensor is very important and the sensor must
be doublechecked in advance, making sure it can be used for the intended
purpose. Also, the database must contain as many hypotensive episodes as
possible, for the method to be evaluated.

6.2 Conclusions

In this thesis it has been shown that the database gathered at Lund Uni-
versity Hospital in 2010 can not be used for the prediction of intradialytic
hypotension with the method described in [1]. Because of this, the method
itself could not be evaluated. It has also been shown that there are clear dif-
ferences between the amplitude in the PPG signals from the Nonin Medair
Life Sense and the wireless Nonin 4100 PPG sensors, although the cause of
this is currently unknown.
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Appendix A

Matlab Scripts

A.1 extData.m

This script was used to extract the data from the binary files. It could then
be saved as .mat files.

function dataStr = extData(fname)

% extData(fname) extracts the data from the file ’fname’ and returns a data

% structure with the vectors STATUS, PPG, HR, SPO2, TMR and TMRPPG data.

%

% STATUS, status bytes

% PPG, PPG signal

% HR, Heart rate (gives value 511, if sensor unable to calc)

% SPO2, Oxygen saturation (gives value 127, if sensor unable to calc.)

% TMR, Timer, 1 tick for every package (loops after 2^14 ticks).

% TMRPPG, Timer for PPG, 75 ticks per second (looping removed).

%

% // Erik Wallenborg 2011

%

% TODO: More info can be extracted.

% open file

fid = fopen(fname,’r’);

% read data as uint8 (bytes) (TODO: can malfunction if data length is not a

% multiple of 5...)

a = fread(fid,inf, ’uint8=>uint8’);

% Go through all bytes to find each valid synk=1.

% inx will contain the indices to synk=1 in data a.

% Note: the reamining data will have the unsynced parts removed without gaps

% inbetween.

i=1;

k=1;

synkpuls=bitget(a,1);

inx=zeros(length(a),1);
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while i<length(a)-124

if a(i)>127 && synkpuls(i)==1 % if possible synkpulse found, test next

%25 statusbytes

if all(a(i+5:5:i+125)>127) && all(~synkpuls(i+5:5:i+120)) &&

synkpuls(i+125)

inx(k)=i;

k=k+1;

i=i+124;

else

i=i+1;

end

else

i=i+1;

end

end

inx = inx(1:k-1);

% Packet and frame indices

ind_packets = inx;

ind_frames = 1:(length(inx)*25);

for i = 1:length(inx)

ind_frames((((i-1)*25)+1):i*25) = inx(i)+(0:5:124);

end

% create struct to store data in

dataStr = struct(’INDX’,[],’SNSD’,[],’ARTF’,[],’OOT’,[],’SNSF’,[],

’PERF’,[],’SYNC’,[],’PPG’,[],’HR’,[],’SPO2’,[],’TMR’,[],’TMRPPG’,[],

’STAT2’,[]);

% extract STATUS

STATUS = a(ind_frames);

dataStr.SNSD = bitget(STATUS,7);

dataStr.ARTF = bitget(STATUS,6);

dataStr.OOT = bitget(STATUS,5);

dataStr.SNSF = bitget(STATUS,4);

dataStr.PERF = bitget(STATUS,3)+bitget(STATUS,2);

dataStr.SYNC = bitget(STATUS,1);

% indx

dataStr.INDX = inx;

% extract PPG waveform

dataStr.PPG = swapbytes(typecast(a(sort([ind_frames(:)+1;ind_frames(:)+2])),

’uint16’));

% extract HR

dataStr.HR = swapbytes(typecast(a(sort([ind_packets(:)+3;ind_packets(:)+8])),

’uint16’));

dataStr.HR = bitset(dataStr.HR,8,bitget(dataStr.HR,9));

dataStr.HR = bitset(dataStr.HR,9,bitget(dataStr.HR,10));

dataStr.HR = bitset(dataStr.HR,10,0);

dataStr.HR = bitset(dataStr.HR,11,0);

dataStr.HR = bitset(dataStr.HR,12,0);

dataStr.HR = bitset(dataStr.HR,13,0);

dataStr.HR = bitset(dataStr.HR,14,0);

dataStr.HR = bitset(dataStr.HR,15,0);
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dataStr.HR = bitset(dataStr.HR,16,0);

% extract SPO2

dataStr.SPO2 = typecast(a(ind_packets(:)+13), ’uint8’);

% extract TMR

dataStr.TMR = swapbytes(typecast(a(sort([ind_packets(:)+28;ind_packets(:)+33]))

, ’uint16’));

dataStr.TMR = bitset(dataStr.TMR,8,bitget(dataStr.TMR,9));

dataStr.TMR = bitset(dataStr.TMR,9,bitget(dataStr.TMR,10));

dataStr.TMR = bitset(dataStr.TMR,10,bitget(dataStr.TMR,11));

dataStr.TMR = bitset(dataStr.TMR,11,bitget(dataStr.TMR,12));

dataStr.TMR = bitset(dataStr.TMR,12,bitget(dataStr.TMR,13));

dataStr.TMR = bitset(dataStr.TMR,13,bitget(dataStr.TMR,14));

dataStr.TMR = bitset(dataStr.TMR,14,bitget(dataStr.TMR,15));

dataStr.TMR = bitset(dataStr.TMR,15,0);

dataStr.TMR = bitset(dataStr.TMR,16,0);

%Create TMR for all PPG samples with stamps in seconds, also removes the

%looping.

dataStr.TMRPPG = zeros(1,length(dataStr.PPG));

k=1;

l=0;

for i = 1:length(dataStr.TMR)

if (i > 3), if ((dataStr.TMR(i-1)-dataStr.TMR(i)) > 10000),l=l+2^14;end

,end %Handle looping of TMR

for j = 1:25

dataStr.TMRPPG(k) = ((double(dataStr.TMR(i))-1+l)*25) + j;

k=k+1;

end

end

dataStr.TMRPPG = dataStr.TMRPPG/75; %(sample at 75 Hz)

dataStr.TMRPPG = dataStr.TMRPPG - dataStr.TMRPPG(1); % Sets t0 = 0
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A.2 hypoAnalysis.m

This was the script that implemented the prediction algorithm.

clear all

close all

folder = ’PPG_mat’;

data = dirr(folder); %(from mathworks, similar to dir(folder))

nbrOfFiles = length(data);

for m = 1:nbrOfFiles

close all

load([folder ’\’ data(m).name]);

%=== REMOVE FAULTY DATA ===

PPG2 = zeros(1,length(PPG));

TMR2 = zeros(1,length(TMRPPG));

j=1;

for i = 1:length(PPG)

stat = SNSD(i) + ARTF(i) + OOT(i) + SNSF(i);% + PERF(i);

if stat < 1

if (HR(ceil(i/75)) < 511 && SPO2(ceil(i/75)) < 127)

PPG2(j) = PPG(i);

TMR2(j) = TMRPPG(i);

j=j+1;

end

end

end

PPG = PPG2(1:j-1);

PPG = PPG - mean(PPG);

TMR = TMR2(1:j-1);

Fs = 75; % sample fq.

%=====================

%=== Interpolate gaps with line ===

diffs = diff(TMR);

newL = round(Fs*sum(diffs)+1);

newTMR = zeros(1,newL);

newPPG = zeros(1,newL);

k=0;

for i = 1:length(diffs)

newPPG(i+k) = PPG(i);

newTMR(i+k) = TMR(i);

if diffs(i)*Fs > 1.5

l = round(diffs(i)*Fs-1);

for j = 1:l

newPPG(i+k+j) = nan;

newTMR(i+k+j) = nan;

end

k = k + l;

end

end

newPPG(end) = PPG(end);
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newTMR(end) = TMR(end);

%Interp1 gaps

PPG = newPPG;

TMR = newTMR;

bd = isnan(newPPG);

gd = find(~bd);

PPG(bd) = interp1(gd,newPPG(gd),find(bd));

TMR(bd) = interp1(gd,newTMR(gd),find(bd));

%===========================

%=== Downsample ===

y = resample(PPG,3,Fs);

Fs = 3;

%==================

%=== Butter ===

Wn = 0.5/(Fs/2); %wn = 0.5 med Fq = 2 Hz, cutoff freq = 0.5 Hz.

[b,a] = butter(2,Wn,’low’);

y = filtfilt(b,a,y); % forward and backward

%==============

%=== Upsample ===

y = resample(y,75,Fs);

PPG = PPG - y(1:length(PPG));

Fs = 75;

%================

%== Integral sumation and median ==

timeHist = 60; %Time hist in s.

skipL = 5; % skip in s.

histL = timeHist*Fs; % Frame sample length

skip = skipL*Fs;

ampsum = zeros(1,length(PPG));

j=1;

for i = (histL):skip:length(PPG)

ampsum(j) = sum(abs(PPG((i-histL+1):i))); % sum abs

j=j+1;

end

ampsum = ampsum(1:j-1);

%median

mT = 5; %last N min.

ampsummed = medfilt1(ampsum,60*mT/skipL);

%==================================

%== Plot Fix ===

tend = (length(ampsummed)-1)*skipL/60;

t1 = linspace(1,tend,length(ampsummed)) - treatStart;

t2 = linspace(1,tend,length(bd)) - treatStart;

if treatStart < 0 % if start is before recording first 10 is norm

%, else 10 min from start.

norm = median(ampsummed(1:(10*60/skipL))); % median of first
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% 10 min gives norm

else

norm = median(ampsummed((treatStart*60/skipL)+1:

((treatStart+10)*60/skipL)));

end

xLimits = [min([0 t1(1) bpTimes(1)])-2 max([(tend-treatStart)

treatEnd-treatStart bpTimes(end)])+2];

fig1 = figure;

subplot(2,1,1)

hold on

plot(bpTimes,bpSys/100,’r--’)

plot(bpTimes,bpDia/100,’b--’)

plot(t1,ampsum/norm,’g’)

plot(t1,ampsummed/norm)

ylim([0 2]);

plot([0 0],ylim,’m’)

plot([treatEnd-treatStart treatEnd-treatStart],ylim,’m’)

title([data(m).name ’ PPG nbr: ’ int2str(PPGNBR)])

xlabel(’Time (min)’)

ylabel(’RMCP’)

xlim(xLimits);

hold off

j = 0;

bdl = zeros(1,length(bd));

for i = 1:length(bd) %fix baddata (bd) for plot

if bd(i) == 1

j = j + 1;

else

j = 0;

end

bdl(i) = j;

end

j = length(bdl);

for i = 1:j-1

if bdl(j-i) ~= 0 && bdl(j-i+1) ~= 0

bdl(j-i) = bdl(j-i+1);

end

end

subplot(2,1,2)

plot(t2,bdl,’r’)

hold on

plot([0 0],ylim,’m’)

plot([treatEnd-treatStart treatEnd-treatStart],ylim,’m’)

hold off

ylabel(’Missing data points’)

xlabel(’Time (min)’)

xlim(xLimits);

saveas(fig1,[data(m).name ’.png’]);

end
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