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Abstract 
 

This Thesis work deals with the ASIC implementation of the sine function 
approximation using the combination of Parabolic Synthesis methodology and 
linear interpolation. Parabolic Synthesis is a novel methodology for 
implementing unary functions such as logarithmic, trigonometric, and 
arithmetic functions. This methodology gives a high degree of parallelism and 
efficient use of hardware compared to existing algorithms like polynomial 
approximation, CORDIC etc. Parabolic Synthesis is combined with linear 
interpolation in order to achieve the high accuracy. The architecture is 
designed to achieve increased performance, lesser area and lower power 
consumption. 

Keywords: Parabolic Synthesis, Linear interpolation, MCM, Sine function 
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Preface 
 
In this thesis work, we both have worked together except from the literature work, 
and total work has been scheduled based on our availability. We have divided the 
tasks and worked together throughout the project.  
 
This thesis documentation is organized into 8 chapters. Chapter 1 presents a short 
introduction to exist algorithms along with their merits and demerits. Chapter 2 
provides description of Parabolic Synthesis methodology and its advantages over 
other algorithms. Chapter 3 explains the linear interpolation technique and chapter 
4 contains a detailed description of the architecture development procedure for the 
parabolic synthesis methodology and linear interpolation approximation. 
Architecture implementation of design in hardware is explained in chapter 5. In 
chapter 6, Design flow and results from the hardware implementation are 
discussed and compared with other implementations. Conclusion and future work 
is explained in chapter 7 and 8. 
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CHAPTER 1 

1 Introduction 

Unary functions like Logarithmic, Exponential, and Trigonometric functions as 
well as Arithmetic functions [1] plays an important role in applications like 
wireless systems, computer graphics, digital signal processing. For the 
implementation of these functions we have to choose an algorithm, which is good 
and plays an important role in area, computational speed, and accuracy. The 
hardware implementation of such functions is a challenge to meet the desired 
requirements. 

There exist different algorithms such as single lookup table, polynomial 
approximation, and CORDIC algorithm, which has own merits and demerits. A 
single lookup table [2] is an easy and direct method in implementation. However 
this method suits for the low precision applications, not for low area applications. 
A Single lookup table can be approximated by using interpolation technique in 
order to increase the accuracy up to an extent. 

Polynomial approximations [3] are performed with additions and multiplications. 
The computational complexity will be depending on which polynomial schemes 
you will choose in the existed schemes. Depending on the requirements of the 
design, polynomial approximation can be implemented either with least squares 
approximation or with least maximum approximation. 

Another method is the CORDIC algorithm [4], which is good in efficient use of 
hardware since it has no multipliers. The CORDIC algorithm is an iterative 
algorithm, which is implemented by using shifts and additions. Increased number 
of iterations increases the bit accuracy but makes the algorithm unfeasible for 
high speed applications. 

In order to overcome some limitations in the previous methods, a new algorithm 
called Parabolic Synthesis [5] has been chosen. It is a novel methodology that 
came up with a very fast computational techniques and better accuracy, when 
implementing in hardware. In this Master thesis work, the design of the sine 
function approximation is done by using Parabolic Synthesis methodology and 
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followed by linear interpolation approximation aiming for better accuracy, area, 
and power consumption. 
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CHAPTER 2 

2 Parabolic Synthesis 

2.1 Introduction 
Parabolic Synthesis is a different methodology to implement  functions like 
Trigonometric, Logarithmic, and Arithmetic functions, which plays a vital role in 
the field of signal processing, image processing, and robotics, where the speed of 
computations has an important role [5]. 
 
The Parabolic Synthesis methodology makes use of an original function to develop 
the sub functions and help functions, which are implemented in the hardware [5]. 
The proposed architecture possesses a high level of parallelism and consumes less 
time in computation. The design is built only with multipliers, adders and shifters, 
which is easily implemented in hardware.  
 
The Parabolic Synthesis methodology works better in getting efficient response in 
terms of area, power and time. The main steps in this methodology are 
normalization, approximation and transformation [5]. 
 

2.2 Normalization 
Normalization is the first step in Parabolic Synthesis methodology, which limits 
the input in the numerical range 0 to 1.The inputs and output for a particular unary 
function ,which is notated as forg(x) ,should be limited to 0 to 1 on both x and y 
axis. The function should be either convex or concave throughout the interval. 
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2.3 Methodology development 
The Parabolic Synthesis methodology is developed in approximation of any unary 
function, it always good to think in hardware perspective so that they can be 
synthesized with good metrics. The simple operations like multiplication, addition, 
and shifts are chosen in designing architecture. 
The proposed methodology will be derived in to a set of sub functions ݏ௡ሺݔሻ, 
which are recombined in order to get an approximated original function. 
 

ሻ࢞ሺࢍ࢘࢕ࢌ ൌ ሻ࢞૚ሺ࢙ ∗ …ሻ࢞૛ሺ࢙ . .ሺ૛																																																																																											ሻ࢞ሺ࢔࢙ ૚ሻ 

 
In (2.1),	ݏଵሺݔሻ represents a parabolic looking function, which is called first help 
function. The use of number of sub functions closes the approximated value to 
original value and hence better accuracy. The sub functions derived as parabolic 
looking functions should be feasible, so that they can be implemented in hardware. 
The second sub function is developed by using first help function		 ௗ݂௜௙௙ሺݔሻ. 
 

		 ௗ݂௜௙௙ሺݔሻ ൌ
௢݂௥௚ሺݔሻ

ሻݔଵሺݏ
																																																																																																					ሺ2.2ሻ 

 
In the same manner, the other help functions are also developed in order to 
develop other sub functions as shown in (2.3). 
 

		 ௡݂ାଵሺݔሻ ൌ
௡݂ሺݔሻ

ሻݔ௡ାଵሺݏ
																																																																																																						ሺ2.3ሻ 

 

Developing sub-functions 
 
The first sub functionݏଵሺݔሻ in Parabolic Synthesis methodology is developed by 
dividing the original function ௢݂௥௚ሺݔሻ, with x as first order approximation. The two 
possibilities after the division is either݂ሺݔሻ> 1 or ݂ሺݔሻ< 1.To develop the first sub 
function,1 ൅ ൫ܿଵሺ1 െ  ሻ൯ is used an approximated term. The multiplication of theݔ
approximated term with x gives the first sub-function [1] [16]. 
 
ሻݔଵሺݏ ൌ 1 ൅ ൫ܿଵሺ1 െ ሻ൯ݔ ∗ ݔ ൌ ݔ ൅ ܿଵሺݔ െ  ሺ2.4ሻ																																																					ଶሻݔ
 
The coefficientc1 in (2.4) is calculated determined according to (2.5) 
 

ܿଵ ൌ lim
௫→଴

௢݂௥௚ሺݔሻ

ݔ
െ 1																																																																																																					ሺ2.5ሻ 
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The first help function is calculated according to (2.2) and is used in developing 
the second sub function, which is also a parabolic function. 
 
ሻݔଶሺݏ ൌ 1 ൅ ܿଶሺݔ െ  ሺ2.6ሻ																																																																																															ଶሻݔ
 
ܿଶ	 in (2.6) is chosen to satisfy that the quotient between the first help function 
fhelp1(x) and the second sub-function s2(x) is equal to 1 when x is set to 0.5. 
 

ܿଶ ൌ 4 ൬ ଵ݂ ൬
1
2
൰ െ 1൰																																																																																																							ሺ2.7ሻ 

 
The sub functions n> 2 are developed by dividing the help function into sub 
intervals as equated in (2.8). The parts of help functions are used to develop 
further partial sub functions [1]. 
 
 

௡݂ሺݔሻ ൌ

ە
ۖۖ
۔

ۖۖ
ۓ ௡݂,଴ሺݔሻ, 0 ൑ 	ݔ ൑

1
2௡ିଵ

௡݂,ଵሺݔሻ,
1

2௡ିଵ
൑ ݔ ൑

2
2௡ିଵ………………… .………

							݂௡,ଶ೙షభሺݔሻ,
2௡ିଵ െ 1
2௡ିଵ

൑ ݔ ൑ 1

																																																										ሺ2.8ሻ 

 
The normalized value of input ݔ௡ is used instead of x in partial sub functions in 
order to have a feasibility to implement them in hardware. The partial sub 
functions are notated as (2.9) [1] [16]. 
 

ሻݔ௡ሺݏ ൌ

ە
ۖۖ
۔

ۖۖ
ۓ ,௡ሻݔ௡,଴ሺݏ 0 ൑ 	ݔ ൑

1
2௡ିଶ

,௡ሻݔ௡,ଵሺݏ
1

2௡ିଶ
൑ ݔ ൑

2
2௡ିଶ………………… .………

,௡ሻݔ௡,ଶ೙షమሺݏ							
2௡ିଶ െ 1
2௡ିଶ

൑ ݔ ൑ 1

																																																								ሺ2.9ሻ 

 
The recombination of partial sub functions in (2.9) gives an approximation of 
௡݂ିଵሺݔሻ  and parabolic sub function is formulated as (2.10)[1] [16]. 

 
ሻݔ௡,௠ሺݏ ൌ 	1 ൅	ܿ௡,௠ ∗ 	ሺݔ௡ െ  ௡ଶሻ(2.10)ݔ
 
Coefficients in parabolic sub functions are calculated according to (2.11) 
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ܿ௡,௠ ൌ 4 ∗ ൛ ௡݂ିଵ,௠ ∗	 ቆ
2 ∗ ሺ݉ ൅ 1ሻ െ 1

2௡ିଵ
ቇ െ 1ቋ																																																			ሺ2.11ሻ 

 
In parabolic synthesis methodology, to implement any unary function using more 
than two sub functions results more hardware. The third sub function uses two 
coefficients and needs one more multiplier to recombine, which is a demerit in 
hardware perception. It is always a tradeoff to choose how many bits of accuracy 
are desired and how many number of sub functions should be used. 
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CHAPTER 3 

3 Interpolation 

3.1 Introduction 
The interpolation concept is used to approximate the function with the known data 
points by analyzing the numerical data [9]. There are several ways of interpolating 
a continuous signal like Linear, Piecewise, and spline. From all the existing 
interpolation techniques, linear interpolation is having its own advantages which 
possess speed, simplicity, and accuracy [9].  
 

3.2 Interpolation methods 
There are several interpolation methods existed and every method is having its 
own merits and demerits. Depends on application and implementation, user has to 
make a tradeoff to choose which method is best suited. Piecewise constant 
interpolation, Linear interpolation, Spline, and the Polynomial interpolation are 
different interpolation methods, which are commonly used in approximation of 
functions. 
 
Piecewise constant interpolation or nearest neighbor interpolation is the easiest 
and the simplest method among all the existing methods [10]. In this technique, 
the method just locates the nearest data value and assigns to it. This method is 
chosen for image processing applications where multivariate interpolation is 
needed [9]. 
 
Linear interpolation is the other method, which uses some known data points to 
calculate an unknown data point [9]. This method is well suited for the 
applications like computer graphics and easily implemented with Lookup tables. 
To work in other spatial domains, one can go for bilinear interpolation or trilinear 
interpolation methods.  
 
Polynomial interpolation is another form of interpolation, where the interpolant is 
a polynomial function, which is a linear equation in case of linear interpolation 
[11]. Here the Interpolation error is proportional to the distance between the data 
points and interpolant is indefinitely differentiable, since it is a polynomial [11]. 
On the other hand, the polynomial interpolation has a drawback of computational 
complexity and oscillatory artifacts [11]. The spline interpolation method 
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overcomes the disadvantages of polynomial method by using a low degree of 
polynomial. The computational complexity is also lower with same accuracy as 
the polynomial interpolation [11]. 
 

3.3 Linear interpolation 
Linear interpolation is a method of finding new data points (x, y) from the known 
data points (x0 y0, x1y1) as shown in Fig. 1. The new set of data points (x, y) can be 
found by the slope of straight line between two known points [9]. 
 
 

 

Figure 1. The Method of interpolation 

 

As shown in Fig. 1, the value of  y  for a known value of  x  is calculated according 
to (3.1). 
 

ݕ ൌ ଴ݕ ൅ ሺݔ െ ଴ሻݔ ∗
ଵݕ െ ଴ݕ
ଵݔ െ ଴ݔ

																																																																																				ሺ3.1ሻ			 

 
Elaborating (3.1), y0 is the value from where the interpolation starts and the second 
part in the product term is the gradient value of the line. Linear interpolation with 
different intervals like 8, 16, 32 and 64 are chosen to get desired accuracy and 
precision of values. 
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CHAPTER 4 

4 Architecture development 

4.1 Introduction 
In this section, architecture development for sine function using Parabolic 
Synthesis methodology combined with linear interpolation is explained. As 
explained in section 2, Parabolic Synthesis methodology provides feasibility in 
implementation of unary functions in accuracy and hardware utilization also. 
Providing some optimizations for architecture also makes more efficient hardware 
implementation. In this case, sine function is the original function forg (x) and is 
used to develop the sub functions. There are several algorithms to implement a 
sine wave in hardware as explained in section 1, every algorithm is having its own 
merits and demerits. In this project, a novel methodology Parabolic Synthesis is 
chosen to gain the less computation complexity and speed as well. Parabolic 
Synthesis is a methodology, which is constructed with different stages called as 
sub functions to compute value for any unary function [5]. The Error from these 
sub functions is analyzed and approximated by using linear interpolation 
technique. 
 
 An analysis is made to choose the number of sub functions to be used in 
achieving more than 15 bits of accuracy. The third sub function is implemented 
with linear interpolation technique, which gives a better result in all the metrics. 
The objective of the design is achieving better accuracy with certain input 
constraints, less power consumption and less computational speed. 
 

4.2 Analysis 
The Parabolic synthesis architecture consists of different sub functions and the 
product of them gives an approximated original function. The accuracy of the 
output increases as the number of sub functions is increased. Increasing the 
number of sub functions consumes more hardware area and computational speed. 
So, an analysis is made for architecture to use how many sub functions are to be 
combined with linear interpolation in order to achieve the accuracy desired. The 
accuracy is calculated by measuring the difference between original function and 
derived function. 
 
ሻܤሺ݀ݎ݋ݎݎ݁	݁ݐݑ݈݋ݏܾܽ	 ൌ 20 ∗ log	ሺܾܽݏሺ݈ܽ݊݅݃݅ݎ݋	݁ݑ݈ܽݒ െ  ሻሻ(4.1)ݐ݈ݑݏ݁ݎ	݀݁ݒ݅ݎ݁݀
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In dB scale 6.02 dB represents 1 bit accuracy. For example, 61 dB represents 10 
bit accuracy. In this case, two different scenarios are considered to analyze the 
absolute error and accuracy, which are discussed further. 
 

4.2.1 One sub-function combined with linear interpolation 
The sine function approximation is designed with one sub function combined with 
different levels of interpolation to analyze the bit accuracy. The design is 
approximated in the range 00<x<900and 8, 16, 32, and 64 levels of interpolation is 
used. 
 

 

Figure 2. The Error analysis for 1 sub function & linear interpolation 

 

 
 
 
 
 
 
 
In Fig. 2, the error analysis is shown for different scenario in dB value. The 
resolution in bits is as below. 
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 8 intervals, resolution   9.1 bits 
 16 intervals, resolution 11.1 bits 
 32 intervals, resolution 13.09 bits 
 64 intervals, resolution 15.1 bits 

 
As the number of interpolation levels is doubled, the resolution is increased by 2 
bits. In order to achieve 15 bit accuracy, a 64 level interpolation is needed and in 
order to implement in hardware, a Look up Table (LUT), which can store 64 
different values should be used. 

4.2.2 Two sub-function combined with linear interpolation 
As explained in 1.2.1, in order to achieve more than 15 bit accuracy, it requires 
more hardware area with one sub function combined with linear interpolation. In 
this section, the sine function is approximated by using the 2 sub functions 
combined with linear interpolation. The design is approximated in the range 
00<x<900and 8, 16, 32, and 64 levels of interpolation is used. 
 

 

Figure 3. The Error analysis for 2 sub functions & linear interpolation 

 
 
In Fig. 3, the error analysis for sine function approximation with 2 stage parabolic 
synthesis combined with linear interpolation is shown in dB scale. The resolution 
for different levels of interpolation is as below. 
 

 8 intervals, resolution  11.7 bits 
 16 intervals, resolution 13.4 bits 
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 32 intervals, resolution 15.6 bits 
 64 intervals, resolution 17.5 bits 

 
The sine function approximation designed with 2 stage parabolic synthesis 
combined with 32 level interpolation gives more than 15 bits of accuracy. 
 

4.2.3 Comments 
The approximation of the sine function implemented with parabolic synthesis 
methodology provides feasibility to implement in hardware. The linear 
interpolation approximation technique when combined to Parabolic Synthesis 
provides good results in accuracy, chip area, and computational speed as well. As 
the number of levels of interpolation is doubled, the resolution and error 
distribution is increased by 2 bits. Changing the coefficients, in linear interpolation 
manually, can increase the bit accuracy. The implementation of linear 
interpolation methodology for the approximation of sine function requires 
memories and more access time. Therefore, the concept of a 2-stage Parabolic 
Synthesis combined with linear interpolation is the feasible way to achieve less 
size memories and less access time. 

4.3 Development of architecture 

4.3.1 Parabolic Synthesis architecture 
The Parabolic Synthesis methodology makes use of an original function to develop 
the sub functions and help functions, which are implemented in the hardware [5]. 
The proposed architecture possesses a high level of parallelism and consumes less 
time in computation. The design is built only with multipliers, adders and shifters, 
which is easily implemented in hardware.  
 
The Parabolic Synthesis methodology works better in getting efficient response in 
terms of area, power and time. The main steps in this methodology are 
normalization, approximation and transformation [5]. 

4.3.1.1 Normalization 
The Parabolic Synthesis methodology for a specific unary function can be 
computed mainly in three steps, normalization, approximation, and transforming.  
In Normalization, the numerical range will be limited to a range in order to 
simplify the hardware implementation. For any Unary function y=forg (x), both x 
axis and y axis should be in range of 0 and 1. Fig. 4 shows sine function after 
normalization. 
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Figure 4. The Normalization for Sine function 

 

4.3.1.2  Calculation of coefficient in sub-functions 
The hardware is completely designed with low complexity operations like 
multiplications, additions and shifts when approximating the original function. The 
proposed methodology uses the basic function to formulate the sub functions and 
later multiplication of the sub functions gives the approximated original function. 
 
The methodology is constructed with second-order parabolic functions [5] named 
as sub functions and recombination of these sub functions gives approximation of 
original function  forg (x), in this case the sine function, as shown in (2.1). The 
accuracy will be better, if more sub functions are used in the calculation. 
 
The help function generated at each stage is used in calculating the next sub 
function. For example as shown in (2.2), the division of the original function by 
the first sub function gives the first help function, which is used when deriving the 
second sub function. The subsequent help functions are generated from the 
according to (2.3). 
 
When developing the sub functions, the original function is decomposed into 
second-order parabolic functions for the interval 0 to 1. The second order 
parabolic functions are chosen to avail a benefit of implementing with less 
complexity in hardware. The third sub function from the Parabolic Synthesis 
methodology contains two coefficients which increases the hardware complexity 
[9].  The accuracy will be better by replacing the third sub function with another 
approximation technique. 
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The first sub function is calculated by dividing the original function with x as a 
first order approximation, which is specified in (2.2). The result have two 
possibilities, fdiff(x)>1 and fdiff(x) <1 [14]. In order to approximate the original 
function, f2(x) is developed from fdiff (x), which is specified in (2.3). The first sub 
function is calculated by multiplying x and f2(x) as shown in (4.3). The related plot 
in developing first sub function is shown in Fig.5. 
 

ܿଵ ൌ lim
௫→଴

௢݂௥௚ሺݔሻ

ݔ
െ 1				 ൌ 0.5703125																																																																					ሺ4.2ሻ 

 
ଶ݂ሺݔሻ ൌ 1 ൅ ܿଵሺ1 െ  ሺ4.3ሻ																																																																																																		ሻݔ

 
where c1 is specified in (4.2) 
 
ሻݔଵሺݏ ൌ ଶ݂ሺݔሻ ∗ ݔ ൌ ݔ ൅ ܿଵሺݔ െ  ሺ4.4ሻ																																																																								ଶሻݔ
 
 

 

Figure 5. The Developing the first sub function 

The first help function, calculated from (4.5) is used when deriving the second sub 
function. The second sub function s2(x) is calculated from (2.6). 
 

	 ௛݂௘௟௣ଵሺݔሻ ൌ
௢݂௥௚ሺݔሻ

ሻݔଵሺݏ
																																																																																																						ሺ4.5ሻ 

 
c2 in (2.6) is chosen to satisfy that the quotient between the first help function 
fhelp1(x )and the second sub-function s2(x) is equal to 1 when x is set to 0.5. 
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ܿଶ ൌ 4 ൬ ଵ݂ ൬
1
2
൰ െ 1൰ 						ൌ 0.400390625																																																																		ሺ4.6ሻ 

 

 

Figure 6. fhelp (x) & second sub function s2(x) 

 
Fig. 6 shows plots for the help function and the second sub function. The crossing 
at x=0.5 can be clearly seen from the graph. 

4.3.2 Linear interpolation architecture 
In case of the sine wave approximation, linear interpolation is applied by 
calculating the gradient values at different levels. Equation (4.7) gives the third 
sub function, which is used for the linear interpolation technique. 
 
ሻݔଷሺݏ ൌ ெௌ஻ܭ ൅ ሺܩெௌ஻ ∗ ܺ௅ௌ஻ሻ																																																																																	ሺ4.7ሻ	 
 
From the equation, K is the value from where the interpolation is starting and G is 
the slope of the function. The most significant bits from the input x are used to 
index the particular gradient value and K value.  
 
The values of K and G are measured from the help function generated by dividing 
the original function and result from Parabolic Synthesis as shown in (4.8). 
 

݊݋݅ݐܿ݊ݑ݂	݌݈݁ܪ ൌ
௢݂௥௚

௣݂௔௥௔௕௢௟௜௖
																																																																																							ሺ4.8ሻ 
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The value of K is derived from the help function and depends on the number of 
levels in the interpolation. For n levels of interpolation, n number of K values is 
chosen from the help function at successive time intervals. The gradient (G) value 
is calculated by subtracting the successive K values according to (4.9). 
ሺ݊ሻܩ ൌ ሺ݊ܭ ൅ 1ሻ െ  ሺ4.9ሻ																																																																																												ሺ݊ሻܭ
 
Fig. 7 shows the plot of the K values measured from the help function.  
 
 

 

Figure 7. K values for the third sub function 

 

4.3.3 Four quadrants 
The calculations are developed for the first quadrant and extended to calculate the 
sine values in other three quadrants also. The original angle is normalized and 
transformed into first quadrant by using a factor 2/ π. 
 

௙ሻߠሺ݈݁݃݊ܽ	݀݁ݖ݈݅ܽ݉ݎ݋ܰ ൌ ߠ ∗ ቀ
ଶ

௣௜
ቁ ൌ 	 ሺݍଵݍ଴ሻሺ݂݈ܽ݊݋݅ݐܿܽݎ		ݐݎܽ݌ሻ															ሺ4.10) 

X ᶱf(integer part , fraction part )

2/π

ᶱ
 

Figure 8.Normalization of original angle 
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For example, 2π/3 will be represented as 
 
 
ߨ2
3
	ܺ	

2
ߨ
ൌ 	
4
3
ൌ 01

1
3
																																																																																																		ሺ4.11ሻ	 

The result in (4.11) is divided into integer part and fractional part. The integer part 
is represented using two binary bits ݍଵݍ଴ and is used by the multiplexer in the 
architecture. These two select lines represent the quadrant of the original angle. 
The same bits are also used in two’s complement representation of the output 
when sine is in 3rd and 4th quadrant. The changes in architecture in view of the 
hardware are explained briefly in next chapter. The architecture for all four 
quadrants is possible by inserting one multiplexer and a two’s complement 
converter. 

Table 1. Input transformation for 4 quadrants 

Quadrant Theta_sel(ݍଵݍ଴) Input value 
 ௙ߠ 00 1

 
2 01 1 െ  ௙ߠ

 
 ௙ߠ 10 3

 
4 11 1 െ  ௙ߠ

 
 
The table 1 represents the ݍଵݍ଴ values for all the quadrants and input vales, which 
are selected by multiplexer. 
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CHAPTER 5 

5 Hardware implementation and 
optimization 

5.1 Design flow 
The implementation of the design in hardware starts with making a reference 
model in MATLAB and verifying the functional behavior of the design. This 
thesis is organized similar to the ASIC flow as shown in Fig. 9. After a 
successfully working reference model, the design is coded in VHDL and simulated 
with the Modelsim tool. Furthermore, the results are compared with reference 
model. The design is synthesized for generating a netlist and is used to analyze the 
power consumption. All possible switching activities are generated as Value 
Change Dump (VCD) files using Modelsim, which is used by the Primetime tool 
for power analysis. 
 

 

Figure 9. The Design flow 
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5.2 Top level architecture 
In this chapter, the global architecture for complete design is explained in top 
down methodology. Two stage parabolic synthesis, linear interpolation, 
optimization techniques, and word length evaluation are explained briefly.  
 
Fig. 10 shows the top level architecture for the design. The architecture is divided 
in to two parts, which is represented in dashed lines. The upper part represents a 
two-stage Parabolic Synthesis and lower part represents a linear interpolation. 
Several optimization techniques are applied to improve the hardware efficiency. 
The complete architecture is designed and implemented with 4 multipliers, 7 
adders, 1 multiplexer, and a 2’s complement module. The detailed description of 
every stage is explained further. 

 

Figure 10. The Top level architecture 
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5.3 Parabolic synthesis architecture 

5.3.1 Architecture 
The implementation of sub functions in Parabolic Synthesis and optimization 
techniques in the architecture is discussed in this section. The implementation is 
divided into 3 steps namely preprocessing, processing, and post processing, which 
are discussed further briefly. Fig. 11 represents the architecture for parabolic 
synthesis. 
 

 

Figure 11. The Architecture of 2 Stage Parabolic Synthesis 

The design consists of a multiplexer to select the inputs for a specific quadrant, 
and Multiple Constant Multiplier (MCM) unit to replace the multipliers with 
adders. This architecture results the product of two sub functions, which is 
multiplied to the result from the linear interpolation to get the final output. 
 

5.3.2 Processing 
Processing is the main part of the architecture, which calculates the product of two 
sub functions. The two parabolic functions in the methodology are easily 
implemented in hardware since they only need normal adders and multipliers. 
Applying some optimization techniques efficiently can reduce the number of cells 
required. Equations (2.4) and (2.6) are the two parabolic functions to be 
implemented in hardware and product of those two sub functions results in the 
output. 
 
௣݂௔௥ሺݔሻ ൌ ሻݔଵሺݏ ∗  ሺ5.1ሻ																																																																																															ሻݔଶሺݏ

 
The front end part of the design is a multiplexer, which selects the input depends 
on selection lines. The constants ܿଵ and ܿଶ calculated in (4.2) and (4.6) 
respectively are used and it’s equivalent binary representation is shown below. 
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ܿଵ ൌ 0.5703125ሺଵ଴ሻ ൌ 	10010010ሺଶሻ																																																																						ሺ5.2ሻ 
 
ܿଶ ൌ 0. 0.400390625ሺଵ଴ሻ ൌ 	01100110ሺଶሻ																																																													ሺ5.3ሻ 
 

5.3.3 Hardware optimizations 
Multipliers plays an important role in occupying the hardware area. Different 
optimization techniques have to be applied to avoid the usage of multipliers. In the 
design, two multipliers have the common multiplicand with  ܿଵ and ܿଶ as 
multipliers. The MCM unit replaces those two multipliers with 4 adders. The 
MCM unit is a replacement for multipliers when they have common multiplicand, 
which is built with shift operations and adders, which results less hardware area. 
 
Fig.12 shows the implementation of MCM unit with 4 adders. The MCM unit 
takes the value ݔ െ  .ଶ and generates the product value with both c1 and c2ݔ
 
 

>>7>>6 >>2>>3

C1(x‐x2)

IN

C2(x‐x2)
 

Figure 12. The Multiple Constant Multiplier (MCM) unit 
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The other optimization in hardware is the replacement of an adder in calculating 
the second sub function. In the calculation of the second sub function, the value 1 
is added to c2* (x-x2). The adder in this can be removed and a binary ‘1’ is padded 
at MSB position as presented in Fig. 11. 

5.4 Linear interpolation architecture 

5.4.1 Overview 
In this chapter, the architecture for the third sub function with linear interpolation 
is explained. Fig. 13 shows the architecture for the third sub function that consists 
of  
1 multiplier, 1 adder, and 2 Look Up Tables (LUT). 
 

 

Figure 13. The architecture of the third sub function (Linear interpolation) 

 
In the design, the values K and G are calculated from (4.3).They are stored in a 
LUT and the MSB of the input are used to address the position of the bits. 

5.4.2 Hardware optimizations 
The values of G from table 2 contain both positive and negative values. If they 
have to be used in 2’s complement representation with same precision requires 
more number of 1’s which results to more power consumption and chip area as 
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well. Providing some logic in the arithmetic calculations avoids this kind of 
representation. In this case, a dual functional adder is built, which can perform 
both addition and subtraction. 

 

Figure 14. The Addsub Component 

 
As shown in Fig. 14, sign bit decides the operation should be performed by the 
component. The first MSB in G is used to represent either if the value is positive 
or negative. 
 
Hardware implementation of third sub function needs a multiplier and an adder. 
Fig.14 shows the hardware architecture of the linear interpolation method. The 
adder in this case is a dual functional, which means it can be switched to have 
either an addition or subtraction functionality. We needed this since, the product of 
G and ܺ௅ௌ஻ can be both negative and positive. Fig.14 shows the Addsub 
component. Because of sine function’s symmetry property and by reading in 
reverse order, the K and G coefficients stored in LUTs can be used for all the four 
quadrants. 
 
The output from linear interpolation is multiplied with the parabolic synthesis 
output to get the final result. 

5.5 Post-processing 
The value of sine function is negative in the third and fourth quadrants.  The post 
processing part transforms the output in-to a feasible form. The results in negative 
are converted into 2’s complement representation. The 2’s complement component 
is switched only in 3 and 4 quadrants and q1 is used to enable or disable it. Fig. 15 
shows block diagram of 2’s complement converter. 
 
 
 
 
 
 

Figure 15. Two's complement module 
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5.6 Word length optimization 
The design is aimed for the usage of fewer bits to represent the data at different 
stages. The study to fix the word length at every stage is done in MATLAB and is 
verified, as well as for the loss of precision. Fig. 16 shows the block diagram with 
word length at different stages. 
 
 

 

Figure 16. Block diagram with wordlengths 
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Table 2. Word lengths at every stage 

Name Input1(length) Input2(length) Original 
output(length) 

Truncated(lengt
h) 

Square xi(14) xi(14) xi
2(28) xi

2(15) 
x_sub xi(14) xi

2(15) xi- xi
2(15) xi- xi

2(15) 
MCM xi- xi

2(15) --------- c1(7) * xi- xi
2 c1 * (xi- xi

2 ) 
(17) 

c2(7) * xi- xi
2 c2 *( xi- xi

2 ) 
(17) 

s1 _ add xi(14) c1 * (xi- xi
2 ) 

(17) 
s1 = xi +c1 * 

(xi- xi
2 ) 

(18) 

s1 = xi +c1 * (xi- 
xi

2) 
(18) 

s2 _ add 1 c2 *( xi- xi
2 ) 

(17) 
s2 = 1 +c2 * 

(xi- xi
2 ) 

(18)

s2 = 1 +c2 * (xi- 
xi

2 ) 
(18) 

s1 s2 mult s1(18) s2(18) fp = s1 * s2    

(36)
fp = s1 * s2    

(19) 
G_X_Mult xLSB(9) G (19) G * xLSB(28) G * xLSB(19) 

K 
_GX_Add 

K (19) G * xLSB  (19) S3=K + G * 
xLSB  (19) 

S3 = K + G * 
xLSB  (19) 

S3_ fp 
_Mult 

S3 (19) fp (19) S3 * fp (38) S3 * fp (19) 

 
The input which is in the range 0 to 1 is represented using 14 plus 2 bits used for 
selecting the transformation of the input and output in case of the other quadrants. 
A trial and error method to fix the word lengths at every stage has been used. A 
function is developed in MATLAB to truncate the word length at each stage in a 
flexible way. A generic methodology is chosen in designing the components even 
in implementing in the whole design in hardware.  
 
In Fig. 16, the word lengths at every stage are shown. The data will be truncated to 
a specific word length after every multiplier, since the multiplier increases the 
number of bits. The accuracy desired is cross verified when truncating the bits at 
every stage. The MUX in architecture selects any one of the 14-bit inputs using 
two selection lines. The selection of the inputs is needed to calculate the sine value 
in other quadrants. The squarer unit squares the input and the word length of the 
input is doubled to 28 bits. The xi

2 is truncated to 15 bits from 28 bits. The xi- xi
2 is 

calculated using a subtractor.   No data truncation is needed after any adders or 
subtractor since they does not increase word length to a bigger number , but before 
the operation the word lengths should be balanced in magnitude by adding zeros at 
LSB position, which is represented as  ‘&0’ in Fig. 16 . The MCM unit is designed 
to calculate the two product terms specified in table.4 according to the coefficients 
c1 and c2 , which are 7 bit length. To calculate the first sub-function s1 ,the input xi 
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is added to one of the product from MCM unit. To calculate the second sub-
function s2 , to add a value of 1,one more bit is padded to the other product term at 
MSB position as ‘1&’ denoted in Fig. 16.  
 

The multiplier S1S2_mult gives the product of two sub functions in 35 bit size, 
which is then truncated to 19 bits. The LUT contains K and G values, which are 19 
bit word length, which are tabulated in table 3 and table 4. The LSB 9 bit in x is 
multiplied with G and the result is 28 bits in length, which is then truncated to 19 
bits. K_gxadd, one more adder adds the K value to the product and results third 
sub function with linear interpolation approximation. The product of two sub 
functions and the third sub function are multiplied using a multiplier named as 
S3_fp_pro to produce the final result. The result is truncated to 19 bits from 38 
bits. The truncation at each stage is a trial and error method keeping in mind that 
the desired accuracy is more than 15 bits with minimum word lengths. The word 
lengths of inputs and outputs at every stage and every component are tabulated in 
table 2.  
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Table 3. Values of K in Linear interpolation 

Sl. no Floating value Binary equivalent 
1 1 1000000000000000000 
2 0.999275207519531 0111111111101000010 
3 0.998470306396484 0111111111001101111 
4 0.997886657714844 0111111110111010110 
5 0.997474670410156 0111111110101101010 
6 0.997238159179688 0111111110100101100 
7 0.997127532958984 0111111110100001111 
8 0.997154235839844 0111111110100010110 
9 0.997272491455078 0111111110100110101 

10 0.997489929199219 0111111110101101110 
11 0.997768402099609 0111111110110110111 
12 0.998119354248047 0111111111000010011 
13 0.998504638671875 0111111111001111000 
14 0.998935699462891 0111111111011101001 
15 0.999374389648438 0111111111101011100 
16 0.999839782714844 0111111111111010110 
17 1.000293731689453 1000000000001001101 
18 1.000747680664063 1000000000011000100 
19 1.001171112060547 1000000000100110011 
20 1.001579284667969 1000000000110011110 
21 1.001934051513672 1000000000111111011 
22 1.002258300781250 1000000001001010000 
23 1.002513885498047 1000000001010010011 
24 1.002716064453125 1000000001011001000 
25 1.002834320068359 1000000001011100111 
26 1.002880096435547 1000000001011110011 
27 1.002822875976563 1000000001011100100 
28 1.002677917480469 1000000001010111110 
29 1.002407073974609 1000000001001110111 
30 1.002025604248047 1000000001000010011 
31 1.001499176025391 1000000000110001001 
32 1.000835418701172 1000000000011011011 
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Table 4. Values of G in Linear interpolation 

Sl. no Floating value Binary equivalent 
1 -7.209777832031250e-04 (1) 101111010 
2 -8.049011230468750e-04 (1) 110100110 
3 -5.836486816406250e-04 (1) 100110010 
4 -4.100799560546875e-04 (1)0 11010111 
5 -2.384185791015625e-04 (1)00 1111101 
6 -1.068115234375000e-04 (1)0000111000 
7 2.288818359375000e-05 (0)0000001100 
8 1.182556152343750e-04 (0)0000111110 
9 2.174377441406250e-04 (0)0001110010 
10 2.784729003906250e-04 (0)0010010010 
11 3.490447998046875e-04 (0)0010110111 
12 3.852844238281250e-04 (0)0011001010 
13 4.291534423828125e-04 (0)0011100001 
14 4.405975341796875e-04 (0)0011100111 
15 4.615783691406250e-04 (0)0011110010 
16 4.520416259765625e-04 (0)0011101101 
17 4.539489746093750e-04 (0)0011101110 
18 4.234313964843750e-04 (0)0011011110 
19 4.062652587890625e-04 (0)0011010101 
20 3.566741943359375e-04 (0)0010111011 
21 3.204345703125000e-04 (0)0010101000 
22 2.555847167968750e-04 (0)0010000110 
23 2.021789550781250e-04 (0)0001101010 
24 1.163482666015625e-04 (0)0000111101 
25 4.577636718750000e-05 (0)0000011000 
26 -5.531311035156250e-05 (1)0000011101 
27 -1.468658447265625e-04 (1)0001001101 
28 -2.689361572265625e-04 (1)0010001101 
29 -3.814697265625000e-04 (1)0011001000 
30 -5.264282226562500e-04 (1)0100010100 
31 -6.618499755859375e-04 (1)0101011011 
32 -8.354187011718750e-04 (1)0110110110 
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CHAPTER 6 

6 Results 

6.1 Test setup 
The design is verified with the help of a test bench by stimulating the inputs 
from a text file. The output from the top module is written to a text file, 
which is imported to MATLAB to compare it with the reference output. 
Fig. 17 shows the entire setup for testing the design. 
 
 

Top
Design

TestBench

Output

Input

MATLAB
Verification

Output[18:0]

Input[13:0]

Thetasel[1:0]

CLK

RST

 

Figure 17. The Design Test setup 

The absolute error for the original function and results from the hardware 
implementation are calculated to check the accuracy. Fig.18 shows the absolute 
error calculated for 1 sub function, 2 sub functions, and 3 sub functions. The 
accuracy is increased to more than 15 bits as the number of sub functions are 
increased to 3. 
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Figure 18. The absolute error of the original function compared with the result using 
1, 2, and 3 sub functions 

6.2 Synthesis results 
Synthesis is one of the important and the basic step in the ASIC flow. Here the 
design tool generates gate level net lists from the Register Transfer Level (RTL). 
A design tool called design vision or DC-compiler by Synopsys has been used for 
the synthesis. The netlist is generated by using STMicroelectronics 65nm CMOS 
technology. Different parameters of the design such as area, time and maximum 
clock frequency are analyzed. Further, this generated netlist is used for power 
analysis and will be explained in the chapter 6.3. 

6.2.1 Design constraints 
Low Power Low Threshold Voltage (LPLVT) and Low Power High Threshold 
Voltage (LPHVT) are the two different technology libraries that are used to 
synthesize the design. The design is synthesized using two specified libraries for 
different supply voltages to estimate both static and dynamic behavior. Maximum 
speed and minimum area are the two design constraints to the design. One is to 
find critical path in the design and the other to know minimum area. These 
constraints are applied to the design during synthesis. 

6.2.1.1 Maximum Speed 
The maximum speed of the design estimated by setting up the clock to 1ns, area 
has not set to any value, LPHVT libraries and 1.2V as supply voltage. As seen 
from the table 5, we have got negative slack for maximum speed optimization. A 
slack of 4.29ns is added to the clock to know the critical path time.  
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Table 5 .Maximum speed optimization 

MEASURES PARABOLIC 
SYNTHESIS 

UNITS 

Data Arrival Time 5.16 ns 
Data Required Time 0.87 ns 
Critical path slack -4.29 ns 

Combinational Area 19000 ݉ߤଶ 
Non-combinational Area 367 ݉ߤଶ 

Total Area 19400 ݉ߤଶ 
 

6.2.1.2 Minimum Area 
Minimum area of the design is estimated by setting up the set_maxarea to zero 
during synthesis. The design is synthesized for LPHVT libraries and 1.2V as 
supply voltage. From table 6, we can see that the tool optimizes more on area 
compared to maximum speed.  

Table 6 .Minimum area optimization 

MEASURES PARABOLIC 
SYNTHESIS 

UNITS 

Data Arrival Time 19.83 ns 
Data Required Time -17.93 ns 
Critical path slack 1.86 ns 

Combinational Area 11000 ݉ߤଶ 
Non combinational Area 343 ݉ߤଶ 

Total Area 11400 ݉ߤଶ 
 
Area and speed are the two major features of the design to be interested. The table 
5 and 6 are the two different synthesis runs that are necessary for an area 
optimized design and speed optimized design. The set_max_area to zero applies 
area constraint to the design from which the area cost of the design is calculated. 
To analyze high speed circuit, no value should be set on area and design should 
run on high clock frequency. The area is increased by 70% when the design is 
synthesized for maximum speed and speed is increased nearly thrice. 
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6.2.2 Area of different modules in the design 
The area occupied by different components in the design are calculated and 
tabulated in table 7. The values are taken from the same scenario as specified in 
6.2.1.2 .We can see that most of the area in the design is consumed by the 
multipliers. There are four multipliers in the whole design, which have different 
word lengths and different areas. The DFFs are used to analyze the critical path 
delay in the design. The input MUX is used to select one of the inputs depending 
on the quadrant. There is one 14- bit multiplier (squarer in Fig. 16) and 19-bit 
multiplier to calculate the product of first two sub functions. These two multipliers 
plays a major role in area occupancy and hence the number is bigger for the S1, S2 
Function module in table 7. The S3 Function also consists of one Multiplier and 
two LUTs to store the coefficients. A 19-bit multiplier gives the final result, which 
is a product of three sub functions. 

Table 7 .The area of different modules in the design 

Module name Area Units 
Input DFF 147 ݉ߤଶ 

Output DFF 200 ݉ߤଶ 
Input MUX 60 ݉ߤଶ 

S1,S2 Function 5432 ݉ߤଶ 
S3 Function 2402 ݉ߤଶ 
Multiplier 3148 ݉ߤଶ 
Other cells 22 ݉ߤଶ 
Total Area 11400 ݉ߤଶ 

 
 

6.2.3 Maximum clock frequency 
The speed of the design is measured in terms of maximum clock frequency, which 
is the sum of delays in critical path. The maximum clock frequency is calculated 
by the minimum time period required for the design, which we can see in table 5. 
The maximum clock frequency is the inverse of the total critical path time, which 
is calculated as below. 
The critical path of the design will be affected if there is any change in the 
operating voltage, temperature and threshold voltage. Maximum speed of the 
design is calculated by setting a high frequency clock value as a constraint to the 
design without setting any value for area. The Synthesis scenario is specified in 
6.2.1.1. 

ݕܿ݊݁ݑݍ݁ݎܨ	݇ܿ݋݈ܥ	݉ݑ݉݅ݔܽܯ ൌ
1

݀݋݅ݎ݁݌	݁݉݅ݐ
 

																																																									ൌ
1

ݏ5.29݊
	ൌ  																																ݖ݄ܯ	189



 39

 

6.3 Timing and Area analysis 

6.3.1 Timing 
The design is synthesized with Synopsys design compiler using both 65nm LPHVT 
and LPLVT CMOS libraries. The timing behavior is analyzed under different 
scenario like operating the design at different supply voltage. Fig. 19 shows 
graphical description for critical path delay in both  LPHVT and LPLVT cases and 
it is clear that the delay is almost double in case of LPHVT compared to LPLVT .  

Table 8. Timing values for LPHVT and LPLVT 

Voltage LPHVT (ns) LPLVT (ns) 
1.1 18.4 10.0 

1.15 17.0 9.5 
1.25 14.3 8.78 
1.3 13.2 8.4 

 
 

 

Figure 19. Timing behavior for LPHVT and LPLVT 

6.3.2 Area  
The Parabolic Synthesis methodology architecture is designed focusing on the area 
occupied on hardware. The major components in the design, which occupies the 
area are multipliers and the optimizations in the design, which are explained 
chapter 5.3.3, reduce the area of the design. Fig. 20 shows the graphical 
description of area, which is analyzed under different supply voltages i.e. 1.1V, 
1.15V, 1.25V and 1.3V for both LPHVT and LPLVT   libraries.  
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Table 9 . Area for LPHVT and LPLVT 

Voltage LPHVT (݉ߤଶ) LPLVT (݉ߤଶ) 
1.1 11338 11470 

1.15 11331 11580 
1.25 11327 11743 
1.3 11317 11820 

 
The values in table 9 are calculated for minimum area design by keeping 
set_max_area to 0 during the synthesis. From Fig. 20, there is a slight decrement 
in area of the design as the supply voltage is increased in case of LPLVT ,where as 
it is opposite in case of LPHVT . 
 

 

Figure 20. Area analysis for LPHVT and LPLVT 

 

6.4 Power analysis 

6.4.1 Dynamic Power 
The dynamic power depends on the switching activities in the design, capacitance, 
operating frequency and voltage as equated in (6.1). 
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	 ௗܲ௬௡ ൌ 	
ଵ

ଶ
 ଶ                                                                                                 (6.1)ݒ݂ܿߙ

 
where   α = Switching activity (0-1, 1-0) 
             c = node capacitance 
             f = clock frequency 
            v = supply voltage	
 
The power consumption for the design in case of both LPHVT and LPLVT is 
analyzed using the Primetime tool. The total power is divided into static power 
and dynamic power and the major contribution for dynamic power is switching 
activities of the design.  The netlist file generated after synthesis is used in this 
process and the switching activities are generated as a Value Change Dump 
(VCD) file in the post synthesis verification process. The dynamic power 
consumed by the design, for different voltages in both cases is plotted in Fig. 21 
and tabulated in table 10 and 11.  
 

Table 10. Power results (LPHVt) 

Voltage(V) Cell internal 
Power(µW) 

Net switching 
power(µW) 

Leakage 
power(µW) 

Total 
Power(µW) 

1.1 70.26 
(46.5%) 

74.11 
(49.2%) 

6.5 
 (4.3%) 

150.9 
(100%) 

1.15 77.03 
(46.6%) 

81.23 
(49.1%) 

7.2 
(4.3%) 

165.5 
(100%) 

1.25 91.9 
(46.7%) 

96.4 
(48.9%) 

8.67 
(4.4%) 

197.0 
(100%) 

1.3 101.4 
(46.9%) 

105.3 
(48.7%) 

9.4 
(4.4%) 

216.2 
(100%) 

 

Table 11. Power calculation (LPLVt) 

Voltage(V) Cell internal 
Power(µW) 

Net switching 
power(µW) 

Leakage 
power(µW) 

Total 
Power(µW) 

1.1 87.3 
(13.9%) 

84.3 
(13.4%) 

450 
 (72.7%) 

626.7 
(100%) 

1.15 101.8 
(14%) 

86.29 
(11.8%) 

540 
(74.2%) 

730 
(100%) 

1.25 131.4 
(13.4%) 

104 
(10.6%) 

740 
(76%) 

983 
(100%) 

1.3 147.3 
(13%) 

113.5 
(10%) 

870 
(77%) 

1133 
(100%) 
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The dynamic power calculated is plotted in Fig. 21 and dynamic power is more in 
case of LPLVt compared to LPHVt.. 

 

Figure 21. The dynamic power consumption (LPHVT &LPLVT) 

6.4.2 Static Power 
The leakage power is mainly depends on transistor width, threshold voltage and 
zero threshold leakage current as shown in (6.2). 
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 The leakage power at different supply voltage for both LPHVT  and  LPLVT  is 
analyzed and plotted in Fig.22 and 23. The leakage power is more in case of  
LPLVT   compared with   LPHVT. 
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Figure 22. The Leakage power (LPHVT) 

  
 

 

Figure 23. The Leakage power (LPLVT) 

The static powers in case of both technology libraries are plotted in Fig.22 and 23. 
The static power is very less in case of LPHVT where it is a major contribution in 
total power in case of  LPLVT. In case of  LPLVT, there is rapid growth in static 
power consumption as the supply voltage is increasing. 
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6.5 Energy 
The power dissipation is the main objective when analyzing the efficiency of a 
design. The main source of power includes the switching activities, leakage 
current and short circuit current. The switching activities are dynamic in nature 
and leakage current depends on the threshold voltage. To analyze the efficiency of 
the design, energy consumed by the design is considered as a measure as 
calculated according to (6.3). 
 
	ݕ݃ݎ݁݊݁ ൌ 	௔௩௚݌ ∙  ሺ6.3ሻ																																																																																																݁݉݅ݐ	
 
The design is analyzed for energy consumption in case of both LPHVT and LPLVT  

libraries. The values in table 12 are measured at the maximum frequency of the 
design. The energy consumption is less in case of LPLVT compared to LPHVT. 

Table 12. Energy consumption in the design 

Voltage Energy consumption(nJ)LPHVT Energy consumption(nJ)LPLVT 
1.1 2.65 1.71 

1.15 2.67 1.78 
1.25 2.68 2.06 
1.3 2.71 2.18 

 
 
 

 

Figure 24 . Energy consumption in the design 
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From Fig. 24, the energy consumption is less in case LPLVT compared to LPLVT. 
Since the leakage power is more in LPLVT, it is not considered to be good 
approach to proceed to LPLVT libraries. A tradeoff is applied when considering 
the libraries when synthesizing the design. 

6.6 Comparison 
The sine function approximation using Parabolic Synthesis combined with linear 
interpolation results are compared with other implementations. In this chapter, the 
differences between the implementations and comparing the static and dynamic 
behavior of the designs.We considered the implementation of exponential function 
using Parabolic Synthesis methodology [13] and compared with the sine function 
approximation design. The Parabolic Synthesis methodology provides a feasibility 
to implement any unary function by using the same architecture with different 
coefficients. Peyman implemented the exponential function using Parabolic 
Synthesis using four sub functions in order to get more than 15 bits resolution. The 
same accuracy is achieved in our implementation with two sub functions and 
linear interpolation. The CORDIC algorithm is used to calculate the 
Trigonometric, and the Logarithmic functions, where the application demands 
simple hardware and low precision as well. The CORDIC algorithm only consists 
of adders, shifters and a lookup table and hence it occupies less hardware area 
[19].The algorithm approximately increase  the precision by 1 bit per iteration, 
which means at least 15 iterations are needed achieve a 15 bits precision[19]. 

Table 13. ASIC Synthesis analysis 

Methodology Area(݉ݑଶ) maximum operating 
frequency(ݖ݄ܯ) 

CORDIC 19150 11.5 
Parabolic Synthesis(4 Stage) 26400 48 

Parabolic Synthesis(2 stage) with 
Interpolation 

19400 55 

Table 14. Total Dynamic power analysis 

Methodology Cell internal 
power  (µW) 

Switching power 
(µW) 

Leakage 
power(nW) 

CORDIC 132.76 
54% 

114.61 
46% 

64.71 

Parabolic 
Synthesis(4 

stage) 

162.04 
51% 

158.57 
49% 

97.78 

Parabolic 
Synthesis(2 
stage) with 

Interpolation 

76.99 
49.8% 

77.57 
50.1% 

23.78 
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The area of the design with four sub functions is high since third and fourth sub 
function requires more computations. The CORDIC algorithm occupies less area 
but high latency makes it to use in low speed applications. The power 
consumption is less in CORDIC when compared with Parabolic Synthesis 
Methodology and higher when maximum frequency of operation is considered 
[13] [19].The Parabolic Synthesis combined with linear interpolations is designed 
to calculate the values for all the four quadrants using the same interpolation 
coefficients, which is also an added advantage with the design and causes that its 
area increases slightly in relation to the other implementations. 
 
Table 13 and 14 shows the comparison of both the implementations in different 
aspects. The maximum operating frequency for the design is imported from table 
8, the inverse of 18.4 ns. We cannot compare both the designs in numbers since 
the switching activities used to analyze the designs may not be same and hence we 
compared in sense of percentage of the total power. 
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CHAPTER 7 

7 Conclusion 

The approximation of the sine function is successfully implemented using the 
Parabolic Synthesis methodology combined with a linear interpolation technique. 
An accuracy of more than 15 bits is achieved with hardware implementation of the 
design. Hardware optimization techniques, which replace multipliers with an 
MCM unit, removal of adder result lesser area and power in the design. The design 
is synthesized in different scenario to estimate both dynamic and static behavior 
and results are compared with the CORDIC implementation [13] [16]. It can be 
concluded that the Parabolic Synthesis Methodology is efficient only in 
computational speed with almost 4.8 times faster. Parabolic Synthesis shows high 
degree of parallelism, which results shorter critical path in the design. Parabolic 
Synthesis methodology has flexibility to change the design to implement for other 
unary functions by modifying the set of coefficients. 
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CHAPTER 8 

8 Future work 

The linear interpolation technique combined with the parabolic synthesis 
methodology can be used for implementing other unary functions as well. Sine 
function can also be approximated by replacing the linear interpolation technique 
with other interpolation methods. The accuracy may be increased by 
approximating sine function with second-order interpolation technique. 
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