
An Android Application Sandbox
for Dynamic Analysis

Patrik Lantz
dt06pl5@student.lth.se

Master’s Thesis at Department of Electrical and Information Technology
Supervisor: Ben Smeets

Examiner: Thomas Johansson

1 November, 2011

Abstract
The number of Android devices on the market is increasing and so is its user
base. Malware authors sees opportunities in this increase of smart-phones
by the means of economical profit, stealing private information or simply
controlling devices. Lately, this threat has escalated and to prevent mali-
cious applications from spreading, several analysis tools have been released,
introducing static analysis of Android packages. As of yet, there is no dy-
namic analysis tool publicly available. Therefore, this thesis project aims
at implementing an Android application sandbox system with the intent
to provide an initial understanding of the behavior of unknown packages
through analysis during runtime.

By utilizing dynamic taint analysis to detect data leakage and inserting
API hooks using physical modification of the Android framework, several
interesting and potentially harmful operations performed by a package can
be detected. Additionally, to get an overview of the operations performed
during runtime, an analysis report is generated, much like the ones in tra-
ditional sandboxes. Furthermore, by visualizing the package behavior can
facilitate in the interpretation of text-based reports as well as determining
similarity between analyzed packages.

Keywords: android application, data leakage detection, dynamic analy-
sis, dynamic taint analysis, malware, sandbox, treemap

Acknowledgement
This thesis was carried out at the Department of Electrical and Information Technology at Lund
University. I would like to thank Professor Ben Smeets at the department and from Ericsson
Security Research Group, for giving me the possibility to work on this project as my master thesis
and for giving me valuable input. Additionally, I would like to thank the Honeynet Project for
giving me the opportunity to work on this project during the Google Summer of Code program for
2011, which took place June-August. During this period I received valuable input and feedback
from Anthony Desnos, member of French chapter in Honeynet and researcher at ESIEA.

Contents

1 Introduction 1

2 Research definition and goals 3
2.1 Purpose . 3
2.2 Goals . 3

3 Background 5
3.1 Android overview . 5

3.1.1 Architecture . 5
3.1.2 Android SDK . 6
3.1.3 Application fundamentals . 7
3.1.4 Package structure . 8
3.1.5 Permission policies . 8
3.1.6 Dynamically loading and executing code . 9
3.1.7 Dalvik Virtual Machine . 9

3.2 Malware . 10
3.2.1 Types . 10
3.2.2 Infection vectors . 10
3.2.3 Threats concerning Android . 11

3.3 Malware analysis . 12
3.3.1 Static analysis . 13
3.3.2 Dynamic analysis . 14
3.3.3 Information-flow tracking . 14

4 Methodology 17
4.1 Sandbox system . 17

4.1.1 Overview . 18
4.1.2 Static pre-check . 19
4.1.3 monkeyrunner script . 20
4.1.4 logcat filter . 20

4.2 Detecting information leaks . 21
4.3 API hooking using physical modification . 22
4.4 Preventing evasion techniques . 23

4.4.1 IMEI . 24
4.4.2 IMSI . 24

4.5 Sample analysis and visualization . 25
4.5.1 Analysis and report . 25
4.5.2 Treemap . 26
4.5.3 Behavior graph . 28

5 Result 29
5.1 Test-cases . 29

5.2 Real-world malware . 30
5.3 Treemap visualization . 30

6 Discussion 33
6.1 Framework modifications . 33
6.2 Visualization . 34
6.3 Problems . 34
6.4 Future work . 34

7 Conclusion 37

Reference 39

A AndroidManifest.xml structure 43

B JSON encoded logs 45

C Taint tags 49

D Analysis report for test-cases 51

E loaded.apk Manifest 59

F DroidBoxTests.apk Manifest 61

G Analysis report for real-world malware 63

List of Figures

3.1 Android architecture overview . 5
3.2 Lifecycle of an Activity and its callback methods . 8
3.3 DVM and Binder illustration . 9
3.4 Malware types targeting the Windows platform . 11
3.5 Discovered malware types targeting Android . 12
3.6 TaintDroid inner-workings . 15

4.1 Analysis process . 18
4.2 Treemap theory . 26
4.3 Treemap generated by test-cases . 27
4.4 Behavior graph generated by test-cases . 28

5.1 Behavior graph generated for real-world malware . 30
5.2 Comparison of three distinct samples classified to the same malware family 31
5.3 Treemaps of four distinct malware . 31

List of Tables

3.1 Android application components . 7
3.2 Common malware types . 10

4.1 IMEI check digit calculation . 24
4.2 IMSI value . 24
4.3 Analysis report content . 26

C.1 Values and description of taint tags. Shows which new tags were added and the tags
which functionality was added for . 49

Listings

3.1 Disassembled DEX format . 13
4.1 Unzipping a package and parsing the Manifest . 19
4.2 Example of a monkeyrunner script . 20
4.3 Hard-coded values in the emulator environment . 23
4.4 Retrieving hard-coded build and telephony id values 23
4.5 Build values after modifying the hard-coded values 23
4.6 Format of an entry in the analysis report . 25

Abbreviations
AES Advanced Encryption Standard
ADB Android Debug Bridge
ARM Advanced RISC Machine
AVD Android Virtual Device
API Application Programming Interface
APK Android Package
AWT Abstract Window Toolkit
CD Check Digit
DES Data Encryption Standard
DEX Dalvik Executable
DVM Dalvik Virtual Machine
GPS Global Positioning System
IMEI International Mobile Equipment Identity
IMSI International Mobile Subscriber Identity
ICC-ID Integrated Circuit Card Identifier
IPC Inter-process Communication
J2ME Java 2 Platform, Micro Edition
JSON JavaScript Object Notation
JNI Java Native Interface
MCC Mobile Country Code
MD5 Message-Digest Algorithm 5
MNC Mobile Network Code
MSIN Mobile Subscriber Identification Number
NDK Native Development Kit
OS Operating System
PC Personal Computer
QEMU Quick EMUlator
RC Release Candidate
SE Standard Edition
SD Secure Digital
SHA1 Secure Hash Algorithm 1
SHA256 Secure Hash Algorithm 256
SDK Software Development Kit
SQL Structured Query Language
SMS Short Message Service
SVM Support Vector Machine
TAC Type Allocation Code
UI User Interface
UID Unique identifier
XML Extensible Markup Language

Chapter 1

Introduction

Today’s smartphones are getting more powerful for each release and have become a general-purpose
computing platform. Together with the fact that sensitive information is often stored on mobile de-
vices, this requires a new approach to protect against possible attacks. One attack scenario already
exists, where malware authors tailor malicious software for mobile platforms. With the market-
place, a central repository that enables third party applications to be released and downloaded, a
new infection vector has emerged.

In recent time there has been an increase of malicious Android applications showing up on both
official and unofficial markets [9]. If one had a tool that via sandboxing technique would provide
an initial perspective on a package’s behavior, one could reduce the risk of getting exposed to
such malware. In this thesis project, an application sandbox is implemented to provide analysis of
unknown packages and potential malware.

This paper starts out by describing our research purpose and goals. Chapter 3. continues with
the background on topics such as malware, malware analysis, dynamic taint analysis, data leakage
detection and the architecture of Android. Additionally, designated threats on Android devices are
presented.

Chapter 4. presents the theories that were utilized and implementation details in this project.
More precisely, the overall functionality is described and details are explained related to data leak
detection, detection of certain critical events, analysis visualization and description of the tools
that were exploited.

Analysis reports for test-cases and real-world malware are presented in Chapter 5 together with
a comparison of malware visualization. Chapter 6 describes problems and whether the desired
results were achieved and ideas for additional features. In Chapter 7, this paper is concluded.

1

Chapter 2

Research definition and goals

2.1 Purpose
As of today, malicious Android applications have been primarily discovered by accident due to sus-
picious behavior. These applications are analyzed by performing static analysis of the application
by volunteers and professionals tied to various antivirus companies. The two main reasons why
reverse engineering can become quite cumbersome are the use of code obfuscation and when the
malicious code becomes complex. By analyzing an application during runtime, it is possible to
retrieve an initial overview of the malware behavior and also to gather different types of informa-
tion that is dynamically generated as opposed to static analysis. In traditional malware analysis,
dynamic and static analysis complement each other very well, but on the mobile platform there is
no such equivalent complement due to the lack of publicly available tools for dynamic analysis.

2.2 Goals
The goal of this project is to investigate the possibility for implementing a sandbox system capable
of detecting certain operations performed by an Android application during runtime. Some of the
operations may differ from the ones detected in traditional sandbox analysis performed on the PC
platform. The main operations and events that can occur that are of particular interest are:

Sensitive data leaks: Detect leaks of sensitive information stored on the phone by the user. This
involves contacts, calendar entries, emails, call history and SMS data. Additionally, phone-
specific information like IMEI, phone number, installed applications and GPS coordinates
is seen as sensitive data. These leaks need to be detected in outgoing network data, write
operations to files and outgoing SMS.

Network traffic: Intercepting data leaks via the network is not the only interesting data that
may be transferred. To facilitate in reversing a communication protocol used by a potential
malware, all incoming and outgoing network communications need to be logged.

File operations: Android malware has been discovered where vulnerabilities are exploited to
escalate the privileges on the phone. Detecting read and write operations on files is crucial
for reverse engineering these applications. Another aspect is sharing of information between
applications via files or IPC where sensitive data leaks may also occur.

Usage of cryptography API: Malware often makes use of cryptographic functions to obfuscate
its code or when reporting home to a malicious server with credentials and other sensitive
data from the host its running on. Android is open source and thus it could be modified to
monitor the native cryptography implementations to detect when applications negotiate new
cryptographic keys or perform encryption and decryption on data. This could monitor when
sensitive data is encrypted to hide the leak or encryption of a communication protocol.

3

CHAPTER 2. RESEARCH DEFINITION AND GOALS

Bypassing application security policies: Circumventing Android permissions have been re-
ported in early Android versions. Mapping an application’s actions during runtime with
the Android security policy permissions will help in finding possible violations of the policy.
This could be used to help detect vulnerabilities in the framework that could be utilized by
malware authors.

Phone calls and outgoing/incoming SMS: Unintentional actions like these can be used for
spam or fraud attempts when a phone user is unaware. Even though it is the user’s respon-
sibility to investigate if an application’s permissions are consistent with the description it is
still a possibility that such applications can slide through the user’s awareness.

Several issues arise here as (a) how to track sensitive data throughout the system and detecting it
leaving at a specific output channel and (b) if all this mentioned operations and events can be de-
tected and logged on an Android emulator. Regarding (b) there is also the subject of investigation
of how to save the sandbox alerts to gather an analysis report outside the emulator.

Further goals include generating visualization based on the analysis result for a more human read-
able presentation which is missing in many sandbox system analysis reports. The visualization
is more precisely to be used to classify samples to different malware families by utilizing treemap
visualization. Another crucial aspect of analyzing sandbox system reports is to get an understand-
ing of what sequence operations occur in. With a behavior graph showing the temporal order
of the operations and mapping these with the text-based analysis report, this feature could be
implemented. An analysis will also be carried out against real-world samples to test these imple-
mentations, specifically the malware classification to see how well this theory works when ported
to classifying Android malware.

4

Chapter 3

Background

3.1 Android overview

3.1.1 Architecture

Android is implemented as a software stack, customized for mobile devices. Figure 3.1 [1] shows
some of the most important components of this stack.

Figure 3.1. Android architecture overview

The core of the Android platform is a Linux kernel. The kernel’s responsibility is handling device
drivers, resource access, memory-, process-, and power management and other typical OS duties.
The kernel also acts as an abstraction layer between the hardware and the rest of this software
stack.

5

CHAPTER 3. BACKGROUND

On top of the kernel are several native C/C++ libraries. Most of the application framework
access these core libraries through the Dalvik Virtual Machine (DVM), which can be seen as a
gateway to the Android platform. This access is based on Java APIs that are thin wrapper classes
around the native code using the Java Native Interface (JNI)1.

Programmers develop end-user applications on top of the main libraries in the application
framework which provide access to the following features [1][5].

Activity manager: manages the lifecycle of an application as applications are started, suspended,
resumed or destroyed (happens when the application exits), see figure 3.2. This also provides
a navigation stack for the graphical views as the user is navigating through the different views
within an application.

Content providers: enables applications to share its own data and access phone data such as
contacts and SMS entries.

Resource manager: provides access to resources outside code such as strings, layout XML files
and graphics.

View system: access to views that can be used to build the application and include buttons,
lists, grids etc.

Telephony manager: information about telephony services on the device. Applications can also
use this manager to determine services and states and access some subscriber information.
This also enables the possibility for applications to register as listeners to receive changes of
the telephony state.

Package manager: access information related to the packages installed on the device.

Location manager: access to the system location services. The services allow applications to
obtain information about geographical location.

3.1.2 Android SDK
The Android software development kit supports most of the Java SE except for the AWT and
Swing UI components, thus making almost all Java SE libraries available compared to J2ME2

which is very stripped down.

Included in the SDK is an emulator to run, debug and test end-user developed applications. The
emulator mimics most of the features of a real device except some limitations regarding camera and
video capture, headphones, battery simulation and Bluetooth. The emulator is based on QEMU
[10] which enables several operating systems to be executed on one machine and under different
architectures. In this case the emulator runs an Android Linux version on an ARM3 simulated
processor.

1Framework for Java code that is used to call or to be called from native code such as C/C++ or assembler code.
2Java platform for embedded systems.
3ARM is a 32-bit reduced instruction set computer (RISC) instruction set architecture (ISA).

6

3.1. ANDROID OVERVIEW

The SDK also contains several tools to assist developers, the ones significant for this thesis are:

android: manages virtual devices (AVDs), projects and installed components on a SDK.

monkeyrunner: provides an API to programatically control a Android device or emulator from
outside of Android system.

Android Debug Bridge (adb): tool to enable communication with an emulator instance. This
can be used to install applications to the emulator and transfer files to or from the emulator
or device. Another feature is the possibility to issue command-line options to the operating
system through a shell interface.

logcat: provides a mechanism for collecting and viewing all logs issued within the emulator by the
Android system and applications.

The Android Virtual Device (AVD) is an emulator configuration that enables modeling of an actual
device by defining hardware and software options that are then emulated. These options include:
mapping to a system image, hardware features and dedicated storage area for simulating a SD card
that contain user data. The system image contains the version-specific Android implementation
that include the application framework and DVM.

3.1.3 Application fundamentals
The four essential building blocks of an application are; Activities, Services, Content providers and
Broadcast receivers.

Component Description

Activity
Represents a single screen in the user interface. Users implement this
by subclassing the Activity class and implementing necessary lifecycle
callbacks, see figure 3.2 [2].

Service
A component that runs in the background that is not a user interface. A
service is typically started by an Activity component but can be started
by other components too.

Content provider

Manages shared application data. This data is saved in the filesystem,
SQLite3 database or other persistent storage location. Through this
component other applications can access data to perform queries or make
modifications if the content provider allows it. Content providers are
accessed via ContentResolver objects. Other ways of storing data is
using SharedPreferences that write a key, value pair to a XML file.

Broadcast receiver
This component responds on system-wide broadcast messages. These
messages usually contains information about system changes but appli-
cations can also issue broadcasts.

Table 3.1. Android application components

Each application must have an AndroidManifest.xml file which provides information about the
application to the Android system. This information contains; names for Java packages, declares
each component used by the application from table 3.1 and permissions used by the application,
which is described more in detail in section 3.1.5. The structure of a Manifest file and its tags is
listed in appendix A.

Activities, Services and sending broadcasts are launched using asynchronous messages, Intents.
An Intent is an abstract description of an operation to perform. These messages contain information
about action and data to operate on.

4Stripped down version of original SQL.

7

CHAPTER 3. BACKGROUND

Figure 3.2. Lifecycle of an Activity and its callback methods

3.1.4 Package structure
Each application is compiled into an Android package with the APK file extension which is basically
a zip archive. This package contains the compiled code, resources and additional data. This single
file is considered an application ready to be installed on a device.

Some of the files that are included are AndroidManifest.xml described earlier and classes.dex
which contain the classes compiled in Dalvik Executable (DEX) format understandable by DVM
to run the application.

3.1.5 Permission policies
One of the building blocks of the Android security architecture is that no application, by default
has permissions to perform operations that would impact other applications. The kernel separates
applications from each other and the applications must therefore share resources and data. To

8

3.1. ANDROID OVERVIEW

access certain resources or data the applications must have the correct permissions that are declared
by the developer in the AndroidManifest.xml file using the uses-permission tag.

Except the official Android permissions [3], applications can declare and enforce their own
permissions. This is specified using the permission tags in the AndroidManifest. For example,
applications can specify a permission that allow others to start one of its Activity. There is also
the possibility to restrict who can send broadcasts to a Broadcast receiver and specifying required
permissions needed to receive a broadcast.

3.1.6 Dynamically loading and executing code
The SDK provides a class loader functionality using the DexClassLoader to execute code that is
not installed as part of an application. This is done by loading classes from packages containing
the classes.dex file. When successfully loaded, instances of these classes can be created and its
methods can be invoked. This provides a way to download packages from a source and injecting
payload into the application to extend its functionality. Using DexClassLoader it is also possible
to start Activities and Services belonging to an application that has already been installed.

3.1.7 Dalvik Virtual Machine
DVM is a register-based virtual machine that execute the applications on the platform by interpret-
ing the DEX file containing the compiled classes. The generated Java class files are transformed
into the DEX file, however this does not contain Java bytecode, but an alternative instruction set
used by the DVM. The Dalvik bytecode assigns for example local variables to any of the available
register and the opcodes manipulate directly the registers instead of accessing elements on the
program stack.

Each application executes within its own DVM interpreter instance where each instance is exe-
cuted under its own unique UNIX user identities (UID) which is used to isolate applications within
the Linux platform. Applications communicate via Parcels, containers for messages that are sent
through Binder, an IPC mechanism in the Android system, see figure 3.3 [4].

Figure 3.3. DVM and Binder illustration

9

CHAPTER 3. BACKGROUND

3.2 Malware

3.2.1 Types
Malicious software is referred to as malware, classified by its nature as either computer virus,
trojan horse, worm, backdoor or rootkit. Many more labels are applied for specialized malware,
for instance, spyware, scareware, and dishonest adware. Table 3.2 summarizes some of the most
common types [6][7].

Malware type Description

Computer virus
Code that that inserts itself into another program and replicates, that
is, copies itself and infects other computers. Nowadays often used as a
generic term that also includes worms and trojans horses.

Worm
Self-replicating malware which copies itself to other nodes in a network
without user interaction using vulnerabilities. Worms do not attach
themselves to an application like a virus do.

Trojan horse Malicious program which masquerades itself as being an application.
Unlike viruses and worms, it does not replicate itself.

Rootkit
Software that enables continued privileged access to a computer while
actively hiding its malicious activity from administrators by modifying
the operating system functionality.

Backdoor
Specialized trojan horse that masquerades itself as an installed program
to enable remote access to a system and bypassing normal authentica-
tion. Additionally, backdoors attempts to remain undetected.

Spyware Software that reveals private information about the user or computer
system to eavesdroppers.

Bot

Piece of malware that allows the bot master, i.e. the author to remotely
control the infected system. A group of infected systems that are con-
trolled are denoted as botnets, instructed by the bot master to perform
various malicious activity such as distributed denial of services, stealing
private information and sending spam.

Table 3.2. Common malware types

3.2.2 Infection vectors
Methods for which malicious software infects a system are denoted as infection vectors. These
methods are categorized as push- and pull-based infection schemes. That is, connections are
initiated actively by malicious code and awaits connection from a source, e.g. a client or user,
respectively.

The following section describes briefly some vectors commonly used to infect desktop and server
platforms.

Exploiting vulnerable network services

Software providing a service may be vulnerable to code exploits. This piece of code exploits
programming flaws in the software to remotely execute code on the system. Finding such vulnera-
bilities that are shared among a large number of software enables for automatic exploitation. Thus,
it is the preferred method of infection by worms by actively searching for vulnerable services in a
network, making it a push-based scheme.

Drive-by downloads

This vector is most common through web browsers and requires users to visit a malicious web page.
The embedded code in the page might exploit a vulnerability in the web browser, allowing it to
start downloading malicious code from the web and executing it on the victim’s system without

10

3.2. MALWARE

user interaction. This scheme is categorized as a pull-based infection vector since the user must
initiate the connection to a web page in the first place.

Social engineering

All actions where a user is lured into executing malicious code on his system is classified as social
engineering attacks.

3.2.3 Threats concerning Android
The number of Android devices on the market is increasing and so is the number of users. This
attracts malware authors to target Android devices with the intentions of economical profit, stealing
private data and infecting devices with botnet-like capabilities. Infection vectors are currently
constrained to social engineering attacks, enticing users to download and installing malware on
their devices.

Figure 3.1 shows the statistics of captured malware and their types during the period April-
June, 2010 [8]. These captures involve malware targeting traditional PC and the Windows platform.
Similar statistics representing Android malware, discovered and analyzed during first half of 2011,
looks completely different with only two types of malware, see figure 3.4 [9]. The malware portion
in these figures represent trojans where premium-rate SMS and botnet functionality is included in
the malicious code. Even though the diversity of malware in Android is small, malicious applica-
tions are increasing, from 80 to 400 unique applications in the first six months of 2011 [9].

Figure 3.4. Malware types targeting the Windows platform

11

CHAPTER 3. BACKGROUND

Figure 3.5. Discovered malware types targeting Android

This ongoing threat emerges from the design of the Android system and Google’s policy on releasing
applications. The design to isolate applications from each other implies that an application cannot
steal or tamper with data belonging to another application. However, using the permissions, an
application can be granted access to information from other device subsystems, for example, GPS
system and database information such as SMS data and contact entries. So it is still possible for a
malware application to operate within the isolation and still conduct many different categories of
attacks and violations, including resource and data loss attacks.

The Android permission policy may seem robust but the problem is that this approach relies on
the user making the decision whether the combination of permissions used by an application is safe
or not. Many users may not have the necessary technical knowledge to make such decisions, and
sometimes the users are simply lazy to conduct such inspections when downloading applications.

The permission system is not totally secure and this has been shown earlier [15]. An application
can perform certain actions without specifying it in the permissions, thus circumventing the policy.
These vulnerabilities have been patched by Google instantly but shows that exploitation is possible.

Another issue is that some critical Intents do not require any user interaction to verify the ac-
tion for these Intents to be successful. For example, Intents to send SMS messages and phone calls
can be performed unnoticed when the device is not used and sending SMS can even be performed
in the background without any indication of this action.

Google’s model for accepting applications to be released in the Android Marketplace follows a
very open policy. This means that malware can be distributed easily, compared to iOS applica-
tions where a rigorous vetting is conducted. Additionally, applications can be released anywhere on
the web. A simple search for −inurl : htm − inurl : htmlintitle : ”indexof”apk in Google reveal
1140000 hits with many of the pages in the search result containing directory listings of APK files
ready to be downloaded. Legitimate packages can be patched with malicious code (mentioned in
chapter 3.3.1) and released on these unofficial markets, for example as pirated packages.

3.3 Malware analysis

The main purpose of analyzing malware is to gain knowledge of its behavior to be able to setup
mitigation strategies, this involves performing removals and in the end, to learn how to take down
malware spreads. Antivirus software relies on signatures-based approaches to identify malware by
searching for known patterns within the binary. This approach works if the patterns matched to

12

3.3. MALWARE ANALYSIS

any previously known malware and is grouped into families if it resembles5 any other malware.
Another approach is based on heuristic analysis to detect new malware or variants of known mal-
ware.

Analyzing malware is traditionally performed using two different approaches, dynamic and static
analysis. With static analysis a study is performed without executing the program. Dynamic
analysis of malware cover analysis during runtime where an unknown application is executed and
monitored in a secured, virtual environment also known as a sandbox.

There is a constant arms race between malware authors and analysts. Malware authors employ
anti-analysis techniques to prevent a sample from being analyzed, these techniques target both
dynamic and static analysis. Some of the most common anti-analysis techniques are presented in
the next sections.

3.3.1 Static analysis

Analyzing files with this method involves using decompilers, disassemblers and analyzing the source
code if available. There exist several tools to perform static analysis on Android packages. Disas-
semblers6 for the DEX format can generate assembly-looking instruction shown in listing 3.1.

. super Ljava/ lang /Object ;

. method pub l i c s t a t i c main ([Ljava/ lang / St r ing ;)V
. r e g i s t e r s 2

sget−ob j e c t v0 , Ljava/ lang /System;−>out : Ljava/ i o /PrintStream ;

const−s t r i n g v1 , " He l lo ␣World ! "

invoke−v i r t u a l {v0 , v1 } , Ljava/ i o /PrintStream;−>pr i n t l n (Ljava/ lang /
St r ing ;)V

return−void
. end method

Listing 3.1. Disassembled DEX format

Other tools such as Androguard [11], have features to perform diffing of applications, visualiza-
tion of call graphs, reading the AndroidManifest7 file inside a package and using assembler tools,
packages can be patched with custom code. Several tools also exist for decompiling DEX format
to reconstruct Java source code. Decompilers do not reconstruct the original code, but much less
intelligible code which can pose problems interpreting it. Original code can also be obfuscated
using tools like ProGuard to obstruct reverse engineering.

Malware targeting desktop and server platform have a much more complex obfuscation where
self-modifying code and packers are used. A packer obfuscates or encrypts the original binary
code and stores the data in a new executable. An unpacker routine deobfuscates or decrypts the
data into original representation. This restoration takes place in memory which prevents leaking
unpacked binary to disk. Shortly after unpacking, a jump or call is occurred to the address in the
memory where the unpacked data resides and control is handed over to the code containing ma-
licious functionality. This approach can be extended with polymorphic variants of a given binary

5If a slight variation of already known malware is encountered.
6Tools like smali and dedexer.
7Stored as binary XML format inside the package.

13

CHAPTER 3. BACKGROUND

which can be created automatically using random encryption keys. So called metamorphic variants
can in contrast to polymorphic binaries also mutate the unpacking routine.

3.3.2 Dynamic analysis
Analysts prefer to analyze a sample in a safe environment where a potential malware would not
cause any damage on a workstation. This also allows for easy clean up of the operating system to
perform new sample analysis. Several public sandboxes exist that provide an interface to submit
samples for analysis, e.g. binary files and documents such as PDF. The sandbox record changes
to the file system, registry keys, incoming/outgoing network traffic and API traces, making the
results available in a formatted report. The methods to detect these operations can vary, but the
most common are:

API hooking: a method to monitor or alter the behavior of an operating system or application
by intercepting function calls. Hooks are usually inserted during runtime but can also be em-
ployed before execution. Using runtime modification, hooks are inserted at runtime. Physical
modification can achieve hooking with binary rewriting or by modifying the API to monitor
function calls before execution.

Difference-based: by taking snapshots of the file system or registry, before and after analysis, a
comparison is made of these snapshots to locate modifications.

Notification: Notification routines are registered and automatically called by the system when
certain events occur, such as creating directories or deleting files.

There are several pros and cons for each of these methods. Usually, the difference-based approach
is the easiest to implement since no modifications have to be made to the API, but does not provide
much detailed information. There is also no way to see changes in real-time or temporal order since
this analysis is performed after executing the sample. Hook-based method typically provides the
most verbose reports since the hooks have access to the arguments and return values of monitored
API functions [12].

One issue with using virtualization lies in the implementation of the virtual machines as these
reveal information that an operating system is executed in a virtual environment, for example an
address in a memory register that could differ in a virtual machine compared to a non-virtual.
Malware authors usually try to detect if the sample is being executed on a virtual machine, and
if so, they terminate their program. While malware authors discover new ways of fingerprinting
and revealing an emulator environment, analysts perform countermeasures against anti-analysis
techniques.

3.3.3 Information-flow tracking
The goal of information-flow tracking is to track interesting data as it propagates through a system.
One approach as how to accomplish this is dynamic taint analysis [13]. Data that is tracked is
marked as tainted with a corresponding label, tag to distinguish tainted and clean data. Whenever
this tainted data is processed, the taint tag is propagated. For example, an assignment statement
propagate the taint tag of the source operand to the target. Such propagation logic must be decided
beforehand to handle the propagation of tainted data correctly.

// x , y ta in t ed
a = y + x ;

Another important issue is to decide on the propagation policy, i.e. how to handle the taints when
encountering statements as the one above. If y and x have two distinct tags, either one of the tags
is chosen over the other or creating a new tag by merging the two tags. The bookkeeping of taint

14

3.3. MALWARE ANALYSIS

tags is generally done by storing the tags in memory or internal tag maps. Another approach is
writing the taint tags to file.

Two important concepts are taint sources and taint sinks. A taint source introduces a taint
tag in the system and the sink is a component in the system that reacts in a specific way when
encountering tainted data.

Depending on the scenario and application that should be analyzed, this method can be im-
plemented on different levels. For interpreted languages such as Java, this instrumentation can be
added to the instruction interpreter or compiler. Information flow tracking can also be added at a
binary level and as a hardware implementation.

TaintDroid [14] is a research project aimed at detecting data leakage using dynamic taint analysis
on Android devices. Taint sources are employed at various places in the Android framework, for
example when an application retrieves the IMEI value of the device. This retrieved variable is
assigned a tag describing what type of data is tainted. When this tainted data is about to leave
the device, a taint sink reacts on the tainted data, emitting an alert.

The inner-workings of TaintDroid relies on an instrumented DVM and modified Binder IPC li-
brary, see figure 3.6 [14] . Multiple taint markings are merged into one taint tag and are stored
adjacent to the tracked data in the memory. When data is retrieved from a taint source it is
assigned a taint tag in the DVM virtual map (1, 2). This virtual map is used to assign and retrieve
taint tags for specific variables using a mapping function. The DVM is instrumented with a tainted
propagation logic to track tainted data whenever an application uses the data (3). To preserve the
taint when an application communicates with other applications, taint tags are specified in Parcels
and propagated through the system via Binder (4,5). The modified Binder parses the taint tags
from the Parcel message and invokes the receiving application’s DVM instance to store the tag in
its taint map and track the tainted data using the propagation logic (6, 7). Whenever an applica-
tion calls some library in the Android framework, for example socket write operations to transmitt
tainted data (8), the taint tag is retrieved (9) and the application is reported as untrusted. Sinks
and sources are interface library functions of TaintDroid that are added at various output channels
and sources in the framework. The functions call native code to interact with the DVM instance,
retrieving and assigning taint tags.

Figure 3.6. TaintDroid inner-workings

15

CHAPTER 3. BACKGROUND

The tracked variable types in TaintDroid are method local variables, method arguments, class static
fields, class instance fields, and arrays. For each of these types, a 32-bit bitvector stores the taint
tag, allowing 32 simultaneous taint markings. Local method variables and arguments are stored
in an internal stack by the DVM where each register is 32-bits. To allocate taint storage for these
variables, the DVM was instrumented to double the size of the internal stack frame, thus taint
tags are interleaved between the local variables and arguments and are accessed by multiplying
the variable’s register address by 2. For static fields, arrays and class fields the tags are stored
adjacent to these inside the interpreters internal data structures.

16

Chapter 4

Methodology

This thesis started out by investigating an implementation strategy concerning the discussion in
Chapter 2. Section 4.1 describes how this problem was approached and the rest of this chapter
describes these strategies that were chosen in more detail regarding the theory and implementation.

The available development hardware was a Mac workstation running VirtualBox to deploy
virtual machines. The modifications to the Android framework were carried out on a virtual
machine running Linux to build the kernel and the Android system images which was not feasible
on a Mac.

During the thesis work, test-cases were implemented to test the impact of the modifications
made to the Android framework. These tests were made of an actual application containing
malicious proof of concept code performing various operations with the purpose of triggering the
emulator to broadcast logs originating from the monitored API methods and when an information
leak was encountered. The test-cases were implemented in Eclipse on the Mac workstation as
well as all host OS code which was implemented in Python. Checking for correct behavior of the
modified framework was done by comparing the output from the emulator to the expected output.

4.1 Sandbox system

One approach as how to detect specific operations performed by an application is to intercept
system calls generated by the application at the low level in the kernel space. This is achieved
by monitoring the system calls that go through a hijacked syscall function and redirecting the
arguments to the original syscall function to preserve functionality. The hijacked syscall function
for which all calls go through could be implemented as a Linux kernel module. This approach has
been tested in Android Application Sandbox (AASandbox) [16] for detecting suspicious software.
However, this approach only stores the frequency of called syscall functions during sample analysis.
The conclusion on whether the sample is a suspicious software comes only from this dataset and
from a static analysis performed prior to running the sample. AASandbox does not log syscall
arguments due to instability of the kernel causing a crash, related to resource limitations if too
many logs are outputted from the kernel module.

In the thesis description a much more detailed information on the operations is desired, therefore
the difference-based approach for dynamic analysis is also not considered. Information regarding
the operations is crucial for this project, for example, to be able to retrieve the actual data sent
on a socket write operation. This detailed information is also necessary in other scenarios, e.g.
detecting leaks and any possible host and port numbers to remote servers an application is com-
municating with. To detect and log certain operations together with its data, another approach
was considered, that is to modify the underlying Android framework which the applications make
use of. This involves identifying methods in the framework that are of special interest and logging
its arguments and return values, so called API hooking, see section 3.3.2.

17

CHAPTER 4. METHODOLOGY

To detect an information leak one could mirror the content of the phone’s database and at various
phone output channels compare the data that is outputted with the phone content. A comparison
would involve text string matching and therefore there would have to be training of classifiers
involved, e.g. using SVM1. However this approach could generate false negatives or even false
positives and thus a much more precise and fine-grained method was desired.

Using TaintDroid and adding various sinks and taint sources at certain starting points will
generate almost no false positives/negatives. This project was a starting point for this thesis and
was extended to track more data and adding new sinks as well as modifying existing.

This approach consociates very well with strategy to perform API hooking by modifying the
framework as the TaintDroid implementation is also based on a modified Android framework and
would thus be considered the best approach regarding the issues discussed in Chapter 2. The
TaintDroid implementation at the time the thesis started targeted Android version 2.1, one of the
most common versions and compatibility with newer versions was out of the scope in this thesis.

4.1.1 Overview

The process of the analyzing a sample in the sandbox system is outlined in figure 4.1. The main
component in this system is the emulator that is running on the host OS with a modified kernel
and system image containing functionality to detect data leaks and monitoring API calls. At first,
samples go through a static pre-check. When ready to be analyzed, the information extracted
from the sample is passed to the monkeyrunner component to start executing the application. The
emulator, in this case the guest OS, broadcast logs that are both system-wide and logs that are
triggered at various events that occur when the sample perform certain actions. The issue on how
to collect logs outside the emulator is solved by parsing logs in the host OS, where the logcat tool
is exploited for this purpose.

Figure 4.1. Analysis process

1SVM stands for Support Vector Machine, a method that analyze data and recognize patterns. This method is
used for classification and regression analysis by taking a set of input and predicts for each set which class the data
is a member of. In this example the classes would constitute of leak and non-leak data.

18

4.1. SANDBOX SYSTEM

4.1.2 Static pre-check

This component performs a minor static analysis before executing the application as each package
must be analyzed before performing the runtime analysis. Main reasons for this is that the mon-
keyrunner script needs certain parameters and the analysis is dependent on analyzing the contents
of the AndroidManifest file. More precisely, the static pre-check extracts the Java package and the
main Activity from the package’s AndroidManifest file. Other data that is relevant for the analysis
part is information regarding permissions and registered Intent receivers that are parsed from this
file.

As each package is a zip file, it is uncompressed programmatically and the binary format
AndroidManifest is read using code from the Androguard project outside the emulator in the host
OS. The code in listing 4.1 shows how the unzipping and parsing is performed.

fd = open (apkName , " rb ")
raw = fd . read ()
fd . c l o s e ()
z ip = z i p f i l e . Z ipF i l e (Str ingIO . Str ingIO (raw))
for i in z ip . name l i s t () :

i f i == " AndroidManifest . xml " :
buf = AXMLPrinter (z ip . read (i)) . ge tBuf f ()
xml [i] = minidom . pa r s eS t r i ng (buf)
for item in xml [i] . getElementsByTagName (’ mani f e s t ’) :

packageNames . append (s t r (item . ge tAt t r ibute (" package ")))
for item in xml [i] . getElementsByTagName (’ uses−permis s ion ’) :

pe rmi s s i ons . append (s t r (item . ge tAt t r ibute (" android : name")))
for item in xml [i] . getElementsByTagName (’ r e c e i v e r ’) :

recvName = s t r (item . ge tAt t r ibute (" android : name"))
r e cv s . append (recvName)
for ch i l d in item . getElementsByTagName (’ a c t i on ’) :

actionName = (s t r (c h i l d . g e tAt t r ibute (" android : name")))
r e c v s a c t i on [recvName] = actionName

for item in xml [i] . getElementsByTagName (’ a c t i v i t y ’) :
activityName = s t r (item . ge tAt t r ibute (" android : name"))
a c t i v i t i e s . append (activityName)
for ch i l d in item . getElementsByTagName (’ a c t i on ’) :

actionName = s t r (c h i l d . g e tAt t r ibute (" android : name"))
a c t i v i t y a c t i o n [activityName] = actionName

Listing 4.1. Unzipping a package and parsing the Manifest

AXMLPrinter is a class implemented to interpret binary XML files and is utilized in the Andro-
guard project. The format of the binary XML file is not well documented, however there exist
several tools to perform the decoding. The implementation available in Androguard is a ported
Python version that originated from a Java based implementation. The getBuff method returns a
decoded XML buffer ready to be parsed using the standard library class minidom.

For each registered Receiver and Activity the pre-check also parses the action tag within these
component’s intent-filter tags. For registered Receivers, this tag specifies what kind of broad-
cast message the component receives. The Activity component’s action tag specifies the Intent
action that launches the Activity. The action name for the main launchable Activity is an-
droid.intent.action.MAIN and this Activity is the first one started when an application is executed.

19

CHAPTER 4. METHODOLOGY

4.1.3 monkeyrunner script

A sample is installed and executed using a monkeyrunner script. One advantage in using mon-
keyrunner compared to installing packages through the ADB is that this component automatically
install packages and start a specific Activity or Service. Using ADB the user must issue two com-
mand line statements and then locate the newly installed application through the emulator UI
and execute it. Listing 4.2 shows an example of how monkeyrunner scripts are implemented to
automatically install and execute a package.

import sys
from com . android . monkeyrunner import MonkeyRunner , MonkeyDevice

dev i c e = MonkeyRunner . waitForConnection ()
dev i c e . i n s t a l lPa ckag e (sys . argv [1])
package = sys . argv [2]
a c t i v i t y = sys . argv [3]

se t the name o f the s t a r t i n g component
runComponent = package + ’ / ’ + a c t i v i t y
run the component
dev i c e . s t a r tA c t i v i t y (component=runComponent)

Listing 4.2. Example of a monkeyrunner script

This code shows that for each package, the Java package name and name of the launchable Activity
must be extracted from the sample which has already been performed in the static pre-check. These
parameters are supplied through the command line input when this script is executed.

4.1.4 logcat filter

Logs that are broadcasted from the emulator are intercepted using the SDK tool logcat. The
interception is achieved by pipelining the logcat output to a Python script that reads from stdin.
By parsing the logcat output inside the script, using a delimiter and looking for strings containing a
static prefix, the relevant logs can be collected and the actual log data can be read. Each sandbox
log follows the JSON2 encoding format. For each type of log that is collected, it is placed in
its corresponding list structure, referenced by the timestamp relative to the starting time of the
analysis for when the log was collected. These list structures are later used when analyzing the
logs and generating the analysis report. Using JSON enables for easy decoding of the JSON format
into a dictionary data structure using the Python standard library class json. Appendix B shows
all types of JSON encoded logs that are collected from the emulator.

Several issues were encountered when choosing JSON as the log format. The Python standard
library class for decoding JSON deserializes a string containing the log into a Python object, more
precisely a dictionary structure. If the string is encoded with an ASCII based encoding other than
UTF-8, the decoding breaks. Other obstructions involved collected data, e.g. HTTP responses
that contained quotation marks that defected the JSON encoding. Other data that defected the
encoding was path names as these sometimes were returned including trailing binary characters
from the sandbox system. This was solved by encoding all data and path fields into hexadecimal
values.

One severe problem was encountered with the logcat output, it seemed to truncate logs that
were long. Looking at the log implementation in the kernel source code, revealed that the maximum
length of one log was by default set to 4000 characters. This value was increased to 20k and the
kernel was recompiled for this changes to have an effect, which solved this truncation problem.

2Lightweight text-based open standard for data interchange

20

4.2. DETECTING INFORMATION LEAKS

4.2 Detecting information leaks
The initial work and issues were related to compiling the kernel and framework to be able to
successfully test TaintDroid on an emulator. It is necessary to compile the kernel since TaintDroid
implements extended attribute support in the filesystem to store more than one file taint tag at
a time. Extended attributes are used to perform association of files with metadata that is not
interpreted by the filesystem and adds additional information to a file, in this case the file taint
tags that are stored in the extended attributes.

When successfully compiled and tested on an emulator, the next step involved identifying where
all data is tainted initially and where the sinks were located in the framework. The implementation
that was released by the research team behind TaintDroid was a limited version in the sense of
what data that was tracked. The information that was tracked related to SIM card identifiers and
device identifiers (IMEI, IMSI, ICC-ID3 and phone number), location, accelerometer and media
(microphone and camera) data. To fulfill the goals described in Chapter 2, several taint tags (see
Appendix C), taint sources and sinks needed to be added.

TaintDroid provides an interface library to set a taint at a source and detecting taints within
variables. A taint is set using:

Taint . addTaintStr ing (mImei , Taint .TAINT_IMEI) ;

at a source in the Android framework where the variable mImei is retrieved by an application. This
also enables tracking various variable types, for example integers, arrays and strings using different
framework methods provided by TaintDroid. These methods also take an argument describing
what information is tainted, in this case the constant TAINT_IMEI is used to indicate that an
IMEI value is retrieved by an application. This information is used to verify exactly what type
of data is tainted at a sink. Retrieving these taint tags is performed usually at a sink with the
statement:

int tag = Taint . ge tTa intSt r ing (data)

where the integer tag will contain all taints within the String variable data and a value of zero
if no taints are found. Producing a log is performed by calling the function Taint.log(String), a
native function that issues a system-wide log containing information found in the argument to this
interface function. A prefix is added to the log in the native function providing a delimiter.

Several taint sources were added to track data retrieved from the database using ContentRe-
solvers. This data was related to calls, contacts, SMS, browser bookmarks, calendar and email.
Additionally, information regarding installed packages retrieved by applications were tainted.

To preserve the functionality to track tainted data that is encrypted using the native cryptog-
raphy API, taint sinks and sources were added in commonly used algorithms such as DES and
AES. A sink was also added in the framework where SMS messages are sent to detect information
leaks through this channel.

3An international identifier of a SIM card.

21

CHAPTER 4. METHODOLOGY

4.3 API hooking using physical modification
Further modifications were made to the framework by also adding API hooks in various meth-
ods throughout the framework. The most crucial and interesting operations that needed to be
monitored covered:

• sending SMS

• performing phone calls

• crypto key negotiations

• opened and closed network connections

• read and write operations on sockets

• accessed files and modifications

• started Services and use of DexClassLoader

For operations related to SMS and phone calls, the hooks logged the SMS message and the receiving
numbers. Hooks were also added in the commonly used cryptography functions to detect what key
that is negotiated when encrypting and decrypting data.

Applications that start Services can be interesting information to log and so is DexClassLoader.
By monitoring started Services and use of DexClassLoader also provides some more characteristics
of the application which can be used in the visualization.

Detecting file read and write operations is crucial so low-level file methods in the Android
framework were modified to log the method arguments holding the data and logging file paths,
file descriptors and operation type. At such low-level there is no way to know what file is being
read from or written to based on only the file descriptor within the framework. This is solved by
supplying the file descriptor and a random value as arguments to a native function that handles
the querying and logging the path together with the random value. The code for querying is shown
below.

char ppath [2 0] ;
char rpath [8 0] ;
pid = getp id () ;
s n p r i n t f (ppath , 20 , " / proc/%d/ fd/%d" , pid , fd) ;
r e ad l i nk (ppath , rpath , 80) ;

Next step involves logging the data, operation type and the random value from the Android frame-
work. These two logs are then matched in the host OS by comparing the random values.

To get an understanding of the network communication, the low-level network socket methods
were monitored to log opened and closed connections together with read and write operations
of non-leak data for both TCP and UDP connections. Current implementation of the host OS
code buffers the network read data since the API hooks are placed at a low-level in the socket
implementations where data is received as byte streams. This buffering is ended when the logcat
filter recieves a log with a CloseNet tag, indicating that the socket is closed. Matching the socket
read data with an opened connection is done by comparing the host, port and file descriptor.
When Android HTTP libraries make connections to servers they utilize the Keep-Alive header in
the HTTP request, which forces the Android system to keep the sockets opened for reuse even when
the HTTP connection is closed. This produces a problem when buffering since there is no way of
knowing if all data has been transferred. This was solved by modifying the Properties class that hold
all system properties to set the property Keep-Alive to false by default and hijacking the setProperty
method. Applications that call the setProperty method with the arguments ("http.keepalive", true)
will not have any effect on this property.

22

4.4. PREVENTING EVASION TECHNIQUES

All logs outputted from the sandbox system were modified to follow the JSON encoded format
to be able to easily decode the logs in the host OS. To output the logs, the TaintDroid interface
method Taint.log(String) was exploited.

4.4 Preventing evasion techniques
Evasion techniques are possible on the Android emulator due to usage of hard-coded values and
thus a package can detect if it is running in an emulator environment. This issue was discovered
prior to Honeynet releasing a mobile malware reverse engineering challange [17]. The sample in
this challenge uses a check for the hard-coded values and if any of these are encountered, the
application terminates. The hard-coded values of interest are shown in listing 4.3.

Bui ld .BRAND = " gene r i c "
Bui ld .DEVICE = " gene r i c "
Bui ld .MODEL = " gene r i c "
Bui ld .PRODUCT = " gene r i c "
IMEI = 000000000000000
IMSI = 3126000000

Listing 4.3. Hard-coded values in the emulator environment

These values can be retrieved very easily which is showed in the code sample in listing 4.4. This
also requires adding the permission READ_PHONE_STATE in the AndroidManifest file to be
able to read the device and subscriber id.

S t r ing brand = Build .BRAND;
St r ing dev i ce = Build .DEVICE;
St r ing model = Build .MODEL;
St r ing product = Build .PRODUCT;
TelephonyManager tm = (TelephonyManager) getSystemServ ice

(Context .TELEPHONY_SERVICE) ;
S t r ing imei = tm . getDev ice Id () ;
S t r ing ims i = tm . ge tSubs c r i b e r Id () ;

Listing 4.4. Retrieving hard-coded build and telephony id values

These strings and values are listed in a build file in the Android framework. By modifying these
to values targeting a real device, this evasion technique could be prevented. The build file was
modified with the values in listing 4.5 to represent a Samsung Galaxy S device, and the framework
was compiled with the modified build file. Modifying IMEI and IMSI values was a little bit more
complicated. To be able to generate correct IMEI and IMSI numbers, the values must follow
a predefined format which could be easily checked by a malicious package, making the evasion
technique still possible if correct values are not generated. The format of these values and the
solutions to this problem is described in the two following sections.

Bui ld .BRAND = "Samsung "
Build .DEVICE = "GT−I9000 "
Bui ld .MODEL = "GT−I9000 "
Bui ld .PRODUCT = "Galaxy␣S"

Listing 4.5. Build values after modifying the hard-coded values

23

CHAPTER 4. METHODOLOGY

4.4.1 IMEI

To prevent evasion based on the IMEI value, this value needs to be modified and the method in the
framework returning this value must be hijacked. The International Mobile Equipment Identity
number is used to identify valid devices in a mobile network. This could for example be used to
prevent stolen devices to be used on a network. The structure is specified in 3GPP TS 23.003 [18].
This number consist of 14 digits and one check digit (CD) that acts as a checksum. The 8 first
digits are known as Type Allocation Code (TAC) that are issued by a central body. The rest 6
digits represent the serial number that uniquely identify each equipment within the TAC. The CD
is calculated using the Luhn [19] algorithm and is achieved by doubling every other digit in the
IMEI and summing these doubled values with the remaining IMEI digits. The CD is chosen such
that the sum should be divisible by 10. Table 4.1 shows an example of this, supposing the TAC
and the serial number is 35724204323751.

IMEI 3 5 7 2 4 2 0 4 3 2 3 7 5 1 CD
Double 3 10 7 4 4 4 0 8 3 4 3 14 5 2 CD
Sum 3+(1+0)+7+4+4+4+0+8+3+4+3+(1+4)+5+2 = 53+CD
CD (53 + CD) mod 10 = 0 ⇒ CD = 7
Final IMEI 3 5 7 2 4 2 0 4 3 2 3 7 5 1 7

Table 4.1. IMEI check digit calculation

The TAC value is also crucial in order to generate a valid number. This information identifies
brand and model of the device and could reveal an incorrect IMEI, so it is necessary to choose a
TAC value matching the Build values discussed in Chapter 4.4. The IMEI value is chosen according
to this method to generate a number and the framework was modified to return a new and valid
static value when calling the method getDeviceId in the TelephonyManager class.

4.4.2 IMSI

The method returning the IMSI value must also be modified to prevent evasion techniques based
on this value. International Mobile Subscriber Identity is used as a unique identification to a
network and is stored in the SIM card [18], however the emulator returns a bogus value. Choosing
a valid value is crucial since the digits in IMSI represent the mobile country code and the network
code which both can be looked up and verified that they match. The number contains maximum
15 digits, first 3 digits represent the Mobile Country Code (MCC) followed by a 2 or 3 digit
Mobile Network Code (MNC), , see table 4.2. The remaining digits store the Mobile Subscriber
Identification Number (MSIN) used to identify the mobile subscriber. The issue here lies in that
the MNC value is dependent on the MCC so there is no room for improvisation when choosing
these values, however the MSIN can be chosen randomly. The changes, similar to the IMEI value
affected the static value returned by the TelephonyManager class when calling the getSubsciberId
method.

IMSI 310005123456789
MCC 310 USA
MNC 005 Verizon Wireless
MCIN 123456789

Table 4.2. IMSI value

24

4.5. SAMPLE ANALYSIS AND VISUALIZATION

4.5 Sample analysis and visualization

4.5.1 Analysis and report

A taint tag, for example 0x40002 may contain several tags. To get information about each tags
stored within a taint, all possible tags are bitwise ANDed with this taint. If the output is nonzero
for this tag, the tag is encountered within the taint. In this example an array of

[′TAINT_CONTACTS′,′ TAINT_PACKAGE′]

is returned indicating that contact information and a list of installed applications have leaked
at some taint sink. To detect any bypassed permissions, each operation is checked against a list
of permissions and verified that the permission has been extracted from the AndroidManifest file.
The following permissions are included in this check:

• android.permission.INTERNET - permission to connect to internet

• android.permission.SEND_SMS - permission to send SMS

• android.permission.CALL_PHONE - permission to make calls

• android.permission.RECEIVE_SMS - permission to receive incoming SMS

• android.permission.READ_CONTACTS - permission to read contact data and call log

• android.permission.READ_SMS - permission to read SMS data

• android.permission.READ_PHONE_STATE - permission to read IMEI, IMSI, etc.

• com.android.browser.permission.READ_HISTORY_BOOKMARKS - permission to read browser
bookmarks

Analyzing bypassed permissions for data retrieved from databases is performed by checking if any
of these are encountered within a leak and if a permission exists for retrieving this data. To read
the system settings there is no permission needed.

The analysis report is generated from the collected sandbox logs after the analysis is stopped
and is written to standard out. Each report contains general information as package name, MD5,
SHA-1 and SHA256 hashes of the package. The format of a report entry from the output shown
in listing 4.6.

[Sec t i on]
[Operation]

[timestamp] l og data
Listing 4.6. Format of an entry in the analysis report

The timestamp is relative to the starting time of the analysis. Table 4.1 shows all sections, opera-
tions and log data that are generated in an analysis report.

25

CHAPTER 4. METHODOLOGY

Section Operation log data
File read, write path, file descriptor
Crypto key, encrypt, decrypt key byte buffer, encrypted/decrypted data, algorithm
Network open, read, write host, port, data
DexClassLoader - path to APK
Started services - class name
Broadcast recv - action name
Enforced perm - permission
Bypassed perm - permission
Info leak - sink, taint tag and sink specific information
Sent SMS - receiver number, message content
Phone call - number

Table 4.3. Analysis report content

4.5.2 Treemap

Treemaps display a tree structured graph and its data as nested rectangles. Each branch is assigned
a rectangle that is divided into smaller rectangles representing sub-branches. The area of the
rectangles is proportional to the dimension of the data in the leaf nodes and the color of each leaf
node is used for visual clarity [20]. As seen in figure 4.2 [20], each node has a letter and a dimension.

Figure 4.2. Treemap theory

For each node, some static color is applied in the rectangle and the area of the rectangle depends
on the size of the dimension. The main motivation to use treemaps is what it was designed to be,
a human visualization of tree-structures that can be applied for different dimensions of data. One
approach that has been used earlier in sandbox systems is to apply treemaps to malware analysis
to be able to classify malicious behavior [21]. This approach relies on assigning API calls belonging
to a specific section to a sub-branch where the number of distinct API calls make up the dimension
in the nodes. The wider a section becomes (on x-axis), indicates that a sample performs some
specific operations more frequently and the height of a rectangle for a given section represents how
frequently a specific operation is performed for that section.

Transforming this approach from PC to mobile platform requires specifying new section types
and operations. A typical treemap generated is visualized in figure 4.3, where some new types of
sections and operations are covered compared to traditional Windows platform. The new ones are
sections related to phone calls, SMS and usage of native cryptography libraries. Additionally, in
traditional Windows platform, sections such as loaded DLLs and started threads are represented,

26

4.5. SAMPLE ANALYSIS AND VISUALIZATION

but in this case DexClassLoaders and Services are included. These new sections cover operations
like information leaks through SMS, network, file and also the different cryptography operations
as well as sent SMS.

Figure 4.3. Treemap generated by test-cases

For the numeric computation and plotting environment two Python libraries, PyLab and Matplotlib
were utilized. To generate the treemaps, a tree structure was constructed containing all the fre-
quency of the logged operations. The tree-structure is supplied as an argument to the Treemap
function that calculates the rectangles and draw these by traversing the tree in a iterative fashion.
Algorithm 1 [20] shows how this code is implemented in practice.

27

CHAPTER 4. METHODOLOGY

Algorithm 1 Treemap(root, P[0..1], Q[0..1], axis, color)
drawRectangle(P, Q, color)
width← Q[axis]− P [axis]
for i < root.nbrChildNodes do

Q[axis]← P [axis] + (size(child)/size(root))× width
Treemap(child[i], P, Q, 1− axis, color)
P [axis]← Q[axis]

end for

The function also takes two arrays of length 2, P and Q holding (x,y) coordinates. This array
pair represent the opposite corners (upper left and lower right corners) of the current rectangle.
The axis value varies between 0 and 1 to indicate if cuts should be made vertically or horizontally.

4.5.3 Behavior graph
To get an understanding of in what order operations occur in, a visualization showing the temporal
order of the operations [21] was implemented. The main reason for this is the difficulty to interpret
the temporal order in a text-based analysis report.

The graph is outlined as follows: on the x-axis the timestamp for the operation is located and
on the y-axis, the operation type. Each collected log from the sandbox system has a timestamp
relative to the starting time of the analysis. The implementation of this visualization was done
by taking the lists containing the collected sandbox logs, merging these into one list and sorting
after their timestamp. This list is then iterated and each operation is plotted in the graph. The
data point from the visualization can be mapped with the text-based report for more detailed
information by comparing the timestamp. Running the test-cases generate a behavior graph as in
figure 4.4.

Figure 4.4. Behavior graph generated by test-cases

28

Chapter 5

Result

5.1 Test-cases
The code to test the framework modification consists of two APK files. The first APK loader.apk
simply loads a previously installed APK and executes it via DexClassLoader. The second APK
DroidBoxTests.apk performs the following operations, listed in chronological order:

1. Retrieves IMEI and IMSI values, phone number, contact names, call logs, browser bookmarks
and a message stored within a SMS message. Finally, the application retrieves a system
setting containing set alarms.

2. Saves the IMSI value and bookmarks using SharedPreferences.

3. Retrieves the installed packages

4. Writes a clean string to a filemyfilename.txt and writes the tainted contact name to output.txt.
After the write operations, the application reads the contact name and the string just written
and concatenates the both strings for later use.

5. Starts a Service named SendDataService that sends a HTTP request with a non-tainted string
Hello to a PHP script.

6. Encrypts the IMEI with AES, directly after the encryption this encrypted IMEI is decrypted.
These operations are also performed with the DES algorithm. The DES encrypted IMEI value
is stored for later use.

7. Connects and sends a string to an echo server at port 5007 using a TCP socket. Makes also
a connection to an echo server to port 50010 and sends a string using UDP and reads the
response from these connections.

8. Makes several HTTP connections to send the tainted phone number, the encrypted IMEI
value, the SMS message content, data from the file content read in step 4, and sends a list of
installed packages. Additionally it sends call logs and system settings. All these connections
read the responses from the PHP scripts that data is sent to.

9. Finally, the test application sends an SMS and makes a phone call.

The visualization generated by these test applications are shown in figure 4.3 and 4.4. The analysis
report is listed in appendix D where some HTTP headers and data has been truncated. Several
bypassed permissions are listed since the Manifest file is parsed from loaded.apk and not Droid-
BoxTests.apk, both of these package’s AndroidManifest files are listed in Appendix E and F. For
the same reason as why the bypassed permissions are shown goes for the registered Broadcast
receivers and Enforced Permissions from DroidBoxTests.apk AndroidManifest file and why these
are not shown in the report.

29

CHAPTER 5. RESULT

5.2 Real-world malware
The malware that is analyzed is Gone In 60 Seconds [22] which is very simple but was one of the
samples tested that was actually still fully functional since it was discovered recently. Directly after
the package is installed and executed, it starts to upload sensitive data from the device such as
contacts, call log, SMS data and browser bookmarks. When the upload is finished, the application
asks to be uninstalled. The analysis report is listed in Appendix G and figure 5.1 shows the
temporal order graph.

Figure 5.1. Behavior graph generated for real-world malware

5.3 Treemap visualization
The malware family represented in figure 5.2 is DroidDreamLight [23][24] which shows a comparison
of three distinct malware samples in this family. The visualization has been generated after analysis
of each one of these samples.

Figure 5.3 shows a comparison of four distinct samples. The sample on the top left is Gone In
60 Seconds and the sample to the right is denoted GoldDream B [25]. On the bottom, from left to
right are Geinimi [26] and DroidKungFu [27].

30

5.3. TREEMAP VISUALIZATION

Figure 5.2. Comparison of three distinct samples classified to the same malware family

Figure 5.3. Treemaps of four distinct malware

31

Chapter 6

Discussion

6.1 Framework modifications
Checking if the taint source when retrieving email data is set properly could not be tested. As
the email application in Android enforces a permission that only the system or applications signed
with the same key can read from the database holding email content, this kind of leak could not
be tested. The calendar application and its database access are part of the Google Apps package
that is not available on the emulator, so this taint source and calendar data leaks could also not
be tested.

Some of the entries in the analysis report suggests that duplicate information is sometimes
logged from the sandbox system. This does not pose any problems as the duplicate logs are always
issued each time the operation is performed. But, to not confuse analysts why there are for example
two phone call entries in the report, this issue has to be fixed.

The changes made to the native cryptography API, regarding taint source, sinks and hooking
implementation covered only the default algorithm implementations. The cryptography functions
can utilize so called Providers, that is different cryptography implementations for all the algorithms
which would bypass the taint sinks. This could be prevented by adding taint sinks and sources in
the various implementations.

The sandbox system only takes in consideration what a sample performs within the framework
using calls to the SDK APIs. Using native code the operations are performed in the Linux system
as regular applications at user-level using the Native Development Kit (NDK) [28] and its APIs.
Not all operations are possible when executing native code since there are limited APIs available,
for example, there exists headers and libraries for interacting with the graphics library and C
runtime libraries (libc). A sample could however perform file and socket operations using the NDK
and leak sensitive data, if this data is supplied to a native function from Java code.

Regarding performance there is a noticeable slow down in execution time compared to an
emulator running with an unmodified framework. The paper describing TaintDroid includes a
performance benchmark on the CPU-bound1 that shows a 14% performance overhead and also
demonstrates its capabilities on a real device. The sandbox has a much larger overhead since all
operations are logged at the sinks, not only tainted data compared to TaintDroid which only alerts
when a sensitive data leak has occurred. The memory consumption is expected to increase since
32 different taints are stored in the interpreter which occupies 4 bytes for each 32-bit variable,
however the sandbox does not increase this consumption.

1The time it takes to complete a task is determined by looking at the speed of the processor.

33

CHAPTER 6. DISCUSSION

6.2 Visualization

The result in Chapter 5 shows that current malware is not yet very complex and do not perform
as many operations as the test-cases that were implemented. Many of the samples that were
tested simply performed one or two operations and terminated, most common for these were that
they sent SMS to premium rate numbers. One must also realize that these samples were not the
newest malware found in the wild and any possible leaks to command and control servers may
have been omitted in the visualization due to closed or removed servers. To conduct a valuable
and trustworthy classification from this visualization it is necessary to analyze fresh samples and
storing the figures for future comparison to find a match of possibly repackaged samples. Other
obstructions involve hidden malicious functionality that is not triggered during the analysis but
rather when certain events occur. This issue is however also applied for traditional sandboxes on
the PC platform and the reason why static analysis is important to fully analyze a sample.

Conducting a classification based only on the visualization is not feasible as for example different
malwares with the only functionality being to send SMS could match each other. This way of
classifying the samples could instead be seen as a preliminary classification. To establish a secure
classification it is necessary to compare the numbers and other data from the analysis report and
conducting a static analysis. For example, figure 5.2 shows that these samples start a Service,
from the report it is noted that they are all named CoreService and they open connections to
the same remote server. From this information retrieved, these samples could be classified to the
same family although one of the visualization shows that one of the sample does not perform any
cryptographic operations, which suggests that the other samples are updated versions.

6.3 Problems

Several problems were encountered with the SDK emulator that prevented implementation to per-
form automated sample analysis. The emulator boot procedure is time-consuming and the snapshot
functionality that exists is not very stable to be used in a release. The current implementation is
based on user-interactions to boot the emulator and stopping an analysis. The only automated
actions in this version are the installation and execution of a package. One could however stop an
analysis when enough logs have been collected or when no new logs are collected during a time
period but in this way the users can control the analysis by sending text messages, changing GPS
coordinates and making phone calls to the sandbox emulator to detect any reactions from the
samples.

To restore the emulator to default state it is necessary to delete the emulated SD card and
creating a new which currently the user must take care of. This is necessary to perform if appli-
cations that have been tested previously are not uninstalled via the emulator interface since some
applications are automatically started when the emulator has booted up, generating sandbox logs
when Services are spawned.

To detect leaks of user-data it is necessary to populate the databases in the emulator. During
the tests, data was manually added via the interface. If this project would be used on a larger
scale, an initialization package must be implemented that executes prior to analyzing a sample,
populating the different databases with data.

6.4 Future work

Suggestions for major future work cover functionality to monitor native code, discovering further
evasion techniques and patching the evasions. Additionally, work to port this project to Android
version 2.3.

The last-mentioned suggestion is soon possible as TaintDroid is being ported by the research
team behind it to run dynamic taint analysis on version 2.3. The reason why TaintDroid needs

34

6.4. FUTURE WORK

to be ported is that Android versions newer than 2.1 uses a different DVM interpreter since the
compilers in the new versions utilize just-in-time (JIT) compilation. JIT is a hybrid of dynamically
and pre-compiled interpretation of binaries, while the version 2.1 interprets a pre-compiled DEX
format prior to executing it.

The visualization could also be improved by tracing more API function calls that may not
necessary be valuable for the analysis report or behavior graph, but for the treemap visualization.
In this way more characteristics of the sample can be visualized.

Other important work includes adding taint sinks in SSL sockets that may be utilized by
malware authors in the feature. At last, as discussed earlier the framework modifications must
be improved to not log duplicate operations for cleaner reports and adding more taint sinks and
sources in the various cryptography implementations.

35

Chapter 7

Conclusion

In this thesis project, an application sandbox system has been implemented by modifying the
Android framework and Linux kernel to provide dynamic analysis of unknown packages. By ex-
ploiting the SDK tools and implementing host OS code to collect logs from the sandbox system,
the operations performed by an unknown Android package can be presented. Furthermore, to help
interpreting the analysis results, visualization have been implemented to visualize the temporal
order behavior and similarity of packages in terms of their API function calls and behavior. The
operations that are of particular interest to detect includes data leakage detection, sent SMS, phone
calls, usage of cryptography API and logging file and socket operations.

The test results show that the sandbox system captures these operations in the framework and
that visualization can facilitate in order to understand in what order operations occur in and to
provide information used to classify malicious samples into malware families. However, relying on
the sandbox system by the means as the only analysis technique utilized while analyzing unknown
packages will not reveal all malicious functionality within a package but should be considered more
as a tool used for initial analysis before performing a deeper, focused static analysis.

An evaluation is also presented, pointing out what features that must be improved and ideas
to extend this sandbox system.

37

Reference

[1] Android Developers (2011)
What is Android?
http://developer.android.com/guide/basics/what-is-android.html (13 Oct. 2011).

[2] Android Developers (2011)
Activity.
http://developer.android.com/reference/android/app/Activity.html (13 Oct. 2011).

[3] Android Developers (2011)
Manifest.permission.
http://developer.android.com/reference/android/Manifest.permission.html (13 Oct. 2011).

[4] Enck W., McDaniel P., Chaudhuri S. (August 2011)
A Study of Android Application Security.
Proceedings of the 20th USENIX Security Symposium.
http://www.enck.org/pubs/enck-sec11.pdf (13 Oct. 2011).

[5] Hashimi S.Y., Komatineni S. (2009)
Pro Android. pp.4-15. New York: Springer-Verlag

[6] D. Gollmann (2006)
Computer Security. 2nd edition pp.258. West-Sussex: Jonh Wiley & Sons

[7] Kaspersky Lab (2011)
Types of known threats.
http://support.kaspersky.com/viruses/common?qid=193238745 (13 Oct. 2011).

[8] Microsoft (2010)
Microsoft Security Intelligence Report.
http://www.microsoft.com/security/sir/default.aspx (13 Oct. 2011).

[9] Lookout Mobile Security (2011)
Lookout: Mobile Threat Report.
https://www.mylookout.com/mobile-threat-report (13 Oct. 2011).

[10] QEMU (2011)
QEMU machine emulator and virtualizer.
http://bellard.org/qemu/ (13 Oct. 2011).

[11] Androguard (2011)
Reverse engineering, Malware and goodware analysis of Android applications ... and more !.
http://code.google.com/p/androguard/ (13 Oct. 2011).

[12] Ligh M.H., Adair S., Hartstein B., Richard M. (2011)
Malware Analyst’s Cookbook.
pp.284-285. Indianapolis: Wiley Publishing

39

REFERENCE

[13] Schwartz E.J., Avgerinos T., Brumley D. (2010)
All You Ever Wanted to Know about Dynamic Taint Analysis and Forward Symbolic Execution
(but Might Have Been Afraid to Ask).
Proceedings of the 2010 IEEE Symposium on Security and Privacy.
http://www.ece.cmu.edu/~ejschwar/papers/oakland10.pdf (13 Oct. 2011).

[14] Enck W., Gilbert P., Chun B-C., Cox L.P., Jung J., McDaniel P., Sheth A.N. (October 2010)
TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring on Smart-
phones.
Proceedings of the 9th USENIX Symposium on Operating Systems Design and Implementation.
http://www.enck.org/pubs/osdi10-enck.pdf (13 Oct. 2011).

[15] Lineberry A., Richardson D.L., Wyatt T. (2010)
These Aren’t the Permissions You’re Looking For.
BlackHat USA 2010, DefCon 18 2010.
http://dtors.files.wordpress.com/2010/09/blackhat-2010-final.pdf (13 Oct. 2011).

[16] Blasing T., Batyuk L., Schmidt A-D., Camtepe S.A., Albayrak S. (October 2010)
An Android Application Sandbox System for Suspicious Software Detection.
Malicious and Unwanted Software (MALWARE), 2010 5th International Conference.
http://www.dai-labor.de/fileadmin/Files/Publikationen/Buchdatei/Thomas_AAS_Malware2010.pdf
(13 Oct. 2011).

[17] The Honeynet Project (2011)
Forensic Challenge 9 - "Mobile Malware".
http://www.honeynet.org/node/751 (13 Oct. 2011).

[18] 3GPP (2011)
3GPP TS 23.003.
http://www.3gpp.org/ftp/Specs/html-info/23003.htm (13 Oct. 2011).

[19] University of New Brunswick (2002)
Secrets of the LUHN-10 Algorithm - An Error Detection Method.
http://www.ee.unb.ca/tervo/ee4253/luhn.shtml (13 Oct. 2011).

[20] Shneiderman B. (1991)
Tree visualization with Tree-maps: A 2-d space filling approach.
http://hcil.cs.umd.edu/trs/91-03/91-03.html (13 Oct. 2011).

[21] Trinius P., Holz T., Gobel J., Freiling F.C. (October 2009)
Visual Analysis of Malware Behavior Using Treemaps and Thread Graphs.
Visualization for Cyber Security, 2009. VizSec 2009. 6th International Workshop.
http://pi1.informatik.uni-mannheim.de/filepool/publications/THGF_vizsec2009.pdf (13 Oct.
2011).

[22] AVG Mobilation (2011)
Malware information: Gone in 60 Seconds.
http://www.droidsecurity.com/securitycenter/securitypost_20110927.html (13 Oct. 2011).

[23] AVG Mobilation (2011)
Malware information: DroidDreamLight.
http://droidsecurity.appspot.com/securitycenter/securitypost_20110601.html (13 Oct. 2011).

[24] Lookout Mobile Security (2011)
Security Alert: DroidDreamLight, New Malware from the Developers of DroidDream.
http://droidsecurity.appspot.com/securitycenter/securitypost_20110601.html (13 Oct. 2011).

40

REFERENCE

[25] Jiang X. (2011)
Security Alert: New Android Malware GoldDream Found in Alternative App Markets.
http://www.cs.ncsu.edu/faculty/jiang/GoldDream/ (13 Oct. 2011).

[26] Lookout Mobile Security (2011)
Security Alert: Geinimi, Sophisticated New Android Trojan Found in Wild.
http://www.cs.ncsu.edu/faculty/jiang/GoldDream/ (13 Oct. 2011).

[27] AVG Mobilation (2011)
Malware information: DroidKungFu.
http://droidsecurity.appspot.com/securitycenter/securitypost_20110609.html (13 Oct. 2011).

[28] Android Developers (2011)
What is the NDK?
http://developer.android.com/sdk/ndk/overview.html (24 Oct. 2011).

41

Appendix A

AndroidManifest.xml structure

<?xml version=" 1 .0 " encoding=" utf−8" ?>

<mani fe s t>

<uses−permis s ion />
<permis s ion />
<permiss ion−t r e e />
<permiss ion−group />
<inst rumentat ion />
<uses−sdk />
<uses−c on f i gu r a t i on />
<uses−f e a t u r e />
<supports−s c r e en s />
<compatible−s c r e en s />
<supports−gl−t ex ture />

<app l i c a t i o n>

<a c t i v i t y>
<intent− f i l t e r>

<act i on />
<category />
<data />

</ intent− f i l t e r>
<meta−data />

</ a c t i v i t y>

<ac t i v i t y−a l i a s>
<intent− f i l t e r> . . . </ intent− f i l t e r>
<meta−data />

</ ac t i v i t y−a l i a s>

<s e r v i c e>
<intent− f i l t e r> . . . </ intent− f i l t e r>
<meta−data/>

</ s e r v i c e>

<r e c e i v e r>

43

APPENDIX A. ANDROIDMANIFEST.XML STRUCTURE

<intent− f i l t e r> . . . </ intent− f i l t e r>
<meta−data />

</ r e c e i v e r>

<prov ide r>
<grant−ur i−permis s ion />
<meta−data />

</ prov ide r>

<uses−l i b r a r y />

</ app l i c a t i o n>

</mani f e s t>

44

Appendix B

JSON encoded logs

{
" FdAccess " : { // F i l e a c c e s s

" path " : " e fb fbd7f553432470300340000e fbfbd065557 . . . " ,
" id " : " 282345 "

}
}

{
"FileRW" : { // F i l e opera t i on

" path " : " e fb fbd7f553432470300340000e fbfbd065557 . . . " ,
" data " : " e fb fbd7 f557 . . . " ,
" ope ra t i on " : " read " , // read or wr i t e
" id " : " 282345 "

}
}

{
" CryptoUsage " : { // nego t i a t i ng new cryptograph ic key

" key " : " 0 , 42 ,2 , 54 , 4 , 45 , 6 , 7 , 65 , 9 , 54 , 11 ,12 , 13 ,60 ,15 " ,
" opera t i on " : " keyalgo " ,
" a lgor i thm " : "AES"

}
}

{
" CryptoUsage " : { // encrypt ion or decrypt ion

" data " : " 000000000000000 " ,
" opera t i on " : " encrypt ion " ,
" a lgor i thm " : "AES"

}
}

45

APPENDIX B. JSON ENCODED LOGS

{
"OpenNet " : { // opened connect ion to host

" d e s t i n a t i on " : " l t h . se " ,
" port " : " 80 "

}
}

{
" SendNet " : { // sending data that does not conta in l eak

" d e s t i n a t i on " : " l t h . se " ,
" port " : " 80 " ,
" data " : "GET␣/ index . html␣HTTP/ 1 . 1 "

}
}

{
"RecvNet " : { // r e c e i v e data from socket

" source " : " l t h . se " ,
" port " : " 80 " ,
" data " : " e fb fbd7 f555703000000e fb fb . . . "

}
}

{
" CloseNet " : { // socke t c l o s ed

" host " : " l t h . se " ,
" port " : " 80 " ,

}
}

{
"DataLeak " : { // data l eak v ia socke t

" s ink " : " Network " ,
" de s thos t " : " p j l a n t z . com" ,
" de s tpor t " : " 80 " ,
" tag " : " 0x8 " ,
" data " : "GET␣/phone . php?phone=0735005281 "

}
}

{
"DataLeak " : { // data l eak v ia SMS

" s ink " : "SMS" ,
" number " : " 0735005281 " ,
" tag " : " 0x400 " ,
" data " : " dbd4e36bd5295531800c9596724361c4 "

}
}

46

{
"DataLeak " : { // data l eak v ia f i l e wr i t e

" s ink " : " F i l e " ,
" ope ra t i on " : " wr i t e " , // read or wr i t e
" data " : " dbd4e36bd5295531800c9596724361c4 "
" tag " : " 0x400 "

}
}

{
"SendSMS" : { // sent SMS

"number " : " 0735005281 " ,
" message " : " Sending␣sms . . . "

}
}

{
" PhoneCall " : { // phone c a l l

" number " : " 0735005281 "
}

}

{
" S e r v i c eS t a r t " : { // s t a r t ed Se rv i c e

"name" : " droidbox . t e s t s . SendDataService "
}

}

{
" DexClassLoader " : { // s t a r t ed APK f i l e

" path " : " / sdcard /DroidBoxTests . apk "
}

}

47

Appendix C

Taint tags

Tag Value Description Added
TAINT_CLEAR 0x0 No taint No
TAINT_LOCATION 0x1 Location No
TAINT_LOCATION_GPS 0x10 GPS coordinates No
TAINT_ACCELEROMETER 0x100 Data from accelerometer No
TAINT_ICCID 0x1000 ICCID value No
TAINT_OTHERDB 0x10000 Other database values Yes
TAINT_EMAIL 0x100000 Email data Yes
TAINT_CONTACTS 0x2 Contact name and number Yes
TAINT_LOCATION_NET 0x20 Network location No
TAINT_SMS 0x200 Numbers and messages Yes
TAINT_DEVICE_SN 0x2000 Device serial number No
TAINT_FILECONTENT 0x20000 Content of a file Yes
TAINT_CALENDAR 0x200000 Calendar data Yes
TAINT_MIC 0x4 Data recorded by microphone No
TAINT_LOCATION_LAST 0x40 Last known location No
TAINT_IMEI 0x400 IMEI value No
TAINT_ACCOUNT 0x4000 Google account data No
TAINT_PACKAGE 0x40000 Installed packages Yes
TAINT_SETTINGS 0x400000 System settings Yes
TAINT_PHONE_NUMBER 0x8 Number of the phone No
TAINT_CAMERA 0x80 Data taken by camera No
TAINT_IMSI 0x800 IMSI value No
TAINT_BROWSER 0x8000 Browser bookmarks Yes
TAINT_CALL_LOG 0x80000 Call history Yes

Table C.1. Values and description of taint tags. Shows which new tags were added and the tags which
functionality was added for

49

Appendix D

Analysis report for test-cases

[I n f o]
−−−−−−
F i l e name: l oade r . apk
MD5: 811 c541850f8367d74b46d6cb5e417f1
SHA1: 871 b2b3c783414a23e06ade6096668843bfe9037
SHA256:

b12f69d2b52bfce7b1feb10594494052bcd8db061db6be166548887891c8cee4
Durat ion : 47.5297720432 s

[F i l e a c t i v i t i e s]
−−−−−−−−−−−−−−−−−

[Read ope ra t i on s]
−−−−−−−−−−−−−−−−−
[2 4 . 6775109768]
Path: / sdcard /DroidBoxTests . apk
Data: P

[24 . 6806430817]
Path: / sdcard /DroidBoxTests . apk
Data: K

[24 . 6869540215]
Path: / sdcard /DroidBoxTests . apk
Data:

[24 . 6965999603]
Path: / sdcard /DroidBoxTests . apk
Data:

[24 . 7071151733]
Path: / sdcard /DroidBoxTests . apk
Data: Binary data . .

[2 4 . 7661750317]
Path: / sdcard /DroidBoxTests . apk
Data: Binary data . .

51

APPENDIX D. ANALYSIS REPORT FOR TEST-CASES

[2 8 . 0287871361]
Path: /data/data/droidbox . t e s t s / f i l e s /myfilename . txt
Data: Write a l i n e

[28 . 9519150257]
Path: /data/data/droidbox . t e s t s / f i l e s /myfilename . txt
Data:

[Write ope ra t i on s]
−−−−−−−−−−−−−−−−−−
[2 7 . 054803133]
Path: /data/data/droidbox . t e s t s / f i l e s /myfilename . txt
Data: Write a l i n e

[Crypto API a c t i v i t i e s]
−−−−−−−−−−−−−−−−−−−−−−−
[3 0 . 9224250317]
Key: {0 , 42 , 2 , 54 , 4 , 45 , 6 , 7 , 65 , 9 , 54 , 11 , 12 , 13 , 60 , 15}
Algor i thm: AES

[30 . 9309520721]
Operat ion : { encrypt ion } Algor i thm: AES
Data: {357242043237517}

[30 . 9378101826]
Key: {0 , 42 , 2 , 54 , 4 , 45 , 6 , 7 , 65 , 9 , 54 , 11 , 12 , 13 , 60 , 15}
Algor i thm: AES

[30 . 9429590702]
Operat ion : { decrypt ion } Algor i thm: AES
Data: {357242043237517}

[30 . 9491829872]
Key: {0 , 42 , 2 , 54 , 4 , 45 , 6 , 8}
Algor i thm: DES

[30 . 9567849636]
Operat ion : { encrypt ion } Algor i thm: DES
Data: {357242043237517}

[30 . 961507082]
Key: {0 , 42 , 2 , 54 , 4 , 45 , 6 , 8}
Algor i thm: DES

[30 . 9688510895]
Operat ion : { decrypt ion } Algor i thm: DES
Data: {357242043237517}

52

[Network a c t i v i t y]
−−−−−−−−−−−−−−−−−−

[Opened connect i ons]
−−−−−−−−−−−−−−−−−−−−
[3 1 . 0044879913] De s t i n a t i on : p j l a n t z . com Port : 50007
[31 . 4600141048] De s t i n a t i on : p j l a n t z . com Port : 50010
[31 . 7091829777] De s t i n a t i on : p j l a n t z . com Port : 80
[33 . 210103035] De s t i n a t i on : p j l a n t z . com Port : 80
[34 . 7188341618] De s t i n a t i on : p j l a n t z . com Port : 80
[36 . 2142031193] De s t i n a t i on : p j l a n t z . com Port : 80
[37 . 7101781368] De s t i n a t i on : p j l a n t z . com Port : 80
[39 . 1731140614] De s t i n a t i on : p j l a n t z . com Port : 80
[40 . 6604549885] De s t i n a t i on : p j l a n t z . com Port : 80
[42 . 3231761456] De s t i n a t i on : p j l a n t z . com Port : 80

[Outgoing t r a f f i c]
−−−−−−−−−−−−−−−−−−
[3 1 . 1540911198]
De s t i n a t i on : p j l a n t z . com Port : 50007
Data:

[31 . 1601109505]
De s t i n a t i on : p j l a n t z . com Port : 50007
Data: He l lo master v ia TCP

[31 . 460018158]
De s t i n a t i on : p j l a n t z . com Port : 50010
Data: He l lo master v ia UDP

[42 . 4645011425]
De s t i n a t i on : p j l a n t z . com Port : 80
Data: GET /data . php?data=Hel lo HTTP/1 .1

[Incoming t r a f f i c]
−−−−−−−−−−−−−−−−−−
[3 1 . 2989680767]
Source : p j l a n t z . com Port : 50007
Data: He l lo master v ia TCP

[31 . 6889610291]
Source : p j l a n t z . com Port : 50010
Data: He l lo bot v ia UDP

[32 . 002215147]
Source : p j l a n t z . com Port : 80
Data: HTTP/1 .1 200 OK Phone number r e c e i v ed !

[33 . 4717371464]
Source : p j l a n t z . com Port : 80
Data: HTTP/1 .1 200 OK IMEI r e c e i v ed !

53

APPENDIX D. ANALYSIS REPORT FOR TEST-CASES

[3 4 . 9848711491]
Source : p j l a n t z . com Port : 80
Data: HTTP/1 .1 200 OK SMS body r e c e i v ed !

[36 . 5038011074]
Source : p j l a n t z . com Port : 80
Data: HTTP/1 .1 200 OK F i l e content r e c e i v ed !

[37 . 9697849751]
Source : p j l a n t z . com Port : 80
Data: HTTP/1 .1 200 OK Se t t i n g s r e c e i v ed !

[39 . 4508621693]
Source : p j l a n t z . com Port : 80
Data: HTTP/1 .1 200 OK Cal l l og r e c e i v ed !

[41 . 0233950615]
Source : p j l a n t z . com Port : 80
Data: HTTP/1 .1 200 OK I n s t a l l e d packages r e c e i v ed !

[42 . 5844841003]
Source : p j l a n t z . com Port : 80
Data: HTTP/1 .1 200 OK Non ta in t ed message r e c e i v ed !

[DexClassLoader]
−−−−−−−−−−−−−−−−−
24.6616630554 Path: / sdcard /DroidBoxTests . apk

[Broadcast r e c e i v e r s]
−−−−−−−−−−−−−−−−−−−−−

[S tarted s e r v i c e s]
−−−−−−−−−−−−−−−−−−
30.8953449726 C l a s s : droidbox . t e s t s . SendDataService

[Enforced pe rmi s s i ons]
−−−−−−−−−−−−−−−−−−−−−−

[Permiss ions bypassed]
−−−−−−−−−−−−−−−−−−−−−−
android . permis s ion .INTERNET
android . permis s ion .SEND_SMS
android . permis s ion .CALL_PHONE
android . permis s ion .READ_CONTACTS
android . permis s ion .READ_PHONE_STATE
android . permis s ion .READ_SMS
android . permis s ion .READ_HISTORY_BOOKMARKS

54

[In format ion l eakage]
−−−−−−−−−−−−−−−−−−−−−
[2 6 . 8974089622]
S ink : F i l e
Path: /data/data/droidbox . t e s t s / shared_pre fs / Pre f s . xml
Operat ion : read
Tag: TAINT_BROWSER, TAINT_IMSI
Data:
<?xml version=’ 1 .0 ’ encoding=’ utf−8 ’ standalone=’ yes ’ ?>
<map>
<s t r i n g name="Book ">ht tp : //www. l t h . se /</ s t r i n g>
<s t r i n g name=" SharedValue ">310005123456789</ s t r i n g>
</map>

[26 . 9308199883]
S ink : F i l e
Path: /data/data/droidbox . t e s t s / shared_pre fs / Pre f s . xml
Operat ion : wr i t e
Tag: TAINT_BROWSER, TAINT_IMSI
Data:
<?xml version=’ 1 .0 ’ encoding=’ utf−8 ’ standalone=’ yes ’ ?>
<map>
<s t r i n g name="Book ">ht tp : //www. l t h . se /</ s t r i n g>
<s t r i n g name=" SharedValue ">310005123456789</ s t r i n g>
</map>

[27 . 0697660446]
S ink : F i l e
Path: /data/data/droidbox . t e s t s / f i l e s / output . txt
Operat ion : wr i t e
Tag: TAINT_CONTACTS
Data: John Doe

[29 . 938863039]
S ink : F i l e
Path: /data/data/droidbox . t e s t s / f i l e s / output . txt
Operat ion : read
Tag: TAINT_CONTACTS
Data: John Doe

[30 . 895277977]
S ink : F i l e
Path: /data/data/droidbox . t e s t s / f i l e s / output . txt
Operat ion : read
Tag: TAINT_CONTACTS
Data:

55

APPENDIX D. ANALYSIS REPORT FOR TEST-CASES

[3 1 . 8631529808]
S ink : Network
De s t i n a t i on : p j l a n t z . com
Port : 80
Tag: TAINT_PHONE_NUMBER
Data: GET /phone . php?phone=15555215554 HTTP/1 .1

[33 . 347383976]
S ink : Network
De s t i n a t i on : p j l a n t z . com
Port : 80
Tag: TAINT_IMEI
Data: GET / imei . php? imei=92a871af351ba747d7789b67f09c817b HTTP/1 .1

[34 . 8577671051]
S ink : Network
De s t i n a t i on : p j l a n t z . com
Port : 80
Tag: TAINT_SMS
Data: GET /msg . php?msg=Hi ,+how+are+you HTTP/1 .1

[36 . 3688721657]
S ink : Network
De s t i n a t i on : p j l a n t z . com
Port : 80
Tag: TAINT_CONTACTS
Data: GET / f i l e . php? f i l e=Write+a+l i n e&John+Doe HTTP/1 .1

[37 . 8458170891]
S ink : Network
De s t i n a t i on : p j l a n t z . com
Port : 80
Tag: TAINT_SETTINGS
Data: GET / s e t t i n g s . php? a larmset=Thu+9:00+am HTTP/1 .1

[3 9 . 32903409]
S ink : Network
De s t i n a t i on : p j l a n t z . com
Port : 80
Tag: TAINT_CALL_LOG
Data: GET / c a l l . php? l o g s=nul l1318421100106 +123456789+.. HTTP/1 .1

[40 . 8949520588]
S ink : Network
De s t i n a t i on : p j l a n t z . com
Port : 80
Tag: TAINT_PACKAGE
Data: GET /app . php? i n s t a l l e d=com . android . s oundreco rde r : . . HTTP/1 .1

56

[4 2 . 2236230373]
S ink : SMS
Number: 0735445281
Tag: TAINT_IMEI
Data: 357242043237517

[Sent SMS]
−−−−−−−−−−
[4 2 . 1967680454]
Number: 0735445281
Message: Sending sms . . .

[Phone c a l l s]
−−−−−−−−−−−−−
[4 2 . 2276241779] Number: 123456789
[42 . 8857491016] Number: 123456789

57

Appendix E

loaded.apk Manifest

<?xml version=" 1 .0 " encoding=" utf−8" ?>
<mani fe s t xmlns :andro id=" h t tp : // schemas . android . com/apk/ r e s / android "

package="com . l oade r "
andro id :ver s ionCode=" 1 "
android:vers ionName=" 1 .0 ">

<uses−sdk android:minSdkVers ion=" 7 " />
<uses−permis s ion android:name=" android . permis s ion .

WRITE_EXTERNAL_STORAGE" />
<app l i c a t i o n andro id : i c on="@drawable/ i con " and r o i d : l a b e l=" @str ing /

app_name">
<a c t i v i t y android:name=" . LoaderAct iv i ty "

a nd r o i d : l a b e l=" @str ing /app_name">
<intent− f i l t e r>

<act i on android:name=" android . i n t en t . a c t i on .MAIN" />
<category android:name=" android . i n t en t . category .

LAUNCHER" />
</ intent− f i l t e r>

</ a c t i v i t y>
</ app l i c a t i o n>

</mani f e s t>

59

Appendix F

DroidBoxTests.apk Manifest

<?xml version=" 1 .0 " encoding=" utf−8" ?>
<mani fe s t xmlns :andro id=" h t tp : // schemas . android . com/apk/ r e s / android "

package=" droidbox . t e s t s "
andro id :ver s ionCode=" 1 "
android:vers ionName=" 1 .0 ">

<uses−permis s ion android:name=" android . permis s ion .SEND_SMS" />
<uses−permis s ion android:name=" android . permis s ion .INTERNET" />
<uses−permis s ion android:name=" android . permis s ion .READ_SMS" />
<uses−permis s ion android:name=" android . permis s ion .READ_CONTACTS" />

<uses−permis s ion android:name=" android . permis s ion .CALL_PHONE" />
<uses−permis s ion android:name=" android . permis s ion .READ_PHONE_STATE" /

>
<uses−permis s ion android:name=" android . permis s ion .RECEIVE_SMS" />
<uses−permis s ion android:name="com . android . browser . permis s ion .

READ_HISTORY_BOOKMARKS" />
<uses−permis s ion android:name=" android . permis s ion .READ_CALENDAR"></

uses−permis s ion>
<uses−permis s ion android:name=" android . permis s ion .WRITE_CALENDAR"><

/uses−permis s ion>
<permis s ion android:name="com .me . app .myapp . permis s ion .

DEADLY_ACTIVITY"
and ro i d : p r o t e c t i onLeve l=" dangerous " />

<app l i c a t i o n andro id : i c on="@drawable/ i con " and r o i d : l a b e l=" @str ing /
app_name">
<a c t i v i t y android:name=" . DroidBoxTests "

a nd r o i d : l a b e l=" @str ing /app_name">
<intent− f i l t e r>

<act i on android:name=" android . i n t en t . a c t i on .MAIN" />
<category android:name=" android . i n t en t . category .

LAUNCHER" />
</ intent− f i l t e r>

</ a c t i v i t y>
<r e c e i v e r android:name=" . SMSReceiver ">

<intent− f i l t e r>
<act i on android:name=" android . p rov ide r . Telephony .

SMS_RECEIVED" />
</ intent− f i l t e r>

</ r e c e i v e r>

61

APPENDIX F. DROIDBOXTESTS.APK MANIFEST

<s e r v i c e android:name=" . SendDataService " />
</ app l i c a t i o n>

</mani f e s t>

62

Appendix G

Analysis report for real-world malware

[I n f o]
−−−−−−
F i l e name: com . gone60−1.apk
MD5: 859 cc9082b8475fe6102cd03d1df10e5
SHA1: e54bbd6754cb23075421daf3021576f5830f8ada
SHA256: 922741596

dde5081760706c653a7b2bd4634c832b648cd3d06f7edca8ea8d1b7
Durat ion : 69.5587289333 s

[F i l e a c t i v i t i e s]
−−−−−−−−−−−−−−−−−

[Read ope ra t i on s]
−−−−−−−−−−−−−−−−−

[Write ope ra t i on s]
−−−−−−−−−−−−−−−−−−

[Crypto API a c t i v i t i e s]
−−−−−−−−−−−−−−−−−−−−−−−

[Network a c t i v i t y]
−−−−−−−−−−−−−−−−−−

[Opened connect i ons]
−−−−−−−−−−−−−−−−−−−−
[4 1 . 7149739265]
De s t i n a t i on : g i 60 s . com Port : 80

[Outgoing t r a f f i c]
−−−−−−−−−−−−−−−−−−
[4 1 . 9642870426]
De s t i n a t i on : g i 60 s . com Port : 80
Data: POST /upload . php HTTP/1 .1
a c c ep t : a pp l i c a t i o n / j son
Content−Length: 5038
Content−Type: app l i c a t i o n /x−www−form−ur lencoded

63

APPENDIX G. ANALYSIS REPORT FOR REAL-WORLD MALWARE

Host : g i 60 s . com
Connect ion: Keep−Al ive
User−Agent: Apache−HttpCl ient /UNAVAILABLE (java 1 . 4)
Expect : 100−Continue

[Incoming t r a f f i c]
−−−−−−−−−−−−−−−−−−

[DexClassLoader]
−−−−−−−−−−−−−−−−−

[Broadcast r e c e i v e r s]
−−−−−−−−−−−−−−−−−−−−−

[S tarted s e r v i c e s]
−−−−−−−−−−−−−−−−−−

[Enforced pe rmi s s i ons]
−−−−−−−−−−−−−−−−−−−−−−

[Permiss ions bypassed]
−−−−−−−−−−−−−−−−−−−−−−

[In format ion l eakage]
−−−−−−−−−−−−−−−−−−−−−
[5 4 . 363202095]
S ink : Network
De s t i n a t i on : g i 60 s . com
Port : 80
Tag: TAINT_CONTACTS, TAINT_SMS, TAINT_CALL_LOG, TAINT_BROWSER
Data: code=aac08&data=%7B%22contac t s%22%3A%5B%7B+%22name . . .

[Sent SMS]
−−−−−−−−−−

[Phone c a l l s]
−−−−−−−−−−−−−

64

