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Abstract

High Peak-to-Average-Power Ratio (PAPR) is one of the main problems of
Multi-Carrier Modulation (MCM) systems. A number of different methods are
proposed to reduce the PAPR. Since filtering is often a part of the processing
chain in communication systems, PAPR can regrow.

This thesis investigates ways to design peak-aware filters. Filter design with
minimum l1-norm is the approach of the thesis to reach a lower PAPR. Three dif-
ferent methods are investigated, the first one is filter design using spectral factor-
ization. Convex optimization is used as a powerful tool for the other two methods
which are least squares filter and equiripple filter designs.

The results show that the minimum l1-norm filters constructed by the spectral
factorization method usually have better performance than their corresponding
minimum-phase versions in terms of PAPR gain. For least squares filter and
equiripple filter designs using convex optimization, it is possible to achieve a gain
in PAPR by accepting extra errors in the frequency response of filters.



ii



Acknowledgements

First of all, I would like to express the deepest gratitude to my supervisor Dr.
Thomas Magesacher for his kindly helps, patient guidances and motivations during
my master thesis work. His several important feedbacks and suggestions on the
thesis report also enhanced it as well.

In addition, I am very grateful to my examiner Dr. Stefan Höst for his precious
comments and advices on the report and thesis work in order to have a better
performance.

Finally, I would like to thank my parents for their love and all friends that
supported me.

Mahmoud Alizadeh
Lund University

iii



iv



Table of Contents

1 Introduction 9
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Problem of MCM Systems . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Goals and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Peak-to-Average-Power Ratio 11
2.1 Definition of Instantaneous PAPR . . . . . . . . . . . . . . . . . . . 11
2.2 The CCDF Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 PAPR Reduction Techniques . . . . . . . . . . . . . . . . . . . . . . 19

3 l1-Norm and Spectral Factorization Method 21
3.1 l1-Norm Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Autocorrelation Function and Spectral Factorization Method . . . . . 22
3.3 Minimum l1-Norm Filter . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Filter Design Using Convex Optimization 31
4.1 Convex Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Comparisons 41

6 Conclusions and Further Work 47
6.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

References 49

1



2 TABLE OF CONTENTS



LIST OF FIGURES 3

List of Figures

2.1 A typical block diagram of an OFDM system . . . . . . . . . . . . . 12
2.2 PAPR versus the number of subcarriers . . . . . . . . . . . . . . . . 12
2.3 Three distributions of input sequence . . . . . . . . . . . . . . . . . 13
2.4 Differential entropy versus peak power . . . . . . . . . . . . . . . . . 16
2.5 The PDF of the sum of two independent random variables . . . . . . 17
2.6 The PDF of X and Y = X2 . . . . . . . . . . . . . . . . . . . . . . 19
2.7 An exemplary linear phase FIR filter . . . . . . . . . . . . . . . . . . 19
2.8 The CCDF of PAPR of the input and output sequences . . . . . . . 20

3.1 The roots of an exemplary autocorrelation function . . . . . . . . . . 23
3.2 The roots of autocorrelation function and a group of N -roots . . . . 25
3.3 The roots of the minimum l1-norm filter . . . . . . . . . . . . . . . 26
3.4 The frequency response of the given minimum phase filter . . . . . . 27
3.5 The output CCDF of PAPR of filters . . . . . . . . . . . . . . . . . 27
3.6 The roots of an exemplary given least squares filter . . . . . . . . . . 28
3.7 An example of minimum l1-norm filter with no PAPR gain . . . . . . 29
3.8 The frequency response of the give least squares filter . . . . . . . . 29

4.1 Convex and non-convex sets . . . . . . . . . . . . . . . . . . . . . . 31
4.2 An example of convex function . . . . . . . . . . . . . . . . . . . . . 32
4.3 Sum of squared error of the filters versus time delays (T ) . . . . . . 35
4.4 The output CCDF of PAPR of the LS filters with a relaxation . . . . 36
4.5 The frequency responses of the least squares filters with a relaxation 37
4.6 The output CCDF of PAPR of the equiripple filters with a thresholds 40
4.7 The frequency responses of the equiripple filters with a thresholds . . 40

5.1 The output CCDF of PAPR of the three different filters [example 1] . 42
5.2 The frequency response of the three different filters [example 1] . . . 42
5.3 The output CCDF of PAPR of the three different filters [example 2] . 43
5.4 The frequency response of the three different filters [example 2] . . . 44
5.5 The output CCDF of PAPR of the three different filters [example 3] . 45
5.6 The frequency response of the three different filters [example 3] . . . 45



4 LIST OF FIGURES



List of Tables

4.1 Least squares filters with a relaxation . . . . . . . . . . . . . . . . . 37
4.2 Equiripple filters with different l1-norm constraints . . . . . . . . . . 39

5.1 The comparison of three filter design methods . . . . . . . . . . . . 43

5



6 LIST OF TABLES



List of Acronyms

MCM Multi-Carrier Modulation

DAB Digital Audio Broadcasting

DVB-T Digital Video Broadcasting-Terrestrial

DSL Digital Subscriber Line

OFDM Orthogonal Frequency Division Multiplexing

PAPR Peak-to-Average-Power Ratio

CCDF Complementary Cumulative Distribution Function

PDF Probability Density Function

PMF Probability Mass Function

BER Bit-Error Rate

PSD Power Spectral Density

FIR Finite Impulse Response

WSS Wide Sense Stationary

7



8 List of Acronyms



1
Introduction

1.1 Overview

Multi-Carrier Modulation (MCM) is an elegant modulation scheme in commu-
nication systems and is used in many systems such as Digital Audio Broadcast-
ing (DAB), Digital Video Broadcasting-Terrestrial (DVB-T), Digital Subscriber
Line (DSL), the IEEE 802.11 (WiFi) and IEEE 802.16 (WiMAX) standards.
Orthogonal Frequency Division Multiplexing (OFDM) is a sophisticated type of
MCM, which is robust to frequency selective channels, has high bandwidth effi-
ciency, and can be implemented at comparably low cost [1].

1.2 Problem of MCM Systems

Although MCM has established itself in many communication systems, it is still
suffering from some problems: PAPR is one of the major problems. Each OFDM
symbol is a linear combination of the input symbols. Depending on the symbols’
values, the corresponding subcarrier waveforms may align such that their sum has
a very large absolute value at one or more points in time and thus results in peaks.
As a consequence the Peak-to-Average-Power Ratio (PAPR) becomes high. In
order to tolerate the peakiness, an amplifier with high dynamic range is required,
which reduces the power efficiency [1].

1.3 Previous Work

There are several classes of methods to reduce the PAPR [2], [3], such as clipping
and noise shaping, tone reservation, active constellation extension, tone injection,
etc. Each of these methods has some advantages and disadvantages. Clipping is
the simplest way to mitigate PAPR, but it is a non-linear process causing signal
distortion and out-of-band spectral radiation [1]. PAPR regrowth may occur after
using an interpolation filter [4]. In fact a filter may regrow the PAPR, which
motivates the design of a filter that leads to lower PAPR. In [4] and [13], minimum
l1-norm filter design has been introduced as an approach to reduce the PAPR. The
proposed method in [13] tried to solve the problem for the special case when the
magnitude and phase of the transfer function is given.
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10 Introduction

1.4 Goals and Scope

In this thesis, three methods are investigated in order to design minimum l1-norm
filters. The first one uses the spectral factorization method and is a continuation
of the work in [4]. The idea behind this method is the following: for a filter with
given magnitude response, all spectral factors can be constructed by forming com-
binations of autocorrelation roots which are not conjugate reciprocal. This leads
to filters with different coefficients but same magnitude response. Least squares
filter design is the second method which uses convex optimization to minimize
l1-norm subject to a maximum error of the filter’s frequency response. And the
last method is equiripple filter design which uses convex optimization to minimize
the frequency error of the filter subject to an l1-norm constraint.

1.5 Structure of the Thesis

The definition of PAPR and problems of high PAPR are described in Chapter 2.
Since the simulation is limited by the length of the input sequence, an analyt-
ical way is introduced to compute the Complementary Cumulative Distribution
Function (CCDF) of PAPR.

In Chapter 3 the definition of the l1-norm is explained and a short proof show-
ing how this property of a filter determines the support of the output sequences is
presented. Furthermore, in this chapter the spectral factorization method is used
to construct all filters with the same autocorrelation function and to find the best
filter in terms of minimum l1-norm.

Least squares filter and equiripple filter designs using convex optimization are
described in Chapter 4.

Evaluations and comparisons between three filter design methods are explained
in Chapter 5.

Finally, in Chapter 6, conclusions and suggestions for further work are sum-
marized.



2
Peak-to-Average-Power Ratio

The Peak-to-Average-Power Ratio (PAPR) is an important issue of communication
systems, especially in Multi-Carrier Modulation (MCM) systems. With increasing
number of subcarriers, the PAPR levels grow.

High PAPR levels cause several problems [2] and are thus undesirable. It
requires power amplifiers with larger dynamic range which are more costly and
cause a higher power consumption. Increasing Bit-Error Rate (BER) and out-of-
band spectral radiation are other consequences of high PAPR.

This chapter describes the definition of PAPR, and also explains how to com-
pute its CCDF analytically, which is one of the criteria to measure the performance
of PAPR reduction techniques.

2.1 Definition of Instantaneous PAPR

For a sequence of complex-valued time-domain transmit data samples s[n], n =
0, ..., N − 1, which can be a sequence of an OFDM block, the PAPR is defined as
[7]

PAPR =
max
n
|s[n]|2

1
N

N−1∑
n=0
|s[n]|2

(2.1)

In an OFDM system (a simple block diagram is shown in Figure 2.1), each
OFDM symbol is generated by taking an inverse Fourier transform of data symbols
x[k]

s[n] =

N−1∑
k=0

x[k]ej2π
k
N n (2.2)

High peak amplitudes can appear when the length of the block increases, i.e.
for a block consisting of N sinusoidal signals, peaks can arise when many sinusoidal
signals align due to their phases such that one or more large peaks arise. This
problem becomes worse as N rises since there are more sinusoidal signals whose
peaks can align [7].

11



12 Peak-to-Average-Power Ratio

Figure 2.1: A typical block diagram of an OFDM system

Figure 2.2 depicts the relation between the PAPR level for probability 10−3

and the number of subcarriers for an OFDM system where all subcarriers are
modulated with 4-QAM.
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Figure 2.2: PAPR in dB for probability 10−3 versus the number of subcar-
riers in an OFDM system (4-QAM constellation for all subcarriers)
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2.2 The CCDF Criterion

In order to measure the performance of PAPR reduction methods, the Comple-
mentary Cumulative Distribution Function (CCDF) of PAPR has been introduced
as a criterion.

2.2.1 Definition

The CCDF of PAPR is defined as the probability that the instantaneous PAPR
exceeds a certain level [7]

P (PAPR > level) (2.3)

In the following sections the CCDF of PAPR is calculated for different types
of distributions of data sequences analytically.

2.2.2 Input Distributions

In this thesis, three types of distributions of transmit signals are considered: uni-
form, Gaussian and truncated Gaussian. Figure 2.3 shows the Probability Density
Function (PDF) of the three distributions: the uniform distribution sequence is on
the interval [−1, +1], the Gaussian PDF is zero mean with the variance σ2 = 1,
and finally the truncated Gaussian PDF has a Gaussian like distribution but lim-
ited on the interval [−1,+1].
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Figure 2.3: Three distributions of input sequence, (a) uniform PDF, (b)
Gaussian PDF and (c) truncated Gaussian PDF; dotted lines (.) are
the simulation PDF and solid lines (-) are the analytical PDF

For the evaluation of peakiness of the signal and differential entropy the fol-
lowing parameters are of interest:

• peak-to-average-power ratio

• peak-power-to-differential-entropy ratio

• average-power-to-differential-entropy ratio

The average power of a random variable X on the interval [−a, +a] is

Pav(X) = E{X2} =

∫ +a

−a
x2fX(x)dx (2.4)
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where fX(x) is the PDF of X.
In information theory, the entropy is a measure for the uncertainty of a random

variable. For a continuous random variable the differential entropy is defined as

H(X) = −
∫
R

fX (x) log2 fX (x) dx (2.5)

where R is the interval of the distribution and the base of the logarithm is
here chosen to be 2 which yields results measured in bits. For a discrete random
variable X which can take possible values {x1, x2, . . . , xN} with the Probability
Mass Function (PMF) p(x), the entropy is

H(X) = −
N∑
i=1

p (xi) log2 p (xi) (2.6)

Uniform Distribution

For the continuous random variable X with uniform distribution on the interval
R = [−a, +a] and fX(x) = 1

2a , the average power or variance can be computed as

Pav(X) = E{X2} =

∫ a

−a
x2

1

2a
dx =

a2

3
(2.7)

Thus, the peak-to-average-power ratio of the uniform distribution is

PAPR =
a2(
a2

3

) = 3 (2.8)

and the differential entropy is

H(X) = −
a∫
−a

1

2a
log2

(
1

2a

)
dx = log2(2a) (2.9)

Then, the average-power-to-differential-entropy ratio can be obtained as

Pav(X)

H(X)
=

a2

3 log2(2a)
=

σ2
x

log2

(
σx
√

12
) (2.10)

and the peak-power-to-differential-entropy ratio is

Ppeak(X)

H(X)
=

a2

log2(2a)
=

3σ2
x

log2

(
σx
√

12
) (2.11)

Gaussian Distribution

Gaussian distribution with a variance σ2
x has infinite support. Although infinite

values never occur in practice, the Gaussian distribution is commonly used to
model signals and noise [4].
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The differential entropy of the Gaussian distribution is

H(X) = −
+∞∫
−∞

1

σx
√

2π
e
− x2

2σ2x log2

(
1

σx
√

2π
e
− x2

2σ2x

)
dx =

ln
(
2πeσ2

x

)
2 ln(2)

(2.12)

Truncated Gaussian Distribution

The probability density of truncated Gaussian function is similar to Gaussian
distribution but limited to the support [−a, +a], and its PDF is given by

fXtG (x) =
fXG(x)

erf
(

a√
2σx

) (2.13)

where fXG (x) is the Gaussian PDF. The denominator is the normalization
term corresponding to the area of the Gaussian PDF on the interval [−a, +a]

∫ +a

−a
fXG (x) dx =

∫ +a

−a

1

σx
√

2π
e
− x2

2σ2x dx = erf

(
a√
2σx

)
(2.14)

In the following the average power of the truncated Gaussian PDF is calculated

E{X2} =

+a∫
−a

x2 fXtG (x) dx =

∫ +a

−a
x2

1

σx
√

2π

e
− x2

2σ2x

erf
(

a√
2σx

) dx = σ2
x −

a
√

2σx e
− a2

2σ2x

√
π erf

(
a√
2σx

) =

σ2
x

1− 2 a e
− a2

2σ2x

σx
√

2π erf
(

a√
2σx

)
 (2.15)

The differential entropy of the truncated Gaussian distribution is

H(X) =−
+∞∫
−∞

1

σx
√

2π erf
(

a√
2σx

)e− x2

2σ2x log2

 1

σx
√

2π erf
(

a√
2σx

)e− x2

2σ2x

 dx =

2 ln
(
σx
√

2π erf
(

a√
2σx

))
+ 1

2 ln(2)
− a

ln(2)σx
√

2π erf
(

a√
2σx

)e− a2

2σ2x (2.16)

Figure 2.4 shows differential entropy versus peak power for the three distri-
butions (when the variance is one). It is clear that the uniform distribution has
minimum entropy and Gaussian distribution has highest entropy.
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Figure 2.4: Differential entropy versus peak power, when the variance is one

2.2.3 The CCDF of PAPR for Output Sequence

Assume that the input sequence is filtered where the filter coefficients are deter-
ministic and real, it is permitted to use the sum of independent random variables
theorem [6] to compute the PDF and CCDF of PAPR for the output sequence
analytically.

Sum of Independent Random Variable Theorem

According to the sum of independent random variables theorem, the PDF of the
sum of two independent variables is the convolution of their PDFs. Assume that
X and Y are two independent discrete random variables, the goal is to find the
probability mass function of Z = X + Y . For example, given Z = z, X takes a
certain value X = k if and only if Y = z − k. The probability of P (Z = z) is thus
given by [6]

P (Z = z) =

+∞∑
k=−∞

P (X = k) P (Y = z − k) (2.17)

In other words the PMF of Z is the convolution of the PMF of X and the
PMF of Y . For continuous random variables X,Y and Z = X + Y , the PDF of
Z is the convolution of the PDF of X and the PDF of Y . Note that X and Y
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must be independent. Figure 2.5 depicts the PDF of the sum of two independent
random variables with uniform distributions. The PDF of X is uniform on the
interval [−0.5, +0.5] and the PDF of Y is uniform on the interval [−0.25, +0.25].
The simulation results and analytical results are match.
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Figure 2.5: The PDF of the sum of two independent random variables which
have uniform PDFs; dotted lines (.) are the simulation results and solid
lines (-) are the analytical results

A sum of several independent random variables Sn = X1 + X2 + ... + Xn,
can be rewritten as Sn = Sn−1 +Xn, therefore according to Equation (2.17), the
probability density function of Sn is given by the convolution of two PDFs

PSn(m) =

+∞∑
k=−∞

PX(k)PSn−1
(m− k) (2.18)

where PSn is the PDF of Sn and PX is the PDF ofX. This equation formatting
is very useful, because for an input sequence convolved with a filter which has N+1
deterministic coefficients, the probability density function of the output sequence is
obtained by knowing the PDF of the input sequence. Assume that X is a random
variable which can obtain any values of x[k] on the interval [−1,+1] with uniform
PDF and h = [h[0]h[1] . . . h[N ] ]T , then the output sequence is

y[k] = h[k] ∗ x[k] =

N∑
m=0

h[m]x[k −m] (2.19)

Since the filter coefficients are deterministic, the output random variable Y is
the sum of independent sequence of random variables

Y = h[0]X0 + h[1]X1 + ...+ h[N ]XN =

N∑
k=0

h[k]Xk (2.20)

where Xk is a random variable with the same PDF as random variable X.
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The PDF of the scaled random variable h[k]Xk can be calculated easily. As-
sume that Y = aX, where X is a random variable and a is a constant, then the
PDF of Y is [6]

fY (y) = fX (y/a) |∂(y/a)

∂y
| (2.21)

fY (y) = fX (y/a) |1
a
|

In Figure 2.5, Y = 0.5X, where X is a random variable with uniform distri-
bution sequence on the interval [−1, +1] and as it is shown the fY (y) = 2fX (2y)
is also a uniform PDF but on the interval [−0.5, +0.5]. Therefore, the PDF of
the output sequence can be calculated as the same way: the PDF of all scaled
random variables (h[k]Xk, k = 0, . . . , N) should be computed first and then they
are convolved.

PDF of Squared Random Variable

The second step of computing the CCDF of PAPR is obtaining the PDF of squared
of sum of independent random variables. If Y = X2, then the probability of
P (Y ≤ y) is

P (Y ≤ y) = P (−√y ≤ x ≤ √y) (2.22)

when X is a continuous random variable. The above equation can be rewritten
as

P (Y ≤ y) = P (x ≤ √y)− P (x ≤ −√y) (2.23)

CDFY (y) = CDFX(
√
y)− CDFX(−√y) (2.24)

where CDF is Cumulative Distribution Function. Figure 2.6 shows a random
variable X with uniform distribution on the interval [−1, +1] and the PDF of
Y = X2.

PDF of PAPR for a Random Variable

The final step is to calculate the PDF of PAPR. In fact by having the PDF of the
power of the output sequence, it is easy to compute the PDF or CCDF of PAPR,
because the average power for a sequence is constant.

The CCDF of PAPR can be obtained from the PDF. As an example, con-
sider an exemplary linear phase FIR filer h = [−0.1250 0.2500 − 0.5000 1.0000 −
0.5000 0.2500 −0.1250]T (Figure 2.7) and input sequences for three types of PDF
(uniform, Gaussian, truncated Gaussian) with same average power (σ2 = 1) , the
CCDF of PAPR of the input sequences are shown in Figure 2.8-(a) and the CCDF
of PAPR for the output sequences are shown in Figure 2.8-(b).
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Figure 2.7: An exemplary linear phase FIR filter

For complex filters there is no straightforward way to compute the CCDF of
PAPR analytically, since the real part and imaginary part of the filter output are
not necessarily independent, the sum of independent random variables theorem is
not satisfied.

2.3 PAPR Reduction Techniques

There are several techniques to reduce the PAPR of the transmit signal especially
for OFDM systems. Some of these techniques are: clipping, tone reservation, tone
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Figure 2.8: (a) The input CCDF of PAPR for the uniform, Gaussian and
truncated Gaussian distribution sequences, (b) the output CCDF of
PAPR; dotted lines (.) are the simulation results and solid lines (-) are
the analytical results

injection, partial transmitted sequence, selected mapping, active constellation [2],
[3], [5].

Note that the design of a filter with good PAPR-regrowth properties should
not be seen as a PAPR reduction technique. The idea is to design a filter, which
is already part of the chain to fulfil a certain purpose, in such a way to keep the
PAPR-regrowth low. The following chapters of this thesis focus on such filter
design methods based on the l1-norm criterion.
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l1-Norm and Spectral Factorization Method

Linear filtering is usually a part of communication systems in order to shape
signals properly and to remove noise and distortion. However as a consequence of
the filtering process, the peaks of signals may regrow. Figure 2.8 shows that the
PAPR of the filter output can increase considerably for an input data sequence
with uniform or truncated Gaussian distribution.

In this Chapter, the focus is on the minimum l1-norm approach to design
filters with good PAPR properties. In the following sections the definition of the
l1-norm and the spectral factorization method are explained. It is assumed that
the impulse response (or magnitude response) of the filter is given, since it is a part
of the processing chain in communication systems. Therefore the autocorrelation
function can be computed from the impulse response directly. In Section 3.2, the
procedure of constructing all possible filters from a given autocorrelation function
is explained.

3.1 l1-Norm Definition

For a given filter h = [h[0]h[1] . . . h[N ] ]T , the l1-norm is defined as following [4],
[13]

||h||1 = |h[0]|+ |h[1]|+ · · ·+ |h[N ]| =
N∑
n=0

|h[n]| (3.1)

3.1.1 Support of the Output Sequence

The support of a sequence of data samples may change during the filtering process.
Assume that x = [x[0]x[1] . . . x[M ] ]T is an independent random input sequence
limited on the condition |x[n]| ≤ B, n = 0, 1, . . . , M . The output sequence, which
is a convolution of the input sequence and the filter coefficients, is given by

y[k] =

N∑
n=0

h[n]x[k − n] (3.2)

then the absolute value of the output sequence is

21
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|y[k]| = |
∑
n

h[n]x[k − n]| (3.3)

Since |x[k − n]| is not greater than B, the output can be bounded by

|y[k]| ≤ |
∑
n

h[n]B| (3.4)

Since B is a constant, then the above equation can be written as

|y[k]| ≤ B |
∑
n

h[n] | (3.5)

The absolute value of the sum of the filter coefficients is not greater than the
sum of the absolute values of the coefficients and thus

|y[k]| ≤ B
∑
n

|h[n]| = B ||h||1 (3.6)

As a result, for a bounded input sequence, the support of the output sequence
is determined by the support of the input sequence and the l1-norm of the filter
[13]. Therefore a filter with lower l1-norm may lead to a smaller output support

3.2 Autocorrelation Function and Spectral Factorization Method

For a given Finite Impulse Response (FIR) filter h of order N , the autocorrelation
function r = [ r[−N ] . . . r[N ] ]T is defined as

r[k] =
∑
n

h[n]h[n+ k] (3.7)

The Power Spectral Density (PSD) of a sequence with autocorrelation function
r is given by the Fourier transform of r

R(ω) =
∑
k

r[k]e−jωk (3.8)

For a Wide Sense Stationary (WSS) process, the power spectrum is real and
positive, in the z-domain it can be factorized into a product form of its roots as
following

R(z) = σ2
0H(z)H∗(

1

z∗
) (3.9)

This factorization is called spectral factorization. σ2
0 is the variance of the

sequence. H(z) is a rational minimum phase part of R(z) and the roots of H(z)
are inside the unit circle. H( 1

z ) is the maximum phase part of the power spectrum
which its all roots are located outside the unit circle [8]. The roots of the second
part are conjugate reciprocal roots of the first part. Figure 3.1 depicts the roots
of an exemplary autocorrelation function and the minimum phase part and the
maximum phase part of its roots.
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Figure 3.1: The roots of the autocorrelation function, the minimum phase
part and the maximum phase part

Since the autocorrelation function is symmetric, it can be interpreted as the
impulse response of a linear-phase FIR filter. Assume P (z) is the Fourier transform
of the autocorrelation function.

Complex-valued roots of real filters appear in complex-conjugate pairs (if α is



24 l1-Norm and Spectral Factorization Method

root, so is α∗). Roots of symmetric filters appear in reciprocal pairs (if α is a root,
so is α−∗). Thus, for a real symmetric filter R(z) the following holds: If α is a real
root of R(z), then α−1 is also a root of R(z). If α is a complex root of R(z), then
α∗, α−1, and α−∗ are also roots of R(z).

According to Equation (3.9), for a filter of order N , its autocorrelation function
has 2N roots where half of them are conjugate reciprocal roots of the rest. It is
possible to construct a filter with the same autocorrelation function by taking a
group of N -roots among 2N roots that does not contain any conjugate reciprocal
roots. The number of all possible groups of N -roots that can construct filters
with the same autocorrelation function is 2N . In Figure 3.2-(a),(b), one group of
N -roots is marked and its conjugate reciprocal roots are shown in part (c).

In the next part, the goal is to construct all possible filters with the same
autocorrelation function corresponding to groups of N -roots and to find the filter
with minimum l1-norm.

3.3 Minimum l1-Norm Filter

As mentioned in Section 3.1, a filter with minimum l1-norm may cause lower peaks
of the output sequence. Assuming that there is a given filter, which is already part
of a communication system, the goal is to find the filter with minimum l1-norm
which has the same magnitude response as the given filter but may have different
phase. In the following part the procedure of this method is explained [4]

• Compute the 2N roots of the polynomial of r[k] z−k, k = −N, . . . , N .

• Group all sets of N -roots among 2N roots that do not contain any conjugate
reciprocal pairs.

• Construct the filters corresponding to all sets of N -roots.

• Scale the constructed filters hk

h =

√
r[0]

||hk||2
hk (3.10)

• Calculate the l1-norm of the filters and find the filter with minimum l1-norm.

The roots of the minimum l1-norm filter for the given autocorrelation function
in Figure 3.2-(a), are depicted in Figure 3.3. The frequency responses and the
phases of the minimum phase filter and the minimum l1-norm filter are shown in
Figure 3.4. Two filters have the same magnitude responses, but their phases are
different.

The output CCDF of PAPR of the minimum l1-norm filter and the minimum
phase filter are shown in Figure 3.5. The distribution of the input sequence is
assumed to be uniform on the interval [−0.5, +0.5]. In this case, it can be seen
that, the minimum l1-norm filter has lower PAPR, and the asymptotic gain in
PAPR is about 0.27dB.

However, the minimum l1-norm filter does not always have a better perfor-
mance in terms of PAPR, especially for high probabilities. For instance Figure 3.6
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Figure 3.2: (a) The roots of the autocorrelation function, (b) a group of
N -roots and (c) the conjugate reciprocal roots of part (b).

shows an example, the l1-norm of the given least squares filter is 2.01 while the
minimum l1-norm is 1.92 numerically. But the minimum l1-norm filter is worse
than the least squares filter in PAPR gain for high probabilities. The frequency
responses of the least squares filter and the minimum l1-norm filter are depicted
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Figure 3.3: The roots of the autocorrelation function and the minimum
l1-norm filter

in Figure 3.8.
The second disadvantage of the spectral factorization method is computational

complexity. For a given filter of order N , the number of filters that can be con-
structed from its autocorrelation function is 2N . The spectral factorization method
is not efficient for high order filters. The next chapter discusses the least squares
filter design method and equiripple filter design method which are described as
convex optimization based on l1-norm criterion.
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Figure 3.4: The frequency responses of the minimum l1-norm filter and the
minimum phase filter
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Figure 3.5: The output CCDF of PAPR of the minimum l1-norm filter and
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Figure 3.6: The roots of an exemplary given least squares filter and the
minimum l1-norm filter
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Figure 3.7: In some cases, the minimum l1-norm filter does not have a
better performance for high probabilities

Figure 3.8: The frequency response of the given least squares filter and the
minimum l1-norm filter
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4
Filter Design Using Convex Optimization

Convex optimization methods are well known and powerful tools to solve engi-
neering problems in communication systems and they are applied in many areas
such as filter design, optimal transmitter power allocation, phased-array antenna
beam-forming and etc. These methods are efficient and reliable to solve a lot of
problems directly or after converting them into convex forms. The goal of the
convex optimization problem is to minimize an objective function subject to a set
of convex constraint functions and affine functions [10], [11].

This chapter provides with a brief overview of convex optimization before
focusing on filter design methods based on the l1-norm criterion.

4.1 Convex Theory

4.1.1 Convex Sets

If any line between two points of a set C lies in C, it is a convex set, and it is
defined as [10]

θx1 + (1− θ)x2 ∈ C, (4.1)

where x1 and x2 can be any two arbitrary points of the set C, and θ ∈ [0, 1].
In Figure 4.1 three sets are illustrated, the left one is convex and the other two
sets are non-convex.

Figure 4.1: The set (a) is a convex set, the sets (b) and (c) are not convex
[10]

31
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4.1.2 Convex Function

A function f : Rn → R is a convex function if the following inequality is satisfied

f (θx+ (1− θ) y) ≤ θf(x) + (1− θ) f(y) (4.2)

where θ ∈ [0, 1].
In words, Equation 4.2 states that for any point in the interval defined by

the two points x and y, the function value is not greater than the line segment
connecting x and y. A function is convex if Equation 4.2 holds for any two points
in the domain of the function [10]. An example is given in Figure 4.2, any point
of the line between two points (x, f(x)) and (y, f(y)) satisfies in Equation 4.2.

Figure 4.2: An example of convex function [10]

4.1.3 Convex Optimization Problem

A general form of an optimization problem is

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . , m (4.3)
hi(x) = 0, i = 1, . . . , p

where x ∈ Rn is the optimization variable to minimize an objective function
or cost function, f0(x) : Rn → R, subject to inequality constraints fi(x) ≤ 0, i =
0, . . . , m and equality constraints hi(x) = 0, i = 0, . . . , p. The special case when
there are no constraints is called an unconstrained optimization problem. A Value
x is called a feasible solution if x ∈ C and satisfies the constraints fi(x) and hi(x).
An optimization problem is a convex optimization problem if it is satisfied in three
conditions [10]

• The objective function f0(x) is convex.
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• The inequality functions fi(x) ≤ 0, i = 0, . . . , m are convex.

• The equality functions hi(x) = 0, i = 0, . . . , p are affine functions.

An example of a convex optimization problem is minimizing the least squares
error under the bounded constraints

minimize ‖Ax− b‖2
subject to x ≥ x0

x ≤ x1

where x0 is the lower bound of the feasible solution and x1 is the upper bound.

4.2 Filter Design

In this section, convex optimization is used to design FIR filters with good PAPR
properties. The optimization conditions are usually some constraints on the mag-
nitude response of filters for pass-band and stop-band regions [12].

In the following section, two filter design methods are investigated. The first
method is least squares filter design and the goal is to minimize the l1-norm sub-
ject to a constraint on the sum of the squared error of the frequency response.
The second method is equiripple filter design which minimizes the frequency error
subject to an l1-norm constraint. For simplicity the phases of the desired filters
are linear for both methods.

4.2.1 Least Squares Design

Assume that D(ω) is the desired filter and H(ω) is the frequency response of the
designed FIR filter h = [h[0]h[1] . . . h[N ] ]T of order N

H(ω) =

N∑
n=0

h[n]e−jωn (4.4)

The error in frequency domain, E(ω) is the difference of D(ω) and H(ω) which
is defined as

E(ωi) = H(ωi)−D(ωi), i = 0, . . . , K (4.5)

where K + 1 is the number of frequency points.
The frequency response in matrix notation is given by H = Ah, where A is

the discrete Fourier transform matrix
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H(ω0)
H(ω1)
.
.
.

H(ωK)


︸ ︷︷ ︸

H

=


1 e−jω0 e−j2ω0 . . . e−jNω0

1 e−jω1 e−j2ω1 . . . e−jNω1

. . . . .

. . . . .

. . . . .
1 e−jωK e−j2ωK . . . e−jNωK


︸ ︷︷ ︸

A


h[0]
h[1]
.
.
.

h[N ]


︸ ︷︷ ︸

h

(4.6)

The least squares solution minimizes the Euclidean norm of the error vector
[E(w0)E(w1) ... E(wK) ] and is given by

hLS = arg min
h
‖E(ω)‖2 = arg min

h
‖D(ω)−H(ω)‖2 (4.7)

= arg min
h
‖D(ω)−Ah‖2

Assuming that Am×n is a skinny matrix (m ≥ n) and full rank, rank(A) = n,
the least squares solution given by the Moore-Penrose inverse [16] is

hLS =
(
AHA

)−1
AHD (4.8)

where AH is the Hermitian conjugate matrix of A.

l1-Norm Minimization

The idea is to design a filter with good PAPR properties by minimizing the l1-
norm of the filter as an objective function subject to a constraint on the sum of
the squared errors in frequency response. It is worth to note that both l1-norm
and sum of squared errors are convex function [10], therefore it is possible to define
the problem as a convex form. The convex form of the least squares filter is

minimize ‖h‖1
subject to ‖D −Ah‖22 ≤ ε

The error ε is bounded from below by the conventional least squares error
εmin = ‖D −AhLS‖22 where hLS is the conventional least squares filter. If ε is equal
to εmin, the solution is hLS, in which case there is no gain in l1-norm compared to
the conventional least squares filter.

In [13], the frequency error is determined by εmin and a relaxation parameter,
∆, in order to achieve more freedom to minimize the l1-norm.

minimize ‖h‖1
subject to ‖D −Ah‖22 ≤ εmin + ∆
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Larger values of the relaxation parameter lead to smaller l1-norms at the cost
of larger errors in frequency response. The proposed D in [13] is a complex desired
filter which has a magnitude and a phase in frequency domain, however finding
the proper phase for the filter is still a problem. In many applications the phase
of the filter is not important, and it is more convenient to assume a zero-phase for
the desired magnitude response [14]. But a zero-phase for the desired magnitude
response is not an optimal solution.
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Figure 4.3: Sum of squared error of the designed filters versus different time
delays (T ) for the given magnitude response

In [9] for the different types of linear-phase filters, the phase is defined as
e−jω

N
2 , whereN is the order of the filter. However, for a given magnitude response,

the linear phase can be defined as e−jωT , where T is a time delay. Different time
delays can provide a possibility to achieve different linear-phases for the given
magnitude response. Figure 4.3 depicts sum of squared error of the designed
filters versus different time delays (T ) for the exemplary given magnitude response.
Usually the optimal value of time delay is T = N

2 . In this thesis, the phase of the
given magnitude response is linear and it is defined as e−jω

N
2 .

An example is given in order to have a good evaluation of the least squares
filter design method with a relaxation parameter. The order of the filter is N = 24,
the pass-band frequency and the stop-band frequency are defined as [0, 0.3π] and
[0.4π, π], respectively. Figure 4.4 shows the output CCDF of PAPR of the filters
with different relaxation parameters.

The asymptotic gain in PAPR for ∆ = 3εmin and ∆ = 8εmin compared to the
conventional least squares filter (∆ = 0) are about 0.35dB and 0.8dB, respectively.
The details of the frequency responses of the designed filters are depicted in Figure
4.5. According to Table 4.1 for the larger values of ∆, the errors of magnitude
response will increase in all frequency bands.
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Figure 4.4: The output CCDF of PAPR of the filters with different relax-
ation parameters

4.2.2 Equiripple FIR Filters

Equiripple FIR filters are popular since they have an acceptable frequency response
in the transition band and moderate deviations for pass-band and stop-band fre-
quencies. This method tries to minimize the maximum errors in each frequency
band. The Remez exchange algorithm is one of the efficient iterative methods to
achieve an optimal filter in the above sense [9] [15].

Assume the filter h of order N is linear-phase and type-I (N is even), then the
impulse response of the filter is symmetric; h[n] = h[N − n], n = 0, . . . , N2 . For
type-I filters, H(ω) can be written according to [9] as

H(ω) = e−jω
N
2 A(ω) (4.9)

where the amplitude function A(ω) is given by

A(ω) =

N
2∑

k=0

g[k]cos(kω) (4.10)
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Table 4.1: The comparison of least squares filters with different relaxation
parameters

Sum of squared error εmin = 2.0450 1.44εmin = 2.9448 4εmin = 8.1800
(∆ = 0) (∆ = 0.44εmin) (∆ = 3εmin)

Asymptotic gain 0dB 0.35dB 0.8dB
in PAPR
Maximum pass-band error 0.87dB 1.54dB 1.84dB
Maximum stop-band error 4.6dB 4.6dB 6.3dB
Stop-band frequency 0.0183 0.0216 0.0281
deviation (×π rad/sample)
Attenuation at stop-band −25.9dB −25.45dB −21.77dB
edge

Figure 4.5: The frequency responses of the designed least squares filters
with different relaxation parameters

where g can be obtain from h

g[0] = h[
N

2
]

g[k] = 2h[
N

2
− k], k = 1, . . . ,

N

2
(4.11)
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The weighted frequency response error is

E(ω) = V (ω)(A(ω)−D(ω)) (4.12)

V (ω) is non-negative weight and D(ω) is the amplitude of the desired filter.
The optimization problem to minimize the frequency errors in pass-band and stop-
band regions is known as minmax problem [9]

ε = minimize
g

max |E(ω)| (4.13)

According to the alternation theorem there is a unique optimal solution, where
E(ω) is equiripple at N

2 + 1 frequency points [9]

|E(ωi)| = ε, for i = 0, . . . ,
N

2
+ 1

E(ωi+1) = −E(ωi), for i = 0, . . . ,
N

2
(4.14)

Then the Equation (4.12) can be written as

V (ωi)(A(ωi)−D(ωi)) = (−1)iε, for i = 0, . . . ,
N

2
+ 1 (4.15)

It is useful to define the matrix form of the above equation as Aeq geq = D
where



1 cos(ω0) cos(2ω0) . . . cos(N2 ω0) 1
V (ω0)

1 cos(ω1) cos(2ω1) . . . cos(N2 ω1) −1
V (ω1)

. . . . . .

. . . . . .

. . . . . .

1 cos(ωN
2 +1) cos(2ωN

2 +1) . . . cos(N2 ωN2 +1) (−1)
N
2

+1

V (ωN
2

+1
)


︸ ︷︷ ︸

Aeq



g[0]
g[1]
.
.
.

g[N2 ]
ε


︸ ︷︷ ︸

geq

=



D(ω0)
D(ω1)
.
.
.

D(ωN
2

)

D(ωN
2 +1)


︸ ︷︷ ︸

D

(4.16)

The Remez algorithm is an iterative interpolation method to achieve the op-
timal solution of the problem which has lower computational complexity than
finding the matrix-form solution [9]. However, it is not possible to directly deploy
the Remez algorithm to design a filter subject to an l1-norm constraint. The con-
vex form of the equiripple filter can be one approach to reach this goal. In the
following section the l1-norm is used as a constraint in convex problem formulation
to design equiripple filters.
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l1-Norm Constraint

The idea of the convex form in the equiripple filter design is to minimize the
frequency response error in Equation 4.16 subject to a constraint on the l1-norm
of the filter as following

minimize ‖Aeq(ωi)geq −D(ω)‖2,
subject to ‖h‖1 ≤ threshold (4.17)

where h is the filter defined in Equation (4.11). The upper bound threshold
can be determined by the l1-norm of the filter which does not have any constraint
on ‖h‖1.

Figure 4.6 illustrates the output CCDF of PAPR of the three equiripple filters
with different constraints on their l1-norm. The order of each filter is N = 77,
the pass-band frequency and the stop-band frequency are defined as [0, 0.48π] and
[0.59π, π], respectively. There is no threshold for the unconstrained filter h1 and its
l1-norm is equal to ‖h1‖1 = 1.9401 numerically. The threshold for the filter with a
constraint should be smaller than ‖h1‖1. For the two example filters, the l1-norm
constraint is set to 0.95‖h1‖1 and 0.9‖h1‖1, respectively. As shown in Figure 4.6
the CCDF of PAPR decreases for the filter with smaller l1-norm. The asymptotic
gains in PAPR for the filters with 0.95‖h1‖1 and 0.9‖h1‖1 constraints on their
l1-norm are about 0.37dB and 0.76dB, respectively. The frequency responses of
these filters are depicted in Figure 4.7 and clearly show that the cost of achieving a
gain in PAPR is a larger error in the frequency response. The main errors appear
near the transition band. The smaller the threshold in the l1-norm constraint,
the larger is the error in frequency. Table 4.2 illustrates the gain in PAPR and
frequency response errors in different bands for different constraints on l1-norm.

In the next chapter, the three filter design methods will be compared in terms
of PAPR gain and frequency error.

Table 4.2: The comparison of equiripple filters with different l1-norm con-
straints

Threshold ‖h1‖1 = 1.9401 0.95‖h1‖1 = 1.8431 0.9‖h1‖1 = 1.7461

Asymptotic gain 0dB 0.37dB 0.76dB
in PAPR
Maximum pass-band error 0.1dB 0.94dB 1.59dB
Maximum stop-band error 4.2dB 4.7dB 6.5dB
Stop-band frequency 0.001 0.010 0.025
deviation (×π rad/sample)
Attenuation at stop-band −36.8dB −26.25dB −21.8dB
edge
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Figure 4.6: The output CCDF of PAPR of the equiripple filters with differ-
ent thresholds

Figure 4.7: The frequency responses of the equiripple filters with different
thresholds



5
Comparisons

In this chapter, three filter design methods are compared in terms of PAPR gain
and frequency response error:

• spectral factorization method

• least squares filter design cast as convex problem

• equiripple filter design cast as convex problem.

The theories and details of these methods are explained in the previous chap-
ters.

In order to ensure a fair comparison of the three methods, it is assumed the
order of each filter is not greater than N = 24. This choice is motivated by the
computational complexity of the spectral factorization method, which increases
exponentially with the order of the filter. In the following, three examples are
evaluated. In each example, the designed filter using the spectral factorization
method has a different PAPR gain compared to the conventional least squares
filter. The magnitude response of the desired filter is given in these examples.

In the first example, the output CCDF of PAPR of the spectral factorization
method has a gain in PAPR about 0.3dB. The order of the filters are N = 24,
the pass-band frequency and the stop-band frequency are defined as [0, 0.54π]
and [0.62π, π], respectively. In order to achieve same gains in PAPR in all three
methods, it is necessary to choose proper values for ∆ in the least squares method
with a relaxation parameter and also for threshold in the equiripple method. Figure
5.1 shows the output CCDF of PAPR of all filters. The three designed filters have
same gains in PAPR compared to the conventional least squares filter.

In Figure 5.2 the frequency responses of the designed filters are illustrated.
All filters have some errors compared to the desired filter. However the errors of
the conventional least squares filter and the minimum l1-norm filter are smaller
than the errors of the other two filters especially near the transition band. The
frequency errors of the minimum l1-norm filter and the conventional least squares
filter are the same, since they have same magnitude responses but different phases.
According to the results of Table (5.1) the performance of the minimum l1-norm
filter is better than the least squares filter with a relaxation and the equiripple
filter in all frequency bands. On the other hand, the equiripple filter has better

41



42 Comparisons

0 2 4 6 8 10 12 14
10

−15

10
−10

10
−5

10
0

PAPR in dB

C
C

D
F

 

 

Equiripple filter
Conventional LS filter
LS filter with a relaxation
min l

1
−norm filter

Figure 5.1: The output CCDF of PAPR of the three different filters [exam-
ple 1]

performance than the least squares filter with a relaxation in pass-band and tran-
sition band, but it is worse in stop-band. Therefore, in this example, the minimum
l1-norm filter is superior to the other filters.

Figure 5.2: The frequency response of the three different filters [example 1]
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Table 5.1: The comparison of filter design methods in terms of PAPR gains
and frequency response errors

Filter design Conventional Minimum LS with Equiripple
methods LS l1-norm relaxation design
Asymptotic gain 0dB 0.3dB 0.3dB 0.3dB
in PAPR
Maximum 1.09dB 1.09dB 1.52dB 1.36dB
pass-band error
Maximum 13.3dB 13.3dB 13.4dB 16.3dB
stop-band error
Stop-band 0.0222 0.0222 0.0360 0.0318
frequency deviation
(×π rad/sample)
Attenuation at −17.1dB −17.1dB −14.92dB −15.47dB
stop-band edge
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Figure 5.3: The output CCDF of PAPR of the three different filters [exam-
ple 2]

In the second example, the order of each filter is N = 22, and the frequency
bands for pass-band and stop-band are [0, 0.42π] and [0.58π, π], respectively. In
this example the minimum l1-norm filter using spectral factorization method does
not have any PAPR gain compared to the conventional least squares filter, but for
the other two filters which are cast convex problem the asymptotic PAPR gains
are about 0.24dB (Figure 5.3). The relaxation parameter (∆) and threshold are
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chosen in such a way that these methods have same gains in PAPR.

Figure 5.4: The frequency response of the three different filters [example 2]

In this scenario, the equiripple filter has better performance than the least
squares filter with a relaxation in transition band and stop-band, but it is worse
in pass-band.

And finally, in the third example, the order of the filters are N = 22, and
the frequency bands for pass-band and stop-band are defined as [0, 0.17π] and
[0.42π, π], respectively. In this scenario the minimum l1-norm filter has worse
performance in terms of PAPR gain compared to the conventional least squares
filter for high probabilities. Figure 5.5 depicts the CCDF of PAPR of the different
design methods. The filters described as convex problem have same gains in PAPR
(about 0.2dB).

The magnitude responses of the equiripple filter and the least squares filter
with a relaxation do not differ much in different frequency bands (Figure 5.6).
However the cost for achieving gain in PAPR is extra frequency error in transition
band.
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Figure 5.5: The output CCDF of PAPR of the three different filters [exam-
ple 3]

Figure 5.6: The frequency response of the three different filters [example 3]

According to the three evaluation results, the minimum l1-norm filter using
the spectral factorization method can be chosen as the best method when it has
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a gain in PAPR. Although this method does not have a good performance for
high order filters. In other cases, the equiripple filter is cast convex problem has
better performance than the least squares filter with a relaxation in transition
band but it is usually worse in other frequency bands. However for those filters
are described as convex problem there is a trade-off between achieving gain in
PAPR and frequency response error.



6
Conclusions and Further Work

6.1 Summary and Conclusions

The minimum l1-norm criterion has been considered as an approach to design
filters that keep the PAPR regrowth low. Three different filter design methods are
investigated in this thesis. Each of them has some advantages and disadvantages.

The spectral factorization method usually works well for filters with orders of
up to N = 24. It should be mentioned that in some cases this method does not
yield any gain in PAPR.

Convex optimization is a powerful tool to design filters given certain con-
straints. Two different filter design approaches employing convex optimization are
investigated. First, the least squares method with a relaxation parameter in fre-
quency error and l1 minimization is considered. Second, the equiripple method,
which minimizes the error in frequency-domain subject to an l1-norm constraint is
investigated. It is possible to improve PAPR properties of the filtered signal with
both methods, but at the cost of an error in frequency response. The equiripple
design method has a lower error than the least squares method with a relaxation
error in transition band and pass-band, but it is worse in stop-band frequencies.

The obtained gain in PAPR is usually less than 1dB, especially for spectral
factorization method, although for the two other methods it is possible to reach a
gain in PAPR of more than 1dB by accepting a larger error in frequency response.

6.2 Further Work

In this thesis, it has been assumed that the phase of filters is linear. Non-linear
phase filters can provide more freedom to minimize the l1-norm. Finding the best
phase in the sense of minimizing the PAPR of the filtered signal is a complicated
problem.

The focus of this thesis has been on real filters, but the l1-norm criterion can
be evaluated for complex filters.
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