
Implementation of an EtherCAT Master

Andreas Tågerud
tf06at5@student.lth.se

Department of Electrical and Information Technology
Lund University

September 2, 2011

Printed in Sweden
E-huset, Lund, 2011

Abstract

This thesis was conducted in co-operation with HMS Industrial Networks and its
purpose was to investigate whether an EtherCAT master would be possible to run
on a specific embedded platform. The main concern was the platform’s extremely
limited memory available for code execution. The investigation was first directed
at available implementations with the hope that one or more of them would meet
the performance and porting demands. When this initial survey was made, which
yielded a recommendation, the work on a new implementation was started. The
goal was initially to make a minimal standard compliant master which would then
be compared to the chosen candidate regarding performance. Difficulties with
programming the hardware did however slow things down, and the comparison
was later skipped in favor of improving the new implementation. Even though
there was not enough time to make the master compliant with the standard, the
implementation phase showed that it indeed is possible to run a limited EtherCAT
master on the platform, albeit at rather high cycle times. Performance testing
was only done on a development build, and the real performance is therefore still
unknown. Ultimately it is up to HMS Industrial Networks to decide whether to
improve this implementation or rather port an existing one.

i

ii

Acknowledgements

The subject of the thesis was proposed by HMS Industrial Networks and was
carried out on site in Halmstad. I would like to thank HMS for the opportunity
and the immense learning experience that followed. It was a great motivation
seeing so many courses come to use in a single (but large) project.

A very special thanks goes to my supervisors:
At HMS, Timmy Brolin, for your patience with my silly questions and great in-
sights in the project’s domain.
At LTH, Mats Cedervall, for bringing it all together before and during the thesis,
and for always telling me that I need not worry so much (even though I never
stopped worrying).

I would also like to thank Emma Persson, for your help with LATEX, and Sten
Åstrand and Lovisa Nelson for proof reading the report.

Finally, a big thank you goes to my reviewers, Cem Eliyürekli and Erik Lundh,
for your valuable input.

iii

iv

Table of Contents

1 Introduction 1
1.1 Text disposition . 2
1.2 Task description . 2

2 The EtherCAT Protocol 5
2.1 EtherCAT layers . 5
2.2 Master classes . 8

3 Survey of Existing Technology 9
3.1 Methodology . 10
3.2 Candidates . 10
3.3 Recommendation . 11

4 The Master 13
4.1 Features . 13
4.2 Theory of operation . 20
4.3 Layers . 22
4.4 Code organization . 24
4.5 Benchmark . 24
4.6 Feature summary . 25

5 Future Work 27
5.1 Optimizations . 27
5.2 Code improvements . 27

6 Conclusions 29
6.1 Difficulties . 30

References 31

A Appendix 33

v

vi

List of Figures

2.1 EtherCAT layers . 6

4.1 EtherCAT state machine . 17
4.2 Master task and data organization 21
4.3 Example of EtherCAT data in an Ethernet frame 23
4.4 Visualization of the layer block . 24

vii

viii

List of Tables

4.1 Command summary . 14
4.2 Read commands . 15
4.3 Write commands . 15
4.4 Read-Write commands . 16
4.5 Slave states . 17
4.6 Feature summary . 25

ix

x

Terms and Definitions

Byte A byte in this text always refers to 8 consecutive bits.
Cycle A cycle is defined as the process of sending a command,

waiting for a response, and processing it in order to be
ready to send a new command.

EEPROM Electrically Erasable Programmable Read-Only Memory,
a non-volatile memory that can be changed if necessary.

EtherCAT Ethernet for Control and Automation Technology, a net-
work protocol aimed at industrial and realtime needs.

Frame A frame is the transportation unit in a network, also
known as a packet. It most often consists of a header
followed by the data that is wished to be sent.

Header The header is part of the frame, and contains all protocol
defined constructs for addressing, size etc.

MAC Media Access Control is responsible for address checking
and is most often done in the hardware of a NIC.

Master A master is a unit which controls the slaves, feeding them
commands and receiving status reports in exchange.

MTU Maximum Transmission Unit, the maximum payload a
standard Ethernet frame can hold. In this project jumbo
frames are not used so the MTU is set as 1500 bytes, and
this is not counting the Ethernet header and checksum.

NIC Network Interface Controller, a hardware component that
connects a computer to a network. Also Network Interface
Card.

OSI model The OSI model is a standardized representation of how a
communications system can be organized, e.g., a protocol
stack. The model is divided into layers, each responsible
for a part of the communication.

PDU Protocol Data Unit, or a slave command.

xi

RT Abbreviation for realtime, meaning a system that adheres
to strict timing demands.

SII Slave Information Interface, data stored on an EEPROM in
the slave, containing information about it and its operation.

Slave A slave is a unit on the EtherCAT network, controlling e.g.,
a motor. The slave is connected to a master.

Stack A synonym for an implementation of the layers of a protocol,
e.g., a master.

Topology In this text, a topology is referred to as the way a network
is connected, e.g., star, tree or line topology.

xii

Chapter1
Introduction

“When I left you, I was but the learner. . . ”

Network communication is achieved by the means of a protocol, which defines the
language of the computers on the network. An example is TCP which handles a
lot of the communication on the Internet.1 The TCP way to communicate with
units on a network is to send data addressed to specific units, in so called frames.
There is some overhead related to every frame, such as the address, so this can
at times be wasteful if the amount of data is small. This is where the EtherCAT
protocol enters, aimed at industrial and realtime needs. An EtherCAT network
consists of a master connected to one or more slaves, where the master controls the
slaves and the slaves in turn can be in control of some function that needs to be
managed, perhaps an on-off switch. This particular slave would only need maybe
one bit of information to know whether to turn the switch on or off.2 What
the EtherCAT protocol does is it reduces this addressing overhead by letting a
master communicate with all slaves using a single frame, instead of one frame per
unit. This one frame holds messages to any or all of the slaves on the network.
The communication is accomplished by the frame passing through a slave with
only a minimum delay, and while passing, the slave hardware reads the data that
is addressed to it and writes a response if that was requested. The frame then
continues to the next slave which reads and writes in the same way, and so on
until the frame has passed the final slave. At this point the frame turns around
and takes the same way back as it came. When received, the master reads the
entire frame and take actions according to the slaves’ information. EtherCAT
supports many network configurations (such as the common star topology) but
taking advantage of the one-frame-many-slaves concept requires the topology to
be reducible to a logical line, which can be just a simple line, or a more complex
tree. The key is that a frame can only travel one way through all slaves, in a
well-defined order.

HMS Industrial Networks today manufactures and sells EtherCAT slave units
and they would like to extend this line up with a master. The purpose of this thesis

1Hereby are apologies extended to those of you who cringe at this simplification.
2Although if this slave was the only one on the network, this bit would have to be

wrapped in a byte, since a frame consists of a whole number of bytes. If there were eight
slaves however, all of them could be controlled using one byte, and no space would be
wasted.

1

2 Introduction

is to examine the possibility to run such a master on a specific platform that the
company will provide. This will be done by both surveying existing technologies
and implementing an own prototype solution that will run on the hardware.

This report is meant to document both the survey and the resulting prototype
so that a well founded decision on how to continue development can be made.

The deliverables of this project are this report, the full survey results, the
developed code, and the full HTML documentation. This report contains the
results of the survey and the description of the developed system, with an excerpt of
the HTML documentation in the appendix. The full survey results, the developed
code, and the HTML documentation can be provided upon request.

1.1 Text disposition

The thesis report is structured as follows: Chapter 1 started with a background
to the EtherCAT protocol and will continue with a description of the work that
is expected to be done in the thesis. Chapter 2 is a description of the EtherCAT
protocol that the master should support. Chapter 3 presents a survey of existing
technology and its results. Chapter 4 is a description of the master’s function-
ality and organization and contains all the implementation results. Chapter 5 is
dedicated to future work on the master. Chapter 6 concludes the thesis with a
discussion on the resulting master and some difficulties that arose during devel-
opment. Lastly, in the appendix brave readers can indulge in the essential code
documentation where every module and function is described.

1.2 Task description

In most projects conditions change under way, and this project was no exception.
Therefore the task description is split into two parts, one with the original, and one
with the updated plan. The cause of the revised plan is explained in Chapter 6.

1.2.1 Original task description

When the project started, an original plan for the project was made up of four
main parts. The first step was to gain an understanding through document studies
of the EtherCAT protocol as well as the hardware on which the master should be
implemented. The second part would be a survey of existing EtherCAT implemen-
tations, both open source and commercial stacks. From this survey a recommen-
dation was to be made. The third part should be an implementation of a minimal
EtherCAT Class B3 master which, if completed on time, was to be compared to the
survey recommendation regarding performance. If the implementation attempts
were not deemed to be ready on time, the fourth stage of the thesis would com-
mence earlier, and that stage was the adaptation and possible extension of the
survey recommendation for the hardware supplied by HMS. If however the imple-
mentation was successful and within performance limits and depending on how it
compares to the survey recommendation, the extensions may be performed on it.

3For the definition of master classes, see Section 2.2.

Introduction 3

The minimal Class B master should be able to handle the slaves through the
interfaces specified in Chapter 2, and through these interfaces certain functions
should be performed, as described in Chapter 4. In short it must be able to
handle the following:

• configuration of the master to the actual network

• proper handling of slaves and the EtherCAT state machine

• message passing from master to slave, and from slave to slave

• CANopen support, a protocol frequently used in embedded environments

This functionality shall run on an ARM Cortex-M3 processor running at 100 MHz
with 256 KB of flash based permanent storage, and 64 KB of RAM. The processor
will run HMS operating system (HMS OS) which in turn will run the stack. The
implementation is to be done in C. The comparison of the two implementations
will be based on criteria with the following priority:

1. Memory usage

2. Performance (process and parameter data4)

3. Ease of integration with HMS OS

4. Software structure and ease of adding functionality

When the evaluation is made, the remaining time is spent on adding functionality
to the chosen implementation. Features will be put on a wish list by HMS and
may include (but are not limited to):

• Ethernet over EtherCAT (EoE) service – adds the ability to tunnel regular
Ethernet traffic over the EtherCAT network

• File access over EtherCAT (FoE) – adds the ability to access files on the
master, e.g., to upload new firmware

• Distributed Clocks – adds the ability to synchronize slaves, e.g., activating
them simultaneously

1.2.2 Updated task description

Ten weeks into the thesis it was realized that the original plan was too presump-
tuous, due to several reasons stated in Chapter 6, and a revision was made. The
changes only affect stages three and four. Stage three was reformulated to be an
implementation of a working prototype of the Class B master, and it will not be
fully compliant with the standard, but more of a proof of concept that a master
can be run on the intended hardware. Stage four was skipped in its entirety and
it will be up to HMS to decide which way to go when the thesis is completed.

4For definitions, see Section 2.1.1.

4 Introduction

Chapter2
The EtherCAT Protocol

This chapter will try to go through the essential functions of the EtherCAT pro-
tocol that a master should support.

2.1 EtherCAT layers

The EtherCAT standard defines a fully OSI compliant stack. Its layers have
however been consolidated in three; the physical layer, the data link layer (DLL)
and the application layer (AL), cf. Section 4.2 in [4]. It is noted on the ethercat.org
website that the physical layer is standard Ethernet at 100 Mbit/s and hence
any PC equipped with a NIC can run as an EtherCAT master.1 Depending on
the available network card and operating system, realtime performance can be
achieved with this setup. The layers are laid out according to Figure 2.1 taken
from Section 4.2 in [4], and will be explained in the following sections.2 Dashed
boxes contain optional functionality not considered in this thesis.

2.1.1 Data link layer

The data link layer is the place of perhaps the most notable EtherCAT communi-
cation routines. Two essential ways of communication between a master and slave
are via either the mailbox, or process data. This layer handles the setup of these
two routines.

Mailbox

The Mailbox is for sending larger chunks of data (also referred to as parameter
data) that are guaranteed to reach their destination, but not guaranteed within
realtime bounds. This could for example be configuration data, cf. 5.6.1 in [6].

1There are at least two commercial stacks doing this, and one of them is under review
in the survey.

2Strictly speaking, these are the layers from the perspective of a slave and so only
shows the interfaces, but since this is what the master should support it is used in a
broader sense.

5

6 The EtherCAT Protocol

For ETG internal use only!
Do not distribute!

 24 EtherCAT Specification - Part 6

CANopen over EtherCAT

Physical Layer

EtherCAT Data Link Layer

SDO

Process DataMailbox

Object Dictionary

AL Control/
AL Status

Application

PDO Mapping
IP

UDPTCP

HTTP,
FTP, …

DL

AL

Slave
Address

DL
Info

Sync Mngr
Settings

S
la

ve
In

fo
rm

at
io

n

FMMUFMMUFMMUFMMU n

DL Control/
DL Status

File
Access

over
EtherCAT

Files

Layer
Management

Ethernet
over EtherCAT

Figure 3 – Slave Node Reference Model

4.2.2 Data Link Layer features

The data link layer provides basic time critical support for data communications among
devices. The term “time-critical” is used to describe applications having a time-window, within
which one or more specified actions are required to be completed with some defined level of
certainty. Failure to complete specified actions within the time window risks failure of the
applications requesting the actions, with attendant risk to equipment, plant and possibly
human life.

The data link layer has the task to compute, compare and generate the frame check
sequence and provide communications by extracting data from and/or including data into the
Ethernet frame. This is done depending on the data link layer parameters which are stored at
pre-defined memory locations. The application data is made available to the application layer
in physical memory, either in a mailbox configuration or within the process data section.

Additionally, some data structures in the Data Link layer will be used to allow a coordination
of the interaction between master and slave such as AL Control, Status and Event and Sync
manager settings.

4.2.3 Application Layer structure

The Application Layer consists of the elements

• A real time entity (mandatory)

• An entity that deals with TCP/UDP/IP and related protocols (optional)

• A file access utility (optional)

• A Management unit (mandatory)

The Application Layer uses the services provided by the EtherCAT Data Link Layer to convey
the Application Layer service data.

Figure 2.1: EtherCAT layers

Process data

Process data is realtime capable and only the most recent data is considered.
This means that if the application tries to change something more often than the
slave can handle, old requests are discarded. An example of process data is the
continuous flow of slave commands used to control the slave’s behaviour, such as
the on-off switch exemplified in Chapter 1.

FMMU

The protocol supports two types of slave addressing modes. The first, which will
be referred to as normal addressing, uses the slaves position in the network as
address and then requests a specific memory location in that slave.3 The second
type maps the entire memory space of the network, meaning all slaves and even
the master, to a logical memory which can be addressed with only one parameter.
This will be referred to as logical addressing. The FMMU, fieldbus memory man-
agement unit, handles the conversion from a logical address to an actual one. For
more information, see Chapter 4 in [1], and specifically for the different addressing
modes, Section 4.8.3.

3To be precise, normal addressing includes in fact two modes, one where the slave’s
network position is used, and one where each slave is given a name that can be looked
up. Both modes use direct memory addressing.

The EtherCAT Protocol 7

DL info

Data link layer specific information, such as where mailbox and process data buffers
are located in the slave.

Slave address

In the second normal addressing mode, where a name is used instead of a number
indicating the position on the network, this name has to be saved to the slave for
later lookup.

DL control/DL status

DL Control is a register controlling for instance how frames are processed. DL
Status is another register reflecting the actual settings. The master will at least
during configuration use these registers for setup.

2.1.2 Application layer

While the data link layer handled how communication is done, the application
layer handles what can be transferred and in what form, entering the CANopen
protocol.

CANopen over EtherCAT

CANopen is a protocol that is supported by the standard. It is used for direct
transfer of unit data, known as an object dictionary.4

Object dictionary The object dictionary contains information about the unit,
such as its name, type etc. Usage of this object is not guaranteed to be within
realtime bounds.

SDO Service Data Object is a way of accessing the object dictionary through
the CANopen protocol.

PDO mapping The PDO subprotocol (Process Data Object) is the realtime
capable communication offered by CANopen.

2.1.3 Layer management

AL control/AL status

AL Control is another register for controlling the state of a slave and AL Status
is used to check these settings.

4For more information about this protocol, a good start is for example the article at
http://en.wikipedia.org/wiki/CANopen.

8 The EtherCAT Protocol

Sync mngr settings

The slave uses synchronization managers to ensure the mailbox and process data,
like a semaphore.

Slave information

Each slave has a separate memory block (EEPROM) with specific device informa-
tion such as serial number, vendor etc. This is memory is accessed as part of the
initial configuration done by the master.

2.2 Master classes

The EtherCAT standard describes two types of masters, classes A and B. To be
considered class A all the shall requirements of [6] has to be supported. In this
thesis the goal was a B master which only needs to support a smaller set of features,
which interfaces has been described in this chapter. The features accessed by these
interfaces are covered in Chapter 4. Further functions, such as distributed clocks5,
belongs to the class A set of features.

5As mentioned in Section 1.2.1

Chapter3
Survey of Existing Technology

In order to measure the competition and provide a basis for an acquisition - in
case the in-house implementation failed in regards to performance - a survey of
existing implementations was made. The candidates up for review were:

Commercial

• acontis AT-EM EtherCAT Master Stack

• Beckhoff EtherCAT Master Sample Code ET9200

• esd EtherCAT Master Stack for Embedded RT OS

• IXXAT EtherCAT Master Stack

• koenig-pa EtherCAT Master Stack for different RT OS

• port EtherCAT Protocol Stack

Open source

• Arthur Ketels Simple Open EtherCAT Master

• IgH EtherCAT Master for Linux

The evaluation criteria were the following:

• Functionality i.e., how much of the standard is adopted, above Class B
level

• Preliminary performance if this information is possible to gather

• Portability i.e., how much effort the adaptation to HMS’ system will take

• Licensing both open source and commercial licensing issues for use

• Cost in case of a commercial solution, the cost for acquisition and the per-
unit cost for production

9

10 Survey of Existing Technology

3.1 Methodology

The survey was conducted firstly as a document study of the respective webpages
of the implementations. This approach yielded information mostly concerning
functionality, and to some extent performance and portability. In the case of
the open source implementations licenses were of course readily available online.
This was however not the case for the commercial solutions, and inquiries were
performed via mail. The result of this correspondence was some license drafts. No
quotes were disclosed by any of the commercial companies.

The results were put in a matrix for easy comparison and is in a format not
suited for this report. It is therefore provided upon request in PDF format.

3.2 Candidates

In the following sections the results are briefly discussed for convenience, but the
complete material should be considered before a final decision is made.

3.2.1 Commercial

acontis

acontis has a very developed and fast EtherCATmaster and it has been successfully
ported to many different systems. It also supports a number of add ons with more
Class A features available for an extra fee. Upon query it was however established
that the code footprint itself exceeds the available storage on the target device to
such an extent that further discussions regarding license terms and costs where
ended.

Beckhoff

Beckhoff’s sample code is one of the simplest implementations, with only a few
features above B class. It does however come with a generous license. If the
adaptation of the sample code passes an EtherCAT conformance test, which is
done by Beckhoff, then the adapted code can be embedded in an unlimited amount
of products, without any further costs after the code is purchased. However, there
are no guarantees that a port is possible with regard to performance, specifically
memory usage.

esd

esd’s master is also one of the smaller ones surveyed. They already have an ARM
port, and therefore the adaptation to the target system would probably not pose
much difficulty. They have also offered to do the port jointly with HMS. No
details about the memory usage or license terms were however disclosed in the
correspondence.

Survey of Existing Technology 11

IXXAT

IXXAT has not answered any queries despite a reminder. This is a shame since
their master was one of the most promising from the study, especially claiming
low CPU and memory footprint as well as an already made ARM port.

koenig-pa

koenig-pa has a large pool of standard features well beyond B class, and a collection
of extra feature packs available for an extra fee. They have offered to come up
with a solution to the large ENI file problem1, should the decision be in their favor.
Also, they have given a taste of what the license terms will look like. In short,
HMS will be responsible for the adaptation but will be able to receive support
from koenig-pa. The cost will be negotiated as an annual fee depending on the
number of units produced, and the amount of given support. Performance-wise
they claim ethernet cycle times down to 50 µs. This is however measured with a
much more powerful system than the intended target.

port

port does have an EtherCAT master, but this is specialized to a computer running
windows, and they do not offer any portable code.

3.2.2 Open source

Arthur Ketels

Arthur Ketels Simple Open EtherCAT Master (SOEM) has a few features above
B class and could probably be ported with some effort. Since it is open source
and covered by GPL, GNU Public License, the adapted system must hence be
released under the same license. The version of GPL in question demands that
any superseding source code is made available to anyone who buys the product in
which it is contained. This is not in very good accordance with HMS company
policy and therefore no query was made about the performance.

IgH

IgH offers a larger set of features in comparison to SOEM, but it too is covered
by GPL and the same problems thus occur, so no further investigation was made.

3.3 Recommendation

The conclusion of this survey is that Beckhoff, esd and koenig-pa all seem to deliver
a master suitable for HMS’ needs. It is clear that the Beckhoff sample code would
be the least expensive of them, and with attractive license terms. It would however
probably take the most effort to port. Both esd and koenig-pa have offered to assist

1ENI files will be discussed in Section 4.1.7.

12 Survey of Existing Technology

in a porting effort, and to help in solving problems that might arise during the
port. Since esd has not enclosed any details about their terms koenig-pa has a
slight edge even though they have restrictive terms. The recommendation would
in the end be Beckhoff or koenig-pa depending on what kind of license is preferred,
and if efficiency in the development process is key, koenig-pa should be the first
choice.

Chapter4
The Master

This chapter will try to describe the developed system and put it in perspective
of a fully fledged class B master. The first section describes all features currently
available and what is missing from the class B specification in [6]. Following is
a quick summary of implemented and unimplemented features. The next section
deals with what the master does from the moment it is started. Then the imple-
mented layer structure will be explained. The chapter concludes with a small note
on code organization and performance.

4.1 Features

The goal of the thesis was initially to create a master fully compliant with the
Class B standard. It was however realized during development that this was not
realistic compared to the work effort needed, and reasons for this will be given in
Chapter 6. Because of this, the following section describes what a Class B master
is supposed to handle, and within each subsection it is stated how much of the
intended functionality that is in place, with a motivation for every feature that
is missing. Pitfalls of the code are also mentioned, such as code that should be
further tested before being relied upon.

4.1.1 Service commands

The master communicates with the slaves via commands, or PDUs. Each PDU
is essentially a header and a variable length data field. An Ethernet frame may
contain one or more PDUs and they may use one of two addressing modes, normal
or logical, as mentioned in Section 2.1.1. The normal mode addresses each slave
as a unit with its own memory. Logical addressing sees all memory in the slaves
(and the master, if wanted) as one contiguous block. By requesting a memory
address, the right slave and memory location is found by lookup. The memory
mappings for this to work have to be done in the slave during configuration, using
the FMMUs in the slave.1 This is however not supported. Normal addressing is
implemented and the only mode used in this thesis. Logical addressing is partly
implemented. Infrastructure for sending, receiving and simple processing of logical
PDUs is present, but this functionality is mainly untested due to the FMMUs being

1The upside of this is less addressing overhead.

13

14 The Master

unconfigured for the time being. The contents of the normal addressing header is
explained in Table 4.1 and a visual representation can be found in Figure 4.3.

Field Description
CMD The identifier for the command to be sent. The values are de-

fined by the protocol.
IDX Master identifier of the command. Has in this thesis been chosen

to be the same as CMD.
ADPa Auto increment address. This is the address of the slave. Every

slave increments this parameter, and when a slave receives the
command and this value is zero, the command has reached the
right slave.

ADOa The memory address in the slave that is requested.
LEN Length in bytes of the below data field.

C Indicates if the frame has circulated in the network (meaning
it has passed the same slave twice before the frame has turned
around and is on its way back to the master, i.e., a network loop
has occurred) and if so, it shall not be forwarded to the network
again.

NEXT Indicates whether this command is the last PDU in the frame
or not.

IRQ This field is used by the slave to signal an external event to the
master. This functionality is not implemented (it is not part of
the shall requirements) and is always left as a safe value (0).

DATA Variable length field for writing and reading data to and from
the slave.

WKC Working counter. Every slave that is addressed by this PDU
increments this value. The master can then use it for error
checking.

aIn the mode where each slave has a unique name, ADP is used for that name. In
logical addressing mode ADP and ADO are substituted with ADR which holds the logical
address.

Table 4.1: Command summary

There are 14 service commands that the master can send to a slave. They
are divided in the categories read, write and read-write. All of the commands
are implemented so that the master can send and receive them. APRD and BRD,
explained below, are most thoroughly tested, but all commands should in principle
work as intended since they all rely on the same code base. Work in this case means
that they produce valid output, but the master and/or the slaves will not know how
to interpret the commands. The commands are briefly described in Tables 4.2, 4.3
and 4.4. For full detail, consult Chapter 5 in [2].

The Master 15

Command Description
APRD Auto incremented Physical ReaD accesses the slave speci-

fied in ADP, and the memory in ADO. The data requested
for the read operation is put in the DATA field. Fully
supported and tested.

FPRD conFigured Physical ReaD, is almost identical to APRD.
The ADP field now contains the unique ID of one of the
slaves, which can be written to the slave during configura-
tion. This is not utilized as of yet, and therefore the use
of this command results in undefined behaviour.

BRD Broadcast ReaD is also like APRD, but the read request
goes to all slaves. This is fully supported and tested.

LRD Logical ReaD, uses the logical address mapping to fetch
data from the requested address. The slave implicitly hold-
ing the data is found through a search in the network. As
mentioned earlier, this is not supported, but the ability to
send these commands exists.

Table 4.2: Read commands

Command Description
APWR Auto increment Physical WRite, is the APRD write coun-

terpart and works as expected. Is supported.
FPWR conFigured address Physical WRite, is the FPRD write

counterpart. Not supported.
BWR BroadcastWRite, is the BRD write counterpart. Is sup-

ported, but not fully tested.
LWR Logical WRite, is the LRD write counterpart. Can be sent

but neither the slaves nor the master are configured to
handle it so its behaviour is undefined.

Table 4.3: Write commands

16 The Master

Command Description
APRW Auto increment physical Read Write, is a combination of

APRD and APWR. During passage of the slave, the re-
quested memory is read, the DATA field is written to slave
memory, and the requested memory is put in the DATA
field. Supported, but not fully tested.

FPRW conFigured address Physical Read Write, is a combination
of FPRD and FPWR. Not supported.

BRW Broadcast Read Write, is a combination BRD and BWR.
Supported, but not fully tested.

LRW Logical Read Write, is a combination of LRD and LWR.
Can be sent but neither the slaves nor the master are con-
figured to handle it so its behaviour is undefined.

ARMW Auto increment physical Read Multiple Write, reads the
requested memory at the slave appointed by ADP, and
writes the DATA field to every other slave.

FRMW conFigured address physical Read Multiple Write, is like
ARMW, but uses the unique slave ID as address. Unsup-
ported.

Table 4.4: Read-Write commands

4.1.2 Slaves with device emulation

Slaves are divided into two categories, simple and complex. Simple slaves have no
application controller. That means that the master controls the process memory
of the slave directly, and that is the only interface for control. Complex slaves
also have support for manipulation through the EtherCAT State Machine (ESM),
which is described in the next section. A third way of interaction with complex
slaves is via the Mailbox which is described in Section 4.1.8. There was only time
to partially implement the process data and ESM interfaces.

4.1.3 Error handling

The master should be able to sense communication problems - such as disconnected
slaves, slaves giving back wrong information (such as a wrong working counter),
lost or damaged frames - and handle these properly. The standard, see Chapter 18
in [5], defines a set of cases that should be handled. Aside from a simple network
link error check, none of this is implemented in this thesis because of the time
constraints.

4.1.4 EtherCAT state machine

The EtherCAT slaves features an internal state machine that the master should
consider and manipulate. During configuration, registers in the slaves are written

The Master 17

to accommodate process and mailbox data for example. The transition scheme
is visualized in Figure 4.1, inspired by the ESM section at [7], and the necessary
steps to be able to perform a specific transition is stated briefly in Table 4.5. An
interface to the state machine exists but the configuration needed to go to the
operational state is not in place, see further Section 4.1.7.

State Description
Init In the Init state the master only has basic control

of the slave. The master initializes Mailbox func-
tionality.

Pre-Operational In the Pre-Operational state the master configures
services through the Mailbox. Process data is still
not available.

Safe-Operational In Safe-Operational the process data service is
started.

Operational In Operational the slave is ready to both receive
and send any requests.

Bootstrap This optional state is used for firmware updates
and is not considered in this thesis.

Table 4.5: Slave states

Figure 4.1: EtherCAT state machine

4.1.5 EtherCAT frame types

The master fully supports EtherCAT frames embedded directly in an Ethernet
frame. The code responsible for checking the frame types is written in such a way
that UDP support is easily added with a module decoding the UDP header.

18 The Master

4.1.6 Cyclic process data exchange

In the configuration, explained below, the master should be set up to periodically
send requests to the slaves. What these commands do is up to the application. The
code is written in anticipation of adding new commands during the configuration
phase. The application threads are set up to allow cyclic commands to be set
and processed, but since the configuration was not completed, as noted below,
this is never enabled. If the configuration was to be completed, cyclic commands
would be added as special structures to a list contained in every slave image in the
master. Then sending these commands would be trivial from the main thread.

4.1.7 Network configuration

Online configuration

An EtherCAT master can be configured in one of two ways. The first option is to
use a so called ENI (EtherCAT Network Information) file - which contains all in-
formation needed for operation, such as slaves on the network, periodic commands
to be sent etc - in XML format. The other option is to do an online configuration.
This means that during startup of the master it discovers the network by querying
the connected slaves and initializes all functionality needed to send commands to
the slaves, receive responses, and correctly handle these. The second approach
was used since it does not require as much memory as the processing and storing
of an ENI file. This is key since the primary memory on the device is less than
the smallest ENI files available.2 The platform did however have a secondary flash
memory that could have stored such an ENI file and, subsequently the file could
have been processed by reading it one piece at a time. The online configuration
was however favoured because it made it clear what needed to be implemented,
and in what order.3 Another reason for this choice was that the infrastructure
needed to facilitate ENI files (such as XML parsing) was not readily available and
would have taken considerable time to implement, and this was not the focus of
the thesis.

In essence, the online configuration operates by first sending a request that all
connected slaves are bound to answer, and the response indicates how many slaves
are present. Then, for each slave in the connected order starting from zero from the
master, requests are sent for the slaves’ SII area. The SII lies on an EEPROM chip
and therefore it is not directly memory mapped. It is rather interfaced indirectly
through the manipulation of specially defined registers in the slave. Only one slave
word (16 or 32 bits, depending on the slave) can be accessed at a time through
this interface, and therefore it takes measurable4 time to access just the basic SII
data. The data is then saved in the main unit of the master, see Figure 4.2. In

2From the mail correspondence in the survey it was noted that a one slave ENI file is
larger than the hardware’s primary memory of 64 kB.

3As an example, when a slave returned an error code after an illegal state change, the
reason could be narrowed down to the missing implmenetation details. The specification
in this area was a little thin so this agile technique worked well here.

4As in that you can sit back and relax for a few seconds.

The Master 19

short, the master keeps a list of connected slaves with all their information, such
as serial numbers and other SII data.

The next step in the configuration is to set the slaves in the Operational state,
cf. Section 4.1.4. Code for this exists but is still work in progress. The last step
would be to initiate cyclic commands which is not done, as noted in Section 4.1.6.

Compare network configuration

In the specification it is required that a master during boot up compares its saved
network configuration to either the online configuration, or an ENI file. This
functionality has been totally left for future development and the reason is simply
that there is no complete configuration to compare with yet.

Access to EEPROM

As explained in Section 4.1.7, EEPROM access is fully supported read wise, and
write support should not require much coding effort if this is needed. Convenient
functions also exist to find the different memory areas of the SII in the EEPROM.

4.1.8 Mailbox

Support mailbox

The mailbox is a way of sending larger chunks of data, sometimes known as pa-
rameter data (as opposed to process data). Mailbox data is guaranteed to always
reach the slave, but without realtime limits. Mailbox data is sent via a different
EtherCAT frame and the header is the same as in the PDU case, but instead of a
PDU, a mailbox structure is present. Unfortunately the configuration module of
the master took much more time than expected and so this important functionality
remains unsupported.

Mailbox resilient layer

The mailbox resilient layer is responsible for the guaranteed delivery of mailbox
data. It recovers data that is not received (e.g., issues a resend). Since basic
mailbox support is not implemented, this was put on hold.

Mailbox polling

In order for the master to know if there is new mailbox data in a slave, it has
to do a poll. This has not been further examined because of the lacking mailbox
support.

4.1.9 CAN application layer over EtherCAT

CANopen services are completely skipped due to time issues. This is quite an
independent block and the master can function without it, but it is nonetheless
a severe lack of functionality. Even though this block probably would not require
lots of coding effort it requires mailbox support for the transfer of data.

20 The Master

SDO upload and download

It should be possible to access a slave’s object dictionary through the CANopen
interface, both for reading and writing.

Complete access

Complete access means that the object dictionary can be transferred in its entirety.

Emergency message

The master should be able to receive emergency messages emerging from the
CANopen services, if triggered in a slave.

4.1.10 Slave-to-slave communication

Slave-to-slave communication is a feature for letting slaves communicate with each
other, via the master. Since the slaves are passive units they do not send out
messages of their own, but they can piggyback messages via a frame sent by the
master. This is important for further functionality but is deemed out of reach in
the time frame for this thesis so it has not been investigated further.

4.2 Theory of operation

The master is divided into a few tasks (threads), each with its own responsibilities,
see Figure 4.2. At the heart of the program lies the main processing task which
is responsible for all EtherCAT functionality. With the information provided in
the Master Element5 it decides what commands that are to be sent to the slaves,
and at which time intervals. It handles the internal master state machine and
conducts online configuration of the network. When the main task has processed
enough data and is ready to send a command, it creates an Ethernet frame for
transmission. This frame is created via the layer services described in Section 4.3.
When the main task is ready, it puts the frame in a dedicated stack and notifies the
sending task, the Transmitter in the figure. This task is responsible for interfacing
with the network and sends frames onto it. While waiting for a response the main
task can go on and do additional processing, such as checking mailboxes.6 If there
is nothing to do, it holds. The Receiver task is responsible for acting on a hardware
interrupt from the NIC which is triggered when an incoming frame is ready. The
task then copies the frame from the buffer and puts it in the corresponding input
stack, according to EtherCAT type (i.e., process or mailbox data), and notifies
the right processing task accordingly. PDU Processer and Mailbox Processer are
only responsible for the decoding of the frames and saving the information to its
correct places in the Master Element, and then notifying the main task that there

5The image containing all configuration data for the master and the slaves, essentially
all data that is needed to run the master.

6If mailbox support had been implemented that is. As of now there are no tasks to
perform.

The Master 21

is new data to process. Since the configuration was not completed, the thread
interaction with the master element is not fully in place, but the thread message
passing is.

Main
Processing

Transmitter

PDU
Processer

Receiver

Mailbox
Processer

Mailbox
Stack

Transmit
Stack

DLPDU
Stack

Packet ready msg

Packet ready msg DLPDU data ready msg

Mailbox data ready msg

Master
Element

New packet ready msg

Thread

Data path

N/A data path

Thread messaging

N / A
thread

Data
element

N / A
element

Layer
Block

Figure 4.2: Master task and data organization. The unavailable
elements are shown to illustrate the original plan and how ex-
tensions could be made.

22 The Master

4.2.1 Boot

When the master is turned on, the operating system is set up, which handles
the startup of all threads and initialization of needed resources, such as memory
stacks for each thread. Each thread is given a priority. The sending thread has the
highest priority, and in descending order come the receiving thread, PDU process
thread and main thread. Since the sending, receiving and PDU processing threads
have nothing to do in the beginning, they are blocked and the main thread kicks
in. Here the Ethernet NIC is configured and started. This is done in a blocking
fashion, meaning that the master waits until the NIC is running normally and a
link to the network is present.

4.2.2 Configuration

The master can at the moment be in one of two states, Init and Operational. The
operational state is supposed to handle the cyclic commands and is simulating this
behaviour by sending a repeating command to the network, which does nothing.7
In the init state however the network configuration is done. A subprocess in the
main task circumvents the normal frame processing by having complete access to
sending and receiving routines, so that a frame can be sent without the need to
invoke the PDU process task, for example. This allows for easier configuration
code where one does not have to care too much about the different threads at
work when a frame has to be sent. When the configuration, which was described
in Section 4.1.7, is complete, the master state advances to Operational and the
cyclic behaviour is started.

4.3 Layers

Just like ogres this EtherCAT stack has layers, and this section will go through
them in the way they are handled in the application, from bottom to top and
down again. For this purpose Figure 4.3 will be useful, as well as Figure 4.4. The
description will follow an incoming frame and its way up to the application, and
then an outgoing frame from the application down to when it is sent. Closest to
the Ethernet hardware is a slightly adapted example code from the manufacturer
of the hardware. It is responsible for NIC initialization, sending and receiving
frames and the appropriate buffers. On top of this module a small abstraction
layer for sending, receiving and interrupt handling has been written. Combined
these segments make up the Ethernet layer. The FCS (Frame Check Sum) is
controlled and stripped before the frame is copied from the receive buffer. The
abstraction layer checks the Type field so that it indeed contains an EtherCAT
frame, if not the frame is discarded. If everything is fine it is sent upwards to
the EtherCAT layer, which checks the Type field from the EtherCAT header for a

7This is because the implementation never got to a fully working cyclic processing
state, cf. Section 4.1.6.

The Master 23

valid value8, and then sent onwards to the PDU layer9 where the real processing
begins. Every byte of PDU information (see Figure 4.3) is then extracted and put
into an easier to use structure. This structure is then passed on to the application,
which would be either configuration or the PDU processing thread, see Figure 4.2.
In the case of multiple PDUs, a list of them can be sent to the application.

Now we want to send a frame. The application accesses the PDU layer and
adds all commands that it want to send. The PDU layer stores these commands in
an intermediary form until the application signals that the frame should be sent.
The intermediary form is parsed and the PDUs are constructed in a new frame.
When this is done, the frame is sent to the EtherCAT layer to receive an appropri-
ate header and then it is passed down to the Ethernet layer. Finally, source and
destination MAC addresses are added10, and the type is set to EtherCAT.11 At
this point the frame is sent to the hardware where the FCS is added and eventually
the frame is sent to the network.

Figure 4.3: Example of EtherCAT data in an Ethernet frame. The
numbers represent byte lengths.

8There are three valid types, a frame containing either PDUs, mailbox or network
variables, cf. Section 5.3.3 in [2].

9As mentioned, only PDUs are handled as of yet, in the future there would be Mailbox
and Variable layers as well.

10The destination address is a broadcast address since EtherCAT slaves do not have
MAC addresses. They do not need to since they are addressed in the PDU.

110x88a4, regular IP has the type 0x0800, for reference.

24 The Master

Figure 4.4: Visualization of the layer block. The data paths to and
from the network go through a single Ethernet cable.

4.4 Code organization

The master consists of four main code modules, Application, EtherCAT layer,
Ethernet layer, and Data structures. The application holds all threads and im-
plements most of the message passing in Figure 4.2. The EtherCAT layer holds
the expected functionality, from layer services to master and slave functions, in-
cluding EEPROM access functions. The Ethernet layer includes the NIC example
code from the platform manufacturer and the abstraction layer. Finally, Data
structures includes a list, a stack and definitions for frame handling.

4.5 Benchmark

EtherCAT master performance is primarily measured by its cycle time which is
defined as the time it takes to complete a command. This includes the time for
sending a frame, the time it takes to travel the network and return to the master
(round trip time), and the time for processing the response in order to be ready to
send a new command. For fast performing masters the network round trip time
can be of significant relevance, cf. Section 6.1.5.1 in [3], where round trip times
of approximately 250 µs for maximum sized frames are mentioned. One of the
masters from the review indeed claims cycle times in the µs area lower than this
number. This only means that the frames are shorter, maybe including just one
command.

Because of the time running out implementing the master, no real world testing
was done. However, one crude test was performed out of curiosity. It measured
the cycle time of a frame including one command (30 bytes total frame length)

The Master 25

on a network with only one slave connected. The time measured was the time to
create a predefined command, send and receive it, and extracting data from it.
No further processing was made. An average cycle time was measured to a rough
250 ms. Although this is not impressive at all, being orders of magnitude from the
competition, it has to be noted that this test was performed on a build without
any optimization switches and with debugging turned on, so it would never achieve
blazing speeds. Even still it seems high, and in the future work section the reasons
for this are further examined.

4.6 Feature summary

To conclude this chapter, a feature summary of the implementation is given in the
Table 4.6 below. This is to give an overview of the previous sections and make
it easier to see what was implemented and what was not, regarding EtherCAT
functions.

Feature Summary
Service commands All commands can be sent but further

configuration is needed before all are
operational.

Slaves with device emulation Partial support for both types.
Error handling Not implemented.
EtherCAT State Machine Transitions supported but further con-

figuration needed to do them legally.
EtherCAT frame types EtherCAT frames are supported.
Cyclic process data exchange Sending and receiving of cyclic com-

mands are supported. The commands
can not be added to a slave image as
of yet.

Online configuration A configuration is initiated but slave
buffers and further slave configuration
is not finished.

Compare network configuration Not implemented.
Access to EEPROM Fully supported.
Mailbox support Not implemented.
CANopen support Not implemented.
Slave-to-slave communication Not implemented.

Table 4.6: Feature summary

26 The Master

Chapter5
Future Work

In this chapter the possible future work on the master is summarized. Besides
adding the missing functionality described in previous sections in order to obtain
a B class compliant master, optimizations and other code improvements can be
made.

5.1 Optimizations

The cycle times are as of now not very good, and hopefully they can be improved.
It is likely that a lot of time is spent doing nothing1, because of threads waiting to
be rescheduled. But the program doing nothing while it waits for a frame would
not prolong the cycle time more than the time it takes to reschedule after the
frame is received and an interrupt is generated. Therefore it could be a design
flaw somewhere in the blocking and unblocking of threads. It is difficult to tell
without profiling the code somehow. Furthermore, in the PDU processing there
is quite some allocation and deallocation going on, and with some limitations put
on data lengths and number of PDUs in a frame a lot of these allocations could
be made statically. Following the teachings of Donald Knuth that “...premature
optimization is the root of all evil”, a simple memory handling was preferred with
the full understanding that these types of compromises later could be implemented
without too much trouble. The allocations are not numerous, they are just exe-
cuted a lot.

5.2 Code improvements

As of now, there is a send and receive stack for frames. In the original design this
was to accommodate the accumulation of frames that should be sent, and when
the sending thread got focus it could do its work more efficiently. The same holds
true for receiving. Later, the thread and memory management of this became
complicated both coding and debugging wise, and it was abandoned for a send-
one-frame-at-a-time approach. Unluckily enough the stacks were at that point too

1When all threads are waiting for a semaphore to be set, as when the program waits
for a frame to arrive, a null task is scheduled, doing nothing but eating CPU cycles.
Ultimately, mailbox processing or other useful things should be done here.

27

28 Future Work

intertwined in the code to be easily removed, which admittedly means that a better
interface for them could have been made.2 They were left at the price of a few
extra memory allocations each cycle. Compared to what is going on in the PDU
processing however, removing the stacks would be a very minor optimization.

The master code is heavily dependent on the OS, and thus not so easily
portable. Besides using type definitions from the OS, many modules are accessed,
such as memory allocation, semaphore protection and a list. A more OS indepen-
dent design was considered in the beginning, but was abandoned due to the large
extra work of creating interfaces hiding away the OS. This way, making it OS
independent will definitely take more time than if it was done from the beginning,
but the upside is that more EtherCAT functions could see the light of day.

Functions taking arguments that should not be changed should be declared
const consistently throughout the code. There is really no excuse (except perhaps
absent-mindedness) for this not being the case.

2This is putting “They should have been hidden away deep down in the receiving and
transmitting modules, accessible by a nice interface, for crying out loud!” nicely. . .

Chapter6
Conclusions

“...now I am the master"
Darth Vader

The main goal of this thesis was to see if an EtherCAT master could be run on the
desired hardware. This was done through a survey of existing implementations,
which in essence yielded two recommendations, and the development of a proto-
type. Even though the prototype is not fully operational, at least two things have
been shown:

1. An online configuration can be made.

2. Periodic commands can be sent.

The online configuration may not be complete, but it shows that the fundamentals
work:

• The memory is sufficient to process (at least) one slave at a time, and with
the current memory configuration store up to 10 to 20 slaves.1 This number
could well be higher since only the dynamic memory allotted by the OS is
used for slave allocation. Even though some static memory is used in the
project, plenty remains, and if it can be decided before compile-time how
many slaves will be on the network this memory area can be further utilized.

• Basic communication is possible. Slaves can be accessed and programmed
with the interfaces developed. The slave state machine can also be con-
trolled. If the slave configuration is to be finished this means that the slaves
can be controlled as desired.

Periodic commands may not be implemented as parts of the slave images and sent
dynamically as would be wished, but static periodic commands are demonstrated
to work, though at low speeds. There is however no principal difference in sending
a static command to a dynamic one, its just a matter of looking up the commands
from the slave images.

This showcases that a functional, albeit limited master can indeed run on the
intended hardware and should help the decision on how to proceed, may it be a
continuation on this thesis, or a purchase in light of the survey results.

1Depending on how much memory their images will finally consume. As of now,
a slave image takes roughly 50 bytes, but this number could easliy multiply as more
attributes and periodic commands are added.

29

30 Conclusions

6.1 Difficulties

This will be the rant section of the report, where certain difficulties that arose
during the thesis will be highlighted in a more lighthearted way. Readers are now
duly warned.

As noted in the beginning of this report, the plan had to be revised under
way. This was the result of several factors. First we have the hardware.2 This
was quite a new domain and therefore it was not always trivial to see where things
went wrong3 and a lot of time was consumed by debugging, trying to understand
why code that was supposed to work did not. The supplied Ethernet module was a
source of many a headache, not because it contained any errors per se but because
it did not play along with the OS too well.4

One thing that made things really hard in the beginning was the lack of a
working printf function.5 As the project proceeded and I learnt how to better
utilize the debugger, this need for printed statements was diminished. However, to
better understand the presumed delay introduced by the threads, these statements
could have made it easier to see eactly where context changes were made and
whether or not they could have been optimized.

The real scope of the project did not really become clear until the end. You
can read and read specifications and try to get a grip on the work that is needed
but it is not until you get down and dirty with the code that you will really know
the full extent of what is expected. Maybe that is an experience thing. From being
a task that appeared surmountable it grew into a seemingly endless mountain onto
which you could carve and carve and yet you would get nowhere.6 At least it felt
that way sometimes. In hindsight, if the task would have been just the EtherCAT
master, without all the hard-ware and OS7 problems, it just might have been
doable to finish off a Class B master in the time scope of this thesis. By the time
it finally came down to implementing the configuration the thought was that it
would take maybe one week and then the rest would be easy.8 A lot of times the
missing factor was someone equally familiar with the code and if one were to point
out one thing that would have made a tremendous difference, this would be it. On
one hand it is nice not having to compromise, but the input of a partner would
have been a great addition, especially when motivation was low.

2This word should probably be hyphenated as of now, as it is indeed hard-ware.
3Many a day the solution was the turning on of a teeny weeny bit in an almost

certainly obscure hardware register. Hair was pulled.
4It needed more stack memory than was currently available when certain functions

were called. The resulting stack overflow resulted in code that seemed to work but was
broken in a very subtle way. The overflow was therefore not detected until much later
after trying to fix very obscure bugs.

5I got the option to implement this myself, but I did not know how much time it would
take and whether or not it would decrease development time with the same amount, so
I decided against it.

6See, this is an inherent characteristic of seemingly endless mountains.
7Yes, a lot of time was also spent in the darker corners of the OS, and you know what?

I liked it.
8I will be able to laugh at this. Someday.

References

[1] EtherCAT Technology Group, 2010, ETG.1000.3 S V1.0.2 EtherCAT Spec-
ification – Part 3 Data Link Layer service definition. [PDF] ETG. Available
through: ETG Member Area
<http://www.ethercat.org/en/publications.html>
[Accessed 8 August 2011]

[2] EtherCAT Technology Group, 2010, ETG.1000.4 S V1.0.2 EtherCAT Specifi-
cation – Part 4 Data Link Layer protocols specification. [PDF] ETG. Available
through: ETG Member Area
<http://www.ethercat.org/en/publications.html>
[Accessed 8 August 2011]

[3] EtherCAT Technology Group, 2010, ETG.1000.5 S V1.0.2 EtherCAT Speci-
fication – Part 5 Application Layer service definition. [PDF] ETG. Available
through: ETG Member Area
<http://www.ethercat.org/en/publications.html>
[Accessed 8 August 2011]

[4] EtherCAT Technology Group, 2010, ETG.1000.6 S V1.0.2 EtherCAT Specifi-
cation – Part 6 Application Layer protocol specification. [PDF] ETG. Available
through: ETG Member Area
<http://www.ethercat.org/en/publications.html>
[Accessed 8 August 2011]

[5] EtherCAT Technology Group, 2011, ETG.1020 S V0.9.4 EtherCAT Protocol
Enhancements. [PDF] ETG. Available through: ETG Member Area
<http://www.ethercat.org/en/publications.html>
[Accessed 8 August 2011]

[6] EtherCAT Technology Group, 2011, ETG.1500 S V1.0.0 EtherCAT Master
Classes. [PDF] ETG. Available through: ETG Member Area
<http://www.ethercat.org/en/publications.html>
[Accessed 8 August 2011]

[7] EtherCAT Technology Group, 2011. EtherCAT Knowledge Base. EtherCAT
Technology Group, [Online] 8 August. Available at:
<http://www.ethercat.org/infosys.html>
[Accessed 8 August 2011]

31

32 References

AppendixA
Appendix

EtherCAT Master
Documentation

Andreas Tågerud

N.B.
This is an excerpt of the full
HTML documentation, which
can be provided upon request.

September 2, 2011

Appendix 1

Generated on Mon Aug 1 2011 23:38:24 for Class B Master by 1.7.4

File List

Here is a list of all files with brief descriptions (only the interface files will be further described):
application/app.c Implementation of app.h

application/app.h All threads are initialized and run from here

data_structures/list.c Implementation of list.h

data_structures/list.h This list layer makes use of the linked list that is built
in the OS to make it easier to use for this application

data_structures/packet.h Defines types and constants for packet handling

data_structures/stack.c Implementation of stack.h

data_structures/stack.h This stack is implemented by using the OS built in
linked list

ethercat_layer/ethercat_layer.c Implementation of ethercat_layer.h

ethercat_layer/ethercat_layer.h Handles EtherCAT frame validation for sending and
receiving

ethercat_layer/master.c Implementation of master.h

ethercat_layer/master.h
This module handles all master functionality. It sends
and receives frames, handles configuration and once
done, the continuous running state of the master

ethercat_layer/pdu_layer.c Implementation of pdu_layer.h

ethercat_layer/pdu_layer.h

This module is responsible for all DLPDU handling. It
adds PDU commands and assembles them to a frame
when the master says so. It also disassembles
incoming frames into more easily readable structures

ethercat_layer/slave/eeprom.c Implementation of eeprom.h

ethercat_layer/slave/eeprom.h Specialized functions for reading a slave's EEPROM

ethercat_layer/slave/slave.c Implementation of slave.h

ethercat_layer/slave/slave.h This module handles slave specific operations, such
as SII reading and ESM management

ethernet_layer/ethernet_layer.c Implementation of ethernet_layer.h

ethernet_layer/ethernet_layer.h
This layer is responsible for sending and receiving
frames to hardware buffers, and ascertaining that the
Ethernet part of the frame is correct upon reception

2 Appendix

app.h File Reference

All threads are initialized and run from here.

Functions

EXTFUNC StatusType APP_Init (UINT16 iOptions)
EXTFUNC void APP_SendTask (void)
EXTFUNC void APP_ReceiveTask (void)
EXTFUNC void APP_ParameterTask (void)
EXTFUNC void APP_ProcessPduTask (void)
EXTFUNC void APP_MainTask (void)

Variables

ST_Stack * APP_pxSendStack
ST_Stack * APP_pxProcessStack

MR_EthercatMasterType * APP_xMaster
GS_SemaphoreType APP_xSendStackSem
GS_SemaphoreType APP_xProcessStackSem
GS_SemaphoreType APP_xPacketArrivedSem
GS_SemaphoreType APP_xPacketToSendSem
GS_SemaphoreType APP_xPacketReceivedSem
GS_SemaphoreType APP_xMasterSem

Detailed Description

Function Documentation

EXTFUNC StatusType APP_Init (UINT16 iOptions)

Initiates all threads

Parameters:
[in] iOptions = initialization options

EXTFUNC void APP_SendTask (void)

Handles transmission of frames

EXTFUNC void APP_ReceiveTask (void)

Handles reception of frames

EXTFUNC void APP_ParameterTask (void)

Handles mailbox data, not implemented or started

EXTFUNC void APP_ProcessPduTask (void)

Extracts and saves process data in the master image

EXTFUNC void APP_MainTask (void)

Processes the master image and sends out new commands

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

Appendix 3

app.h File Reference

All threads are initialized and run from here.

Functions

EXTFUNC StatusType APP_Init (UINT16 iOptions)
EXTFUNC void APP_SendTask (void)
EXTFUNC void APP_ReceiveTask (void)
EXTFUNC void APP_ParameterTask (void)
EXTFUNC void APP_ProcessPduTask (void)
EXTFUNC void APP_MainTask (void)

Variables

ST_Stack * APP_pxSendStack
ST_Stack * APP_pxProcessStack

MR_EthercatMasterType * APP_xMaster
GS_SemaphoreType APP_xSendStackSem
GS_SemaphoreType APP_xProcessStackSem
GS_SemaphoreType APP_xPacketArrivedSem
GS_SemaphoreType APP_xPacketToSendSem
GS_SemaphoreType APP_xPacketReceivedSem
GS_SemaphoreType APP_xMasterSem

Detailed Description

Function Documentation

EXTFUNC StatusType APP_Init (UINT16 iOptions)

Initiates all threads

Parameters:
[in] iOptions = initialization options

EXTFUNC void APP_SendTask (void)

Handles transmission of frames

EXTFUNC void APP_ReceiveTask (void)

Handles reception of frames

EXTFUNC void APP_ParameterTask (void)

Handles mailbox data, not implemented or started

EXTFUNC void APP_ProcessPduTask (void)

Extracts and saves process data in the master image

EXTFUNC void APP_MainTask (void)

Processes the master image and sends out new commands

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

list.h File Reference

This list layer makes use of the linked list that is built in the OS to make it easier to use for this
application.

Data Structures

struct LIST_ElemType
struct LIST_ListType

Typedefs

typedef struct LIST_ElemType LIST_ElemType
typedef struct LIST_ListType LIST_ListType

Functions

bool LIST_Empty (LIST_ListType *psList)
LIST_ListType * LIST_NewList (bool fListType)

bool LIST_AddLast (LIST_ListType *psList, void *pbElement)
UINT16 LIST_Size (LIST_ListType *psList)

void * LIST_GetLast (LIST_ListType *psList)
void * LIST_Get (LIST_ListType *psList, UINT16 iI)

void LIST_EmptyList (LIST_ListType *psList)
LIST_Iterator * LIST_NewIterator (LIST_ListType *psList)

void * LIST_NextElement (LIST_ListType *psList, LIST_Iterator
**pxIterator)

void LIST_ResetIterator (LIST_ListType *psList, LIST_Iterator
**pxIterator)

Detailed Description

Function Documentation

bool LIST_Empty (LIST_ListType * psList)

Checks if list is empty

Parameters:
[in] psList = the list to be tested

Returns:
true if empty, false otherwise

LIST_ListType* LIST_NewList (bool fListType)

Creates a list

Parameters:
[in] fListType = can be either LIST_DYNAMIC or LIST_STATIC. LIST_STATIC can

not be deallocated. The elements can always be deallocated
however by a call to LIST_FreeList()

Returns:
a pointer to the list

bool LIST_AddLast (LIST_ListType * psList,

void * pbElement

)

Adds an element last in the list

Parameters:
[in] psList = the list which to add
[in] pbElement = the element to be added

Returns:
true if the add succeeded and false if memory runs out, in which case we're screwed
either way

UINT16 LIST_Size (LIST_ListType * psList)

Calculates the size of the list

Parameters:
[in] psList = the list which size is being requested

Returns:
the list size

void* LIST_GetLast (LIST_ListType * psList)

Gets the last element of the list

Parameters:
[in] psList = the list whose element is requested

Returns:
pointer to the last element. Nothing is removed from the list

void* LIST_Get (LIST_ListType * psList,

UINT16 iI

)

Get the i:th element in the list

Parameters:
[in] psList = the list whose element is requested

Returns:
pointer to the i:th element. Nothing is removed from the list

void LIST_EmptyList (LIST_ListType * psList)

Empties the list

Parameters:
[in] psList = the list to be emptied

LIST_Iterator* LIST_NewIterator (LIST_ListType * psList)

Returns an iterator to the list

Parameters:
[in] psList = the list to be iterated

Returns:
an iterator to the list

void* LIST_NextElement (LIST_ListType * psList,

LIST_Iterator ** pxIterator

)

Itearates to the nest element ant returns it

Parameters:
[in] psList = the list to be iterated
[in] pxIterator = pointer to the iterator

Returns:
pointer to the next element in the list

void LIST_ResetIterator (LIST_ListType * psList,

LIST_Iterator ** pxIterator

)

Rewinds the iterator to the beginning of the list

Parameters:
[in] psList = the list to be iterated
[in] pxIterator = pointer to the iterator

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

4 Appendix

list.h File Reference

This list layer makes use of the linked list that is built in the OS to make it easier to use for this
application.

Data Structures

struct LIST_ElemType
struct LIST_ListType

Typedefs

typedef struct LIST_ElemType LIST_ElemType
typedef struct LIST_ListType LIST_ListType

Functions

bool LIST_Empty (LIST_ListType *psList)
LIST_ListType * LIST_NewList (bool fListType)

bool LIST_AddLast (LIST_ListType *psList, void *pbElement)
UINT16 LIST_Size (LIST_ListType *psList)

void * LIST_GetLast (LIST_ListType *psList)
void * LIST_Get (LIST_ListType *psList, UINT16 iI)

void LIST_EmptyList (LIST_ListType *psList)
LIST_Iterator * LIST_NewIterator (LIST_ListType *psList)

void * LIST_NextElement (LIST_ListType *psList, LIST_Iterator
**pxIterator)

void LIST_ResetIterator (LIST_ListType *psList, LIST_Iterator
**pxIterator)

Detailed Description

Function Documentation

bool LIST_Empty (LIST_ListType * psList)

Checks if list is empty

Parameters:
[in] psList = the list to be tested

Returns:
true if empty, false otherwise

LIST_ListType* LIST_NewList (bool fListType)

Creates a list

Parameters:
[in] fListType = can be either LIST_DYNAMIC or LIST_STATIC. LIST_STATIC can

not be deallocated. The elements can always be deallocated
however by a call to LIST_FreeList()

Returns:
a pointer to the list

bool LIST_AddLast (LIST_ListType * psList,

void * pbElement

)

Adds an element last in the list

Parameters:
[in] psList = the list which to add
[in] pbElement = the element to be added

Returns:
true if the add succeeded and false if memory runs out, in which case we're screwed
either way

UINT16 LIST_Size (LIST_ListType * psList)

Calculates the size of the list

Parameters:
[in] psList = the list which size is being requested

Returns:
the list size

void* LIST_GetLast (LIST_ListType * psList)

Gets the last element of the list

Parameters:
[in] psList = the list whose element is requested

Returns:
pointer to the last element. Nothing is removed from the list

void* LIST_Get (LIST_ListType * psList,

UINT16 iI

)

Get the i:th element in the list

Parameters:
[in] psList = the list whose element is requested

Returns:
pointer to the i:th element. Nothing is removed from the list

void LIST_EmptyList (LIST_ListType * psList)

Empties the list

Parameters:
[in] psList = the list to be emptied

LIST_Iterator* LIST_NewIterator (LIST_ListType * psList)

Returns an iterator to the list

Parameters:
[in] psList = the list to be iterated

Returns:
an iterator to the list

void* LIST_NextElement (LIST_ListType * psList,

LIST_Iterator ** pxIterator

)

Itearates to the nest element ant returns it

Parameters:
[in] psList = the list to be iterated
[in] pxIterator = pointer to the iterator

Returns:
pointer to the next element in the list

void LIST_ResetIterator (LIST_ListType * psList,

LIST_Iterator ** pxIterator

)

Rewinds the iterator to the beginning of the list

Parameters:
[in] psList = the list to be iterated
[in] pxIterator = pointer to the iterator

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

Appendix 5

list.h File Reference

This list layer makes use of the linked list that is built in the OS to make it easier to use for this
application.

Data Structures

struct LIST_ElemType
struct LIST_ListType

Typedefs

typedef struct LIST_ElemType LIST_ElemType
typedef struct LIST_ListType LIST_ListType

Functions

bool LIST_Empty (LIST_ListType *psList)
LIST_ListType * LIST_NewList (bool fListType)

bool LIST_AddLast (LIST_ListType *psList, void *pbElement)
UINT16 LIST_Size (LIST_ListType *psList)

void * LIST_GetLast (LIST_ListType *psList)
void * LIST_Get (LIST_ListType *psList, UINT16 iI)

void LIST_EmptyList (LIST_ListType *psList)
LIST_Iterator * LIST_NewIterator (LIST_ListType *psList)

void * LIST_NextElement (LIST_ListType *psList, LIST_Iterator
**pxIterator)

void LIST_ResetIterator (LIST_ListType *psList, LIST_Iterator
**pxIterator)

Detailed Description

Function Documentation

bool LIST_Empty (LIST_ListType * psList)

Checks if list is empty

Parameters:
[in] psList = the list to be tested

Returns:
true if empty, false otherwise

LIST_ListType* LIST_NewList (bool fListType)

Creates a list

Parameters:
[in] fListType = can be either LIST_DYNAMIC or LIST_STATIC. LIST_STATIC can

not be deallocated. The elements can always be deallocated
however by a call to LIST_FreeList()

Returns:
a pointer to the list

bool LIST_AddLast (LIST_ListType * psList,

void * pbElement

)

Adds an element last in the list

Parameters:
[in] psList = the list which to add
[in] pbElement = the element to be added

Returns:
true if the add succeeded and false if memory runs out, in which case we're screwed
either way

UINT16 LIST_Size (LIST_ListType * psList)

Calculates the size of the list

Parameters:
[in] psList = the list which size is being requested

Returns:
the list size

void* LIST_GetLast (LIST_ListType * psList)

Gets the last element of the list

Parameters:
[in] psList = the list whose element is requested

Returns:
pointer to the last element. Nothing is removed from the list

void* LIST_Get (LIST_ListType * psList,

UINT16 iI

)

Get the i:th element in the list

Parameters:
[in] psList = the list whose element is requested

Returns:
pointer to the i:th element. Nothing is removed from the list

void LIST_EmptyList (LIST_ListType * psList)

Empties the list

Parameters:
[in] psList = the list to be emptied

LIST_Iterator* LIST_NewIterator (LIST_ListType * psList)

Returns an iterator to the list

Parameters:
[in] psList = the list to be iterated

Returns:
an iterator to the list

void* LIST_NextElement (LIST_ListType * psList,

LIST_Iterator ** pxIterator

)

Itearates to the nest element ant returns it

Parameters:
[in] psList = the list to be iterated
[in] pxIterator = pointer to the iterator

Returns:
pointer to the next element in the list

void LIST_ResetIterator (LIST_ListType * psList,

LIST_Iterator ** pxIterator

)

Rewinds the iterator to the beginning of the list

Parameters:
[in] psList = the list to be iterated
[in] pxIterator = pointer to the iterator

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

6 Appendix

list.h File Reference

This list layer makes use of the linked list that is built in the OS to make it easier to use for this
application.

Data Structures

struct LIST_ElemType
struct LIST_ListType

Typedefs

typedef struct LIST_ElemType LIST_ElemType
typedef struct LIST_ListType LIST_ListType

Functions

bool LIST_Empty (LIST_ListType *psList)
LIST_ListType * LIST_NewList (bool fListType)

bool LIST_AddLast (LIST_ListType *psList, void *pbElement)
UINT16 LIST_Size (LIST_ListType *psList)

void * LIST_GetLast (LIST_ListType *psList)
void * LIST_Get (LIST_ListType *psList, UINT16 iI)

void LIST_EmptyList (LIST_ListType *psList)
LIST_Iterator * LIST_NewIterator (LIST_ListType *psList)

void * LIST_NextElement (LIST_ListType *psList, LIST_Iterator
**pxIterator)

void LIST_ResetIterator (LIST_ListType *psList, LIST_Iterator
**pxIterator)

Detailed Description

Function Documentation

bool LIST_Empty (LIST_ListType * psList)

Checks if list is empty

Parameters:
[in] psList = the list to be tested

Returns:
true if empty, false otherwise

LIST_ListType* LIST_NewList (bool fListType)

Creates a list

Parameters:
[in] fListType = can be either LIST_DYNAMIC or LIST_STATIC. LIST_STATIC can

not be deallocated. The elements can always be deallocated
however by a call to LIST_FreeList()

Returns:
a pointer to the list

bool LIST_AddLast (LIST_ListType * psList,

void * pbElement

)

Adds an element last in the list

Parameters:
[in] psList = the list which to add
[in] pbElement = the element to be added

Returns:
true if the add succeeded and false if memory runs out, in which case we're screwed
either way

UINT16 LIST_Size (LIST_ListType * psList)

Calculates the size of the list

Parameters:
[in] psList = the list which size is being requested

Returns:
the list size

void* LIST_GetLast (LIST_ListType * psList)

Gets the last element of the list

Parameters:
[in] psList = the list whose element is requested

Returns:
pointer to the last element. Nothing is removed from the list

void* LIST_Get (LIST_ListType * psList,

UINT16 iI

)

Get the i:th element in the list

Parameters:
[in] psList = the list whose element is requested

Returns:
pointer to the i:th element. Nothing is removed from the list

void LIST_EmptyList (LIST_ListType * psList)

Empties the list

Parameters:
[in] psList = the list to be emptied

LIST_Iterator* LIST_NewIterator (LIST_ListType * psList)

Returns an iterator to the list

Parameters:
[in] psList = the list to be iterated

Returns:
an iterator to the list

void* LIST_NextElement (LIST_ListType * psList,

LIST_Iterator ** pxIterator

)

Itearates to the nest element ant returns it

Parameters:
[in] psList = the list to be iterated
[in] pxIterator = pointer to the iterator

Returns:
pointer to the next element in the list

void LIST_ResetIterator (LIST_ListType * psList,

LIST_Iterator ** pxIterator

)

Rewinds the iterator to the beginning of the list

Parameters:
[in] psList = the list to be iterated
[in] pxIterator = pointer to the iterator

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

packet.h File Reference

Defines types and constants for packet handling.

Data Structures

struct PAC_PacketType
struct ECAT_HdrType
struct PDU_PduType

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

stack.h File Reference

This stack is implemented by using the OS built in linked list.

Data Structures

struct ST_ElemType
struct ST_Stack

Typedefs

typedef struct ST_ElemType ST_ElemType
typedef struct ST_Stack ST_Stack

Functions

bool ST_Empty (const ST_Stack *pxStack)
void ST_FreeStack (ST_Stack *pxStack)

ST_Stack * ST_NewStack (GS_SemaphoreType xStackSem, bool fStackType)
bool ST_Push (ST_Stack *pxStack, PAC_PacketType xPacket)

PAC_PacketType ST_Pop (ST_Stack *pxStack)
UINT16 ST_Size (const ST_Stack *pxStack)

Detailed Description

Function Documentation

bool ST_Empty (const ST_Stack * pxStack)

Checks if stack is empty

Parameters:
[in] pxStack = the stack to be tested

Returns:
true if empty, false otherwise

void ST_FreeStack (ST_Stack * pxStack)

Frees an entire stack

Parameters:
[in] pxStack = the stack to be freed

ST_Stack* ST_NewStack (GS_SemaphoreType xStackSem,

bool fStackType

)

Creates a new semaphore protected stack

Parameters:
[in] xStackSem = the semaphore protecting the stack
[in] fStackType = can be either ST_DYNAMIC or ST_STATIC. ST_STATIC can not

be deallocated. The elements can always be deallocated however
by a call to ST_FreeStack()

Returns:
a pointer to the stack

bool ST_Push (ST_Stack * pxStack,

PAC_PacketType xPacket

)

Pushes a packet onto the stack

Parameters:
[in] pxStack = the stack that is being pushed on
[in] xPacket = the packet being pushed on the stack

Returns:
true if the push succeeded and false if memory runs out, in which case we're screwed
either way

PAC_PacketType ST_Pop (ST_Stack * pxStack)

Pops a packet from the stack

Parameters:
[in] pxStack = the stack that is being popped

returns the popped packet

UINT16 ST_Size (const ST_Stack * pxStack)

Calculates the size of the stack

Parameters:
[in] pxStack = the stack which size is being requested

Returns:
the stack size

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

Appendix 7

stack.h File Reference

This stack is implemented by using the OS built in linked list.

Data Structures

struct ST_ElemType
struct ST_Stack

Typedefs

typedef struct ST_ElemType ST_ElemType
typedef struct ST_Stack ST_Stack

Functions

bool ST_Empty (const ST_Stack *pxStack)
void ST_FreeStack (ST_Stack *pxStack)

ST_Stack * ST_NewStack (GS_SemaphoreType xStackSem, bool fStackType)
bool ST_Push (ST_Stack *pxStack, PAC_PacketType xPacket)

PAC_PacketType ST_Pop (ST_Stack *pxStack)
UINT16 ST_Size (const ST_Stack *pxStack)

Detailed Description

Function Documentation

bool ST_Empty (const ST_Stack * pxStack)

Checks if stack is empty

Parameters:
[in] pxStack = the stack to be tested

Returns:
true if empty, false otherwise

void ST_FreeStack (ST_Stack * pxStack)

Frees an entire stack

Parameters:
[in] pxStack = the stack to be freed

ST_Stack* ST_NewStack (GS_SemaphoreType xStackSem,

bool fStackType

)

Creates a new semaphore protected stack

Parameters:
[in] xStackSem = the semaphore protecting the stack
[in] fStackType = can be either ST_DYNAMIC or ST_STATIC. ST_STATIC can not

be deallocated. The elements can always be deallocated however
by a call to ST_FreeStack()

Returns:
a pointer to the stack

bool ST_Push (ST_Stack * pxStack,

PAC_PacketType xPacket

)

Pushes a packet onto the stack

Parameters:
[in] pxStack = the stack that is being pushed on
[in] xPacket = the packet being pushed on the stack

Returns:
true if the push succeeded and false if memory runs out, in which case we're screwed
either way

PAC_PacketType ST_Pop (ST_Stack * pxStack)

Pops a packet from the stack

Parameters:
[in] pxStack = the stack that is being popped

returns the popped packet

UINT16 ST_Size (const ST_Stack * pxStack)

Calculates the size of the stack

Parameters:
[in] pxStack = the stack which size is being requested

Returns:
the stack size

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

8 Appendix

stack.h File Reference

This stack is implemented by using the OS built in linked list.

Data Structures

struct ST_ElemType
struct ST_Stack

Typedefs

typedef struct ST_ElemType ST_ElemType
typedef struct ST_Stack ST_Stack

Functions

bool ST_Empty (const ST_Stack *pxStack)
void ST_FreeStack (ST_Stack *pxStack)

ST_Stack * ST_NewStack (GS_SemaphoreType xStackSem, bool fStackType)
bool ST_Push (ST_Stack *pxStack, PAC_PacketType xPacket)

PAC_PacketType ST_Pop (ST_Stack *pxStack)
UINT16 ST_Size (const ST_Stack *pxStack)

Detailed Description

Function Documentation

bool ST_Empty (const ST_Stack * pxStack)

Checks if stack is empty

Parameters:
[in] pxStack = the stack to be tested

Returns:
true if empty, false otherwise

void ST_FreeStack (ST_Stack * pxStack)

Frees an entire stack

Parameters:
[in] pxStack = the stack to be freed

ST_Stack* ST_NewStack (GS_SemaphoreType xStackSem,

bool fStackType

)

Creates a new semaphore protected stack

Parameters:
[in] xStackSem = the semaphore protecting the stack
[in] fStackType = can be either ST_DYNAMIC or ST_STATIC. ST_STATIC can not

be deallocated. The elements can always be deallocated however
by a call to ST_FreeStack()

Returns:
a pointer to the stack

bool ST_Push (ST_Stack * pxStack,

PAC_PacketType xPacket

)

Pushes a packet onto the stack

Parameters:
[in] pxStack = the stack that is being pushed on
[in] xPacket = the packet being pushed on the stack

Returns:
true if the push succeeded and false if memory runs out, in which case we're screwed
either way

PAC_PacketType ST_Pop (ST_Stack * pxStack)

Pops a packet from the stack

Parameters:
[in] pxStack = the stack that is being popped

returns the popped packet

UINT16 ST_Size (const ST_Stack * pxStack)

Calculates the size of the stack

Parameters:
[in] pxStack = the stack which size is being requested

Returns:
the stack size

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

ethercat_layer.h File Reference

Handles EtherCAT frame validation for sending and receiving.

Functions

void ECAT_EncodePacket (PAC_PacketType *psPacket, UINT16 iLength)
PAC_PacketType ECAT_VerifyPacket ()

Detailed Description

Function Documentation

void ECAT_EncodePacket (PAC_PacketType * psPacket,

UINT16 iLength

)

Encodes a frame with EtherCAT header

Parameters:
[in] psPacket = pointer to struct containing pointer to packet and its length
[in] iLength = length of Ethernet content, needed for the header

PAC_PacketType ECAT_VerifyPacket ()

Fetches and verifies an incoming packet. If it is not an EtherCAT frame it is marked and
discarded in a higher layer

Returns:
a pointer to the packet and its length in an PAC_PacketType struct. If the frame was
discarded the contained pointer is set to NULL and its length to zero, and its
EthercatType is set to ECAT_INVALID_FRAME

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

Appendix 9

master.h File Reference

This module handles all master functionality. It sends and receives frames, handles configuration
and once done, the continuous running state of the master.

Data Structures

struct MR_MailboxSendInfoType
struct MR_MailboxRecvInfoType
struct MR_SlaveInfoType
struct MR_SlaveProcessDataType
struct MR_SlaveMailboxType
struct MR_MasterType
struct MR_SlaveType
struct MR_ConfigType
struct MR_EthercatMasterType

Typedefs

typedef UINT8 MR_StateType

Functions

void MR_ChangeState (MR_EthercatMasterType *pxMaster,
MR_StateType xToState)

UINT16 MR_Configure (MR_EthercatMasterType *MR_xMaster)
void MR_AddAPRD (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddFPRD (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddBRD (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddLRD (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddAPWR (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddFPWR (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddBWR (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddLWR (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddAPRW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddFPRW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddBRW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddLRW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddARMW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddFRMW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
MR_EthercatMasterType * MR_Init (GS_SemaphoreType xMasterSem, GS_SemaphoreType

xPacketSentSem, GS_SemaphoreType xPacketArrivedSem, ST_Stack
*xPacketStack)

void MR_Send (MR_EthercatMasterType *pxMaster)
void MR_SendAndWaitForResponse (MR_EthercatMasterType

*pxMaster)
void MR_Wait (MR_EthercatMasterType *pxMaster)
void MR_Signal (MR_EthercatMasterType *pxMaster)
void mr_InitDynamicMasterObjects (MR_EthercatMasterType

*pxMaster)
void mr_InitMasterInfo (MR_MasterType *pxMaster)

UINT16 mr_CountSlaves (MR_EthercatMasterType *pxMaster)
void mr_InitializeSlaves (MR_EthercatMasterType *pxMaster, UINT16

iNbrOfSlaves)
void mr_GetSlaveInfo (MR_EthercatMasterType *pxMaster, UINT16

iNbrOfSlaves)

Variables

MR_EthercatMasterType MR_xMaster
GS_SemaphoreType mr_xPacketSentSem
GS_SemaphoreType mr_xPacketArrivedSem

ST_Stack * mr_xPacketStack

Detailed Description

Function Documentation

void MR_ChangeState (MR_EthercatMasterType * pxMaster,
MR_StateType xToState

)

Changes the master's state. The state machine is for simplifying different tasks in the threads
and is not much used right know

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] xToState = the wanted state as per defines

UINT16 MR_Configure (MR_EthercatMasterType * MR_xMaster)

Configures the network and makes it ready for use. This includes the setup of slaves

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void MR_AddAPRD (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an APRD to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddFPRD (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds a FPRD to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddBRD (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds a BRD to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddLRD (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an LRD to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddAPWR (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an APWR to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddFPWR (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds a FPWR to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddBWR (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds a BWR to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddLWR (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an LWR to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddAPRW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an APRW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddFPRW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an FPRW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddBRW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an BRW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddLRW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an LRW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddARMW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an ARMW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddFRMW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an FRMW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

MR_EthercatMasterType* MR_Init (GS_SemaphoreType xMasterSem,
GS_SemaphoreType xPacketSentSem,
GS_SemaphoreType xPacketArrivedSem,
ST_Stack * xPacketStack

)

Initializes the master image containing the network configuration, mac addresses and such.

Parameters:
[in] xMasterSem = semaphore protecting the master image
[in] xPacketSentSem = semaphore used for signaling that a packet is to be

sent
[in] xPacketArrivedSem = semaphore used for waiting for a packet to arrive
[in] xPacketStack = stack containing incoming packets

Returns:
the master image

void MR_Send (MR_EthercatMasterType * pxMaster)

Tells the master to send a frame consisting of the commands added with preceding MR_Add-
calls.

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void MR_SendAndWaitForResponse (MR_EthercatMasterType * pxMaster)

Sends a packet, using MR_Send(), and then blocks until a response arrives

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void MR_Wait (MR_EthercatMasterType * pxMaster)

Blocks access to the master until it is signaled with MR_Signal

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void MR_Signal (MR_EthercatMasterType * pxMaster)

Signals that a master access blocked by MR_Wait() can now be done

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void mr_InitDynamicMasterObjects (MR_EthercatMasterType * pxMaster)

Initiates static list heads and such in the master

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void mr_InitMasterInfo (MR_MasterType * pxMaster)

Initiates basic maste rinfo such as mac addresses

Parameters:
[in] pxMaster = the master unit that sends and receives requests

UINT16 mr_CountSlaves (MR_EthercatMasterType * pxMaster)

Counts the slaves in order to know how many to configure

Parameters:
[in] pxMaster = the master unit that sends and receives requests

Returns:
an UINT16 inidicating the number of slaves in the network

void mr_InitializeSlaves (MR_EthercatMasterType * pxMaster,
UINT16 iNbrOfSlaves

)

Initializes slaves, sets up mailbox and process buffers and puts the slaves in operational state

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iNbrOfSlaves = the number of slaves as discovered by mr_CountSlaves()

void mr_GetSlaveInfo (MR_EthercatMasterType * pxMaster,
UINT16 iNbrOfSlaves

)

Accesses the EEPROM of the slaves and saves relevant parts of it in the master image

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iNbrOfSlaves = the number of slaves as discovered by mr_CountSlaves()

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

10 Appendix

master.h File Reference

This module handles all master functionality. It sends and receives frames, handles configuration
and once done, the continuous running state of the master.

Data Structures

struct MR_MailboxSendInfoType
struct MR_MailboxRecvInfoType
struct MR_SlaveInfoType
struct MR_SlaveProcessDataType
struct MR_SlaveMailboxType
struct MR_MasterType
struct MR_SlaveType
struct MR_ConfigType
struct MR_EthercatMasterType

Typedefs

typedef UINT8 MR_StateType

Functions

void MR_ChangeState (MR_EthercatMasterType *pxMaster,
MR_StateType xToState)

UINT16 MR_Configure (MR_EthercatMasterType *MR_xMaster)
void MR_AddAPRD (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddFPRD (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddBRD (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddLRD (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddAPWR (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddFPWR (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddBWR (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddLWR (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddAPRW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddFPRW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddBRW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddLRW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddARMW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddFRMW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
MR_EthercatMasterType * MR_Init (GS_SemaphoreType xMasterSem, GS_SemaphoreType

xPacketSentSem, GS_SemaphoreType xPacketArrivedSem, ST_Stack
*xPacketStack)

void MR_Send (MR_EthercatMasterType *pxMaster)
void MR_SendAndWaitForResponse (MR_EthercatMasterType

*pxMaster)
void MR_Wait (MR_EthercatMasterType *pxMaster)
void MR_Signal (MR_EthercatMasterType *pxMaster)
void mr_InitDynamicMasterObjects (MR_EthercatMasterType

*pxMaster)
void mr_InitMasterInfo (MR_MasterType *pxMaster)

UINT16 mr_CountSlaves (MR_EthercatMasterType *pxMaster)
void mr_InitializeSlaves (MR_EthercatMasterType *pxMaster, UINT16

iNbrOfSlaves)
void mr_GetSlaveInfo (MR_EthercatMasterType *pxMaster, UINT16

iNbrOfSlaves)

Variables

MR_EthercatMasterType MR_xMaster
GS_SemaphoreType mr_xPacketSentSem
GS_SemaphoreType mr_xPacketArrivedSem

ST_Stack * mr_xPacketStack

Detailed Description

Function Documentation

void MR_ChangeState (MR_EthercatMasterType * pxMaster,
MR_StateType xToState

)

Changes the master's state. The state machine is for simplifying different tasks in the threads
and is not much used right know

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] xToState = the wanted state as per defines

UINT16 MR_Configure (MR_EthercatMasterType * MR_xMaster)

Configures the network and makes it ready for use. This includes the setup of slaves

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void MR_AddAPRD (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an APRD to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddFPRD (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds a FPRD to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddBRD (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds a BRD to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddLRD (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an LRD to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddAPWR (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an APWR to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddFPWR (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds a FPWR to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddBWR (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds a BWR to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddLWR (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an LWR to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddAPRW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an APRW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddFPRW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an FPRW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddBRW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an BRW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddLRW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an LRW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddARMW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an ARMW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddFRMW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an FRMW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

MR_EthercatMasterType* MR_Init (GS_SemaphoreType xMasterSem,
GS_SemaphoreType xPacketSentSem,
GS_SemaphoreType xPacketArrivedSem,
ST_Stack * xPacketStack

)

Initializes the master image containing the network configuration, mac addresses and such.

Parameters:
[in] xMasterSem = semaphore protecting the master image
[in] xPacketSentSem = semaphore used for signaling that a packet is to be

sent
[in] xPacketArrivedSem = semaphore used for waiting for a packet to arrive
[in] xPacketStack = stack containing incoming packets

Returns:
the master image

void MR_Send (MR_EthercatMasterType * pxMaster)

Tells the master to send a frame consisting of the commands added with preceding MR_Add-
calls.

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void MR_SendAndWaitForResponse (MR_EthercatMasterType * pxMaster)

Sends a packet, using MR_Send(), and then blocks until a response arrives

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void MR_Wait (MR_EthercatMasterType * pxMaster)

Blocks access to the master until it is signaled with MR_Signal

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void MR_Signal (MR_EthercatMasterType * pxMaster)

Signals that a master access blocked by MR_Wait() can now be done

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void mr_InitDynamicMasterObjects (MR_EthercatMasterType * pxMaster)

Initiates static list heads and such in the master

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void mr_InitMasterInfo (MR_MasterType * pxMaster)

Initiates basic maste rinfo such as mac addresses

Parameters:
[in] pxMaster = the master unit that sends and receives requests

UINT16 mr_CountSlaves (MR_EthercatMasterType * pxMaster)

Counts the slaves in order to know how many to configure

Parameters:
[in] pxMaster = the master unit that sends and receives requests

Returns:
an UINT16 inidicating the number of slaves in the network

void mr_InitializeSlaves (MR_EthercatMasterType * pxMaster,
UINT16 iNbrOfSlaves

)

Initializes slaves, sets up mailbox and process buffers and puts the slaves in operational state

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iNbrOfSlaves = the number of slaves as discovered by mr_CountSlaves()

void mr_GetSlaveInfo (MR_EthercatMasterType * pxMaster,
UINT16 iNbrOfSlaves

)

Accesses the EEPROM of the slaves and saves relevant parts of it in the master image

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iNbrOfSlaves = the number of slaves as discovered by mr_CountSlaves()

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

Appendix 11

master.h File Reference

This module handles all master functionality. It sends and receives frames, handles configuration
and once done, the continuous running state of the master.

Data Structures

struct MR_MailboxSendInfoType
struct MR_MailboxRecvInfoType
struct MR_SlaveInfoType
struct MR_SlaveProcessDataType
struct MR_SlaveMailboxType
struct MR_MasterType
struct MR_SlaveType
struct MR_ConfigType
struct MR_EthercatMasterType

Typedefs

typedef UINT8 MR_StateType

Functions

void MR_ChangeState (MR_EthercatMasterType *pxMaster,
MR_StateType xToState)

UINT16 MR_Configure (MR_EthercatMasterType *MR_xMaster)
void MR_AddAPRD (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddFPRD (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddBRD (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddLRD (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddAPWR (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddFPWR (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddBWR (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddLWR (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddAPRW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddFPRW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddBRW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddLRW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddARMW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddFRMW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
MR_EthercatMasterType * MR_Init (GS_SemaphoreType xMasterSem, GS_SemaphoreType

xPacketSentSem, GS_SemaphoreType xPacketArrivedSem, ST_Stack
*xPacketStack)

void MR_Send (MR_EthercatMasterType *pxMaster)
void MR_SendAndWaitForResponse (MR_EthercatMasterType

*pxMaster)
void MR_Wait (MR_EthercatMasterType *pxMaster)
void MR_Signal (MR_EthercatMasterType *pxMaster)
void mr_InitDynamicMasterObjects (MR_EthercatMasterType

*pxMaster)
void mr_InitMasterInfo (MR_MasterType *pxMaster)

UINT16 mr_CountSlaves (MR_EthercatMasterType *pxMaster)
void mr_InitializeSlaves (MR_EthercatMasterType *pxMaster, UINT16

iNbrOfSlaves)
void mr_GetSlaveInfo (MR_EthercatMasterType *pxMaster, UINT16

iNbrOfSlaves)

Variables

MR_EthercatMasterType MR_xMaster
GS_SemaphoreType mr_xPacketSentSem
GS_SemaphoreType mr_xPacketArrivedSem

ST_Stack * mr_xPacketStack

Detailed Description

Function Documentation

void MR_ChangeState (MR_EthercatMasterType * pxMaster,
MR_StateType xToState

)

Changes the master's state. The state machine is for simplifying different tasks in the threads
and is not much used right know

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] xToState = the wanted state as per defines

UINT16 MR_Configure (MR_EthercatMasterType * MR_xMaster)

Configures the network and makes it ready for use. This includes the setup of slaves

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void MR_AddAPRD (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an APRD to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddFPRD (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds a FPRD to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddBRD (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds a BRD to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddLRD (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an LRD to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddAPWR (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an APWR to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddFPWR (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds a FPWR to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddBWR (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds a BWR to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddLWR (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an LWR to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddAPRW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an APRW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddFPRW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an FPRW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddBRW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an BRW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddLRW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an LRW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddARMW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an ARMW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddFRMW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an FRMW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

MR_EthercatMasterType* MR_Init (GS_SemaphoreType xMasterSem,
GS_SemaphoreType xPacketSentSem,
GS_SemaphoreType xPacketArrivedSem,
ST_Stack * xPacketStack

)

Initializes the master image containing the network configuration, mac addresses and such.

Parameters:
[in] xMasterSem = semaphore protecting the master image
[in] xPacketSentSem = semaphore used for signaling that a packet is to be

sent
[in] xPacketArrivedSem = semaphore used for waiting for a packet to arrive
[in] xPacketStack = stack containing incoming packets

Returns:
the master image

void MR_Send (MR_EthercatMasterType * pxMaster)

Tells the master to send a frame consisting of the commands added with preceding MR_Add-
calls.

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void MR_SendAndWaitForResponse (MR_EthercatMasterType * pxMaster)

Sends a packet, using MR_Send(), and then blocks until a response arrives

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void MR_Wait (MR_EthercatMasterType * pxMaster)

Blocks access to the master until it is signaled with MR_Signal

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void MR_Signal (MR_EthercatMasterType * pxMaster)

Signals that a master access blocked by MR_Wait() can now be done

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void mr_InitDynamicMasterObjects (MR_EthercatMasterType * pxMaster)

Initiates static list heads and such in the master

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void mr_InitMasterInfo (MR_MasterType * pxMaster)

Initiates basic maste rinfo such as mac addresses

Parameters:
[in] pxMaster = the master unit that sends and receives requests

UINT16 mr_CountSlaves (MR_EthercatMasterType * pxMaster)

Counts the slaves in order to know how many to configure

Parameters:
[in] pxMaster = the master unit that sends and receives requests

Returns:
an UINT16 inidicating the number of slaves in the network

void mr_InitializeSlaves (MR_EthercatMasterType * pxMaster,
UINT16 iNbrOfSlaves

)

Initializes slaves, sets up mailbox and process buffers and puts the slaves in operational state

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iNbrOfSlaves = the number of slaves as discovered by mr_CountSlaves()

void mr_GetSlaveInfo (MR_EthercatMasterType * pxMaster,
UINT16 iNbrOfSlaves

)

Accesses the EEPROM of the slaves and saves relevant parts of it in the master image

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iNbrOfSlaves = the number of slaves as discovered by mr_CountSlaves()

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

12 Appendix

master.h File Reference

This module handles all master functionality. It sends and receives frames, handles configuration
and once done, the continuous running state of the master.

Data Structures

struct MR_MailboxSendInfoType
struct MR_MailboxRecvInfoType
struct MR_SlaveInfoType
struct MR_SlaveProcessDataType
struct MR_SlaveMailboxType
struct MR_MasterType
struct MR_SlaveType
struct MR_ConfigType
struct MR_EthercatMasterType

Typedefs

typedef UINT8 MR_StateType

Functions

void MR_ChangeState (MR_EthercatMasterType *pxMaster,
MR_StateType xToState)

UINT16 MR_Configure (MR_EthercatMasterType *MR_xMaster)
void MR_AddAPRD (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddFPRD (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddBRD (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddLRD (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddAPWR (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddFPWR (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddBWR (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddLWR (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddAPRW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddFPRW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddBRW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddLRW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddARMW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddFRMW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
MR_EthercatMasterType * MR_Init (GS_SemaphoreType xMasterSem, GS_SemaphoreType

xPacketSentSem, GS_SemaphoreType xPacketArrivedSem, ST_Stack
*xPacketStack)

void MR_Send (MR_EthercatMasterType *pxMaster)
void MR_SendAndWaitForResponse (MR_EthercatMasterType

*pxMaster)
void MR_Wait (MR_EthercatMasterType *pxMaster)
void MR_Signal (MR_EthercatMasterType *pxMaster)
void mr_InitDynamicMasterObjects (MR_EthercatMasterType

*pxMaster)
void mr_InitMasterInfo (MR_MasterType *pxMaster)

UINT16 mr_CountSlaves (MR_EthercatMasterType *pxMaster)
void mr_InitializeSlaves (MR_EthercatMasterType *pxMaster, UINT16

iNbrOfSlaves)
void mr_GetSlaveInfo (MR_EthercatMasterType *pxMaster, UINT16

iNbrOfSlaves)

Variables

MR_EthercatMasterType MR_xMaster
GS_SemaphoreType mr_xPacketSentSem
GS_SemaphoreType mr_xPacketArrivedSem

ST_Stack * mr_xPacketStack

Detailed Description

Function Documentation

void MR_ChangeState (MR_EthercatMasterType * pxMaster,
MR_StateType xToState

)

Changes the master's state. The state machine is for simplifying different tasks in the threads
and is not much used right know

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] xToState = the wanted state as per defines

UINT16 MR_Configure (MR_EthercatMasterType * MR_xMaster)

Configures the network and makes it ready for use. This includes the setup of slaves

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void MR_AddAPRD (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an APRD to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddFPRD (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds a FPRD to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddBRD (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds a BRD to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddLRD (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an LRD to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddAPWR (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an APWR to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddFPWR (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds a FPWR to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddBWR (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds a BWR to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddLWR (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an LWR to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddAPRW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an APRW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddFPRW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an FPRW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddBRW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an BRW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddLRW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an LRW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddARMW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an ARMW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddFRMW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an FRMW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

MR_EthercatMasterType* MR_Init (GS_SemaphoreType xMasterSem,
GS_SemaphoreType xPacketSentSem,
GS_SemaphoreType xPacketArrivedSem,
ST_Stack * xPacketStack

)

Initializes the master image containing the network configuration, mac addresses and such.

Parameters:
[in] xMasterSem = semaphore protecting the master image
[in] xPacketSentSem = semaphore used for signaling that a packet is to be

sent
[in] xPacketArrivedSem = semaphore used for waiting for a packet to arrive
[in] xPacketStack = stack containing incoming packets

Returns:
the master image

void MR_Send (MR_EthercatMasterType * pxMaster)

Tells the master to send a frame consisting of the commands added with preceding MR_Add-
calls.

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void MR_SendAndWaitForResponse (MR_EthercatMasterType * pxMaster)

Sends a packet, using MR_Send(), and then blocks until a response arrives

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void MR_Wait (MR_EthercatMasterType * pxMaster)

Blocks access to the master until it is signaled with MR_Signal

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void MR_Signal (MR_EthercatMasterType * pxMaster)

Signals that a master access blocked by MR_Wait() can now be done

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void mr_InitDynamicMasterObjects (MR_EthercatMasterType * pxMaster)

Initiates static list heads and such in the master

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void mr_InitMasterInfo (MR_MasterType * pxMaster)

Initiates basic maste rinfo such as mac addresses

Parameters:
[in] pxMaster = the master unit that sends and receives requests

UINT16 mr_CountSlaves (MR_EthercatMasterType * pxMaster)

Counts the slaves in order to know how many to configure

Parameters:
[in] pxMaster = the master unit that sends and receives requests

Returns:
an UINT16 inidicating the number of slaves in the network

void mr_InitializeSlaves (MR_EthercatMasterType * pxMaster,
UINT16 iNbrOfSlaves

)

Initializes slaves, sets up mailbox and process buffers and puts the slaves in operational state

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iNbrOfSlaves = the number of slaves as discovered by mr_CountSlaves()

void mr_GetSlaveInfo (MR_EthercatMasterType * pxMaster,
UINT16 iNbrOfSlaves

)

Accesses the EEPROM of the slaves and saves relevant parts of it in the master image

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iNbrOfSlaves = the number of slaves as discovered by mr_CountSlaves()

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

Appendix 13

master.h File Reference

This module handles all master functionality. It sends and receives frames, handles configuration
and once done, the continuous running state of the master.

Data Structures

struct MR_MailboxSendInfoType
struct MR_MailboxRecvInfoType
struct MR_SlaveInfoType
struct MR_SlaveProcessDataType
struct MR_SlaveMailboxType
struct MR_MasterType
struct MR_SlaveType
struct MR_ConfigType
struct MR_EthercatMasterType

Typedefs

typedef UINT8 MR_StateType

Functions

void MR_ChangeState (MR_EthercatMasterType *pxMaster,
MR_StateType xToState)

UINT16 MR_Configure (MR_EthercatMasterType *MR_xMaster)
void MR_AddAPRD (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddFPRD (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddBRD (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddLRD (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddAPWR (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddFPWR (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddBWR (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddLWR (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddAPRW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddFPRW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddBRW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddLRW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddARMW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddFRMW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
MR_EthercatMasterType * MR_Init (GS_SemaphoreType xMasterSem, GS_SemaphoreType

xPacketSentSem, GS_SemaphoreType xPacketArrivedSem, ST_Stack
*xPacketStack)

void MR_Send (MR_EthercatMasterType *pxMaster)
void MR_SendAndWaitForResponse (MR_EthercatMasterType

*pxMaster)
void MR_Wait (MR_EthercatMasterType *pxMaster)
void MR_Signal (MR_EthercatMasterType *pxMaster)
void mr_InitDynamicMasterObjects (MR_EthercatMasterType

*pxMaster)
void mr_InitMasterInfo (MR_MasterType *pxMaster)

UINT16 mr_CountSlaves (MR_EthercatMasterType *pxMaster)
void mr_InitializeSlaves (MR_EthercatMasterType *pxMaster, UINT16

iNbrOfSlaves)
void mr_GetSlaveInfo (MR_EthercatMasterType *pxMaster, UINT16

iNbrOfSlaves)

Variables

MR_EthercatMasterType MR_xMaster
GS_SemaphoreType mr_xPacketSentSem
GS_SemaphoreType mr_xPacketArrivedSem

ST_Stack * mr_xPacketStack

Detailed Description

Function Documentation

void MR_ChangeState (MR_EthercatMasterType * pxMaster,
MR_StateType xToState

)

Changes the master's state. The state machine is for simplifying different tasks in the threads
and is not much used right know

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] xToState = the wanted state as per defines

UINT16 MR_Configure (MR_EthercatMasterType * MR_xMaster)

Configures the network and makes it ready for use. This includes the setup of slaves

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void MR_AddAPRD (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an APRD to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddFPRD (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds a FPRD to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddBRD (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds a BRD to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddLRD (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an LRD to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddAPWR (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an APWR to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddFPWR (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds a FPWR to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddBWR (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds a BWR to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddLWR (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an LWR to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddAPRW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an APRW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddFPRW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an FPRW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddBRW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an BRW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddLRW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an LRW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddARMW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an ARMW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddFRMW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an FRMW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

MR_EthercatMasterType* MR_Init (GS_SemaphoreType xMasterSem,
GS_SemaphoreType xPacketSentSem,
GS_SemaphoreType xPacketArrivedSem,
ST_Stack * xPacketStack

)

Initializes the master image containing the network configuration, mac addresses and such.

Parameters:
[in] xMasterSem = semaphore protecting the master image
[in] xPacketSentSem = semaphore used for signaling that a packet is to be

sent
[in] xPacketArrivedSem = semaphore used for waiting for a packet to arrive
[in] xPacketStack = stack containing incoming packets

Returns:
the master image

void MR_Send (MR_EthercatMasterType * pxMaster)

Tells the master to send a frame consisting of the commands added with preceding MR_Add-
calls.

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void MR_SendAndWaitForResponse (MR_EthercatMasterType * pxMaster)

Sends a packet, using MR_Send(), and then blocks until a response arrives

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void MR_Wait (MR_EthercatMasterType * pxMaster)

Blocks access to the master until it is signaled with MR_Signal

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void MR_Signal (MR_EthercatMasterType * pxMaster)

Signals that a master access blocked by MR_Wait() can now be done

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void mr_InitDynamicMasterObjects (MR_EthercatMasterType * pxMaster)

Initiates static list heads and such in the master

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void mr_InitMasterInfo (MR_MasterType * pxMaster)

Initiates basic maste rinfo such as mac addresses

Parameters:
[in] pxMaster = the master unit that sends and receives requests

UINT16 mr_CountSlaves (MR_EthercatMasterType * pxMaster)

Counts the slaves in order to know how many to configure

Parameters:
[in] pxMaster = the master unit that sends and receives requests

Returns:
an UINT16 inidicating the number of slaves in the network

void mr_InitializeSlaves (MR_EthercatMasterType * pxMaster,
UINT16 iNbrOfSlaves

)

Initializes slaves, sets up mailbox and process buffers and puts the slaves in operational state

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iNbrOfSlaves = the number of slaves as discovered by mr_CountSlaves()

void mr_GetSlaveInfo (MR_EthercatMasterType * pxMaster,
UINT16 iNbrOfSlaves

)

Accesses the EEPROM of the slaves and saves relevant parts of it in the master image

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iNbrOfSlaves = the number of slaves as discovered by mr_CountSlaves()

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

14 Appendix

master.h File Reference

This module handles all master functionality. It sends and receives frames, handles configuration
and once done, the continuous running state of the master.

Data Structures

struct MR_MailboxSendInfoType
struct MR_MailboxRecvInfoType
struct MR_SlaveInfoType
struct MR_SlaveProcessDataType
struct MR_SlaveMailboxType
struct MR_MasterType
struct MR_SlaveType
struct MR_ConfigType
struct MR_EthercatMasterType

Typedefs

typedef UINT8 MR_StateType

Functions

void MR_ChangeState (MR_EthercatMasterType *pxMaster,
MR_StateType xToState)

UINT16 MR_Configure (MR_EthercatMasterType *MR_xMaster)
void MR_AddAPRD (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddFPRD (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddBRD (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddLRD (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddAPWR (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddFPWR (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddBWR (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddLWR (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddAPRW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddFPRW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddBRW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddLRW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddARMW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddFRMW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
MR_EthercatMasterType * MR_Init (GS_SemaphoreType xMasterSem, GS_SemaphoreType

xPacketSentSem, GS_SemaphoreType xPacketArrivedSem, ST_Stack
*xPacketStack)

void MR_Send (MR_EthercatMasterType *pxMaster)
void MR_SendAndWaitForResponse (MR_EthercatMasterType

*pxMaster)
void MR_Wait (MR_EthercatMasterType *pxMaster)
void MR_Signal (MR_EthercatMasterType *pxMaster)
void mr_InitDynamicMasterObjects (MR_EthercatMasterType

*pxMaster)
void mr_InitMasterInfo (MR_MasterType *pxMaster)

UINT16 mr_CountSlaves (MR_EthercatMasterType *pxMaster)
void mr_InitializeSlaves (MR_EthercatMasterType *pxMaster, UINT16

iNbrOfSlaves)
void mr_GetSlaveInfo (MR_EthercatMasterType *pxMaster, UINT16

iNbrOfSlaves)

Variables

MR_EthercatMasterType MR_xMaster
GS_SemaphoreType mr_xPacketSentSem
GS_SemaphoreType mr_xPacketArrivedSem

ST_Stack * mr_xPacketStack

Detailed Description

Function Documentation

void MR_ChangeState (MR_EthercatMasterType * pxMaster,
MR_StateType xToState

)

Changes the master's state. The state machine is for simplifying different tasks in the threads
and is not much used right know

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] xToState = the wanted state as per defines

UINT16 MR_Configure (MR_EthercatMasterType * MR_xMaster)

Configures the network and makes it ready for use. This includes the setup of slaves

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void MR_AddAPRD (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an APRD to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddFPRD (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds a FPRD to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddBRD (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds a BRD to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddLRD (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an LRD to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddAPWR (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an APWR to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddFPWR (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds a FPWR to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddBWR (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds a BWR to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddLWR (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an LWR to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddAPRW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an APRW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddFPRW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an FPRW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddBRW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an BRW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddLRW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an LRW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddARMW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an ARMW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddFRMW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an FRMW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

MR_EthercatMasterType* MR_Init (GS_SemaphoreType xMasterSem,
GS_SemaphoreType xPacketSentSem,
GS_SemaphoreType xPacketArrivedSem,
ST_Stack * xPacketStack

)

Initializes the master image containing the network configuration, mac addresses and such.

Parameters:
[in] xMasterSem = semaphore protecting the master image
[in] xPacketSentSem = semaphore used for signaling that a packet is to be

sent
[in] xPacketArrivedSem = semaphore used for waiting for a packet to arrive
[in] xPacketStack = stack containing incoming packets

Returns:
the master image

void MR_Send (MR_EthercatMasterType * pxMaster)

Tells the master to send a frame consisting of the commands added with preceding MR_Add-
calls.

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void MR_SendAndWaitForResponse (MR_EthercatMasterType * pxMaster)

Sends a packet, using MR_Send(), and then blocks until a response arrives

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void MR_Wait (MR_EthercatMasterType * pxMaster)

Blocks access to the master until it is signaled with MR_Signal

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void MR_Signal (MR_EthercatMasterType * pxMaster)

Signals that a master access blocked by MR_Wait() can now be done

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void mr_InitDynamicMasterObjects (MR_EthercatMasterType * pxMaster)

Initiates static list heads and such in the master

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void mr_InitMasterInfo (MR_MasterType * pxMaster)

Initiates basic maste rinfo such as mac addresses

Parameters:
[in] pxMaster = the master unit that sends and receives requests

UINT16 mr_CountSlaves (MR_EthercatMasterType * pxMaster)

Counts the slaves in order to know how many to configure

Parameters:
[in] pxMaster = the master unit that sends and receives requests

Returns:
an UINT16 inidicating the number of slaves in the network

void mr_InitializeSlaves (MR_EthercatMasterType * pxMaster,
UINT16 iNbrOfSlaves

)

Initializes slaves, sets up mailbox and process buffers and puts the slaves in operational state

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iNbrOfSlaves = the number of slaves as discovered by mr_CountSlaves()

void mr_GetSlaveInfo (MR_EthercatMasterType * pxMaster,
UINT16 iNbrOfSlaves

)

Accesses the EEPROM of the slaves and saves relevant parts of it in the master image

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iNbrOfSlaves = the number of slaves as discovered by mr_CountSlaves()

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

Appendix 15

master.h File Reference

This module handles all master functionality. It sends and receives frames, handles configuration
and once done, the continuous running state of the master.

Data Structures

struct MR_MailboxSendInfoType
struct MR_MailboxRecvInfoType
struct MR_SlaveInfoType
struct MR_SlaveProcessDataType
struct MR_SlaveMailboxType
struct MR_MasterType
struct MR_SlaveType
struct MR_ConfigType
struct MR_EthercatMasterType

Typedefs

typedef UINT8 MR_StateType

Functions

void MR_ChangeState (MR_EthercatMasterType *pxMaster,
MR_StateType xToState)

UINT16 MR_Configure (MR_EthercatMasterType *MR_xMaster)
void MR_AddAPRD (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddFPRD (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddBRD (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddLRD (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddAPWR (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddFPWR (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddBWR (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddLWR (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddAPRW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddFPRW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddBRW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddLRW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddARMW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
void MR_AddFRMW (MR_EthercatMasterType *pxMaster,

PDU_CommandType *pxCommand)
MR_EthercatMasterType * MR_Init (GS_SemaphoreType xMasterSem, GS_SemaphoreType

xPacketSentSem, GS_SemaphoreType xPacketArrivedSem, ST_Stack
*xPacketStack)

void MR_Send (MR_EthercatMasterType *pxMaster)
void MR_SendAndWaitForResponse (MR_EthercatMasterType

*pxMaster)
void MR_Wait (MR_EthercatMasterType *pxMaster)
void MR_Signal (MR_EthercatMasterType *pxMaster)
void mr_InitDynamicMasterObjects (MR_EthercatMasterType

*pxMaster)
void mr_InitMasterInfo (MR_MasterType *pxMaster)

UINT16 mr_CountSlaves (MR_EthercatMasterType *pxMaster)
void mr_InitializeSlaves (MR_EthercatMasterType *pxMaster, UINT16

iNbrOfSlaves)
void mr_GetSlaveInfo (MR_EthercatMasterType *pxMaster, UINT16

iNbrOfSlaves)

Variables

MR_EthercatMasterType MR_xMaster
GS_SemaphoreType mr_xPacketSentSem
GS_SemaphoreType mr_xPacketArrivedSem

ST_Stack * mr_xPacketStack

Detailed Description

Function Documentation

void MR_ChangeState (MR_EthercatMasterType * pxMaster,
MR_StateType xToState

)

Changes the master's state. The state machine is for simplifying different tasks in the threads
and is not much used right know

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] xToState = the wanted state as per defines

UINT16 MR_Configure (MR_EthercatMasterType * MR_xMaster)

Configures the network and makes it ready for use. This includes the setup of slaves

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void MR_AddAPRD (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an APRD to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddFPRD (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds a FPRD to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddBRD (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds a BRD to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddLRD (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an LRD to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddAPWR (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an APWR to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddFPWR (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds a FPWR to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddBWR (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds a BWR to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddLWR (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an LWR to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddAPRW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an APRW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddFPRW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an FPRW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddBRW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an BRW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddLRW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an LRW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddARMW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an ARMW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

void MR_AddFRMW (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Adds an FRMW to a future packet. The packet is sent using MR_Send()

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = the command to send, including address and data

MR_EthercatMasterType* MR_Init (GS_SemaphoreType xMasterSem,
GS_SemaphoreType xPacketSentSem,
GS_SemaphoreType xPacketArrivedSem,
ST_Stack * xPacketStack

)

Initializes the master image containing the network configuration, mac addresses and such.

Parameters:
[in] xMasterSem = semaphore protecting the master image
[in] xPacketSentSem = semaphore used for signaling that a packet is to be

sent
[in] xPacketArrivedSem = semaphore used for waiting for a packet to arrive
[in] xPacketStack = stack containing incoming packets

Returns:
the master image

void MR_Send (MR_EthercatMasterType * pxMaster)

Tells the master to send a frame consisting of the commands added with preceding MR_Add-
calls.

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void MR_SendAndWaitForResponse (MR_EthercatMasterType * pxMaster)

Sends a packet, using MR_Send(), and then blocks until a response arrives

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void MR_Wait (MR_EthercatMasterType * pxMaster)

Blocks access to the master until it is signaled with MR_Signal

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void MR_Signal (MR_EthercatMasterType * pxMaster)

Signals that a master access blocked by MR_Wait() can now be done

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void mr_InitDynamicMasterObjects (MR_EthercatMasterType * pxMaster)

Initiates static list heads and such in the master

Parameters:
[in] pxMaster = the master unit that sends and receives requests

void mr_InitMasterInfo (MR_MasterType * pxMaster)

Initiates basic maste rinfo such as mac addresses

Parameters:
[in] pxMaster = the master unit that sends and receives requests

UINT16 mr_CountSlaves (MR_EthercatMasterType * pxMaster)

Counts the slaves in order to know how many to configure

Parameters:
[in] pxMaster = the master unit that sends and receives requests

Returns:
an UINT16 inidicating the number of slaves in the network

void mr_InitializeSlaves (MR_EthercatMasterType * pxMaster,
UINT16 iNbrOfSlaves

)

Initializes slaves, sets up mailbox and process buffers and puts the slaves in operational state

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iNbrOfSlaves = the number of slaves as discovered by mr_CountSlaves()

void mr_GetSlaveInfo (MR_EthercatMasterType * pxMaster,
UINT16 iNbrOfSlaves

)

Accesses the EEPROM of the slaves and saves relevant parts of it in the master image

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iNbrOfSlaves = the number of slaves as discovered by mr_CountSlaves()

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

pdu_layer.h File Reference

This module is responsible for all DLPDU handling. It adds PDU commands and assembles them to
a frame when the master says so. It also disassembles incoming frames into more easily readable
structures.

Data Structures

struct PDU_CommandType
struct PDU_ListType

Functions

bool PDU_AddNormalPDU (PDU_ListType *pxPduList, UINT8 bCmd,
PDU_CommandType *psInfo)

bool PDU_AddLogicalPDU (PDU_ListType *pxPduList, UINT8 bCmd,
PDU_CommandType *psInfo)

PDU_PduType * PDU_GetFirstPDU (UINT8 *pbPacket)
PDU_ListType PDU_GetPDUs (UINT8 *pbPacket)

void PDU_FreePduList (PDU_ListType *pxPduList)
void PDU_FreePdu (PDU_PduType *pxPdu)

PDU_ListType PDU_NewPduList (bool fListType)
void PDU_SendPacket (PDU_ListType *pxPduList)
void pdu_EncodePacket (PDU_ListType *pxPduList, PAC_PacketType *psPacket)

PDU_PduType * pdu_GetNextPDU (UINT8 *pbPduStart)
bool pdu_AddPDU (PDU_ListType *pxPduList, UINT8 fType, UINT8 bCmd,

PDU_CommandType *psInfo)

Detailed Description

Function Documentation

bool PDU_AddNormalPDU (PDU_ListType * pxPduList,

UINT8 bCmd,

PDU_CommandType * psInfo

)

Adds a normal addressing PDU to the list of PDU to be sent with the current frame.

Parameters:
[in] pxPduList = pointer to the list which to add the PDU
[in] bCmd = the type of service command, as per defines
[in] psInfo = pointer to struct containing address to slave, address in slave,

length of data to be sent, and a pointer to the data

Returns:
true if the command was added, false if there was a parameter error

bool PDU_AddLogicalPDU (PDU_ListType * pxPduList,

UINT8 bCmd,

PDU_CommandType * psInfo

)

Adds a logical addressing PDU to the list of PDU to be sent with the current frame.

Parameters:
[in] pxPduList = pointer to the list which to add the PDU
[in] bCmd = the type of service command, as per defines
[in] psInfo = pointer to struct containing address to slave, address in slave,

length of data to be sent, and a pointer to the data

Returns:
true if the command was added, false if there was a parameter error

PDU_PduType* PDU_GetFirstPDU (UINT8 * pbPacket)

Fetches the first PDU from an incoming packet

Parameters:
[in] pbPacket = pointer to the frame

Returns:
pointer to a PDU which must be deallocated after use

PDU_ListType PDU_GetPDUs (UINT8 * pbPacket)

Fetches all the PDUs from an incoming packet

Parameters:
[in] pbPacket = pointer to the frame

Returns:
pointer to a list of PDUs which must be deallocated after use

void PDU_FreePduList (PDU_ListType * pxPduList)

Frees a list of PDUs created by PDU_GetPDUs()

Parameters:
[in] pxPduList = pointer to the list to be free'd

void PDU_FreePdu (PDU_PduType * pxPdu)

Frees a single PDU created by PDU_GetFirstPDU()

Parameters:
[in] pxPdu = pointer to the PDU to be free'd

PDU_ListType PDU_NewPduList (bool fListType)

Initializes a PDU list for first time use

Parameters:
[in] fListType = can be either PDU_STATIC or PDU_DYNAMIC. A static list can not

be free'd

Returns:
a PDU_ListType struct which contains the actual list

void PDU_SendPacket (PDU_ListType * pxPduList)

Marks that the last PDU has been added and sends the packet to the transmit buffer

Parameters:
[in] pxPduList = a pointer to the PDU list that is to be sent

void pdu_EncodePacket (PDU_ListType * pxPduList,

PAC_PacketType * psPacket

)

Internal function that converts the PDU list to a sendable frame

Parameters:
[in] pxPduList = a pointer to the PDU list that is to be sent
[in] psPacket = pointer to struct contiang pointer to the actual frame

PDU_PduType* pdu_GetNextPDU (UINT8 * pbPduStart)

Internal function which fetches the next PDU from a packet using an offset pointer

Parameters:
[in] pbPduStart = pointer to the next PDU within a frame

bool pdu_AddPDU (PDU_ListType * pxPduList,

UINT8 fType,

UINT8 bCmd,

PDU_CommandType * psInfo

)

Internal function for adding a PDU of any addressing mode to the list, normal or logical

Parameters:
[in] pxPduList = pointer to the list which to add the PDU
[in] fType = PDU_NORMAL or PDU_LOGICAL
[in] bCmd = the type of service command, as per defines
[in] psInfo = pointer to struct containing address to slave, address in slave,

length of data to be sent, and a pointer to the data

Returns:
true if the PDU was added, false if there was some kind of error

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

16 Appendix

pdu_layer.h File Reference

This module is responsible for all DLPDU handling. It adds PDU commands and assembles them to
a frame when the master says so. It also disassembles incoming frames into more easily readable
structures.

Data Structures

struct PDU_CommandType
struct PDU_ListType

Functions

bool PDU_AddNormalPDU (PDU_ListType *pxPduList, UINT8 bCmd,
PDU_CommandType *psInfo)

bool PDU_AddLogicalPDU (PDU_ListType *pxPduList, UINT8 bCmd,
PDU_CommandType *psInfo)

PDU_PduType * PDU_GetFirstPDU (UINT8 *pbPacket)
PDU_ListType PDU_GetPDUs (UINT8 *pbPacket)

void PDU_FreePduList (PDU_ListType *pxPduList)
void PDU_FreePdu (PDU_PduType *pxPdu)

PDU_ListType PDU_NewPduList (bool fListType)
void PDU_SendPacket (PDU_ListType *pxPduList)
void pdu_EncodePacket (PDU_ListType *pxPduList, PAC_PacketType *psPacket)

PDU_PduType * pdu_GetNextPDU (UINT8 *pbPduStart)
bool pdu_AddPDU (PDU_ListType *pxPduList, UINT8 fType, UINT8 bCmd,

PDU_CommandType *psInfo)

Detailed Description

Function Documentation

bool PDU_AddNormalPDU (PDU_ListType * pxPduList,

UINT8 bCmd,

PDU_CommandType * psInfo

)

Adds a normal addressing PDU to the list of PDU to be sent with the current frame.

Parameters:
[in] pxPduList = pointer to the list which to add the PDU
[in] bCmd = the type of service command, as per defines
[in] psInfo = pointer to struct containing address to slave, address in slave,

length of data to be sent, and a pointer to the data

Returns:
true if the command was added, false if there was a parameter error

bool PDU_AddLogicalPDU (PDU_ListType * pxPduList,

UINT8 bCmd,

PDU_CommandType * psInfo

)

Adds a logical addressing PDU to the list of PDU to be sent with the current frame.

Parameters:
[in] pxPduList = pointer to the list which to add the PDU
[in] bCmd = the type of service command, as per defines
[in] psInfo = pointer to struct containing address to slave, address in slave,

length of data to be sent, and a pointer to the data

Returns:
true if the command was added, false if there was a parameter error

PDU_PduType* PDU_GetFirstPDU (UINT8 * pbPacket)

Fetches the first PDU from an incoming packet

Parameters:
[in] pbPacket = pointer to the frame

Returns:
pointer to a PDU which must be deallocated after use

PDU_ListType PDU_GetPDUs (UINT8 * pbPacket)

Fetches all the PDUs from an incoming packet

Parameters:
[in] pbPacket = pointer to the frame

Returns:
pointer to a list of PDUs which must be deallocated after use

void PDU_FreePduList (PDU_ListType * pxPduList)

Frees a list of PDUs created by PDU_GetPDUs()

Parameters:
[in] pxPduList = pointer to the list to be free'd

void PDU_FreePdu (PDU_PduType * pxPdu)

Frees a single PDU created by PDU_GetFirstPDU()

Parameters:
[in] pxPdu = pointer to the PDU to be free'd

PDU_ListType PDU_NewPduList (bool fListType)

Initializes a PDU list for first time use

Parameters:
[in] fListType = can be either PDU_STATIC or PDU_DYNAMIC. A static list can not

be free'd

Returns:
a PDU_ListType struct which contains the actual list

void PDU_SendPacket (PDU_ListType * pxPduList)

Marks that the last PDU has been added and sends the packet to the transmit buffer

Parameters:
[in] pxPduList = a pointer to the PDU list that is to be sent

void pdu_EncodePacket (PDU_ListType * pxPduList,

PAC_PacketType * psPacket

)

Internal function that converts the PDU list to a sendable frame

Parameters:
[in] pxPduList = a pointer to the PDU list that is to be sent
[in] psPacket = pointer to struct contiang pointer to the actual frame

PDU_PduType* pdu_GetNextPDU (UINT8 * pbPduStart)

Internal function which fetches the next PDU from a packet using an offset pointer

Parameters:
[in] pbPduStart = pointer to the next PDU within a frame

bool pdu_AddPDU (PDU_ListType * pxPduList,

UINT8 fType,

UINT8 bCmd,

PDU_CommandType * psInfo

)

Internal function for adding a PDU of any addressing mode to the list, normal or logical

Parameters:
[in] pxPduList = pointer to the list which to add the PDU
[in] fType = PDU_NORMAL or PDU_LOGICAL
[in] bCmd = the type of service command, as per defines
[in] psInfo = pointer to struct containing address to slave, address in slave,

length of data to be sent, and a pointer to the data

Returns:
true if the PDU was added, false if there was some kind of error

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

Appendix 17

pdu_layer.h File Reference

This module is responsible for all DLPDU handling. It adds PDU commands and assembles them to
a frame when the master says so. It also disassembles incoming frames into more easily readable
structures.

Data Structures

struct PDU_CommandType
struct PDU_ListType

Functions

bool PDU_AddNormalPDU (PDU_ListType *pxPduList, UINT8 bCmd,
PDU_CommandType *psInfo)

bool PDU_AddLogicalPDU (PDU_ListType *pxPduList, UINT8 bCmd,
PDU_CommandType *psInfo)

PDU_PduType * PDU_GetFirstPDU (UINT8 *pbPacket)
PDU_ListType PDU_GetPDUs (UINT8 *pbPacket)

void PDU_FreePduList (PDU_ListType *pxPduList)
void PDU_FreePdu (PDU_PduType *pxPdu)

PDU_ListType PDU_NewPduList (bool fListType)
void PDU_SendPacket (PDU_ListType *pxPduList)
void pdu_EncodePacket (PDU_ListType *pxPduList, PAC_PacketType *psPacket)

PDU_PduType * pdu_GetNextPDU (UINT8 *pbPduStart)
bool pdu_AddPDU (PDU_ListType *pxPduList, UINT8 fType, UINT8 bCmd,

PDU_CommandType *psInfo)

Detailed Description

Function Documentation

bool PDU_AddNormalPDU (PDU_ListType * pxPduList,

UINT8 bCmd,

PDU_CommandType * psInfo

)

Adds a normal addressing PDU to the list of PDU to be sent with the current frame.

Parameters:
[in] pxPduList = pointer to the list which to add the PDU
[in] bCmd = the type of service command, as per defines
[in] psInfo = pointer to struct containing address to slave, address in slave,

length of data to be sent, and a pointer to the data

Returns:
true if the command was added, false if there was a parameter error

bool PDU_AddLogicalPDU (PDU_ListType * pxPduList,

UINT8 bCmd,

PDU_CommandType * psInfo

)

Adds a logical addressing PDU to the list of PDU to be sent with the current frame.

Parameters:
[in] pxPduList = pointer to the list which to add the PDU
[in] bCmd = the type of service command, as per defines
[in] psInfo = pointer to struct containing address to slave, address in slave,

length of data to be sent, and a pointer to the data

Returns:
true if the command was added, false if there was a parameter error

PDU_PduType* PDU_GetFirstPDU (UINT8 * pbPacket)

Fetches the first PDU from an incoming packet

Parameters:
[in] pbPacket = pointer to the frame

Returns:
pointer to a PDU which must be deallocated after use

PDU_ListType PDU_GetPDUs (UINT8 * pbPacket)

Fetches all the PDUs from an incoming packet

Parameters:
[in] pbPacket = pointer to the frame

Returns:
pointer to a list of PDUs which must be deallocated after use

void PDU_FreePduList (PDU_ListType * pxPduList)

Frees a list of PDUs created by PDU_GetPDUs()

Parameters:
[in] pxPduList = pointer to the list to be free'd

void PDU_FreePdu (PDU_PduType * pxPdu)

Frees a single PDU created by PDU_GetFirstPDU()

Parameters:
[in] pxPdu = pointer to the PDU to be free'd

PDU_ListType PDU_NewPduList (bool fListType)

Initializes a PDU list for first time use

Parameters:
[in] fListType = can be either PDU_STATIC or PDU_DYNAMIC. A static list can not

be free'd

Returns:
a PDU_ListType struct which contains the actual list

void PDU_SendPacket (PDU_ListType * pxPduList)

Marks that the last PDU has been added and sends the packet to the transmit buffer

Parameters:
[in] pxPduList = a pointer to the PDU list that is to be sent

void pdu_EncodePacket (PDU_ListType * pxPduList,

PAC_PacketType * psPacket

)

Internal function that converts the PDU list to a sendable frame

Parameters:
[in] pxPduList = a pointer to the PDU list that is to be sent
[in] psPacket = pointer to struct contiang pointer to the actual frame

PDU_PduType* pdu_GetNextPDU (UINT8 * pbPduStart)

Internal function which fetches the next PDU from a packet using an offset pointer

Parameters:
[in] pbPduStart = pointer to the next PDU within a frame

bool pdu_AddPDU (PDU_ListType * pxPduList,

UINT8 fType,

UINT8 bCmd,

PDU_CommandType * psInfo

)

Internal function for adding a PDU of any addressing mode to the list, normal or logical

Parameters:
[in] pxPduList = pointer to the list which to add the PDU
[in] fType = PDU_NORMAL or PDU_LOGICAL
[in] bCmd = the type of service command, as per defines
[in] psInfo = pointer to struct containing address to slave, address in slave,

length of data to be sent, and a pointer to the data

Returns:
true if the PDU was added, false if there was some kind of error

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

18 Appendix

pdu_layer.h File Reference

This module is responsible for all DLPDU handling. It adds PDU commands and assembles them to
a frame when the master says so. It also disassembles incoming frames into more easily readable
structures.

Data Structures

struct PDU_CommandType
struct PDU_ListType

Functions

bool PDU_AddNormalPDU (PDU_ListType *pxPduList, UINT8 bCmd,
PDU_CommandType *psInfo)

bool PDU_AddLogicalPDU (PDU_ListType *pxPduList, UINT8 bCmd,
PDU_CommandType *psInfo)

PDU_PduType * PDU_GetFirstPDU (UINT8 *pbPacket)
PDU_ListType PDU_GetPDUs (UINT8 *pbPacket)

void PDU_FreePduList (PDU_ListType *pxPduList)
void PDU_FreePdu (PDU_PduType *pxPdu)

PDU_ListType PDU_NewPduList (bool fListType)
void PDU_SendPacket (PDU_ListType *pxPduList)
void pdu_EncodePacket (PDU_ListType *pxPduList, PAC_PacketType *psPacket)

PDU_PduType * pdu_GetNextPDU (UINT8 *pbPduStart)
bool pdu_AddPDU (PDU_ListType *pxPduList, UINT8 fType, UINT8 bCmd,

PDU_CommandType *psInfo)

Detailed Description

Function Documentation

bool PDU_AddNormalPDU (PDU_ListType * pxPduList,

UINT8 bCmd,

PDU_CommandType * psInfo

)

Adds a normal addressing PDU to the list of PDU to be sent with the current frame.

Parameters:
[in] pxPduList = pointer to the list which to add the PDU
[in] bCmd = the type of service command, as per defines
[in] psInfo = pointer to struct containing address to slave, address in slave,

length of data to be sent, and a pointer to the data

Returns:
true if the command was added, false if there was a parameter error

bool PDU_AddLogicalPDU (PDU_ListType * pxPduList,

UINT8 bCmd,

PDU_CommandType * psInfo

)

Adds a logical addressing PDU to the list of PDU to be sent with the current frame.

Parameters:
[in] pxPduList = pointer to the list which to add the PDU
[in] bCmd = the type of service command, as per defines
[in] psInfo = pointer to struct containing address to slave, address in slave,

length of data to be sent, and a pointer to the data

Returns:
true if the command was added, false if there was a parameter error

PDU_PduType* PDU_GetFirstPDU (UINT8 * pbPacket)

Fetches the first PDU from an incoming packet

Parameters:
[in] pbPacket = pointer to the frame

Returns:
pointer to a PDU which must be deallocated after use

PDU_ListType PDU_GetPDUs (UINT8 * pbPacket)

Fetches all the PDUs from an incoming packet

Parameters:
[in] pbPacket = pointer to the frame

Returns:
pointer to a list of PDUs which must be deallocated after use

void PDU_FreePduList (PDU_ListType * pxPduList)

Frees a list of PDUs created by PDU_GetPDUs()

Parameters:
[in] pxPduList = pointer to the list to be free'd

void PDU_FreePdu (PDU_PduType * pxPdu)

Frees a single PDU created by PDU_GetFirstPDU()

Parameters:
[in] pxPdu = pointer to the PDU to be free'd

PDU_ListType PDU_NewPduList (bool fListType)

Initializes a PDU list for first time use

Parameters:
[in] fListType = can be either PDU_STATIC or PDU_DYNAMIC. A static list can not

be free'd

Returns:
a PDU_ListType struct which contains the actual list

void PDU_SendPacket (PDU_ListType * pxPduList)

Marks that the last PDU has been added and sends the packet to the transmit buffer

Parameters:
[in] pxPduList = a pointer to the PDU list that is to be sent

void pdu_EncodePacket (PDU_ListType * pxPduList,

PAC_PacketType * psPacket

)

Internal function that converts the PDU list to a sendable frame

Parameters:
[in] pxPduList = a pointer to the PDU list that is to be sent
[in] psPacket = pointer to struct contiang pointer to the actual frame

PDU_PduType* pdu_GetNextPDU (UINT8 * pbPduStart)

Internal function which fetches the next PDU from a packet using an offset pointer

Parameters:
[in] pbPduStart = pointer to the next PDU within a frame

bool pdu_AddPDU (PDU_ListType * pxPduList,

UINT8 fType,

UINT8 bCmd,

PDU_CommandType * psInfo

)

Internal function for adding a PDU of any addressing mode to the list, normal or logical

Parameters:
[in] pxPduList = pointer to the list which to add the PDU
[in] fType = PDU_NORMAL or PDU_LOGICAL
[in] bCmd = the type of service command, as per defines
[in] psInfo = pointer to struct containing address to slave, address in slave,

length of data to be sent, and a pointer to the data

Returns:
true if the PDU was added, false if there was some kind of error

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

eeprom.h File Reference

Specialized functions for reading a slave's EEPROM.

Data Structures

struct EEPROM_AddressType

Functions

UINT16 EEPROM_Read16Bits (MR_EthercatMasterType *pxMaster, UINT16
iSlaveNbr, UINT16 iWordAddress)

UINT32 EEPROM_Read32Bits (MR_EthercatMasterType *pxMaster, UINT16
iSlaveNbr, UINT16 iWordAddress)

void EEPROM_ReadNBytes (UINT8 *abByteArray, UINT16 iN,
MR_EthercatMasterType *pxMaster, UINT16 iSlaveNbr, UINT16
iWordAddress)

EEPROM_AddressType EEPROM_FindCategory (UINT16 iCategoryCode,
MR_EthercatMasterType *pxMaster, UINT16 iSlaveNbr)

PDU_PduType * EEPROM_ReadRequest (MR_EthercatMasterType *pxMaster, UINT16
iSlaveNbr, UINT16 iWord)

UINT16 EEPROM_WaitBusyBit (MR_EthercatMasterType *pxMaster,
PDU_CommandType *pxCommand)

UINT16 EEEPROM_ClearErrors (MR_EthercatMasterType *pxMaster,
PDU_CommandType *pxCommand, UINT16 iStatus)

void EEPROM_WriteWordAddress (MR_EthercatMasterType *pxMaster,
PDU_CommandType *pxCommand, UINT16 iWordAddress)

void EEPROM_ReadCommand (MR_EthercatMasterType *pxMaster,
PDU_CommandType *pxCommand, UINT16 iStatus)

bool EEPROM_Acknowledge (MR_EthercatMasterType *pxMaster,
PDU_CommandType *pxCommand)

PDU_PduType * EEPROM_ReadWord (MR_EthercatMasterType *pxMaster,
PDU_CommandType *pxCommand, UINT16 iStatus)

Detailed Description

Function Documentation

UINT16 EEPROM_Read16Bits (MR_EthercatMasterType * pxMaster,
UINT16 iSlaveNbr,
UINT16 iWordAddress

)

Reads 16 bits from the EEPROM

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to

the master, 1 the next, etc. Used for auto increment
addressing.

[in] iWordAddress = the word address in EEPROM

Returns:
the 16 bits as an UINT16

UINT32 EEPROM_Read32Bits (MR_EthercatMasterType * pxMaster,
UINT16 iSlaveNbr,
UINT16 iWordAddress

)

Reads 32 bits from the EEPROM

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to

the master, 1 the next, etc. Used for auto increment
addressing.

[in] iWordAddress = the word address in EEPROM

Returns:
the 32 bits as an UINT32

void EEPROM_ReadNBytes (UINT8 * abByteArray,
UINT16 iN,
MR_EthercatMasterType * pxMaster,
UINT16 iSlaveNbr,
UINT16 iWordAddress

)

Reads an arbitrary amount of bytes from EEPROM. Read bytes will always be a multiple of four.

Parameters:
[out] abByteArray = where the read will be stored. This array must have

enough room to hold iN bytes
[in] iN = th enumber of bytes to be read
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest

to the master, 1 the next, etc. Used for auto increment
addressing.

[in] iWordAddress = the word address in EEPROM

EEPROM_AddressType EEPROM_FindCategory (UINT16 iCategoryCode,
MR_EthercatMasterType * pxMaster,
UINT16 iSlaveNbr

)

Finds a specific category in EEPROM

Parameters:
[in] iCategoryCode = the wanted category as per defines
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest

to the master, 1 the next, etc. Used for auto increment
addressing.

Returns:
EEPROM word address

PDU_PduType* EEPROM_ReadRequest (MR_EthercatMasterType * pxMaster,
UINT16 iSlaveNbr,
UINT16 iWord

)

Requests a word from the EEPROM of a slave delivered in a PDU. Should be considered a private
function

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing.
[in] iWord = the word address in EEPROM

UINT16 EEPROM_WaitBusyBit (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Waits for EEPROM to become ready in order to read from it

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = partial command used for creating request frame, see the

code of EEPROM_ReadRequest() for an example of how it
should be supplied.

Returns:
the status of the EEPROM

UINT16 EEEPROM_ClearErrors (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand,
UINT16 iStatus

)

Clears existing errors in the EEPROM control

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = partial command used for creating request frame, see the

code of EEPROM_ReadRequest() for an example of how it
should be supplied.

[in] iStatus = the status from a preceding call of EEPROM_WaitBusyBit()

Returns:
the cleared status

void EEPROM_WriteWordAddress (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand,
UINT16 iWordAddress

)

Writes the address of the wanted word in the EEPROM control

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = partial command used for creating request frame, see the

code of EEPROM_ReadRequest() for an example of how it
should be supplied.

[in] iWordAddress = the word address in EEPROM

void EEPROM_ReadCommand (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand,
UINT16 iStatus

)

Issues the read command with the result that the requested word is loaded in the EEPROM
control

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = partial command used for creating request frame, see the

code of EEPROM_ReadRequest() for an example of how it
should be supplied.

[in] iStatus = the status from a preceding call of EEPROM_ClearErrors()

bool EEPROM_Acknowledge (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Checks that no error occured in EEPROM_ReadCommand

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = partial command used for creating request frame, see the

code of EEPROM_ReadRequest() for an example of how it
should be supplied.

PDU_PduType* EEPROM_ReadWord (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand,
UINT16 iStatus

)

Finally, the requested word can now be read from the EEPROM control and is returned in a PDU

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = partial command used for creating request frame, see the

code of EEPROM_ReadRequest() for an example of how it
should be supplied.

[in] iStatus = the status from a preceding call of EEPROM_ClearErrors()

Returns:
a PDU containing the requested word

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

Appendix 19

eeprom.h File Reference

Specialized functions for reading a slave's EEPROM.

Data Structures

struct EEPROM_AddressType

Functions

UINT16 EEPROM_Read16Bits (MR_EthercatMasterType *pxMaster, UINT16
iSlaveNbr, UINT16 iWordAddress)

UINT32 EEPROM_Read32Bits (MR_EthercatMasterType *pxMaster, UINT16
iSlaveNbr, UINT16 iWordAddress)

void EEPROM_ReadNBytes (UINT8 *abByteArray, UINT16 iN,
MR_EthercatMasterType *pxMaster, UINT16 iSlaveNbr, UINT16
iWordAddress)

EEPROM_AddressType EEPROM_FindCategory (UINT16 iCategoryCode,
MR_EthercatMasterType *pxMaster, UINT16 iSlaveNbr)

PDU_PduType * EEPROM_ReadRequest (MR_EthercatMasterType *pxMaster, UINT16
iSlaveNbr, UINT16 iWord)

UINT16 EEPROM_WaitBusyBit (MR_EthercatMasterType *pxMaster,
PDU_CommandType *pxCommand)

UINT16 EEEPROM_ClearErrors (MR_EthercatMasterType *pxMaster,
PDU_CommandType *pxCommand, UINT16 iStatus)

void EEPROM_WriteWordAddress (MR_EthercatMasterType *pxMaster,
PDU_CommandType *pxCommand, UINT16 iWordAddress)

void EEPROM_ReadCommand (MR_EthercatMasterType *pxMaster,
PDU_CommandType *pxCommand, UINT16 iStatus)

bool EEPROM_Acknowledge (MR_EthercatMasterType *pxMaster,
PDU_CommandType *pxCommand)

PDU_PduType * EEPROM_ReadWord (MR_EthercatMasterType *pxMaster,
PDU_CommandType *pxCommand, UINT16 iStatus)

Detailed Description

Function Documentation

UINT16 EEPROM_Read16Bits (MR_EthercatMasterType * pxMaster,
UINT16 iSlaveNbr,
UINT16 iWordAddress

)

Reads 16 bits from the EEPROM

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to

the master, 1 the next, etc. Used for auto increment
addressing.

[in] iWordAddress = the word address in EEPROM

Returns:
the 16 bits as an UINT16

UINT32 EEPROM_Read32Bits (MR_EthercatMasterType * pxMaster,
UINT16 iSlaveNbr,
UINT16 iWordAddress

)

Reads 32 bits from the EEPROM

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to

the master, 1 the next, etc. Used for auto increment
addressing.

[in] iWordAddress = the word address in EEPROM

Returns:
the 32 bits as an UINT32

void EEPROM_ReadNBytes (UINT8 * abByteArray,
UINT16 iN,
MR_EthercatMasterType * pxMaster,
UINT16 iSlaveNbr,
UINT16 iWordAddress

)

Reads an arbitrary amount of bytes from EEPROM. Read bytes will always be a multiple of four.

Parameters:
[out] abByteArray = where the read will be stored. This array must have

enough room to hold iN bytes
[in] iN = th enumber of bytes to be read
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest

to the master, 1 the next, etc. Used for auto increment
addressing.

[in] iWordAddress = the word address in EEPROM

EEPROM_AddressType EEPROM_FindCategory (UINT16 iCategoryCode,
MR_EthercatMasterType * pxMaster,
UINT16 iSlaveNbr

)

Finds a specific category in EEPROM

Parameters:
[in] iCategoryCode = the wanted category as per defines
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest

to the master, 1 the next, etc. Used for auto increment
addressing.

Returns:
EEPROM word address

PDU_PduType* EEPROM_ReadRequest (MR_EthercatMasterType * pxMaster,
UINT16 iSlaveNbr,
UINT16 iWord

)

Requests a word from the EEPROM of a slave delivered in a PDU. Should be considered a private
function

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing.
[in] iWord = the word address in EEPROM

UINT16 EEPROM_WaitBusyBit (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Waits for EEPROM to become ready in order to read from it

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = partial command used for creating request frame, see the

code of EEPROM_ReadRequest() for an example of how it
should be supplied.

Returns:
the status of the EEPROM

UINT16 EEEPROM_ClearErrors (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand,
UINT16 iStatus

)

Clears existing errors in the EEPROM control

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = partial command used for creating request frame, see the

code of EEPROM_ReadRequest() for an example of how it
should be supplied.

[in] iStatus = the status from a preceding call of EEPROM_WaitBusyBit()

Returns:
the cleared status

void EEPROM_WriteWordAddress (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand,
UINT16 iWordAddress

)

Writes the address of the wanted word in the EEPROM control

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = partial command used for creating request frame, see the

code of EEPROM_ReadRequest() for an example of how it
should be supplied.

[in] iWordAddress = the word address in EEPROM

void EEPROM_ReadCommand (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand,
UINT16 iStatus

)

Issues the read command with the result that the requested word is loaded in the EEPROM
control

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = partial command used for creating request frame, see the

code of EEPROM_ReadRequest() for an example of how it
should be supplied.

[in] iStatus = the status from a preceding call of EEPROM_ClearErrors()

bool EEPROM_Acknowledge (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Checks that no error occured in EEPROM_ReadCommand

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = partial command used for creating request frame, see the

code of EEPROM_ReadRequest() for an example of how it
should be supplied.

PDU_PduType* EEPROM_ReadWord (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand,
UINT16 iStatus

)

Finally, the requested word can now be read from the EEPROM control and is returned in a PDU

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = partial command used for creating request frame, see the

code of EEPROM_ReadRequest() for an example of how it
should be supplied.

[in] iStatus = the status from a preceding call of EEPROM_ClearErrors()

Returns:
a PDU containing the requested word

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

20 Appendix

eeprom.h File Reference

Specialized functions for reading a slave's EEPROM.

Data Structures

struct EEPROM_AddressType

Functions

UINT16 EEPROM_Read16Bits (MR_EthercatMasterType *pxMaster, UINT16
iSlaveNbr, UINT16 iWordAddress)

UINT32 EEPROM_Read32Bits (MR_EthercatMasterType *pxMaster, UINT16
iSlaveNbr, UINT16 iWordAddress)

void EEPROM_ReadNBytes (UINT8 *abByteArray, UINT16 iN,
MR_EthercatMasterType *pxMaster, UINT16 iSlaveNbr, UINT16
iWordAddress)

EEPROM_AddressType EEPROM_FindCategory (UINT16 iCategoryCode,
MR_EthercatMasterType *pxMaster, UINT16 iSlaveNbr)

PDU_PduType * EEPROM_ReadRequest (MR_EthercatMasterType *pxMaster, UINT16
iSlaveNbr, UINT16 iWord)

UINT16 EEPROM_WaitBusyBit (MR_EthercatMasterType *pxMaster,
PDU_CommandType *pxCommand)

UINT16 EEEPROM_ClearErrors (MR_EthercatMasterType *pxMaster,
PDU_CommandType *pxCommand, UINT16 iStatus)

void EEPROM_WriteWordAddress (MR_EthercatMasterType *pxMaster,
PDU_CommandType *pxCommand, UINT16 iWordAddress)

void EEPROM_ReadCommand (MR_EthercatMasterType *pxMaster,
PDU_CommandType *pxCommand, UINT16 iStatus)

bool EEPROM_Acknowledge (MR_EthercatMasterType *pxMaster,
PDU_CommandType *pxCommand)

PDU_PduType * EEPROM_ReadWord (MR_EthercatMasterType *pxMaster,
PDU_CommandType *pxCommand, UINT16 iStatus)

Detailed Description

Function Documentation

UINT16 EEPROM_Read16Bits (MR_EthercatMasterType * pxMaster,
UINT16 iSlaveNbr,
UINT16 iWordAddress

)

Reads 16 bits from the EEPROM

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to

the master, 1 the next, etc. Used for auto increment
addressing.

[in] iWordAddress = the word address in EEPROM

Returns:
the 16 bits as an UINT16

UINT32 EEPROM_Read32Bits (MR_EthercatMasterType * pxMaster,
UINT16 iSlaveNbr,
UINT16 iWordAddress

)

Reads 32 bits from the EEPROM

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to

the master, 1 the next, etc. Used for auto increment
addressing.

[in] iWordAddress = the word address in EEPROM

Returns:
the 32 bits as an UINT32

void EEPROM_ReadNBytes (UINT8 * abByteArray,
UINT16 iN,
MR_EthercatMasterType * pxMaster,
UINT16 iSlaveNbr,
UINT16 iWordAddress

)

Reads an arbitrary amount of bytes from EEPROM. Read bytes will always be a multiple of four.

Parameters:
[out] abByteArray = where the read will be stored. This array must have

enough room to hold iN bytes
[in] iN = th enumber of bytes to be read
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest

to the master, 1 the next, etc. Used for auto increment
addressing.

[in] iWordAddress = the word address in EEPROM

EEPROM_AddressType EEPROM_FindCategory (UINT16 iCategoryCode,
MR_EthercatMasterType * pxMaster,
UINT16 iSlaveNbr

)

Finds a specific category in EEPROM

Parameters:
[in] iCategoryCode = the wanted category as per defines
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest

to the master, 1 the next, etc. Used for auto increment
addressing.

Returns:
EEPROM word address

PDU_PduType* EEPROM_ReadRequest (MR_EthercatMasterType * pxMaster,
UINT16 iSlaveNbr,
UINT16 iWord

)

Requests a word from the EEPROM of a slave delivered in a PDU. Should be considered a private
function

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing.
[in] iWord = the word address in EEPROM

UINT16 EEPROM_WaitBusyBit (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Waits for EEPROM to become ready in order to read from it

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = partial command used for creating request frame, see the

code of EEPROM_ReadRequest() for an example of how it
should be supplied.

Returns:
the status of the EEPROM

UINT16 EEEPROM_ClearErrors (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand,
UINT16 iStatus

)

Clears existing errors in the EEPROM control

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = partial command used for creating request frame, see the

code of EEPROM_ReadRequest() for an example of how it
should be supplied.

[in] iStatus = the status from a preceding call of EEPROM_WaitBusyBit()

Returns:
the cleared status

void EEPROM_WriteWordAddress (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand,
UINT16 iWordAddress

)

Writes the address of the wanted word in the EEPROM control

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = partial command used for creating request frame, see the

code of EEPROM_ReadRequest() for an example of how it
should be supplied.

[in] iWordAddress = the word address in EEPROM

void EEPROM_ReadCommand (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand,
UINT16 iStatus

)

Issues the read command with the result that the requested word is loaded in the EEPROM
control

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = partial command used for creating request frame, see the

code of EEPROM_ReadRequest() for an example of how it
should be supplied.

[in] iStatus = the status from a preceding call of EEPROM_ClearErrors()

bool EEPROM_Acknowledge (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Checks that no error occured in EEPROM_ReadCommand

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = partial command used for creating request frame, see the

code of EEPROM_ReadRequest() for an example of how it
should be supplied.

PDU_PduType* EEPROM_ReadWord (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand,
UINT16 iStatus

)

Finally, the requested word can now be read from the EEPROM control and is returned in a PDU

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = partial command used for creating request frame, see the

code of EEPROM_ReadRequest() for an example of how it
should be supplied.

[in] iStatus = the status from a preceding call of EEPROM_ClearErrors()

Returns:
a PDU containing the requested word

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

Appendix 21

eeprom.h File Reference

Specialized functions for reading a slave's EEPROM.

Data Structures

struct EEPROM_AddressType

Functions

UINT16 EEPROM_Read16Bits (MR_EthercatMasterType *pxMaster, UINT16
iSlaveNbr, UINT16 iWordAddress)

UINT32 EEPROM_Read32Bits (MR_EthercatMasterType *pxMaster, UINT16
iSlaveNbr, UINT16 iWordAddress)

void EEPROM_ReadNBytes (UINT8 *abByteArray, UINT16 iN,
MR_EthercatMasterType *pxMaster, UINT16 iSlaveNbr, UINT16
iWordAddress)

EEPROM_AddressType EEPROM_FindCategory (UINT16 iCategoryCode,
MR_EthercatMasterType *pxMaster, UINT16 iSlaveNbr)

PDU_PduType * EEPROM_ReadRequest (MR_EthercatMasterType *pxMaster, UINT16
iSlaveNbr, UINT16 iWord)

UINT16 EEPROM_WaitBusyBit (MR_EthercatMasterType *pxMaster,
PDU_CommandType *pxCommand)

UINT16 EEEPROM_ClearErrors (MR_EthercatMasterType *pxMaster,
PDU_CommandType *pxCommand, UINT16 iStatus)

void EEPROM_WriteWordAddress (MR_EthercatMasterType *pxMaster,
PDU_CommandType *pxCommand, UINT16 iWordAddress)

void EEPROM_ReadCommand (MR_EthercatMasterType *pxMaster,
PDU_CommandType *pxCommand, UINT16 iStatus)

bool EEPROM_Acknowledge (MR_EthercatMasterType *pxMaster,
PDU_CommandType *pxCommand)

PDU_PduType * EEPROM_ReadWord (MR_EthercatMasterType *pxMaster,
PDU_CommandType *pxCommand, UINT16 iStatus)

Detailed Description

Function Documentation

UINT16 EEPROM_Read16Bits (MR_EthercatMasterType * pxMaster,
UINT16 iSlaveNbr,
UINT16 iWordAddress

)

Reads 16 bits from the EEPROM

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to

the master, 1 the next, etc. Used for auto increment
addressing.

[in] iWordAddress = the word address in EEPROM

Returns:
the 16 bits as an UINT16

UINT32 EEPROM_Read32Bits (MR_EthercatMasterType * pxMaster,
UINT16 iSlaveNbr,
UINT16 iWordAddress

)

Reads 32 bits from the EEPROM

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to

the master, 1 the next, etc. Used for auto increment
addressing.

[in] iWordAddress = the word address in EEPROM

Returns:
the 32 bits as an UINT32

void EEPROM_ReadNBytes (UINT8 * abByteArray,
UINT16 iN,
MR_EthercatMasterType * pxMaster,
UINT16 iSlaveNbr,
UINT16 iWordAddress

)

Reads an arbitrary amount of bytes from EEPROM. Read bytes will always be a multiple of four.

Parameters:
[out] abByteArray = where the read will be stored. This array must have

enough room to hold iN bytes
[in] iN = th enumber of bytes to be read
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest

to the master, 1 the next, etc. Used for auto increment
addressing.

[in] iWordAddress = the word address in EEPROM

EEPROM_AddressType EEPROM_FindCategory (UINT16 iCategoryCode,
MR_EthercatMasterType * pxMaster,
UINT16 iSlaveNbr

)

Finds a specific category in EEPROM

Parameters:
[in] iCategoryCode = the wanted category as per defines
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest

to the master, 1 the next, etc. Used for auto increment
addressing.

Returns:
EEPROM word address

PDU_PduType* EEPROM_ReadRequest (MR_EthercatMasterType * pxMaster,
UINT16 iSlaveNbr,
UINT16 iWord

)

Requests a word from the EEPROM of a slave delivered in a PDU. Should be considered a private
function

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing.
[in] iWord = the word address in EEPROM

UINT16 EEPROM_WaitBusyBit (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Waits for EEPROM to become ready in order to read from it

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = partial command used for creating request frame, see the

code of EEPROM_ReadRequest() for an example of how it
should be supplied.

Returns:
the status of the EEPROM

UINT16 EEEPROM_ClearErrors (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand,
UINT16 iStatus

)

Clears existing errors in the EEPROM control

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = partial command used for creating request frame, see the

code of EEPROM_ReadRequest() for an example of how it
should be supplied.

[in] iStatus = the status from a preceding call of EEPROM_WaitBusyBit()

Returns:
the cleared status

void EEPROM_WriteWordAddress (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand,
UINT16 iWordAddress

)

Writes the address of the wanted word in the EEPROM control

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = partial command used for creating request frame, see the

code of EEPROM_ReadRequest() for an example of how it
should be supplied.

[in] iWordAddress = the word address in EEPROM

void EEPROM_ReadCommand (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand,
UINT16 iStatus

)

Issues the read command with the result that the requested word is loaded in the EEPROM
control

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = partial command used for creating request frame, see the

code of EEPROM_ReadRequest() for an example of how it
should be supplied.

[in] iStatus = the status from a preceding call of EEPROM_ClearErrors()

bool EEPROM_Acknowledge (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Checks that no error occured in EEPROM_ReadCommand

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = partial command used for creating request frame, see the

code of EEPROM_ReadRequest() for an example of how it
should be supplied.

PDU_PduType* EEPROM_ReadWord (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand,
UINT16 iStatus

)

Finally, the requested word can now be read from the EEPROM control and is returned in a PDU

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = partial command used for creating request frame, see the

code of EEPROM_ReadRequest() for an example of how it
should be supplied.

[in] iStatus = the status from a preceding call of EEPROM_ClearErrors()

Returns:
a PDU containing the requested word

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

22 Appendix

eeprom.h File Reference

Specialized functions for reading a slave's EEPROM.

Data Structures

struct EEPROM_AddressType

Functions

UINT16 EEPROM_Read16Bits (MR_EthercatMasterType *pxMaster, UINT16
iSlaveNbr, UINT16 iWordAddress)

UINT32 EEPROM_Read32Bits (MR_EthercatMasterType *pxMaster, UINT16
iSlaveNbr, UINT16 iWordAddress)

void EEPROM_ReadNBytes (UINT8 *abByteArray, UINT16 iN,
MR_EthercatMasterType *pxMaster, UINT16 iSlaveNbr, UINT16
iWordAddress)

EEPROM_AddressType EEPROM_FindCategory (UINT16 iCategoryCode,
MR_EthercatMasterType *pxMaster, UINT16 iSlaveNbr)

PDU_PduType * EEPROM_ReadRequest (MR_EthercatMasterType *pxMaster, UINT16
iSlaveNbr, UINT16 iWord)

UINT16 EEPROM_WaitBusyBit (MR_EthercatMasterType *pxMaster,
PDU_CommandType *pxCommand)

UINT16 EEEPROM_ClearErrors (MR_EthercatMasterType *pxMaster,
PDU_CommandType *pxCommand, UINT16 iStatus)

void EEPROM_WriteWordAddress (MR_EthercatMasterType *pxMaster,
PDU_CommandType *pxCommand, UINT16 iWordAddress)

void EEPROM_ReadCommand (MR_EthercatMasterType *pxMaster,
PDU_CommandType *pxCommand, UINT16 iStatus)

bool EEPROM_Acknowledge (MR_EthercatMasterType *pxMaster,
PDU_CommandType *pxCommand)

PDU_PduType * EEPROM_ReadWord (MR_EthercatMasterType *pxMaster,
PDU_CommandType *pxCommand, UINT16 iStatus)

Detailed Description

Function Documentation

UINT16 EEPROM_Read16Bits (MR_EthercatMasterType * pxMaster,
UINT16 iSlaveNbr,
UINT16 iWordAddress

)

Reads 16 bits from the EEPROM

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to

the master, 1 the next, etc. Used for auto increment
addressing.

[in] iWordAddress = the word address in EEPROM

Returns:
the 16 bits as an UINT16

UINT32 EEPROM_Read32Bits (MR_EthercatMasterType * pxMaster,
UINT16 iSlaveNbr,
UINT16 iWordAddress

)

Reads 32 bits from the EEPROM

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to

the master, 1 the next, etc. Used for auto increment
addressing.

[in] iWordAddress = the word address in EEPROM

Returns:
the 32 bits as an UINT32

void EEPROM_ReadNBytes (UINT8 * abByteArray,
UINT16 iN,
MR_EthercatMasterType * pxMaster,
UINT16 iSlaveNbr,
UINT16 iWordAddress

)

Reads an arbitrary amount of bytes from EEPROM. Read bytes will always be a multiple of four.

Parameters:
[out] abByteArray = where the read will be stored. This array must have

enough room to hold iN bytes
[in] iN = th enumber of bytes to be read
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest

to the master, 1 the next, etc. Used for auto increment
addressing.

[in] iWordAddress = the word address in EEPROM

EEPROM_AddressType EEPROM_FindCategory (UINT16 iCategoryCode,
MR_EthercatMasterType * pxMaster,
UINT16 iSlaveNbr

)

Finds a specific category in EEPROM

Parameters:
[in] iCategoryCode = the wanted category as per defines
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest

to the master, 1 the next, etc. Used for auto increment
addressing.

Returns:
EEPROM word address

PDU_PduType* EEPROM_ReadRequest (MR_EthercatMasterType * pxMaster,
UINT16 iSlaveNbr,
UINT16 iWord

)

Requests a word from the EEPROM of a slave delivered in a PDU. Should be considered a private
function

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing.
[in] iWord = the word address in EEPROM

UINT16 EEPROM_WaitBusyBit (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Waits for EEPROM to become ready in order to read from it

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = partial command used for creating request frame, see the

code of EEPROM_ReadRequest() for an example of how it
should be supplied.

Returns:
the status of the EEPROM

UINT16 EEEPROM_ClearErrors (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand,
UINT16 iStatus

)

Clears existing errors in the EEPROM control

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = partial command used for creating request frame, see the

code of EEPROM_ReadRequest() for an example of how it
should be supplied.

[in] iStatus = the status from a preceding call of EEPROM_WaitBusyBit()

Returns:
the cleared status

void EEPROM_WriteWordAddress (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand,
UINT16 iWordAddress

)

Writes the address of the wanted word in the EEPROM control

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = partial command used for creating request frame, see the

code of EEPROM_ReadRequest() for an example of how it
should be supplied.

[in] iWordAddress = the word address in EEPROM

void EEPROM_ReadCommand (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand,
UINT16 iStatus

)

Issues the read command with the result that the requested word is loaded in the EEPROM
control

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = partial command used for creating request frame, see the

code of EEPROM_ReadRequest() for an example of how it
should be supplied.

[in] iStatus = the status from a preceding call of EEPROM_ClearErrors()

bool EEPROM_Acknowledge (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand

)

Checks that no error occured in EEPROM_ReadCommand

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = partial command used for creating request frame, see the

code of EEPROM_ReadRequest() for an example of how it
should be supplied.

PDU_PduType* EEPROM_ReadWord (MR_EthercatMasterType * pxMaster,
PDU_CommandType * pxCommand,
UINT16 iStatus

)

Finally, the requested word can now be read from the EEPROM control and is returned in a PDU

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] pxCommand = partial command used for creating request frame, see the

code of EEPROM_ReadRequest() for an example of how it
should be supplied.

[in] iStatus = the status from a preceding call of EEPROM_ClearErrors()

Returns:
a PDU containing the requested word

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

Appendix 23

slave.h File Reference

This module handles slave specific operations, such as SII reading and ESM management.

Typedefs

typedef struct
MR_EthercatMasterType SL_Master

typedef UINT8 SL_StateType

Functions

void SL_InitSlave (SL_Master *pxMaster, UINT16 iSlaveNbr)
UINT16 SL_ChangeState (SL_Master *pxMaster, UINT16 iSlaveNbr,

SL_StateType xState)
SL_StateType SL_CheckState (SL_Master *pxMaster, UINT16 iSlaveNbr)

void SL_ClearError (SL_Master *pxMaster, UINT16 iSlaveNbr,
SL_StateType xState)

void SL_WriteProtection (bool fEnable, SL_Master *pxMaster, UINT16
iSlaveNbr)

void SL_ConfigureMailboxChannel (SL_Master *pxMaster, UINT16
iSlaveNbr)

UINT32 SL_VendorId (SL_Master *pxMaster, UINT16 iSlaveNbr)
UINT32 SL_ProductCode (SL_Master *pxMaster, UINT16 iSlaveNbr)
UINT32 SL_RevisionNo (SL_Master *pxMaster, UINT16 iSlaveNbr)
UINT32 SL_SerialNo (SL_Master *pxMaster, UINT16 iSlaveNbr)

UINT8 sl_GetOneByteRegister (SL_Master *pxMaster, UINT16 iSlaveNbr,
UINT16 iSlaveAddr)

UINT16 sl_GetTwoByteRegister (SL_Master *pxMaster, UINT16 iSlaveNbr,
UINT16 iSlaveAddr)

UINT8 * sl_GetMemory (SL_Master *pxMaster, UINT16 iSlaveNbr, UINT16
iSlaveAddr, UINT16 iNbrOfBytes)

void sl_SetOneByteRegister (SL_Master *pxMaster, UINT16 iSlaveNbr,
UINT16 iSlaveAddr, UINT8 bData)

void sl_SetTwoByteRegister (SL_Master *pxMaster, UINT16 iSlaveNbr,
UINT16 iSlaveAddr, UINT16 iData)

void sl_SetMemory (SL_Master *pxMaster, UINT16 iSlaveNbr, UINT16
iSlaveAddr, UINT8 *pbData, UINT16 iNbrOfBytes)

Detailed Description

Function Documentation

void SL_InitSlave (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Initializes a single slave in the master image, and configures the slave and makes it ready for
use

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

UINT16 SL_ChangeState (SL_Master * pxMaster,
UINT16 iSlaveNbr,
SL_StateType xState

)

Requests a state change in a slave's ESM This is very much a work in progress

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] xState = The requested state, as per state defines

Returns:
0 on success and a slave error code otherwise, as per ETG1000.6, 5.3.2 AL Control
Response (Confirmation), table 11 AL Status Codes. If the transition fails, errors are
cleared and the previous state is restored and the error is returned. If the slave is in
error state when this function is called only the error code is returned and a reset has
to be made manually.

SL_StateType SL_CheckState (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Requests AL Status in a slave, including states and errors

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

Returns:
the current state of the slave

void SL_ClearError (SL_Master * pxMaster,
UINT16 iSlaveNbr,
SL_StateType xState

)

Clears error in the slave and returns to previous working state

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] xState = AL Status including error. This parameter is obtained with a

preceding call to SL_CheckState().

void SL_WriteProtection (bool fEnable,
SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Enables/Disables write protection in a slave. This is work in progess

Parameters:
[in] fEnable = can be either SL_WRITE_ENABLE or SL_WRITE_DISABLE
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

void SL_ConfigureMailboxChannel (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Reads mailbox buffer addresses from EEPROM and configures syncmanagers for a slave. This is
work in progress.

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

UINT32 SL_VendorId (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Retrieves Vendor ID from a slave's EEPROM

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

Returns:
the vendor ID

UINT32 SL_ProductCode (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Retrieves Product Code from a slave's EEPROM

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

Returns:
the product code

UINT32 SL_RevisionNo (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Retrieves Revision No from a slave's EEPROM

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

Returns:
the revision no

UINT32 SL_SerialNo (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Retrieves Serial No from a slave's EEPROM

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

Returns:
the serial no

UINT8 sl_GetOneByteRegister (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr

)

Fetches one byte of data from a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested

Returns:
the requested register as an UINT8

UINT16 sl_GetTwoByteRegister (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr

)

Fetches one byte of data from a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested

Returns:
the requested registers as an UINT16

UINT8* sl_GetMemory (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr,
UINT16 iNbrOfBytes

)

Fetches data from a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to

the master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested
[in] iNbrOfBytes = the number of bytes that should be read from the slave. Care

must be taken so that the MTU is not violated.

Returns:
the requested registers by the means of a pointer to data that must be deallocated
after use.

void sl_SetOneByteRegister (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr,
UINT8 bData

)

Sets one byte of data in a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested
[in] bData = the byte that is to be set in the slave, as an UINT8

void sl_SetTwoByteRegister (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr,
UINT16 iData

)

Sets two bytes of data in a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested
[in] iData = the two bytes that is to be set in the slave, as an UINT16

void sl_SetMemory (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr,
UINT8 * pbData,
UINT16 iNbrOfBytes

)

Sets data in a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to

the master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested
[in] iNbrOfBytes = the number of bytes that should be set in the slave. Care

must be taken so that the MTU is not violated.

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

24 Appendix

slave.h File Reference

This module handles slave specific operations, such as SII reading and ESM management.

Typedefs

typedef struct
MR_EthercatMasterType SL_Master

typedef UINT8 SL_StateType

Functions

void SL_InitSlave (SL_Master *pxMaster, UINT16 iSlaveNbr)
UINT16 SL_ChangeState (SL_Master *pxMaster, UINT16 iSlaveNbr,

SL_StateType xState)
SL_StateType SL_CheckState (SL_Master *pxMaster, UINT16 iSlaveNbr)

void SL_ClearError (SL_Master *pxMaster, UINT16 iSlaveNbr,
SL_StateType xState)

void SL_WriteProtection (bool fEnable, SL_Master *pxMaster, UINT16
iSlaveNbr)

void SL_ConfigureMailboxChannel (SL_Master *pxMaster, UINT16
iSlaveNbr)

UINT32 SL_VendorId (SL_Master *pxMaster, UINT16 iSlaveNbr)
UINT32 SL_ProductCode (SL_Master *pxMaster, UINT16 iSlaveNbr)
UINT32 SL_RevisionNo (SL_Master *pxMaster, UINT16 iSlaveNbr)
UINT32 SL_SerialNo (SL_Master *pxMaster, UINT16 iSlaveNbr)

UINT8 sl_GetOneByteRegister (SL_Master *pxMaster, UINT16 iSlaveNbr,
UINT16 iSlaveAddr)

UINT16 sl_GetTwoByteRegister (SL_Master *pxMaster, UINT16 iSlaveNbr,
UINT16 iSlaveAddr)

UINT8 * sl_GetMemory (SL_Master *pxMaster, UINT16 iSlaveNbr, UINT16
iSlaveAddr, UINT16 iNbrOfBytes)

void sl_SetOneByteRegister (SL_Master *pxMaster, UINT16 iSlaveNbr,
UINT16 iSlaveAddr, UINT8 bData)

void sl_SetTwoByteRegister (SL_Master *pxMaster, UINT16 iSlaveNbr,
UINT16 iSlaveAddr, UINT16 iData)

void sl_SetMemory (SL_Master *pxMaster, UINT16 iSlaveNbr, UINT16
iSlaveAddr, UINT8 *pbData, UINT16 iNbrOfBytes)

Detailed Description

Function Documentation

void SL_InitSlave (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Initializes a single slave in the master image, and configures the slave and makes it ready for
use

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

UINT16 SL_ChangeState (SL_Master * pxMaster,
UINT16 iSlaveNbr,
SL_StateType xState

)

Requests a state change in a slave's ESM This is very much a work in progress

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] xState = The requested state, as per state defines

Returns:
0 on success and a slave error code otherwise, as per ETG1000.6, 5.3.2 AL Control
Response (Confirmation), table 11 AL Status Codes. If the transition fails, errors are
cleared and the previous state is restored and the error is returned. If the slave is in
error state when this function is called only the error code is returned and a reset has
to be made manually.

SL_StateType SL_CheckState (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Requests AL Status in a slave, including states and errors

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

Returns:
the current state of the slave

void SL_ClearError (SL_Master * pxMaster,
UINT16 iSlaveNbr,
SL_StateType xState

)

Clears error in the slave and returns to previous working state

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] xState = AL Status including error. This parameter is obtained with a

preceding call to SL_CheckState().

void SL_WriteProtection (bool fEnable,
SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Enables/Disables write protection in a slave. This is work in progess

Parameters:
[in] fEnable = can be either SL_WRITE_ENABLE or SL_WRITE_DISABLE
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

void SL_ConfigureMailboxChannel (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Reads mailbox buffer addresses from EEPROM and configures syncmanagers for a slave. This is
work in progress.

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

UINT32 SL_VendorId (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Retrieves Vendor ID from a slave's EEPROM

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

Returns:
the vendor ID

UINT32 SL_ProductCode (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Retrieves Product Code from a slave's EEPROM

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

Returns:
the product code

UINT32 SL_RevisionNo (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Retrieves Revision No from a slave's EEPROM

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

Returns:
the revision no

UINT32 SL_SerialNo (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Retrieves Serial No from a slave's EEPROM

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

Returns:
the serial no

UINT8 sl_GetOneByteRegister (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr

)

Fetches one byte of data from a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested

Returns:
the requested register as an UINT8

UINT16 sl_GetTwoByteRegister (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr

)

Fetches one byte of data from a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested

Returns:
the requested registers as an UINT16

UINT8* sl_GetMemory (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr,
UINT16 iNbrOfBytes

)

Fetches data from a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to

the master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested
[in] iNbrOfBytes = the number of bytes that should be read from the slave. Care

must be taken so that the MTU is not violated.

Returns:
the requested registers by the means of a pointer to data that must be deallocated
after use.

void sl_SetOneByteRegister (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr,
UINT8 bData

)

Sets one byte of data in a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested
[in] bData = the byte that is to be set in the slave, as an UINT8

void sl_SetTwoByteRegister (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr,
UINT16 iData

)

Sets two bytes of data in a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested
[in] iData = the two bytes that is to be set in the slave, as an UINT16

void sl_SetMemory (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr,
UINT8 * pbData,
UINT16 iNbrOfBytes

)

Sets data in a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to

the master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested
[in] iNbrOfBytes = the number of bytes that should be set in the slave. Care

must be taken so that the MTU is not violated.

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

Appendix 25

slave.h File Reference

This module handles slave specific operations, such as SII reading and ESM management.

Typedefs

typedef struct
MR_EthercatMasterType SL_Master

typedef UINT8 SL_StateType

Functions

void SL_InitSlave (SL_Master *pxMaster, UINT16 iSlaveNbr)
UINT16 SL_ChangeState (SL_Master *pxMaster, UINT16 iSlaveNbr,

SL_StateType xState)
SL_StateType SL_CheckState (SL_Master *pxMaster, UINT16 iSlaveNbr)

void SL_ClearError (SL_Master *pxMaster, UINT16 iSlaveNbr,
SL_StateType xState)

void SL_WriteProtection (bool fEnable, SL_Master *pxMaster, UINT16
iSlaveNbr)

void SL_ConfigureMailboxChannel (SL_Master *pxMaster, UINT16
iSlaveNbr)

UINT32 SL_VendorId (SL_Master *pxMaster, UINT16 iSlaveNbr)
UINT32 SL_ProductCode (SL_Master *pxMaster, UINT16 iSlaveNbr)
UINT32 SL_RevisionNo (SL_Master *pxMaster, UINT16 iSlaveNbr)
UINT32 SL_SerialNo (SL_Master *pxMaster, UINT16 iSlaveNbr)

UINT8 sl_GetOneByteRegister (SL_Master *pxMaster, UINT16 iSlaveNbr,
UINT16 iSlaveAddr)

UINT16 sl_GetTwoByteRegister (SL_Master *pxMaster, UINT16 iSlaveNbr,
UINT16 iSlaveAddr)

UINT8 * sl_GetMemory (SL_Master *pxMaster, UINT16 iSlaveNbr, UINT16
iSlaveAddr, UINT16 iNbrOfBytes)

void sl_SetOneByteRegister (SL_Master *pxMaster, UINT16 iSlaveNbr,
UINT16 iSlaveAddr, UINT8 bData)

void sl_SetTwoByteRegister (SL_Master *pxMaster, UINT16 iSlaveNbr,
UINT16 iSlaveAddr, UINT16 iData)

void sl_SetMemory (SL_Master *pxMaster, UINT16 iSlaveNbr, UINT16
iSlaveAddr, UINT8 *pbData, UINT16 iNbrOfBytes)

Detailed Description

Function Documentation

void SL_InitSlave (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Initializes a single slave in the master image, and configures the slave and makes it ready for
use

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

UINT16 SL_ChangeState (SL_Master * pxMaster,
UINT16 iSlaveNbr,
SL_StateType xState

)

Requests a state change in a slave's ESM This is very much a work in progress

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] xState = The requested state, as per state defines

Returns:
0 on success and a slave error code otherwise, as per ETG1000.6, 5.3.2 AL Control
Response (Confirmation), table 11 AL Status Codes. If the transition fails, errors are
cleared and the previous state is restored and the error is returned. If the slave is in
error state when this function is called only the error code is returned and a reset has
to be made manually.

SL_StateType SL_CheckState (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Requests AL Status in a slave, including states and errors

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

Returns:
the current state of the slave

void SL_ClearError (SL_Master * pxMaster,
UINT16 iSlaveNbr,
SL_StateType xState

)

Clears error in the slave and returns to previous working state

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] xState = AL Status including error. This parameter is obtained with a

preceding call to SL_CheckState().

void SL_WriteProtection (bool fEnable,
SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Enables/Disables write protection in a slave. This is work in progess

Parameters:
[in] fEnable = can be either SL_WRITE_ENABLE or SL_WRITE_DISABLE
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

void SL_ConfigureMailboxChannel (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Reads mailbox buffer addresses from EEPROM and configures syncmanagers for a slave. This is
work in progress.

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

UINT32 SL_VendorId (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Retrieves Vendor ID from a slave's EEPROM

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

Returns:
the vendor ID

UINT32 SL_ProductCode (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Retrieves Product Code from a slave's EEPROM

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

Returns:
the product code

UINT32 SL_RevisionNo (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Retrieves Revision No from a slave's EEPROM

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

Returns:
the revision no

UINT32 SL_SerialNo (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Retrieves Serial No from a slave's EEPROM

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

Returns:
the serial no

UINT8 sl_GetOneByteRegister (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr

)

Fetches one byte of data from a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested

Returns:
the requested register as an UINT8

UINT16 sl_GetTwoByteRegister (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr

)

Fetches one byte of data from a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested

Returns:
the requested registers as an UINT16

UINT8* sl_GetMemory (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr,
UINT16 iNbrOfBytes

)

Fetches data from a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to

the master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested
[in] iNbrOfBytes = the number of bytes that should be read from the slave. Care

must be taken so that the MTU is not violated.

Returns:
the requested registers by the means of a pointer to data that must be deallocated
after use.

void sl_SetOneByteRegister (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr,
UINT8 bData

)

Sets one byte of data in a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested
[in] bData = the byte that is to be set in the slave, as an UINT8

void sl_SetTwoByteRegister (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr,
UINT16 iData

)

Sets two bytes of data in a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested
[in] iData = the two bytes that is to be set in the slave, as an UINT16

void sl_SetMemory (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr,
UINT8 * pbData,
UINT16 iNbrOfBytes

)

Sets data in a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to

the master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested
[in] iNbrOfBytes = the number of bytes that should be set in the slave. Care

must be taken so that the MTU is not violated.

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

26 Appendix

slave.h File Reference

This module handles slave specific operations, such as SII reading and ESM management.

Typedefs

typedef struct
MR_EthercatMasterType SL_Master

typedef UINT8 SL_StateType

Functions

void SL_InitSlave (SL_Master *pxMaster, UINT16 iSlaveNbr)
UINT16 SL_ChangeState (SL_Master *pxMaster, UINT16 iSlaveNbr,

SL_StateType xState)
SL_StateType SL_CheckState (SL_Master *pxMaster, UINT16 iSlaveNbr)

void SL_ClearError (SL_Master *pxMaster, UINT16 iSlaveNbr,
SL_StateType xState)

void SL_WriteProtection (bool fEnable, SL_Master *pxMaster, UINT16
iSlaveNbr)

void SL_ConfigureMailboxChannel (SL_Master *pxMaster, UINT16
iSlaveNbr)

UINT32 SL_VendorId (SL_Master *pxMaster, UINT16 iSlaveNbr)
UINT32 SL_ProductCode (SL_Master *pxMaster, UINT16 iSlaveNbr)
UINT32 SL_RevisionNo (SL_Master *pxMaster, UINT16 iSlaveNbr)
UINT32 SL_SerialNo (SL_Master *pxMaster, UINT16 iSlaveNbr)

UINT8 sl_GetOneByteRegister (SL_Master *pxMaster, UINT16 iSlaveNbr,
UINT16 iSlaveAddr)

UINT16 sl_GetTwoByteRegister (SL_Master *pxMaster, UINT16 iSlaveNbr,
UINT16 iSlaveAddr)

UINT8 * sl_GetMemory (SL_Master *pxMaster, UINT16 iSlaveNbr, UINT16
iSlaveAddr, UINT16 iNbrOfBytes)

void sl_SetOneByteRegister (SL_Master *pxMaster, UINT16 iSlaveNbr,
UINT16 iSlaveAddr, UINT8 bData)

void sl_SetTwoByteRegister (SL_Master *pxMaster, UINT16 iSlaveNbr,
UINT16 iSlaveAddr, UINT16 iData)

void sl_SetMemory (SL_Master *pxMaster, UINT16 iSlaveNbr, UINT16
iSlaveAddr, UINT8 *pbData, UINT16 iNbrOfBytes)

Detailed Description

Function Documentation

void SL_InitSlave (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Initializes a single slave in the master image, and configures the slave and makes it ready for
use

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

UINT16 SL_ChangeState (SL_Master * pxMaster,
UINT16 iSlaveNbr,
SL_StateType xState

)

Requests a state change in a slave's ESM This is very much a work in progress

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] xState = The requested state, as per state defines

Returns:
0 on success and a slave error code otherwise, as per ETG1000.6, 5.3.2 AL Control
Response (Confirmation), table 11 AL Status Codes. If the transition fails, errors are
cleared and the previous state is restored and the error is returned. If the slave is in
error state when this function is called only the error code is returned and a reset has
to be made manually.

SL_StateType SL_CheckState (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Requests AL Status in a slave, including states and errors

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

Returns:
the current state of the slave

void SL_ClearError (SL_Master * pxMaster,
UINT16 iSlaveNbr,
SL_StateType xState

)

Clears error in the slave and returns to previous working state

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] xState = AL Status including error. This parameter is obtained with a

preceding call to SL_CheckState().

void SL_WriteProtection (bool fEnable,
SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Enables/Disables write protection in a slave. This is work in progess

Parameters:
[in] fEnable = can be either SL_WRITE_ENABLE or SL_WRITE_DISABLE
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

void SL_ConfigureMailboxChannel (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Reads mailbox buffer addresses from EEPROM and configures syncmanagers for a slave. This is
work in progress.

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

UINT32 SL_VendorId (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Retrieves Vendor ID from a slave's EEPROM

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

Returns:
the vendor ID

UINT32 SL_ProductCode (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Retrieves Product Code from a slave's EEPROM

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

Returns:
the product code

UINT32 SL_RevisionNo (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Retrieves Revision No from a slave's EEPROM

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

Returns:
the revision no

UINT32 SL_SerialNo (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Retrieves Serial No from a slave's EEPROM

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

Returns:
the serial no

UINT8 sl_GetOneByteRegister (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr

)

Fetches one byte of data from a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested

Returns:
the requested register as an UINT8

UINT16 sl_GetTwoByteRegister (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr

)

Fetches one byte of data from a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested

Returns:
the requested registers as an UINT16

UINT8* sl_GetMemory (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr,
UINT16 iNbrOfBytes

)

Fetches data from a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to

the master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested
[in] iNbrOfBytes = the number of bytes that should be read from the slave. Care

must be taken so that the MTU is not violated.

Returns:
the requested registers by the means of a pointer to data that must be deallocated
after use.

void sl_SetOneByteRegister (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr,
UINT8 bData

)

Sets one byte of data in a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested
[in] bData = the byte that is to be set in the slave, as an UINT8

void sl_SetTwoByteRegister (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr,
UINT16 iData

)

Sets two bytes of data in a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested
[in] iData = the two bytes that is to be set in the slave, as an UINT16

void sl_SetMemory (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr,
UINT8 * pbData,
UINT16 iNbrOfBytes

)

Sets data in a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to

the master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested
[in] iNbrOfBytes = the number of bytes that should be set in the slave. Care

must be taken so that the MTU is not violated.

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

Appendix 27

slave.h File Reference

This module handles slave specific operations, such as SII reading and ESM management.

Typedefs

typedef struct
MR_EthercatMasterType SL_Master

typedef UINT8 SL_StateType

Functions

void SL_InitSlave (SL_Master *pxMaster, UINT16 iSlaveNbr)
UINT16 SL_ChangeState (SL_Master *pxMaster, UINT16 iSlaveNbr,

SL_StateType xState)
SL_StateType SL_CheckState (SL_Master *pxMaster, UINT16 iSlaveNbr)

void SL_ClearError (SL_Master *pxMaster, UINT16 iSlaveNbr,
SL_StateType xState)

void SL_WriteProtection (bool fEnable, SL_Master *pxMaster, UINT16
iSlaveNbr)

void SL_ConfigureMailboxChannel (SL_Master *pxMaster, UINT16
iSlaveNbr)

UINT32 SL_VendorId (SL_Master *pxMaster, UINT16 iSlaveNbr)
UINT32 SL_ProductCode (SL_Master *pxMaster, UINT16 iSlaveNbr)
UINT32 SL_RevisionNo (SL_Master *pxMaster, UINT16 iSlaveNbr)
UINT32 SL_SerialNo (SL_Master *pxMaster, UINT16 iSlaveNbr)

UINT8 sl_GetOneByteRegister (SL_Master *pxMaster, UINT16 iSlaveNbr,
UINT16 iSlaveAddr)

UINT16 sl_GetTwoByteRegister (SL_Master *pxMaster, UINT16 iSlaveNbr,
UINT16 iSlaveAddr)

UINT8 * sl_GetMemory (SL_Master *pxMaster, UINT16 iSlaveNbr, UINT16
iSlaveAddr, UINT16 iNbrOfBytes)

void sl_SetOneByteRegister (SL_Master *pxMaster, UINT16 iSlaveNbr,
UINT16 iSlaveAddr, UINT8 bData)

void sl_SetTwoByteRegister (SL_Master *pxMaster, UINT16 iSlaveNbr,
UINT16 iSlaveAddr, UINT16 iData)

void sl_SetMemory (SL_Master *pxMaster, UINT16 iSlaveNbr, UINT16
iSlaveAddr, UINT8 *pbData, UINT16 iNbrOfBytes)

Detailed Description

Function Documentation

void SL_InitSlave (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Initializes a single slave in the master image, and configures the slave and makes it ready for
use

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

UINT16 SL_ChangeState (SL_Master * pxMaster,
UINT16 iSlaveNbr,
SL_StateType xState

)

Requests a state change in a slave's ESM This is very much a work in progress

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] xState = The requested state, as per state defines

Returns:
0 on success and a slave error code otherwise, as per ETG1000.6, 5.3.2 AL Control
Response (Confirmation), table 11 AL Status Codes. If the transition fails, errors are
cleared and the previous state is restored and the error is returned. If the slave is in
error state when this function is called only the error code is returned and a reset has
to be made manually.

SL_StateType SL_CheckState (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Requests AL Status in a slave, including states and errors

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

Returns:
the current state of the slave

void SL_ClearError (SL_Master * pxMaster,
UINT16 iSlaveNbr,
SL_StateType xState

)

Clears error in the slave and returns to previous working state

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] xState = AL Status including error. This parameter is obtained with a

preceding call to SL_CheckState().

void SL_WriteProtection (bool fEnable,
SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Enables/Disables write protection in a slave. This is work in progess

Parameters:
[in] fEnable = can be either SL_WRITE_ENABLE or SL_WRITE_DISABLE
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

void SL_ConfigureMailboxChannel (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Reads mailbox buffer addresses from EEPROM and configures syncmanagers for a slave. This is
work in progress.

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

UINT32 SL_VendorId (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Retrieves Vendor ID from a slave's EEPROM

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

Returns:
the vendor ID

UINT32 SL_ProductCode (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Retrieves Product Code from a slave's EEPROM

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

Returns:
the product code

UINT32 SL_RevisionNo (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Retrieves Revision No from a slave's EEPROM

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

Returns:
the revision no

UINT32 SL_SerialNo (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Retrieves Serial No from a slave's EEPROM

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

Returns:
the serial no

UINT8 sl_GetOneByteRegister (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr

)

Fetches one byte of data from a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested

Returns:
the requested register as an UINT8

UINT16 sl_GetTwoByteRegister (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr

)

Fetches one byte of data from a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested

Returns:
the requested registers as an UINT16

UINT8* sl_GetMemory (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr,
UINT16 iNbrOfBytes

)

Fetches data from a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to

the master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested
[in] iNbrOfBytes = the number of bytes that should be read from the slave. Care

must be taken so that the MTU is not violated.

Returns:
the requested registers by the means of a pointer to data that must be deallocated
after use.

void sl_SetOneByteRegister (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr,
UINT8 bData

)

Sets one byte of data in a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested
[in] bData = the byte that is to be set in the slave, as an UINT8

void sl_SetTwoByteRegister (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr,
UINT16 iData

)

Sets two bytes of data in a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested
[in] iData = the two bytes that is to be set in the slave, as an UINT16

void sl_SetMemory (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr,
UINT8 * pbData,
UINT16 iNbrOfBytes

)

Sets data in a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to

the master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested
[in] iNbrOfBytes = the number of bytes that should be set in the slave. Care

must be taken so that the MTU is not violated.

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

28 Appendix

slave.h File Reference

This module handles slave specific operations, such as SII reading and ESM management.

Typedefs

typedef struct
MR_EthercatMasterType SL_Master

typedef UINT8 SL_StateType

Functions

void SL_InitSlave (SL_Master *pxMaster, UINT16 iSlaveNbr)
UINT16 SL_ChangeState (SL_Master *pxMaster, UINT16 iSlaveNbr,

SL_StateType xState)
SL_StateType SL_CheckState (SL_Master *pxMaster, UINT16 iSlaveNbr)

void SL_ClearError (SL_Master *pxMaster, UINT16 iSlaveNbr,
SL_StateType xState)

void SL_WriteProtection (bool fEnable, SL_Master *pxMaster, UINT16
iSlaveNbr)

void SL_ConfigureMailboxChannel (SL_Master *pxMaster, UINT16
iSlaveNbr)

UINT32 SL_VendorId (SL_Master *pxMaster, UINT16 iSlaveNbr)
UINT32 SL_ProductCode (SL_Master *pxMaster, UINT16 iSlaveNbr)
UINT32 SL_RevisionNo (SL_Master *pxMaster, UINT16 iSlaveNbr)
UINT32 SL_SerialNo (SL_Master *pxMaster, UINT16 iSlaveNbr)

UINT8 sl_GetOneByteRegister (SL_Master *pxMaster, UINT16 iSlaveNbr,
UINT16 iSlaveAddr)

UINT16 sl_GetTwoByteRegister (SL_Master *pxMaster, UINT16 iSlaveNbr,
UINT16 iSlaveAddr)

UINT8 * sl_GetMemory (SL_Master *pxMaster, UINT16 iSlaveNbr, UINT16
iSlaveAddr, UINT16 iNbrOfBytes)

void sl_SetOneByteRegister (SL_Master *pxMaster, UINT16 iSlaveNbr,
UINT16 iSlaveAddr, UINT8 bData)

void sl_SetTwoByteRegister (SL_Master *pxMaster, UINT16 iSlaveNbr,
UINT16 iSlaveAddr, UINT16 iData)

void sl_SetMemory (SL_Master *pxMaster, UINT16 iSlaveNbr, UINT16
iSlaveAddr, UINT8 *pbData, UINT16 iNbrOfBytes)

Detailed Description

Function Documentation

void SL_InitSlave (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Initializes a single slave in the master image, and configures the slave and makes it ready for
use

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

UINT16 SL_ChangeState (SL_Master * pxMaster,
UINT16 iSlaveNbr,
SL_StateType xState

)

Requests a state change in a slave's ESM This is very much a work in progress

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] xState = The requested state, as per state defines

Returns:
0 on success and a slave error code otherwise, as per ETG1000.6, 5.3.2 AL Control
Response (Confirmation), table 11 AL Status Codes. If the transition fails, errors are
cleared and the previous state is restored and the error is returned. If the slave is in
error state when this function is called only the error code is returned and a reset has
to be made manually.

SL_StateType SL_CheckState (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Requests AL Status in a slave, including states and errors

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

Returns:
the current state of the slave

void SL_ClearError (SL_Master * pxMaster,
UINT16 iSlaveNbr,
SL_StateType xState

)

Clears error in the slave and returns to previous working state

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] xState = AL Status including error. This parameter is obtained with a

preceding call to SL_CheckState().

void SL_WriteProtection (bool fEnable,
SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Enables/Disables write protection in a slave. This is work in progess

Parameters:
[in] fEnable = can be either SL_WRITE_ENABLE or SL_WRITE_DISABLE
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

void SL_ConfigureMailboxChannel (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Reads mailbox buffer addresses from EEPROM and configures syncmanagers for a slave. This is
work in progress.

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

UINT32 SL_VendorId (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Retrieves Vendor ID from a slave's EEPROM

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

Returns:
the vendor ID

UINT32 SL_ProductCode (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Retrieves Product Code from a slave's EEPROM

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

Returns:
the product code

UINT32 SL_RevisionNo (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Retrieves Revision No from a slave's EEPROM

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

Returns:
the revision no

UINT32 SL_SerialNo (SL_Master * pxMaster,
UINT16 iSlaveNbr

)

Retrieves Serial No from a slave's EEPROM

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing

Returns:
the serial no

UINT8 sl_GetOneByteRegister (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr

)

Fetches one byte of data from a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested

Returns:
the requested register as an UINT8

UINT16 sl_GetTwoByteRegister (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr

)

Fetches one byte of data from a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested

Returns:
the requested registers as an UINT16

UINT8* sl_GetMemory (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr,
UINT16 iNbrOfBytes

)

Fetches data from a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to

the master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested
[in] iNbrOfBytes = the number of bytes that should be read from the slave. Care

must be taken so that the MTU is not violated.

Returns:
the requested registers by the means of a pointer to data that must be deallocated
after use.

void sl_SetOneByteRegister (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr,
UINT8 bData

)

Sets one byte of data in a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested
[in] bData = the byte that is to be set in the slave, as an UINT8

void sl_SetTwoByteRegister (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr,
UINT16 iData

)

Sets two bytes of data in a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to the

master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested
[in] iData = the two bytes that is to be set in the slave, as an UINT16

void sl_SetMemory (SL_Master * pxMaster,
UINT16 iSlaveNbr,
UINT16 iSlaveAddr,
UINT8 * pbData,
UINT16 iNbrOfBytes

)

Sets data in a slave

Parameters:
[in] pxMaster = the master unit that sends and receives requests
[in] iSlaveNbr = the slave's number on the network. 0 is the slave closest to

the master, 1 the next, etc. Used for auto increment addressing
[in] iSlaveAddr = the slave internal memory address requested
[in] iNbrOfBytes = the number of bytes that should be set in the slave. Care

must be taken so that the MTU is not violated.

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

ethernet_layer.h File Reference

This layer is responsible for sending and receiving frames to hardware buffers, and ascertaining
that the Ethernet part of the frame is correct upon reception.

Functions

void ETH_EncodePacket (PAC_PacketType *psPacket)
void ETH_Init (ST_Stack *pxSendStack, GS_SemaphoreType xPacketArrivedSem)

EXTFUNC void ETH_PacketReceivedIsr (void)
bool ETH_SendPacket (PAC_PacketType psPacket)

PAC_PacketType ETH_VerifyPacket (void)
PAC_PacketType eth_CopyFromBuffer (void)

Detailed Description

Function Documentation

void ETH_EncodePacket (PAC_PacketType * psPacket)

Encodes a frame with Ethernet header

Parameters:
[in] psPacket = pointer to struct containing pointer to packet and its length

void ETH_Init (ST_Stack * pxSendStack,
GS_SemaphoreType xPacketArrivedSem

)

Initializes Ethernet layer and hardware

Parameters:
[in] pxSendStack = pointer to the outgoing packet stack
[in] xPacketArrivedSem = semaphore for protecting the stack

EXTFUNC void ETH_PacketReceivedIsr (void)

ISR for handling interrupt triggered by packet reception

bool ETH_SendPacket (PAC_PacketType psPacket)

Physically sends the packet

Parameters:
[in] psPacket = pointer to struct containing pointer to packet and its length

Returns:
true if the packet was successfully written to transmit buffers, false otherwise

PAC_PacketType ETH_VerifyPacket (void)

Fetches and verifies an incoming packet. If it is not an EtherCAT frame it is marked and then
discarded in a higher layer

Returns:
a pointer to the packet and its length in an PAC_PacketType struct. If the frame was
discarded the contained pointer is set to NULL and its length to zero.

PAC_PacketType eth_CopyFromBuffer (void)

Internal function that copies the content of the receive buffers

Returns:
a pointer to the packet and its length in an PAC_PacketType struct. If the frame could
not be fetched the contained pointer is set to NULL and its length to zero.

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

Appendix 29

ethernet_layer.h File Reference

This layer is responsible for sending and receiving frames to hardware buffers, and ascertaining
that the Ethernet part of the frame is correct upon reception.

Functions

void ETH_EncodePacket (PAC_PacketType *psPacket)
void ETH_Init (ST_Stack *pxSendStack, GS_SemaphoreType xPacketArrivedSem)

EXTFUNC void ETH_PacketReceivedIsr (void)
bool ETH_SendPacket (PAC_PacketType psPacket)

PAC_PacketType ETH_VerifyPacket (void)
PAC_PacketType eth_CopyFromBuffer (void)

Detailed Description

Function Documentation

void ETH_EncodePacket (PAC_PacketType * psPacket)

Encodes a frame with Ethernet header

Parameters:
[in] psPacket = pointer to struct containing pointer to packet and its length

void ETH_Init (ST_Stack * pxSendStack,
GS_SemaphoreType xPacketArrivedSem

)

Initializes Ethernet layer and hardware

Parameters:
[in] pxSendStack = pointer to the outgoing packet stack
[in] xPacketArrivedSem = semaphore for protecting the stack

EXTFUNC void ETH_PacketReceivedIsr (void)

ISR for handling interrupt triggered by packet reception

bool ETH_SendPacket (PAC_PacketType psPacket)

Physically sends the packet

Parameters:
[in] psPacket = pointer to struct containing pointer to packet and its length

Returns:
true if the packet was successfully written to transmit buffers, false otherwise

PAC_PacketType ETH_VerifyPacket (void)

Fetches and verifies an incoming packet. If it is not an EtherCAT frame it is marked and then
discarded in a higher layer

Returns:
a pointer to the packet and its length in an PAC_PacketType struct. If the frame was
discarded the contained pointer is set to NULL and its length to zero.

PAC_PacketType eth_CopyFromBuffer (void)

Internal function that copies the content of the receive buffers

Returns:
a pointer to the packet and its length in an PAC_PacketType struct. If the frame could
not be fetched the contained pointer is set to NULL and its length to zero.

Generated on Mon Sep 26 2011 17:04:40 for Class B Master by 1.7.5.1

